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I

USING BEST PRACTICES IS A
MORAL AND ETHICAL
OBLIGATION

 
JASON W. OSBORNE

magine you’re a doctor, and your patient is dying. You have three
choices: no treatment, standard practice, and an experimental treatment.
Standard practice and the new procedure put the patient through a great

deal of pain and trauma and, if unsuccessful, dramatically reduce that
patient’s quality of life and financial situation in his or her remaining days.
Standard practice is effective 33% of the time. The experimental treatment
is expected to be more effective but is still experimental.

What do you do? Do you let the patient quietly ease into death, or do you
make heroic efforts to save that patient, gambling on a positive outcome
being worth the expense, hassle, and pain and suffering?

Now imagine you’re the superintendent of a school district and you have
(severely) limited resources and students not achieving the level you desire.
You are mulling three potential options for helping your struggling students.
One is to give teachers a large raise, theoretically encouraging talented
individuals to enter the teaching profession and retaining valuable master
teachers. Another is to purchase an expensive new reading program that is
getting rave reviews. And your teachers and school board members are
telling you that if you just give every student a laptop (or PDA, or iPod),1

everyone will meet expected yearly growth.
Where do you put your resources? Do you spend your resources on flashy

gimmicks that may be the Next Great Thing in education, or do you go with
the mundane (but solidly effective) pay raise for teachers?

RESEARCHERS ARE ROMANTIC FOOLS. RESEARCH IS MAGICAL.



Some of you may be scratching your heads, cleaning your glasses,
wondering if you read that right. Yes, you did. Research is magical,
research is romantic.

The word research (especially the word statistics) and the words
romantic and magical seem antithetical, yet if you distill the research
process to the most basic process, you find people who believe in miracles,
who believe in the magic of research. Researchers are not (always)
cardigan-wearing, ivory-tower recluses interested in only their esoteric,
irrelevant theories, or myopic clipboard-toting socially inept nerds in lab
coats.2 Researchers are the intrepid explorers and adventurers and trail-
blazers of the 21st century, striving to explore phenomena, understand
processes, and, most of all, go where no other human has gone before. The
goal? Most researchers I know want to create knowledge that might one day
change the world, reduce misery, and improve quality of life. We are the
Knights of the New Round Table, on a Quest.3

Research is magical. The creation of knowledge is a uniquely human
endeavor, and those of you who have participated in this compelling
process know its charms. To perform quantitative analysis is to be present at
the creation of new knowledge, and that is a magical thing, a romantic
endeavor. We researchers create knowledge. What an amazing, powerful,
exciting, maddening, profound process that can be!

This book is dedicated to you, the researcher, who labors (often in
obscurity) attempting to change the world, or at least your small corner of
it. But why do we need yet another research methods book when there are
already approximately a billion research methods books already on the
market?4 There are two answers to that question. The first, and most direct,
is because I couldn’t find a book that gave me and my students the answers
we sought to some very basic questions. Most of the chapters and other
articles I have written over the years are in direct response to wondering
how to do something, not finding it clearly laid out in any text I had, and
writing it down so my next semester’s students could use it.

More important, I think we can do better. I know how difficult it is to do
high-quality research, to spend months, sometimes years, gathering data,
and then what? Do a median split on a continuous variable and perform a t
test to see if something worked?5 Plod through a repeated-measures
ANOVA despite violating all assumptions that were never checked, losing
half your data due to missing values? No, my fellow Knights, we can do



better. We owe it to ourselves to do better. We owe it to the decision makers
of the world to do better—and better does not mean maximizing the
probability of getting p < .05. It means getting the most accurate picture of
what is really happening out there in the world. It means getting the most
generalizable, replicable result so that others (like our hypothetical doctor
and superintendent introduced above) may be most likely to profit from all
your long hours of toil. In my opinion, this is not just good common sense
but a moral imperative.

DOES RESEARCH HAVE ETHICAL IMPLICATIONS? IS QUANTITATIVE

ANALYSIS OF DATA A MORAL PROCESS?

You bet!
Think about the two scenarios at the beginning of this introduction. What

if you, as superintendent, decide to bet your resources (and your students’
education) on laptops because some research showed that path to be of
more benefit to the student. And what if, in reality, those results are the
unintentional outcome of poor research practice and do not really reflect the
true benefit of giving all students laptops? You just wasted millions of
taxpayer dollars, and worse, the students get no benefit from that money,
whereas if you had spent the money another way that is effective, they
might have received significant benefit. Is that a moral or ethical issue? I
think so.

And now what if you are agonizing over how to treat your sick patient?
What if the experimental therapy is really 95% effective in saving lives, but
research failed to note such an impressive effect because the analyses were
not the best they could be. Imagine that because of this Type II error, the
patient is directed toward palliative care rather than aggressive treatment.
Or what if the experimental therapy is the worst possible choice,
eliminating chances for successful treatment when initial (faulty) research
indicated it might be highly effective? Doing nothing might have been
better, and you have just harmed your patient. And now imagine that patient
is your child, and that child’s death is now, in hindsight, needless. Is that an
ethical or moral issue? Most definitely.



Most of us don’t research life-and-death issues, but that doesn’t mean our
research successes and failures do not have consequences. Best practices in
quantitative methods is not intellectual snobbery, not a bunch of
curmudgeons sitting around griping about how everybody but them is
wrong. It is critical that we constantly improve the state of the art so that we
maximize the benefit of our labors—so that policy makers and practitioners
and the public at large can make the best decisions possible.

Evidence-based decisions are only as good as the evidence they are based
on. It seems every year we are hearing about new, expensive “miracle
drugs” that initially looked quite promising from the available evidence but
then were found to either cause serious, sometimes deadly, side effects or
turned out to be no more effective than simple, cheap, commonly available
medicines. Sometimes it is better to do nothing for a patient. Sometimes
standard practice or even archaic practice (e.g., using leeches) is more
effective than snazzy new drugs or procedures. And sometimes the newest
is best.

Every year we read about newer, better, and necessarily more expensive
educational interventions for our students. How many billions of dollars
have we spent on instructional technology in public schools in the United
States, with precious little high-quality evidence that these billions have
been the best way to spend those scarce resources? How often do we hear
about the absolute best reading or math program, the last one we will ever
need, if only your school district has X millions of dollars to pay for it? And
how often is it true that a highly qualified, motivated, and happy teacher
with a blackboard and piece of chalk could be considered “best practice” in
education?

Does research have ethical and moral consequences? How can it not? Is
research a magical, wonderful, intoxicating process? Often, yes! If you are
a researcher and you use best practices, not only are you maximizing the
probability of experiencing the magic and romance of positive research
outcomes, but you are also maximizing the probability that your research
will actually be of use to someone else. The world depends on research to
give accurate, unbiased evidence for decision making and sometimes to
speak truth to power.

I am biased in this argument, obviously. I believe science exists to answer
questions, to create real knowledge (not just further partisan
argumentation). If you believe this as well, then you cannot engage in



quantitative research without attempting to do it in the best way possible.
There is almost never a (good) reason not to use best practices.

And so, we come back to the real reason for this book. While many texts
grind over the same hallowed ground that researchers have trodden for
decades or more, my challenge to the research community was this: Show
me the best way to do everything. And put your money where your mouth
is. Show me it really is the best way; demonstrate the advantages to me.
Motivate the reader to change behavior by showing the true benefit of doing
something differently than how we were taught.

In the course of the past 2 years, I and the noble Knights of this Round
Table who contributed chapters to this volume have attempted to leave
behind the baggage of the 20th century.6 I have recruited the most forward-
thinking methodologists, challenging them to wipe the canvas clean and
paint for us a new era of research methods. These authors represent some of
the most revered methodologists working today and some of the brightest
new talents coming on the scene. They come from several different
continents and from an amazing array of backgrounds, and all worked long
hours to share their wisdom with you, so that you, laboring to create
knowledge, will have the best chance at doing so. We want you to succeed,
so that you may make our world, and our children’s world, a better place.

In this volume, you will probably find concepts foreign to you and
probably some things you don’t agree with. That’s exactly my goal. The
world doesn’t need another textbook reviewing how to calculate correlation
coefficients, treating ANOVA and regression like two different worlds, and
genuflecting at the altar of p < .05. This book is a challenge to you, fellow
researcher. Shrug off the shackles of 20th-century methodology, and the
next time you sit down to examine your hard-won data, challenge yourself
to implement one new idea or method discussed in this book (or elsewhere).
Use Rasch measurement rather than averaging items to form scale scores.
Calculate p(rep) instead of power or p. Use hierarchical linear modeling
(HLM) to study change over time, or use propensity scores to create more
sound comparison groups. Choose just one best practice, and use it. And
next time, add another new tool to your toolbox.

There it is. The gauntlet has been cast down. Do you pick it up, accepting
my challenge? To help you in your quest, many authors have provided data
sets to allow you to explore or practice the concepts discussed in their



chapters. I encourage you to explore those at this book’s Web site:
http://best-practices-online.com

One final request: If you disagree with something one of the chapters
posits, write me and demonstrate why the argument that author makes is
wrong. If you know of a new methodology that could legitimately be called
a “best practice” that is not included in this version of the book, tell me
about it (and if you know of someone, including yourself, who would be
great at writing a chapter on it, please share that with me as well!). If it truly
is a best practice, I will do my best to get it into the next version of this
book. My email is jason_osborne@ncsu.edu or jason@jwosborne.com. I
look forward to hearing from you.

NOTES

1. Sadly, there really are schools, school districts, and even highly prestigious universities that are
doing this, despite an almost complete lack of evidence or even theory to support these expensive
practices.

2. Thank you, Gary Larson!
3. Before you ask, the air-speed velocity of an unladen swallow is pretty darn fast.
4. There may be a bit of a confidence interval around that estimate.
5. Believe it or not, I still have colleagues who do this, despite my haranguing. You know who you

are! Shame! SHAME!!!
6. No disrespect to the 20th century—it tried its best.

http://best-practices-online.com/
mailto:jason_osborne@ncsu.edu
mailto:jason@jwosborne.com
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THE NEW STATS
 

Attitudes for the 21st Century
 

FIONA FIDLER

GEOFF CUMMING

ow should a researcher decide what statistical analysis to use? Across
medicine and many other disciplines, best practice is now defined as
being evidence based. As a professional, you must be able to justify

your choice of diagnosis or therapies in terms of evidence that they are
appropriate to the situation and effective. No less a standard should apply to
researchers choosing how to analyze their data. Alas, statistical practices in
psychology, in education, and across the social sciences too often fail to
meet this standard: The journals in these fields publish studies full of
outdated techniques, inappropriate analyses, errors, wrong conclusions, and
opportunities missed.

Several questions are addressed in this introductory chapter. First, what
do we mean by evidence-based statistical practice? Second, what are the
problems with the dominant approach to quantitative analysis in the social
sciences, null hypothesis significance testing (NHST)? How can evidence
guide adoption of better practices? What lessons are there from attempts in
other disciplines to do better? Finally, what attitudes should researchers
adopt to statistical practices in the 21st century?

BEST PRACTICE IS EVIDENCE-BASED PRACTICE



The most widely cited medical definition of evidence-based practice is “the
integration of best research evidence with clinical expertise” (Institute of
Medicine, 2001, p. 147). Following this, we need to consider what kinds of
research evidence should guide statistical practice and what corresponds to
“clinical expertise.” Statistics textbooks typically give the impression that
they are just setting out instructions: Learn and apply these rules and you
will analyze your data correctly. If instead we accept that there are at least
the following three main stages to statistical practice, then we can consider
how evidence and judgment are needed to guide statistical best practice at
each stage.

The first stage is choosing an experimental design that is best for the
research setting and the questions we wish to ask. The second is choosing
one or more statistical analyses to apply to the data, and third is presenting
and interpreting the results. Before discussing approaches to best practice at
each stage, we consider the role of judgment.

The Role of Judgment

Medical practitioners are justified in believing that their professional and
clinical judgment and their insights into the situations of individual patients
are essential elements of best practice. Many worry that evidence-based
practice may be a blunt and mechanistic weapon that devalues clinical
insight, to the detriment of patients. The definition we quoted above,
however, makes clear that evidence-based practice requires the integration
of clinical judgment with relevant research evidence.

Indeed, it is often a matter of expert medical judgment just which
evidence is relevant in a particular case and whether particular
circumstances make this case an exception, requiring a different approach.
Best practice is guided by evidence, but the evidence is not chosen or
applied mindlessly. So it is also with statistics: Evidence informs us about
characteristics—strengths and weaknesses—of particular techniques, but
judgment is required to assess the suitability of a design, or an analysis
technique, for our specific research setting and questions.

Stage 1: Selecting an Experimental Design and Statistical
Model



A statistical analysis assumes a statistical model, which must fit the
setting, design of the experiment, and research questions sufficiently well;
otherwise, the outcome of the analysis is likely to be misleading. Many
common statistical models assume that populations have a normal
distribution, observations are independent, and sampling is random. Does
our research setting comply with these assumptions? Do our independent
and dependent variables fit any requirements of the statistical model? Are
our manipulations likely to be effective? Do our measures have desirable
properties, considering especially reliability and validity? Relevant
evidence may be available on some of these issues, such as the properties of
measures, but the core issue at this first stage concerns the fit between our
research setting and our chosen model. That is largely a matter for
judgment, based on our expert understanding of the research and
experimental context, as well as our knowledge of the statistical model. We
may need to revise our choice of statistical approach, or we may need to
refine our procedure or measures so our experimental work will fit
sufficiently well with our chosen model.

Evidence About Statistical Techniques and Their Application

The other side of the same coin is to ask how robust the statistical
technique is to departures from strict compliance with the assumptions of
the statistical model. Modern methods of Monte Carlo and other types of
simulation have in many cases been applied to investigate how widely it is
reasonable to apply a statistical technique. Such evidence guides our
judgment on how anxious to be about such departures and may suggest
alternative analyses that are more robust to likely departures in our
situation.

Evidence About the Communication of Results

As is known from common experience, and confirmed by research
findings from psychology, presenting information in a different format may
change the message that is received (e.g., Gigerenzer & Hoffrage, 1995).
When presenting research results, one makes many choices: numbers or
words, tables or figures, broad overview or precise details, and so on.
Evidence as well as judgment should guide our choice of reporting format,



so readers are most likely to gain an accurate appreciation of our results and
take away correct and justified conclusions.

In his book on graph design, Kosslyn (1994) draws on evidence from
classic studies in visual perception and from contemporary studies of graph
interpretation. Many recommendations for better graphical displays of data
are derived from well-known perceptual principles such as proximity
(“important for associating labels with scales,” p. 6), similarity (“used to
help readers to pair corresponding bars, lines or regions,” p. 7), and good
continuation (“bars that are arranged in order of increasing or decreasing
size will be more easily apprehended,” p. 7). His other recommendations
are also evidence based—for example, “use a line graph to display
interactions over two levels on the X axis” (p. 33). Here Kosslyn’s claim is
that interpreting interactions from bar graphs requires more time and effort,
and he cites two studies as evidence. One study provides evidence that we
judge bars by their height and lines by their slope; to judge slope from bars
then requires the extra step of imaging a line connecting the top of each bar.
A second study found that trends were more easily detected when
participants were given line graphs rather than bar graphs (Simcox, 1983,
and Schutz, 1961, respectively, cited in Kosslyn, 1994).

Coulson, Healey, Fidler, and Cumming (2006) investigated how
researchers interpret a simple graph (see Figure 1.1) showing two means
with 95% confidence intervals (CIs) by comparison with conventional
statements of statistical significance. They found that researchers who
chose to simply interpret the CIs in terms of NHST—one result is
statistically significant because the CI misses zero, the other is not—usually
thought the two studies gave conflicting evidence. Researchers, on the other
hand, who considered the extent and overlap of the two intervals usually
thought the two studies gave consistent findings—a much more justifiable
conclusion. Coulson et al. thus presented evidence that a figure can prompt
a better understanding than conventional statements in words of statistical
significance, but only if readers can break from their habit of seeing
everything in terms of NHST and read Figure 1.1 in terms of intervals—as
CIs typically should be read.

Statistical Judgment as Well as Evidence



Best practice in statistics brings together evidence about statistical
techniques and their performance, as well as researcher judgment—about
statistics as well as in the substantive research area. It is the job of
researchers to develop their judgment expertise as well as to draw on
evidence relevant to statistical analyses used in their research program.
Statistics education researchers and specialists now talk of teaching
statistical thinking or statistical reasoning, rather than merely rules for
specific techniques. This is an excellent development and needs to extend
explicitly to developing statistical judgment. Statistics and research
methods textbooks should more frequently cite evidence about statistical
models—well, common experimental paradigms, anyway—and their fit
with the world and also more deliberately provide practice and
encouragement for students to build their confidence and judgment.

We now turn to a discussion of NHST. We devote so much space to this
for several reasons: (a) NHST is used in almost all (97% according to the
survey by Cumming et al., 2007) empirical journal articles in psychology
and a large majority in most empirically oriented social science disciplines;
(b) there is strong and diverse evidence of its misuse and dangers; (c) for
decades, it has been repeatedly and cogently criticized; (d) other disciplines
have grappled with statistical reform, meaning progress beyond total
reliance on NHST, and may have lessons for the social sciences; and (e) we
find it an astonishing and intriguing story. However, the main reason is that
it is the best case study of the need for evidence-based statistical practice
and may have some general lessons about how this can be achieved. We
start with a review of criticisms of NHST.

WHAT IS WRONG WITH THE OLD WAY? CRITICISMS OF

NHST

Here we describe four main categories of criticisms: first, those that relate
to the logic of NHST within the frequentist philosophy of probability;
second, those scrutinizing the relevance of NHST in science; third,
problems of misinterpretation; and fourth, problems of misuse.1



Logic

What we, as scientists, often need is not the probability of the data, given
a hypothesis, P(D|H), but the probability of our hypothesis, given the data,
P(H|D). However, it is the former that is the basis of NHST, and this
apparent disjunction between the basis of NHST and what scientists seek is
the most fundamental logical issue with NHST. In case this seems a
pedantic distinction, suppose D refers to death and H to being hanged.
Then, P(D|H) is the probability of being dead, given that you have been
hanged—fairly close to certain. In stark contrast, P(H|D) is the chance that,
given that you are dead, the method was hanging—a tiny probability. The
distinction between these two conditional probabilities is fundamental to the
nature of NHST and also to its problems.

Figure 1.1 The figure presented via e-mail to researchers by Coulson et al. (2006).
Researchers were asked to briefly state in their own words what they felt to be
the main message of the results presented in the figure.

Finding P(H|D) requires a Bayesian approach and specification of prior
probabilities—which are anathema to most frequentists. It is not surprising,
therefore, that Bayesians are among the most passionate critics of NHST.
Most Bayesians would agree with all the criticisms below of NHST. They
would, in addition, argue that even when NHST is correctly used and
interpreted, it can offer little to the progress of science because of its
fundamentally irrelevant outcome. We note later that Bayesian statistical
techniques are becoming more widespread in other disciplines—notably
ecology and conservation biology—and may have much to offer the social
sciences.

Relevance



The basis of NHST is a dichotomous decision to reject the null
hypothesis H0 or not to reject it. NHST leads a researcher to conclude
simply that A is different from B (or, at best, that A is greater than B) or that
no evidence has been found of a difference. Many critics argue, however,
that such mere binary decisions provide an impoverished view of what
science seeks or can achieve.

What would be better than the dichotomous decisions of NHST? Along
with many other critics of NHST in various disciplines, we believe that
estimation of effect sizes by using CIs should be the primary outcome of
research and that science would have progressed further had this been the
case. As Kirk (1996) argued,
 

How far would physics have progressed if their researchers had focused on discovering ordinal
relationships? What we want to know is the size of the difference between A and B and the error
associated with our estimate; knowing A is greater than B is not enough. (p. 754)

Kirk’s comments reflected those made earlier by Tukey (1991): “The
effects of A and B are always different—in some decimal place—for any A
and B. Thus asking ‘Are the effects different?’ is foolish” (p. 100).

Cohen (1994) claimed that even when NHST is used and interpreted
correctly, “it is not the way any science is done” (p. 999). In fact, it is the
way much science is done, but not the way it ought to be done. Rozeboom
(1960) made the same point more than 30 years earlier: NHST is “seldom if
ever appropriate to the aims of scientific research” (p. 417). Carver (1978)
too expressed this sentiment: “Even if properly used in the scientific
method … research would still be better off without statistical significance
testing” (p. 398). To become more quantitative, precise, and theoretically
rich, the social sciences need to move beyond dichotomous decision
making.

Misinterpretations

We offer here a taxonomy of major misconceptions of NHST and the p
values on which it is based—and evidence that these misconceptions are
widespread and damaging. All sentences in italics are statements of
misconceptions; they are wrong!

(i).  (a) The p value is the probability the null hypothesis is true, given the data; (b) the p



value is the probability the null is true.

 
The first, (a), is a simple confusion of two conditional probabilities,

P(D|H0) and P(H0|D), as we discussed above. The second, (b), may be just a
loose abbreviation of (a) but, taken literally, is a failure to recognize that the
probability used by NHST is a conditional probability, P(D|H0), and this is
erroneously converted to P(H0), probably via P(H0|D).

In fact, p values provide no direct information about the truth or falsity of
the null hypothesis, conditional or otherwise. The underlying misconception
here has variously been called the inverse probability fallacy, the
permanent illusion, confusion of the inverse, and the illusion of
probabilistic proof by contradiction. Cohen (1994) provided this
explanation for the origin of these misconceptions: “[NHST] doesn’t tell us
what we want to know [P(H0|D)], but we so much want to know what it is
we want to know that, out of desperation, we nevertheless believe that is
does!” (p. 997).

Oakes (1986) reported that more than one third (36%) of 70 academic
psychologists agreed with a direct statement of inverse probability: “The
probability of the null hypothesis has been found” (p. 80). Not only did
many researchers agree with this statement as a plausible interpretation of
p, but almost half (46%) described it as typical of their usual interpretation
of NHST results. When statements of the fallacy were slightly less explicit,
even more researchers slipped. For example, 66% agreed that “the
probability of the experimental hypothesis can be deduced,” and 86%
agreed that “the probability that the decision taken is wrong is known” (p.
80).

Haller and Krauss (2002), repeating Oakes’s (1986) survey in six German
universities, found that almost 20 years on, the misconception had
diminished only slightly among psychologists (26%, of 39) and was
common among students (32%, of 44)—perhaps not surprising! What is
surprising, however, is that 17% (5 of 30) of the methodology instructors
surveyed also demonstrated the misconception, and even more
methodology instructors (33%, 10 of 30) agreed that “you can deduce the
probability of the experimental hypothesis being true” (p. 5).

How serious is this fallacy for the progress of science? Oakes (1986)
used widespread endorsement of the inverse fallacy to explain the neglect
of statistical power in the psychology research literature. His argument can



be paraphrased: Why would researchers bother about calculating the
probability of detecting an effect of a given size (statistical power) when
they (believe they) already know the probability of the null hypothesis
being true? (Oakes, 1986, pp. 82–83). Unfortunately, statistical power is
reported in only approximately 5% of articles in psychology journals
(Fidler et al., 2005; Finch, Cumming, & Thomason, 2001).

(ii).  1 – p is the probability of the alternative hypothesis being true.

 
This misconception is closely related to (i); in fact, it is entailed by it. A p

value does not provide direct information about the truth or falsity of the
alternative hypothesis for reasons already given—although many students,
researchers, and even methodology instructors believe it does (Haller &
Krauss, 2002; Oakes, 1986).

(iii).  The p value is the probability that the results are due to chance.

 
Carver (1978) called this the “odds-against-chance fantasy.” Kline (2004)

explained it as the false belief that p = .05 means there is 5% likelihood the
results are the product of chance alone. It also manifests in interpretations
of the p value as a measure of sampling error (Finch et al., 2001).

In fact, the 5% Type I error rate has a much more specific interpretation.
It is the probability of rejecting the null when the null is in fact true. The
odds-against-chance fallacy may lead to ignoring the usually much higher
chance of making a Type II error because one believes 5% is the overall
error rate. Furthermore, this misconception could contribute to the common
failure to control for spurious statistically significant results in studies
where multiple hypotheses are tested. In a study testing 20 null hypotheses
(which is not uncommon in many disciplines), we should expect on average
about one test to lead to rejection of the null when all nulls are true. The
problem of inflated Type I error rates is well-known, so one consequence, at
least, of this p value misconception is recognized.

(iv).  The p value is an inverse indicator of effect size.

 
Because p values are a function of both sample size and effect size,

neither can be read directly from a p value. Kline (2004) called the belief
that p values provide direct information about effect size the “magnitude



fallacy” (p. 66). Nickerson (2000) provided a typical example: “I recently
reviewed a manuscript that described a response time that was about 16%
slower than another as being ‘marginally slower’ than the latter, because .05
< p < .06” (p. 257). Effects of practical importance that fail to reach
statistical significance are often dismissed. Similarly, very small or
unimportant effects that do reach p < .05 are often taken to be meaningful
on that basis alone.

(v).  The p value is an inverse indicator of the probability of replication.

 
Sometimes called the replicability fallacy, this is the false belief that a p

value of .05 means that 95 times out of 100, the observed statistically
significant difference will hold up in future investigations. In Oakes’s
(1986) survey, 60% of researchers agreed with this statement of the
replicability fallacy, referring to a p value of .01:
 

You have a reliable experimental finding in the sense that if, hypothetically, the experiment were
repeated a great number of times, you would obtain a significant result on 99% of occasions. (p.
79)

In Haller and Krauss’s (2002) update of Oakes’s (1986) study, 37% of
methodology instructors, 49% of academic psychologists, and 41% of
psychology students agreed with the statement. If there is any true decrease
in the hold of this fallacy since Oakes, it is disappointingly slight, and the
misconception’s pervasiveness among methodology teachers is alarming.

Carver (1978) claimed that replication largely remains an empirical
question, to be answered only by future studies. That was perhaps the case
in 1978. However, computer-intensive resampling strategies have made
replication a question that can also be addressed by simulation, for example,
bootstrapping, jackknifing, and Monte Carlo Markov chain (MCMC)
methods. A recent development is Killeen’s (2005) measure of replicability,
prep, which offers a replication-based approach to interpreting data.2

Cumming (2005) discussed an equivalent estimation-based approach.

(vi).  Statistical nonsignificance means “no effect.”

 
Researchers frequently report statistically nonsignificant results and

interpret them as evidence of no effect or no impact, usually without any



reference to statistical power. Without statistical power and effect size
reports, statistically nonsignificant results are virtually uninterpretable. The
misconception that statistical nonsignificance is direct evidence of “no
effect” has the potential to cause damage of various kinds in all disciplines.

(vii).  Statistically significant results are necessarily theoretically important.

 
A statistically significant result is not necessarily theoretically important.

An effect of even trivial size will be statistically significant in a very high-
powered experiment. Similarly, important effects can fail to reach statistical
significance in poorly designed, low-powered experiments. For this reason,
authors must report not merely statistical significance but also the clinical,
practical, or theoretical importance of effects (Kendall, 1997; Kendall,
Marrs-Garcia, Nath, & Sheldrick, 1999; Kirk, 1996). Kline (2004) referred
to the confusion of statistical and practical significance as the
“meaningfulness fallacy” (p. 66). This fallacy also entails the false belief
that rejecting the null proves not only the statistical alternative hypothesis
but also the research and theory behind the statistical hypothesis (Meehl,
1978).

Misuse

The overuse of, or overreliance on, NHST is also often cited as a serious
problem; it has become ubiquitous, to the exclusion of other forms of
analysis. The neglect of Type II errors and statistical power may be the most
widespread offense.

Low and Unknown Statistical Power. In 1962, Jacob Cohen published the
first survey of statistical power in the psychological literature. He calculated
the average power for small, medium, and large effect sizes of 70 articles
published in 1960 issues of the Journal of Abnormal and Social
Psychology. For medium effect sizes, thought to be typical of psychological
effect sizes in that subdiscipline, the average power was .48 (median = .46).
Sedlmeier and Gigerenzer (1989) surveyed the same journal and found that
the average power for medium effect sizes was .5 (median = .37)—certainly
no great improvement since Cohen’s 1962 survey. Little wonder, then, that



Hunter (1997) compared the average psychology experiment to flipping a
coin!3

The problem is not limited to a single journal. Rossi (1990) summarized
25 studies of statistical power in published articles, covering 40 journals in
diverse areas of psychology and other disciplines. In only 2 journals did the
average power for detecting a medium effect reach .8 or higher.

Occasionally, there is no way to avoid a low-power experiment. When
working with natural groups, one cannot infect extra patients with a rare
disease or increase the population of an endangered species. Conducting a
large-scale study may simply be too costly or time-consuming. These
problems are understandable and hard to avoid.4 However, even low-
powered studies can make valuable contributions to a meta-analysis that
combines the findings of a large number of studies on related issues.
Serious problems arise only when statistical power is both low and
unknown, and this leads to misinterpretation of the low-powered study
considered in isolation.

Low and unreported statistical power has made research literature in
many disciplines difficult to interpret. For example, given that in
psychology, the average power (for effect sizes considered typical of the
discipline) is roughly 50%, it should not be surprising that one study would
find a statistically significant result and the following study not. However,
this often leads research programs astray with the search for illusory
moderating factors, as researchers seek substantive explanations for
apparent inconsistencies between studies caused by mere sampling
variability (Hunter & Schmidt, 1990). The inability to draw conclusions
from inconsistent results can lead to researchers giving up on important
theories: As Meehl (1978) famously said, many theories in psychology
“suffer the fate that General MacArthur ascribed to old generals—they
never die, they just slowly fade away” (p. 807).

Implausible Nil Nulls. NHST is often upheld as the operationalism of the
Popperian philosophy of science. However, Popper specified that
conjectures must be bold, and there is nothing bold about a nil null
conjecture (Meehl, 1978). Nil nulls—hypotheses of no difference, zero
correlation, etc.—are virtually always implausible and therefore guaranteed
to be falisified with sufficient power. For example, “This therapy or
intervention has no effect.” Of course it will have some effect. The more



relevant questions are, “To what extent does it have an effect?” and “Does it
matter?”

STATISTICAL REFORM: BEYOND NHST

The criticisms reviewed above present a strong case against NHST, raising
challenges on many levels. The case against NHST is based on evidence,
which includes surveys of NHST misconceptions occurring in journals
(e.g., Dar, Serlin, & Omer, 1994; Finch et al., 2001; Kieffer, Reese, &
Thompson, 2001), as well as studies of researchers’ (mis)understanding
(e.g., Haller & Krauss, 2002; Oakes, 1986; Tversky & Kahneman, 1971).
Even if one is not convinced by arguments that the logic of NHST is fatally
flawed, it is harder to argue against claims that NHST is largely irrelevant
to the enterprise of scientific research. On top of that, NHST is
demonstrably widely misinterpreted and misused—and half a century of
criticisms has done little to change these practices in disciplines where it
remains the dominant technique. This alone is reason enough for some
critics to call for its abandonment. The availability and advantages of
alternative techniques only serve to make the case for statistical reform
stronger.

Why, despite the decades of strong evidence and cogent argument, does
NHST still overwhelmingly dominate? How can researchers be persuaded
to change? These are vital and fascinating questions in the sociology—as
well as the history and politics—of the social sciences.

Reform Attempts by Journal Editors

Journal editors and their manuscript reviewers are the gatekeepers to the
published literature and therefore should, if they wished, be able to
determine what statistical practices are used in published articles. In
medicine, the convinced and energetic statistical reformer Kenneth
Rothman worked to eliminate NHST and p values and replace them with
CIs, first at the American Journal of Public Health and then at
Epidemiology. Fidler, Thomason, Cumming, Finch, and Leeman (2004)
surveyed those journals and found that Rothman’s strong and persistent



editorial requirements were very largely successful in achieving a switch to
CIs.

In psychology, Geoff Loftus (1993) stated that as editor of Memory &
Cognition, he wanted authors to use figures with error bars (CIs or standard
error [SE] bars) as the primary way to analyze, present, and interpret their
data, preferably without using NHST at all. Despite extraordinary efforts (in
approximately 100 cases, doing the would-be author’s calculations himself),
his reform had a limited and short-lived impact (Finch et al., 2004). A
similar attempt by then-editor Philip Kendall (1997) to introduce reporting
of effect sizes and clinical significance in the Journal of Consulting and
Clinical Psychology was also largely unsuccessful (Fidler et al., 2005).
These pioneering editors should be saluted for their enterprise, but NHST is
so deeply entrenched in psychology’s culture that even determined editorial
efforts have been unable to achieve major and lasting change.

Statistical Reform in Medicine

We have mentioned Rothman’s pioneering and relatively successful
attempts as a journal editor to replace NHST with CIs. Rothman had earlier
been one of a number of reformers who published articles and editorials
criticizing NHST, advocating CIs, and explaining how CIs can be used in
various situations common in medical research. Rothman also published a
leading statistics text (Rothman & Greenland, 1998) and provided CI
software for some designs used in epidemiology.

The efforts of Rothman and other reformers led to policy intervention
from the International Committee of Medical Journal Editors (ICMJE;
1988) and the adoption of strong and consistent editorial policies in more
than 300 medical journals, including leading journals (e.g., New England
Journal of Medicine, British Medical Journal).

It is a notable success of medicine that CIs have now, for more than 20
years, been routinely reported in medical research. Important factors in
achieving this were the efforts of reformers not only to make their case in
strong and highly visible journal articles but also to provide helpful
resources, including tutorial articles, software, and textbooks—for example,
the very useful Statistics With Confidence (Altman, Machin, Bryant, &
Gardner, 2000; the first edition was published in 1989!). These efforts led to



the crucial step by editors, acting as a united international body, to institute
editorial requirements across medical research.

The medical reform story is notable but cannot be regarded as complete:
For example, p values are still common (even if routinely accompanied by
effect sizes and CIs), and interpretation of results is often not based on the
reported CIs (Fidler, Thomason, et al., 2004).

Statistical Reform in Psychology

Despite having limited impact, reform advocates in psychology have
been at least as distinguished, just as determined, and vocal for more
decades than those in medicine. Their efforts prompted the American
Psychological Association (APA) to set up a Task Force on Statistical
Inference, whose report (Wilkinson & the Task Force on Statistical
Inference, 1999) is a fine statement of good practice in the design of
research, as well as statistical analysis and reporting of results. Fidler
(2002) explained that it did not, however, lead to strong, reformed statistical
recommendations in the subsequent edition of the highly influential APA
Publication Manual (APA, 2001). Nor did it lead to any notable moves by
journal editors to reform statistical practice, except perhaps by encouraging
reporting of effect sizes.

A number of differences between medicine and psychology may underlie
the different reform experiences. Medical reformers were more active than
their psychology counterparts in providing textbooks, tutorial articles, and
software to assist researchers who wished to adopt recommended reform
practices. Perhaps the life-or-death consequences of much medical research
played a role.

A further important factor may be that medical researchers more often
work with a consultant statistician and so may be more open to taking
statistical advice, including from journal editors. By contrast, social
scientists have a tradition of teaching their own statistics and researchers
often doing their own statistical analysis. At worst, this tradition may lead
researchers to feel insufficiently confident about their statistical expertise to
critically assess their statistical options, yet not have expert statistical
advice readily available. So researchers cling to cookbook approaches from
textbooks and the methods used by other researchers in the same research
area. The inevitable result is uncritical statistical inertia and stagnation. One



sign of this is that the reform “debate” in psychology is hardly a debate at
all, in that very few detailed arguments in defense of NHST have been
published (Siu Chow’s prolific defenses are an obvious exception, e.g.,
Chow, 1996,1998). Reformers have largely encountered silence rather than
opposition, and entrenched practices have to a large extent simply persisted.

Statistical Reform in Ecology

Fidler, Cumming, Burgman, and Thomason (2004) discussed the
statistical reform stories in medicine, psychology, and ecology. That article
appeared in an economics journal, as part of statistical reform discussions in
that discipline. Every discipline has its own traditions and particular
research challenges, but many statistical reform issues are common across
many disciplines, and it is encouraging that the reform discussion is active
now in more disciplines than ever—for example, in economics.

In ecology, criticism of NHST and debate about desirable statistical
reforms came later than in medicine or psychology but have been active
since the 1980s. Notable in ecology has been increased use of a variety of
approaches to building and testing quantitative models. Such modeling is an
important step beyond estimation of effect sizes and thus two large steps
beyond the impoverished dichotomous decision making of NHST. One
prominent approach to model selection is the information-theoretic
approach of Akaike (1992), which is a likelihood-based technique in which
the Akaike information criterion (AIC) is used to assess model fit and guide
the development and combination of models. Bayesian methods are also
becoming more popular for model selection and estimation, especially with
the widespread availability of software, notably WinBUGS (e.g., McCarthy,
2007). NHST still dominates in ecology, but changes in reporting practice
in leading journals, including Conservation Biology and Biological
Conservation, can now be detected (Fidler, Burgman, Cumming, Buttrose,
& Thomason, 2006).

EVIDENCE-BASED STATISTICAL REFORM



One conclusion from our preceding review is that there is overwhelming
evidence of severe and diverse problems with NHST. Another is that case
studies provide evidence that statistical reform is hard to achieve and is
most likely if a broad approach is taken, including provision of advice and
resources, reform of statistics education, and concerted strong policy action
by journal editors and other influential players in a particular discipline.

Statistical reform must not be seen as a narrow crusade against the p
value but as a striving for a more quantitative, sophisticated, and diverse
way to design research, develop theory, and learn from data. CIs and
estimation of effect size is one step, quantitative modeling another, and
wider use of meta-analysis to integrate bodies of research a further crucial
development. Reform also embraces more generic practices, including use
of graphical representations; consideration of clinical, biological, or
practical importance of results (as opposed to merely statistical
significance); consideration of sample size issues; and thoughtful treatments
of trends and patterns of effects. Most generally, statistical best practice
requires consideration of the full range of possible statistical techniques and
researchers’ informed judgment to choose the most appropriate design,
measures, and analyses to serve particular research goals.

As we have argued above, there is evidence to justify severe doubt about
NHST and to guide efforts toward reform. There is, however, a glaring and
serious lack of evidence to support the effectiveness of many techniques
advocated by reformers. For example, while there is ample evidence of
misconceptions held about NHST, there is virtually no corresponding
evidence that CIs are better understood by researchers and are thus likely to
yield in practice the advantages claimed by reformers. In fact, Cumming,
Williams, and Fidler (2004) and Belia, Fidler, Williams, and Cumming
(2005) identified a number of misconceptions about CIs that are widespread
among researchers in psychology, behavioral neuroscience, and medicine.
We take those findings, however, as a guide to the developments needed in
CI techniques and advice rather than an excuse to retreat from reform.

Throughout this book, there are examples of evidence being presented to
justify particular statistical recommendations and to assist readers in
developing their own statistical judgment skills. There are also pointers to
substantial further research needed to support recommendations that are
currently opinion, as well as to provide more complete information about
robustness and other properties of particular statistical techniques. This



research is partly statistical but also cognitive—for example, the study of
how researchers and research consumers understand various ways of
presenting data and conclusions from data—and thus presents psychologists
in particular with challenging and important research opportunities.

ATTITUDES FOR THE 21ST CENTURY

Based on our discussion above, here we mention some basic attitudes we
recommend to researchers and students—attitudes this book seeks to
exemplify and encourage.

Best Statistical Practice Is a Moving Target

Peruse this book’s reference lists: The recency of many items
demonstrates that new statistical techniques continue to be developed and
further knowledge gained about classical techniques. This book will be
gradually superseded over coming years,5 and that’s a good thing. In their
substantive research areas, researchers read the journals, participate in
conferences, and build a worldwide network of colleagues. They should do
similarly for experimental techniques and statistical methods best for their
field of research.

Too many modern statistics textbooks look too similar to those of the
1970s. There is great inertia in statistics teaching, and too many teachers go
along with student anxiety just to grasp the basics of a fixed canon of
statistical doctrine rather than to appreciate that statistical possibilities keep
changing, and that’s to be celebrated and exploited. Best practice in
statistics is a moving target, and researchers and students need to keep
striving to achieve it. Research progress across the whole discipline
depends on this!

Researcher Expertise and Judgment

NHST has been seen as a tool for all situations. Reformers such as Cohen
(1994) and Wilkinson and the Task Force on Statistical Inference (1999)
made it clear that there is no single tool that can replace NHST, but



researchers must select from a range of more specialized and appropriate
statistical tools. Judgment is required, and a major part of developing
research expertise is the development of well-informed statistical judgment.
Statistical expertise is to be nurtured and celebrated. From even the
introductory statistics course, students need to be taught and encouraged to
practice and build their statistical judgment skills and the self-confidence to
apply and enjoy those skills.

When selecting and using statistical techniques, critical appraisal must
always be in play. Apply reality tests at every stage and to the results. Try
another analysis, expect findings to make sense, and enjoy being in control.

Colleagues and Statistical Experts

Exhortation to develop statistical expertise may ring hollow for
researchers who already feel overstretched. There is constant pressure, and
strong tradition, urging knee-jerk use of ANOVA rather than thought and
experimenting to find a possibly more suitable statistical model. The
practical solution may be to consult colleagues, locally or anywhere around
the world, or a statistics specialist. Development of statistical insight can be
a collaborative venture in which all can gain.6

Research to Build the Evidence Base

Researchers are best placed to identify problems with current statistical
tools and gaps in the knowledge needed to guide statistical judgment in
particular settings. Taking the time, perhaps with a statistics collaborator, to
build the evidence base of statistical understanding can be rewarding and a
highly valuable research contribution. A good applied statistics article may
gain more citations than just another report of a couple of experiments.
Psychologists can make important contributions by studying statistical
cognition—for example, how effectively various statistical presentations
communicate research information and help readers avoid misconception.

Statistical judgment must be based on relevant evidence. Use evidence
wherever you can to guide decisions about research design, experimental
procedures and measures, choice of analyses, and ways to present results.
Then cite this evidence as justification for methodology in your research
article. If evidence is lacking, consider carrying out the research to find it!



Specialist Doctoral Training in Statistics

Norcross, Kohourt, and Wicherski (2005) reported data on the numbers
of students commencing specialist PhD programs in quantitative
psychology within U.S. university psychology departments. In 1992, there
were 76 programs enrolling an average of 3.9 students each, but in 2003,
there were only 17 programs enrolling an average of 1.9 students—that’s a
drop from approximately 296 enrollments to just 32 in 10 years (Norcross
et al., 2005, Table 5, p. 967)! This is a troublesome collapse of vital
specialist research training within a decade and requires investigation and
remedial action. For researchers, however, it may offer an opportunity:
Developing strong secondary expertise in statistics may be a valuable career
move, as well as a valuable component of expertise in one’s primary
research area. It is yet one more reason for students and researchers to seek,
celebrate, and enjoy evidence-based best practice in statistics, as this book
presents.

NOTES

1. Wilkinson and the Task Force on Statistical Inference (1999). These criticisms have all been
made before; they have also been reviewed before (e.g., Kline, 2004; Nickerson, 2000).

2. Interested readers can refer to Chapter 7 for more information on prep.
3. Editor’s note: Osborne, Christensen, and Gunter (2001) reported that in the late 1990s, power

for educational psychology studies in top-tier journals was in excess of .70 and had increased
dramatically from 1969, implying there may be hope for change in other fields.

4. Interested readers can refer to Chapter 9 on best practices in small-N studies.
5. Editor’s note: Egads, they’re already writing this book’s epitaph and it’s not published yet! My

hope is that you, the reader, will help me keep this book continually updated through revision in the
coming years as new ideas and best practices emerge! See my introduction for my contact
information if you have ideas on new and emerging best practices you’d like to see in revisions of
this volume.

6. Editor’s note: In many physical sciences, it is common for papers to have 6 to 10 authors or
more, each representing expertise in different aspects of the research process, and single-author
papers are almost extinct. Perhaps we in the social sciences should move toward that model.
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he first author recently was privileged to be included in a conversation
with a prominent politician regarding the legitimacy of a high school
exit examination that all students (in that state) must pass to obtain a

high school diploma. Indeed, this person was the principal architect of the
mandated exit-level test policy. Ironically, when asked if he could pass the
exam, he commented that “it really didn’t make a difference, since so many
other factors contributed to success in life after high school”! Our hope is
that readers take mind of these issues and think about them in applied
settings.

Cut scores are widely used by educators and psychologists in a variety of
contexts. Technically, a cut score is a prescribed value on a continuum of
values (given the instrument employed) that is seen to be a “threshold” that
demarcates the presence or absence of a particular state or condition (e.g.,
proficient or nonproficient; depressed or not depressed). Cut scores are
usually associated with criterion-referenced tests (CRTs) when used to



indicate a minimal level of proficiency or mastery; however, in some
instances, cut scores are invoked when using norm-referenced tests (NRTs).
An example of this might be when a psychologist uses a normative
threshold on the Minnesota Multiphasic Personality Inventory (MMPI)
scales to infer potential psychopathology or when a school diagnostician
uses IQ and achievement measures to determine the presence of a learning
disability based on a 1–standard deviation discrepancy (Anastasi, 1988).
Similarly, one of the criteria for determining the presence of mental
retardation is a full-scale IQ below 70 (American Association on Mental
Retardation, 2005). Universities often employ cut scores on NRTs as a
partial determinant of who is accepted into their schools (e.g., SAT;
Graduate Record Examination [GRE]). Undoubtedly, however, the greatest
use of cut scores lies in determining mastery or proficiency in a content
domain by virtue of CRT performance.

After determining appropriate behavioral learning outcomes in a given
content area (content standards), a CRT is constructed of items that link
directly back to the content criteria—hence the term criterion referenced
(Crocker & Algina, 1986). Expectations for performance standards are then
set demarcating levels of performance based on what a proficient examinee
should be able to do. As an example, the No Child Left Behind (NCLB)
legislation of 2002 demands performance expectations based on cut scores
—students, schools, and school districts that fail to make the cut are “left
behind” and are subject to considerable punitive actions with respect to
federal school funding. The cut score on the examination represents the
operationalization of performance standards based on the content standards.
Sometimes, the cut score indicates a dichotomous performance level (e.g.,
pass-fail), while at other times there may be multiple performance levels
(e.g., below proficient–proficient–advanced). In certain professions, such as
medicine, cut scores are used to decide who is eligible for licensure in the
field. In K–12 settings, student CRT performance is used not only to gauge
mastery of learning outcomes but also for determining whether a student
should be retained in grade or denied a high school diploma. What is often
overlooked by both educators and public stakeholders is that the validity of
decisions made based on CRT performance is dependent on the quality of
the method used for establishing performance standards and the technical
adequacy of the tests themselves.



Our purpose in this chapter is to outline some of the technical and
practical concerns with CRTs related to establishing performance standards
and cut scores. We start with the premise that a meaningful, legitimate, and
well-defined set of learning goals and objectives has been established.
Moreover, we assume that a comprehensive and technically sound pool of
items has been constructed to measure these outcomes. Having taken this
leap of faith (see Glass, 1978), we focus on two central issues: (a) the
relative merit of methods for establishing cut scores to define performance
levels and (b) methods of compensating for errors in the standard-setting
process and errors in tests. These methods are briefly elaborated, potential
disadvantages of each are discussed, and suggestions for proper practice are
provided.

ESTABLISHING PERFORMANCE STANDARDS

Crocker and Algina (1986) outlined three major approaches to setting
performance standards: (a) holistic, (b) content based, and (c) performance
based. All of these methods typically invoke the judgment of experts in the
content area of interest. These individuals possess substantive content
knowledge as well as intimate familiarity with the target population. In
addition, each method involves establishing clear descriptors for the
respective levels of examinee competence (e.g., pass-fail; below proficient–
proficient–advanced), as well as training on their interpretation. Descriptors
may be provided to judges from an external source, or they may be
developed by the judges themselves before proceeding to standard-setting
activities.

The selection of judges is itself a sampling problem. That is, what is the
sampling adequacy of the judges selected in relation to the population of
such experts? This aspect is, to our knowledge, never considered or even
acknowledged, nor has a multilevel model including between-judge
variance been developed in standard-setting models to date. This technical
aspect, however, is beyond the scope of this chapter.

Holistic Standard Setting



In this approach, a panel of judges is convened to examine a test and
estimate the percentage of items that should be answered correctly by a
person with minimally proficient knowledge of the content domain of
interest. These judges examine the test holistically rather than focusing on
individual item content. After each judge provides a passing standard
estimate, the results are averaged to obtain the final cut score.

The main advantage of the holistic method is its simplicity. Compared
with other standard-setting methods, the holistic approach has a relatively
light cognitive load. There are several disadvantages to the holistic
standard-setting procedure. First, the reliability of the judges’ estimates may
be highly variable. It is likely that different sets of expert panelists with
similar backgrounds would arrive at a different perception of minimal
competence when evaluating the same test content. As Crocker and Algina
(1986) note, a logical procedure to overcome this problem would be to use
multiple, independent panels. This is in itself, however, an inadequate
mechanism to address the population sampling problem referenced above
and will at best merely estimate sample-to-sample variance. If, however, the
number of experts available is finite, or financial resources are limited,
conducting replication studies would reduce the size of each panel. This, in
turn, would likely lead to more fluctuation within the respective groups. A
second problematic aspect of this method is that, because it lacks any
systematic rationale for setting the standard other than an overall
impression of the test, it is the least defensible of standard-setting methods
available. This is of particular concern in high-stakes testing programs,
where decisions based on cut scores that are perceived as unfair are often
challenged in court.

There are no published contemporary examples of holistic standard-
setting procedures used with selected-response items in formal practice
(i.e., large-scale assessment systems). We feel that, despite its simplicity,
use of the holistic procedure for setting standards in a high-stakes testing
context does not represent a best practice. Our principal concern is that the
lack of a formal, systematic process leaves this method vulnerable to legal
challenges. This is of particular concern given the rampant use of high-
stakes testing in K–12 settings, where schools, school districts, and state
education agencies are under increasing demands to defend decisions they
make regarding student outcomes. Moreover, there is the persistent issue of
choosing which important skills students need to master to make them



“competent” in a given area. Rather, current literature focuses on content-
based and performance-based strategies, which are discussed below.

Content-Based Standard Setting

A number of different content-based methods have been developed, but
all share a common focus on determining expectations for performance by
evaluating tests at the item level. The most popular content-based
approaches by far are the Angoff and modified Angoff procedures (Zieky,
2001). Space precludes an elaboration of lesser known methods such as
those developed by Nedelsky (1954) and Ebel (1972), but the interested
reader is referred to Berk (1986) for more on these alternatives.

Basic Angoff Procedure

The basic Angoff procedure involves assembling a panel of judges
(ideally 15–20 [Brandon, 2004; Jaeger, 1991]) who are presented with a
series of test items. The judges, working independently, are asked to think
of a reference group of 100 “minimally acceptable,” “borderline,” or
“barely proficient” examinees and estimate the number of these examinees
that should answer each item correctly. This is conceptually equivalent to
estimating a probability of success on the target item for the referent
student. For each judge, the proportions across items are totaled, and the
average for all judges is computed. This average then becomes the
estimated cut score for the test in a number-correct metric. As Ricker
(2004) notes,
 

This method does not just apply to minimally competent candidates, but could also be used to
create a cut score for any grouping within the population. For example, Angoff methods could
be used to set a cut score for a standard of excellence on a test. In this case, judges would be
required to conceptualize a group of “minimally excellent” examinees. (p. 6)

The basic Angoff procedure represents a conceptual improvement over
the holistic method given the systematic method judges employ to assess
expected student performance at the item level. Indeed, this method has
held up well when challenged in the courts (Hibshmann, 2004).

Since Angoff proposed his method of standard setting, there have been a
number of modifications suggested. Some of these modifications are



presented below.

Modified (Yes-No) Angoff Procedure

The original Angoff method has been criticized on the grounds of being
too cognitively complex for judges (Shepard, Glaser, Linn, & Bohrnstedt,
1993). The argument is that keeping in mind characteristics of a borderline
examinee while simultaneously trying to estimate a probability of success is
onerous. A modification proposed to lessen this cognitive demand is the
yes-no procedure. It is identical to the original Angoff method, with the
exception that, rather than estimate the probability of success on an item,
judges are simply asked to indicate whether a borderline proficient student
would be able to answer the item correctly (Impara & Plake, 1997). The
number of items recommended by each judge is then averaged across
judges to provide a cut score indicating minimal proficiency.

Several studies have empirically compared results from the traditional
and modified yes-no approaches. Impara and Plake (1997) concluded that
both methods resulted in nearly identical cut scores and recommended the
yes-no approach based on its simplicity. Chin and Hertz (2002) examined
both methods and found that the same judges, over repeated iterations of the
process, produced less stable estimates using the yes-no procedure as
opposed to the traditional proportion-correct method. Moreover, these
authors concluded that judges using the yes-no procedure, when presented
with normative data on the test and the opportunity to change their initial
ratings, were more influenced by these data than judges using the traditional
approach. Berk (1986) questioned this approach based on the all-or-none
probability of the yes-no format and suggested that “a continuum of
probabilities is more appropriate for most types of items” (p. 148).

The modified Angoff procedures in either form have also been criticized
as being inadequate for constructed-response items (Cizek, 2001;
Hambleton & Plake, 1997). Such items typically require rubrics for scoring
that have many parts and typically produce multiple part scores; what
constitutes “minimally acceptable” performance becomes too complex for
these methods.

Successive Iterations



According to Ricker (2004), using an iterative process is the most
common of the modified Angoff procedures. In this approach, judges use
either a traditional or yes-no method to initially arrive (independently) at a
cut score for the test. A second and sometimes third round, using the same
judges, is then conducted (Busch & Jaeger, 1990). During these rounds, the
judges discuss their original estimates at the item and total score level. This
is facilitated by providing distributions of the item probabilities and total
cut scores for all panelists. After reviewing this information and discussing
the results, the original estimates may be modified by participants.

Hambleton (2001) has stated that, when evaluating the appropriateness of
standard-setting procedures, the use of iterative standard-setting sessions
with the same panel is desirable. Research documenting the effects of
iterative standard-setting sessions is mixed. Hambleton suggested that
changes from the original standard set by judges as a result of successive
iterations were minimal, with no noteworthy differences between ratings
over sessions. Busch and Jaeger (1990) found that using successive
iterations tended to produce slight modifications of panelists’ original
ratings and that the variability of final estimates was reduced as a result.
While the reduction of variance in initial ratings vis-à-vis repeated
standard-setting sessions is appealing, the extent to which this convergence
of estimates is due to influence from other judges and not a representation
of the judges’ “true” conceptualization of a passing score is somewhat
problematic. Social psychologists (e.g., Asch, 1956; Ross, Bierbrauer, &
Hoffman, 1976) have repeatedly demonstrated that group pressure, either
explicit or implicit, tends to produce acquiescence to group norms that are
not indicative of a person’s true perceptions.

Presentation of Normative Data

At times, judges may be presented with empirical test data from the
target population after making their initial cut score estimates. After a
discussion of these data, the panelists may adjust their original estimates.
As Brandon (2004) explains,
 

Between standard-setting rounds, modified Angoff judges typically review empirical
information about tests and items … and discuss this information and their item estimates from
the previous round. This is an iterative form of standard setting. Having judges review empirical
information was first proposed by Shepard (1976) and endorsed later by others (e.g., Hambleton



& Eignor, 1980; Jaeger, 1982; Livingston & Zieky, 1982). The information that judges review
and discuss can include empirical item p values, the distributions of scores on a test, [and] the
estimated percentages of examinees above cut scores … (Reckase, 2001). Item p values are the
most commonly provided information. Judges are given p values to help ensure that cut scores
are realistic and that interjudge and intrajudge consistency are enhanced (Plake, Melican, &
Mills, 1991). Reviewing and discussing p values is particularly helpful for judges who are
insufficiently familiar with the examinee group. (p. 76)

Although the presentation of normative data during the standard-setting
process may seem antithetical to the purpose of criterion-referenced
assessment, several authors have stated advantages of this practice (e.g.,
Linn, 2003; Zieky, 2001).

Linn (2003) suggests that,
 

in addition to knowing the percentile rank corresponding to particular cut scores, it would also
be desirable to have some means of providing judges with comparative information about the
relative stringency of their standards in comparison to standards set in other states before
judgments are finalized. Normative information would be one way of making comparisons to
standards in other states.

Recommendations for Using Content-Based Methods

The Angoff and modified Angoff procedures offer a more comprehensive
approach to standard setting than holistic methods. Although the use of a
yes-no modification may be less taxing on judges, the few empirical studies
that address this method leave us unconvinced that important information is
not lost in the process (Berk, 1986). Until more information becomes
available regarding the technical merit of this modification, we recommend
the traditional Angoff instructions.

The use of multiple standard-setting sessions has a certain appeal
(Hambleton, 2001). The intent of reducing the variance of judges by virtue
of an iterative process fits well with the democratic nature of informed
discourse that results in, at least, partial closure on agreeable cut scores
based on expert judgment. Weighing against this approach is the possibility
that judges will be unduly influenced by others in modifying their original
estimates. Our position is that the use of successive iterations may
ultimately facilitate reasoned judgment, particularly if the process is
moderated by an independent panel referee (Ricker, 2004).

While the presentation of normative data in the context of content-based
procedures has been challenged, we agree with Linn (2003) and Brandon
(2002) that this additional information may assist judges in making more



reasonable cut score estimates. Not considering actual score distributions of
target examinees and item difficulty levels in setting performance standards
could be construed as a lack of concern for the potentially arbitrary
judgments that are made by panelists. In addition to consulting item
difficulty (p) values, we recommend considering the overall impact of the
cut score decision on passing rates. This can be extended to examining the
potential for disparate impact of the cut score on minority students (Haney,
2000).

Much of the research and most of the conclusions about content-based
procedures have been predicated on getting groups of judges together
physically. Over the past decade, new interactive procedures based on
Internet-oriented real-time activities (e.g., focus groups, Delphi techniques)
have emerged in marketing and other fields that might be employed. These
techniques open up new alternatives for standard setting that have not yet
been explored. The American National Standards Institute published a
recent work advocating such methods (Suett, n.d.).

Performance-Based Standard Setting

Standard-setting methods based on examinee performance involve the
use of empirical data as the foundation for determining cut scores. Two
methods are discussed here: (a) contrasting groups and (b) the bookmark
procedure.

Contrasting-Groups Method

This method invokes the judgment of individuals (e.g., teachers) who are
intimately familiar with a specific group of candidates who are
representative of the target population (e.g., their own students). The judges
are provided with the behavioral criteria, the test, and a description of
“proficient” and “nonproficient” candidates. Judges then identify
individuals who, based on previous classroom assessments, clearly fall into
one of the two categories (borderline candidates are excluded). According
to Cizek (2001), at least 100 candidates should represent each classification
group. These individuals are then tested, and separate frequency
distributions are generated for each group. The intersection between the two



distributions is then used as the cut score that differentiates nonproficient
from proficient examinees (see Figure 2.1).

The contrasting-groups method has an advantage over Angoff-related
procedures in that it asks judges to consider all achievement-related
information they possess about student candidates to answer the following
question: “Given the specifications for nonproficient and proficient students
described in the standards, which of your students fit clearly into one
category?” This would include numerous sources of evidence, including
both selected and open-ended response-formatted tests. There are, however,
several limitations of the approach. One obvious limitation of this method is
its practicality. Judges must not only be familiar with the content domain
and knowledge of the general target population but also have sufficient
knowledge of the previous performance of their own students. An
additional limitation is the potential for judges to evaluate their own
students in an overly favorable manner, a form of self-serving bias; or
personal characteristics of students that are extraneous to achievement (e.g.,
physical attractiveness; disruptive behavior patterns) may contaminate
judges’ perceptions (Brandon, 2002).

Clauser and Clyman (1994) describe an alternative to the traditional
contrasting-groups approach that involves examination of actual
performance of members of the target population rather than the individuals
themselves. Brandon (2002) has termed this a response-focused method as
opposed to the original person-focused approach. In their response-focused
contrasting-groups study, Clauser and Clyman presented experienced
physician judges with previously scored performance examinations
detailing the diagnostic findings of third-year medical students based on
their evaluation of standardized patients (judges were unaware of the results
of previous scoring). Judges then classified students as either “passing” or
“not passing” based on their performance expectations for the target
students. In addition, the judges were allowed to confer and discuss their
respective ratings; however, no consensus between judges was required,
presumably reducing the influence of strongly opinionated panelists. The
previous results on the examinations were then used to plot the scores for
each group and set a cut score, much as in the original contrasting-groups
method. The authors reported relatively high interjudge and intrajudge
agreement using this approach.



Figure 2.1 Demarcation of nonproficient (solid line) and proficient (dotted line)
examinees.

The response-centered method would seem to overcome several
problems related to the person-centered approach. First, judges need only to
have experience with the content domain and knowledge of the general
target population: No experience with specific respondents is necessary.
Second, since judges are not rating their own students, the potential for a
self-serving bias or other criterion contamination should largely be
eliminated. While the response-centered approach is appealing, it is
considered appropriate only within the context of constructed-response
items (Brandon, 2002; Kane, 1998).

Bookmark Method

This approach is a relatively new addition to the standard-setting
literature (Mitzel, Lewis, Patz, & Green, 2001). The bookmark method
(sometimes referred to as an item-mapping strategy) involves first testing
examinees in the target domain. Using item response theory (IRT), test
items (which may be selected-response or open-ended) are mapped onto a
common scale. Item difficulties are then computed, and a booklet is
developed with items arranged vertically based on empirically derived
difficulty levels (easiest to hardest). Judges are allowed to examine—and
sometimes take—the test and are provided with item content specifications,



content standards, scoring rubrics for open-ended items, and other relevant
materials, such as initial descriptors for performance levels. Typically,
panels of 15 to 21 judges are selected for each subject area and grade level
(Kiplinger, 1997). Judges then separate into smaller groups and examine the
ordered item booklet. Starting with the easiest items, each judge examines
each item and determines whether a student meeting a particular
performance level would be expected to answer the item correctly. This
procedure continues until the judge reaches the first item that is perceived
as unlikely to be answered correctly by a student at the prescribed level. A
“bookmark” is then placed next to this item.

Kiplinger’s (1997) explanation of the process used by the Colorado
Department of Education illustrates the bookmarking process. Colorado
developed a polytomous classification system (unsatisfactory–partially
proficient–proficient–advanced). The expectations for performance levels
are described here:

The items prior to the first bookmark (partially proficient) are items
that all partially proficient students, with a high probability, should
know and be able to do. Students who are not likely to respond
correctly to these items are probably performing at the “unsatisfactory”
level. Mastery of these items separates the “partially proficient”
student from one who is performing unsatisfactorily.
The items between the first bookmark and the second bookmark
(proficient) are items that all proficient students, with a high
probability, should know and be able to do. Students who are not likely
to respond correctly to these items are probably “partially proficient”
or “unsatisfactory.” Mastery of these items separates the “proficient”
student from the “partially proficient” student.
The items between the second bookmark and the third bookmark
(advanced) are items that all advanced students, with a high
probability, should know and be able to do. Students who are not likely
to respond correctly to these items are probably performing at the
“proficient,” “partially proficient,” or “unsatisfactory” level. Mastery
of these items separates the “advanced” student from the “proficient”
student.
The items after the last bookmark (advanced) are items that some, but
not all, advanced students are likely to know and be able to do.



After the first round, participants in the small group are allowed to
discuss their bookmark ratings for each group and may modify initial
ratings based on group discussion. In a final round, the small group findings
are discussed by all judges, and additional information, such as the impact
of the various cut scores on the percentage of students who would be
classified in each category, is considered. A final determination is reached
either through consensus or by taking the median ratings between groups.
The last step involves revising the initial performance descriptors based on
information provided by panelists (and the impact data) during the iterative
rounds.

One advantage of this method is the wealth of information provided to
judges, including the use of empirical data at two different stages (item
difficulty ordering and student impact). Although performance-based
methods have been criticized by some authors (e.g., Glass, 1978), Crocker
and Algina (1986) noted that
 

since judges’ standards are inevitably influenced by their perceptions of how examinees they
know would perform on the test, it may be more appropriate to use actual data from a well-
chosen sample of examinees than to rely on arbitrary judgments based on more limited
(idiosyncratic) perceptions of examinees’ ability to perform on a given test. (p. 414)

The use of successive iterations in the process may also be desirable
provided that a concerted effort is made to ensure a truly egalitarian
standard-setting process.

One persistent concern with the bookmark method relates to the
presentation of items in order of difficulty. It is typical for judges to
disagree as to the ordering of items, a phenomenon called “item
disordinality” (Skaggs & Tessema, 2001). This is often a function of
differential exposure to test content or local curricular emphases that may
be idiosyncratic to a school district. Clearly, this phenomenon has the
potential to affect variability among judges. Concerns over item
disordinality can be addressed by a careful presentation and discussion of
the content standards, as well as the individual items (Lewis & Green,
1997).

As noted with content-based methods, new technology has the potential
to greatly alter performance-based methods through online sources of
information from students, teachers, and experts. There is more to learn
than is now known about how these innovations will affect standard setting.



While there is an almost religious belief that IRT-based methods produce
the best information available, IRT itself has significant problems with
unidimensionality and local independence assumptions about the items that
are almost never met. It is not clear how the ubiquitous violation of these
assumptions affects estimates of item parameters and the consequent
interpretation by judges.

Recommendations for Using Performance-Based Methods

Of the performance-based standard-setting procedures, the traditional
contrasting-groups method has received the most attention in the literature
(Brandon, 2002). Mills (1983) reported fairly consistent results when
comparing the contrasting-groups and Angoff procedures. The
disadvantages of this method, however, such as difficulties in assembling
qualified judges and the lack of an interjudge agreement process, seem to
preclude its routine use in practice. The response-focused method proposed
by Clauser and Clyman (1994) seems to be a tractable alternative, although
it appears most suitable for constructed-response items.

The appeal of the bookmark procedure is evident given its adoption by at
least 31 state education departments for K–12 high-stakes standard setting
(Lin, n.d.). Although we do not necessarily endorse this method (i.e.,
popularity does not imply quality), it combines a number of attractive
features found in other approaches, such as the use of (a) normative and
impact data, (b) successive iterations, and (c) open (typically) moderated
panel discussions (Ricker, 2004).

General Discussion of Standard-Setting Methods

Each of the standard-setting methods previously discussed has certain
merits. There also are corresponding disadvantages, and the informed
practitioner must consider these issues when designing CRTs. Below, we
elaborate two concerns regarding the use of CRTs in establishing standards
that have been repeatedly addressed in the literature.

First, numerous studies have provided evidence that different standard-
setting methods often yield markedly different results. Moreover, using the
same method, different panels of judges arrive at very different conclusions
regarding the appropriate cut score (Crocker & Algina, 1986; Jaeger, 1991).



Ideally, multiple methods would be used to determine the stability of scores
generated by different methods and different judges. Unfortunately, this is
not typically an economic or logistic reality. Rudner (2001) and Glass
(1978) have noted the “arbitrary” nature of the standard-setting process.
Glass, in particular, has condemned the notion of cut scores as “a common
expression of wishful thinking” (p. 237). When decisions based on cut
scores have both substantive legal consequences and personal consequences
for the examinee, it would seem prudent to have multiple, defensible
sources of evidence for the validity of the cut points. For instance, scores
from standardized examinations such as the SAT have been predictive of
future performance, as evidenced by first-year college grade point average
(GPA). And, indeed, many colleges use SAT cut scores as one source of
information regarding an applicant’s potential (e.g., SAT at or above 1,000).
They also, however, use other indicators such as cumulative high school
GPA and writing samples, providing additional support to defend their
decisions.

A second concern related to standard setting involves the concept of a
minimally proficient, competent, acceptable, or master examinee. Glass
(1978) has noted that valid external criteria for assessing the legitimacy of
such distinctions in the context of subject matter areas are virtually
nonexistent. They may hold only in rare instances, such as when a person
who types zero words per minute with zero accuracy (a complete absence
of skill) may be deemed incapable of working as a typist. But would one
dare suggest that a minimal amount of reading skill is necessary to be a
competent parent—and if so, what would this level be? Glass concludes
that “the attempt to base criterion scores on a concept of minimal
competence fails for two reasons: (1) it has virtually no foundation in
psychology; (2) when its arbitrariness is granted but judges attempt
nonetheless to specify minimal competence, they disagree wildly” (p. 251).

Compensating for Error in the Standard-Setting and Cut Score
Process

Psychometricians have long recognized that measurements of any kind
(including physical and observational measures) depend on instruments that
are inherently, to some degree, unreliable, therefore containing error
(Anastasi, 1988). With regard to standard setting, two sources of error at



two levels have been considered: (a) errors associated with judges and
methods and (b) errors associated with responses to the test itself. We
briefly comment on the first source of error and elaborate more fully on the
second source—which is, in our opinion, the more salient aspect of standard
setting for researchers and practitioners.

Errors Associated With Judges and Methods

One persistent criticism of the standard-setting process is that different
judges using different methods often arrive at discrepant conclusions about
the “true” score of a passing, or competent, examinee.

Since the vast majority of standard-setting endeavors employ a single
method, one might invoke the principles of classical test theory (CTT) to
estimate error due to inconsistency among judges. Under this model, the
independent ratings of judges regarding a true cut score are treated as
fallible indicators of the true status of an examinee. The mean of these
ratings is considered the true score of the proficient examinee, and the
standard deviation of these ratings serves as the standard error of
measurement for the observed ratings, which is located around the true
score.

Alternatively, some have advocated using the standard error of the mean
(SEX) as a measure of error in rater judgments (MacCann & Stanley, 2004).
This approach has been used empirically to estimate differences in cut score
judgments across years using the same method but different judges. The
outcome is presumably an indicator of the significance of longitudinal shifts
in ratings as a function of rater characteristics.

An even more current approach would be to embed judges’ scores within
a multilevel model that estimates properly variances at the between-judge
level and within-judge level using mixed model methods. Such analyses
will point out the relative variance components for each score estimated.
Modern advanced statistical programs permit estimation with logistic
outcomes under IRT or other multinomial models. To date, we know of no
case where such methods have been incorporated into standard setting.

Recommendations for Judge and Method Errors



Our treatment of this approach is brief based on our judgment that such
methods are sufficiently fraught with difficulties that both are, to some
degree, intractable from a statistical standpoint.

With respect to invoking CTT to make an argument regarding the error
associated with judges using the same method, we would assert that, since
the vast majority of standard-setting panels use an iterative process, the
subsequent judgments are no longer independent. Rather, these judgments
are influenced to some degree by other ratings, which clearly violates the
CTT assumption of independence of observations. The entire purpose of the
iterative method is to gain convergence of judges on an appropriate true cut
score. If this purpose is accomplished, the corresponding standard deviation
of the ratings is reduced. This would make the resulting standard error a
biased underestimate of the original estimate.

The second method mentioned relies on the (SEX) as a measure of rater
variability. Several limitations of this approach are apparent. Since the
(SEX) is defined as

this measure obviously depends on the number of raters used in the
standard-setting process. If one desires a greater measure of precision, it is
simply a matter of acquiring more raters. Moreover, if the attempt is to
compare ratings over time, even with the same number of judges, it is likely
that the same judges may be represented more that once over successive
standard-setting sessions because a conceptually infinite pool of qualified
judges to be sampled is hard to conceive. This, again, would violate the
notion of independent observations and thus render the associated standard
error a biased estimate. While it is theoretically possible to construct
clusters of judges under multilevel models, the number required per cluster
and number of clusters necessary for stable estimation typically are too
large for the resources allocated for standard setting.

For the reasons articulated above, we believe that attempts to address
measurement error in the standard-setting process are misguided and ill-
conceived in general. In addition, while these methods may conceivably be
implemented correctly, in our opinion, the real focus of addressing
measurement error should be directed toward scores on the examination of
interest—standard errors associated with the test itself. In this context, we



examine two methods to estimate the impact of imprecision of test score
responses on the misclassification of examinees.

Estimation of Classification Errors for Groups of Examinees
CTT Estimation of Misclassification

Estimates of test score reliability may be used to determine the expected
rates of misclassification of examinees due to measurement error. To
reiterate, all tests yield observed scores that are contaminated to a certain
extent by error. Two types of error may occur: (a) False positives happen
when an examinee who has not mastered the material is designated as
passing (i.e., having mastered the material), and (b) false negatives happen
when an examinee who has mastered the material is designated as
nonpassing (i.e., having not mastered the material).

Procedures for using CTT estimates to develop misclassification rates
have been developed by a number of authors (e.g., Huynh & Saunders,
1980). This approach is presented below, based on a paper (Kellow &
Willson, 2001) examining misclassification rates associated with the Texas
Assessment of Academic Skills (TAAS). The metric of interest was the
Texas Learning Index (TLI). The TLI was developed for the purpose of,
among other things, providing a consistent passing standard across test
forms.

The TLI is a linear standardized scoring transformation with a standard
deviation of 15 and an anchor (rather than mean) of 70, which represents
the passing standard for a given subtest at a given grade. The TLI is
calculated in z score form as

TLI = [(zobserved – zpassing)·15] + 70.

Using a statistical procedure developed by Huynh and Saunders (1980), we
focused on the estimated true score of examinees when transformed to a
TLI score metric. Put simply, what is the passing TLI adjusted for
measurement error for a given subtest in a given grade for a given student,
and what percentage and number of students met this adjusted criterion but
not the standard cut score of 70?



On the basis of this analysis, we estimated that false-negative rates
averaged about 3% across grades and content areas. An error rate of 3%
may, at first blush, be satisfactory, but it so happens that approximately
80,000 students in the state of Texas were potentially misclassified as
nonmasters in one year when in fact their true score would indicate mastery
status based on this statistic. Through extrapolation, this would translate to
approximately 1.1 million students nationwide who would fail a high-stakes
test despite having a true score indicating mastery in a given year. Haney
(2000) notes that another probability exists, that of false positives: A
student may pass an exit-level examination when in fact the boundary of
error suggests the possibility of a true score below the passing threshold.
Haney’s survey of 500 randomly selected teachers in the state of Texas
indicated that the cost, or risk, of denying a high school diploma to a
qualified candidate was rated below only granting (a) a pilot license to an
unqualified pilot, (b) a medical license to an unqualified doctor, or (c) a
teaching certificate to an unqualified teacher. This evidence suggests that,
while erring on the side of caution, respondents clearly regarded false
negatives as the greater evil when compared with false positives with
respect to awarding a high school diploma. Possession of a high school
diploma does not entitle one to any “special” privileges, but it does provide
an entry-level qualification for any number of preferred jobs. Since
possessing the high school diploma has potentially profound consequences
for students who lack such a degree, we agree with both Haney and his
survey respondents that, when in doubt, granting a degree to students “on
the bubble” may be prudent policy.

IRT Estimation of Misclassification

Rudner (2001) has presented a method for estimating misclassification
errors based on an IRT formulation. The IRT approach has an advantage
over classical methods in that, in addition to yielding an overall reliability
estimate, standard errors of measurement (SEMs) can be estimated for each
score in the distribution. Scores that deviate more from the mean typically
have more associated error, and thus the associated SEM is larger than the
error associated with scores closer to the mean (Price, Raju, Lurie, Wilkins,
& Zhu, 2004). Rudner reasoned that, since IRT reliability estimates can be
obtained at each value of theta (θ), which corresponds to a true score for a



group of examinees at a given level, this estimate could be used to
determine misclassification rates at each level of examinee performance.
This would represent a conceptual improvement over traditional CTT
methods. Clearly, the relationship between the SEM and the observed score
becomes less relevant to the extent that the observed score deviates from
the prescribed passing cut point; however, observed scores that abut or are
close to the cut deserve special consideration in light of the SEM.

An excellent program, available at
http://pareonline.net/misclass/class.asp, is provided by Rudner (2001) that
illustrates the impact of changing cut scores in relation to observed scores
and the mean of the distribution. As one might expect, when cut scores are
lowered based on the standard error, the rate of false negatives decreases,
while the rate of false-positive results increases. Of course, an upward shift
in the cut point would result in the opposite effect: More examinees would
be erroneously classified as nonmasters while the number of examinees
misclassified as masters would decrease. These results would apply to any
cut score adjustment used whether based on CTT or IRT methods and
would be violated only when scores were distributed in an unusual fashion.

A full explication of the mathematical logic of the IRT approach is
beyond the scope of this chapter. Interested readers are strongly encouraged
to explore both the paper and the program developed by Rudner (2001).

Recommendations for the Estimation of Classification Errors
for Groups of Examinees

The principal disadvantage of CTT methods for estimating
misclassification rates is the use of a single estimate of reliability for the
observed scores. IRT methods offer a better alternative in that standard error
around a determined cut score can be uniquely determined. The IRT
method, however, is generally considered a large sample technique. While
modern methods such as IRT have a number of desirable features, they are
generally considered inappropriate for small samples. In addition, there is a
conceptual simplicity with CTT that avoids a number of assumptions
associated with IRT. While most large testing companies routinely report
conditional SEM estimates for a given score, it may be that CTT methods
are more tractable for small-scale efforts. The definition of what constitutes
a small-scale versus large-scale testing process is not easily made. Since, in

http://pareonline.net/misclass/class.asp


our experience, most high-stakes test development efforts involve
thousands of examinees, IRT seems to be a best solution. In addition, IRT
methods may be used to map both selected-response and constructed-
response items onto the same scale, which is a decided advantage over the
CTT method. Nevertheless, it is important that simulation studies based on
empirical parameter estimates be conducted with IRT models when
multidimensional structures are present, such as in most reading and math
tests to evaluate the problems involved in standard-setting methods.

“Authentic” Methods of Student Classification

Increasingly, efforts to gauge student learning have emphasized
“authentic” assessments, such as portfolio, product, and performance
evidence of content mastery (Popham, 2002). These methods are appealing
to many because of the focus on truly “learned skills” as opposed to pencil-
and-paper mastery. We are sanguine about such approaches, particularly
with respect to informal evaluations of student progress. But,
notwithstanding the potential “richness” of such assessment methods, there
are evident complications when relying on human observers to rate or rank
such data. The problems associated with using scoring rubrics, including
the inherent vagaries associated with using a rubric approach, and the
subsequent potential for both random and systematic error variance are
substantial. Interested readers are referred to Popham (2002) and Carey
(2001) for contemporary thinking on this issue.

We hope the reader has noted the reservations we have expressed
throughout this chapter about using tests to classify persons, particularly the
use of CRT methods in educational settings. We conclude with a few
comments related to this issue.

CONCLUDING REMARKS

The purpose of classifying people has a long history in psychology, with
roots in the Army Alpha test of World War I, if not earlier (e.g., classifying
gifted students based on Stanford-Binet scores of three standard deviations
above the mean). Since standard setting is intended to scale persons, placing
them into two or more groups, it formally fits into the theory of scaling,



which is the measurement process of assigning a number or label to an
observed behavior. When the criterion condition is a state (e.g., possessing
bipolar disorder or not), methods using contrasted groups are used with
statistical methods such as discriminant analysis. These require longitudinal
studies in which a sample of the targeted population is assessed and then
followed over a period of time, at the end of which the criterion state is
determined. In areas such as career interest, such studies have lasted for
decades, compiling evidence for the validity of the assessment process
using multiple indicators in criterion outcomes, which include performance
appraisal, satisfaction, career changing, longevity in career, and many other
considerations. In standard setting for state-mandated testing, most criteria
focus on performance at the next grade level, and only for exit-type tests is
there a less well-defined criterion of “life competency” related to
computation, literacy, or citizenship. Thus, the time frame is no more than a
year, not an onerous period in which to study outcomes.

In standard setting, there has been little effort to develop sampling-based
trials with longitudinal follow-ups. It is not clear why such trials are
avoided since in situations such as state-mandated assessments, it is
relatively easy to construct designs in which multiple-matrix sampling of
items is embedded into existing assessments (as is done with assessments
such as the SAT). While longitudinal follow-ups are expensive to conduct
in most applications, in state assessments, the sampled groups can be
tracked over the next year and various criteria measured more easily. Since
the intent of standard setting in state assessments is, for most grades, to
predict success in the following grade, and since states collect much of the
data relevant to that success, correlating the item measurement in one year
with the item, subtest, and total test scores for the following year is feasible.
The data from such predictive analyses would then be available for
standard-setting judging panels as discussed above. Even retention in grade
can be examined as an outcome, as long as the test itself has not
contaminated the decision. Since, in most states, the test scores are not
made available before retention decisions have been made, this has up to
now been a potentially useful criterion as well.

The interesting limitation on longitudinal validity methods applied to
standard-setting evidence is that CRTs do not necessarily lend themselves
well to predictive validity analysis. This is ironic in that the standard-setting
method is intended to produce a cut score for a CRT at one grade that is



predictive of performance at the next. While the correlation between total
test score performance at one grade and the next in an area such as reading
may be high, it tends to be due to different growth trajectories for students
that result in increasing variance on the tests. Individual items on CRT tests
may exhibit little predictive validity themselves by the very nature of CRT
item development and selection, which is content and domain specific to
the grade level. In social studies, for example, studying American history in
one grade and state history in the next grade has little construct validity for
the standard-setting process. In areas such as reading, the procedures and
focus change over the course of the curriculum across grades. What is
measured then is a global construct that itself changes, particularly from the
early elementary grades to the later ones. In mathematics, the curriculum is
generally hierarchically organized, but in upper elementary grades, specific
topics are added that do not necessarily provide any prediction about
different topics in later grades beyond the general “mathematics ability”
construct that seems to be the target of standard setting. Learning about
geometry properties in Grade 7 may do little to assist or prepare students for
statistical data analysis in Grade 8. Even expert teachers will have little
experience beyond assuming good students will succeed and poor ones fail
in rating individual items for future success. The lack of conceptual focus
on what is assessed in CRT approaches to testing with respect to later
performance limits any standard-setting process to a sort of “here is what a
minimally proficient student is expected to do on this test, but it really does
not relate much to what they do next year.”

The issues related to predictive validity above are of paramount concern,
but we are not sanguine that appropriate predictive methods will be
considered. Although such methods are commonplace in other testing
arenas, stakeholders in the educational process have yet to include them in
contemporary practice. We believe strongly that such evidence is vital not
only as a source of evidence in standard-setting procedures but also in
determining the utility of these tests overall.
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he concept of interrater reliability1 permeates many facets of modern
society. For example, court cases based on a trial by jury require
unanimous agreement from jurors regarding the verdict, life-

threatening medical diagnoses often require a second or third opinion from
health care professionals, student essays written in the context of high-
stakes standardized testing receive points based on the judgment of multiple
readers, and Olympic competitions, such as figure skating, award medals to
participants based on quantitative ratings of performance provided by an
international panel of judges.

Any time multiple judges are used to determine important outcomes,
certain technical and procedural questions emerge. Some of the more
common questions are as follows: How many raters do we need to be
confident in our results? What is the minimum level of agreement that my
raters should achieve? And is it necessary for raters to agree exactly, or is it
acceptable for them to differ from each other so long as their difference is
systematic and can therefore be corrected?



KEY QUESTIONS TO ASK BEFORE CONDUCTING AN INTERRATER

RELIABILITY STUDY

If you are at the point in your research where you are considering
conducting an interrater reliability study, then there are three important
questions worth considering:

1. What is the purpose of conducting your interrater reliability study?
2. What is the nature of your data?
3. What resources do you have at your disposal (e.g., technical expertise,

time, money)?

The answers to these questions will help determine the best statistical
approach to use for your study.

What Is the Purpose of Conducting Your Interrater Reliability
Study?

There are three main reasons why people may wish to conduct an
interrater reliability study. Perhaps the most popular reason is that the
researcher is interested in getting a single final score on a variable (such as
an essay grade) for use in subsequent data analysis and statistical modeling
but first must prove that the scoring is not “subjective” or “biased.” For
example, this is often the goal in the context of educational testing where
large-scale state testing programs might use multiple raters to grade student
essays for the ultimate purpose of providing an overall appraisal of each
student’s current level of academic achievement. In such cases, the
documentation of interrater reliability is usually just a means to an end—the
end of creating a single summary score for use in subsequent data analyses
—and the researcher may have little inherent interest in the details of the
interrater reliability analysis per se. This is a perfectly acceptable reason for
wanting to conduct an interrater reliability study; however, researchers must
be particularly cautious about the assumptions they are making when
summarizing the data from multiple raters to generate a single summary
score for each student. For example, simply taking the mean of the ratings
of two independent raters may, in some circumstances, actually lead to



biased estimates of student ability, even when the scoring by independent
raters is highly correlated (we return to this point later in the chapter).

A second common reason for conducting an interrater reliability study is
to evaluate a newly developed scoring rubric to see if it is “working” or if it
needs to be modified. For example, one may wish to evaluate the accuracy
of multiple ratings in the absence of a “gold standard.” Consider a situation
in which independent judges must rate the creativity of a piece of artwork.
Because there is no objective rule to indicate the “true” creativity of a piece
of art, a minimum first step in establishing that there is such a thing as
creativity is to demonstrate that independent raters can at least reliably
classify objects according to how well they meet the assumptions of the
construct. Thus, independent observers must subjectively interpret the work
of art and rate the degree to which an underlying construct (e.g., creativity)
is present. In situations such as these, the establishment of interrater
reliability becomes a goal in and of itself. If a researcher is able to
demonstrate that independent parties can reliably rate objects along the
continuum of the construct, this provides some good objective evidence for
the existence of the construct. A natural subsequent step is to analyze
individual scores according to the criteria.

Finally, a third reason for conducting an interrater reliability study is to
validate how well ratings reflect a known “true” state of affairs (e.g., a
validation study). For example, suppose that a researcher believes that he or
she has developed a new colon cancer screening technique that should be
highly predictive. The first thing the researcher might do is train another
provider to use the technique and compare the extent to which the
independent rater agrees with him or her on the classification of people who
have cancer and those who do not. Next, the researcher might attempt to
predict the prevalence of cancer using a formal diagnosis via more
traditional methods (e.g., biopsy) to compare the extent to which the new
technique is accurately predicting the diagnosis generated by the known
technique. In other words, the reason for conducting an interrater reliability
study in this circumstance is because it is not enough that independent
raters have high levels of interrater reliability; what really matters is the
level of reliability in predicting the actual occurrence of cancer as compared
with a “gold standard”—in this case, the rate of classification based on an
established technique.



Once you have determined the primary purpose for conducting an
interrater reliability study, the next step is to consider the nature of the data
that you have or will collect.

What Is the Nature of Your Data?

There are four important points to consider with regard to the nature of
your data. First, it is important to know whether your data are considered
nominal, ordinal, interval, or ratio (Stevens, 1946). Certain statistical
techniques are better suited to certain types of data. For example, if the data
you are evaluating are nominal (i.e., the differences between the categories
you are rating are qualitative), then there are relatively few statistical
methods for you to choose from (e.g., percent agreement, Cohen’s kappa).
If, on the other hand, the data are measured at the ratio level, then the data
meet the criteria for use by most of the techniques discussed in this chapter.

Once you have determined the type of data used for the rating scale, you
should then examine the distribution of your data using a histogram or bar
chart. Are the ratings of each rater normally distributed, uniformly
distributed, or skewed? If the rating data exhibit restricted variability, this
can severely affect consistency estimates as well as consensus-based
estimates, threatening the validity of the interpretations made from the
interrater reliability estimates. Thus, it is important to have some idea of the
distribution of ratings in order to select the best statistical technique for
analyzing the data.

The third important thing to investigate is whether the judges who rated
the data agreed on the underlying trait definition. For example, if two raters
are judging the creativity of a piece of artwork, one rater may believe that
creativity is 50% novelty and 50% task appropriateness. By contrast,
another rater may judge creativity to consist of 50% novelty, 35% task
appropriateness, and 15% elaboration. These differences in perception will
introduce extraneous error into the ratings. The extent to which your raters
are defining the construct in a similar way can be empirically evaluated
using measurement approaches to interrater reliability (e.g., factor analysis,
a procedure that is further described later in this chapter).

Finally, even if the raters agree as to the structure, do they assign people
into the same category along the continuum, or does one judge assign a
person “poor” in mathematics while another judge classifies that same



person as “good”? In other words, are they using the rating categories the
same way? This can be evaluated using consensus estimates (e.g., via tests
of marginal homogeneity).

After specifying the purpose of the study and thinking about the nature of
the data that will be used in the analysis, the final question to ask is the
pragmatic question of what resources you have at your disposal.

What Resources Do You Have at Your Disposal?

As most people know from their life experience, “best” does not always
mean most expensive or most resource intensive. Similarly, within the
context of interrater reliability, it is not always necessary to choose a
technique that yields the maximum amount of information or that requires
sophisticated statistical analyses in order to gain useful information. There
are times when a crude estimate may yield sufficient information—for
example, within the context of a low-stakes, exploratory research study.
There are other times when the estimates must be as precise as possible—
for example, within the context of situations that have direct, important
stakes for the participants in the study.

The question of resources often has an influence on the way that
interrater reliability studies are conducted. For example, if you are a
newcomer who is running a pilot study to determine whether to continue on
a particular line of research, and time and money are limited, then a simpler
technique such as the percent agreement, kappa, or even correlational
estimates may be the best match. On the other hand, if you are in a situation
where you have a high-stakes test that needs to be graded relatively quickly,
and money is not a major issue, then a more advanced measurement
approach (e.g., the many-facets Rasch model) is most likely the best
selection.

As an additional example, if the goal of your study is to understand the
underlying nature of a construct that to date has no objective, agreed-on
definition (e.g., wisdom), then achieving consensus among raters in
applying a scoring criterion will be of paramount importance. By contrast,
if the goal of the study is to generate summary scores for individuals that
will be used in later analyses, and it is not critical that raters come to exact
agreement on how to use a rating scale, then consistency or measurement
estimates of interrater reliability will be sufficient.



Summary

Once you have answered the three main questions discussed in this
section, you will be in a much better position to choose a suitable technique
for your project. In the next section of this chapter, we will discuss (a) the
most popular statistics used to compute interrater reliability, (b) the
computation and interpretation of the results of statistics using worked
examples, (c) the implications for summarizing data that follow from each
technique, and (d) the advantages and disadvantages of each technique.

CHOOSING THE BEST APPROACH FOR THE JOB

Many textbooks in the field of educational and psychological measurement
and statistics (e.g., Anastasi & Urbina, 1997; Cohen, Cohen, West, &
Aiken, 2003; Crocker & Algina, 1986; Hopkins, 1998; von Eye & Mun,
2004) describe interrater reliability as if it were a unitary concept lending
itself to a single, “best” approach across all situations. Yet, the
methodological literature related to interrater reliability constitutes a
hodgepodge of statistical techniques, each of which provides a particular
kind of solution to the problem of establishing interrater reliability.

Building on the work of Uebersax (2002) and J. R. Hayes and Hatch
(1999), Stemler (2004) has argued that the wide variety of statistical
techniques used for computing interrater reliability coefficients may be
theoretically classified into one of three broad categories: (a) consensus
estimates, (b) consistency estimates, and (c) measurement estimates.
Statistics associated with these three categories differ in their assumptions
about the purpose of the interrater reliability study, the nature of the data,
and the implications for summarizing scores from various raters.

Consensus Estimates of Interrater Reliability

Consensus estimates are often used when one is attempting to
demonstrate that a construct that traditionally has been considered highly
subjective (e.g., creativity, wisdom, hate) can be reliably captured by
independent raters. The assumption is that if independent raters are able to
come to exact agreement about how to apply the various levels of a scoring



rubric (which operationally defines behaviors associated with the
construct), then this provides some defensible evidence for the existence of
the construct. Furthermore, if two independent judges demonstrate high
levels of agreement in their application of a scoring rubric to rate behaviors,
then the two judges may be said to share a common interpretation of the
construct.

Consensus estimates tend to be the most useful when data are nominal in
nature and different levels of the rating scale represent qualitatively
different ideas. Consensus estimates also can be useful when different
levels of the rating scale are assumed to represent a linear continuum of the
construct but are ordinal in nature (e.g., a Likerttype scale). In such cases,
the judges must come to exact agreement about each of the quantitative
levels of the construct under investigation.

The three most popular types of consensus estimates of interrater
reliability found in the literature include (a) percent agreement and its
variants, (b) Cohen’s kappa and its variants (Agresti, 1996; Cohen, 1960,
1968; Krippendorff, 2004), and (c) odds ratios. Other less frequently used
statistics that fall under this category include Jaccard’s J and the G-Index
(see Barrett, 2001).

Percent Agreement. Perhaps the most popular method for computing a
consensus estimate of interrater reliability is through the use of the simple
percent agreement statistic. For example, in a study examining creativity,
Sternberg and Lubart (1995) asked sets of judges to rate the level of
creativity associated with each of a number of products generated by study
participants (e.g., draw a picture illustrating Earth from an insect’s point of
view, write an essay based on the title “2983”). The goal of their study was
to demonstrate that creativity could be detected and objectively scored with
high levels of agreement across independent judges. The authors reported
percent agreement levels across raters of .92 (Sternberg & Lubart, 1995, p.
31).

The percent agreement statistic has several advantages. For example, it
has a strong intuitive appeal, it is easy to calculate, and it is easy to explain.
The statistic also has some distinct disadvantages, however. If the behavior
of interest has a low or high incidence of occurrence in the population, then
it is possible to get artificially inflated percent agreement figures simply
because most of the values fall under one category of the rating scale (J. R.



Hayes & Hatch, 1999). Another disadvantage to using the simple percent
agreement figure is that it is often time-consuming and labor-intensive to
train judges to the point of exact agreement.

One popular modification of the percent agreement figure found in the
testing literature involves broadening the definition of agreement by
including the adjacent scoring categories on the rating scale. For example,
some testing programs include writing sections that are scored by judges
using a rating scale with levels ranging from 1 (low) to 6 (high) (College
Board, 2006). If a percent adjacent agreement approach were used to score
this section of the exam, this would mean that the judges would not need to
come to exact agreement about the ratings they assign to each participant;
rather, so long as the ratings did not differ by more than one point above or
below the other judge, then the two judges would be said to have reached
consensus. Thus, if Rater A assigns an essay a score of 3 and Rater B
assigns the same essay a score of 4, the two raters are close enough together
to say that they “agree,” even though their agreement is not exact.

The rationale for the adjacent percent agreement approach is often a
pragmatic one. It is extremely difficult to train independent raters to come
to exact agreement, no matter how good one’s scoring rubric. Yet, raters
often give scores that are “pretty close” to the same, and we do not want to
discard this information. Thus, the thinking is that if we have a situation in
which two raters never differ by more than one score point in assigning
their ratings, then we have a justification for taking the average score across
all ratings. This logic holds under two conditions. First, the difference
between raters must be randomly distributed across items. In other words,
Rater A should not give systematically lower scores than Rater B. Second,
the scores assigned by raters must be evenly distributed across all possible
score categories. In other words, both raters should give equal numbers of
1s, 2s, 3s, 4s, 5s, and 6s across the population of essays that they have read.
If both of these assumptions are met, then the adjacent percent agreement
approach is defensible. If, however, either of these assumptions is violated,
this could lead to a situation in which the validity of the resultant summary
scores is dubious (see the box below).
 



Consider a situation in which Rater A systematically assigns scores that are one power lower
than Rater B. Assume that they have each rated a common set of 100 essays. If we average the
scores of the two raters across all essays to arrive at individual student scores, this seems, on the
surface, to be defensible because it really does not matter whether Rater A or Rater B is assigning
the high or low score because even if Rater A and Rater B had no systematic difference in
severity of ratings, the average score would be the same. However, suppose that dozens of raters
are used to score the essays. Imagine that Rater C is also called in to rate the same essay for a
different sample of students. Rater C is paired up with Rater B within the context of an
overlapping design to maximize rater efficiency (e.g., McArdle, 1994). Suppose that we find a
situation in which Rater B is systematically lower than Rater C in assigning grades. In other
words, Rater A is systematically one point lower than Rater B, and Rater B is systematically one
point lower than Rater C.

On the surface, again, it seems logical to average the scores assigned by Rater B and Rater
C.Yet, we now find ourselves in a situation in which the students rated by the Rater B/C pair
score systematically one point higher than the students rated by the Rater A/B pair, even though
neither combination of raters differed by more than one score point in their ratings, thereby
demonstrating “interrater reliability.” Which student would you rather be? The one who was
lucky enough to draw the B/C rater combination or the one who unfortunately was scored by the
A/B combination?

Thus, in order to make a validity argument for summarizing the results of multiple raters, it is
not enough to demonstrate adjacent percent agreement between rater pairs; it must also be
demonstrated that there is no systematic difference in rater severity between the rater set pairs.

This can be demonstrated (and corrected for in the final score) through the use of the many-
facet Rasch model.

Now let us examine what happens if the second assumption of the adjacent percent agreement
approach is violated. If you are a rater for a large testing company, and you are told that you will
be retained only if you are able to demonstrate interrater reliability with everyone else, you
would naturally look for your best strategy to maximize interrater reliability. If you are then told
that your scores can differ by no more than one point from the other raters, you would quickly
discover that your best bet then is to avoid giving any ratings at the extreme ends of the scale
(i.e., a rating of 1 or a rating of 6).Why? Because a rating at the extreme end of the scale (e.g., 6)
has two potential scores with which it can overlap (i.e., 5 or 6), whereas a rating of 5 would allow
you to potentially “agree” with three scores (i.e., 4, 5, or 6), thereby maximizing your chances of
agreeing with the second rater. Thus, it is entirely likely that the scale will go from being a 6-
point scale to a 4-point scale, reducing the overall variability in scores given across the spectrum
of participants. If only four categories are used, then the percent agreement statistics will be
artificially inflated due to chance factors. For example, when a scale is 1 to 6, two participants
are expected to agree on ratings by chance alone only 17% of the time. When the scale is reduced
to 1 to 4, the percent agreement expected by chance jumps to 25%. If three categories, a 33%
chance agreement is expected; if two categories, a 50% chance agreement is expected. In other
words, a 6-point scale that uses adjacent percent agreement scoring is most likely functionally
equivalent to a 4-point scale that uses exact agreement scoring.

This approach is advantageous in that it relaxes the strict criterion that the judges agree
exactly. On the other hand, percent agreement using adjacent categories can lead to inflated
estimates of interrater reliability if there are only a limited number of categories to choose from
(e.g., a 1–4 scale). If the rating scale has a limited number of points, then nearly all points will be
adjacent, and it would be surprising to find agreement lower than 90%.



Cohen’s Kappa. Another popular consensus estimate of interrater reliability
is Cohen’s kappa statistic (Cohen, 1960, 1968). Cohen’s kappa was
designed to estimate the degree of consensus between two judges and
determine whether the level of agreement is greater than would be expected
to be observed by chance alone (see Stemler, 2001, for a practical example
with calculation). The interpretation of the kappa statistic is slightly
different from the interpretation of the percent agreement figure (Agresti,
1996). A value of zero on kappa does not indicate that the two judges did
not agree at all; rather, it indicates that the two judges did not agree with
each other any more than would be predicted by chance alone.
Consequently, it is possible to have negative values of kappa if judges agree
less often than chance would predict. Kappa is a highly useful statistic when
one is concerned that the percent agreement statistic may be artificially
inflated due to the fact that most observations fall into a single category.

Kappa is often useful within the context of exploratory research. For
example, Stemler and Bebell (1999) conducted a study aimed at detecting
the various purposes of schooling articulated in school mission statements.
Judges were given a scoring rubric that listed 10 possible thematic
categories under which the main idea of each mission statement could be
classified (e.g., social development, cognitive development, civic
development). Judges then read a series of mission statements and
attempted to classify each sampling unit according to the major purpose of
schooling articulated. If both judges consistently rated the dominant theme
of the mission statement as representing elements of citizenship, then they
were said to have communicated with each other in a meaningful way
because they had both classified the statement in the same way. If one judge
classified the major theme as social development, and the other judge
classified the major theme as citizenship, then a breakdown in shared
understanding occurred. In that case, the judges were not coming to a
consensus on how to apply the levels of the scoring rubric. The authors
chose to use the kappa statistic to evaluate the degree of consensus because
they did not expect the frequency of the major themes of the mission
statements to be evenly distributed across the 10 categories of their scoring
rubric.

Although some authors (Landis & Koch, 1977) have offered guidelines
for interpreting kappa values, other authors (Krippendorff, 2004; Uebersax,
2002) have argued that the kappa values for different items or from



different studies cannot be meaningfully compared unless the base rates are
identical. Consequently, these authors suggest that although the statistic
gives some indication as to whether the agreement is better than that
predicted by chance alone, it is difficult to apply rules of thumb for
interpreting kappa across different circumstances. Instead, Uebersax (2002)
suggests that researchers using the kappa coefficient look at it for up or
down evaluation of whether ratings are different from chance, but they
should not get too invested in its interpretation.

Krippendorff (2004) has introduced a new coefficient alpha into the
literature that claims to be superior to kappa because alpha is capable of
incorporating the information from multiple raters, dealing with missing
data, and yielding a chance-corrected estimate of interrater reliability. The
major disadvantage of Krippendorff’s alpha is that it is computationally
complex; however, statistical macros that compute Krippendorff’s alpha
have been created and are freely available (K. Hayes, 2006). In addition,
however, some research suggests that in practice, alpha values tend to be
nearly identical to kappa values (Dooley, 2006).

Odds Ratios. A third consensus estimate of interrater reliability is the odds
ratio. The odds ratio is most often used in circumstances where raters are
making dichotomous ratings (e.g., presence/absence of a phenomenon),
although it can be extended to ordered category ratings. In a 2 × 2
contingency table, the odds ratio indicates how much the odds of one rater
making a given rating (e.g., positive/negative) increase for cases when the
other rater has made the same rating. For example, suppose that in a music
competition with 100 contestants, Rater 1 gives 90 of them a positive score
for vocal ability, while in the same sample of 100 contestants, Rater 2 only
gives 20 of them a positive score for vocal ability. The odds of Rater 1
giving a positive vocal ability score are 90 to 10, or 9:1, while the odds of
Rater 2 giving a positive vocal ability score are only 20 to 80, or 1:4 =
0.25:1. Now, 9/0.25 = 36, so the odds ratio is 36. Within the context of
interrater reliability, the important idea captured by the odds ratio is whether
it deviates substantially from 1.0. From the perspective of interrater
reliability, it would be most desirable to have an odds ratio that is close to
1.0, which would indicate that Rater 1 and Rater 2 rated the same
proportion of contestants as having high vocal ability. The larger the odds



ratio value, the larger the discrepancy there is between raters in terms of
their level of consensus.

The odds ratio has the advantage of being easy to compute and is familiar
from other statistical applications (e.g., logistic regression). The
disadvantage to the odds ratio is that it is most intuitive within the context
of a 2 × 2 contingency table with dichotomous rating categories. Although
the technique can be generalized to ordered category ratings, it involves
extra computational complexity that undermines its intuitive advantage.
Furthermore, as Osborne (2006) has pointed out, although the odds ratio is
straightforward to compute, the interpretation of the statistic is not always
easy to convey, particularly to a lay audience.

Computing Common Consensus Estimates of Interrater
Reliability

Let us now turn to a practical example of how to calculate each of these
coefficients. As an example data set, we will draw from Stemler,
Grigorenko, Jarvin, and Sternberg’s (2006) study in which they developed
augmented versions of the Advanced Placement Psychology Examination.
Participants were required to complete a number of essay items that were
subsequently scored by different sets of raters. Essay Question 1, Part d was
a question that asked participants to give advice to a friend who is having
trouble sleeping, based on what they know about various theories of sleep.
The item was scored using a 5-point scoring rubric. For this particular item,
75 participants received scores from two independent raters.

Percent Agreement. Percent agreement is calculated by adding up the
number of cases that received the same rating by both judges and dividing
that number by the total number of cases rated by the two judges. Using
SPSS, one can run the crosstabs procedure and generate a table to facilitate
the calculation (see Table 3.1). The percent agreement on this item is 42%;
however, the percent adjacent agreement is 87%.

Cohen’s Kappa. The formula for computing Cohen’s kappa is listed in
Formula 1.



where PA = proportion of units on which the raters agree, and PC = the
proportion of units for which agreement is expected by chance.

It is possible to compute Cohen’s kappa in SPSS by simply specifying in
the crosstabs procedure the desire to produce Cohen’s kappa (see
Table 3.1). For this data set, the kappa value is .23, which indicates that the
two raters agreed on the scoring only slightly more often than we would
predict based on chance alone.

Table 3.1 SPSS Code and Output for Percent Agreement and Percent Adjacent
Agreement and Cohen’s Kappa

Odds Ratios. The formula for computing an odds ratio is shown in Formula
2.



The SPSS code for computing the odds ratio is shown in Table 3.2. In
order to compute the odds ratio using the crosstabs procedure in SPSS, it
was necessary to recode the data so that the ratings were dichotomous.
Consequently, ratings of 0, 1, and 2 were assigned a value of 0 (failing)
while ratings of 3 and 4 were assigned a value of 1 (passing). The odds ratio
for the current data set is 30, indicating that there was a substantial
difference between the raters in terms of the proportion of students
classified as passing versus failing.

Implications for Summarizing Scores From Various Raters

If raters can be trained to the point where they agree on how to assign
scores from a rubric, then scores given by the two raters may be treated as
equivalent. This fact has practical implications for determining the number
of raters needed to complete a study. Thus, the remaining work of rating
subsequent items can be split between the raters without both raters having
to score all items. Furthermore, the summary scores may be calculated by
simply taking the score from one of the judges or by averaging the scores
given by all of the judges, since high interrater reliability indicates that the
judges agree about how to apply the rating scale. A typical guideline found
in the literature for evaluating the quality of interrater reliability based on
consensus estimates is that they should be 70% or greater. If raters are
shown to reach high levels of consensus, then adding more raters adds little
extra information from a statistical perspective and is probably not justified
from the perspective of resources.

Table 3.2 SPSS Code and Output for Odds Ratios



Advantages of Consensus Estimates

One particular advantage of the consensus approach to estimating
interrater reliability is that the calculations are easily done by hand. A
second advantage is that the techniques falling within this general category
are well suited to dealing with nominal variables whose levels on the rating
scale represent qualitatively different categories. A third advantage is that
consensus estimates can be useful in diagnosing problems with judges’
interpretations of how to apply the rating scale. For example, inspection of
the information from a crosstab table may allow the researcher to realize
that the judges may be unclear about the rules for when they are supposed
to score an item as zero as opposed to when they are supposed to score the
item as missing. A visual analysis of the output allows the researcher to go
back to the data and clarify the discrepancy or retrain the judges.

When judges exhibit a high level of consensus, it implies that both judges
are essentially providing the same information. One implication of a high



consensus estimate of interrater reliability is that both judges need not score
all remaining items. For example, if there were 100 tests to be scored after
the interrater reliability study was finished, it would be most efficient to ask
Judge A to rate exams 1 to 50 and Judge B to rate exams 51 to 100 because
the two judges have empirically demonstrated that they share a similar
meaning for the scoring rubric. In practice, however, it is usually a good
idea to build in a 30% overlap between judges even after they have been
trained, in order to provide evidence that the judges are not drifting from
their consensus as they read more items.

Disadvantages of Consensus Estimates

One disadvantage of consensus estimates is that interrater reliability
statistics must be computed separately for each item and for each pair of
judges. Consequently, when reporting consensus-based interrater reliability
estimates, one should report the minimum, maximum, and median estimates
for all items and for all pairs of judges.

A second disadvantage is that the amount of time and energy it takes to
train judges to come to exact agreement is often substantial, particularly in
applications where exact agreement is unnecessary (e.g., if the exact
application of the levels of the scoring rubric is not important, but rather a
means to the end of getting a summary score for each respondent).

Third, as Linacre (2002) has noted, training judges to a point of forced
consensus may actually reduce the statistical independence of the ratings
and threaten the validity of the resulting scores.

Finally, consensus estimates can be overly conservative if two judges
exhibit systematic differences in the way that they use the scoring rubric but
simply cannot be trained to come to a consensus. As we will see in the next
section, it is possible to have a low consensus estimate of interrater
reliability while having a high consistency estimate and vice versa.
Consequently, sole reliance on consensus estimates of interrater reliability
might lead researchers to conclude that “interrater reliability is low” when it
may be more precisely stated that the consensus estimate of interrater
reliability is low.

Consistency Estimates of Interrater Reliability



Consistency estimates of interrater reliability are based on the assumption
that it is not really necessary for raters to share a common interpretation of
the rating scale, so long as each judge is consistent in classifying the
phenomenon according to his or her own definition of the scale. For
example, if Rater A assigns a score of 3 to a certain group of essays, and
Rater B assigns a score of 1 to that same group of essays, the two raters
have not come to a consensus about how to apply the rating scale
categories, but the difference in how they apply the rating scale categories
is predictable.

Consistency approaches to estimating interrater reliability are most useful
when the data are continuous in nature, although the technique can be
applied to categorical data if the rating scale categories are thought to
represent an underlying continuum along a unidimensional construct.
Values greater than .70 are typically acceptable for consistency estimates of
interrater reliability (Barrett, 2001).

The three most popular types of consistency estimates are (a) correlation
coefficients (e.g., Pearson, Spearman), (b) Cronbach’s alpha (Cronbach,
1951), and (c) intraclass correlation. For information regarding additional
consistency estimates of interrater reliability, see Bock, Brennan, and
Muraki (2002); Burke and Dunlap (2002) ; LeBreton, Burgess, Kaiser,
Atchley, and James (2003); and Uebersax (2002).

Correlation Coefficients. Perhaps the most popular statistic for calculating
the degree of consistency between raters is the Pearson correlation
coefficient. Correlation coefficients measure the association between
independent raters. Values approaching +1 or –1 indicate that the two raters
are following a systematic pattern in their ratings, while values approaching
zero indicate that it is nearly impossible to predict the score one rater would
give by knowing the score the other rater gave. It is important to note that
even though the correlation between scores assigned by two judges may be
nearly perfect, there may be substantial mean differences between the
raters. In other words, two raters may differ in the absolute values they
assign to each rating by two points; however, so long as there is a 2-point
difference for each rating they assign, the raters will have achieved high
consistency estimates of interrater reliability. Thus, a large value for a
measure of association does not imply that the raters are agreeing on the
actual application of the rating scale, only that they are consistent in



applying the ratings according to their own unique understanding of the
scoring rubric.

The Pearson correlation coefficient can be computed by hand (Glass &
Hopkins, 1996) or can easily be computed using most statistical packages.
One beneficial feature of the Pearson correlation coefficient is that the
scores on the rating scale can be continuous in nature (e.g., they can take on
partial values such as 1.5). Like the percent agreement statistic, the Pearson
correlation coefficients can be calculated only for one pair of judges at a
time and for one item at a time.

A potential limitation of the Pearson correlation coefficient is that it
assumes that the data underlying the rating scale are normally distributed.
Consequently, if the data from the rating scale tend to be skewed toward
one end of the distribution, this will attenuate the upper limit of the
correlation coefficient that can be observed. The Spearman rank coefficient
provides an approximation of the Pearson correlation coefficient but may be
used in circumstances where the data under investigation are not normally
distributed. For example, rather than using a continuous rating scale, each
judge may rank order the essays that he or she has scored from best to
worst. In this case, then, since both ratings being correlated are in the form
of rankings, a correlation coefficient can be computed that is governed by
the number of pairs of ratings (Glass & Hopkins, 1996). The major
disadvantage to Spearman’s rank coefficient is that it requires both judges
to rate all cases.

Cronbach’s Alpha. In situations where more than two raters are used,
another approach to computing a consistency estimate of interrater
reliability would be to compute Cronbach’s alpha coefficient (Crocker &
Algina, 1986). Cronbach’s alpha coefficient is a measure of internal
consistency reliability and is useful for understanding the extent to which
the ratings from a group of judges hold together to measure a common
dimension. If the Cronbach’s alpha estimate among the judges is low, then
this implies that the majority of the variance in the total composite score is
really due to error variance and not true score variance (Crocker & Algina,
1986).

The major advantage of using Cronbach’s alpha comes from its capacity
to yield a single consistency estimate of interrater reliability across multiple
judges. The major disadvantage of the method is that each judge must give



a rating on every case, or else the alpha will only be computed on a subset
of the data. In other words, if just one rater fails to score a particular
individual, that individual will be left out of the analysis. In addition, as
Barrett (2001) has noted, “because of this ‘averaging’ of ratings, we reduce
the variability of the judges’ ratings such that when we average all judges’
ratings, we effectively remove all the error variance for judges” (p. 7).

Intraclass Correlation. A third popular approach to estimating interrater
reliability is through the use of the intraclass correlation coefficient. An
interesting feature of the intraclass correlation coefficient is that it
confounds two ways in which raters differ: (a) consensus (or bias—i.e.,
mean differences) and (b) consistency (or association). As a result, the
value of the intraclass correlation coefficient will be decreased in situations
where there is a low correlation between raters and in situations where there
are large mean differences between raters. For this reason, the intraclass
correlation may be considered a conservative estimate of interrater
reliability. If the intraclass correlation coefficient is close to 1, then chances
are good that this implies that excellent interrater reliability has been
achieved.

The major advantage of the intraclass correlation is its capacity to
incorporate information from different types of rater reliability data. On the
other hand, as Uebersax (2002) has noted, “If the goal is to give feedback to
raters to improve future ratings, one should distinguish between these two
sources of disagreement” (p. 5). In addition, because the intraclass
correlation represents the ratio of within-subject variance to between-
subject variance on a rating scale, the results may not look the same if raters
are rating a homogeneous subpopulation as opposed to the general
population. Simply by restricting the between-subject variance, the
intraclass correlation will be lowered. Therefore, it is important to pay
special attention to the population being assessed and to understand that this
can influence the value of the intraclass correlation coefficient (ICC). For
this reason, ICCs are not directly comparable across populations. Finally, it
is important to note that, like the Pearson correlation coefficient, the
intraclass correlation coefficient will be attenuated if assumptions of
normality in rating data are violated.



Computing Common Consistency Estimates of Interrater
Reliability

Let us now turn to a practical example of how to calculate each of these
coefficients. We will use the same data set and compute each estimate on
the data.

Correlation Coefficients. The formula for computing the Pearson
correlation coefficient is listed in Formula 3.

Using SPSS, one can run the correlate procedure and generate a table
similar to Table 3.3. One may request both Pearson and Spearman
correlation coefficients. The Pearson correlation coefficient on this data set
is .76; the Spearman correlation coefficient is .74.

Cronbach’s Alpha. The Cronbach’s alpha value is calculated using Formula
4,

where
N is the number of components (raters),

 is the variance of the observed total scores, and

σ2Y1 is the variance of component i.

In order to compute Cronbach’s alpha using SPSS, one may simply
specify in the crosstabs procedure the desire to produce Cronbach’s alpha
(see Table 3.4). For this example, the alpha value is .86.

Table 3.3 SPSS Code and Output for Pearson and Spearman Correlations



Table 3.4 SPSS Code and Output for Cronbach’s Alpha

Intraclass Correlation. Formula 5 presents the equation used to compute
the intraclass correlation value.



where
σ2(b) is the variance of the ratings between judges, and

σ2(w) is the pooled variance within raters.

In order to compute intraclass correlation, one may specify the procedure
in SPSS using the code listed in Table 3.5. The intraclass correlation
coefficient for this data set is .75.

IMPLICATIONS FOR SUMMARIZING SCORES FROM VARIOUS RATERS

It is important to recognize that although consistency estimates may be
high, the means and medians of the different judges may be very different.
Thus, if one judge consistently gives scores that are 2 points lower on the
rating scale than does a second judge, the scores will ultimately need to be
corrected for this difference in judge severity if the final scores are to be
summarized or subjected to further analyses.

Table 3.5 SPSS Code and Output for Intraclass Correlation



Advantages of Consistency Estimates

There are three major advantages to using consistency estimates of
interrater reliability. First, the approach places less stringent demands on the
judges in that they need not be trained to come to exact agreement with one
another so long as each judge is consistent within his or her own definition
of the rating scale (i.e., exhibits high intrarater reliability). It is sometimes
the case that the exact application of the levels of the scoring rubric is not
important in itself. Instead, the scoring rubric is a means to the end of
creating scores for each participant that can be summarized in a meaningful
way. If summarization is the goal, then what is most important is that each
judge apply the rating scale consistently within his or her own definition of
the rating scale, regardless of whether the two judges exhibit exact
agreement. Consistency estimates allow for the detection of systematic
differences between judges, which may then be adjusted statistically. For
example, if Judge A consistently gives scores that are 2 points lower than
Judge B does, then adding 2 extra points to the exams of all students who
were scored by Judge A would provide an equitable adjustment to the raw
scores.

A second advantage of consistency estimates is that certain methods
within this category (e.g., Cronbach’s alpha) allow for an overall estimate
of consistency among multiple judges. The third advantage is that
consistency estimates readily handle continuous data.

Disadvantage of Consistency Estimates

One disadvantage of consistency estimates is that if the construct under
investigation has some objective meaning, then it may not be desirable for
the two judges to “agree to disagree.” Instead, it may be important for the
judges to come to an exact agreement on the scores that they are generating.

A second disadvantage of consistency estimates is that judges may differ
not only systematically in the raw scores they apply but also in the number
of rating scale categories they use. In that case, a mean adjustment for a
severe judge may provide a partial solution, but the two judges may also
differ on the variability in scores they give. Thus, a mean adjustment alone
will not effectively correct for this difference.



A third disadvantage of consistency estimates is that they are highly
sensitive to the distribution of the observed data. In other words, if most of
the ratings fall into one or two categories, the correlation coefficient will
necessarily be deflated due to restricted variability. Consequently, a reliance
on the consistency estimate alone may lead the researcher to falsely
conclude that interrater reliability was poor without specifying more
precisely that the consistency estimate of interrater reliability was poor and
providing an appropriate rationale.

Measurement Estimates of Interrater Reliability

Measurement estimates are based on the assumption that one should use
all of the information available from all judges (including discrepant
ratings) when attempting to create a summary score for each respondent. In
other words, each judge is seen as providing some unique information that
is useful in generating a summary score for a person. As Linacre (2002) has
noted, “It is the accumulation of information, not the ratings themselves,
that is decisive” (p. 858). Consequently, under the measurement approach,
it is not necessary for two judges to come to a consensus on how to apply a
scoring rubric because differences in judge severity can be estimated and
accounted for in the creation of each participant’s final score.

Measurement estimates are also useful in circumstances where multiple
judges are providing ratings, and it is impossible for all judges to rate all
items. They are best used when different levels of the rating scale are
intended to represent different levels of an underlying unidimensional
construct (e.g., mathematical competence).

The two most popular types of measurement estimates are (a) factor
analysis and (b) the many-facets Rasch model (Linacre, 1994; Linacre,
Englehard, Tatem, & Myford, 1994; Myford & Cline, 2002) or log-linear
models (von Eye & Mun, 2004).

Factor Analysis. One popular measurement estimate of interrater reliability
is computed using factor analysis (Harman, 1967). Using this method,
multiple judges may rate a set of participants. The judges’ scores are then
subjected to a common factor analysis in order to determine the amount of
shared variance in the ratings that could be accounted for by a single factor.
The percentage of variance that is explainable by the first factor gives some



indication of the extent to which the multiple judges are reaching
agreement. If the shared variance is high (e.g., greater than 60%), then this
gives some indication that the judges are rating a common construct. The
technique can also be used to check the extent to which judges agree on the
number of underlying dimensions in the data set.

Once interrater reliability has been established in this way, each
participant may then receive a single summary score corresponding to his or
her loading on the first principal component underlying the set of ratings.
This score can be computed automatically by most statistical packages.

The advantage of this approach is that it assigns a summary score for
each participant that is based only on the relevance of the strongest
dimension underlying the data. The disadvantage to the approach is that it
assumes that ratings are assigned without error by the judges.

Many-Facets Rasch Measurement and Log-Linear Models. A second
measurement approach to estimating interrater reliability is through the use
of the many-facets Rasch model (Linacre, 1994).2 Recent advances in the
field of measurement have led to an extension of the standard Rasch
measurement model (Rasch, 1960/1980; Wright & Stone, 1979). This new,
extended model, known as the many-facets Rasch model, allows judge
severity to be derived using the same scale (i.e., the logit scale) as person
ability and item difficulty. In other words, rather than simply assuming that
a score of 3 from Judge A is equally difficult for a participant to achieve as
a score of 3 from Judge B, the equivalence of the ratings between judges
can be empirically determined. Thus, it could be the case that a score of 3
from Judge A is really closer to a score of 5 from Judge B (i.e., Judge A is a
more severe rater). Using a many-facets analysis, each essay item or
behavior that was rated can be directly compared.

In addition, the difficulty of each item, as well as the severity of all
judges who rated the items, can also be directly compared. For example, if a
history exam included five essay questions and each of the essay questions
was rated by 3 judges (2 unique judges per item and 1 judge who scored all
items), the facets approach would allow the researcher to directly compare
the severity of a judge who rated only Item 1 with the severity of a judge
who rated only Item 4. Each of the 11 judges (2 unique judges per item + 1
judge who rated all items = 5*2 + 1 = 11) could be directly compared. The



mathematical representation of the many-facets Rasch model is fully
described in Linacre (1994).

Finally, in addition to providing information that allows for the
evaluation of the severity of each judge in relation to all other judges, the
facets approach also allows one to evaluate the extent to which each of the
individual judges is using the scoring rubric in a manner that is internally
consistent (i.e., an estimate of intrarater reliability). In other words, even if
judges differ in their interpretation of the rating scale, the fit statistics will
indicate the extent to which a given judge is faithful to his or her own
definition of the scale categories across items and people.

The many-facets Rasch approach has several advantages. First, the
technique puts rater severity on the same scale as item difficulty and person
ability (i.e., the logit scale). Consequently, this feature allows for the
computation of a single final summary score that is already corrected for
rater severity. As Linacre (1994) has noted, this provides a distinct
advantage over generalizability studies since the goal of a generalizability
study is to determine
 

the error variance associated with each judge’s ratings, so that correction can be made to ratings
awarded by a judge when he is the only one to rate an examinee. For this to be useful,
examinees must be regarded as randomly sampled from some population of examinees which
means that there is no way to correct an individual examinee’s score for judge behavior, in a
way which would be helpful to an examining board. This approach, however, was developed for
use in contexts in which only estimates of population parameters are of interest to researchers.
(p. 29)

Second, the item fit statistics provide some estimate of the degree to
which each individual rater was applying the scoring rubric in an internally
consistent manner. In other words, high-fit statistic values are an indication
of rater drift over time.

Third, the technique works with multiple raters and does not require all
raters to evaluate all objects. In other words, the technique is well suited to
overlapping research designs, which allows the researcher to use resources
more efficiently. So long as there is sufficient connectedness in the data set
(Engelhard, 1997), the severity of all raters can be evaluated relative to each
other.

The major disadvantage to the many-facets Rasch approach is that it is
computationally intensive and therefore is best implemented using



specialized statistical software (Linacre, 1988). In addition, this technique is
best suited to data that are ordinal in nature.

Computing Common Measurement Estimates of Interrater
Reliability

Measurement estimates of interrater reliability tend to be much more
computationally complex than consensus or consistency estimates.
Consequently, rather than present the detailed formulas for each technique
in this section, we instead refer to some excellent sources that are devoted
to fully expounding the detailed computations involved. This will allow us
to focus on the interpretation of the results of each of these techniques.

Factor Analysis. The mathematical formulas for computing factor-analytic
solutions are expounded in several excellent texts (e.g., Harman, 1967;
Kline, 1998). When using factor analysis to estimate interrater reliability,
the data set should be structured in such a way that each column in the data
set corresponds to the score given by Rater X on Item Y to each object in
the data set (objects each receive their own row). Thus, if five raters were to
score three essays from 100 students, the data set should contain 15
columns (e.g., Rater1_Item1, Rater2_Item1, Rater1_Item2) and 100 rows.
In this example, we would run a separate factor analysis for each essay item
(e.g., a 5 × 100 data matrix). Table 3.6 shows the SPSS code and output for
running the factor analysis procedure.

There are two important pieces of information generated by the factor
analysis. The first important piece of information is the value of the
explained variance in the first factor. In the example output, the shared
variance of the first factor is 76%, indicating that independent raters agree
on the underlying nature of the construct being rated, which is also evidence
of interrater reliability. In some cases, it may turn out that the variance in
ratings is distributed over more than one factor. If that is the case, then this
provides some evidence to suggest that the raters are not interpreting the
underlying construct in the same manner (e.g., recall the example about
creativity mentioned earlier in this chapter).

The second important piece of information comes from the factor
loadings. Each object that has been rated will have a loading on each
underlying factor. Assuming that the first factor explains most of the



variance, the score to be used in subsequent analyses should be the loading
on the primary factor.

Many-Facets Rasch Measurement. The mathematical formulas for
computing results using the many-facets Rasch model may be found in
Linacre (1994). In practice, the many-facets Rasch model is best
implemented through the use of specialized software (Linacre, 1988). An
example output of a many-facets Rasch analysis is listed in Table 3.7. The
example output presented here is derived from the larger Stemler et al.
(2006) data set.

The key values to interpret within the context of the many-facets Rasch
approach are rater severity measures and fit statistics. Rater severity indices
are useful for estimating the extent to which systematic differences exist
between raters with regard to their level of severity. For example, rater CL
was the most severe rater, with an estimated severity measure of +0.89
logits. Consequently, students whose test items were scored by CL would
be more likely to receive lower raw scores than students who had the same
test item scored by any of the other raters used in this project. At the other
extreme, rater AP was the most lenient rater, with a rater severity measure
of –0.91 logits. Consequently, simply using raw scores would lead to biased
estimates of student proficiency since student estimates would depend, to an
important degree, on which rater scored their essay. The facets program
corrects for these differences and incorporates them into student ability
estimates. If these differences were not taken into account when calculating
student ability, students who had their exams scored by AP would be more
likely to receive substantially higher raw scores than if the same item were
rated by any of the other raters.

The results presented in Table 3.7 show that there is about a 1.5-logit
spread in systematic differences in rater severity (from –0.91 to +0.89).
Consequently, assuming that all raters are defining the rating scales they are
using in the same way is not a tenable assumption, and differences in rater
severity must be taken into account in order to come up with precise
estimates of student ability.

Table 3.6 SPSS Code and Output for Factor Analysis



In addition to providing information that allows us to evaluate the
severity of each rater in relation to all other raters, the facets approach also
allows us to evaluate the extent to which each of the individual raters is
using the scoring rubric in a manner that is internally consistent (i.e.,
intrarater reliability). In other words, even if raters differ in their own
definition of how they use the scale, the fit statistics will indicate the extent
to which a given rater is faithful to his or her own definition of the scale
categories across items and people. Rater fit statistics are presented in
columns 5 and 6 of Table 3.7.

Fit statistics provide an empirical estimate of the extent to which the
expected response patterns for each individual match the observed response
patterns. These fit statistics are interpreted much the same way as item or
person infit statistics are interpreted (Bond & Fox, 2001; Wright & Stone,
1979). An infit value greater than 1.4 indicates that there is 40% more



variation in the data than predicted by the Rasch model. Conversely, an infit
value of 0.5 indicates that there is 50% less variation in the data than
predicted by the Rasch model. Infit mean squares that are greater than 1.3
indicate that there is more unpredictable variation in the raters’ responses
than we would expect based on the model. Infit mean square values that are
less than 0.7 indicate that there is less variation in the raters’ responses than
we would predict based on the model. Myford and Cline (2002) note that
high infit values may suggest that ratings are noisy as a result of the raters’
overuse of the extreme scale categories (i.e., the lowest and highest values
on the rating scale), while low infit mean square indices may be a
consequence of overuse of the middle scale categories (e.g., moderate
response bias).

Table 3.7 Output for a Many-Facets Rasch Analysis

 
The infit and outfit mean-square indices are unstandardized, information-weighted indices; by
constrast the infit and outfit standardized indices are unweighted indices that are standardized
toward a unit-normal distribution. These standardized indices are sensitive to sample size and,
consequently, the accuracy of the standardization is data dependent. The expectation for the
mean square index is 1.0; the range is 0 to infinity (Myford & Cline, 2002, p. 14).

The results in Table 3.7 reveal that 6 of the 12 raters had infit mean-
square indices that exceeded 1.3. Raters CL (infit of 3.4), JW (infit of 2.4),
and AM (infit of 2.2) appear particularly problematic. Their high infit
values suggest that these raters are not using the scoring rubrics in a
consistent way. The table of misfitting ratings provided by the facets
computer program output allowed for an investigation of the exact nature of



the highly unexpected response patterns associated with each of these
raters. The table of misfitting ratings provides information on discrepant
ratings based on two criteria: (a) how the other raters scored the item and
(b) the particular raters’ typical level of severity in scoring items of similar
difficulty.

Implications for Summarizing Scores From Various Raters

Measurement estimates allow for the creation of a summary score for
each participant that represents that participant’s score on the underlying
factor of interest, taking into account the extent to which each judge
influences the score.

Advantages of Measurement Estimates

There are several advantages to estimating interrater reliability using the
measurement approach. First, measurement estimates can take into account
errors at the level of each judge or for groups of judges. Consequently, the
summary scores generated from measurement estimates of interrater
reliability tend to more accurately represent the underlying construct of
interest than do the simple raw score ratings from the judges.

Second, measurement estimates effectively handle ratings from multiple
judges by simultaneously computing estimates across all of the items that
were rated, as opposed to calculating estimates separately for each item and
each pair of judges.

Third, measurement estimates have the distinct advantage of not
requiring all judges to rate all items in order to arrive at an estimate of
interrater reliability. Rather, judges may rate a particular subset of items,
and as long as there is sufficient connectedness (Linacre, 1994; Linacre et
al., 1994) across the judges and ratings, it will be possible to directly
compare judges.

Disadvantages of Measurement Estimates

The major disadvantage of measurement estimates is that they are
unwieldy to compute by hand. Unlike the percent agreement figure or



correlation coefficient, measurement approaches typically require the use of
specialized software to compute.

A second disadvantage is that certain methods for computing
measurement estimates (e.g., facets) can handle only ordinal-level data.
Furthermore, the file structure required to use facets is somewhat
counterintuitive.

SUMMARY AND CONCLUSION

In this chapter, we have attempted to outline a framework for thinking about
interrater reliability as a multifaceted concept. Consequently, we believe
that there is no silver bullet “best” approach for its computation. There are
multiple techniques for computing interrater reliability, each with its own
assumptions and implications. As Snow, Cook, Lin, Morgan, and
Magaziner (2005) have noted, “Percent/proportion agreement is affected by
chance; kappa and weighted kappa are affected by low prevalence of
condition of interest; and correlations are affected by low variability,
distribution shape, and mean shifts” (p. 1682). Yet each technique (and
class of techniques) has its own strengths and weaknesses.

Consensus estimates of interrater reliability (e.g., percent agreement,
Cohen’s kappa, odds ratios) are generally easy to compute and useful for
diagnosing rater disparities; however, training raters to exact consensus
requires substantial time and energy and may not be entirely necessary,
depending on the goals of the study.

Consistency estimates of interrater reliability (e.g., Pearson and
Spearman correlations, Cronbach’s alpha, and intraclass correlations) are
familiar and fairly easy to compute. They have the additional advantage of
not requiring raters to perfectly agree with each other but only require
consistent application of a scoring rubric within raters—systematic variance
between raters is easily tolerated. The disadvantage to consistency
estimates, however, is that they are sensitive to the distribution of the data
(the more it departs from normality, the more attenuated the results).
Furthermore, even if one achieves high consistency estimates, further
adjustment to an individual’s raw scores may be required in order to arrive
at an unbiased final score that may be used in subsequent data analyses.



Measurement estimates of interrater reliability (e.g., factor analysis,
many-facets Rasch measurement) can deal effectively with multiple raters,
easily derive adjusted summary scores that are corrected for rater severity,
and allow for highly efficient designs (e.g., not all raters need to rate all
objects); however, this comes at the expense of added computational
complexity and increased demands on resources (e.g., time and expertise).

In the end, the best technique will always depend on (a) the goals of the
analysis (e.g., the stakes associated with the study outcomes), (b) the nature
of the data, and (c) the desired level of information based on the resources
available. The answers to these three questions will help to determine how
many raters one needs, whether the raters need to be in perfect agreement
with each other, and how to approach creating summary scores across
raters.

We conclude this chapter with a brief table that is intended to provide
rough interpretive guidance with regard to acceptable interrater reliability
values (see Table 3.8). These values simply represent conventions the
authors have encountered in the literature and via discussions with
colleagues and reviewers; however, keep in mind that these guidelines are
just rough estimates and will vary depending on the purpose of the study
and the stakes associated with the outcomes. The conventions articulated
here assume that the interrater reliability study is part of a low-stakes,
exploratory research study.

Table 3.8 General Guidelines for Interpreting Various Interrater Reliability Coefficients



NOTES

1. Also known as interobserver or interjudge reliability or agreement.
2. Readers interested in this model can refer to Chapters 4 and 5 on Rasch measurement for more

information.
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asch measurement is a model-based approach in measurement that has
become increasingly popular for scale construction in the social (and
other) sciences. Rasch measurement provides a way to convert ordinal

observations (raw scores) into linear measures (logits) (Fischer, 1995a; Rasch,
1960; Wright & Mok, 2004), thus making it an important tool in scientific
research where phenomena are observed on an ordinal scale and parametric
statistics, which assume an interval/ratio scale, are employed for analysis
(Wright & Linacre, 1989). This chapter introduces basic concepts of Rasch
measurement models and their applications.

WHAT IS MEASUREMENT?

A common definition of measurement is the assignment of numerals to
objects or events according to rules (Stevens, 1946). Stevens (1946) classified
measurement scales into four categories:

1. nominal (assigning numerals as labels or names of objects),
2. ordinal (assigning numerals to represent rank order of objects),



3. interval (assigning numbers in a way that the same amount of numerical
difference represents equivalent differences in the amount of objects
being measured, thereby allowing mathematical operations such as
addition and subtraction), and

4. ratio (assigning numbers in the same way as an interval scale but with an
absolute zero point on the scale, thereby allowing meaningful operations
using multiplication and division).

Researchers who conduct scientific studies using various statistical
techniques must keep in mind the nature of scale of measurement for their
observations. Many observations in the physical sciences (e.g., weight, height,
speed) are made on a ratio scale, allowing researchers to apply various
parametric statistical techniques to their data. However, observations in the
social sciences (e.g., attitude, intelligence, performance) are commonly made
on an ordinal scale, making them unsuitable for parametric statistics (Merbitz,
Morris, & Grip, 1989; E. V. Smith, Conrad, Chang, & Piazza, 2002; Wright &
Mok, 2004). Thus, social science researchers need a tool to help transform
raw ordinal observations into measures on an interval scale. This is
particularly true if parametric statistical techniques are to be used for further
analysis of the data, as it has been demonstrated that the analysis of ordinal
data using, for example, factorial ANOVA can lead to spurious interactions
and underestimation of effect sizes (Embretson, 1996; Romanoski & Douglas,
2002). Rasch models are the tools that serve this need (Bond & Fox, 2001;
Wright & Masters, 1982; Wright & Mok, 2004; Wright & Stone, 1979).

WHAT MEASUREMENT APPROACHES HAVE BEEN USED TO ANALYZE

ORDINAL DATA?

The act of measurement generally involves at least two facets: the objects that
are being measured and the measuring instrument. For example, in
educational testing, the objects are the students who are being tested, and the
measuring instrument is a set of items used in the test. Measurement is the
process of making sense of these two facets. Researchers in the social
sciences have used predominantly two measurement approaches to analyze
ordinal data: (a) true-score theory and (b) latent trait theory.



True-Score Theory

Methods based in true-score theory (aka classical test theory) represent a
traditional approach to data analysis in the social sciences that has been used
widely for most of the 20th century. Some of its techniques have been around
since the beginning of the 20th century (Gulliksen, 1950; Spearman, 1907,
1913). Its basic concept is that observed scores can be decomposed into true
scores and error, which can be expressed mathematically as

X = T + E, (1)

where X is an observed score, T is a true score, and E is an error. This
measurement model has many shortcomings, including the following:

1. Measures of persons and items are test and sample dependent,
respectively (E. V. Smith et al., 2002). In a context of educational testing, if a
student encounters a difficult test, his or her ability measure will be lower. But
if that same student encounters an easy test, his or her ability measure will be
higher. On the other hand, if items are used with a group of above-average
students, they will appear to be easier than when they are used with a group of
below-average students. Thus, person ability and item difficulty cannot be
generalized to other samples of items and persons, respectively, with different
distributions (E. V. Smith, 2004b).

2. Researchers require complete responses from every person to make score
comparisons within the sample. Measures of person ability or item difficulty
in true-score theory cannot be compared fairly if there are missing data,
unless some type of missing data imputation/estimation method is employed
(E. V. Smith et al., 2002). This can become problematic in settings that have
missing data due to various reasons (e.g., noncompliance, incidental
interference, physical limitation of a person) (Wright & Mok, 2004).

3. Typically, only one standard error of measurement is calculated and
applied to all scores in a particular population (Embretson & Reise, 2000).
Despite knowing that extreme scores are less precise, there are few
procedures in true-score theory to determine how measurement error varies
across the measurement scale (E. V. Smith, 2004b; E. V. Smith et al., 2002).



This may lead to inaccurate estimation of internal consistency reliability of
the test scores.

4. Measures of persons and items are on different metrics. This makes it
difficult to predict the outcome of the interaction between a given person and
a given item, despite having an estimate of that person’s ability and that item’s
difficulty (E. V. Smith et al., 2002).

5. Mathematical operations and parametric statistical analyses performed
on ordinal scale values often violate basic parametric statistical analysis
assumptions and sometimes lead to invalid inferences made from the analysis.
For example, Embretson (1996) found spurious interactions in a two-way
ANOVA using raw scores and demonstrated underestimation of effect sizes
while Romanoski and Douglas (2002) confirmed these results and
demonstrated that raw scores may, depending on fit, targeting, and the
distribution of item difficulties, underestimate main effects and may lead to
spurious interaction effects.

6. There are few techniques for validating response patterns. Often, all
observations are considered as valid responses with no anomalies (E. V. Smith
et al., 2002). However, anomalies in response patterns do happen in real-
world observations. For example, in educational testing, a highly able student
might answer an easy item wrong because he or she runs out of time at the
end of the test, while a less able student might answer a difficult item
correctly because of guessing. The significant role of measurement in
scientific discovery lies in its ability to display serious anomalies to direct
scientists where to look for new qualitative phenomena (Kuhn, 1961). Thus,
the lack of methods to detect abnormal response patterns not only leads to a
distorted measurement system but may also prohibit some important scientific
discoveries.

Latent Trait Theory

Latent trait theory (LTT) is a model-based measurement approach in which
trait-level estimates depend both on persons’ responses and on the properties
of the items that were used to elicit those responses (Embretson & Reise,
2000). Two independent developments in test theory appeared in the 1960s
that led to LTT. The first is the work by Georg Rasch (1960), a Danish
mathematician who developed a measurement model that can fully separate



the estimation of person and item parameters from each other. This property is
called specific objectivity (Stenner, 1994). The second development is the
concept of latent trait models as elaborated by Birnbaum (1968). LTT models
can address several shortcomings found in true-score theory. LTT models
have been widely used in educational, psychological, and medical and health
care assessment (Embretson & Reise, 2000; Hambleton, 2000; Hays, Morales,
& Reise, 2000; Way, 1994). They are considered very useful in assessing
performance and achievement across groups in ways that different persons
can respond to different sets of items (Andrich, 2004a; Embretson & Reise,
2000).

Although the work of both Rasch (1960) and Birnbaum (1968) attempted to
solve the measurement problems using probabilistic models that have very
similar mathematical forms, their work diverged into two unique
measurement paradigms: (a) the mathematical (or LTT) paradigm and (b) the
Rasch paradigm. In the mathematical (LTT) paradigm, the goal of
measurement is to choose the model that accounts for the most variance in the
data. Generally, the model with a greater number of parameters can explain
more variance in the data. However, if two models with different numbers of
parameters can explain the data equally well, the model with fewer
parameters is chosen. On the other hand, the Rasch paradigm considers a
measurement model as a tool for making sense of a particular theoretical
framework. The measurement model is not chosen because it describes the
observations the best but because it provides measures of the amount of latent
trait of persons and items that are invariant, allowing comparison between
persons that are independent of item characteristics and vice versa (Andrich,
2004a; M. Wilson, 2004a).

Another point on which the two paradigms diverge is the concept of
invariance (Engelhard, 1994). In the LTT paradigm, the measurement system
is modeled in a way that, when comparing two people, the person who has the
higher probability of getting an item correct (or endorsing, for example, a
clinical symptom) depends on which items they encounter; when comparing
two items, determining which item is more difficult (to get correct or endorse)
depends on which persons encounter the items. On the other hand, in the
Rasch paradigm, the measurement system is modeled in a way that the order
of persons according to their level on the trait being measured and the order of
items according to their difficulties are invariant. In other words, a person
with more of the trait should always have a higher probability of getting an
item correct (or endorsing, for example, a clinical symptom) than a person



with less of the trait, no matter which items they encounter, and a more
difficult item should always have a lower probability of being answered
correctly or endorsed than an easier item, regardless of the trait level of the
persons who answer those items (Rasch, 1960; E. V. Smith, 2004b; E. V.
Smith & Andrich, 2005).

HOW CAN THE RASCH MODELS ESTABLISH THE PROPERTY OF

INVARIANCE?

To demonstrate the property of invariance in the Rasch models, we begin by
discussing basic characteristics of logistic LTT models. We focus here on the
Rasch model for dichotomous responses (items with only two possible
responses, such as correct-incorrect, yes-no, present-absent) to first build a
basic understanding of this Rasch model, which we later generalize to
polytomous Rasch models (for items that have more than two response
categories, such as agree-neutral-disagree, always-often-seldom-never).

The basic characteristic of LTT models is that they all use a probabilistic
function to describe the interaction between persons and items. Such
probabilistic functions are called item response functions (IRFs) and are
generally represented by a line graph showing the amount of the latent trait on
the horizontal axis and the probability of a response on the vertical axis. The
most commonly used form of the IRF is the logistic function, exp(θ)/[1 +
exp(θ)], where θ represents the amount of latent trait (e.g., ability of a
person). This function increases monotonically as the amount of latent trait
(θ) increases in an S-shaped curve (Sijtsma & Molenaar, 2002) (Figure 4.1).

The Rasch model for dichotomous data defines the IRF as a function of
person ability (βn) and item difficulty (δi) in the following mathematical
expression:

(Note that we have switched from θ to β to represent ability as β is commonly
used in the Rasch literature.) According to this model, the probability that
person n will answer item i correctly (Pni) is determined by the ability of that
person (βn) and the difficulty of the item (δi). If a person has ability equal to



the difficulty of an item, he or she will have a .50 probability of answering it
correctly. If his or her ability is higher than the difficulty of an item, he or she
will have greater than a .50 probability of answering it correctly. On the other
hand, if his or her ability is lower than the difficulty of an item, he or she will
have less than a .50 probability of answering it correctly (simply insert values
for βn and δi to get the probability of a person of given ability βn getting
correct an item of difficulty δi) IRF curves of the Rasch model are illustrated
in Figure 4.2.

Figure 4.1 A logistic item response function curve, P = exp(β)/[1 + exp(β)], where P is the
probability of getting an item correct and β is the latent trait.

Other classes of LTT models use more than one parameter to specify the
properties of each item. This reflects the attempt to account for more variance
in observations of the LTT paradigm. To demonstrate this, the two-parameter
logistic (2PL) model is used as an example. The 2PL model adds a
discrimination parameter (αi) (aka, slope parameter) to the Rasch model in
the following form:

According to this model, in addition to person ability (βn) and item
difficulty (δi), the probability of getting a correct response is also determined



by the discrimination power of that item (αi). Figure 4.3 shows how the
discrimination parameter influences the IRF curves.

As can be seen from Figure 4.3, by adding the slope parameter into the
model, IRF curves are no longer parallel to one another, allowing IRFs to
intersect. With this type of model, the orders of items according to their
probability of a correct answer are different from one ability level to another.
Thus, the property of invariant item ordering does not hold for this type of
model (Sijtsma & Molenaar, 2002).

It can be seen that the Rasch model establishes the property of invariance
by requiring all items to have a common slope. Having parallel IRF curves
results in the ordering of items by their difficulties to be the same for all
ability levels (as can be seen in Figure 4.2, in which item a is easier than item
b, which is easier than item c for all levels of ability). Identical interpretations
can be made when these IRFs are drawn as person response functions (PRFs;
the ordering of persons by their abilities stays the same regardless of which
item is attempted).

Figure 4.2 Item response function curves of the Rasch model for dichotomous data. Each
curve represents one item. Item a is the easiest item, requiring the least amount of
the latent trait to be answered correctly. Item c is the most difficult item, requiring
more of the latent trait to be answered correctly. Difficulty is defined as the point
on the latent trait where the probability of a correct answer is .50.



Figure 4.3 Item response function (IRF) curves for the two-parameter logistic (2PL) model
for dichotomous data. Each curve represents one item. Item a is the “easiest” item
for persons with high ability (above where the IRFs for a and d intersect), but
item d is the “easiest” item for persons with low ability (below where the IRFs for
a and d intersect). Item e is the most “difficult” item for persons with high ability
(above where the IRFs for b and e intersect), but item b is the most “difficult”
item for persons with low ability (below where the IRFs for b and e intersect).

WHAT KIND OF DATA CAN BE ANALYZED WITH THE RASCH

MODEL?

Not all types of data are suitable for analysis with the Rasch model. As with
all other types of model-based approaches in data analysis, to make valid
inferences from the analysis, the data have to meet certain requirements of the
model. The most commonly used Rasch models require that the data conform
to four requirements: (a) unidimensionality (see Briggs & Wilson, 2004, for
an introduction to multidimensional Rasch models), (b) local independence,
(c) monotonicity of the latent trait, and (d) nonintersecting IRFs (Sijtsma &
Molenaar, 2002).



Unidimensionality means that all items on the instrument measure the same
trait (Sijtsma & Molenaar, 2002; E. V. Smith, 2004a, 2004b). However, this
does not mean that performance on the items strictly has to be caused by a
single psychological process. The unidimensionality assumption will hold
even if multiple psychological processes are involved in the act of responding
to items as long as they are affected by the same underlying process (Bejar,
1983).

Local independence means that a response of a person on one item is not
influenced by his or her responses to other items on the same test. Technically,
this means that after accounting for the latent trait (β), there will be no
significant covariance between any pairs of items (Embretson & Reise, 2000;
Sijtsma & Molenaar, 2002; Yen, 1993). Item dependence can lead to
inaccurate estimation of item difficulties and person abilities, as well as
overestimation of reliability and information functions (Sireci, Thissen, &
Wainer, 1991; E. V. Smith, 2005; Thissen, Steinberg, & Mooney, 1989;
Zenisky, Hambleton, & Sireci, 2003).

Monotonicity of the latent trait implies that the probability that a person
will answer an item correctly (Pni) is monotonically nondecreasing over the
range of the latent trait (Sijtsma & Molenaar, 2002). In other words, the
model does not allow the probability of getting a correct response to fluctuate
up and down.

Nonintersecting IRFs are an important requirement to attain the property of
invariance as described earlier. This requirement is what differentiates the
Rasch models from other LTT models.

WHAT ARE THE CONSEQUENCES OF ANALYZING DATA WITH THE

RASCH MODEL?

If the data fit the Rasch model, measurement construction using the Rasch
model provides measures of the amount of latent trait for both persons and
items that have many desirable measurement properties:

1. The measures of persons and items are put on the same scale. This
allows the direct comparison of the two facets of measurement. Unlike raw
scores, where one cannot tell whether a person should answer a given item
correctly because raw scores reflecting person ability and item difficulty are



on different metrics, the Rasch model puts all the measures on a common
logit scale. The logit scale is the logarithm of odds of the probability of
getting a correct response over an incorrect response (E. V. Smith, 2004b).
One logit is the distance along the measurement scale that increases the odds
of getting a correct response by a factor of 2.718, the value of e, the base of
natural logarithms (Linacre & Wright, 1989; O’Neill, 2005).

2. Measures are on an interval scale when the data fit the model. Perline,
Wright, and Wainer (1979) demonstrated that when data fit the Rasch model,
and since the model is a form of additive conjoint measurement (Luce &
Tukey, 1964), the model is able to transform ordinal data into interval
measures (also see Brogden, 1977; Fischer, 1995a; Karabatsos, 2001;
Mislevy, 1987). Wright (1985) demonstrated that the 2PL and three-parameter
logistic (3PL) models cannot maintain units or enable the construction of
additivity (i.e., interval scales). This is a direct result of the interaction
between the person and item parameters caused by the inclusion of the
multiplicative item discrimination parameters (see Equation 3).

3. Measures have the property of invariance. This property allows us to
place persons and items on a construct or variable map. The idea of mapping
out where a person is relative to items and where an item is relative to persons
to represent the concept of a measurement construct requires that the relative
ordering of items and persons be invariant (M. Wilson, 2004a, 2005).

4. Rasch analysis results in the separability of parameter estimates
(Hambleton, Swaminathan, & Rogers, 1991). Measures of person ability are
freed from the distributional properties of items used. At the same time,
measures of item difficulty are freed from the distributional properties of
people who attempt those items (Stone, 2004). In other words, measures of
person ability are the same (within measurement error), no matter which
subset of items is used for calibration when the data fit model expectations.
These are basic requirements for objective measurement.

5. Each individual person measure and item difficulty has a unique standard
error associated with its estimate (Wright, 1999; Wright & Stone, 1979).
Persons with extreme measures have higher standard errors than those around
the center of the item distribution. This reflects the fact that there is less
information to estimate the ability of these persons. Having individual
standard errors for persons and items also leads to a more accurate calculation
of the internal consistency reliability coefficient (see E. V. Smith, 2004b).



6. The Rasch analysis produces expected responses of each person-item
interaction. Comparing these expected responses with the observed responses
can reveal whether the responses fit the model expectations. The ability to
identify anomalies provides an opportunity to scrutinize these abnormal
response patterns to diagnose certain response behaviors (e.g., guessing,
miscodes, response sets, judge rating errors, cheating, speededness at the end
of the test) (Andrich, 2004a; Linacre & Wright, 1994; Mead, 1980; Myford &
Wolfe, 2004a, 2004b; R. M. Smith, 2004).

HOW CAN WE USE THE RASCH MODELS TO ANALYZE POLYTOMOUS

DATA?

Rasch models are applicable not only to dichotomous data but also to
polytomous data. This can be accomplished by adding parameters describing
the rating scale functioning to the basic Rasch model for dichotomous data.
The two most widely used Rasch models for polytomous data are the rating
scale model (RSM) and the partial credit model (PCM).

To accommodate multiple response categories in each item, the RSM
(Andrich, 1978a, 1978b; Embretson & Reise, 2000; Wright & Masters, 1982)
adds a threshold parameter (τj) to the model to represent the relative difficulty
of transitioning between rating categories. These threshold parameters are
located at the intersections of the probability curve of one rating category with
the probability curve of the next rating category. The RSM can be described
mathematically as

where pnix is the probability that a person n will respond x to item i, xni  {0,…,
m}; k is the response category on a rating scale that has (m + 1) rating
categories; βn is the latent trait ability measure of a person n; δi is the
difficulty level of an item i; τj are the thresholds (locations of the latent trait
where adjacent categories are equally probable); and τ0 = 0 so that exp  (βn –
(δi + τj)) = 1. Unlike the model for dichotomous data, where each item has



one IRF curve, the RSM generates a probability curve for each response
category of the item. These probability curves are called category
characteristic curves (CCCs; aka, category probability curves or category
response curves) (Embretson & Reise, 2000; Wright & Masters, 1982)
(Figure 4.4).

Because the RSM employs only one set of threshold parameters (τj) across
all items on the scale, it can only be used with data collected with a common
rating scale structure (the number of rating categories and relative difficulty
between categories) for all items. In certain situations, that assumption should
not be made (e.g., for a set of rating scale items that have different numbers of
rating categories or when the relative difficulty between categories may be
expected to vary from item to item). In these cases, the PCM (Embretson &
Reise, 2000; Masters, 1982; Masters & Wright, 1996) should be used. The
PCM defines threshold parameters for each item (δij), allowing each item to
have a unique scale structure. The PCM can be described mathematically as

where xni  {0,…, m}; and δi0 = 0, so that exp  (βn – δj) = 1.



Figure 4.4 Category characteristic curves of a polytomous item with five categories. Each
curve represents a response category. Category 1 is the response category that is
easiest to endorse or observe in a person low on the latent trait. As the amount of
the latent trait increases, the probability to endorse this response category
gradually decreases, while the probability to endorse a more difficult category
increases.

HOW CAN WE KNOW THAT THE DATA SET IS SUITABLE FOR THE

RASCH ANALYSIS?

Because the Rasch model is a model that is based on strong requirements, it is
pertinent to ensure that the data fit the model before making inferences from
the Rasch analysis. A commonly used method in determining whether the
data fit the model is the fit statistics using the Pearsonian chi-square approach
(Wright & Panchapakesan, 1969). Two types of fit statistics are commonly
used: infit and outfit. Both statistics can be reported in two forms: mean
square statistics (MNSQ) and standardized statistics (ZSTD).

Outfit is based on a sum of squared standardized residuals. Dividing this
sum of squared standardized residuals by its degree of freedom yields an
outfit mean square statistic, which has an expectation of 1.0 and can range
from 0 to infinity. Values larger than 1.0 indicate more variability than
expected. Values less than 1.0 indicate less variability than expected in the
data (Linacre & Wright, 1994; R. M. Smith, 2004; Wright & Masters, 1982).

Outfit statistics are unweighted and thus more sensitive to anomalous
responses by very high-ability or very low-ability persons, particularly on
tests that have a wide range of item difficulties and person abilities (Mead,
1980). Infit weighs each squared standardized residual by the information
function (pni(1 – pni)) before it is summed to reduce the influence of less
informative, off-target responses and overweights the completely unexpected
responses by persons near the center of the item distribution. Similar to the
outfit mean square statistic, the infit mean square statistic has an expectation
of 1.0 and can range from 0 to infinity (Linacre & Wright, 1994; R. M. Smith,
2004; Wright & Masters, 1982).

Because the distribution of mean square statistics is not symmetrical around
the mean and their distributions vary from item to item (and person to
person), the use of a single criterion to detect misfit may result in different
Type I error rates being applied (R. M. Smith, 2004). To assist with the



distribution-based interpretation of fit statistics, mean square fit statistics can
be transformed into standardized fit statistics using a Wilson-Hilferty cube
root transformation (R. M. Smith, 1982; E. B. Wilson & Hilferty, 1931).
Standardized fit statistics have an approximate unit normal distribution (0, 1).
Standardized fit statistics less than 0 may indicate dependency in the data.
Standardized fit statistics larger than 0 indicate unexpected variability in the
data (Linacre, 2002). Because standardized fit statistics have an approximate
unit normal distribution when the data fit the model, interpreting the fit of the
observations to the model is similar to interpreting how likely the
observations would be to happen in a z–score distribution. For a conventional
Type I error rate of .05, the acceptable range of standardized fit statistics is –
2.0 to 2.0 (Linacre, 2002), although for large samples, a –3.0 to 3.0 may be
warranted.

HOW CAN WE DO THE RASCH ANALYSIS PRACTICALLY?

There are a variety of computer programs for conducting Rasch analysis.
WINSTEPS (Linacre, 2006), which is a Windows-based application that can
handle analyses using the basic Rasch model, RSM, and PCM will be
employed in our examples. An evaluation version, Ministeps, can be
downloaded from www.WINSTEPS.com. A list of other Rasch calibration
programs can be found at www.WINSTEPS.com/rasch.htm. Many of these
offer free evaluation versions, and each varies in the models estimated and the
depth and breadth of diagnostic information provided.

What Are the General Steps in Interpreting the Results of Rasch
Analysis?

There are no rigorous rules on the order in which one has to proceed in
reviewing the results of a Rasch analysis. They depend on the research
questions and the findings from the analysis. What is found at one step may
necessarily require revisiting prior steps. Therefore, the following is a general
recommendation for standard analyses and may not fit all data sets or
analyses. The steps for the simple case of dichotomous data analysis are
outlined first, and then additional aspects to consider in polytomous data
analysis are discussed.

http://www.winsteps.com/
http://www.winsteps.com/rasch.htm


Dichotomous Data

The first thing to check is the internal consistency reliability. Because there
are two facets of measurement interest (persons and items), the analyst
examines the internal consistency reliability of both facets. Person separation
reliability is the index of reliability that corresponds to the traditional KR-20
or Cronbach’s alpha commonly reported in the true-score theory (Stone, 2004;
Wright & Masters, 1982). Person separation reliability (Rp) is calculated using
the following formula:

where  is the observed variance of the persons, and MSEp is the mean
square measurement error for person ability. This separation reliability is on a
nonlinear scale and suffers from ceiling effects in the same manner as KR- 20
and coefficient alpha (E. V. Smith, 2004b). To avoid this ceiling effect, a
person separation index (Gp) can be used. The person separation index is
calculated using the following formula:

Gp is on a ratio scale and can range from 0 to infinity (Schumacker, 2004;
Wright & Masters, 1982). It indicates the spread of person (or item) measures
in standard error units (Fisher, 1992; Wright & Masters, 1982). The higher the
Gp value, the more dispersed persons on the scale (as a frame of reference, a
value of Gp of 2 is equivalent to an Rp of .80). Another useful indicator of
internal consistency is strata, which can be calculated using the following
formula:

Strata indicates the number of statistically distinct levels (separated by at least
3 SEM) of person ability that the items distinguished (Fisher, 1992; Wright &
Masters, 1982).

If the interest is in how well persons separate the items, it is possible to
calculate item separation reliability, item separation index, and item strata in



the same way, using the item SD and the mean square measurement error of
item difficulty.

The next thing to examine is a variable map (Figure 4.5). This map shows
the distribution of persons and items on a common logit scale. Unless
anchoring or rescaling is used, the mean item difficulty is usually set to 0
logits (R. M. Smith, 1999). The mean person ability is compared with the
mean item difficulty to see if items, on average, are difficult or easy for this
group of persons. The distribution of person ability should be matched with
the distribution of item difficulty when norm reference interpretations are
desired (Linacre, 2005). For criterion reference interpretations, the bulk of the
items should be distributed around the cut score(s).

An item analysis report (Table 4.1) provides detailed information of each
item (raw score, logit measure, standard error, fit statistics, and point-biserial
correlations). It is possible to check which items are the easiest (Items 3 and
19; see values under MEASURE to determine this) and which are the most
difficult (Items 11 and 12) and evaluate the fit of the items to the Rasch model
using infit and/or outfit statistics. As a follow-up for misfitting items,
response residuals (not shown) can be examined to try to understand why
certain items misfit the model (e.g., differential item functioning, poorly
worded items, differential curriculum exposure). This can lead to discussions
among the instrument developers on how to improve the items. Depending on
the fit criteria defined by the researcher, misfitting items should be considered
for deletion to eliminate noise or data redundancy from the analysis.
Nevertheless, statistical decisions to remove certain items from the analysis
are no substitute for consideration of content coverage of the construct being
measured (Schumacker, 2004). Eliminating items based on fit criteria alone
without the consideration of content coverage might lead to failure of the
instrument to capture important aspects of the construct, causing construct
underrepresentation (American Educational Research Association, American
Psychological Association, & National Council on Measurement in
Education, 1999).



Figure 4.5 A variable map of student ability and item difficulty obtained from an analysis of
a 50-item multiple-choice examination of 25 students. Students are listed on the
left side of the scale (01–25). Items are listed on the right side of the scale (I01–
I50). On the far-left side of the map is the logit metric. Higher logits indicate
students with higher ability and items with higher difficulty. M = mean, S = 1 SD,
T = 2 SD.

A person analysis report provides information on each person included in
the calibration in a similar manner as the item analysis report. It is possible to
determine which person has the highest level of ability and which person has
the lowest. It is also possible to evaluate the fit of persons to the Rasch model.
In some instances where the focus of the analysis is on the items and no
decision is required for individual persons, misfitting persons should also be
considered for removal from the analysis to eliminate noise or data
redundancy. If individual differences are of interest, measures between any
pair of persons can be compared to see if they are statistically different in
their ability measures, using the following formula:



where β1 and β2 are ability measures of Persons 1 and 2, and SE1 and SE2 are
the standard errors of the measures of Persons 1 and 2 (Wright & Stone,
1979). If z is equal to or greater than 1.96, Person 1 has a significantly higher
measure than Person 2, under the assumption of a Type I error rate of .05. If z
is equal to or less than –1.96, Person 1 has a significantly lower measure than
Person 2, under the assumption of a Type I error rate of .05 (Luppescu, 1995).
For more on interpreting a Rasch analysis with dichotomous data, see R. M.
Smith (1992, 1999) and Schumacker (2004).

Table 4.1 An Item Analysis of a 20-Item Multiple-Choice Examination

NOTE: Raw score is the number of students who answered the item correctly. Count is the number of
students who answered that item. Measures are the item difficulty estimates in logits for each item.
Model SEs are the standard errors associated with the difficulty estimates. Infit and outfit statistics are
given in mean square and standardized form. PTBIS CORR. is the traditional point-biserial correlation.
Summary statistics (mean and SD) are provided at the bottom of the table.

Example 1

In this example, a Rasch analysis of data obtained from a test of short-term
memory of 35 children using 18 items, each of which are scored as correct (1)
or incorrect (0), is presented. The WINSTEPS control file for this data set is
provided with the installation of the WINSTEPS program. To run a Rasch
analysis of this dichotomous data set, open up the WINSTEPS program. At
the prompt asking for a control file name, press [Enter]. A control file



window will show a list of files from an examples folder. Open a file named
“kct.txt.” Then press [Enter] to request a temporary output file. Finally, press
[Enter] again to skip providing extra specification. The WINSTEPS program
will then start running the analysis, using a Rasch model for dichotomous
data.

1. Checking internal consistency reliability 
From the menu, select “Output Tables” and choose “3.1 Summary

statistics.” A new window showing four tables of summary statistics will
appear. The first two tables focus on measures of children’s short-term
memory. The last two tables focus on item difficulty estimates. Generally,
results only from nonextreme measures are interpretable because extreme
measures (those who get all items right or all items wrong) contain little
statistical information regarding their level on the construct of interest. The
person separation reliability is in the right lower corner of the first table (real
reliability = .64). If the interest is in the separation of items, the item
separation reliability is found in the third table (real item reliability = .95).

2. Checking a variable map 
From the menu, select “Output Tables” and choose “1. Variable maps.” A

new window will show various variable maps. The map that is used most
often is the first one. From this map, it is possible to compare the locations of
children (on the left side of the map) with the locations of items (on the right
side of the map) to see, for example, whether there is a gap in the item
distribution that does not have items targeted to children who are at that level
of ability (e.g., a gap of 2.36 logits between Items 11 [0.79 logits] and 10
[-1.57 logits]).

3. Checking an item analysis report 
From the menu, select “Output Tables” and choose “14. TAP: entry.” A

new window will show measures of the items (which are labeled tap in this
data set), sorted by their entry numbers. This makes it possible to determine
which items are the easiest (Items 1, 2, and 3 at –6.59 logits), which item is
the most difficult (Item 18 at 6.13 logits), which items had the highest
standardized fit statistics (Item 14 with an infit ZSTD of 1.2 and Items 15, 16,
and 17 with an outfit ZSTD of 1.4), and which items had the lowest



standardized fit statistic (Item 8 with an infit ZSTD of –1.3 and Item 13 with
an outfit ZSTD of –0.3).

4. Checking a person analysis report 
From the menu, select “Output Tables” and choose “17. KID: measure.” A

new window will show measures of all children who took this test (which are
labeled kid in this data set), sorted by their measures of ability from the
highest to the lowest. It is possible to determine which kids earned the highest
measure (Kids 7 and 24 at 3.73 logits), which kid earned the lowest measure
(Kid 35 at –6.62 logits), which kids had the highest standardized infit statistic
(Kids 13 and 29 with an infit ZSTD of 2.5), which kid had the highest
standardized outfit statistic (Kid 25 with an outfit ZSTD of 4.1), which kid
had the lowest standardized infit statistic (Kid 15 with an infit ZSTD of –1.5),
and which kids had the lowest standardized outfit statistic (Kids 2, 5, 6, 8, 9,
26, and 31 with an outfit ZSTD of –0.3).

For more examples of dichotomous data analysis, see R. M. Smith (1992,
1999) and Schumacker (2004).

Polytomous Data

In addition to all the considerations in the analysis of dichotomous data,
employing the RSM or PCM to analyze polytomous data requires additional
attention to the rating scale structure. It is pertinent to ensure the proper
functioning of rating scale structure before making inferences from these
ratings. There are eight basic guidelines to evaluate the functioning of a rating
scale in the RSM or PCM analyses (Linacre, 2004).

1. All items are oriented with the latent trait variable. 
Some survey questionnaires are designed to have the polarity of some items

reversed so that persons with high levels on the latent trait will provide low
ratings on these items. The items with reversed polarity can be detected from
an item analysis report (Table 4.1), as those with negative point biserial
correlation coefficient (PTBIS CORR. in the table). To have the rating scale
structure function properly, those items whose polarities contradict the general
item consensus must be rescored to have their polarities conform to other
items.



2. There are at least 10 observations in each rating category. 
In order to get accurate threshold calibrations, at least 10 observations per

rating category are needed. For the RSM, the number of observations per
rating category is obtained by aggregating the observations for each category
across all items. For the PCM, the number of observations for each rating
category is assessed on an item-by-item basis. If the recommended minimum
of 10 observations is not met, options may include gathering more data,
collapsing adjacent categories if they are conceptually similar, switching from
a PCM to an RSM (assuming the data are amenable to both models), or
forcing estimation of thresholds involving categories that contain no data (see
Linacre, 2005). Check this criterion from the rating scale functioning report
(Table 4.2). The numbers in the observed count column should be at least 10
for all categories.

3. The observations are regularly distributed across all rating categories. 
Irregularity in the observed frequency across categories may signal aberrant

category usage. To ensure a properly functioning rating scale, one should
check that the numbers of observed counts in the rating scale functioning
report (Table 4.2) are approximately evenly distributed. If one category is
rarely used while its adjacent category has numerous observations, one could
consider combining the two categories together. See Linacre (2004) and Zhu,
Updyke, and Lewandowski (1997) for more information on combining
adjacent categories to optimize the rating scale.

4. Average measures advance monotonically with category. 
A properly functioning rating scale should have observations in higher

rating categories producing higher logit measures. This can be determined by
checking the OBSVD AVRGE column in the rating scale functioning report
(Table 4.2). These observed average logit measures should increase with
increasing rating scale categories. When a higher rating category has a lower
average measure than a lower rating category, uncertainty in the meaning of
the rating scale is suggested as this disordering suggests, for example, that
category 4 does not represent more of the latent variable than category 3. This
often occurs with the use of “neutral” as a middle category or when many
categories are unlabeled, which allows each respondent to create his or her
own definitions of the unlabeled categories.



5. Outfit mean square values are less than 2.0. 
A high outfit mean square value of a rating scale category (reported under

the OUTFIT MNSQ column in Table 4.2) is an indicator of unexpected usage
of that rating category, causing a threat to the measurement system. When a
high outfit mean square value is observed for a particular rating category, one
should consider omitting the observations, combining the observations with
another rating category, or dropping that rating category entirely. Note that
while Linacre (2004) uses the MNSQ to evaluate rating scale functioning, it
might be appropriate to use the standardized versions of these fit statistics for
their approximate unit normal distributions when the data fit the model.

6. Thresholds (τj in RSM or δij in PCM) advance with categories. 
The use of rating scales assumes that it should take increasing levels of the

trait to be observed in higher categories. This is a similar check as was made
with the average measures. The difference lies in that average measures are
calculated one category at a time, while thresholds are all estimated
simultaneously. This can be checked from the rating scale functioning report
under the column structure measure (i.e., thresholds). These thresholds
correspond to the intersecting points between the CCCs shown in the
probability plot at the bottom of the rating scale functioning report
(Table 4.2). Failure of these thresholds to advance is called threshold
disordering, which can degrade the interpretability of resulting measures
(Andrich, 2004b). When this threshold disordering is observed, one might
consider combining the disordered category with its lower category and
investigating why the sample did not use the rating scale as intended.

7. Thresholds advance by at least 1.4 logits (for a three-category ratin
scale) or by at least 1.0 logits (for a five-category rating scale) (Linacre
2004). 

Having thresholds that advance too little suggests that the two categories
are practically inseparable. When two thresholds are noted to be too close
together from the rating scale functioning report, combining the two
categories together might be indicated and further qualitative work on the
meanings of the selected categories with respect to the construct being
measured undertaken.

8. Thresholds advance no more than 5.0 logits (Linacre, 2004).



 
Having thresholds that are too far apart is an indication of a dead zone in

the middle of the category where the measurement loses its precision. Such
wide distances between thresholds suggest a need to put in an additional
rating category between these categories to obtain more precise calibrations
(lower standard errors for a portion of the ability continuum).

When using rating scales, the analysis of polytomous data is also a bit more
complicated in terms of determining the matching of the item difficulty
distribution with person ability distribution. Unlike dichotomous items, which
have only one intersecting point of response transition (from 0 to 1) per item,
polytomous items have many points where successive category probability
curves cross (i.e., thresholds), which allows one item to target a wider range
on the latent trait scale. Thus, assessing item targeting to person ability from
the variable map (Figure 4.5) does not give a complete picture. One should
evaluate an expected score map (Figure 4.6) or other variations of variable
maps that incorporate the thresholds to assess targeting. An expected score
map shows the expected response to each item for a person with a specified
ability measure. One can evaluate the targeting of the items to the person
ability distribution by comparing the coverage of the thresholds of all items
(the “colons” in Figure 4.6 represent the thresholds) with the distribution of
person ability measures at the bottom of the map.

Example 2

In this example, an analysis of a “liking for science” questionnaire using
the Rasch rating scale model is presented. This questionnaire asked for ratings
of various activities from a group of 75 students using a three-category rating
scale ranging from 0 to 2, where 0 represents dislike, 1 represents neutral
(note that we do not advocate the use of a “neutral” option in rating scales due
to the potential misuse of the neutral category), and 2 represents like. The
WINSTEPS control file for this data set is available in the WINSTEPS folder
after installation of the program. To run the analysis of this data set using the
Rasch rating scale model, press [Enter] at the control file prompt after
opening the WINSTEPS program. Open the file named “sf.txt.” Then press
[Enter] twice. The WINSTEPS program will then run the analysis using the
rating scale model.

Table 4.2 Rating Scale Functioning Report Obtained From the Analysis of a Performance



Assessment of 47 Students Using an 11-Item Instrument,Which Employed a 4-
Point Rating Scale

Figure 4.6 An expected score map obtained from an analysis of a performance assessment of
47 students using an 11-item instrument, which employed a 4-point rating scale.



Because the rating scale model (RSM) is used, the distance between rating
categories is assumed constant across all items, having only a horizontal shift of
the scale according to the difficulty of each item. The items are listed from the
easiest (I10) at the bottom of the map to the most difficult at the top (I01). The
distribution of student ability measures is shown at the bottom of the map as a
number of students at each logit. To find expected ratings of a student with a
given logit measure, one can draw a vertical line up from the specified logit
measure and check what rating region the line passes through for each item. For
example, a student with 3 logits ability is expected to get ratings of 2 on Items 1
and 2; ratings of 3 on Items 6, 7, 3, 5, 4, and 9; and ratings of 4 on Items 11, 8,
and 10.

To interpret the results of the analysis, the following steps are
recommended:

1. Checking internal consistency reliability 
Check the separation reliability of students (pupils) and items (acts) from

Table 3.1 (student separation reliability = .88, item separation reliability =
.97). The high student separation reliability (analogous to Cronbach’s alpha)
indicates that the items have spread the students out on the “liking for
science” variable, and individual difference can be reliably examined. The
high item separation reliability indicates that students spread out the items in
terms of difficulty to endorse, which is useful for construct validation efforts
(see Wolfe & Smith, 2007b).

2. Checking an expected score map 
Check the distribution of students’ measures of liking scientific activities

and the distribution of the item thresholds from an expected score map
(Table 2.2).

3. Checking an item analysis report 
Check which items misfit the measurement model in Table 10.1 (ACT: fit

order). Employing a conventional fit criterion for standardized fit statistics of
–2.0 to 2.0, there are three underfitting items (Item 23 with an infit ZSTD of
6.3 and an outfit ZSTD of 9.0, Item 5 with an infit ZSTD of 5.6 and an outfit
ZSTD of 7.3, and Item 20 with an infit ZSTD of 2.0 and an outfit ZSTD of
3.7) and four overfitting items (Items 1, 3, 17, and 11 with infit ZSTDs of –
3.5, –3.5, –2.7, and –2.4 and outfit ZSTDs of –2.5, –3.0, –2.4, and –1.9,
respectively). It is also possible to check the item difficulty estimates from



Table 13.1 (ACT: measure) where the items are sorted from the easiest (Item
18 at –3.15 logits) to the most difficult (Item 5 at 2.42 logits).

4. Checking a person analysis report 
To sort the students according to their degree of liking for scientific

activities, open Table 17.1 (PUPIL: measure). The student with the highest
level of “liking of science” is LF Rossner (entry number 2 at 6.07 logits). The
student with the lowest level of “liking of science” is A Sabol (entry number
53 at –1.61 logits).

5. Checking the rating scale functioning 
To determine how well the rating scale functions, first check the item

analysis report (Table 13.1) in the column PTMEA CORR. to see if there is
any item that should have its polarity reversed. Because no negative point
measure correlations are observed, proceed to checking out the rating scale
functioning from Table 3.2 (Rating (partial credit) scale). This rating scale
satisfies the second and third criteria of rating scale functioning, as shown in
the observed count column in the top table. The progression of observed
averages (in the OBSVD AVRGE column) satisfied the fourth criterion. Next,
check the outfit mean square value of each rating category to see that none of
these three categories have their outfit values above 2.0. Finally, check the
thresholds (structure measures) from the table in the middle of the report as
well as the CCCs at the bottom of the report. The advancement of these
thresholds conforms to the sixth, seventh, and eighth criteria. Thus, the rating
scale for the “liking for science” questionnaire functioned properly.

ARE THERE ANY OTHER TYPES OF RASCH MODELS?

The Rasch model for dichotomous responses, RSM, and PCM are basic Rasch
models that can handle many types of data in the social sciences. However,
there are some circumstances when the response types can be better analyzed
using other types of Rasch models. Listed below are brief descriptions of
other commonly employed Rasch models that may be useful (note that there
are even more Rasch models available for less frequently encountered types
of data).



1. The binomial trials model (Wright & Masters, 1982) is a model suitable
for data obtained from a study where persons are given multiple independent
attempts at an item and the number of successes in those attempts is counted.
An example is a shooting competition where each person is allowed to shoot
several times at a target and the number of hits is counted (Wright & Mok,
2004). 

2. The Poisson model (Rasch, 1960) is a model applied for the count of the
occurrences of an event that can happen an infinite number of times. An
example is a count of the number of reading errors a person makes while
reading aloud a passage. The count can range from 0 to the number of words
in the passage (Stone, 2004; Wolfe & Smith, 2007a). 

3. The Saltus model (M. Wilson, 1989, 2004b) is a model developed for
scaling of developmental data where the latent trait ability progresses in
stages, and the leap from one stage to the next changes the way in which the
measurement instrument functions. One example would be the Piagetian
theory of development where the progression of students’ understandings
from one stage to the next can result in changes in the hierarchy of item
difficulty estimates (M. Wilson & Draney, 1997). 

4. Rank-ordered data can be analyzed using the technique proposed by
Linacre (1989b). This form of a Rasch model is applicable to the analysis of
data where respondents are asked to rank order a group of objects (or persons)
based on the amount of latent trait that the objects (or persons) possess. An
example is a judge ordering pianists from the most to least proficient (Wright
& Mok, 2004). 

5. The many-faceted Rasch measurement (MFRM) model (Linacre, 1989a)
is an extension of the basic Rasch model to analyze data that have more than
two facets. For example, using judges to assess the performance of students
on a complicated task generally involves three measurement facets: the ability
of students, the difficulty of tasks, and the severity of judges (Linacre &
Wright, 2004). The MFRM model allows researchers to calibrate many
interacting measurement facets onto a common scale. 

6. The linear logistic test model (LLTM) (Fischer, 1973) is an extension of
the Rasch model, allowing item difficulty parameters to be decomposed into
specified linear combinations of predictors of item difficulty. An example of
its application is in testing the hypothesis that item difficulty is a function of
multiple cognitive operations involved in the solution process, each of which
has a unique difficulty parameter (Fischer, 1995b). 



7. The mixed Rasch model (Rost, 1990, 1991) is a combination of Rasch
models and latent class models in a way that a Rasch model holds within each
latent class, but model parameters are allowed to vary across classes. The
main purpose of using it is to classify a possible inhomogeneous sample into
Rasch-homogeneous subsamples. An example is the analysis of neurological
deficits in a group of stroke patients, which is composed of two possible
subpopulations of patients: those with right hemispheric stroke and those with
left hemispheric stroke whose patterns of neurological deficits may be
different (Wolfe & Smith, 2007a). Another example, by Wagner-Menghin
(2007), demonstrates using the mixed Rasch model to identify subsamples
that exhibited different types of response sets. 

8. The multidimensional random coefficient multinomial logit model
(MRCMLM) (Adams, Wilson, & Wang, 1997; Briggs & Wilson, 2004) is a
flexible multidimensional extension of the various unidimensional Rasch
models described in this section (except the mixed Rasch model). The
MRCMLM models multiple dimensions for each of these models in a
confirmatory mode (i.e., item mappings onto the various latent dimensions
must be specified by the analyst). Such a model is appropriate when multiple
latent traits are measured simultaneously and those latent traits are likely to be
correlated.

SUMMARY

Rasch measurement is an important tool for quality control (item and person
fit, rating scale functioning), construct validation (see Wolfe & Smith, 2007a,
2007b), theory development (variable and expected score maps), and the
creation of interval measures from ordinal observations in the social sciences
(see E. V. Smith & Smith, 2004, 2007, for many more applications). This
chapter introduced basic measurement concepts and described how Rasch
models may resolve many perceived shortcomings found in true-score theory
and other classes of LTT models. The underlying psychometric requirements
of the Rasch models were discussed. Three commonly used Rasch models—
the basic Rasch model for dichotomous data, the RSM, and the PCM—were
described. General guidelines on how to evaluate the fit of the data to the
Rasch model using various types of fit statistics were described, and general
steps in interpreting results from Rasch analysis, both for dichotomous and
polytomous data, were provided. Finally, many other types of Rasch models



that researchers may find useful to apply with other types of data were
described. It is hoped that this short introduction helps interested researchers
to see how Rasch models can help improve measurement systems in social
science research.
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his chapter describes the multifaceted extension to the family of Rasch
models, identifies the advantages of using these models for scaling
data in the behavioral sciences, identifies software that implements

multifaceted Rasch models (MFRMs), and presents three examples that
apply the MFRM. The MFRM extends the family of Rasch models to
include multiple facets of the measurement context. We use the term facets
to refer to any component of the measurement context that is assumed to
contribute systematic measurement error or create a main effect that is of
substantive interest. In this sense, the family of models that has been
traditionally called Rasch models contains single-faceted models that
include items as the only facet of measurement. In many contexts, however,
multiple facets are of interest. For example, items may represent different
domains of performance, raters may rate responses to multiple items, or
groups may respond to a variety of items. In each case, the MFRM allows
one to estimate person measures while correcting for variation across
subsets of these measurement facets.

MULTIFACETED RASCH MODEL SPECIFICATIONS

The MFRM specifies a parameter for each of the facets of the measurement
context, where the responses may be dichotomous, polytomous, binomial



trials, or Poisson counts, and partial credit versus rating scale structures can
be applied to each facet of polytomous models (Linacre, 1994). For
example, in a context in which raters (with bias represented by βr) rate
person (with latent trait represented by θn) responses to several items (with
difficulty represented by δi) on a multipoint rating scale (with threshold
difficulties represented by τ), one could choose any of the following
configurations of the MFRM: (a) Raters apply a common rating scale across
all items, LN(πnirk/πnirk–1) = θn – δi – βr – τk—a multifaceted rating scale
model; (b) each rater uses a unique rating scale but applies that rating scale
consistently across items, LN(πnirk/πnirk–1) = θn – δi – βr – τrk—a rater partial
credit model; or (c) raters assign a common rating scale but that rating scale
varies across items, LN(πnirk/πnirk–1) = θn – δi – βr – τik—an item partial credit
model. As with other members of the family of Rasch models, the MFRM
that is depicted here measures a single latent trait (i.e., is a unidimensional
model), although it can be extended to measure multiple latent traits (i.e., a
multidimensional model).

The general equation for the MFRM in its rating scale form, LN(πnk/πnk–1)
= θn –  – τk, indicates that the log-odds (logit) of a person being assigned
an item score in category k rather than category k – 1 is a linear equation in
which θn represents the latent trait being measured,  represents a linear
combination of the various documented facets of the measurement context
that contribute systematic error (e.g., items, raters, item types, domains,
person groups), and τk represents the relative difficulty of rating scale
category k. As is true for other models in the family of Rasch models, the
estimate of θn, the measure for person n, is the parameter estimate of
primary interest. The parameters assumed under , on the other hand,
represent sources of systematic error variance for which the MFRM
controls in the estimation of θn. One alternative to allowing the components
of  to influence the θn estimates would be to obtain a score for every
combination of persons with every element of every facet of the
measurement context (e.g., every person responds to every item, and all
responses are rated by every rater—a fully crossed design for data
collection) so that the cumulative systematic error is the same for all
persons. However, this approach is not efficient. The MFRM removes the



influence of small samplings of the elements represented by  from the
estimation of θn.

The parameter estimates assumed under  may be of substantive
interest. For example, in the rating scale version of the MFRM that controls
for rater bias and item difficulty, LN(πnirk / πnirk–1) = θn – δi – βr – τk, item
difficulty estimates may provide insights into the internal structure of the
domain in question. In fact, agreement between these empirical estimates of
item difficulty and the expected rank ordering of item difficulties based on
expert judgment or theory-based predictions may provide important
evidence relating to the substantive aspect of validity (Wolfe & Smith, in
press-a, in press-b). Similarly, and as we will demonstrate in an example
application that follows, rater bias estimates may be useful for identifying
differences in standards being used by raters and, therefore, raters who may
need additional training.

Parameter estimates for the MFRMs are obtained by applying numerical
methods, such as maximum likelihood or Bayesian approaches, to observed
data, and commercial software that implements the MFRMs is readily
available. Parameter estimation results in a parameter estimate for each case
(i.e., person) and for each element of each facet depicted by the MFRM,
and these parameter estimates are placed on a common scale so that
descriptive comparisons can be made between persons, items, raters, or
other components of the MFRM. In addition, the parameter estimation
process allows for the depiction of the precision of each parameter estimate
by a standard error that is associated with each estimated parameter. A
common problem with the standard errors that are produced by commercial
software is the fact that implementation of the MFRM typically ignores
dependence among the multiple ratings assigned to a particular person so
that the standard errors are overly optimistic in terms of their depiction of
the precision of the parameter estimates.

Four useful indices can be computed when estimating parameters for the
MFRM. First and second, the parameter estimates for each person and for
each element of each facet in the MFRM and the fair average
transformations of these values to the original raw score metric indicate the
degree to which missing data and sparse sampling may result in invalid raw
score comparisons between persons across elements of a particular facet.
Both of these indices indicate the degree to which the person or element in
question differs from the remaining persons or elements, taking into



account discrepancies that arise due to sampling among the other facets
contained in the MFRM. For example, person measures indicate, on a log-
odds unit (logit) scale, the degree to which a person differs on the target
construct, adjusting for differences between the levels of rater bias and/or
item difficulty encountered by that person, from other persons. The person
fair average simply transforms this logit value to the raw score scale. These
indices are particularly useful when persons do not respond to all items or
are not rated by all raters in an MFRM, but they are also helpful when one
desires to make comparisons between elements of a particular facet (e.g.,
comparing levels of rater bias) when each element of that facet is not
coupled with all persons (e.g., raters only rate a subset of persons).1

Third, data-to-model fit indices can be computed for each person and for
each element of each facet of the MFRM. Although there are numerous fit
indices used in the field of item response modeling (Karabatsos, 2003), we
focus on the standardized version of the mean squared residuals (zmsq)
because of its ready availability in commercial software (Linacre, 2006;
Wu, Adams, & Wilson, 1998) and because of the accuracy of its
asymptotically expected Type I error rates (Smith, Schumacker, & Bush,
1998). This index has a range from –∞ to +∞, with negative values
indicating vectors of scores that are overly consistent with the expected
values based on the MFRM, positive values indicating vectors of scores that
are overly inconsistent with the expected values, and values near zero
indicating that the vectors of scores exhibit a reasonable amount of
variation around expected values. As we will demonstrate in the examples
that follow, these fit indices may be useful for identifying a wide variety of
potentially problematic issues relating to the measurement context. The
long list of issues includes poor item quality, differential item
dimensionality or differential item functioning, differential use of tools or
differential implementation of instruction relating to achievement tests,
cheating, examinee carelessness or deception, guessing or aberrant rating
behaviors, idiosyncratic use of rating scale categories (overuse, underuse),
rater drift, and nonreverse-scored negatively worded items (Linacre, 1995;
Smith, 1996; Wolfe, 2004; Wolfe, Chiu, & Myford, 2000; Wolfe, Moulder,
& Myford, 2001; Wright, 1991, 1995).

Fourth, parameters may be estimated for interactions between persons
and the facets contained in the model or between two facets in the MFRM.
Specifically, the general form of the MFRM can be extended to include



interaction terms that depict the deviation of pairings of between-facet
elements from their average parameter estimates. The model for that
extension, LN(πnk/πnk–1) = θn –  – τk – ιab, includes a parameter (ιab) that can
be estimated and that indicates how far each element of two facets or
persons and a single facet (indexed as a and b) deviate from the average
parameter estimate of their respective distributions of parameter estimates.
As an example, consider the issue of differential item functioning (DIF).
When DIF exists, the difficulty of a particular item changes across groups
of persons. That is, there is a group-by-item interaction. The appropriate
MFRM for DIF would take the following form: LN(πk/πk–1) = θperson – δitem –
γgroup – τcategory – ιItem×Group, where γgroup indicates the degree to which person
groups differ from one another on the construct of interest, and ιItem × Group

indicates the degree to which groups differ from one another on a particular
item beyond the amount captured by an item’s overall difficulty across
groups and a group’s overall performance across items. If the value of ιItem ×

Group differs from a null value of zero beyond what is considered a chance
level for a particular item-by-group combination, then the item exhibits
DIF.

ADVANTAGES OF THE MULTIFACETED RASCH MODEL

Historically, measurement data have been scaled within the true-score test
theory (TSTT) framework (Lord & Novick, 1968), in which an observed
score is decomposed into a true-score and an error score component. In
TSTT, measurement error is assumed to be random, and sources of error are
not differentiated from one another. Because of this, different measures of
the impact of error on observed measures are created, each depicting the
impact of a different kind of measurement error. For example, test-retest
reliability indices indicate the stability of measures across measurement
occasions, parallel-test form reliability indices indicate the stability of
measures across test forms, and interrater reliability indices indicate the
stability of measures across raters (Smith & Kulikowich, 2004).

This interpretation of error ignores the possibility that the data may
contain multiple sources of error, preventing them from being isolated,
identified, or differentiated among (Gilmore, 1983). Generalizability theory



(G-theory) provides an alternative conceptual framework that permits the
investigation of multiple sources of error simultaneously (Cronbach, Gleser,
Nanda, & Rajaratnam, 1972). In G-theory, a universe score, defined as the
average score for the object of measurement (usually persons) over all
identified measurement conditions, replaces the notion of true score, and
error is viewed as being systematic and as originating from multiple
sources. A generalizability study identifies and estimates the variances
associated with each error source, as well as with interactions between error
sources. These variance components are subsequently used in a decision
study to obtain measurements for a particular purpose and optimize future
data collections.

While G-theory provides an effective tool for identifying multiple
sources of error and estimating the error variance associated with raw
scores, it does so by depicting group-level effects rather than effects
exhibited by individuals. More important, G-theory does not attempt to
correct individual raw scores for the impact of the measurement conditions
that produced them. When the raw score is reported as the measure of a
person’s ability, without taking into consideration the impact that other
measurement facets (e.g., item difficulty, rater severity) might have had on
the estimate of ability, luck of the draw rules the day. The particular raw
score a person receives could be a reflection of great unfairness, depending
on the difficulty of the item he or she responded to and/or the severity of the
rater(s) that scored the performance.

One advantage of the MFRM is that it corrects each observed score for
the presence of systematic measurement error it models. The MFRM
transforms each raw score into a linear measure corrected for the impact
that sampling across measurement facets has on person measures. For
example, suppose we want to take into account the impact of rater severity
on examinee ability estimates. Under the MFRM, ability estimates are
expressed as a function of the facet elements that produced them. A person
rated on a task by two lenient raters will have an ability estimate adjusted to
reflect the raters’ leniency. Another person, hypothetically of the same
ability, rated on the same task by two severe raters, will have, under the
MFRM, an ability estimate approximately equal to that of the first person.
The ability estimates of both persons are thus freed from the potentially
unfair influence of rater bias. The approach adopted by G-theory, on the
other hand, would only estimate the magnitude of the systematic variance



contributed by raters without making any corrections to individual raw
scores, while the approach adopted by TSTT would treat all raters as
displaying the same level of bias.

Another advantage of the MFRM is that it can depict and correct for the
systematic error associated with interactions between measurement facets.
As mentioned previously, interaction terms can be included in the MRFM,
and these interaction terms can provide information beyond what is
available from the single-facet Rasch models. For example, if we are
interested in determining the degree to which a rater rates particular groups
of persons differentially, we can introduce a rater-by-group interaction term
in the model. In addition to estimating the size of the interaction between
each rater and the group in question, the MFRM will correct person ability
measures to account for this interaction. G-theory also estimates variances
associated with interactions between multiple sources of error, but it does so
at the group level and does not adjust individual ability estimates for the
presence of the interactions. TSTT treats all such interactions as random
error and assumes that they have no systematic impact on observed scores.

As another advantage of the MFRM, we mention its capability to
overcome the sample dependency of both persons and facets of the
measurement context. When the data meet the model’s dimensionality and
parameter invariance requirements, the resulting measures are disentangled
from the distributional details of the various persons, items, or raters
included in the analysis and can be generalized to other samples (Andrich,
1988). Yet another advantage of the MFRM is that, when data fit model
expectations, the measures produced by the model meet additivity
requirements. That is—unlike raw scores, which do not necessarily increase
in equal increments across the construct being measured—the measurement
units produced when measurement data are scaled using a Rasch model
express equal intervals over their range.

Because of its probabilistic approach to constructing measures, the
MFRM is also capable of routinely handling missing data. In contrast with
G-theory and TSTT, both of which require complete data sets, the MFRM
relaxes this requirement and makes it possible to estimate measures from
surprisingly sparse data matrices. As Linacre (1996) notes, the only
constraints the MFRM imposes on data collection designs are that “the
measures be estimable unambiguously in one frame of reference or that the



relationship between disjointed subsets of observations be specifiable” (p.
95).

MULTIFACETED RASCH MODEL SOFTWARE

Two commonly available pieces of commercial software can implement the
MFRM: Facets (Linacre, 2006) and ACER ConQuest (Wu et al., 1998).

Facets (currently Version 3.62). available from
www.winsteps.com/facets.htm, is a user-friendly, Windows-native program,
specifically developed for the analysis of Rasch models that encompass
multiple facets of measurement. The program uses a joint maximum
likelihood estimation procedure to calculate parameter estimates as well as
the corresponding standard errors and fit statistics for each element of every
facet included in the analysis. Facets also provides calibrations of response
format structures such as rating scales, rank orders, and letter grades. Once
parameter estimates are calculated, the Facets program has the capability of
investigating interactions between elements of various facets of
measurement (differential facet functioning). The bias/interaction reports
produced by the program identify the size and statistical significance of
each interaction in detailed format. The Facets program automatically
produces a results output file at the end of the estimation process. Users can
also request specific output tables and result files (in both tabular and
graphical formats) via pulldown menus.

ACER ConQuest is another popular program that can implement the
MFRM. ConQuest (currently Version 2.2.0), available from
http://www.assess.com/Software/ConQuest.htm, is a computer program that
can scale unidimensional and multidimensional versions of both item
response and latent regression models. The item response model fitted by
ConQuest is the generalized multidimensional random coefficients
multinomial logit model (MRCMLM; Adams, Wilson, & Wang, 1997), and
level of generality in the specification of this model allows the program to
analyze a wide variety of Rasch models, including the MFRM. ConQuest
uses marginal maximum likelihood methods to estimate model parameters.
The estimation process uses a two-level formulation of the model, which
treats person parameters as random variables. This is different from the
Facets program implementation of the MFRM, which considers all

http://www.winsteps.com/facets.htm
http://www.assess.com/Software/ConQuest.htm


parameters, including person parameters, as fixed. As a result, parameter
estimates obtained in ConQuest will differ slightly from those produced by
Facets for the same data. ConQuest fit statistics are also slightly different
from the ones used by the Facets program, in that they constitute an
extension for use with marginal maximum likelihood estimates in the
context of a more generalized model (Wu, 1987). When calculating
parameter estimates, ConQuest constrains one element of each facet
(usually the last), so that the average of the parameters for that facet equals
zero. The program calculates standard errors and fit statistics for all
nonconstrained parameters. In addition, ConQuest produces deviance
statistics and a test of parameter equality. This allows researchers to use
hierarchical model-fitting techniques to compare the fit of competing
models and select the model that provides the most parsimonious fit to the
given data set. ConQuest analysis results appear automatically in the output
window or in a separate file when requested in the command file. ConQuest
produces a total of six different tables and figures similar to, but less
elaborate than, those available in the Facets computer program.

MULTIFACETED RASCH MODEL APPLICATIONS

Analysis of Cognitive Tasks Example

Our first example application of the MFRM investigates the scores
obtained by 31 calculus students on a unit examination designed to
determine student competency on differentiation techniques. The 20 items
included in this examination were clustered into four groups of 5 items
each, based on the type of function to be differentiated. The four types of
functions present in the examination—polynomial/rational,
exponential/logarithmic, trigonometric, and composite functions—required
the use of increasingly more complex differentiation formulas and
techniques. Student responses were scored by a single instructor on a 4-
point rating scale ranging from 0 = incorrect solution to 3 = correct
solution, with intermediary scores representing two successive stages of a
partially correct response. Presentation of this example focuses on the
interpretation of indices generated in an MFRM analysis. Specialized



applications of the MFRM, to differential item functioning and to the
evaluation of ratings, will be presented in the second and third examples.

To analyze the data in this example, we employ a three-facet rating scale
version of the MFRM, LN(πnijk/πnijk–1) = θn – λi – δij – τk, as implemented in
the Facets computer program. In addition to student proficiency, θn, this
model accounts for the relative difficulties of different function types, λi,
and items associated with each type, δij. Since all responses were scored
with the same 0-to-3 rating scale, we will assume a common scale across all
items and employ the rating scale form of the MFRM for this analysis.

A variable map, shown in Figure 5.1, provides a graphic summary of the
results of scaling these data to the MFRM. The logit scale displayed in the
first column represents the metric within which the elements of every facet
are measured. The single frame of reference provided by the logit scale
allows for comparisons within and between facets, thus facilitating the
interpretation of the results. The second column of the map displays the
distribution of student proficiency measures (θn). Students appear in order
of their proficiency measure from highest scoring, at the top of the column,
to lowest scoring, at the bottom of the column. Student proficiencies group
to form a relatively symmetrical, somewhat platykurtic distribution, with
three outliers located at the high scoring end. The third column lists the four
function types in order of their difficulty (λi). Polynomial/rational and
exponential/logarithmic functions types, the easiest to differentiate of the
four, appear below the more difficult ones, trigonometric and composite
function types. The fourth column compares the 20 items that appeared on
this examination in terms of their difficulties (δij). Items appearing higher in
the column were more difficult for students to answer correctly than items
appearing lower in the column. The rightmost column of the variable map
displays the 4-point rating scaled used to score student responses. The
horizontal lines across the column correspond to the thresholds between
categories (τk). These indicate the point at which the probability of
obtaining one rating begins to exceed the probability of obtaining the next
highest rating.

Interpretation of these indicators follows a logical sequence. First, we
evaluate the degree to which the rating scale functions as intended. Second,
once that interpretive framework has been established, we evaluate the
degree to which the indicators through which we have elicited our



observations—in this case, the function types and items—are suitable for
making those observations. Third, when we are satisfied that the
interpretive framework and the vehicles for making observations are
functioning adequately, we interpret student performance. Table 5.1
presents indices relevant for evaluating functioning of the four-category
rating scale (Linacre, 2004). First, we note that a sizable percentage of
ratings were assigned to each rating category, meaning that the instructor
made appropriate use of the rating scale by using all categories when
scoring student answers. As a result, we can have confidence that the
threshold parameter estimates are sufficiently precise. Second, the average
student proficiency measures increase in parallel with the rating scale
categories, indicating that, on average, students who obtained higher scores
tended to receive high ratings across the test items—a prerequisite for using
the rating scale to establish a frame of reference for the measures. Third, for
each category, the unweighted mean square fit statistic values are equal or
very close to the expected value of 1.0, indicating that the data exhibit a
reasonable amount of unmodeled variability. Finally, category thresholds
increase in a strictly monotonic fashion. The clearly spaced threshold
calibrations (τ1 = –1.45 < τ2 = .07 < τ3 = 1.38) imply that the variability in
student performance can be adequately captured by the rating scale used.



Figure 5.1 Variable map.

Table 5.2 summarizes the four function types included in the model.
Function-type difficulties span the length of about half of a logit (0.52). The
mean difficulty was set at zero, and the standard deviation is 0.26. The
ordering of the four function types matches the theory-based expectations
of their difficulties, supporting the notion that these indicators function as
intended. Unweighted mean square fit statistics associated with each
function type are fairly close to the expected value of 1.0, indicating that
student responses across items for each function type exhibit a reasonable
amount of unmodeled variability.

Item difficulty calibrations provide additional insight into the difference
between the difficulties of the four domains and the quality of the
observations provided by the test. The fourth column of Figure 5.1 displays
the location of each item’s calibration, and the item labels indicate the
function type each item represents. It is immediately apparent that
composite function items are the most difficult and polynomial/rational
items are the easiest—an outcome that is consistent with instructional
practice and pedagogical theory. Students must master the differentiation of



simple polynomial/rational functions before differentiation of the more
complex composite functions is introduced.

Table 5.1 Rating Scale Category Statistics

Table 5.2 Function-Type Summary Statistics

Table 5.3 presents the values of the calibrations for each of the 20 items.
The item difficulties range from a low of –1.19 logits to a high of 1.36
logits, a range of 2.55 logits that evenly covers the middle and lower
portions of the variable continuum. However, the items do not adequately
cover the upper end of the performance continuum. The proficiency of 25%
of the students is greater than the most difficult item, indicating that the
measures of high-ability students may be insufficiently precise. Unweighted
mean square fit statistics are adequate for the majority of the items, but two
items (PR5 and C1) exhibit misfit. Examination of responses to both items
indicates that some low-performing students received higher than expected
scores, and some high-performing students received lower than expected
scores—the opposite of what would be expected, given the calibrations of
these items.

The distribution of student proficiency measures spans the length of 4.64
logits, with the least proficient student located at –1.88 logits and the most
proficient student at 2.69 logits (M = 0.58, SD = 1.23). The average
standard error of the measures is 0.33. The reliability with which the test
separates the sample of students is high (rseparation = .92), indicating that the



variance attributable to individual differences between students far exceeds
the error variance in the student proficiency measures. The student
unweighted mean squared fit indices (M = 1.02, SD = 0.38) indicate good
fit of the data to the MFRM. The response pattern of most students (87%)
shows adequate fit, with unweighted mean squared fit values ranging within
acceptable limits—0.6 to 1.4 (Wright & Linacre, 1994). The fit statistics of
two students exceed the upper limit. In both cases, students received a
higher than expected score on items of difficulty greater than their
proficiency, suggesting that these students may have specialized knowledge
relating to these items.

Table 5.3 Item Summary Statistics

Differential Item Functioning Example

Our second example application of the MFRM is to an analysis of
differential item functioning2 between items on two versions of a literacy



test developed for English- and Chinesespeaking preschool children. The
two versions of the 51-item instrument were created by translating the
English-language version into Chinese. The English and Chinese versions
were administered to 557 children in the United States and 871 children in
China, respectively. Responses of each child to each item were scored as
correct or incorrect, and these data were scaled to the dichotomous DIF
MFRM, LN(πk/πk–1) = θperson – δitem – γgroup – ιItem × Group, using ConQuest (Wu et
al., 1998). In this model, we are interested in determining whether the logits
for a particular item differ for two groups when overall group differences
are controlled. That is, we want to focus on the ιItem × Group component of the
DIF MFRM while including the γgroup component in the model for the sake
of removing overall group differences at the instrument level. Specifically,
we want to determine whether the estimates of ιItem × Group differ from a null
value of zero, which can be evaluated in a hypothesis-testing framework by
constructing a Wald t statistic,

The box on this page contains an abbreviated version of the ConQuest
command file that estimates the DIF MFRM.

Table 5.4 presents the ιItem × Group parameter estimates for two items and
summarizes the distribution of these statistics across the 50 items for which
parameters were estimated.3 The parameter estimates for the item-by-group
interaction on Item 47 indicate that the conditional probabilities of the two
groups answering this item correctly only differed by a small amount—the
absolute difference in the logit values of the parameter estimates equals
0.03. When this value is divided by the standard error of the difference, it is
clear that the difference is within what would be expected due to chance
variation (i.e., |tWald| = 0.36). Item 46, on the other hand, is an item for which
these two groups did differ. Specifically, the groups exhibited a logit
difference of answering this item correctly of 1.43. This difference is 15.32
times greater than the expected chance variation in these parameter
estimates, meaning that we would reject the null hypothesis that the values
of the parameters describing the performance of the two groups on this item
are equal. As a result, we would conclude that there is evidence of DIF on



this item and would investigate substantive explanations for potential item
bias relating to these groups on this item.

The bottom row of Table 5.4 presents summary statistics for the
difference between the group-by-item parameter estimates across items, the
standard error of these differences, the absolute values of the DIF estimates,
and the Wald t statistic associated with these differences. From the means of
the group-by-item interaction differences and the Wald t statistics, it is clear
that there is a prevalence of DIF for these groups in this pool of items. In
fact, if criteria were applied that are comparable to those used in similar
Rasch analyses (Draba, 1977) (specifically, if all items exhibiting
statistically significant DIF and absolute logit differences for the two groups
greater than 0.50 were flagged for DIF4), then 28 (56%) of the items would
have been flagged for review by a sensitivity panel.

Finally, for the sake of comparison, Figure 5.2 displays the scatterplot of
the relationship between the values of |ιi×G=1–ιi×G=2| produced by these
MFRM DIF analyses and the standardized difference of the item parameter
estimates (Wright & Masters, 1982) between separate scalings of the data
for the two groups using the Rasch rating scale model conducted with the
WINSTEPS software (Linacre, 2005).5 This plot indicates that the values of
the person-by-item interaction in the MFRM are nearly identical (r = .99) to
those produced using the more “standard” and burdensome approach that
focuses on standardized differences from separate analyses of the data.

Analysis of Ratings Example



Our third example application of the MFRM is to the scores assigned to
5,026 examinees who responded to five multiple-choice items and a single
essay question, which was rated by a single randomly selected rater from a
pool of 100 raters using a 10-point rating scale. In this example, our focus
will be on evaluating the ratings assigned by the raters rather than the
performance of the examinees or the difficulties of the items. These
particular raters were extensively trained as part of a large-scale, high-
stakes writing assessment designed for high school students as an end-of-
course examination. It should be noted that the five multiple-choice items
were only a few selected from a larger test, and they were included in this
example to create a link between the raters. Because each examinee was
rated by only a single rater, disconnected subsets of ratings (examinees
nested within raters) would have been created, making it impossible to
place all raters onto a common scale. This points out a considerable
advantage of the MFRM for data such as these—because raters rated no
examinees in common, it would have been impossible to make direct
comparisons between raters in a true-score test theory framework without
making fairly strong distributional assumptions. The statistics reported in
this example are simple descriptive statistics or were generated using the
Facets computer program (Linacre, 2006). An abbreviated version of the
Facets code is presented in the box on page 81.

Table 5.4 DIF MFRM Parameter Estimates Summary



Table 5.5 summarizes the distribution of ratings assigned by the raters to
the examinees’ essays for all raters and three individual raters (labeled
Typical, Misfit, and Overfit—these cases will be discussed in upcoming
paragraphs). The All Raters column of this table indicates that the
distribution approximates a normal curve in shape, being slightly positively
skewed and slightly platykurtic, with the majority of ratings assigned to
categories 3 through 7. It is worth noting that, in practice, rating scales that
contain a large number of rating categories often do not perform optimally
according to indices relating to the Rasch rating scale or partial credit
models (Linacre, 1995, 1999, 2004; Zhu, 2002; Zhu, Updyke, &
Lewandowski, 1997). With rating scales such as these, it is likely that raters
will not be able to reliably differentiate between the large number of rating
categories and may allow idiosyncratic patterns to appear in the scores that
they assign.

Table 5.6 summarizes the distribution of the differences between the
ratings assigned by the raters and the fair averages (i.e., transformed values
of the rater logits to the original raw score metric). This index indicates the



degree to which a particular rater’s ratings deviate from the average rating
across all raters. That is, this is the degree to which we can expect an
examinee’s rating by a particular rater to deviate from what would be a fair
average of the ratings that all raters would assign to that examinee. This
summary indicates that 20% of the raters assigned average scores across all
examinees that were at least 0.50 raw score points from the average of all
raters. Assuming that raters rated examinee essays at uniform rates, this
means that about 20% of the examinees were assigned ratings that were
more than one half of a raw score from the average that would be assigned
by all raters. This provides fairly strong support for the notion that the use
of a single rater, as was the case in this program, has the potential to
influence decisions that are made about examinees based on the essay
scores.

Figure 5.2 Scatterplot of MFRM and Rasch rating scale model DIF indices.

Table 5.5 Rating Category Use Distribution



Table 5.6 Deviations of Raters’ Observed and Fair Average Ratings (N = 100)

Deviation % Raters

–1.00   2

–0.75   1

–0.50   4

–0.25 28

  0.00 34

  0.25 18

  0.50 10

  0.75   2

  1.00   1

To this point, the demonstration has highlighted only one strength of the
MFRM analysis of ratings—that missing data and linking are routinely
handled by the scaling process. The comparisons shown in Table 5.6 could
not have been produced in a straightforward manner within a raw score



framework because each rater rated a subset of examinees, and the MFRM
allowed us to link the performance of those raters using five multiple-
choice items. The real strengths of the MFRM lie in the diagnostic power of
various data-to-model fit statistics. As demonstrated elsewhere (Wolfe,
2004, 2005; Wolfe et al., 2000; Wolfe et al., 2001), various fit statistics
behave in predictable ways when rater effects are introduced into simulated
data, so a variety of rater effects may be detected by examining these
statistics. The Facets computer program computes the weighted and
unweighted versions of the mean squared and standardized mean squared fit
statistics.

The three rightmost columns in Table 5.5 indicate the distribution of
ratings assigned by three raters. The column labeled Typical summarizes the
ratings for a rater with typical values of the standardized weighted mean
squared fit index. From the statistics at the bottom of this column, it is clear
that this rater uses a standard that is slightly more demanding than that of
most other raters—this rater’s average score was about three quarters of a
point less than the average of all raters. In addition, this rater assigned
ratings with variability consistent with that of other raters, on average. The
Typical rater’s ratings were not skewed, but they were slightly more
platykurtic than all ratings were, on average. This is evident from the
distribution of ratings for this rater—the shoulders of the distribution (rating
categories 3 and 5) are thicker, and the tails are thinner.

The column labeled Misfit summarizes the ratings for a rater with
somewhat elevated values of the standardized weighted mean squared fit
index. The statistics at the bottom of this column indicate that the rater’s
ratings were consistent with those of other raters, on average, but they were
slightly more widely distributed—a possible indicator of elevated levels of
randomness within the rater’s ratings or overuse of the extreme rating
categories. The ratings are not skewed, but they are slightly more
platykurtic than the population of ratings—in this case, rating category 5
was used fairly infrequently. Finally, the column labeled Overfit
summarizes the ratings for a rater with a fairly low (negative) value of the
standardized weighted mean squared fit index. This rater assigned ratings
that were also consistent, on average, with the ratings assigned by other
raters, but this rater’s distribution was more tightly clustered around that
central value—a possible indicator of overuse of the central rating
categories. This conjecture is supported by the distribution of ratings across



categories—almost 64% of the Overfit rater’s ratings fall into categories 4
and 5. The ratings are slightly positively skewed, but the distribution is only
slightly platykurtic.

SUMMARY

In this chapter, we have illustrated the usefulness of the MFRM, which has
the general rating scale form of LN(πnk/πnk–1 = θn –  – τk. Because of the
flexibility of the MFRM, it can be applied to many contexts that are
commonly encountered in measuring psychological and behavioral
constructs, especially when there is a need on the part of the researcher to
identify and correct for systematic error that may be contributed to the
measures by the various indicators used to elicit performance relating to the
construct (e.g., items, raters, etc.). The MFRM is particularly useful in
situations in which data are missing at random across these measurement
indicators. Two pieces of commercially available software, ConQuest and
Facets, estimate parameters for the wide range of models within the family
of Rasch models that can be implemented within this general MFRM, and
our examples demonstrated how parameter estimates can provide
substantively informative information, fit indices can provide diagnostically
useful feedback, and parameter estimation procedures can provide useful
corrections to what would otherwise be biased depictions of objects of
measurement.

NOTES

1. Readers should be aware that mutually exclusive subsets, referred to in the MFRM literature as
“disconnected subsets,” preclude comparison of elements within a facet. That is, when raters rate
nonoverlapping subsets of examinees, there is no way to make direct comparisons between those
raters with respect to their levels of bias.

2. A detailed explanation of differential item functioning is beyond the scope of this chapter.
Briefly, differential item functioning analyses seek to determine whether the probabilities that
individuals in different groups will provide a particular response to an item, when those individuals
are matched on measures of the construct in question, are equal. When they are not equal, it is
possible that item bias or construct-irrelevant variance (such as multidimensionality) exist. Readers
seeking a more detailed introduction to differential item functioning should consult Clauser and
Mazor (1998) or R. M. Smith (2004).



3. More recently, Wilson (2005) suggests that differences greater than 0.43 logits are consistent
with what is defined elsewhere in the literature relating to DIF as a moderate effect (e.g., the Mantel-
Haenszel criteria described by Zieky, 1993), and differences greater than 0.64 logits are consistent
with what has been defined as a substantial difference.

4. ConQuest estimates constrain the value of one parameter in each distribution to equal the
negative of the sum of the remaining parameter estimates, so the value of ιItem × Group and the
associated standard error was not estimated for one item.

5. Specifically, this index compares absolute values of the item parameter estimates for Group 1
with the comparable values for Group 2, an index that is also referred to as the unsigned area index
(UAI; Raju, 1988, 1990).
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xploratory factor analysis (EFA) is rightly described as both an art and
a science, where researchers follow a series of analytic steps involving
judgments more reminiscent of qualitative inquiry, an interesting irony

given the mathematical sophistication underlying EFA models.
EFA is a widely used and broadly applied statistical technique in the

social sciences. When we surveyed a recent 2-year period in PsycINFO, we
found more than 1,700 studies that used some form of EFA. The widespread
nature of EFA is both gratifying and problematic. On one hand, it is a
powerful tool that can help researchers explore complex data efficiently. On
the other hand, EFA is a complex procedure with few absolute guidelines,
no inferential statistics for hypothesis testing,1 and many (often ill-defined)
options. To make matters worse, terminology can vary significantly across
software packages.

EFA is open to abuse by researchers ill-informed as to the limitations of
the procedure. For example, using EFA to “confirm” or “validate” a
measure is most likely a misapplication of the procedure since EFA does
not have inferential statistics available to test goodness of fit (as



confirmatory factor analysis [CFA] does), yet one sees studies that claim to
do just that.

Even when EFA is the correct choice, researchers must deal with issues
such as (a) factor extraction methods, (b) rules for retaining factors, (c)
factor rotation strategies, and (d) sample size issues. Perusing the EFA
literature, one will quickly discover that most researchers use principal
components analysis (PCA) with varimax rotation, using the Kaiser (1970)
criterion (retaining factors with eigenvalues greater than 1.0) as the decision
rule for deciding how many factors to interpret. Readers will also find
analyses reported where the sample size is woefully inadequate to ensure
even marginal generalizability.

So, while this state of affairs represents the norm in the literature (and
often the defaults in popular statistical software packages), it will not
always yield the best results for a particular data set. This chapter will
review standard practice in the social sciences, review and propose best
practices for researchers wishing to use EFA, and examine how sample size
affects the “goodness” of EFA results in detail. Aside from sample size, we
will discuss (a) component versus factor extraction, (b) number of factors to
retain for rotation, and (c) orthogonal versus oblique rotation. Finally, we
will briefly discuss FACTOR, freely available software that implements
EFA options nicely.

STANDARD PRACTICE IN SOCIAL SCIENCE

One of the challenges to using best practices is that for three of the
important EFA analytic decisions (extraction, rotation, and number of
factors to retain), the defaults in common statistical packages (e.g., SPSS,
SAS) are suboptimal. When conducting EFA, one is usually guided to (a)
use principal components as the extraction method of choice (note that PCA
is not a factor analysis methodology at all), (b) use the Kaiser (1970)
criterion (retaining factors with eigenvalues greater than 1.0), and (c) use
varimax for rotation of factors (which requires factors to be orthogonal or
completely uncorrelated with each other, a generally untenable constraint).

Although many have written on different aspects of EFA, it is our
experience that software defaults tend to drive analysis decision making



(and furthermore, as Lorenzo-Seva and Ferrando [2006] point out, many
best practices are not available in popular software such as SPSS and SAS).

In order to examine the prevalence of EFA practices, we surveyed two
prominent measurement journals: Educational and Psychological
Measurement (EPM) and Personality and Individual Differences (PID) over
a 6-year period. These journals were chosen because of their prominence in
the field of measurement and the prolific presence of EFA articles within
their pages.

An electronic search was conducted using the PsycINFO database for
EPM and PID studies published from January 1998 to October 2003 that
contained the keyword factor analysis. After screening out studies that
employed only CFA or examined the statistical properties of EFA or CFA
approaches using simulated data sets, a total of 184 articles were identified,
reporting on 212 distinct EFA analyses. Variables extracted from the EFA
articles were factor extraction methods, factor retention rules, factor
rotation strategies, and saliency criteria for including variables.

Factor Extraction Methods. Almost two thirds of all researchers (64%) used
PCA. The next most popular choice was principal axis factoring (PAF)
(27%). Techniques such as maximum likelihood were infrequently invoked
(6%). A modest percentage of authors (8%) conducted both principal
components and principal axis methods on their data and compared the
results for similar structure.

Factor Extraction Rules. The most popular method used for deciding the
number of factors to retain was the Kaiser (1970) criterion of eigenvalues
greater than 1.0 (45%). An almost equal proportion used the scree test
(42%). Use of other methods, such as percent of variance explained logics
and parallel analysis, was comparatively infrequent (about 8% each). Many
authors (41%) explored multiple criteria for factor retention. Among these
authors, the most popular choice was a combination of the Kaiser criterion
and scree methods (67%).

Factor Rotation Strategies. As expected, varimax rotation was most often
employed (47%), with oblimin being the next most common (38%).
Promax (another oblique rotation) also was used in 11% of analyses. A
number of authors (18%) employed both varimax and oblimin solutions to



examine the influence of correlated factors on the resulting factor
pattern/structure matrices.

Saliency Criteria for Including Variables. Thirty-one percent of EFA
authors did not articulate a specific criterion for interpreting salient
pattern/structure coefficients, preferring instead to examine the matrix in a
logical fashion, considering not only the size of the pattern/structure
coefficient but also the discrepancy between coefficients for the same
variable across different factors (components) and the logical “fit” of the
variable with a particular factor.

Of the 69% of authors who identified an a priori criterion as an absolute
cutoff, 27% opted to interpret coefficients with an absolute value of 0.30 or
higher, while 24% chose a 0.40 cutoff. Other criteria chosen with modest
frequency (both about 6%) included 0.35 and 0.50 as absolute cutoff values,
with the rest ranging from the marginally defensible 0.25 to the almost
indefensible 0.80.

Summary. Not surprisingly, the hegemony of default settings in major
statistical packages continues to dominate the pages of EPM and PID. The
“Little Jiffy” model espoused by Kaiser (1970; espoused PCA with varimax
rotation and retention of all factors with an eigenvalue greater than 1.0) is
alive and well. It should be noted that this situation is almost certainly not
unique to EPM or PID authors. A survey of a recent 2-year period in
PsycINFO (reported in Costello & Osborne, 2005) yielded more than 1,700
studies that showed similar results. An informal perusal of social science
journals easily confirms the prevalence of this situation as current practice.

SO WHAT’S WRONG WITH STANDARD PRACTICE?

In short, there are good reasons why these defaults make little sense from a
conceptual and empirical point of view. Yes, the “Little Jiffy” method will
often yield acceptable results that will generalize, but a significant body of
research points to the fallibility of this methodology. But how do you know
when your results are erroneous because the methodology you are using is



suboptimal? You don’t. Following best practices will increase the odds of
achieving a generalizable, defensible solution.

Choosing an Extraction Technique

Principal Components Versus Factor Analysis. As mentioned above, PCA
is the default method of extraction in many popular statistical software
packages, including SPSS and SAS, which probably contributes to its
prevalence. PCA became common decades ago when computers were slow
and expensive to use; it was a quicker, cheaper alternative to factor analysis
and was designed to be only a data reduction method (Gorsuch, 1990). It is
computed without regard to any underlying structure caused by latent
variables; components are calculated using all of the variance of the
manifest variables, and all of that variance appears in the solution (Ford,
MacCallum, & Tait, 1986). However, researchers rarely collect and analyze
data without an a priori idea about how the variables are related (Floyd &
Widaman, 1995).

During factor extraction, the shared variance of a variable is partitioned
from its unique variance and error variance to reveal the underlying factor
structure; only shared variance appears in the solution. Principal
components analysis does not discriminate between shared and unique
variance. When the factors are uncorrelated and communalities are
moderate, it can produce inflated values of variance accounted for by the
components (Gorsuch, 1997; McArdle, 1990). Since factor analysis only
analyzes shared variance, factor analysis should yield the same general
solution (all other things being equal) while also avoiding the illegitimate
inflation of variance estimates.

Most authors agree that there is little compelling reason to choose PCA
over other extraction methods (Bentler & Kano, 1990; Floyd & Widaman,
1995; Ford et al., 1986; Gorsuch, 1990; Loehlin, 1990; MacCallum &
Tucker, 1991; Mulaik, 1990; Snook & Gorsuch, 1989; Widaman, 1990,
1993), while others note that there is almost no difference between principal
components and factor analysis or that PCA is preferable (Arrindell & van
der Ende, 1985; Guadagnoli & Velicer, 1988; Schonemann, 1990; Steiger,
1990; Velicer & Jackson, 1990). They are, however, in the minority, and if
one is to seek best practices, one is hard-pressed to conclude PCA is ever a
best practice.



Alternatives to PCA. Depending on the statistical software available, you
may have six or more extraction methods to choose from. They often
include unweighted least squares, generalized least squares, maximum
likelihood, principal axis factoring, alpha factoring, and image factoring.
Information on the relative strengths and weaknesses of these techniques is
scarce, often only available in obscure references. To complicate matters
further, the same extraction technique may be called by different names in
different texts or software packages. This probably explains the popularity
of PCA—not only is it the default, but it is also familiar.

Fabrigar, Wegener, MacCallum, and Strahan (1999) argued that if data
are relatively normally distributed, maximum likelihood is the best
extraction technique. If the assumption of multivariate normality is severely
violated, they recommend one of the principal factor methods; in SPSS, this
procedure is called principal axis factors. Other authors have argued that in
specialized cases, or for particular applications, other extraction techniques
(e.g., alpha extraction) are most appropriate, but the evidence of advantage
is slim. In general, maximum likelihood (ML) or PAF will give you the best
results, depending on whether your data are generally normally distributed
or significantly nonnormal, respectively.

How Many Factors Do I Have?

After extraction, the researcher must decide how many factors to retain
for rotation. Both overextraction and underextraction of factors retained for
rotation can have deleterious effects on the results. The default in most
statistical software packages is the Kaiser criterion, despite the consensus in
the literature that this is probably the least accurate method for selecting the
number of factors to retain (e.g., Velicer & Jackson, 1990). In Monte Carlo
analyses, we tested this assertion (via methodology described below); 36%
of our samples retained too many factors using this criterion. Alternate tests
for factor retention include the scree test, Velicer’s minimum average partial
(MAP) criteria, and parallel analysis (e.g., Velicer & Jackson, 1990). The
latter two methods are accurate and easy to use and can be calculated by
hand or via specialty software (particularly appealing is the relatively recent
FACTOR software, available from http://psico.fcep.urv.es/utilitats/factor/
and described in Lorenzo-Seva & Ferrando, 2006). The scree test is also
generally considered superior to the Kaiser criterion.

http://psico.fcep.urv.es/utilitats/factor/


The scree test involves examining the graph of the eigenvalues (available
via every software package) and looking for the natural bend or “elbow” in
the data where the slope of the curve changes. The number of data points
above the “break” (i.e., not including the point at which the break occurs) is
usually the number of factors to retain, although it can be unclear if there
are data points clustered together near the bend. This can be tested simply
by running multiple factor analyses and setting the number of factors to
retain manually—once at the projected number based on the a priori factor
structure, again at the number of factors suggested by the scree test if it is
different from the predicted number, and then at numbers above and below
those numbers. For example, if the predicted number of factors is six and
the scree test suggests five, then run the data four times, setting the number
of factors extracted at four, five, six, and seven. After rotation (see below
for rotation criteria), compare the item loading tables; the one with the
factor structure that is conceptually and empirically most sensible—item
loadings above. 30, no or few item crossloadings, no factors with fewer
than three items—has the best fit to the data. If all loading tables look
messy or uninterpretable, then there may be a problem with the data that
cannot be resolved by manipulating the number of factors retained.
Sometimes dropping problematic items (ones that are low loading,
crossloading, or freestanding) and rerunning the analysis can solve the
problem, but the researcher has to consider if doing so compromises the
integrity of the data.

What Is Rotation and How Do I Decide What Method to Use?

The goal of rotation is to simplify and clarify the data structure. Rotation
cannot improve the basic aspects of the analysis, such as the amount of
variance extracted from the items (specifically, every rotation will work
with the same variance).

As with extraction, there are many choices. As noted above, varimax is
the most common choice. Varimax, quartimax, and equamax are commonly
available orthogonal methods of rotation; direct oblimin, quartimin, and
promax are oblique. Orthogonal rotations produce factors that are
uncorrelated (i.e., factor intercorrelations are constrained to be exactly r =
.00); oblique methods allow the factors to correlate. Conventional wisdom
advises researchers to use orthogonal rotation because it produces more



easily interpretable results, but this is a flawed argument. In the social
sciences, we generally expect some correlation among factors, particularly
scales that reside within the same instrument or questionnaire, regardless of
the intentions of the researcher to produce uncorrelated scales (i.e., shared
method variance will generally produce nonzero correlations). Therefore,
using orthogonal rotation results in a loss of valuable information (and
reduced generalizability) if the factors are really correlated, and oblique
rotation should theoretically render a more accurate and perhaps more
reproducible solution. Furthermore, in the unlikely event that researchers
manage to produce truly uncorrelated factors, orthogonal and oblique
rotation produce nearly identical results, leaving oblique rotation a very
low-risk, potentially high-benefit choice.

Oblique rotation output is only slightly more complex than orthogonal
rotation output. In SPSS output, the rotated factor matrix is interpreted after
orthogonal rotation; when using oblique rotation, the pattern matrix is
examined for factor/item loadings, and the factor correlation matrix reveals
any correlation between the factors. The substantive interpretations are
essentially the same.

There is no widely preferred method of oblique rotation; all tend to
produce similar results (Fabrigar et al., 1999), and it is fine to use the
default delta (0) or kappa (4) values in the software packages. Manipulating
delta or kappa changes the amount the rotation procedure “allows” the
factors to correlate, and this appears to introduce unnecessary complexity
for interpretation of results.

Why Size Matters

Larger samples are better than smaller samples (all other things being
equal) because larger samples tend to minimize the probability of errors,
maximize the accuracy of population estimates, and increase the
generalizability of the results. Unfortunately, there are few sample size
guidelines for researchers using EFA or PCA, and many of these have
minimal empirical evidence (e.g., Guadagnoli & Velicer, 1988).

This is problematic because statistical procedures that create optimized
linear combinations of variables (e.g., multiple regression, canonical
correlation, and EFA) tend to “overfit” the data. This means that these
procedures optimize the fit of the model to the given data, yet no sample is



perfectly reflective of the population. Thus, this overfitting can result in
erroneous conclusions if models fit to one data set are applied to others. In
multiple regression, this manifests itself as inflated R2 (shrinkage) and
misestimated variable regression coefficients (Cohen & Cohen, 1983, p.
106). In EFA, this “overfitting” can result in erroneous conclusions in
several ways, including the extraction of erroneous factors or
misassignment of items to factors (e.g., Tabachnick & Fidell, 2001, p. 588;
this is also discussed in Chapter 20).

The ultimate concern is error. At the end of the analysis, if one has too
small a sample, errors of inference can easily occur, particularly with
techniques such as EFA.

Published Sample Size Guidelines. In multiple regression texts, some
authors (e.g., Pedhazur, 1997, p. 207) suggest subject-to-variable ratios of
15:1 or 30:1 when generalization is critical. But there are few explicit
guidelines such as this for EFA (e.g., Baggaley, 1983). Two different
approaches have been taken: suggesting a minimum total sample size or
examining the ratio of subjects to variables, as in multiple regression.

Comfrey and Lee (1992) suggest that “the adequacy of sample size might
be evaluated very roughly on the following scale: 50—very poor; 100—
poor; 200—fair; 300—good; 500— very good; 1000 or more—excellent”
(p. 217). Guadagnoli and Velicer (1988) review several studies that
conclude that absolute minimum sample sizes, rather than subject to item
ratios, are more relevant. These studies range in their recommendations
from an N of 50 (Barrett & Kline, 1981) to 400 (Aleamoni, 1976). We
should note that some of these recommendations are clearly ridiculous, as
they could result in analyses estimating far more parameters than available
subjects.

The Case for Ratios. There are few in the multiple regression camp who
would argue that total N is a better guideline than the ratio of subjects to
variables, yet individuals focusing on EFA occasionally vehemently defend
this position. It is interesting precisely because the general goal for both
analyses is the same: to take individual variables and create optimally
weighted linear composites that will generalize to other samples or to the
population. While the mathematics and procedures differ in their details, the
essence and the pitfalls are the same. Both EFA and multiple regression



experience shrinkage and the overfitting of the estimates to the data (Bobko
& Schemmer, 1984), and both suffer from lack of generalizability and
inflated error rates when sample size is too small.

We find absolute sample sizes simplistic given the range of complexity
that scales can exhibit—each scale differs in the number of factors or
components, the number of items on each factor, the magnitude of the item-
factor correlations, and the correlation between factors, for example. This
has led some authors to focus on the ratio of subjects to items or, more
recently, the ratio of subjects to parameters (as each item will have a
loading for each factor or component extracted), as authors do with
regression, rather than absolute sample size when discussing guidelines
concerning EFA.

Gorsuch (1983, p. 332) and Hatcher (1994, p. 73) recommend a minimum
subject-to-item ratio of at least 5:1 in EFA, but they also have stringent
guidelines for when this ratio is acceptable, and they both note that higher
ratios are generally better. There is a widely cited rule of thumb from
Nunnally (1978, p. 421) that the subject-to-item ratio for exploratory factor
analysis should be at least 10:1, but that recommendation was not supported
by empirical research. There is no one ratio that will work in all cases; the
number of items per factor and communalities and item loading magnitudes
can make any particular ratio overkill or hopelessly insufficient
(MacCallum, Widaman, Preacher, & Hong, 2001).

Previous Research on Ratios. Unfortunately, much of the literature that has
attempted to address this issue, particularly the studies attempting to
dismiss subject-to-item ratios, use flawed data. We will purposely not cite
studies here to protect the guilty, but consider it sufficient to say that many
of these studies either tend to use highly restricted ranges of subject-to-item
ratios or fail to adequately control for or vary other confounding variables
(e.g., factor loadings, number of items per scale or per factor/component) or
restricted range of N. Some of these studies purporting to address the
subject-to-item ratio fail to actually test the subject-to-item ratio in their
analyses.

Thus, researchers seeking guidance concerning sufficient sample size in
EFA are left between two entrenched camps—those arguing for looking at
total sample size and those looking at ratios. This is unfortunate because
both probably matter in some sense, and ignoring either one can have the



same result: errors of inference. Failure to have a representative sample of
sufficient size results in unstable loadings (Cliff, 1970); random, non-
replicable factors (Aleamoni, 1976; Humphreys, Ilgen, McGrath, &
Montanelli, 1969); and lack of generalizability to the population
(MacCallum, Widaman, Zhang, & Hong, 1999).

Sample Size in Practice. If one were to take either set of guidelines (e.g.,
10:1 ratio or a minimum N of 400–500) as reasonable, a casual perusal of
the published literature shows that a large portion of studies come up short.
One can easily find articles using EFA or (more commonly) PCA based on
samples with fewer subjects than items or parameters estimated that
nevertheless draw substantive conclusions based on these questionable
analyses. Many more have hopelessly insufficient samples by either
guideline.

For example, Ford et al. (1986) examined common practice in factor
analysis in industrial and organizational psychology during the 10-year
period from 1974 to 1984. They found that out of 152 studies using EFA or
PCA, 27.3% had a subject-to-item ratio of less than 5:1, and 56% had a
ratio of less than 10:1. This matches the perception that readers of social
science journals get, which is that often samples are too small for the
analyses to be stable or generalizable.

To summarize current practices in the social sciences literature, we
sampled from 2 years’ (2002, 2003) worth of articles archived in PsycINFO
that both reported some form of EFA and listed both the number of subjects
and the number of items analyzed (N = 303). We decided that the best
method for standardizing our sample size data was via the subject-to-item
ratio since we needed a criterion for a reasonably direct comparison to our
own data analysis. The results of this survey are summarized in Table 6.1. A
large percentage of researchers report factor analyses using relatively small
samples. In a majority of the studies (62.9%), researchers performed
analyses with subject-to-item ratios of 10:1 or less. A surprisingly high
proportion (almost one sixth) reported factor analyses based on subject-to-
item ratios of only 2:1 or less (note that in this case, there would be more
parameters estimated than subjects if more than one factor is extracted).
Given the stakes and the empirical evidence on the consequences of
insufficient sample size, this is not exactly a desirable state of affairs.



Table 6.1 Subject-to-Item Ratios in the Psychology Literature, 2002–2003

A Reanalysis of Guadagnoli and Velicer (1988): Compelling
Evidence That Size Matters Two Different Ways

This section focuses on one particularly interesting and relatively well-
executed study on this issue—that of Guadagnoli and Velicer (1988). In this
study, the authors used Monte Carlo methods to examine the effects of
number of factors (3, 6, 9, 18), the number of variables (36, 72, 108, and
144), average item loadings (.40, .60, or .80), and number of subjects (Ns of
50, 100, 150, 200, 300, 500, and 1,000) on the stability of factor patterns in
EFA. In these data, each item loaded on only one factor, all items had
identical factor loadings, and each factor contained an equal number of
variables. This study represents one of the few studies to manipulate all of
these important aspects across the range of variation seen in the literature
(with two possible exceptions: First, people often have fewer than 36 items
in a scale, and second, the factor loading patterns are rarely as clear and
homogeneous as in these data).

Guadagnoli and Velicer’s (1988) study was also interesting in that they
used several different high-quality fit/agreement indices. Equally interesting
is the authors’ strong assertion that total sample size is critical, although
they never actually operationalize the subject-to-item ratio or test whether
total N is a better predictor of important outcomes than the subject-to-item
ratio, although given their data, it was possible to do so. The following
analyses directly examine competing claims regarding sample size: whether
overall sample size or the subject-to-item ratio uniquely contributes to the
“goodness” of outcomes in PCA, beyond the contributions of other
important variables, such as the number of variables or components and
average item loading that have been identified as important in the literature.



To do this, we will examine the following variables, included by the authors
in the original article:
 

Number of factors. The number of factors examined included 3, 6, 9, and 18.
Loadings. The authors used loadings of .40, .60, and .80. It should be noted that in these data
sets, items not intended to load on a component were assigned a loading of 0.00, making these
pattern matrices artificially clear.
Number of items. The number of items in the analyses included 36, 72, 108, and 144.
Number of subjects. The number of subjects in the analyses included 50, 100, 150, 200, 300,
500, and 1,000. Note, however, that certain cases were omitted or altered by the authors, such as
when N was less than the number of items in the analysis.
Pattern comparison (g2). In order to compare sample factor patterns with population factor
patterns, the average of the squared differences between the two matrices was computed.
Furthermore, the authors identified g2 = .01 as the maximum value that indicates acceptable fit.
Pattern agreement (kappa). Salient variables (loadings > .40) and nonsalient variables (loadings
< .40) were identified and noted in decision tables. These decision tables were then compared
with the population decision table via the kappa statistic. As kappa approaches 1.0, the two
matrices become more in agreement with each other. A zero indicates random chance level of
agreement, and negative kappas indicate poorer than chance agreement.
Type I errors. The authors calculated the percentage of variables that should not have been
considered salient but were in a particular data set, indicating Type I error classifications.
Type II errors. The authors also calculated the percentage of variables that should have been
considered salient but were not found to be so, indicating Type II error classifications.

For our purposes, we calculated the following variables based on the
information obtained from the data set:
 

Subject-to-item ratio. The ratio of the number of subjects per item in a particular analysis was
calculated from the information given.
Variable-to-factor ratio. As some authors have argued that the number of variables per factor is
important (see Guadagnoli & Velicer, 1988), we included this variable in analyses.
Extra matrices. In describing their data generation procedures, Guadagnoli and Velicer (1988)
indicated that under certain conditions, certain data sets produced errors of inference regarding
the number of factors extracted from the data. The authors discarded these data matrices and
replaced them until 5 good matrices for a particular set of criteria were obtained. They noted
cases where up to 10 additional matrices were required before 5 good matrices were obtained
and cases where 10 or more matrices were required (a phenomenally high error rate). From an
applied research point of view, this could be viewed as an important outcome, where a
researcher would find results that differ radically from the population, and thus should be
examined as a variable of interest. Thus, this variable was coded into the data set for the current
analyses as 0 (no extra matrices), 1 (up to 10 extra matrices required), or 2 (more than 10 extra
matrices required), as that is how this information was reported.
Correct factor structure. What many people are looking for when they do an EFA is the pattern
—what variables “load” on what factors. Researchers are generally less interested in the
absolute magnitude of the loading (above a certain “salient” level—that is a source of debate in
and of itself) than in which variable goes with which factor. Thus, we included information in
our data set that indicated when this had or had not occurred, based on the number of Type I and
Type II errors. Matrices that had no errors were considered “correct,” while matrices with errors



were considered not correct. Some might think this a strict criterion, and they are correct.
However, the presence of these errors can significantly alter the interpretation of an EFA. In this
study, 34.3% of the cases failed to faithfully replicate the pattern found in the population, which
is a much higher error rate than social scientists generally are willing to accept.

Note: The authors generated five samples for each of the 205 valid
conditions described. The average g2, kappa, Type I error, and Type II error
for the five samples in each condition were reported in tables. Thus, these
results represent analyses of the data aggregated across five samples in each
condition.

Main Effects. With the exception of the newly calculated variables
described above, we attempted to faithfully reproduce the authors’ analyses.
We performed multiple regression analyses on the dependent variables (g2,
kappa, Type I error, and Type II error), a binomial logistic multiple
regression predicting correct factor structure, and a multinomial logistic
regression predicting the presence of extra matrices. As in the original
article, we examined all possible two-way interactions. The difference is
that we now simultaneously can examine total N and the subject-to-item
ratio for their unique and joint contributions to the goodness of EFA
outcomes.

The results of these analyses are presented in Tables 6.2 to 6.4. As
Table 6.2 indicates, the number of factors was not a significant predictor of
any dependent variable once other variables were controlled for. As
previous research has reported, item loading magnitude accounted for
significant unique variance in the expected direction in all but one case and,
in most cases, was the strongest unique predictor of congruence between
sample and population. Specifically, as item loadings increased, average
squared discrepancy between population and sample results (g2) decreased,
agreement (kappa) increased, Type II errors decreased, and the odds of
getting the correct component pattern increased dramatically. Unfortunately,
the magnitude of item loadings is not realistically within the control of the
researcher.

Contrary to other studies, neither the absolute number of variables nor
the overall N had a significant unique effect when all other variables were
held constant (except for the relationship between N and the odds of a Type
II error). The lack of findings for these two variables might be directly
attributable to the presence of the ratios of subject to item and variable to



component, which are likely collinear. To test this hypothesis, a blockwise
multiple regression was performed entering number of components,
loadings, number of variables, and N in Block 1, as well as the subject-to-
item ratio and variable-to-factor ratio in Block 2. Number of variables was a
significant predictor in two of the five analyses where the two ratio
variables were not in the equation. Total N was significant in all five
analyses until the ratio variables were entered into the equation.

The ratio of subjects to items had a significant and substantial influence
on three outcomes in the expected direction. As the subject-to-item ratio
increased, the squared discrepancy between population and sample matrices
decreased, the odds of a Type I error decreased, and the odds of getting a
correct factor pattern matrix increased. Finally, the ratio of variables to
factors had no unique effect.

Table 6.2 Predictors of Component Pattern Stability: Main Effects

The multinomial logistic regression predicting the need for extra matrices
did not identify any significant predictors, nor did a binomial logistic
regression analysis predicting the need for any extra matrices or none.
Whatever the reason for this lack of results, it is clear that this outcome is
related to the subject-to-item ratio, the number of subjects, and the ratio of



variables to factors (all p < .001 when analyzed individually), as Table 6.3
shows. Note that this event only occurred when loadings were relatively
weak (.40), and thus loading magnitude was held constant.

Interactions

To test for interaction effects, a blockwise multiple regression analysis
was performed entering all main effects in Block 1 and all interactions in
Block 2. In all cases, when Block 2 was entered, there was a significant
change in R and R2 (all p < .0001).

As the results in Table 6.4 show, there were several interesting
interactions present in these data. There were no significant interactions
involving the ratio of variables to factors.

Table 6.3 Relationship Between the Number of Extra Matrices Drawn and Subject-to-
Item Ratio

Table 6.4 Predictors of Factor Pattern Stability: Interactions



Table 6.5 The Effects of the Subject-to-Item Ratio on Exploratory Factor Analysis

 
Number of factors and factor loadings. There was a significant interaction between the number
of factors extracted and the magnitude of factor loadings. The nature of the interaction indicated
that more factors tended to inflate g2 when loadings were relatively weak but had less of an
effect when the loadings were very strong.
Factor loadings and the number of variables. This interaction indicated that, while stronger
factor loadings are related to lower g2 and Type I error rates, loadings had less of an effect as the
number of variables increased.
Factor loadings and the number of subjects. This interaction indicated that, while stronger
factor loadings are related to higher kappas and lower Type II error rates, loadings had less of an
effect as the number of subjects increased.
Factor loadings and the ratio of subjects to variables. This interaction indicated that, while
stronger factor loadings were generally related to lower g2 and Type I error rates, loadings had
less of an effect as the ratio of subjects to variables increased.
Number of variables and the number of subjects. While increasing the number of variables was
generally related to more favorable outcomes (lower g2, higher kappa, and lower Type I error
rates), as the number of subjects increased, the effect of the number of variables decreased.
Number of subjects and the ratio of subjects to variables. While increasing ratios of subjects to
variables was generally related to more favorable outcomes (lower g2, higher kappa, and lower



Type I and Type II error rates), as N increased, this effect became less important.

DISCUSSION

While the original authors of this study concluded that the only two
important factors in determining the correspondence between an EFA and
the population were the raw number of subjects and the magnitude of the
factor loadings, the examination of the ratio of subjects to variables and
variables to factors and their various interactions tell a slightly more subtle
story.

First, while the magnitude of factor loadings has a large influence on
goodness of the analyses, the raw number of subjects had a significant
influence on the average percentage of Type II errors. The ratio of subjects
to variables had a significant unique effect on g2, Type I error rates, and
obtaining the correct loading pattern. In looking at Table 6.2, it is difficult
to dismiss factor loadings and the ratio of subjects to variables as the most
consistent predictors of these variables. Equally notable was the relative
lack of the unique impact of N once the ratio of subject to variables was
accounted for.

These main effects were in some ways qualified by interactions. For
example, the ratio of subjects to variables appeared to have a larger effect
when the raw number of subjects was lower, the number of subjects
appeared to have less of an effect when there were fewer variables in the
analysis, and the number of variables, the number of subjects, and the
subject-to-variable ratio had larger effects when the factor loadings were
smaller.

The interaction of N and the subject-to-variable ratio was particularly
interesting. Although the ratio of subject to variable is an important
predictor of the goodness of EFA, it appears that as total N increases, this
ratio becomes less important (the converse is also true—as the subject-to-
item ratio increases, total N becomes less important). In some sense, then,
authors from both sides of this debate are correct—total N matters (but
more so when the subject-to-item ratio is low), and the ratio of subjects to
items matters (but more so when N is relatively low), and if you have a
large N or large ratio, your results will be more reliable. It should be clear
from both the main effect and interaction analyses that it is difficult to



dismiss any of these factors in discussing the reproducibility of population
values and patterns in sample analyses.

WHY SIZE MATTERS, PART II

While the data from Guadagnoli and Velicer (1988) are illuminating, one
frustration is the unrealistically clean nature of the data. Real data are
messier than that, and we wanted to replicate and extend the findings from
these artificial data with real data. Using data from the National Education
Longitudinal Survey defining the “population” as the entire sample of
almost 25,000 students, we drew samples (with replacement between
samplings), extracting 20 samples of sizes ranging from 2:1, 5:1, 10:1, and
20:1 subject-to-item ratios (creating sample sizes of N = 26, 65, 130, and
260, respectively). The samples drawn from the population data were
analyzed using maximum likelihood extraction with direct oblimin rotation,
as best practices would indicate. For each sample, the magnitude of the
eigenvalues, the number of eigenvalues greater than 1.0, the factor loadings
of the individual items, and the number of items incorrectly loading on a
factor were recorded. In order to assess accuracy as a function of sample
size, we computed average error in eigenvalues and average error in factor
loadings. We also recorded aberrations such as Heywood cases (occasions
when a loading exceeds 1.0) and instances of failure for ML to converge on
a solution after 250 iterations.

Finally, a global assessment of the correctness or incorrectness of the
factor structure was made. If a factor analysis for a particular sample
produced three factors, and the items loaded on the correct factors (all five
parent items loaded together on a single factor, all language items loaded
together on a single factor, all math items loaded together on a single
factor), that analysis was considered to have produced the correct factor
structure (i.e., a researcher drawing that sample and performing that
analysis would draw the correct conclusions regarding the underlying factor
structure for those items). If a factor analysis produced an incorrect number
of factors with eigenvalues greater than 1.0 (some produced up to 5), or if
one or more items failed to load on the appropriate factor, that analysis was
considered to have produced an incorrect factor structure (i.e., a researcher



drawing that sample and performing that analysis would not draw the
correct conclusions regarding the underlying factor structure).

Sample Size. In order to examine how sample size affected the likelihood of
errors of inference regarding factor structure of this scale, an analysis of
variance was performed, examining the number of samples producing
correct factor structures as a function of the sample size. The results of this
analysis are presented in Table 6.5. As expected, larger samples tended to
produce solutions that were more accurate. Only 10% of samples in the
smallest (2:1) sample produced correct solutions (identical to the population
parameters), while 70% in the largest (20:1) produced correct solutions.
Furthermore, the number of misclassified items was also significantly
affected by sample size. Almost 2 of 13 items on average were
misclassified on the wrong factor in the smallest samples, whereas just over
1 item in every two analyses was misclassified in the largest samples.
Finally, two indicators of extreme trouble—the presence of Heywood cases
(factor loadings greater than 1.0, an impossible outcome) or failure to
converge—were both exclusively observed in the smaller samples, with
almost one third of analyses in the smallest sample size category failing to
produce a solution.

What is particularly illuminating is to go back to Table 6.1, noting that
while the majority of recent papers have subject-to-item ratios in the lower
ranges, the error rates for these ranges are extraordinarily high—much
higher than the α = .05 criterion we are used to as a Type I error rate.
Specifically, approximately two thirds of published EFA studies have
subject-to-item ratios of less than 10:1, while at the same time this ratio is
associated with an error rate of approximately 40%.

CONCLUSION

Conventional wisdom states that even though there are many options for
executing the steps of EFA, the actual differences between them are small,
so it does not really matter which methods the practitioner chooses. We
disagree and hope the evidence presented herein is persuasive. Exploratory
factor analysis is a complex procedure, apparently a highly error-prone



procedure as well, and this situation is exacerbated by the lack of inferential
statistics and the imperfections of “real-world” data we all face.

While principal components with varimax rotation and the Kaiser
criterion are the norm, they are not optimal either conceptually or
empirically, particularly when data do not meet assumptions, as is often the
case in the social sciences. We believe that the data and literature support
the argument that optimal results (i.e., results that will generalize to other
samples and that reflect the nature of the population) are more likely
achieved via use of a true-factor analysis extraction method (we prefer
maximum likelihood), oblique rotation (such as direct oblimin), and scree
plots plus multiple test runs for information on how many meaningful
factors might be in a data set. As for sample size, even at relatively large
sample sizes, EFA is an error-prone procedure. Our analyses demonstrate
that at a 20:1 subject-to-item ratio, there are error rates well above the field
standard α = .05 level. The most replicable results are obtained by using
large samples (unless you have unusually strong data as discussed above).

This raises another point that bears discussion: By nature and design,
EFA is exploratory. There are usually no inferential statistics available to
help with decision making. As implemented in popular statistical packages,
it should be used only for exploring data, not hypothesis or theory testing,
nor is it suited to “validation” of instruments. It is, as our analyses show, an
error-prone procedure even with very large samples and optimal data. We
have seen many cases where researchers used EFA when they should have
used CFA. Once an instrument has been developed using EFA and other
techniques, it is time to move to CFA to answer questions such as, “Does an
instrument have the same structure across certain population subgroups?”
We would strongly caution researchers against drawing substantive
conclusions based on exploratory analyses. CFA, as well as other latent
variable modeling techniques, can allow researchers to test hypotheses via
inferential techniques and can provide more informative analytic options.

The exception to the above rule is the freely available FACTOR software
(presented in Lorenzo-Seva & Ferrando, 2006) that implements many
progressive elements of EFA such as fit indices and hypothesis testing,
interesting extraction and rotation options, and progressive methodologies
for determining the number of factors, including a high-quality parallel
analysis option. It is an interesting paradox that the more one improves
EFA, the more it begins to resemble CFA. That is not necessarily a bad



thing, as CFA is a powerful and useful procedure. But as lines blur between
exploratory and confirmatory procedures, we will have to discuss and
debate whether EFA can be considered a best practice and, if so, under what
conditions.

In conclusion, researchers using large samples and making informed
choices from the options available for data analysis are the ones most likely
to accomplish their goal: to come to conclusions that will generalize beyond
a particular sample either to another sample or to the population (or a
population) of interest. To do less is to arrive at conclusions that are
unlikely to be of any use or interest beyond that sample and that analysis.

NOTE

1. Although some procedures provide inferential statistics (e.g., maximum likelihood extraction),
they are unevenly implemented and are heavily influenced by sample size, limiting their
effectiveness substantially.
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We come finally, however, to the relation of the ideal theory to real
world, or “real” probability…. To someone who wants
[applications, a consistent mathematician] would say that the ideal
system runs parallel to the usual theory: “If this is what you want,
try it: it is not my business to justify application of the system; that
can only be done by philosophizing; I am a mathematician.” In
practice he is apt to say: “try this; if it works that will justify it.”
But now he is not merely philosophizing; he is committing the
characteristic fallacy. Inductive experience that the system works is
not evidence.

Littlewood (1953, p. 73)

PROBABILITY AS A MODEL SYSTEM

For millennia, Euclidean geometry was a statement of fact about the world
order. Only in the 19th century did it come to be recognized instead as a
model system—an “ideal theory”— that worked exceedingly well when
applied to many parts of the real world. It then stepped down from a truth
about the world to its current place as first among equals as models of the
world—the most useful of a cohort of geometries, each of differential
service in particular cases, on spherical surfaces and relativistic universes
and fractal percolates. In like manner, probability theory was born as an
explanation of the contingent world—“‘real’ probability”— and, with the
work of Kolmogorov among many others, it matured as a coherent model



system, inheriting most features of the earlier versions of the probability
calculus.

The abstraction of model systems from the world permits their
development as coherent, clear, and concise logics. But the abstraction has
another legacy: the eventual need for scientists to reconnect the model
system to the empirical world. That such rapprochement is even possible is
amazing; it stimulated Wigner’s well-known allusion to “the unreasonable
effectiveness of mathematics in describing the world.” Realizing such
“unreasonably effective” descriptions, however, can present reasonably
formidable difficulties—difficulties that are sometimes overcome only by
fiat, as noted by Littlewood, a mathematician of no mean ability, and M.
Kline (1980), a scholar of comparable acuity. The toolbox that helps us
apply the “ideal theory” of probability to scientific questions is called
inferential statistics. These tools are being continually sharpened, with new
designs replacing old.

Intellectual ontogeny recapitulates its cultural phylogeny. Just as we must
outgrow naive physics, we must outgrow naive statistics. The former is an
easier transition than the latter. Not only must we as students of contingency
deal with the gamblers’ fallacies and exchange paradoxes; we must also
cope with the academics’ fallacies and statistical paradoxes that are visited
upon us as idols of our theater, the university classroom. The first step, one
already taken by most readers of this volume, is to recognize that we deal
with model systems, some more useful than others, not with truths about
real things. The second step is to understand the character of the most
relevant tools for their application, their strengths and weaknesses, and
attempt to determine in which cases their marriage to data is one of mere
convenience and in which it is blessed with a deeper, Wignerian resonance.
That step requires us to remain appreciative but critical craftsmen. It
requires us to look through the halo of mathematics that surrounds all
statistical inference to assess the goodness of fit between tool and task, to
ask of each statistical technique whether it gives us leverage or just adds
decoration.

This chapter briefly reviews—briefly, because there are so many good
alternative sources (e.g., Harlow, Mulaik, & Steiger, 1997; R. B. Kline,
2004)—the most basic statistical technique we use, null hypothesis
statistical testing (NHST) and its limits. It then describes an alternative
statistic, prep, that predicts replicability. We remain mindful of Littlewood’s



(1953) observation that “inductive experience that the system works is not
evidence [that it is true].” But then Littlewood was a mathematician, not a
scientist. The search for truth about parameters has often befuddled the
progress of science, which recognizes simpler goals as well: to understand
and predict. If we “try [a tool, and] it works,” that can be very good news
and may constitute a significant advance over what has been. So, try this
new tool, and see if it works for your inferential problems.

Connecting Probability to Data

You are faced with two columns of numbers, data collected from two
groups of subjects. What do you want to know? Not, of course, “whether
there’s a significant difference between them.” If they are identical, you
would have looked for the clerical error. If they are different, they are
different. You can review them 100 times, and they will continue to be
different, hopefully 100 times; p = 1.0. “Significantly different,” you might
emphasize, irritated. But what does that mean? “That the probability that
they would be so different by chance is less than 5%,” you recite. OK.
Progress. Now we just need clarification of probability, so, and chance.

Probability. Probability theory is a deductive calculus. One starts with
probability generators, such as coins or cards or dice, and makes deductions
about their behavior. The premises are precise: coins with a probability of
heads of .50, perfectly balanced dice, perfectly shuffled cards. Then elegant
theorems solve problems such as “Given an unbiased coin, what is the
probability of flipping 6 heads in a row?” But scientists are never given
such ideal objects. Their modal inferences are inductions, not deductions:
An informant gives them a series of outcomes from flipping a coin that
landed heads six times in a row, and they must determine what probability
of heads should be assigned to the coin. They can solve this mystery either
as Dr. Watson or as Mr. Holmes in the cherished tale, “The Case of the
Hypothesis That Had No Teeth.” As you well remember, Dr. Watson
studiously purged his mind of all prior biases and opined that the
probability of the coin being fair was manifestly (½)6, < .025 and, further,
that the best estimate of the probability of a heads was 1 – 2–6. Mr. Holmes
stuffed his pipe; examined the coin; spun it; asked about its origin, how the
coin was released and caught, and how many sequences were required to



get that run of six; and then inquired about the bank account of the
informant and his recent associates. Dr. Watson objected that that was going
beyond the information given; in any case, how could one ever combine all
those diverse clues into a probability statement that was not intrinsically
subjective? “Elementary,” Mr. Holmes observed, “probability theory this is
not, my dear Watson; nor is it deduction. When I infer a state of nature from
evidence, the more evidence the better I infer. My colleague shall explain
how to concatenate evidence in a later chapter of this sage book I saw you
nodding over.”

How do we infer probability from a situation in which there is no
uncertainty—the six heads in a row, last week’s soccer cup, your two
columns of experimental data? There are two root metaphors for
probability: For frequentists, probability is the long-run relative frequency
of an outcome; it does not apply to novel events (no long run) or to
accomplished events (faits accomplis support no probability other than
unity). For Bayesians, probability is the relative odds that an individual
gives to an outcome.

You do not have resources or interest to reconduct your experiment
thousands of times, to estimate the relative frequency of two means being
so different. And even if you did, you’d just be left with a much larger
sample of accomplished data. This seems to eliminate the frequentist
solution. On the other hand, the odds that you give to your outcome will be
different from the odds your reviewers or editor or your significant other
gives to your outcome. This eliminates any unique Bayesian probability.
What next? Just imagine.

Instead of conducting the experiment thousands of times, just imagine
that it has been conducted thousands of times. This is Fisher’s brilliant
solution to the problem of connecting data to the “ideal theory” of
probability. Well then, just how big an effect should we imagine that your
experiment yielded? Here we must temper imagination with discipline: We
must imagine that the experiment never worked—that there was never a
real effect in all those imaginary trials but that the outcomes were
distributed by that rogue called Chance. Next, graph the proportion of
outcomes at various effect sizes to give a sampling distribution. If your
measured outcome happens only rarely among this cohort of no real effects,
you may conclude that it really is not of their type—it does not belong on
the group null bench. It is so deviant, you infer, because more than Chance



was at work—the experimental manipulation was at work! This last
inference is, as we shall see, as common, and commonly sanctioned, as it is
unjustified.

If the thousands-of-hypothetical-trials scenario taxes the computational
resources of your imagination, then imagine instead that the data were
drawn from a large, normally distributed population of data similar to those
of the control group. Increase the power of the test by estimating the
population variance from the variances of both the experimental and control
groups. Then a theoretical sampling distribution, such as the t distribution,
can be directly used to infer how often so deviant an outcome as what you
measured would have happened by chance under repeated sampling. This
set of tactics is the paradigmatic modus operandi for statistical inference. In
modern applications, the theoretical sampling distribution may be replaced
with an empirical one, obtained by Monte Carlo elaboration of the original
empirical distribution function (e.g., Davison & Hinkley, 1997; Mooney &
Duval, 1993).

So in this standard scenario, probability means the long-run relative
frequency that you stipulate in your test of the behavior of an ideal object. It
is against this that you will test your data. Unlike a Bayesian probability, the
parameters tested (e.g., the null hypothesis that the means of the two
populations are equal) are not inferred from data. Indeed, authorities such as
Kyburg (1987) argue that use of Bayesian inverse inference, leading up
from statistics to parameters, undermines all direct inference thereafter,
including NHST.

So. Let us assume your experiment recorded a standardized difference
between the responses of 30 control subjects and 30 experimental subjects
of d = 0.50, from which you calculated a p value of < .05. What does that
mean? Does it mean that the probability of getting a d of 0.50 under the null
is less than 5%? No, because we know a priori that the probability of
getting exactly that value is always very close to zero; in fact, the more
decimal places in your measurements, the closer to zero. That’s true for any
real number you might have recorded, even d = 0.00, which Chance favors.

Again an impasse, but again one that can be solved through imagination
(providing inductive evidence supporting Einstein’s chestnut “Imagination
is more important than knowledge”). To get a probability requires an
interval on the x-axis. We could take one around the observed value: say, d



± 0.05. This would work; as we let the interval shrink toward zero,
comparison with a similar extent around 0 would give us a likelihood
analysis of the null versus the observed (Royall, 1997). Fisher was a
pioneer of likelihood analyses but could not get likelihoods to behave like
probabilities, and so he suggested a different interval on the evidence axis:
He gave the investigator credit for everything more extreme than the
observed statistic (a benefice that amazed and pleased many generations of
young researchers, who might have been told instead, “The null will give
effects up to that size 95% of the time”). So, what so means here is “more
extreme than” what you found, including d scores of 1, 2,… 100…. Don’t
ask why those extents of the x-axis never visited by data should play a role
in the decision; take the p < .05 and run.

Chance. “The probability [relative frequency under random sampling] that
your data would be so [at least that] extreme by chance.” Here chance
means your manipulation did not work and only the null did. How does the
null work? Typically, thanks to the central limit theorem, in ways that result
in a Gaussian distribution of effects (although for other test statistics or
inferences, related distributions such as the t or F are the correct asymptotic
distributions). Two parameters completely determine the Gaussian: its mean
and variance. Under the null, the mean is zero. Its variance? Since we have
no other way to determine it, we use the data you brought with you, the
variance of your control group. Well… the experimental group could also
provide information. Hoping that the experimental operations have not
perturbed that too much, we will pool the information from both sources.
Then chance means that “with no help from my experimental manipulation,
the impotent null could have given rise to the observed difference by the
luck of the draw [of a sample from our hypothetical population].” If it
would happen in less than 5% of the samples we hypothetically take, we
call the data significantly different from that expected under the null.

You knew all that from Stat 101, but it is worth the review. What do you
conclude with a gratifying p < .05? Also as learned in Stat 101, you
conclude that those are improbably extreme data. But what many of us
thought we heard was that we could then reject the null. That, of course, is
simplistic at best, false at worst.



FOUNDATIONAL PROBLEMS WITH STATISTICAL INFERENCE

The Inverse Inference Problem. Assume the probability of the statistic S
given the null (N) is less than a prespecified critical number, p(SIN) < α,
where the null may be a hypothesis such as μE – μC = 0. It does not then
follow that the probability of the null given the statistic, p(NIS), is less than
α. We can get from one to the other, however, via Bayes theorem:

p(NIS) = p(SIN)p(N)/p(S).

By the (prior) probability of the null, p(N), we mean the probability of
the mathematical implication of the null (for instance, that two population
means are equal, μE – μC = 0). That prior must be assigned a value before
looking at the new data (S). By the probability of the statistic, p(S), we
mean its probability under relevant states of the world—in this case, the
probability of the data given that the null is true, plus the probability of the
data given that the null is false: p(S) = p(SIN)p(N) + p(SI~N)(1 – p(N)).By
normalizing the right-hand side of Bayes’s equation, p(S) makes the
posterior probabilities sum to 1. Only in the unlikely case that the prior
probability of the null equals the probability of the statistic, p(N) = p(S),
does p(NIS) = p(SIN). Otherwise, to have any sense of the probability of
the null (and, by implication, of the alternative we favor, that our
manipulation was effective: μE – μC > 0), we must be able to estimate
p(N)/p(S). This is not easy. Even if we could agree on assigning a prior
probability to the null, Bayes would not give us the probability of our
favored hypothesis (unless we defined it broadly as “anything but the
null”). In light of these difficulties, Fisher (1959) made it crystal clear that
we generally cannot get from our p value to any statement about the
probability of the hypotheses. But it was to make exactly such statements
about our hypotheses, with the blessings of statistical rigor, that we attended
all those statistics courses. We were misled, but it was not, we suspect, the
first or last time that happened, which goes some distance to explaining the
conflation of statistics with lies in the public’s mind.

“It is important to remember that [relative frequency] is but one
interpretation that can be given to the formal notion of probability” (Hays,
1963, p. 63); given our inferential imbroglio, we may well wonder if that



interpreter ever spoke the language of science. Neyman and Pearson solved
the problem of inverse inference by emphasizing comparison with an
alternate hypothesis, setting criterial regions into which our statistic would
either fall, or not, and noting that, whereas we have no license to change our
beliefs about the null even if our statistic falls into such a critical (p < α)
region, it would nonetheless be prudent to change our behavior, absent a
change in belief. Like Augustine’s credo quia impossibile, this
tergiversation does solve the problem—but only for those whose faith is
stronger than their reason.

What did we ever do that got us into this mess? We wanted to know if
our manipulation (or someone else’s, perhaps Nature’s, if this was an
observational study) really worked. We wanted to know how much of the
difference between groups was caused by the factor that we used to sort the
numbers into two or more columns. We wanted to know if our results will
replicate or if we are likely to be embarrassed by that most odious of
situations, publication of unreplicable results. Null hypothesis statistical
tests cannot get us from here to there. Let us go back to basics and see if we
cannot find a viable alternate route to some of our valid goals.

DEFINING REPLICATION

Curious, isn’t it, that we have license to use the measured variance (s2) in
estimating a parameter of the population under the null hypothesis (σ2), but
we do not use the measured mean to estimate a parameter? Why evaluate
data with one hand tied behind our back? Assay the following hypothesis
instead: HA: δ = d, where δ is the value of the population effect size, and d
is the effect size you measured in your experiment. But to ask the
probability that this alternative to the null is true seems to be creating a new
logical fallacy: post hoc, ergo hoc. (Gigerenzer [2004] called a similar
solecism “The Feynman Fallacy” because Feynman was so exasperated
when a young colleague asked him to calculate the probability of an
accomplished event.) But we can ask a different, noncircular question, one
that takes advantage of the first two moments of the observed data. What is
the probability that, using the same experimental operations and population
of subjects, another investigator can replicate those results? This can be



computed once we agree on the meaning of replicate. Consider this
definition:

To replicate means to repeat the empirical operations and to record data
that support the original claim.

If the claim is as modest as “This operation works [generates a positive
effect],” then any replication attempt that finds a positive effect could
be deemed a successful replication. Although this may seem a too-
modest threshold for replication, put it in the context of what
traditional significance tests test: In a one-tailed test, 1 – p gives us the
probability that our statistic d has the same sign as the population
parameter (Jones & Tukey, 2000).
If the claim is “This operation generates an effect size of at least dL,”
then only replication attempts that return d ≥ dL count as successful
replications.
If the claim is “This operation generates a significant effect,” then only
replication attempts that return a p < .05 are successful replications.
If the claim is “This operation is essentially worthless, generating
effect sizes less than dU,” then any replication attempt that returned a d
< dU could be deemed a successful replication. One would have to
decide beforehand if a d less than, say, –0.5 was as consistent with the
claim or constituted evidence for a stronger alternative claim, such as
“This operation could backfire.”

In the following, we shall show how to compute such probabilities.

PREDICTING REPLICABILITY RATHER THAN INFERRING PARAMETERS

How. How to estimate these probabilities? The sampling distribution of
effect sizes in replication, p(d2|d1), is required.

Effect size is calculated as



with ME the mean of the experimental group, MC the mean of the control
group, and sp the estimate of the population standard deviation based on the
pooled standard deviations of both groups (see the appendix for more
information). Consider an effect size d = d1 based on a total of n
observations randomly sampled from a population with unknown mean δ
and variance σ2. The effect size d2 for the next m observations constitutes
the datum that we wish to predict based on the original observations:
f(d2|d1). Because d1 provides information about d2, these statistics are not
independent. They are only independent when considered as samples from a
large population whose parameter is δ. Solution proceeds by considering the
joint density of d2 and δ conditional on the primary observations. This is
developed in the appendix, leading to the distribution shown as the flatter
curve in Figure 7.1. In evaluating a claim concerning experimental results,
calculate replicability by integrating that density between the appropriate
limits:

In cases where a positive effect has been claimed, and we stipulate that
the hypothetical replication would have the same power as the
accomplished experiment—everything is done exactly as in the original
experiment—then dL = 0,  This is shown as the gray area of
the predictive distribution on the right in Figure 7.1. If the claim is that the
effect size is greater than d*, the probability of getting supportive evidence
is predicted by prep with dL = d* and dU = ∞. The probability of finding a
significant effect size in replication is given by prep with  Other
claims take other limits.

For convenience in calculation of the standard case, Equation 2 may be
rewritten as

with  estimated by .



The variance of d is

with n = nE + nc. When experimental and control groups are of equal size,
nE = nC, then

and  Predicting the effects in a different-size prospective sample
requires adjusting the variance. These considerations are reviewed in
Killeen (2005a), whose derivation was corrected along the lines of the
appendix by Doros and Geier (2005).

Figure 7.1 The dark area to the right of the observed effect size d1 gives the probability of
finding data more extreme than d1 given the null. The gray area to the right of 0
gives the probability of finding a positive effect in replication (Equation 2). The
figure is reproduced from Killeen (2005a), with permission.

Relation to p. How does the probability of replication compare to traditional
indices of replicability such as p? The p value is the probability of rejecting
the null hypothesis given that the datum, d1, is sampled from a world in
which the null is true. It is shown as the area to the right of d1 in Figure 7.1,
under a normal density centered at 0 and having a variance of  estimated
from  The value of prep for the same data—the probability of finding a
positive effect in replication—is the shaded area to the right of 0 in the



normal curve centered on d1 and having a variance of  estimated from 
 As d1 moves to the right, or as the variance of d1,  decreases, prep will

increase and p decrease in complement. For use in spreadsheets such as
Excel, Cumming (2005) suggested the notation prep =
NORMSDIST([NORMSINV(1 – p)]/√2), where NORMSDIST is the standardized
normal distribution function, and NORMSINV is the normal p-to-z
transformation. Drawn in probability coordinates, the relation between
these two probabilities is transparent: The z scores for prep decrease linearly
with the z-scores for p, zPrep = –kzp, with k= 1/√2.

Advantages of prep over p. Given the affinity between p and prep, why
switch? Indeed, a first reading may give the impression that p is preferable:
Sentences that contain it also contain hypotheses, and those are what
scientists are interested in. Conversely, prep does not give the probability that
your hypothesis is true, or that the null is true, or that one or the other or
both are false. It gives the long-run probability that an exact replication will
support a claim. Both the original and the replicate may work for the wrong
reasons—widdershins sampling errors in both cases. Rational scientists
would prefer to know whether their hypotheses are true or false, not just
whether their data are likely to replicate.

But that knowledge is not granted by statistical inference. Null
hypothesis statistical tests never let us assign probabilities to hypotheses
(Fisher, 1959). This is a manifestation of the unsolved problem of inverse
statistical inference (Cohen, 1994; Killeen, 2005c). Students are
admonished, “Never use the unfortunate expression ‘accept the null
hypothesis’” (Wilkinson & the Task Force on Statistical Inference, 1999, p.
599); without priors on the null, they should also be admonished, “Never
use the equally unfortunate expression ‘reject the null hypothesis.’” One
can make no claims more interesting than “My data are absurdly
improbable under the null,” leaving the implication unsaid. Stipulating the
null keeps its truth value off the table as a conclusion.

A researcher can say, “My hypothesis led me to predict a positive effect
from this manipulation. I found one, and if you repeat my manipulation,
you have a probability of approximately prep of also finding one.” As ever,
the investigator can assert that the manipulation caused the effect, and the
hypothesis that birthed the manipulation was correct, only to the extent all



confounds were eliminated, as other causes may have been more operative
than the ones manipulated; those alternative causes may have been
systematic, or possibly discernable only as “error [sampling] variance.” In
the long run (as n increases), nonetheless, exact replications should succeed
with probability prep. Whereas failure to reject the null is not easily
interpreted, a prep = .85 is just as interpretable as a prep = .95. Other
advantages are discussed in Killeen (2005a), who did not adequately
emphasize that prep, based on a single experiment, is only an estimate of
replication probability (Cumming, 2005; Iverson, Myung, & Karabatsos,
2006). Like confidence intervals and p values, its accuracy depends on just
how representative of the population the original sample happened to be.
Any one estimate of replicability may be off, but in the long run, prep

provides a reliable estimate of replicability. Evidence of this is seen in prep’s
ability to predict the proportion of replications in meta-analyses (Killeen,
2005a).

THE DISTRIBUTION OF P, PREP, AND LOG-LIKELIHOOD RATIOS

In order to compare prep with its cousins, p and the log-likelihood ratio
(LLR), a simulation was conducted to generate an empirical sampling
distribution of effect sizes di. Twenty thousand samples of size n = 60 were
taken from a normal distribution with mean 0.5 and variance  = 4/(60 – 4).
This corresponds to the sampling distribution of differences between the
means of experimental and control groups of 30 observations each, when
the true difference between them is half a standard deviation (δ = 0.5). This
should yield a typical prep = .907 and p = .029. Values of prep, p, and LLR
were calculated, along with the z score transformation of prep,
NORMSINV(prep). As expected, the distribution of prep is negatively skewed
(coefficient of skewness [CS] = –1.60; mean = .859; median = .906; see
Figure 7.2 and Cumming, 2005). This skew has been cited as a fault of prep

(Iverson et al., 2006). However, the distribution of p is even more strongly
skewed (CS = 2.41; mean = .093; median = .031). Even though the means
are biased, however, both cases the median values of the test statistics are
very close to their predicted values. The sampling distribution for the z



scores of prep closely approximated a normal density, having a CS of 0.02.
To aggregate values of prep over studies, it is therefore the z transform of prep

that should be averaged (inversely weighted by the number of observations
in each sample, if those differ).

For comparison, consider the likelihood of the data (di) given that the
parameter equals zero, divided by the likelihood given that the parameter
equals that observed, here 0.5. In the present scenario, its expected value is
the ratio of the ordinate of the normal density at d = 0.5 under the null (with
mean at 0) to that of the density under the alternate (with mean at 0.5). The
natural logarithm of this ratio is the LLR, which is simply computed as –
z2/2. For the present exercise, this is –(.5)2/(4/(60 – 4))/2 = –1.75. The
distribution of LLRs is shown in the right panel of Figure 7.2. The
likelihood ratio is positively skewed (CS = 0.93) and, as visible in Figure
7.2, the LLR is negatively skewed, to about the same degree as prep (CS = –
1.46; mean = –2.25, median = –1.75, just as predicted). Readers may
experiment with these and related distributions at the excellent site
maintained by Cumming (2006).

The Bayes factor is an analogous statistic favored by Bayesians such as
Iverson et al. (2006) and M. D. Lee and Wagenmakers (2005). If the
hypotheses are simple and their prior plausibilities equal, than the Bayes
factor is the likelihood ratio (P. M. Lee, 2004). If these conditions are not
met, then a prior distribution for the parameters must be chosen and then
integrated out (see, e.g., Wagenmakers & Grünwald, 2006). The distribution
of the Bayes factor will depend on the nature of that prior distribution.

REFUTATION AND VINDICATION

Predicting a positive effect of any size in replication may seem too weak a
prediction to merit attention. It is therefore useful to identify two kindred
indices of replicability, the probability of strong support, psup, and the
probability of strong contradictory results, pcon. Let us measure the degree of
support that a real replication gives as its own value of prep. Set some
threshold for calling a result strong, say, p*=.8. Then a replication that
returns a prep > p* is called “strong support,” and one that returns a prep



greater than p* in the wrong direction (i.e., the replication’s prep < 1 – p*) is
called “strong contradiction.” The middling outcomes between these are
called weak support or contradiction depending on their sign. The criteria
for just what constitutes strong support and strong refutation are arbitrary;
we could use p*s of .75 or .8 or .9 or any other percentile. It is easy to
calculate the resulting probabilities of support and refutation:

Figure 7.2 Twenty thousand samples of a normally distributed random variable, with mean
δ = 0.5 and variance σ2 = 4/(60 – 4), yielded these distributions of three test
statistics.

psup = 1 – normsdist[normsinv(p*) – normsinv(prep)];

pcon = 1 – normsdist[normsinv(p*) + normsinv(prep)].

Selected values of these expectations are found in Table 7.1. The first
criterion in that table is p* = .5. This returns the probability that a
replication will have an effect of the same sign. This is obviously just prep.
The probability of a contradiction—an effect of an opposite sign—is the
complement of prep. Consider next the row indexed by prep = .95. This
corresponds to the threshold LLR that Bayesians consider strong evidence,
as well as to a one-tailed critical region for p of .01. The probability of



strong support at a p* = .8 is .789. The probability of a replication retuning
an effect that is significant at p < .05 is given by p* = .88, close to p* = .9.
For prep = .95, this happens about 2/3 of the time.

The probability of bad news—strong contradiction—is also found in
Table 7.1. For prep = .95, p* = .8, it is .006: Fewer than one attempted
replication out of a hundred will go that far in the opposite direction from
the original data. Experiments that yield a prep in excess of .9 are unlikely to
be refuted (on statistical grounds, at least!). Variations in the execution of
replication attempts (e.g., those deriving from changes in the measurement
instruments and experimental or observational context) will inevitably add
realization variance and, to the extent that they do so, will make these
estimates optimistic.

Readers familiar with signal detection theory will immediately see that
effect size d is nothing other than their familiar index of discriminability d′.
The criterion p* is analogous to bias: Changes in p* do not move the
criterion from left to right but move two criteria in and out. The data in
Table 7.1 can be represented as points along receiver operating
characteristics (ROCs), with psup corresponding to hits and pcon to false
alarms. The resulting isosensitivity functions for the first few columns of
Table 7.1 are shown in Figure 7.3, with the criterion p* increasing from .5
to .98 in smaller steps than shown in that table to draw the curves. These are
not the traditional yes/no ROCs, but yes/no/uncertain, with the last category
corresponding to replications that will fall between psup and pcon in strength.

Table 7.1 The Probability That a Result Will Be Replicated or Refuted at Different Levels
of Confidence Given the Strength of the Original Results



Figure 7.3 The probability of strong support (ordinates) and probability of strong
contradiction (abcissae) both increase as the criterion for strong (p*) is reduced
from an austere .98 (lower left origin of curves) to a magnanimous .50. The
parameter is prep and its corresponding z score, d′.

One may also calculate the probability of a nil effect in replication. This
is analogous to the probability of the null. If one takes a nil effect to be one
that falls within, say, 10% of chance (.4 < prep < .6), the probability of a nil
effect in replication when prep = .95 is 5%. This probability may easily be
calculated as  where  corresponds to the probability of
support returned by the lower limit (p* = .4 in the example), and 
corresponds to the probability of support returned by the upper limit (p* =
.6 in the example). For further discussion, see Sanabria and Killeen (2007).

Credible Confidence Intervals. A small but increasing number of editors are
encouraging researchers to report measures of effect size (Cumming &
Finch, 2005). A convenient way to specify the margin of error in effect size
is by bounding it with confidence intervals (CI; see Chapter 17).
Unfortunately, most investigators do not really understand what confidence
intervals mean (Fidler, Thomason, Cumming, Finch, & Leeman, 2004).



This confusion can be remedied by study of Cumming and Finch (2001),
Loftus and Masson (1994), and Thompson (1999), along with the handy
chapters of this volume. An alternate approach provides a more intuitive
measure of the margin of error in data. One such measure is the range over
which a replication will fall with some stipulated probability. A convenient
interval to use is the standard error of the statistic. Approximately half the
replication attempts will fall within ± 1 standard error, centered on the
measured statistic (Cumming, Williams, & Fidler, 2004). I call this kind of
CI a replication interval (RI). Its interpretation is direct, its calculation
routine, and its presentation as error bars hedging the datum unchallenged
(Estes, 1997).

EVIDENCE, BELIEF, AND ACTION

What prior information should be incorporated in the evaluation of a
research claim? If there is a substantial literature in relevant areas, then the
replicability of a new claim can be predicted more accurately by
incorporating that information. For some uses, this is an optimal tactic and
constitutes a running meta-analysis of the relevant literature. The evaluation
of the evidence at hand would then, however, be confounded with the
particular prior information that was engaged to optimize predictions. Other
consumers, with other background information, would then have to
deconvolute the experimental results from those priors. For most audiences,
it seems best to bypass this step, letting the data speak for themselves and
letting the consumers of the results add their own qualification based on
their own sense of the prior results in the area (Killeen, 2005b). This
decision is equivalent to assuming that the prior distribution of the
population effect size is flat and is consistent with some analysts’ advice to
use only likelihood ratios (e.g., Glover & Dixon, 2004; Royall, 1997), not
Bayesian posteriors, thereby eschewing the difficulties in the choice of
priors. Royall (2004) is perhaps the most cogent, noting three questions that
our statistical toolbox can help us address:

1. How should I evaluate this evidence?
2. What should I believe?
3. What should I do?



1. The first question confronts us when data are first assembled. Here,
considerations of the past (priors) and the future (different prospective
populations) confound analysis of the data on the table. Such externals “can
obfuscate formal tests by including information not specifically contained
within the experiment itself” (Maurer, 2004, p. 17). Royall (2004) and
Maurer (2004) argue for an evidential approach using the likelihood ratios.
They eschew the use of priors to convert these into the probability of the
null because this ties the analysis to a reference set that may not be shared
by other interested consumers of the evidence.

2. Belief, however, should take into account prior information, even
information that may be particular to the individual. Each of us carries a
unique reference set with which we update our beliefs in light of evidence.
This is why serious crimes are evaluated by large juries of peers: large, to
accommodate a range of reference sets; peers, to relate those priors to ones
most relevant to the defendant. The transformation of evidence into belief
(concerning a hypothesis or proposition) transforms a public datum into a
personal probability. Shared evaluation of strong evidence will bring those
personal probabilities toward convergence, but they will be identical only
for those with identical reference sets. Savage (1972) took such personal
probabilities to be “the only probability concept essential to science” (p.
56). Royall (2004) and Maurer (2004) disagree. Belief is indeed best
constructed with Bayesian updating and motivates the acceptance or
rejection of scientific theories, but evidence evaluation must be kept
insulated from priors. Once that evaluation is executed, belief adjustment is
natural. But beliefs should concern claims and hypotheses; they should not
contaminate evidence.

3. What we should do depends both on what we believe and what we
value. Decision theory tells us how to combine these factors to determine
the course of action yielding the greatest expected benefit. In particular, the
posterior predictive distribution shown in Figures 7.1 and 7.3 estimate the
probability of different effect sizes in replication. If we can assign utility to
outcomes as a function of their expected effect size, we can determine what
values of d1 fall above a threshold of action. The sigmoid function in Figure
7.4 represents such a utility function. Multiplying the probability of each



effect size in replication by the utility function and summing gives the
expected utility of replicating the original results.

Given a posterior predictive distribution, it is straightforward to construct
a decision theory to guide our action. Winkler (2003) teaches the basics,
and Killeen (2006) applies them to recover traditional practices and extends
them in nontraditional ways. The execution may employ flat priors and
identical prospective populations; it then will guide disposition of the
evidence: whether it be admitted to a corpus or rejected, whether the paper
be published or not. Or the execution may employ informative priors and
may take into consideration the realization variance involved in
generalizing to new prospective populations. It then becomes a pragmatic
guide for action, an optimal tool to guide medical, industrial, and civic
programs.

Figure 7.4 The Gaussian density is the posterior predictive distribution for a result with an
effect size of d1 = 0.5. The sigmoid is an example of a utility function on effect
size that expresses decreasing marginal utility as a function of effect size and
treats positive and negative effects symmetrically.

REALIZATION VARIANCE



Whenever an attempt is made to replicate, it is inevitable that details of the
procedure and subject population will vary. Successful replication with
different instruments, instructions, and kinds of subjects lends generality to
the results—but it also increases the risk of different results. This risk may
be represented as realization variance,  the uncertainty added by
deviations from exact replication (Raudenbush, 1994; Rubin, 1981; van den
Noortgate & Onghena, 2003). The subscript j indicates that this variance is
indexed to a particular field of research. The estimated variance of effect
size in replication becomes

If the replication involves the same number of subjects, then , and the
estimated standard error of replication is

In a meta-analysis of studies involving 8 million participants, Richard,
Bond, and Stokes-Zoota (2003) reported a mean within-literature variance
of  = 0.092 (median = 0.08; σδ = 0.30), after correction for sampling
variance (Hedges & Vevea, 1998). This substantial realization variance puts
an upper limit on the probability of replicating results, even with n
approaching infinity. The limit is given by Equation 3 with dL = –∞ and

This limit on replicability is felt most severely when d1 is small: For the
typical realization variance within a field (0.08), the asymptotic prep for d1 =
0.1, 0.2, and 0.3 is .60, .69, and .77. It requires an effect size of d1 = 0.5 to
raise replicability into the respectable range (prep = .9). Alas, that is
substantially larger than the effect size typical of the social psychological
literature, found by Richard and associates to be d1 ≈ 0.3. It appears that we
can expect a typical (d1 = 0.3) research finding to receive positive support at
any level in replication only about 75% of the time.



Figure 7.5 The distribution of effect sizes measured in 474 research literatures in social
psychology. The data were extracted from Richard et al. (2003, Figure 1). The
curve is Gaussian with mean 0 and overall variance 0.3.

Validation. Simulations were conducted to validate the logic of prep and the
accuracy of normal approximation for the noncentral t sampling distribution
of d for small n. The analysis of Richard et al. (2003) provided a
representative set of parameters. These investigators displayed the
distribution of effect sizes for social psychological research involving 457
literatures, comprising 25,000 studies. Their measure of effect size, r, was
converted into d by the relation d = 2r(1 – r2)–1/2 (Rosenthal, 1994). The
authors reported absolute values of effect sizes because the direction of
effect often reflects an arbitrary coding of dependent variables; however, it
also may inflate the impression of replicability. The smooth curve through
the data in Figure 7.5 provides another perspective on their report. (The
nonpublication of small or conflicting effects—the “file drawer effect”—
might be responsible for the outlier near d = 0.) The data in Figure 7.5 are
used to create a population from which the simulation will sample effect
sizes. The within-literature standard deviation σδ was set to 0.30, consistent
with Richard and associates’ estimate. Given these fingerposts, the
simulation is described in Figure 7.6.



The relative frequency of successful replication was gauged for values of
n = nC + nE ranging from 6 to 200, for nine ranges of |d| starting at 0 with
upper limits of 0.08, 0.16, 0.24, 0.33, 0.43, 0.53, 0.65, 0.81, and 1.10. These
frequencies, expressed as probabilities of replication (prep), are the ordinates
of Figure 7.7. The abcissae are from Equation 2, with d1 taken as the
midpoints of the nine ranges.  was calculated from the simulata (see the
appendix). The only parametric information used in the predictions was the
realization variance , set to 0.09. The predictions held good down through
very small ns, with average absolute deviations of 1.2 percentage points, on
the order of binomial variability around exact predictions.



Figure 7.6 The simulation: A representative effect size of δ was first sampled from the
distribution shown in Figure 7.5. Then two instances of δj. from the literature it
represents were selected, one for the original study and one for the replicate.
The data were normally distributed random variables for the control and
experimental groups, with the latter sampled from a population shifted by δ1
(original study) or δ2 (replicate). The difference between these parameters
arises from the realization variance of 0.09 (σδ = 0.3). The proportion of times
an effect size from the original study predicted the sign of the replicate was
tallied; information about the magnitude of the replication effect was not
retained. The process was iterated 20,000 times for each n studied.

Figure 7.7 Results of the simulation. The obtained proportions of successful replications
are plotted against the area over the positive axis of N(d1, ). Symbols indicate
the total number of observations in the experimental and control groups
combined.

META-ANALYSIS

Despite the width of the distributions of prep shown in Figure 7.2, prep proves
generally accurate in predicting replicability, both in simulations such as
those above and in meta-analytic compendia. For any one study,



conclusions should always be tempered by the image of Figure 7.2 and the
recognition that our test statistics were sampled from one like it. This is
why real replications are crucial for science. These replications are best
aggregated using meta-analyses. Consider, for example, the recent meta-
analysis of body satisfaction among women of different ethnic groups
(Grabe & Hyde, 2006). Ninety-three studies contributed data, whose
median effect size was 0.30, indicating that Black women were more
satisfied with their body image than were White women. The authors of the
meta-analysis reported a random effects variance of 0.09, which is the
average value Richard et al. (2003) reported for social-psychological
literatures in general. Using that realization variance, the median prep for
these studies was 0.78, and the proportion predicted by the 20% trimmed
mean (Wilcox, 1998) of the  was prep = .80. The percentage of published
studies showing a positive effect was close to these predictions,.85. These
are unweighted predictions because the point is to demonstrate predictive
validity of single estimates of prep, not to combine studies in an optimal
fashion. Note that with realization variance set to zero, prep would seriously
overestimate replicability (prep = .93), as expected.

Based on comparison of published and unpublished studies, as well as of
studies that focused on ethnicity and those not so focused, the authors
concluded that there was little evidence of publication bias—the inflation of
effect sizes due to nonpublication of nonsignificant effects. Another way of
estimating the influence of studies left in the “file drawer” because they did
not yield a significant p value is to use the posterior predictive distribution
to estimate the number of studies that should have reported nonsignificant
effects. For the median number of observations in each group of the meta-
analysis, the effect size would have to exceed 0.36 for significance (α = .05,
assuming a fixed effect model with zero realization variance, as is typical in
conducting tests of significance, and a one-tailed critical region).
Integration of the posterior predictive distribution (Equation 3) from dL = –
∞ up to dU = 0.36 gives an expected number of studies with nonsignificant
effects equal to 56; 53 were found in the literature. This corroborates the
authors’ inference of little publication bias. Assuming instead that authors
of the original studies used two-tailed tests requires us to compare the
expected and observed number of studies with effect sizes falling between
±0.43. Integration between these limits predicts 66 such results, 10 greater



than the 56 observed. If 10 additional studies are inferred to reside only in
file drawers because their effect sizes averaged around 0, when these are
added to the 93 analyzed, the median effect size decreases from 0.30 to
0.27, leaving all conclusions intact. The same would be the case if this
process were iterated, assuming the same proportion were filed for the
larger hypostatized population. This further corroborates the authors’
inference of little effect from publication bias.

A serious attempt to generalize—to predict replicability—must
incorporate realization variance, just as traditional random and mixed
effects models and hierarchical Bayesian models internalize it. But few
original studies attempt to incorporate such estimates, resulting in
discomfiture when results do not replicate (Ioannidis, 2005a, 2005b). This
is compounded by the prevalent notion that “to replicate” means getting a
significant effect in replication, rather than increasing our confidence in the
original claim or narrowing our confidence intervals around an estimate.
The posterior predictive distribution of Figure 7.1 and its integration over
relevant domains by Equation 2 provide useful tools in the meta-analysis of
results.

Deployment

This development of prep concerns only the simplest scenario,
corresponding to a t test. Most inferential questions are more complicated.
How does one calculate and interpret prep values in more interesting
scenarios, such as analyses of variance (ANOVAs) with multiple levels,
multivariate ANOVAs (MANOVAs), and multiple regression analysis? The
provisional answer, given users’ familiarity with traditional analyses, is to
calculate a p value and transform it to prep using the standard conversion,
z(prep) =  The p values returned from ANOVA stat-packs are
analogous to t2 and thus allow deviation among scores in either direction
(even though they employ just the right tail of the F distribution). They
should therefore be halved before converting to prep. In the case of multiple
independent comparisons, the probability of replicating each of the
observed effects equals the product of the constituent preps. This may be
contrasted with the probability of finding positive effects if the null was true
in all k cases, 2–k. Cortina and Nouri (2000) show how to adjust d for



correlated measures, and Bakeman (2005) provides detailed
recommendations for the use of generalized eta squared as the preferred
effect size statistic for repeated-measure designs. Manly (1997) and
Westfall and Young (1993) describe resampling techniques for multiple
testing. It is trivial to adjust such resampling to calculate prep directly: (a)
Resample from within the control data and independently from within the
experimental data, (b) calculate the resampled statistics (e.g., mean
difference, trimmed mean difference, etc.) over half the resampled numbers
to double the variance for the predictive distribution, (c) count the number
of statistics of the same sign as the measured test, and (d) divide by the total
number of resamples to estimate prep.

Realization variance ( ) inflates the sampling variance of the effect size.
This is awkward to introduce into the resampling process, but an adjustment
can be easily made after the fact. The variance of d in replication is
approximately 8/(n – 4) + 2 . The resampling operation is essentially a
compound Bernoulli process that can, for these purposes, be approximated
by the normal distribution. Compute the z score corresponding to the prep

resampled as above with no allowance for realization variance, and divide it
by

The normal transform of this adjusted z score gives the prep that can be
expected in realistic attempts to replicate.1

Conversion of the voluminous statistical literature into prep-native
applications remains a task for the future—one that will be most
expeditiously and accurately accomplished with randomization techniques,
discussed below.

PROBLEMS WITH PREP

Frequentists will object to the introduction of distributions of parameters
needed for the present derivation of prep. Parameters are by their definition
fixed, if unknown, quantities. Frequentists will also be concerned that the
choice of any particular informative prior can introduce an element of



subjectivity into the calculation of probability. The introduction of
uninformative priors, on the other hand, will expose the arbitrariness of
choosing the particular version of them: Should an ignorance prior for the
mass of a box be uniform on the length of its side or uniform on the cube of
that length (Seidenfeld, 1979)? This debate has a long and nuanced history.

Bayesians (e.g., Wagenmakers & Grünwald, 2006) object that prep

distracts us from an opportunity to compare alternative hypotheses. If
credible alternate hypotheses are available, both the Neyman-Pearson
framework and Bayesian analyses are to be preferred to the present one. But
if those are not available, postulating them reintroduces the very sources of
subjectivity and dependence on context-sensitive perspectives that prep

permits us to sidestep.
An inelegance in the above analyses is that they invoked the unknown

population parameter δ, only to marginalize it. Why not go directly from d1

to d2? As noted by O’Hagan and Forster (2004), “If we take the view that
all inference is directly or indirectly motivated by decision problems, then it
can be argued that all inference should be predictive, since inference about
unobservable parameters has no direct relevance to decisions…. An
extreme version of the predictivist approach is to regard parameters as
neither meaningful nor necessary” (p. 90). Alas, as these authors, as well as
Cumming (2005) and Doros and Geier (2005), note, unless d1 and d2 are
treated as random samples from a population, they are not independent of
one another, and the requisite evaluation of joint distributions of
nonindependent variables is difficult. Fisher spent many of his latter years
attempting to accomplish such direct inference with his fiducial probability
theory, but his work was judged unsuccessful (Macdonald, 2005;
Seidenfeld, 1979). We must resort to the introduction and marginalization
of parameters described in the appendix.

More important than the above objections is the invalidity of a
fundamental assumption in all of the above analyses. Traditional statistical
tests, as well as prep as developed to this point, assume that the data are
randomly sampled from the population to which generalization is desired—
from the population whose parameter under the null (e.g., δ0) is typically
assumed to be zero. But this is a feat that is rarely attempted in science.
Ludbrook and Dudley (1998; cited in Lunneborg, 2000, p. 551) surveyed
252 studies from biomedical journals and found that experimental groups



were constructed by random sampling in only 4% of the cases. Of the 96%
that were randomly assigned (rather than randomly sampled), 84% of the
analyses employed inappropriate t or F tests—inappropriate because those
tests assume random samples, not convenience samples. The situation is
unlikely to be different in the fields known to the readers of this book. One
can speculate why analyses are so misaligned with data. The potential
causes are multivariate and include bad education, limitations to otherwise
convenient stat-packs, the desire for statistics that permit generalization to a
population (even though the data collection technique a fortiori prohibits
such generalization), and the ubiquity of reviewers who recognize that,
even though statistical tests are merely arbitrary conventional filters that
cannot legitimately be used to reject null hypotheses, they retain pragmatic
value for rejecting dull hypotheses (Nickerson, 2000).

PERMUTATION STATISTICS

There is another way. It was introduced by Fisher, developed for general
cases by Pitman (Pitman, 1937a, 1937b), and realized in a practical manner
by modern randomization techniques. Randomization, or rerandomization,
or permutation tests are ways of comparing distributions of scores. They do
not, like their computerized siblings the bootstrap tests, attempt to estimate
or conditionalize on population parameters. Instead, they ask how
frequently a random reassignment of the observed scores would generate
differences at least as large as those observed. In executing such tests, the
observed scores are randomly reassigned (without replacement) to ad hoc
groups, the relevant statistics (mean, trimmed mean, median, variance,
tscore, etc.) computed, another random reassignment executed, and so on,
thousands of times to create a distribution of the sampling error expected
under chance. Calculate the percentile of the observed statistic in that
distribution. One minus that percentile gives an analog to the p value. If the
observed statistic is in the 95th percentile, only 5% of the time would
random assignments give deviations that large or larger.

What the Permutation Distribution Means. In a deterministic world, no
effects are uncaused, although the causes may be varied and complex and
different for each observation (Hacking, 1990). Chance is the name for



these otherwise unnamed, and generally unnamable, causes; it appears as
the error variance that is added to our regression equations to permit them
to balance. In resampling, we give the error variance free rein. The resulting
randomization distributions may be viewed as random samples from
thousands of these unnamed “hypotheses”— each corresponding to a
different pattern in the data—that might account for the observations with
more or less accuracy. The empirical distribution function generated by the
random shuffles of data among groups gives the final rankings of
hypotheses. All hypotheses except the investigator’s are vague (“chance”)
and post hoc, so the investigator’s are typically preferred, unless there are
too many alternate reshuffles that sort the data into more extreme
configurations—that is, unless they constitute more than, say, 5% of the
distribution.

Another way of thinking about the partitioning is as the result of the
random motion of particles (data) in space. This is a problem in
thermodynamics, for analysis of which Boltzman created the measure of
randomness called entropy. Using similar logic and mathematics, we may
calculate the amount by which entropy is reduced by learning to which
group—experimental or control—each observation belongs. If there is no
real effect, the information transmitted by the group designation will be
approximately 0. The information transmitted by knowledge of the group
grows with effect size and with the logarithm of the number of
observations. Information-theoretic measures such as Kullback-Leibler (K-
L) distance, as well as its unbiased realization in the Akaike information
criterion, are modern extensions of Boltzman’s approach. The K-L distance
is the average information that each observation adds toward discriminating
the experimental and control groups. There is a natural affinity between
permutation techniques and information-theoretic analyses: As the
information gained from distinguishing groups increases, there will be a
corresponding decrease in the number of alternate hypotheses that will
provide more information than the investigator’s. Replicability may be
measured in terms of the probability of finding effects in replication that
continue to make the distinction between groups worthwhile.

Although these considerations can give deeper meaning to the analysis,
most consumers of statistics will be content to understand the results of
permutation analyses as an analog of the p value, the proportion of
randomizations that provide a more informative sorting of the observations



than the experimenter’s labels “experimental” and “control.” There are
many good programs available to carry out this analysis; see Cai (2006) and
the references in Good (2000), Higgins (2004), and Manly (1997).

Permutation tests ask, “How often would this happen by chance?” not
“How likely is this to happen again by design?” The short answer to “How
can I generalize this result?” is the same as that given to users of traditional
statistical design who have not sampled randomly from the populations to
which they would generalize: “At your own hazard.” To predict
replicability in an attempt with an n of the same size, follow the same steps
as given for bootstrap techniques above, including within-group shuffling,
half-sizing, and correction for realization variance. For permutation
techniques, however, the randomization is without replacement (whereas in
bootstrapping, it is with replacement). The half-sizing makes this analysis a
hybrid of permutation and bootstrap techniques—the bootstrap is
constructed not out of the unlimited population of the bootstrap but out of
populations twice the size of the original investigation. It permits
extrapolation to a replication that samples from a small population derived
from individuals identical to those in the original experiment, one from
which the original was also ostensibly sampled. Because permutation
techniques are generally more powerful than bootstrap techniques (see
Mielke & Berry, 2001, and Chapter 19, this volume), predictions of
replicability will be higher than for bootstrap techniques, making inclusion
of nonzero realization variance even more important for realistic
projections. The same post hoc correction described above may be used:
Divide the z score of replicability by

As noted by Higgins (2004), Lunneborg (2000), and others, computer-
implemented permutation tests are the gold standard to which modern
techniques such as ANOVA are an approximation; they are worth learning
to use.

THE THREE PATHS OF STATISTICAL INFERENCE



Traditional Fisher/Neyman-Pearson statistics have been the primary mode
of inference in the field for half a century, despite the fact that “frequentist
theory is logically inadequate for the task of uncertain estimation (it
provides right answers to wrong questions),… the bridge from statistical
technologies to actual working science remains sketchy” (Dempster, 1987,
p. 2). Twenty years have not greatly changed that assessment. Littlewood, if
you remember from the epigraph, did not see it as his “business to justify
application of the system”—an Olympian view shared by some modern
statisticians. Because NHST in particular cannot provide mathematical
estimates of the probabilities of hypotheses, it is constitutionally unfit for
deciding between null and alternate hypotheses. Introductory statistics texts
should carry warning labels: “The Statistician General warns that use of the
algorithms contained herein justifies no inferences about hypotheses and no
generalization to populations unsampled. Their assumptions seldom match
their applications. Their critical regions can displace critical judgments.
Their peremptory authority can damage unborn hypotheses. Their punctilio
shifts authority from scientists to stat-packs. Addictive.”

Bayesian analysis (Chapter 33, this volume) is a step forward. It provides
the machinery for deriving the posterior predictive distribution on which prep

is based and on which a decision theory for science may be erected. It has a
vigorous literature (e.g., Howson & Urbach, 1996; Jaynes & Bretthorst,
2003). As currently deployed, it is sometimes hobbled by continuing to
maintain the frequentists’ focus on parameters. It has been blamed for
making probabilities subjective, but as long as reference sets are unique,
probabilities must always be conditional on those priors.

Permutation techniques are another step forward, in that they more
closely model the scientific process. Modern computer packages make them
easy to implement and easier to teach than traditional statistical pedagogy
based on Fisher/Neyman-Pearson inference.

What this chapter hopes to convey is that by setting our sights a bit lower
—down from the heavens of Platonic parameters to the earthier Aristotelian
enterprise of predicting replicability—our inferences will be simpler and
more useful. Much work needs yet to be accomplished: generalizing
replicability statistics to cases with multiple degrees of freedom in the
numerator, securing their implementation with permutation tests, and
utilizing those tests for predicting replicability in contexts involving
substantial realization variance. But accomplishing these tasks should be



straightforward, and their execution will bring us closer to the fundamental
task of scientists: to validate observations through prediction and
replication.

APPENDIX

The Statistics of Effect Size

Pooled variance is

The Route to Posterior Predictive Distributions

Bayesian statistics provides a standard way to calculate f (d2|d1)(see, e.g.,
Bolstad, 2004; Winkler, 2003): Predicate the unknown parameter, such as
the population mean effect size δ; update that predication with the observed
data; and then calculate the posterior predictions over all possible values of
the parameter, weighted by the probability of the parameter given the
observed data. The predication is a nuisance, and eliminating the nuisance
parameter by integrating it out in the last step is called marginalization.

where f (δ|d1) is the posterior distribution of the parameter in light of the
observations, and f (δ) is the prior distribution of the parameter. Integration
of the last line over all population parameters δ delivers the posterior
predictive distribution. If f (δ) is assumed to have a very large variance (flat
or ignorance priors), then the observed data dominate the result. If a
credible prior distribution is available (it is generally sought by “empirical
Bayesians”), then the final predictions of replicability will be more
accurate.



Consider the case in which the prior on the population mean δ is
normally distributed. Then its posterior f (δ|d1) is , where the primed
variables are weighted averages of the priors and the observed statistics,
with the weights proportional to the precisions (reciprocal variances) of the
means . If we are relatively ignorant a priori of the value of the
parameter, its distribution is flat relative to that of the observed statistic 

, and then . This is the case developed here. When the
sampling distribution of the statistic is also approximately normal—a
reasonable assumption for measures of effect size even when n is relatively
small (Hedges & Olkin, 1985)—then factoring, completing the square, and
removing constants leads eventually (Bolstad, 2004; Winkler, 2003) to a
normal density with mean d1 and variance :

Integration of this between appropriate limits, as in Equations 2 and 3,
leads to the central results of this chapter.

The Simulations

In the simulations for Figures 7.6 and 7.7, d′ was calculated using
Equations 1 and A1. Variance was calculated using Equation 5 and

All simulations in this chapter used Resampling Stats© software (Bruce,
2003), which creates random numbers with Park and Miller’s (1988) “Real
Version 1” multiplicative linear congruential algorithm.

NOTE

1. The half-sizing recommended in Step b can be bypassed by replacing the 1 in this radical with
2, which allows for the increased variance inherent in the posterior predictive distribution.
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MIXED METHODS RESEARCH IN
THE SOCIAL SCIENCES

 
JESSICA T. DECUIR-GUNBY

ithin the social sciences, the paradigm wars between qualitative and
quantitative research have received considerable attention (Lincoln &
Guba, 2000; Sale, Lohfeld, & Brazil, 2002). Purist camps on both

sides question the opposing viewpoints’ usefulness in social science research.
Some qualitative researchers argue that quantitative research does not capture
participants’ experience and voice, while some quantitative researchers argue
that qualitative research is not scientific because it lacks the rigidity of the
scientific method (Sechrest & Sidani, 1995). There has not been an adequate
resolution to the issue; largely, zealots from both camps have agreed to
disagree. However, there is an alternative to the qualitative/quantitative
dilemma: Quantitative and qualitative research can be viewed as
complementary (rather than mutually exclusive) and as a continuum rather
than polar opposites (e.g., Ercikan & Roth, 2006). Such a perspective is best
illustrated through combining the best aspects of both methods, creating what
is called mixed methods or multimethods research.

DEFINING MIXED METHODS

Mixed methods research is grounded in Campbell and Fiske’s (1959)
discussion of multitrait-multimethods, which exclaimed that “in order to
estimate the relative contributions of trait and method variance, more than one
trait as well as more than one method must be employed” (p. 81). This
suggests that a phenomenon is best understood if it is viewed from various
perspectives. Although Campbell and Fiske’s discussion focused on multiple



quantitative methods, there are implications for combining multiple qualitative
methods as well as both qualitative and quantitative methods or mixed
methods research. Mixed methods can occur in a single study, sequentially
within a program of research, or in an area of research (Rocco, Bliss,
Gallagher, & Perez-Prado, 2003; Schutz, Chambless, & DeCuir, 2003). This
suggests that any research involving multiple methods (quantitative and/or
qualitative) can be considered mixed methods.

In combining methods, it is imperative that methods be chosen that will
enhance each other, balancing strengths and weaknesses. To that end, the
fundamental principle of mixed methods research is to combine methods in a
manner that considers the strengths and weaknesses of each individual method
(Johnson & Turner, 2003). There are numerous strengths and weaknesses of
mixed methods research. These include both the strengths of qualitative
research (e.g., it reflects participants’ understanding, it is useful in exploring
in-depth cases, etc.) and quantitative research (e.g., its generalizability,
usefulness for studying a large number of people, etc.), as well as the
weaknesses of both qualitative research (e.g., its findings are not necessarily
generalizable, it is data intensive, etc.) and quantitative research (e.g.,
researchers’ conceptualizations may not reflect participants’ understanding or
experience of the constructs). However, there are strengths and weaknesses
that are unique to mixed methods research. Such strengths include the ability
to generate and test theory, the capability to answer complex research
questions, and the possibility of corroborating findings. Weaknesses include
needing the knowledge of multiple methods; engaging in time-consuming
research design, data collection, and analysis; and the criticizing of both
quantitative and qualitative purists (Johnson & Onwuegbuzie, 2004).

Despite the limitations of mixed methods research, the ability to combine
the strengths of both quantitative and qualitative methods is appealing to many
researchers. In essence, it can be considered the best of both worlds. Mixed
methods approaches have been widely used in a variety of research disciplines,
including health sciences (e.g., Schillaci et al., 2004) and nursing (e.g., Burr,
1998). In addition, mixed methods research is growing in popularity in
disciplines such as business (e.g., Bansal & Roth, 2000), sociology (e.g.,
Green, 2003), psychology (e.g., Eggleston, Jackson, & Hardee, 1999), and
education (e.g., Igo, Bruning, & McCrudden, 2005).

As such, the purpose of this chapter is to explicate how the use of mixed
methods research can be further expanded in social science research. I will
demonstrate how mixed methods research can be effectively implemented in



social science research through the discussion of the development of the
African American Adolescent Racial Identity Scale (AAARIS). Proper scale
development involves both qualitative and quantitative elements (Benson,
1998; Benson & Clark, 1982). A scale development example is being used
because scale development is a common process in social science research. It
is also being used because few researchers realize that they are engaging in
mixed methods research when creating a scale, while others neglect to include
a qualitative component. Thus, a secondary purpose of this chapter is to
illustrate best practices in instrument design.

DESIGNING MIXED METHODS RESEARCH

In designing a mixed methods study in social science research, it is imperative
to address several methodological concerns. Maxwell and Loomis (2003) have
created an interactive model of design in order to organize the various stages
of mixed methods research. This model involves five interrelated aspects: (1)
purpose, (2) conceptual framework, (3) research questions, (4) methods, and
(5) validity. This chapter will discuss the design of mixed methods research
according to these stages. Each stage of the interactive model will be discussed
in detail as well as illustrated by examples that highlight the qualitative and
quantitative components that are involved in the scale development process.

Purpose

The first component of designing a mixed methods study is to understand
the purpose of the study. The research purpose is considered an explanation of
why the research is being conducted (Newman, Ridenour, Newman, &
DeMarco, 2003). Understanding the research purpose is essential because it
allows for the making of proper methodological decisions, which includes the
designing of research questions. There are several reasons to conduct a
research study. Such reasons include prediction, adding to knowledge,
measuring change, understanding phenomena, testing new ideas, generating
new ideas, informing constituencies, and examining the past (Newman et al.,
2003). However, for mixed methods research, there are specific purposes.

According to Greene, Caracelli, and Graham (1989), there are five purposes
for conducting mixed methods research: triangulation, complementarity,
development, initiation, and expansion. Triangulation refers to using both



quantitative and qualitative methods to demonstrate convergence.
Complementarity studies use qualitative and quantitative methods to examine
intersecting but different aspects of a phenomenon. Development involves
using quantitative and qualitative methods sequentially, with one method
informing the development of the other. Initiation, most often an after-the-fact
purpose, is used to discover as well as explore contradictions found when
using quantitative and qualitative methods to explore the same phenomenon.
Expansion involves a multiple approach to “extend the breadth and range of
the study” (Greene et al., 1989, p. 259). The reason chosen for conducting
mixed methods research plays a significant role in the design of the research
study.

Purpose Example

The purpose of this study is to develop the AAARIS. This will occur in
three stages. The first stage is to explore themes that affect the racial identity
development of African American adolescents within the school context. The
second stage is to use the themes discovered in the first stage in order to
develop an instrument concerning the African American racial identity
development of adolescents in the school context. The third stage is to begin
the process of construct validation, including examining the structure of the
AAARIS and exploring the AAARIS’s relationship with similar constructs.

Conceptual Framework/ Theoretical Perspective

After the research purpose is determined, it is essential that the researcher
examine his or her theoretical perspective. The theoretical perspective “reflects
researchers’ personal stances toward the topics they are studying, a stance
based on personal history, experience, culture, gender, and class perspectives”
(Creswell, Clark, Gutmann, & Hanson, 2003, p. 222). One’s theoretical
perspective influences the types of research questions that are asked, the way
data are collected, and the manner in which data are interpreted. Exploring
one’s theoretical perspective includes examining one’s worldview or paradigm.

One’s theoretical paradigm helps to determine how one sees, understands,
and interprets the world. Because of the brevity of this chapter, the
descriptions of the paradigms are oversimplified. For more detailed
explanations, see Mertens (2003) and Lincoln and Guba (2000). According to
Mertens, three major families of paradigms guide current research practices:



positivist/postpositivist, interpretive/constructivist, and
transformative/emancipatory. Qualitative methods stem from the
interpretivist/constructivist paradigm. This perspective examines the
multiplicity of realities or truths that are based on one’s construction of reality
(Sale & Brazil, 2004). The transformative/emancipatory paradigm is an
extension of the interpretivist/constructivist paradigm; it includes critical,
cultural, and feminist perspectives, among others. However, in addition to
understanding multiple realities, the goal of the transformative/emancipatory
paradigm is to critique inequitable practices and promote change.
Alternatively, quantitative methods stem from the positivist paradigm. The
positivist perspective suggests “that all phenomena can be reduced to
empirical indicators which represent the truth” (Sale & Brazil, 2004, p. 353).
Postpositivism, a modification of positivism, contends that empirical
indicators can be used to approximate the truth; there is no method to obtain
the absolute truth. However, it must be added that there is a philosophical
movement that views empiricism, the belief of neutrality and objectivity that is
based on observation and experimentation, as the basis of quantitative methods
rather than positivism. This reassertion has emerged because of the emphasis
on scientifically based research in the social sciences (Slavin, 2002; Smith &
Hodkinson, 2005; Yu, 2006).

Although exploring one’s theoretical perspective involves examining one’s
theoretical paradigm, it also involves understanding the specific theories that
may be used to guide inquiry. A theory is a statement that describes the
phenomena the researcher wants to explore (Maxwell, 1996). Theories are
helpful in that they help expand the understanding of a specific phenomenon.
However, few research studies are influenced by a single theory. Most research
studies are indeed guided by multiple theories. Because of the use of multiple
theories, it is necessary to explore the relationships between theories and their
impact on specific phenomena through the use of theoretical models.
Theoretical models should explain the major concepts, factors, constructs, or
variables under study in addition to their proposed relationships (Miles &
Huberman, 1994, p. 18). Theoretical models can be visually depicted or
textually described. Regardless of the representative medium, theoretical
models are essential to the research process because they provide the
foundation that guides the creation of research questions and the collection and
analysis of data.

Theoretical Framework Example



The theoretical framework for the proposed study involves a constructivist
perspective for the qualitative approach and a postpositivist perspective for the
quantitative aspect. (It must be noted that quantitative researchers do not
explicitly label their work as positivist or postpositivist. I am choosing to make
this label explicit because I want to highlight the differing approaches within a
mixed methods framework.) Constructivism examines how one constructs
meaning from life experiences (Crotty, 1998; Vygotsky, 1978). Using such a
perspective will allow the understanding of how African American students
develop their identities as students in that people have different perspectives
regarding race and racial identity that are based on their own life experiences.
Next, a postpositive approach will be used for the development of the
AAARIS as well as its implementation. Racial identity theory (e.g., Duncan,
2005; Helms, 1990) will be used in the scale’s development.

In the school context, creating a climate where all students belong is
important (Osterman, 2000; Zirkel, 2004). However, not all students feel as
though they are valued members of the school context. Within some schools,
particularly predominately White schools, many African American students
feel as though they do not belong in the school community. The feelings of not
belonging occur because the educational context has a history of racial
discrimination that has contributed to the lack of African American teachers
and administrators, the limited exposure to African Americans in the curricula,
the underrepresentation of African Americans in advanced and gifted classes,
and the overrepresentation of African Americans in special education (DeCuir
& Dixson, 2004; Farkas, 2003; Ladson-Billings & Tate, 1995). These race-
related issues have greatly affected African American students’ sense of self,
including their sense of racial identity. As such, developing a positive sense of
racial identity is important within the context of education.

Racial identity is the collection of attitudes and beliefs that a person has
regarding being a part of his or her racial group and about his or her racial
group as a whole, and his or her feelings toward other racial groups (DeCuir-
Gunby, 2007; Duncan, 2005; Helms, 1990; Sellers, Rowley, Chavous, Shelton,
& Smith, 1997; Tatum, 1997). For African American adolescents, racial
identity largely concerns feelings regarding being African American within the
school context. In developing a racial identity, it is important to establish a
relationship between being African American and school (Akom, 2003;
O’Connor, 1997; Oyserman & Harrison, 1998). Developing a healthy racial
identity in the school context not only includes feelings toward one’s racial
group but also establishing a positive relationship between the self and school.



Research Questions

In any research study, the keys to designing the appropriate methods are
research questions. Research questions are the interrogative questions that a
researcher would like to investigate (Creswell, 2002). Research questions help
guide the choice of methods. In mixed methods studies, both qualitative and
quantitative questions are created. Qualitative research questions are broad
questions that most often begin with “what” or “how.” Such questions concern
process. They usually involve central questions and subquestions. Hypothesis
statements tend not to be used for the qualitative portion of mixed methods
research (or qualitative research). Quantitative research questions, on the other
hand, are specific questions that compare, relate, or describe. Their aim is to
examine variance. For a mixed methods study (or any quantitative study),
research questions or hypotheses are needed. Including both is generally
redundant, although there are exceptions.

Research Question Examples

Qualitative Questions:

1. How do African American adolescents develop their identities in t
school context?
A. What role does race play in the development of African Americ

adolescents’ identities?
B. What role do academics play in the development of Afric

American adolescents’ identities?

Quantitative Questions:
1. Does the African American Adolescent Racial Identity Scale define the

construct of African American racial identity in the school context?
2. Are the scores from the African American Adolescent Racial Identity

Scale consistent for African American adolescents in the school context?
3. Is there a relationship between the African American Adolescent Racial

Identity Scale and similar constructs?

Methodology/Methods



After the research questions are chosen, the methodology of the study
should be planned. Methodology can be described as “the best means for
acquiring knowledge about the world” (Denzin & Lincoln, 2005, p. 183).
Various qualitative and quantitative practices can be used to acquire
knowledge about the world. Qualitative methods include interviews
(individual/personal and focus groups), observations, and archival/documents.
With quantitative methods, on the other hand, there are experiments and
questionnaires/surveys. As previously stated, mixed methods research involves
combining both qualitative and quantitative research practices. This is
accomplished by what is referred to as intramethod and intermethod mixing.
Intramethod mixing involves using a single method that has both qualitative
and quantitative components (Johnson & Turner, 2003, p. 298). For example,
this could be the use of a survey that includes both Likert and open-ended
responses. On the other hand, intermethod mixing involves the mixing of two
or more methods (Johnson & Turner, 2003). For example, this could include
using both a Likert-type survey and an interview.

According to Morse (1991, 2003), there are two basic manners of collecting
mixed methods data—simultaneously and sequentially. In simultaneous data
collection, both the quantitative and qualitative aspects are collected at the
same time. There are three options: QUAN + qual (emphasis on quantitative
aspect), QUAL + quan (emphasis on qualitative aspect), and QUAN + QUAL
(equal emphasis on both methods). On the other hand, in sequential data
collection, both the quantitative and qualitative aspects are collected in stages.
There are four options: QUAN → qual (emphasis on quantitative aspect, with
quantitative leading to qualitative), QUAL → quan (emphasis on qualitative
aspect, with qualitative leading to quantitative), QUAN → QUAL (equal
emphasis on both methods, with quantitative leading to qualitative), and
QUAL → QUAN (equal emphasis on both methods, with qualitative leading
to quantitative). It must be noted that it is possible to combine the
aforementioned data collection strategies.

Methodology Example

In the African American racial identity example, a QUAL → quan approach
will be taken. It must be added that despite the quantitative aspect’s
appearance of receiving more emphasis, the design is still considered to be
QUAL → quan because the quantitative process stems from the qualitative
process. This is the most commonly used design, one that involves a
qualitative aspect, most likely a pilot study, followed by a quantitative aspect



(Morgan, 1998). This approach is often used in model or theory development,
theory verification, and scale development.

In scale development, it is important to engage in proper theoretical
planning, scale construction, scale evaluation, and scale validation (see Benson
& Clark, 1982). Planning involves reviewing the literature, defining the
construct, and questioning the target group. For the qualitative aspect, needless
to say, the appropriate literature will be reviewed and the construct will be
defined. Next, semistructured interviews (personal and focus group) will be
used to better understand the various aspects that contribute to African
American students’ sense of racial identity within the school context (see
Kreuger & Casey, 2000; Kvale, 1996). The information received from the
interviews will provide the foundations for the creation of the scale’s
preliminary items. During the construction phase, a Likert-type scale will be
developed to assess the categories that emerged during the qualitative analysis
(see Table 8.1 for sample items). These items will then be evaluated by experts
in the area of African American identity; revisions will be made if needed.
Next, in the third phase, the instrument will be pilot tested using various
statistical methods, revised, and readministered. Last, in the validation phase, a
continuous phase, the AAARIS’s nomological network will be explored. The
AAARIS will be compared with instruments measuring racial identity and
related constructs (e.g., selfefficacy, academic attitudes, etc.). It is imperative
to add that these stages will occur in multiple research studies.

Sampling. Determining issues regarding sampling is also important in
designing a mixed methods study. Sampling involves the manner in which
participants are accessed as well as the number of participants needed.
Qualitative methods often involve purposeful sampling. This is done because
researchers are often specific regarding their research choices. There are
generally 16 types of sampling within qualitative research (for detailed
descriptions, see Miles & Huberman, 1994). Sampling decisions must be
theoretically driven. In other words, the means of sampling is contingent on
one’s research purpose and theoretical perspective. Sampling procedures for
quantitative research differ from those of qualitative research. Within
quantitative research, there are generally two types of sampling designs:
probability or random sampling and nonprobability or nonrandom sampling.
Random sampling consists of four types: simple random sampling (everyone
in the population has an equal opportunity for participation), stratified random
sampling (separating the population into groups and randomly sampling within



the groups), cluster random sampling (random sample of groups that naturally
occur in a setting), and systematic random sampling (selecting every nth
person from a randomly selected sample of the population) (Kemper,
Stringfield, & Teddlie, 2003; Onwuegbuzie & Leech, 2005). Nonrandom
sampling includes two types: convenience and purposive (Trochim, 2001).
Convenience sampling is the most commonly used sampling procedure. It
involves using easily accessible samples that are not always representative of
the population. Purposive sampling, on the other hand, involves sampling of
predefined groups. This involves sampling of specific groups that may not be
representative of the population.

Table 8.1 African American Adolescent Racial Identity Scale Sample Items

Sampling Example

For the qualitative aspect, purposeful sampling will be used; the focus will
be on African American adolescents (high school). It is necessary to find
participants who are knowledgeable, are able to provide balanced perspectives,
and will contribute to the proposed theory regarding African American racial
identity (Rubin & Rubin, 2005). In locating participants, snowball or chain
sampling will be used. Snowball or chain sampling involves locating an
informant to identify initial participants. The initial participants will be used to
recommend other participants who may have a similar or dissimilar
perspective (see Patton, 1990). Both personal and focus group interviews will
be conducted until “saturation” is reached or when the same information is
heard repeatedly or when no new information is found (Glaser & Strauss,
1967). However, personal interviews will be conducted with an equal number
of boys and girls, ranging from 6 to 10 students (see Kvale, 1996); the focus
group interviews will consist of both boys and girls in groups of 5 to 7
(Kreuger & Casey, 2000).

The quantitative portion will involve cluster random sampling. African
American adolescents will be targeted. In order to conduct specific statistical



analyses used in scale development (e.g., confirmatory factor analysis), a
minimum of 7 to 10 participants per item of the AAARIS will be needed (see
Benson & Nasser, 1998). This means that if the AAARIS has 30 items, the
sample size needed will minimally range from 210 to 300 participants. In
short, the goal is to obtain at least 210 participants, although this number could
significantly increase depending on the number of items created in the
development of the AAARIS.

Data Analysis. There are several ways in which mixed methods data can be
analyzed. But before mixed methods data can be analyzed, the relationship
between the quantitative and qualitative methods must be determined. Also,
the analyses should follow the known procedures for whatever method is
being used. In other words, in conducting analyses, the researcher must take
into consideration the manner in which the data were collected and use the
appropriate data analysis procedures. Mixed methods data analysis includes
parallel mixed analysis, concurrent mixed analysis, and sequential mixed
analysis (Onwuegbuzie & Leech, 2004). Parallel mixed analysis involves
analyzing the quantitative and qualitative data separately. The results are
compared only after data analysis for each approach is completed. Concurrent
mixed analysis, on the other hand, involves analyzing simultaneously collected
quantitative and qualitative data at the same time. This means that both the
quantitative and qualitative aspects are integrated. One aspect influences the
analysis of the other aspect. Sequential mixed analysis involves analyzing
quantitative and qualitative data that have been collected sequentially.
However, in sequential mixed analyses, data analysis is an ongoing process
that occurs as the data are collected (Onwuegbuzie & Leech, 2004).

Data Analysis Example

For this study, sequential mixed analysis will be used. The data from the
interviews will be analyzed using thematic content analysis or inductive
analysis (see Coffey & Atkinson, 1996; Strauss & Corbin, 1990; Wolcott,
1994). Thematic content analysis involves examining interviews and finding
common as well as uncommon themes through the process of coding, the
opening up of text, and exposing the “thoughts, ideas, and meanings contained
therein” (Strauss & Corbin, 1990, p. 102). The analysis of the interviews will
consist of three processes of coding: identifying, organizing, and interrelating
themes (Coffey & Atkinson, 1996). First, the process of coding will allow the



data to be broken into small pieces of information called concepts. Next,
similar concepts will be grouped into categories and further developed
according to their properties or characteristics. The significant themes that
appear across most or all interviews will be identified, a process Wolcott
(1994) refers to as the identification of patterned regularities in the data. In
addition, the significant themes that are unique to particular individuals will be
identified; patterned irregularities may be as valuable as or more valuable than
patterned regularities. Next, the various themes will be interrelated, as
suggested by Wolcott, by contextualizing them in a broader analytical
framework by making connections to the research literature. The coding
process will focus on the areas of racial identity attitudes and academics. The
information collected from this section will be essential to informing the
quantitative aspect.

The quantitative aspect will be analyzed in an ongoing process and will
consist of multiple studies. After the scale is created and data have been
collected using the preliminary items that were created from the interviews,
the item reduction process will begin. Reliability analyses will be conducted,
eliminating items with low reliability coefficients (below .80). Confirmatory
factor analysis will then be used to determine how factor structures fit the data.
Items with low loadings (less than .30) or items with double loadings (loading
on multiple factors) will be eliminated (see Ebel, 1972). Later, after the items
have been reduced, additional data will be collected with the refined scale as
well as other scales (e.g., other racial identity scales, academic attitudes, etc.).
This will be done in order to explore the nomological network (see Cronbach
& Meehl, 1955) of the AAARIS. Reliability and confirmatory factor analyses
will again be conducted on the data. However, correlation analyses and
structural equation modeling (SEM) will be used in order to further explore the
AAARIS’s nomological network.

Validity and Trustworthiness

The last concept to address is validity and trustworthiness. Addressing
issues of validity and trustworthiness is essential to conducting mixed methods
research. In fact, validity and trustworthiness should be considered throughout
all aspects of a study. However, addressing issues of validity and
trustworthiness in mixed methods research suggests addressing such issues in
both the quantitative and qualitative components. This means that validity
should be addressed in both qualitative and quantitative terms. Validity and



trustworthiness in mixed methods research concerns examining aspects of
truth value, applicability, consistency, and neutrality (Sale & Brazil, 2004).

The issue of validity is important to qualitative research. In qualitative
research, validity is often referred to as trustworthiness, credibility,
dependability, confirmability, and understanding (Kvale, 1996; Maxwell,
1996). In this respect, validity can be defined as “the trustworthiness of
inferences drawn from data” (Eisenhart & Howe, 1992, p. 644). Examining
validity often involves exploring aspects of invalidity. A proposition is
considered trustworthy once falsification attempts have survived (Kvale,
1996).

In quantitative research, truth value, applicability, consistency, and
neutrality are addressed in terms of construct validity. According to Messick
(1995a), validity is “the meaning of the test scores” as well as “a summary of
both the evidence for and the actual as well as potential consequences of score
interpretation and use” (p. 5). The integration of test score meaning,
interpretation, and use creates a construct framework known as construct
validity. As stated by Messick (1995b), construct validity addresses six areas:
content (content relevance), substantive (theoretical and empirical evidence),
structural (relationship between the structures of the scoring instruments and
the construct domain), generalizability (how scores generalize to population),
external (comparisons to multiple sources), and consequential (value
implications of the scores). In creating a program of construct validation,
Benson (1998) suggests collapsing these six aspects into three stages: the
substantive stage (e.g., exploring theory regarding the construct), the structural
stage (e.g., exploring the observed variables), and the external stage (e.g.,
exploring the scales’ nomological network). The exploration of these various
areas encompasses Campbell and Fisk’s (1959) notion of multitrait-
multimethods in that multiple methods are needed to adequately examine a
phenomenon.

Validity and Trustworthiness Example

In the qualitative aspect, there are several ways to address trustworthiness,
including reflexivity, triangulation, and member checks. First, the process of
reflexivity will be used. Reflexivity involves the examination of one’s beliefs,
subjectivities, and biases concerning the various aspects of the study (Finlay,
1998; Parker, 1994; Sword, 1999). This will be accomplished by
acknowledging beliefs, subjectivities, and biases toward the research area and
participants. Being reflexive allows the researcher to be less subjective when



analyzing the data. Next, the data will be triangulated. Triangulation involves
using various methods to collect information from a wide range of individuals
and settings (Mathison, 1988). This strategy helps to reduce risk of bias and
allow for a better assessment of the phenomena. Triangulation will be
accomplished by comparing the consistency in responses from the data
collected from both the personal and focus group interviews. Last, member
checks will be used. Member checks are a process that allows the researcher to
obtain feedback from the participants of the study regarding the data and the
conclusions made from data (Merriam, 1998). Participants will be shown
interpretations of their interviews and asked to examine the interpretations for
accuracy. The use of member checks helps to clear up any misinterpretations
that may be made by the researcher.

In order to address validity in the quantitative perspective, Benson’s (1998)
stages of construct validation will be followed. First, the substantive stage will
be explored by using theory found in the research literature and empirical
evidence (qualitative interviews) to define the construct of African American
racial identity. Next, the structural stage will be examined by exploring the
relationships between the variables and constructs that compose the AAARIS.
This will constitute using both univariate and multivariate statistical
procedures, including descriptive statistics, item analysis, reliability analysis,
and confirmatory factor analyses. Last, the external stage will be examined by
exploring the nomological network of the AAARIS (see Cronbach & Meehl,
1955) or how it relates to constructs that are theoretically similar and
dissimilar. The procedures that will be used include correlating the AAARIS
with other instruments as well as SEM (see Bollen, 1989; Loehlin, 1998).

DISCUSSION: WRITING UP THE FINDINGS AND PUBLISHING

As demonstrated through the proposed development of the AAARIS, a mixed
methods approach is a useful way to engage in scale development. By using
the interactive model of design by Maxwell and Loomis (2003), the stages of
mixed methods research were examined. This included the purpose of the
research, conceptual framework, research questions, methods, and validity. All
of these stages are interrelated and necessary components for conducting a
quality research study, particularly a study involved in scale design. Although
the interactive model of design provides a useful framework to discuss mixed
methods and is a helpful tool to organize mixed methods research, the



interactive model of design fails to discuss the writing of mixed methods
research. Learning how to write mixed methods research is imperative.

After data collection and analysis have occurred, the researcher will need to
determine how the data are to be written. The manner in which the data are
written is influenced by the initial research design (e.g., QUAN → qual,
QUAN + qual, etc.). Thus, mixed methods findings can be represented in three
ways. First, quantitative and qualitative findings can be written up separately
within one study, presenting quantitative and then qualitative findings (or vice
versa). This is the most used manner to present mixed methods findings (see
Sandelowski, 2003). Second, the findings can be written jointly within one
study through the intertwining of quantitative and qualitative findings.
Intertwined findings are the most time-consuming and difficult to write; this
approach requires a skilled writer (see Sandelowski, 2003). Last, findings can
be presented individually in different studies as a series of research studies in a
program of research. In this approach, the individual studies are all related to
each other; later studies build on earlier studies. This approach is useful if the
researcher is conducting a series of quantitative and qualitative projects.
Although the type of mixed methods designs often influences how findings are
written, it must be added that this is not always the case. The decision of how
the data are presented is often influenced by publication outlets.

Writing/Publishing Example

The development of the AAARIS will be written up as individual studies
that contribute to a program of research. This approach is being chosen
because scale development, as previously described, is a lengthy process that
consists of numerous stages. As such, at least three publications are proposed:
(1) a qualitative article, (2) a scale development article featuring the
preliminary items, and (3) an article examining the AAARIS’s nomological
network.

While writing up the findings, it is essential to consider the possible
publication outlets for mixed methods research. If attempting to publish
research findings separately within one study or individually across studies, a
researcher will have an easier time finding a publication outlet. After all, most
of the mixed methods research that has been published in mainstream journals
features findings that are presented separately within one study. However, if
the researcher decides to publish the two components jointly within one study,
it is important to consider the possibility of limited publication outlets. Within
the social sciences, mixed methods articles periodically appear in journals such



as American Educational Research Journal, Journal of Counseling
Psychology, Academy of Management Journal, and a few others. Although
acceptance of mixed methods research is growing, many research journals are
not receptive to mixed methods articles. As such, the Journal of Mixed
Methods Research has recently been created in order to fill this research outlet
need. This journal is dedicated to advancing mixed methods methodology and
research across disciplines.

THE FUTURE OF MIXED METHODS RESEARCH

Although use of mixed methods is not a new methodology, the recognition of
mixed methods as a distinct methodology is a recent research trend. As
previously stated, the popularity of mixed methods research continues to grow
in numerous disciplines, including health sciences, nursing, business,
sociology, psychology, and education. Although the outlook is positive within
these disciplines, several issues still need to be addressed. First, there still
exists a considerable amount of bias against mixed methods. Purists from both
sides of the quantitative/qualitative debate are often unreceptive to the
combining of methods. As such, the belief systems of such purists need to be
challenged. In order to do so, the research community needs to start viewing
quantitative and qualitative methods as a continuum rather than polar
opposites. Such an approach will help mixed methods research to be seen in a
more positive light. This will also increase the receptiveness of research
journals to mixed methods research. In addition to challenging beliefs, there
needs to be an increase in mixed methods research training. Very few doctoral
research programs offer mixed methods research classes. This is problematic
because graduate students are not being exposed to possibilities other than
quantitative and qualitative research methods. This greatly limits their abilities
to address complex questions.

Despite the challenges, the future of mixed methods research is promising in
various disciplines. Very few researchers encounter noncomplex problems; in
fact, all disciplines encounter research problems that are multilayered. As
such, using a single method to effectively address multilayered problems is
difficult and nearly impossible. Complicated problems require research
approaches that are equipped to handle complexity. Mixed methods research
provides the various lenses needed to address such problems.
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DESIGNING A RIGOROUS SMALL
SAMPLE STUDY

 
NAOMI JEFFERY PETERSEN

his chapter is an effort to summarize a few best practices for using
esoteric samples. As we shall see, standard principles of quality
research design apply to samples of any size, but smaller samples are

more vulnerable to bias. In order to address the common problems of bias
that will weaken the quality of the findings, we consider the crucial
importance of providing a well-developed rationale for using a small
sample. In this way, your decisions are transparent and well grounded.

Many of the current conventions for sample size may be credited to
Jacob Cohen’s (1988, 1992) tireless efforts to improve the quality of social
science research. His voice is joined by a large group of methodologists
deploring the failure of researchers to fully report the details needed to put
the findings in context with the rest of the field. Therefore, an empirical
study based on a limited sample is further weakened by superficial
reporting that will not allow fellow scientists to replicate the complete study
or even duplicate the calculations. This is a pointed cautionary note for
novice researchers who have not yet grasped the nuances of the decisions to
be made.

There are myriad ways in which your data set may be compromised, and
each of these influences the quality of the study. The first point of best
practice is therefore to provide a compelling rationale for using a small
sample instead of a large sample. This means that throughout the report,
you must justify the method and analysis, connecting every decision to the
professional literature. A rigorous literature review provides theoretical
justification for the particular population. It should clearly extend the



existing body of knowledge by replicating or improving the sample or the
method of study. Note that a rigorous reading of the literature does not
mean a lengthy report of it.

Thus, the conceptual rationale, the statistical rationale, and the voice of
cautious parsimony all help mediate the reception of a design that at first
blush appears insufficient. Addressed here is the broad discussion of first
“why” and then “how” the research design uses relatively few participants.
These broad topics are followed by some discussion of the many ways in
which a study may be considered small, each of which will need to be
addressed in the rationale.

ARTICULATING A COMPELLING CONCEPTUAL RATIONALE

For ethical and practical reasons, a small sample size may be the most
responsible design, and its use can be conducted rigorously to establish
validity. For studies with human subjects, there are ethical concerns for any
invasions of privacy or long-term effects, so the smaller the number of
people at risk of inconvenience or worse, the better. For experimental
designs, a small sample provides a pilot study that may suggest a larger
replication. As Antliffe (1993) argued, a small sample size may be a false
economy because its reduced statistical power means it is more likely to
make a “costly” Type II error, yet large samples do not guarantee sufficient
power if the data are not normally distributed or are nonrepresentative. This
means there is no simple answer because the research question will define
the type of data to be collected, which in turn will define the statistical
procedures necessary to use the data in order to answer the question.

Yet another compelling reason to use a small sample is that the
population of interest is small. People suffering from rare diseases or
conditions will of course be a small group from which to get a sample, but
they are nonetheless important to study. Research conducted on a small
scale is valuable for local evaluation and practitioner feedback (i.e.,
classroom-level action research). Given that there is some justification
possible for using a small sample, let’s consider four components of the
rationale that require special attention when using them: (a) defining the
research design, (b) defining the population, (c) defining the context, and
(d) using cautious language.



Define the Research Design. The research question is crucial for
determining the adequacy of the sample. The research question frames the
hypothesis, and the rationale merely justifies the question first and then
your procedure to answer it. Ultimately, all empirical studies are concerned
with measures that can then be compared or correlated in order to test
hypotheses. An educational researcher might ask, “How does fourth-grade
writing proficiency change throughout the year?” This requires a thoughtful
description of the participants in order to provide some context for
interpreting the measures of writing proficiency. Another sort of question
requires data to be collected at regular intervals (e.g., “Does the pace of
developing writing proficiency vary among fourth graders?”). The scores
are then dependent, meaning that they must be linked to each participant at
every point in the sequence. However, if a research question focuses on
differences within the group (e.g., “Do boys and girls develop writing
proficiency at the same rate?” “Do immigrant children develop writing
proficiency at the same pace as the rest of the class?” “Do children who
qualify for free or reduced-price lunch develop writing proficiency at the
same rate as those who do not qualify for poverty assistance?”), the scores
are independent. The independence of the data will influence the choice of
statistical procedure, whether the data are used to answer a question of
comparison or correlation and whether the scale is ratio, interval, ordinal, or
nominal. This is no different than a research design using any size sample,
but it may be more crucial to recognize the vulnerability of its validity
because of the sample size and to address rival hypotheses and rigorous
investigation at the outset.

Define the Population. For experimental designs that compare groups, the
greater the control of similar characteristics, the greater the tolerance of
smaller sample sizes. One tactic for improving the validity of a small
sample study is to take a cue from our qualitative colleagues: Carefully
document a range of characteristics that may be of interest. Part of the
rationale for the demographic questions that may be challenged by the
institutional review board (IRB) is therefore the research design
necessitated by the small sample. Because educational and social research is
rarely conducted in laboratory settings with as much control of factors as is
research in the physical sciences, the circumstances surrounding the data
collection as well as the participants’ lives in general are important to



mention. This means that if the only qualitative differences between groups
are in the variables mentioned in the research hypothesis, if all possible
explanations of the rival hypothesis are negligible, and also if the samples
are quantitatively similar (i.e., of equivalent size [N] and distribution
[skewness and kurtosis]), the assumptions of inferential statistics will not be
violated and the findings will be less likely to be spurious.

It goes without saying that the participants must be carefully described in
order to help define the population that the sample, however small, might
represent. Human subject research typically includes gender, ethnicity, and
socioeconomic status at a minimum; educational studies always include
developmental level. A study of a small sample that is well described is that
much more useful to other researchers conducting meta-analyses of many
studies. This is the reason for the conventions of reporting adopted by
different disciplines—for example, the Publication Manual of the American
Psychological Association (American Psychological Association, 2001).

Fortunately, there are now very comprehensive and easily accessible
databases that make it possible for you to establish what is already known
about the population. For human subjects, the U.S. Bureau of the Census
provides not only data about Americans (http://www.census.gov/) but
international information as well
(http://www.census.gov/ipc/www/idbnew.html). The U.S. Bureau of Labor
and Statistics describes nearly every occupation, including different
educator and medical roles (http://www.bls.gov/home.htm). The National
Center for Education Statistics (NCES) is an invaluable mine of school-
related statistics, including specific school district profiles
(http://nces.ed.gov/). The Kaiser Family Foundation provides reliable health
parameters (http://www.statehealthfacts.kff.org/cgi-bin/healthfacts.cgi). The
Centers for Disease Control and Prevention maintain the Mortality and
Morbidity Weekly Report at http://www.cdc.gov/mmwr/—particularly
useful for epidemiology studies. The National Center for Health Statistics
provides extensive data from the National Health Interview Survey (NHIS)
at http://www.cdc.gov/nchs/nhis.htm. So there are no excuses for merely
describing the subjects of your study without a larger context. For
nonhuman subjects, the U.S. Environmental Protection Agency
(http://www.epa.gov/) and others share information.

http://www.census.gov/
http://www.census.gov/ipc/www/idbnew.html
http://www.bls.gov/home.htm
http://nces.ed.gov/
http://www.statehealthfacts.kff.org/cgi-bin/healthfacts.cgi
http://www.cdc.gov/mmwr/
http://www.cdc.gov/nchs/nhis.htm
http://www.epa.gov/


Define the Context. Even if your study is purely descriptive, intended to be
used for evaluating some local condition, your interest in sharing your
results must acknowledge others’ interest in connecting those results to
their own contexts. Therefore, the first step is to describe your sample in the
most specific terms relative to the largest population it might represent.
Without sacrificing the parsimony prized by empiricists, you can still
include enough narrative to picture the sampling strategy and participants.

The careful researcher will therefore also describe any recent changes in
the instructional experience as well as the historical context (i.e., Hurricane
Katrina). A small sample may highlight a trend in a changing population.
For instance, educators are tasked with accountability for all students, of
any minority status, achieving “adequate yearly progress,” or AYP.
Currently, school databases make it possible to track the students’
classroom experiences (i.e., teachers and curricula) in order to determine
“value added.” This is the crux of the accountability reforms and an
important influence on educational settings. Therefore, most educational
research includes some mention of the No Child Left Behind Act of 2001 or
other legislation influencing curriculum, either to measure the achievement
of mandates or the effects of the mandate.

Other social science research will mention policies, legislation, cultural
norms, and community dynamics that may affect human subjects’ behavior.
As pointed out in a Wall Street Journal editorial (“Tales From the Crypt,”
2006), the World Economic Forum considers Algeria a “star performer” in
terms of budget surplus, national savings, public debt, inflation, interest rate
spread, and real effective exchange rate, although some 200,000 people
perished in the civil war and millions are “struggling to build better lives in
Europe” (p. A16). A similar concern emerges regarding the U.S. News’s
ranking of institutions of higher education that focuses on important but not
comprehensive criteria. Both systems of ranking are flawed in part because
the methodology is not adequately justified.

Use Cautious, Tentative Language. By using qualifying language, you
avoid appearing to promote your finding as a universal truth. This is
especially important as you make transitions from the introduction to the
methods section to the results section of your report. Each transition
requires at least a nodding reference to the narrow nature of your sample, or
its circumstances. Your readers may have skipped all the technicalities to



find the nuggets of concise conclusion they are interested in, so your
summary must allude to the limitations. As is expected, your closing
discussion will return to ideas in your rationale to show that your small
study is aligned with the knowledge base for future meta-analyses.

After a clear presentation of your rationale for the research design, you
will explain the method of collection and the strategy of interpretation. As
mentioned above, a small sample size will complicate choices of statistical
procedure, and therefore you must not only acknowledge its influence but
also propose a comprehensive strategy for making sense of the data in
response to the guiding questions of the design.

ARTICULATING A COMPELLING STATISTICAL RATIONALE

The implications of small sample size are actually better known than the
absolute definition of how much is enough. It is fair to say the definition
has changed with advancing technology, for at one time, statistical
calculations were done by hand, and therefore a sample size of 30 was
considered reasonable for doctoral dissertations. Equally complex is the
task of determining the minimum sample size needed, for it depends on the
acceptable significance criteria (alpha), the anticipated effect size, and the
desired level of statistical power.1 A thorough explanation of the importance
of each of these four elements of any quantitative research design is beyond
the scope of this chapter. Consult Cohen—for example, “A Power Primer,”
his 1992 article that includes not only very clear definitions of these terms
but also the common statistical procedures used to analyze data. A few
standard components of empirical design are worth mentioning because of
their importance to determining acceptable sample size: operational
definitions, strategic sampling, valid instruments, and specific scaling.

Frame the Hypothesis in Quantitative Terms. This means using numbers
and will be quite familiar to educators who have crafted measurable
behavioral objectives. Just as a teacher should determine the criteria for
success before giving the test, the researcher should determine the criteria
for significance before analyzing the data.



Explain the Sampling Strategy. A true random sample is a key assumption
for interpreting data as representative, so any other method must be
explained and also justified. You must defend not only who was included
but why others who would have made the sample more representative were
excluded. One reason to use a stratified sampling frame is in order to
compare relatively scarce groups that may be missed in a true random
sampling of a population. You would be justified in targeting particular,
smaller populations and therefore samples if your research design intends to
compare them. Later we will discuss the difficulty of ad hoc subgrouping.

Once you determine the rationale for your sampling strategy, all else
must be aligned with that logic, and all decisions that rest on the size and
quality of the sample must be transparent. Therefore, you must clearly
indicate the steps you have taken to improve the quality if not the quantity
of the sample. A typical problem for all researchers is nonresponse and
subject mortality (i.e., participants who do not provide a complete set of
data points or participants who do not complete the study). They are of
course within their protected rights as informed human subjects to
discontinue participation at any time, but you may be left with a somewhat
smaller sample than you had originally hoped. Therefore, you must also
discuss how you treated any missing data.

The researcher who must settle for a small sample may also have to
sacrifice the ideal of randomness. If the sample is one of convenience, then
the investigator may also share an organizational relationship (i.e., a nurse
employed by the co-op or a teacher employed by the school district). Best
practice would therefore include mention of such story elements as the time
during the school year, the phase of reform affecting the faculty, historical
circumstances such as a hurricane, or the researcher’s personal connection.
We take a page from qualitative research when we choose small one-
samples, often equivalent to case studies. Of course, one of the charms of
quantitative research is its focus on neatly proscribed objectives, unlike the
comparatively nonlinear experience of its qualitative cousin more interested
in developing than testing hypotheses.

Explain the Data to Be Collected. This means that the instrument you use
must be appropriate to the research question. Note that unless the
instrument is reliable, validated (a separate study, or conducted during a
pilot study), and developed for use with your particular population, the data



set is of very little value. Therefore, you must report the psychometric
properties published about the instrument or explain how the instrument
was developed.

Define the Scale. Directly address the issue of scale, which will limit the
options of the statistical procedure. For instance, a mean cannot be
computed if the data are categorical (mutually exclusive categories, i.e.,
gender) or ordinal (ranks). In those cases, the appropriate central tendency
would be the mode (value occurring most often) or median (centralmost
value in the middle of the range of participants), and the choice of statistical
procedure would be restricted to the nonparametric. Wangcharoen,
Ngarmsak, and Wilkinson (2005) compared the variances (R2) of a large (N
= 522) sample to those of different, smaller size random samples. Their
study included different scales (i.e., nominal, interval, and ordinal data),
which is of particular importance because the scale determines the
statistical method appropriate for analysis. Their findings, summarized in
Table 9.1, suggest minimums based on the point at which the changes in
effect do not improve with increasing the size of the sample.

Table 9.1 Sample Size Plateaus

NOTE: Minimum sample size = 8, with all others as multiples of 8.

THE SHRINKING N

Apart from the characteristics and the circumstances of the sample, the
simple number must also be justified. Note that this is not in order to
explain why you used the particular sample (for external validity of
generalizing the findings) but to warrant the use of the particular statistical
procedure (internal validity of analyzing and interpreting data).



The Simple N. The smallest possible sample size (N = 1) is appropriate for
case study—that is, qualitative research—which is outside the parameters
of this volume. However, it is important to note this difference between the
two research paradigms: Case studies are convenience samples, that is,
selected in order to target the population of interest or because they are the
complete population of interest. For instance, a school district’s self-study
may employ some quantitative methods for descriptive purposes and
internal assessment, but the findings will not necessarily be generalized to
other districts. The unit of analysis is the one district, and any comparisons
within it are probably spurious because so few characteristics will be
controlled.

Although it is easiest to determine the size by simple counting, or
frequency, the overall sample size is an unsatisfactory measure because the
nature of the population, the data collection, and the data analysis all
influence the quality of the sample size. Aspects of smallness must be
addressed in the rationale for the methodology (i.e., inadequate number of
cases in the data set, misidentified units of analysis, unequal subgroups,
unrepresentative proportions of the population, poorly defined participants,
and low response rates).

Unit of Analysis. The research design is crucial to determine the unit of
analysis. For instance, a small sample of individuals may be tested over
time, meaning each contributes to a much larger whole that analyzes the
variance among all the trials with slight variations (Ahn & Jung, 2005). To
the empirical researcher, the highest quality sample of any size is randomly
selected. It is tedious to supersede the convenience of a convenient sample,
but random assignment within a classroom can occur with subjects (or
participants) sorted into subgroups from which they are randomly assigned.
This is a stratified model that still requires a minimum pool for each
characteristic. In order to establish these minimums, it is a good idea to
create a frequency distribution chart to illustrate the proportions within the
sample. Each cell of intersecting paths must have a minimum number, and
the cells should have similar sizes. Best practice for developing a small
sample study, then, is to construct the frequency distribution table before
collecting the data.

The complexity of this table will perhaps provide counsel against too
many research questions of comparison that overreach the data. Regarding



contingency tables, each additional cell increases the degrees of freedom
(df), which in turn influences the size of the minimum sample necessary to
detect the target effect size of the chi-square, with greater samples
suggested for more degrees of freedom for each case to occur in different,
mutually exclusive combinations. Multiple regression techniques require
increasingly large sample sizes as the number of independent variables, or
population characteristics, increases.

Another example of the unit of analysis problem can be seen in a typical
action research scenario conducted by a teacher using a classroom of
students. Although each student might be considered a case in the data set,
it is likely that all the students are in the same classroom and share the same
intervention and context. This may mean the unit of analysis is only 1
because it is one classroom (i.e., students within this classroom are not
independent observations, violating a critical tenet of many statistical
procedures).2 Action research is a form of self-study, used for making local
decisions. Its value outside the immediate context is enhanced by the
quality of the description that allows for others to recognize similar
combinations of characteristics. By definition, it will not be experimental
nor the statistics inferential.

Define Subgroups. A large sample may be subdivided according to traits
that are not evenly distributed. For instance, ethnicity is often reported, but
minorities will, by definition, be unequal. When reporting differences
among ethnicities, researchers may choose to aggregate minorities to have a
critical mass for comparison or may include small minority groups in the
large sample but not report them separately (e.g.,
http://nces.ed.gov/pubs2002/2002114.pdf). This is even more problematic
when ad hoc subgroups are not homogeneous—for example, the “latino”
subgroup label may contain people from different countries as well as
different sociocultural and educational backgrounds. The differences within
the subgroup may be greater than between subgroups. If the integrity of the
subgroup can be established, it is then important to (a) recognize when a
subgroup becomes too small to analyze and (b) report its relation to the
larger study. Unequal subgroup proportions will reduce the statistical
power.

A simple frequency chart will reveal whether the subsamples are similar
enough to be compared. It is therefore best practice on the part of the

http://nces.ed.gov/pubs2002/2002114.pdf


classroom educator to collect data in order to demonstrate the influence of
factors the researcher thinks might skew the results (i.e., rival hypotheses).
This helpful information can be presented simply in a table that places the
sample for a survey of educators into the context of the state and/or national
demographics. If the sample’s subgroup proportions are not greatly different
from the population’s—for example, Washington State public school
teachers in Table 9.2—the sample may be adequately proportioned.

Once the subgroups are used for comparison rather than description,
though, their size is problematic. According to Krejcie and Morgan (1970),
a sample size of 448 far exceeds the minimum required for the population
of 54,000. However, notice the very uneven quantities in each variable:
There are far fewer men than women, and minorities are by definition not
of the same proportion. A sample of 375 is recommended for a population
of 32,000 female teachers, while the population of 13,000 males would
need 373—almost as many—in order to adequately represent their
populations. A comparison study would therefore require approximately
750 participants. Therefore, carefully and quantitatively describing the
participants and the population is crucial for justifying the sample size.
Advanced methods (i.e., repeated measures analysis of variance [ANOVA])
may tolerate smaller sizes, but this is again dependent on the research
design. Beyond the scope of this chapter is a discussion of the value of
aggregating multiple small samples via meta-analysis; suffice it to say that
such a method adds more understanding of the data if appropriate for the
design.

Table 9.2 Gender and Ethnicity of Washington State Educators for School Year 2001–
2002 and of the Study Sample

NOTE: Washington data from Office of the Superintendent of Public Instruction, 1/10/02. Note that
the contingency table is 2 × 2: two categories of gender (male and female) and two categories of
career status (pre- and in-service). This means 3 degrees of freedom, and so the minimum sample
will range from 44 to 1,090 depending on the required effect size (large or small) and Cohen’s alpha.



Predict and Report the Response Rate. The actual data collected must be
analyzed for not only their proportion to the larger population but also their
proportion to the sampling frame. The sampling frame is the scope of
people who were invited to participate, and while the frame may be of
adequate size to generalize to a larger population, the actual data set will be
the responses from within the frame. For example, a small response rate for
survey research is anything less than 80%. Although Nguyen (2005)
demonstrated (with the clever use of different-size pots of soup) that the
absolute, not the relative, size of the sample is of importance for accuracy
with opinion polls, most methodologists agree that a percentage of the total
sampling frame is a quality indicator. Even if the sample includes thousands
of data points, if the response is less than 80% of the total sampling frame,
it is considered statistically weak, even though social science research is
often reported with a much lower percentage.

Barry (2005) noted that many articles reporting longitudinal studies do
not even acknowledge the rate of attrition. He expressed concern “when
those who drop out of the intervention have unique characteristics, such that
the remaining sample ceases to be representative of the original sample” (p.
268). Best practice, therefore, requires the total sample to be accurately
described, and the demographic features of the dropouts described as well
in order to determine new limits of external validity. When attrition does
occur, you must decide how to analyze the data and explain your logic. The
same is true for incomplete responses. Will you delete all cases with any
missing data (list-wise) or use the items that are there for all cases
(pairwise)?

In education research, there is a heightened concern for accountability
given federal funding policies. Federal agencies have long been directed by
the Office of Federal Statistical Policy and Standards that a 75% response
rate is the minimum to consider data adequate. Because of the importance
of federal funding, this became an unquestioned rule of thumb among
educational researchers. This is not new with the No Child Left Behind Act
of 2001, which, along with its implementation policies, further recognized
only empirical studies as credible. More recently, the U.S. government’s
NCES (at http://nces.ed.gov/statprog/2002/std2_2.asp) published standards
for different aspects of survey research (e.g., rate of response for the
screeners, for respondents who are individuals, for respondents that are
institutions, for longitudinal studies, for random samples), and no guideline

http://nces.ed.gov/statprog/2002/std2_2.asp


is less than 70%, while any below 90% will prompt a special analysis of
bias in the sample. This is echoed by McMillan and Schumacher (2006) in
the sixth edition of their text widely used to teach research methods to
graduate students in the field of education. They commented that “if the
researchers can obtain a total return rate of 70 percent or better, they are
doing very well” (p. 236) but further cautioned that “for most surveys with
a large sample (e.g., 200 or more), the nonrespondents will probably not
affect the results in an appreciable way if the return rate is at least 70
percent,” and “special attention should be focused on a study with a
relatively low rate of return (lower than 70 percent) and without an analysis
of the way in which nonrespondents may have changed the results” (p.
238).

The low response rate is a chronic problem with human subjects research
because ethically, subjects must be informed and must give their consent
after understanding the study. The pattern of people willing to respond is
problematic, for people who have something they feel has not been heard
will be motivated to express it until they do feel heard, and consequently,
people with complaints are more likely to take the time and complete a
survey. Another difficulty concerns the complexity of the items and the
interest in understanding them. Therefore, the design of the study must
include instruments and communication that will not impede participation,
and the method of gathering cases must be scrupulously followed. There is
no graver offense than tampering with data, unless it is to cause undue harm
to the subjects. J. W. Osborne (personal communication, 2006) recommends
comparing respondents and nonrespondents where any data at all are known
about the nonrespondents to help establish the representativeness of the
sample or understand the differences between retained and withdrawn
participants.

Describe the Distribution. This is different from the distribution of
participant or subject characteristics. This is the distribution of data
generated by the study that will need to be analyzed in order to answer the
research questions. A normal distribution is a key assumption for using
(parametric) inferential statistics. As Kline (1994) pointed out, a large
sample would mitigate substantial deviations from normality, so in small
samples, it is especially important to describe the range and frequency of
data points. The size of the standard deviation relative to the volume of the



central tendency (i.e., kurtosis) is another concern because the sampling
error increases as the standard deviation increases. Note that the larger the
standard deviation, the larger the sampling error.

Calculate the Statistical Power. The researcher should not wait until
entering data into a program to know whether the sample is likely to reject a
false hypothesis. A priori power analyses are for the purpose of providing a
rationale for the choice of sample size. Post hoc analyses are to confirm the
actual power once the effect size is known rather than merely posited. A
quality research proposal includes the a priori power analysis; the final
report is of course post hoc. (Readers interested in power analysis can refer
to Chapter 7, this volume, on the probability of replication.)

As with all formulas, if you isolate the missing variable (i.e., know the
value of the other variables), you can calculate it. There are many applets
available on free Web sites (i.e.,
http://www.dssresearch.com/toolkit/sscalc/size_a1.asp) by which you can
calculate the sample size, but they will ask for that information. By playing
with any of these programs, you will notice some trends, for alpha changes
as N changes. This means with smaller samples, you are more likely to see
large effect sizes. This does not mean that the effect size changes. It means
if the effect size is large, you can see it with a smaller sample. Therefore, if
you hypothesize a large effect, you can use a smaller sample. If you are not
interested in medium or small effects, you need not bother with a large
sample.

Use Current References and Tools. Thanks to a continuing agenda of
investigating the effects of sample size, researchers have ever more helpful
guidelines for minimum sample size for different research designs.
Statistics scholars do continually test old assumptions and seek empirical
evidence for recommendations (Mundfrom, Shaw, & Tian, 2005). For
instance, Bonett (2006) insisted that an increase in sample size did not
improve the accuracy of confidence intervals and introduced a new formula
for planning sample size. Blair (1980) challenged the conventional wisdom
when she concluded that Wilcoxon’s ranked sums test was more powerful
than the t test, a parametric measure. Rutherford (2001) commented that
“while formulae … reveal the nature of variance quite well, they do not
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lend themselves to easy calculation” (p. 19). Fair enough, but you must
know how to ask one of the statistical programs to calculate them for you.

Van Belle (2002) dismissed differences in statistical programs (as well as
statistics textbooks) as inconsequential, due to the near-universal consensus
regarding the formulas and their strengths. That said, it is best practice to
use the most recent version of whatever statistical program you choose
(e.g., at the time of this writing, SPSS had recently issued Version 15.0); the
upgrades appear with increasing frequency as with all publications, and
there are differences in the formulas, so it is also best to mention which
program you use in your bibliography. The savvy statistician will then
know at a glance what actually happened to your data between the
spreadsheet and the summary.

A HANDFUL OF THUMBS

Most rules of thumb have been established based not on precedent or
intuition but on careful empirical research that discovers a plateau after
which a change in sample size has little bearing on the results. That said,
many such rules have been discredited, such as the Kaiser criterion3

(eigenvalue > 1 rule for deciding how many factors or components to
analyze), and the conventional wisdom of ANOVA cells having at least 10
members is not scientifically established.

The reality is that minimum sample sizes differ for various statistical
procedures and are at least partially dependent on the research design. For
instance, having a greater number of groups to analyze for variance
(ANOVA) has the opposite influence on sample size: More group means
require lower sizes, but each group must be that size. For a large effect size
to be detected among six groups at α = .05, for example, each group need
only have 13 members. Cohen (2005) recommended samples for different
effect sizes (small, medium, or large) at different levels of confidence (α =
.01, .05, or .10) and further identified minimums for different numbers of
groups (k), or variables. For a simple comparison (i.e., a Student’s t test) of
differences between two independent means, a small effect size can be
found at α = .05 in n = 393; a large effect size will be detectable in only 26
randomly selected participants. Pretz (2003) noted that as tolerance levels
increase (i.e., p value decreases), the sample size can be smaller; indeed, a



small correlation can be detected at the commonly accepted 95%
confidence, with a sample of 1,362, but a large correlation can be detected
with only 30. This means that if you have a small sample size of 30, and
you detect not large but small correlations, you cannot in good faith report
the findings without great caution.

The need to provide a more detailed rationale is now a standard
requirement of journals in all fields of empirical study, for the same
statistical procedures will be used (e.g., Livingston & Cassidy, 2005). In the
intriguingly titled “Dietary Analysis From Fecal Samples: How Many Scats
Are Enough?” Trites, Joy, and Weckerly (2005) reported that statistical
power was adequate with N = 59 for one level of analysis, but N = 95 for
more advanced analyses. Hogarty et al. (2006) studied the influence of
sample size on factor analysis and found that there is less influence when
communalities are high. Your rationale should include reference to the
particular statistical procedure, for example, the relationship of sample size
structural equation modeling studied by Kim (2005).

There are now elaborate programs that allow researchers to simulate data
sets in order to test procedures (Wang, Rasch, & Verdooren, 2005). Two
methods to compensate for small sample size use the statistical creation of
many more randomly defined sample sets, based either on random-number
generators (i.e., Monte Carlo) or existing data banks (i.e., bootstrap).4 The
Monte Carlo method (Fan & Fan, 2005) will generate thousands of samples
from a random-number generator in order to provide a large number of
samples. This accommodates the need for a greater number of samples, as
does the bootstrap method that selects (with replacement) smaller samples
from a large existing database (Thompson, 2005). These artificial sampling
techniques are helpful because the central tendency of each sample is
paramount for ANOVA. However, they will likely be pursued only after the
study of the original sample yields promising results and the researcher is
interested in establishing the generalizability requiring the large sample
size.

In summary, there are many times when the use of small samples is not
only justifiable but necessary. Before using small samples, simply be aware
of limitations and implications in their use, and follow the same concerns of
rigor that all quantitative studies require. Best practice for using less-than-
ideal sample sizes begins with appreciating that there are no absolute
minimums, but power analyses can inform the research design to maximize



the validity of findings. Like all empirical studies using any size data set,
the context and nature of the data related to the hypothesis must be
explained, and decisions must be grounded in respected literature: The
rationale for the sample size, the consequent limitations of the method, and
the modest interpretation of findings will improve the quality of the report.

Finally, interest in small data sets should be encouraged because different
statistical procedures are so sensitive to sample size. There is considerable
need for further studies and innovations to help more researchers achieve
accuracy with more accessible formulas (e.g., Kim, 2005), so any rigorous
study employing a small sample could contribute by focusing on that aspect
of the methodology as well as the actual findings.

NOTES

1. Editor’s note: Readers will note that Peter Killeen (Chapter 7, this volume) argues that the
probability of replication might be more important to attend to.

2. Researchers encountering nested data may refer to Chapter 29 on HLM (hierarchical linear
modeling), which can easily handle this type of data, although larger Ns are generally required for
this type of analysis.

3. Interested readers can refer to Chapter 6 on exploratory factor analysis for more information on
best practices relating to these procedures.

4. The interested reader will refer to Chapter 19, which covers these intriguing topics and their
applications.
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REPLICATED FIELD STUDY
DESIGN

 
WILLIAM D. SCHAFER

his chapter discusses the use of replications in order to enhance the
ability of a researcher to make causal inferences from data gathered in
field (nonexperimental) settings. Replications are common in

experimental research and are used both to study interactions between
treatments and other variables (e.g., gender or aptitude in two-way designs)
and to increase the power of the design. In many of these designs, each
condition of a blocking variable often constitutes a self-contained true
experiment (Campbell & Stanley, 1963), with internal randomization. In
such research, the data are processed statistically to study generaliz-ability
of treatment effects across replications.

I argue that replicating even weak research designs can greatly expand
the usefulness of research in settings, such as field research, where
experimental control is difficult or even impossible to achieve. Some
examples of this approach, called replicated field study design, are given, as
well as some suggestions for data collection and analysis.

CONTROL AND CAUSAL INFERENCES

The principle of control is fundamental to making an inference that
variability on a dependent variable is caused by differences on an
independent variable. In experimental settings, a researcher determines
which of the research participants under study receives which level of the
independent variable(s) and observes the effect of their states on the



dependent variable(s). But if there are systematic differences between the
participants on any other variable(s), those differences may be the causes of
the differences on the dependent variable(s). In order to resist variation on
these extraneous or irrelevant variables, researchers use the principle of
control. In general, then, control of extraneous variables is a basic condition
for causal interpretations of research (Johnson, 2001).

Control over a variable is achieved when the variable is not correlated
with the independent variable(s). For example, if one group of research
participants were to receive their experimental experience in a room
different from the other group, differences between rooms (e.g., instructive
wall art) might be plausible as a rival explanation for any difference
between the groups on the dependent variable. But if the two groups of
participants were in the same room (as opposed to different rooms) or were
equally represented in each of multiple rooms, then there would be no
correlation between room (an extraneous variable) and group membership
(an independent variable) since the distribution of rooms would be the same
in each group. Then, if a relationship between group membership and the
dependent variable were to be observed, location would not be plausible as
a competing (rival) explanation of the relationship.

One important class of extraneous variables that requires control is those
that are descriptive of the participants, such as gender, age, genetic makeup,
or experiential background. A plausible rival explanation that relies on a
member of this class is an example of what has been called a selection
threat to the internal validity of the research (Campbell & Stanley, 1963).

Randomization of research participants to treatment groups is a powerful
means of control over selection threats. This aspect of control is so
important that Campbell and Stanley (1963) use it to distinguish true
experimental from other types of research designs. When randomization is
used, it is clear that the basis for which participants receive which treatment
condition is unrelated (uncorrelated) except by chance with any variable
descriptive of participants that could be confounded with the treatments.

In education, many research studies are carried out in field settings.
District-based or state-level researchers, for example, commonly are
interested in practical interventions that could occur naturally in schools.
Yet randomization is usually unavailable to researchers who are working in
field settings because they are not able to assign treatment conditions to
individual participants since agencies such as schools resist moving



participants (e.g., students) among groups (e.g., classes or schools) or
otherwise assigning them to groups according to a researcher’s needs.
Moreover, it is often not possible even to assign randomly which group is to
receive which treatment condition, such as when teachers choose which
instructional methods they want to use.

One approach often used in the field when randomization is impossible is
to measure extraneous variables and then to match or to use some means of
statistical control (e.g., analysis of covariance). Three common purposes for
statistical control when using intact groups are described by Pedhazur
(1997): equating the participants on the outcome variable(s) prior to the
study using one or more pretest(s), controlling for other variable(s) when
looking at mean differences, and controlling for other variable(s) when
looking at differences in regression surfaces. He notes that these are
commonly invalid uses of analysis of covariance. Matching is only as
effective as the ability of the matching variables to exhaust all relevant
correlates of group membership.

Since statistical procedures are viewed as less effective than experimental
control, causal inferences observed in field settings are susceptible to many
reasonable internal validity threats. Indeed, in many cases, it may not even
be possible to measure extraneous variables, perhaps because limited time
is available, the number of participants in the research is too limited, or the
measurement would be too intrusive. In the face of considerations such as
these, Johnson (2001) has concluded that there is not much that can be
learned from a single, nonexperimental research study. Clearly, it would be
advantageous to have a feasible alternative for researchers in field settings
to use in order to draw causal inferences from their work.

REPLICATED FIELD STUDY DESIGN

While there are clearly important limitations, in field contexts, there often
are many opportunities available to the researcher that are not available in
more controlled (e.g., laboratory) settings. Laboratory researchers typically
have only small potential participant pools to select from and might need to
expend significant resources to obtain their cooperation. In applied settings
such as classrooms and schools, however, and especially for employees of
these institutions, potential participants such as students are often



generously available, especially when the intrusion of the research is
minimal. Thus, field researchers often have broad research opportunities
available to them that laboratory researchers do not. It is therefore possible
in typical applied research settings to be able to replicate (i.e., repeat) a
study design more than once.

Schafer (2001) has proposed that carefully planned replications can
enhance the internal validity of applied research. There is a stronger basis
for the validity of observed relationship(s) when results are consistent
across several studies than there is for each study separately since results
that have been replicated are considered more likely to generalize (continue
to be observed) to further replications. Furthermore, it is possible to
compare the replicate studies with each other to study whether there are
constructs that interact with (i.e., moderate) observed relationships. While
these are possible advantages whether or not research includes experimental
control, the opportunity to replicate a basic study design is more likely to be
available to the applied researcher working in multiple field contexts. It is
recommended, therefore, that persons who work in field research settings
try to include replication as a fundamental feature in their work. Hence the
name of this approach: replicated field study design.

Once the data are collected, they can be viewed as multiple studies, each
with the same basic design. Whether or not studies have identical designs,
meta-analysis is an attractive vehicle for synthesizing, or combining, a
series of replications. While meta-analysis is usually thought of as a way to
study an existing research literature quantitatively, it also can be used for a
series of related studies generated as replications within a single project.

In the remainder of this chapter, pertinent features of meta-analysis are
discussed briefly, and then four examples of actual replicated field studies
are described. In each of these, metaanalysis was used to study multiple
replications of a basic design in order to strengthen the inferences that could
be made. The basic designs that were replicated differ markedly in the
examples. Finally, some design approaches for replication in field settings
are discussed.

META-ANALYSIS



Meta-analysis is commonly used to synthesize the results of multiple,
related research studies. Those who are not familiar with meta-analysis can
find a brief overview and a completely worked example in Schafer (1999).
Extensive discussions on a wide array of meta-analysis topics can be found
in Hedges and Olkin (1985), Cooper and Hedges (1994), and Chapters 12
and 31 in this volume.

An effect size measure calculated within a study is fundamental to meta-
analysis. The effect size measure might be used to compare two groups or
to relate two variables. For example, Hedges and Olkin’s (1985) d index is
the bias-adjusted difference between the means of two groups divided by
the pooled standard deviation. The correlation between two variables in a
study is another example of an effect size index. To be used in meta-
analysis, the effect size measure must have a transformation to a normally
distributed statistic with a known (or very stably estimable) variance.

Ways for a researcher to relate the size of the effect (i.e., the effect size
index) with study characteristics are described in the references above.
Equations such as those in multiple regression may be written using study
characteristics as predictors of the effect size index as the criterion. The
study characteristics may be descriptive of settings, participants, treatment
implementations, or outcome variables. Virtually anything that might
differentiate studies from each other could be analyzed as study
characteristics. Indeed, one way to extend the use of replicated field study
(or other) designs is to plan for the study of effect sizes in replicates that
differ from each other systematically.

EXAMPLES OF REPLICATED FIELD STUDY DESIGNS

Example 1: Replicates of a One-Group Pre-Post Design

Our first example used a one-group, pre-post study, which is a descriptive
(nonexperimental) design, as the basic building block. The research
problem studied by Guthrie, Schafer, Von Secker, and Alban (2000) was the
relationship between reading instruction in schools and gains or losses
(growth) in student achievement in these schools over a year’s time. Each
school provided one replicate of the basic design.



All teachers in each school were surveyed using a questionnaire with six
subscales, each of which gauged the degree of emphasis devoted to an
approach to reading instruction. The questionnaire had been developed
using factor analysis on data from a fourth district in an earlier study. These
provided the independent variables in the meta-analysis, which were the
school means across teachers on the six subscales.

The pretest and posttest data came from two consecutive yearly
administrations of a statewide achievement test that reported school means
and standard deviations in six content areas for two grade levels (third and
fifth) in each school. The effect size index used was the bias-corrected,
pretest-posttest difference between school means at a given grade level in a
content area, divided by the pooled standard deviation across the two years.
The order of subtraction was such that a positive difference showed
improvement. The study was replicated in the six content areas at both
grade levels in each of the 33 schools in three volunteer districts, so there
was a total of 396 effect sizes to serve as dependent variables in the meta-
analysis.

The meta-analysis was used to evaluate the relationships between the six
instructional variables and the achievement growth effect sizes at the school
level. Each instructional variable was studied as it related individually to
growth and as a unique correlate of growth in a six-predictor model. Each
of the six content areas at each of the grade levels was analyzed separately.
The results of the meta-analysis were interpretable and were generally
consistent with expectations based on an extensive literature review for
these variables.

A comparison of 2 years of achievement test data for one school would
not have been very interesting. Although the school might develop
hypotheses to help it explain the observed direction and degree of growth,
there are far too many plausible competing explanations for the difference
for the results to have broader interest for insights about instruction. Effects
of noninstructional events such as teacher turnover, test form calibrations,
and student aptitude could also produce change over a 1-year time interval,
for example. However, at least some of these and other rival explanations
become less plausible if instruction-achievement relationships are observed
across replicates, as they were in this study. Indeed, only through the
availability of replications of the fundamental growth study design was it



possible to relate instructional characteristics of the schools with school-
level differences among gains.

Example 2: Replicates of a Static Groups Comparison Design

The building block in this study was a static groups comparison design,
in which intact groups are randomly assigned to treatments (Campbell &
Stanley, 1963). Schafer, Swanson, Bené, and Newberry (2001) studied the
effects of a treatment for high school teachers on achievement of their
students. The treatment consisted of receiving (vs. not receiving) a
workshop centering on an element of an instructional method (use of
rubrics).

Within each of four content areas, districts nominated teacher pairs, also
nominating a class for each member of each pair with comparable abilities.
The researchers had 46 teacher pairs who completed the study, evenly
divided among the four content areas (i.e., 92 teachers and 3,191 of their
students supplied data that were analyzed in the study).

The teachers in each pair were randomly assigned to treatment or control
conditions. The respective workshops on ways to use rubrics instructionally
(there were four workshops, one for each content area) were received by the
teachers in the treatment group; the other 46 teachers were excused. All 92
teachers then returned to their regular classrooms. At the end of the study’s
duration, each student completed a test in the appropriate content area. Each
test had two sections, a selected-response part and a constructed-response
part. It was hypothesized that there might be a greater effect on the
constructed-response sections since they were scored using the rubrics that
were discussed in the workshops, so effect sizes were defined separately for
the two item formats. Each effect size was the difference between the means
of the teacher pair’s two classes divided by the pooled standard deviation
and was scaled such that a positive effect size favored the treatment.

This study was included within a larger study that necessitated more than
one form of the test, so there were three forms in each content area. They
were distributed randomly within each classroom, which yielded 276 effect
sizes in all, across the four content areas: six effect sizes (three forms for
each of the two formats) for each of the 46 teacher pairs.

Using meta-analysis, it was possible to synthesize the results of these
disparate conditions (six nonequated test scores in each of four distinct



content areas) and to differentiate the findings by contents and by item
types. The pattern of outcomes was interpretable and related to prior
literature and the research context.

There are too many plausible explanations other than the workshops for
observed achievement differences between the two intact groups for any
one of this study’s single-replicate designs, in isolation, to be interesting as
evidence that the independent variable caused differences between the
groups. Using meta-analysis, however, it was possible to synthesize
findings from these multiple parallel replications in order to enhance the
ability to draw inferences from the overall results.

Example 3: Replicates of a Correlated-Groups Design

The building block in the third example was a correlated-groups design,
in which there are paired observations, one member from one condition and
the other from another condition. Schafer, Gagné, and Lissitz (2005) were
interested in studying whether trained scorers could be resistant to variation
in quality of expression when grading essays, where quality of expression
was irrelevant to the response characteristics being scored. Working with a
statewide test that measured two writing content areas and four nonwriting
content areas using single student answer booklets with exclusively
constructed-response formats, they selected 130 already scored booklets,
half (65) of which were scored high and half (65) low in all six content
areas, and used trained professionals to improve the quality of expression
(but not scored response characteristics) in the booklets that were scored
low and deteriorate the quality of expression in the booklets that were
scored high. The new booklets were rated by trained scorers, interspersed
among a larger sample of booklets that came from the next year’s state
administration.

The basic replicate in their study was the item. There were 81 items in
each booklet that were studied, ranging from 3 in the writing content area to
30 in mathematics. Each item was responded to by 130 students, and each
student had two scores, one for the original response and one for the altered
response. The two scores that were of interest in the research were the score
from the poorer expression condition and the score from the better
expression condition.



The effect size index was defined for each item as the mean from the
better expression condition minus the mean from the poorer expression
condition, divided by the square root of the average of the item variances
from the two conditions. The standard error of the effect size took the
correlation between the two conditions across students into account. The
independent variable in the meta-analysis was the content areas.

The effectiveness of the manipulation was supported by the sizable effect
sizes found for the two writing content areas. The negligible effect sizes
found in the other four content areas supported the ability of the raters to
resist characteristics of expression when grading other aspects of student
responses.

The basic replicate design in this example is stronger than in the other
examples since it is fundamentally a repeated-measures design. For any one
replicate (item), however, the information is too sparse to reach interesting
conclusions; only one content would be studied, the item may have
characteristics that limit the degree to which its finding could be
generalized, and the effectiveness of the manipulation could not have been
evaluated, for example. But by using multiple replications of the basic
design, it was possible to overcome all the limitations cited and to compare
findings across the content areas.

Example 4: Replicates of a Correlational Design

The fourth example used a correlational design, in which two variables
are correlated, as its building block. Effects of test administrator
characteristics on test scores were investigated by Schafer, Papapolydorou,
Rahman, and Parker (2005). They studied a statewide test that included
multiple preassessment activities such as discussions, demonstrations, and
projects and was administered by teachers who, within schools, were
randomly assigned to randomly formed groups of students. Within each
school, the researchers found correlations between test scores on six content
areas and teacher characteristics such as gender, teaching experience, and
familiarity with the test.

Both the third and fifth grades completed the test, and both were studied
in the research. Thus, the basic replicate in this study was the school–grade
level combination. Only schools that showed variation among the teacher
administrators were included for the analysis of any given characteristic.



The effect size measure in this study was the correlation coefficient.
There were five teacher-administrator characteristics, six tested content
areas, and two grade levels, so there were as many as 60 correlations
possible at each school. These were treated as unrelated correlation sources
and analyzed separately in 60 meta-analyses. To enhance the ability to
generalize to other contexts, the researchers used mixed model analyses as
recommended by Hedges and Vevea (1998).

The findings were interpreted to support the assignment of examiners to
test groups without regard for their effects on scores. Had the study been
restricted to one grade at one school, the sample size would have been too
small, there would have been too few test groups, and the breadth of
possible variables that could be confounded with examiner characteristics
for a small number of teachers would have meant that the results would not
have been very interesting. The large number of school-grade combinations
alone enhanced the significance of the research, as well as the ability to
evaluate consistency between the results for different grades and different
content areas.

DISCUSSION

This chapter advocated the use of replicated field studies by planning
replications when doing research in field settings, thus capitalizing on the
availability of multiple study venues usually found in the field. Four
examples of replicated field studies were presented. The examples illustrate
not only different basic designs but also ways in which replicated field
studies have been synthesized through meta-analysis, thus enhancing the
inferences that they can yield. Furthermore, when replicated field studies
are used, it is possible to plan for the measurement and analysis of variables
that could prove useful to model effect sizes in a meta-analysis (such as the
instructional variables in Example 1). Fortunately, meta-analysis for a
replicated field study is far easier to implement than a traditional meta-
analysis of a disparate literature because there are fewer challenges such as
differences in design, incompleteness of information, and inconsistencies in
reporting results across studies.



Best Practices in Replication

A researcher who is planning to use a replicated field study design must
make several decisions. Some of these are discussed here.

Choice of Basic Design

The strongest design that can be used should be chosen. When the basic
design is stronger, so are the inferences that can be derived from each
replicate and thus from the meta-analysis across replicates. Cook and
Campbell (1979) provide a useful overview of designs that are appropriate
for applied research and discuss their comparable strengths and weaknesses.

It is important to be clear what variables are independent and dependent
in the basic design. If the independent variable can be assigned to groups,
the researcher should capitalize on that, which was done in two of the
examples. It was possible to manipulate the workshop in the second
example and to assign teachers randomly to groups in the fourth.

The Effect Size Measure

The size of the effect for each replicate must be represented in terms of
both direction and strength of relationship between independent and
dependent variables. It must result in a normally distributed index that has a
known (or estimable) variance. Rosenthal (1994) provides several
possibilities. Three common examples that depend on how the independent
and dependent variables are scaled are the correlation coefficient, r (both
variables are continuous); the log-odds ratio, L (both variables are
dichotomous); or bias-corrected d (the independent variable is a dichotomy,
and the dependent variable is continuous).

Maintaining Effect Size Independence

Effect sizes are assumed independent in a meta-analysis. That is
generally true across studies but not always within studies. There were
differences in the degrees of dependence among effect sizes in our
examples. Some dependencies were created by measuring the six content
areas in each school in the first study. These were ignored in the analysis
because each grade level and content area was analyzed separately. In the



second study, the six tests were analyzed together. However, a Bonferroni-
like correction was applied in the analyses to correct for effect size
dependencies, as discussed by Gleser and Olkin (1994). The items were
independent in the third example, except that they appeared in the same
positions across the booklets; this was not reflected in the analysis. The
fourth example was much like the first in that each school produced several
effect sizes, but they were analyzed separately.

Care should be taken in replicated field studies to maintain separation
among the sites at which the replications occur. Sharing of information
among participants can threaten effect size independence across
replications. This could have been a problem in the third example, for
instance.

The Variables to Be Measured

It is an advantage in any meta-analysis to measure variables that might be
related to the effect size across studies (these are usually called study
characteristics). In replicated field studies, these would be replicate
characteristics. To develop a list of possible replicate characteristics that
would be useful to measure, a researcher could think about how he or she
might explain why differences might appear in effect sizes across the
replicates (i.e., when might effects be larger, smaller, or even in reversed
directions, from replicate to replicate). These explanations will virtually
always be based on variables that could be measured or isolated, such as the
different content areas in all of our examples. Other such variables might be
descriptive of persons, such as their demographics or aptitudes, or of
settings such as physical characteristics of schools or classrooms. Replicate
characteristics are data that can be analyzed by correlating them, as
independent variables, to the effect sizes, as dependent variables, in the
meta-analysis, similar to what is done in multiple regression. The
possibility of assessing replicate characteristics that could be related to
effect sizes is an opportunity for creatively designing robust multistudy
research through replication.

Finally, the principle of replication can be used sequentially to study
whether effects generalize to groups, areas, or variables beyond those that
have already been studied in a research program. This may require the



researcher to involve populations beyond those available in the original
field setting.

Meta-Analysis Model

Meta-analysis is a relatively new method of data analysis. A recent
advance has been development of methods for random effects model
analyses. Hedges and Vevea (1998) describe a straightforward and
relatively simple modification that was used in the fourth example. They
provide a worked example for researchers who are interested in using
random or mixed models. Recent work has shown how hierarchical linear
modeling can be used to implement random and mixed model analyses
(Chapter 31, this volume); see Kalaian (2003) for applications that are
specifically designed for replicated field study designs. An advantage of
using a random model is that the results generalize to a population of
studies not included in the present analysis, whereas in fixed analyses, the
conclusions are restricted to the specific replications themselves. Hedges
and Vevea discuss the conditions under which each type of analysis, fixed
or random, is more appropriate.
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any studies in social science that aim to estimate the effect of an
intervention suffer from treatment selection bias, where the units
who receive the treatment may have different characteristics from

those in the control condition. These preexisting differences between the
groups must be controlled to obtain approximately unbiased estimates of
the effects of interest. For example, in a study estimating the effect of
bullying on high school graduation, students who were bullied are likely to
be very different from students who were not bullied on a wide range of
characteristics, such as socioeconomic status and academic performance,
even before the bullying began. It is crucial to try to separate out the causal
effect of the bullying from the effect of these preexisting differences
between the “treated” and “control” groups. Matching methods provide a
way to attempt to do so.

Random assignment of units to receive (or not receive) the treatment of
interest ensures that there are no systematic differences between the
treatment and control groups before treatment assignment. However,
random assignment is often infeasible in social science research, due to
either ethical or practical concerns. Matching methods constitute a growing



collection of techniques that attempt to replicate, as closely as possible, the
ideal of randomized experiments when using observational data.

There are two key ways in which the matching methods we discuss
replicate a randomized experiment. First, matching aims to select
subsamples of the treated and control groups that are, at worst, only
randomly different from one another on all observed covariates. In other
words, matching seeks to identify subsamples of treated and control units
that are “balanced” with respect to observed covariates: The observed
covariate distributions are essentially the same in the treatment and control
groups. The methods described in this chapter examine how best to choose
subsamples from the original treated and control groups such that the
distributions of covariates in the matched groups are substantially more
similar than in the original groups, when this is possible. A second crucial
similarity between a randomized experiment and a matched observational
study is that each study has two clear stages. The first stage is design, in
which the units to be compared are selected, without use of the values of the
outcome variables. Like the design of a randomized experiment, the
matches are chosen without access to any of the outcome data, thereby
preventing intentional or unintentional bias when selecting a particular
matched sample to achieve a desired result. Only after the design is set does
the second stage begin, which involves the analyses of the outcome,
estimating treatment effects using the matched sample. We only discuss
propensity score methods that are applicable at the design stage in the sense
that they do not involve any outcome data. Some methods that use
propensity scores, including some weighting techniques, can involve
outcome data, and such methods are not discussed here.

This chapter reviews the diverse literature on matching methods, with
particular attention paid to providing practical guidance based on applied
and simulation results that indicate the potential of matching methods for
bias reduction in observational studies. We first provide an introduction to
the goal of matching and a very brief history of these methods; the second
section presents the theory and motivation behind propensity scores,
discussing how they are a crucial component when using matching
methods. We then discuss other methods of controlling for covariates in
observational studies, such as regression analysis, and explain why
matching methods (particularly when combined with regression in the
analysis stage) are more effective. The implementation of matching



methods, including challenges and evaluations of their performance, is then
discussed. We conclude with recommendations for researchers and a
discussion of software currently available. Throughout the chapter, we
motivate the methods using data from the National Supported Work
Demonstration (Dehejia & Wahba, 1999; LaLonde, 1986).

Designing Observational Studies

The methods described here are relevant for two types of situations. The
first, which is arguably more common in social science research, is a
situation where all covariate and outcome data are already available on a
large set of units, but a subset of those units will be chosen for use in the
analysis. This subsetting (or “matching”) is done with the aim of selecting
subsets of the treated and control groups with similar observed covariate
distributions, thereby increasing robustness in observational studies by
reducing reliance on modeling assumptions. The main objective of the
matching is to reduce bias. But what about variance? Although discarding
units in the matching process will result in smaller sample sizes and thus
might appear to lead to increases in sampling variance, this is not always
the case because improved balance in the covariate distributions will
decrease the variance of estimators (Snedecor & Cochran, 1980). H. Smith
(1997) gives an empirical example where estimates from one-to-one
matching have lower estimated standard deviations than estimates from a
linear regression, even though thousands of observations were discarded in
the one-to-one matching, and all were used in the regression.

The second situation is one in which outcome data are not yet collected
on the units, and cost constraints prohibit measuring the outcome variables
on all units. In that situation, matching methods can help choose for follow-
up the control units most similar to those in the treated group. The matching
identifies those control units who are most similar to the treated units so
that rather than random samples of units being discarded, the units
discarded are those most irrelevant as points of comparison with the treated
units. This second situation motivated much of the early work in matching
methods (Althauser & Rubin, 1970; Rubin, 1973a, 1973b), which compared
the benefits of choosing matched versus random samples for follow-up.

Matching methods can be considered as one method for designing an
observational study, in the sense of selecting the most appropriate data for



reliable estimation of causal effects, as discussed in Cochran and Rubin
(1973), Rubin (1977, 1997, 2004), Rosenbaum (1999, 2002), and Heckman,
Hidehiko, and Todd (1997). These papers stress the importance of carefully
designing an observational study by making appropriate choices when it is
impossible to have full control (e.g., randomization). The careful design of
an observational study must involve making careful choices about the data
used in making comparisons of outcomes in treatment and control
conditions.

Other approaches that attempt to control for covariate differences
between treated and control units include regression analysis or selection
models, which estimate parameters of a model for the outcome of interest
conditional on the covariates (and a treatment/control indicator). Matching
methods are preferable to these model-based adjustments for two key
reasons. First, matching methods do not use the outcome values in the
design of the study and thus preclude the selection of a particular design to
yield a desired result. As stated by Rubin (2001),
 

Arguably, the most important feature of experiments is that we must decide on the way data will
be collected before observing the outcome data. If we could try hundreds of designs and for
each see the resultant answer, we could capitalize on random variation in answers and choose
the design that generated the answer we wanted! The lack of availability of outcome data when
designing experiments is a tremendous stimulus for “honesty” in experiments and can be in
well-designed observational studies as well. (p. 169)

Second, when there are large differences in the covariate distributions
between the groups, standard model-based adjustments rely heavily on
extrapolation and model-based assumptions. Matching methods highlight
these differences and also provide a way to limit reliance on the inherently
untestable modelling assumptions and the consequential sensitivity to those
assumptions.

Matching methods and regression-based model adjustments should also
not be seen as competing methods but rather as complementary, which is a
decades-old message. In fact, as discussed earlier, much research over a
period of decades (Cochran & Rubin, 1973; Ho, Imai, King, & Stuart, 2007;
Rubin, 1973b, 1979; Rubin & Thomas, 2000) has shown that the best
approach is to combine the two methods by, for example, doing regression
adjustment on matched samples. Selecting matched samples reduces bias
due to covariate differences, and regression analysis on those matched
samples can adjust for small remaining differences and increase efficiency



of estimates. These approaches are similar in spirit to the recent “doubly
robust” procedures of Robins and Rotnitzky (2001), which provide
consistent estimation of causal effects if either the model of treatment
assignment (e.g., the propensity scores) or the model of the outcome is
correct, although these later methods are more sensitive to a correctly
specified model used for weighting and generally do not have the clear
separation of stages of design and analysis that we advocate here.

The National Supported Work Demonstration

The National Supported Work (NSW) Demonstration was a federally and
privately funded randomized experiment done in the 1970s to estimate the
effects of a job training program for disadvantaged workers. Since a series
of analyses beginning in the 1980s (Dehejia & Wahba, 1999, 2002;
LaLonde, 1986; J. Smith & Todd, 2005), the data set from this study has
become a canonical example in the literature on matching methods.

In the NSW Demonstration, eligible individuals were randomly selected
to participate in the training program. Treatment group members and
control group members (those not selected to participate) were followed up
to estimate the effect of the program on later earnings. Because the NSW
program was a randomized experiment, the difference in means in the
outcomes between the randomized treated and control groups is an unbiased
estimate of the average treatment effect for the subjects in the randomized
experiment, and indicated that, on average, among all male participants, the
program raised annual earnings by approximately $800.

To investigate whether certain nonexperimental methods yielded a result
similar to that from the randomized experiment, LaLonde (1986) attempted
to use certain nonexperimental methods to estimate the treatment effect,
with the experimental estimate of the treatment effect as a benchmark.
LaLonde used, in analogy with then current econometric practice, two
sources of comparison units, both large national databases: the Panel
Survey of Income Dynamics (PSID) and the Current Population Survey
(CPS). LaLonde found that the nonexperimental methods gave a wide range
of impact estimates, ranging from approximately–$16,000 to $700, and
concluded that it was difficult to replicate the experimental results with any
of the nonexperimental methods available at that time.



In the 1990s, Dehejia and Wahba (1999) used propensity score matching
methods to estimate the effect of the NSW program, using comparison
groups similar to those used by LaLonde. They found that most of the
comparison group members used by LaLonde were in fact very dissimilar
to the treated group members and that by restricting the analysis to the
comparison group members who looked most similar to the treated group,
they were able to replicate results found in the NSW experimental data.
Using the CPS, which had a larger pool of individuals comparable to those
in the treated group, for the sample of men with 2 years of pretreatment
earnings data available, Dehejia and Wahba (1999) obtained a range of
treatment effect estimates of $1,559 to $1,681, quite close to the
experimental estimate of approximately $1,800 for the same sample.
Although there is still debate regarding the use of nonexperimental data to
estimate the effects of the NSW program (see, e.g., Dehejia, 2005; J. Smith
& Todd, 2005), this example has nonetheless remained an important
illustration of the use of matching methods in practice.

We will use a subset of these data as an illustrative example throughout
this chapter. The “full” data set that we use has 185 treated males who had 2
years of preprogram earnings data (1974 and 1975) as well as 429
comparison males from the CPS who were younger than age 55,
unemployed in 1976, and had income below the poverty line in 1975. The
goal of matching will be to select the comparison males who look most
similar to the treated group on other covariates. The covariates available in
this data set include age, education level, high school degree, marital status,
race, ethnicity, and earnings in 1974 and 1975. In this chapter, we do not
attempt to obtain a reliable estimate of the effect of the NSW program but
rather use the data only to illustrate matching methods.1

Notation and Background

As first formalized by Rubin (1974), the estimation of causal effects,
whether from data in a randomized experiment or from information
obtained from an observational study, is inherently a comparison of
potential outcomes on individual units, where a unit is a physical object
(e.g., a person or a school) at a particular point in time. In particular, the
causal effect for unit i is the comparison of unit i’s outcome if unit i
receives the treatment (unit i’s potential outcome under treatment), Yi(1),



and unit i’s outcome if unit i receives the control (unit i’s potential outcome
under control), Yi(0). The “fundamental problem of causal inference”
(Holland, 1986; Rubin, 1978) is that, for each unit, we can observe only one
of these potential outcomes because each unit will receive either treatment
or control, not both. The estimation of causal effects can thus be thought of
as a missing data problem, where at least half of the values of interest (the
unobserved potential outcomes) are missing (Rubin, 1976a). We are
interested in predicting the unobserved potential outcomes, thus enabling
the comparison of the potential outcomes under treatment and control.

For efficient causal inference and good estimation of the unobserved
potential outcomes, we would like to compare groups of treated and control
units that are as similar as possible. If the groups are very different, the
prediction of the Yi(1) for the control group will be made using information
from treated units, who look very different from those in the control group,
and likewise, the prediction of the Yi(0) for the treated units will be made
using information from control units, who look very different from the
treated units.

Randomized experiments use a known randomized assignment
mechanism to ensure “balance” of the covariates between the treated and
control groups: The groups will be only randomly different from one
another on all background covariates, observed and unobserved. In
observational studies, we must posit an assignment mechanism, which
stochastically determines which units receive treatment and which receive
control. A key initial assumption in observational studies is that of strongly
ignorable treatment assignment (Rosenbaum & Rubin, 1983b), which
implies that (a) treatment assignment (W) is unconfounded (Rubin, 1990);
that is, it is independent of the potential outcomes (Y(0),Y(1)) given the
covariates (X): W⊥(Y(0), Y(1))|X, and (b) there is a positive probability of
receiving each treatment for all values of X: 0 < P(W = 1|X) < 1 for all X.
Part (b) essentially states that there is overlap in the propensity scores.
However, since below we discuss methods to impose this by discarding
units outside the region of overlap, in the rest of the chapter, we focus on
the first part of the strong ignorability assumption: unconfounded treatment
assignment, sometimes called “selection on observables” or “no hidden
bias.” Imbens (2004) discusses the plausibility of this assumption in
economics, and this issue is discussed further later in this chapter, including



tests for sensitivity to the assumption of unconfounded treatment
assignment.

A second assumption that is made in nearly all studies estimating causal
effects (including randomized experiments) is the stable unit treatment
value assumption (SUTVA; Rubin, 1980). There are two components to this
assumption. The first is that there is only one version of each treatment
possible for each unit. The second component is that of no interference: The
treatment assignment of one unit does not affect the potential outcomes of
any other units. This is also sometimes referred to as the assumption of “no
spillover.” Some recent work has discussed relaxing this SUTVA
assumption, in the context of school effects (Hong & Raudenbush, 2006) or
neighborhood effects (Sobel, 2006).

History of Matching Methods

Matching methods have been in use since the first half of the 20th
century, with much of the early work in sociology (Althauser & Rubin,
1970; Chapin, 1947; Greenwood, 1945). However, a theoretical basis for
these methods was not developed until the late 1960s and early 1970s. This
development began with a paper by Cochran (1968), which particularly
examined subclassification but had clear connections with matching,
including Cochran’s occasional use of the term stratified matching to refer
to subclassification. Cochran and Rubin (1973) and Rubin (1973a, 1973b)
continued this development for situations with one covariate, and Cochran
and Rubin (1973) and Rubin (1976b, 1976c) extended the results to
multivariate settings.

Dealing with multiple covariates was a challenge due to both
computational and data problems. With more than just a few covariates, it
becomes very difficult to find matches with close or exact values of all
covariates. An important advance was made in 1983 with the introduction
of the propensity score by Rosenbaum and Rubin (1983b), a generalization
of discriminant matching (Cochran & Rubin, 1973; Rubin, 1976b, 1976c).
Rather than requiring close or exact matches on all covariates, matching on
the scalar propensity score enables the construction of matched sets with
similar distributions of covariates.

Developments were also made regarding the theory behind matching
methods, particularly in the context of affinely invariant matching methods



(such as most implementations of propensity score matching) with
ellipsoidally symmetric covariate distributions (Rubin & Stuart, 2006;
Rubin & Thomas, 1992a, 1992b, 1996). Affinely invariant matching
methods are those that yield the same matches following an affine (e.g.,
linear) transformation of the data (Rubin & Thomas, 1992a). This
theoretical development grew out of initial work on equal percent bias-
reducing (EPBR) matching methods in Rubin (1976a, 1976c). EPBR
methods reduce bias in all covariate directions by the same percentage, thus
ensuring that if close matches are obtained in some direction (such as the
discriminant), then the matching is also reducing bias in all other directions
and so cannot be increasing bias in an outcome that is a linear combination
of the covariates. Methods that are not EPBR will infinitely increase bias
for some linear combinations of the covariates.

Since the initial work on matching methods, which was primarily in
sociology and statistics, matching methods have been growing in
popularity, with developments and applications in a variety of fields,
including economics (Imbens, 2004), medicine (D’Agostino, 1998), public
health (Christakis & Iwashyna, 2003), political science (Ho et al., 2007),
and sociology (Morgan & Harding, 2006; Winship & Morgan, 1999). A
review of the older work and more recent applications can also be found in
Rubin (2006).

PROPENSITY SCORES

In applications, it is often very difficult to find close matches on each
covariate. Rather than attempting to match on all of the covariates
individually, propensity score matching matches on the scalar propensity
score, which is the most important scalar summary of the covariates.
Propensity scores, first introduced in Rosenbaum and Rubin (1983b),
provided a key step in the continual development of matching methods by
enabling the formation of matched sets that have balance on a large number
of covariates.

The propensity score for unit i is defined as the probability of receiving
the treatment given the observed covariates: ei(X) = P(Wi = 1|X). There are
two key theorems relating to their use (Rosenbaum & Rubin, 1983b). The



first is that propensity scores are balancing scores: At each value of the
propensity score, the distribution of the covariates, X, that define the
propensity score is the same in the treated and control groups. In other
words, within a small range of propensity score values, the treated and
control groups’ observed covariate distributions are only randomly different
from each other, thus replicating a mini-randomized experiment, at least
with respect to these covariates. Second, if treatment assignment is
unconfounded given the observed covariates (i.e., does not depend on the
potential outcomes), then treatment assignment is also unconfounded given
only the propensity score. This justifies matching or forming subclasses
based on the propensity score rather than on the full set of multivariate
covariates. Thus, when treatment assignment is unconfounded, for a
specific value of the propensity score, the difference in means in the
outcome between the treated and control units with that propensity score
value is an unbiased estimate of the mean treatment effect at that propensity
score value.

Abadie and Imbens (2006) present theoretical results that provide
additional justification for matching on the propensity score, showing that
creating estimates based on matching on one continuous covariate (such as
the propensity score) is N½ consistent, but attempting to match on more than
one covariate without discarding any units is not. Thus, in this particular
case, using the propensity score enables consistent estimation of treatment
effects.

Propensity Score Estimation

In practice, the true propensity scores are rarely known outside of
randomized experiments and thus must be estimated. Propensity scores are
often estimated using logistic regression, although other methods such as
classification and regression trees (CART; Breiman, Friedman, Olshen, &
Stone, 1984), discriminant analysis, or generalized boosted models
(McCaffrey, Ridgeway, & Morral, 2004) can also be used. Matching or
subclassification is then done using the estimated propensity score (e.g., the
fitted values from the logistic regression).

In the matching literature, there has been some discussion of the effects
of matching using estimated rather than true propensity scores, especially
regarding the variance of estimates. Theoretical and analytic work has



shown that, although more bias reduction can be obtained using true
propensity scores, matching on estimated propensity scores can control
variance orthogonal to the discriminant and thus can lead to more precise
estimates of the treatment effect (Rubin & Thomas, 1992b, 1996). Analytic
expressions for the bias and variance reduction possible for these situations
are given in Rubin and Thomas (1992b). Specifically, Rubin and Thomas
(1992b) state that “with large pools of controls, matching using estimated
linear propensity scores results in approximately half the variance for the
difference in the matched sample means as in corresponding random
samples for all covariates uncorrelated with the population discriminant” (p.
802). This finding is confirmed in simulation work in Rubin and Thomas
(1996) and in an empirical example in Hill, Rubin, and Thomas (1999).
Hence, in situations where nearly all bias can be eliminated relatively
easily, matching on the estimated propensity scores is superior to matching
on the true propensity score because it will result in more precise estimates
of the average treatment effect.

Model Specification

The model specification and diagnostics when estimating propensity
scores are not the standard model diagnostics for logistic regression or
CART, as discussed by Rubin (2004). With propensity score estimation,
concern is not with the parameter estimates of the model but rather with the
quality of the matches and sometimes in the accuracy of the predictions of
treatment assignment (the propensity scores themselves). When the
propensity scores will be used for matching or subclassification, the key
diagnostic is covariate balance in the resulting matched samples or
subclasses. When propensity scores are used directly in weighting
adjustments, more attention should be paid to the accuracy of the model
predictions since the estimates of the treatment effect may be very sensitive
to the accuracy of the propensity score values themselves.

Rosenbaum and Rubin (1984); Perkins, Tu, Underhill, Zhou, and Murray
(2000); Dehejia and Wahba (2002); and Michalopoulos, Bloom, and Hill
(2004) described propensity score modelfitting strategies that involve
examining the resulting covariate balance in subclasses defined by the
propensity score. If covariates (or their squares or cross-products) are found
to be unbalanced, those terms are then included in the propensity score



specification, which should improve balance, subject to sample size
limitations.

Drake (1993) stated that treatment effect estimates are more sensitive to
misspecification of the model of the outcome than to misspecification of the
propensity score model. Dehejia and Wahba (1999, 2002) and Zhao (2004)
also provided evidence that treatment effect estimates may not be too
sensitive to the propensity score specification. However, these evaluations
are fairly limited; for example, Drake considered only two covariates.

WHEN IS REGRESSION ANALYSIS TRUSTWORTHY?

It has been known for many years that regression analysis can lead to
misleading results when the covariate distributions in the groups are very
different (e.g., Cochran, 1957; Cochran & Rubin, 1973; Rubin, 1973b).
Rubin (2001, p. 174) stated the three basic conditions that must generally be
met for regression analyses to be trustworthy, in the case of approximately
normally distributed covariates:2

1. The difference in the means of the propensity scores in the two groups
being compared must be small (e.g., the means must be less than half a
standard deviation apart), unless the situation is benign in the sense
that:
a. the distributions of the covariates in both groups are nearly

symmetric,
b. the distributions of the covariates in both groups have nearly the

same variances, and
c. the sample sizes are approximately the same.

2. The ratio of the variances of the propensity score in the two groups
must be close to 1 (e.g., 1/2 or 2 are far too extreme).

3. The ratio of the variances of the residuals of the covariates after
adjusting for the propensity score must be close to 1 (e.g., 1/2 or 2 are
far too extreme).



These guidelines arise from results on the bias resulting from regression
analysis in samples with large initial covariate bias that show that linear
regression adjustment can grossly overcorrect or undercorrect for bias when
these conditions are not met (Cochran & Rubin, 1973; Rubin, 1973b, 1979,
2001). For example, when the propensity score means are one quarter of a
standard deviation apart in the two groups, the ratio of the treated to control
group variance is 1/2, and the model of the outcome is moderately nonlinear
(y = ex/2), linear regression adjustment can lead to 300% reduction in bias. In
other words, an increase in the original bias, but 200% in the opposite
direction! Results are even more striking for larger initial bias between the
groups, where the amount of bias remaining can be substantial even if most
(in percentage) of the initial bias has been removed (see Rubin, 2001,
Table 1).

Despite these striking results, regression adjustment on unmatched data is
still a common method for attempting to estimate causal effects. Matching
methods provide a way to avoid extrapolation and reliance on the modeling
assumptions, by ensuring the comparison of treated and control units with
similar covariate distributions, when this is possible, and warning of the
inherent extrapolation in regression models when there is little overlap in
distributions.

IMPLEMENTATION OF MATCHING METHODS

We now turn to the implementation of matching methods. There are five
key steps when using matching methods to estimate causal effects. These
are (1) choosing the covariates to be used in the matching process; (2)
defining a distance measure, used to assess whether units are “similar”; (3)
choosing a specific matching algorithm to form matched sets; (4)
diagnosing the matches obtained (and iterating between [2] and [3]); and
finally, (5) estimating the effect of the treatment on the outcome, using the
matched sets found in (4) and possibly other adjustments. The following
sections provide further information on each of these steps.

Choosing the Covariates



The first step is to choose the covariates on which close matches are
desired. As discussed earlier, an underlying assumption when estimating
causal effects using nonexperimental data is that treatment assignment is
unconfounded (Rosenbaum & Rubin, 1983b) given the covariates used in
the matching process. To make this assumption plausible, it is important to
include in the matching procedure any covariates that may be related to
treatment assignment and the outcome; the most important covariates to
include are those that are related to treatment assignment because the
matching will typically be done for many outcomes. Theoretical and
empirical research has shown the importance of including a large set of
covariates in the matching procedure (Hill, Reiter, & Zanutto, 2004;
Lunceford & Davidian, 2004; Rubin & Thomas, 1996). Greevy, Lu, Silber,
and Rosenbaum (2004) provide an example where the power of the
subsequent analysis in a randomized experiment is increased by matching
on 14 covariates, even though only 2 of those covariates are directly related
to the outcome (the other 12 are related to the outcome only through their
correlation with the 2 on which the outcome explicitly depends).

A second consideration is that the covariates included in the matching
must be “proper” covariates in the sense of not being affected by treatment
assignment. It is well-known that matching or subclassifying on a variable
affected by treatment assignment can lead to substantial bias in the
estimated treatment effect (Frangakis & Rubin, 2002; Greenland, 2003;
Imbens, 2004). All variables should thus be carefully considered as to
whether they are “proper” covariates. This is especially important in fields
such as epidemiology and political science, where the treatment assignment
date is often somewhat undefined. If it is deemed to be critical to control for
a variable potentially affected by treatment assignment, it is better to
exclude that variable in the matching procedure and include it in the
analysis model for the outcome (Reinisch, Sanders, Mortensen, & Rubin,
1995) and hope for balance on it, or use principal stratification methods
(Frangakis & Rubin, 2002) to deal with it.

Selecting a Distance Measure

The next step when using matching methods is to define the “distance”
measure that will be used to decide whether units are “similar” in terms of
their covariate values. “Distance” is in quotes because the measure will not



necessarily be a proper “full-rank” distance in the mathematical sense. One
extreme distance measure is that of exact matching, which groups units
only if they have the same values of all the covariates. Because limited
sample sizes (and large numbers of covariates) make it very difficult to
obtain exact matches, distance measures that are not full rank and that
combine distances on individual covariates, such as propensity scores, are
commonly used in practice.

Two measures of the distance between units on multiple covariates are
the Mahalanobis distance, which is full rank, and the propensity score
distance, which is not. The Mahalanobis distance on covariates X between
units i and j is (Xi – Xj)Σ–1(Xi – Xj), where Σ can be the true or estimated
variance-covariance matrix in the treated group, the control group, or a
pooled sample; the control group variance-covariance matrix is usually
used. The propensity score distance is defined as the absolute difference in
(true or estimated) propensity scores between two units. See the “Propensity
Score Estimation” section for more details on estimating propensity scores.
Gu and Rosenbaum (1993) and Rubin and Thomas (2000) compare the
performance of matching methods based on Mahalanobis metric matching
and propensity score matching and find that the two distance measures
perform similarly when there are a relatively small number of covariates,
but propensity score matching works better than Mahalanobis metric
matching with large numbers of covariates (greater than 5). One reason for
this is that the Mahalanobis metric is attempting to obtain balance on all
possible interactions of the covariates (which is very difficult in
multivariate space), effectively considering all of the interactions as equally
important. In contrast, propensity score matching allows the exclusion of
terms from the propensity score model and thereby the inclusion of only the
important terms (e.g., main effects, two-way interactions) on which to
obtain balance.

As discussed below, these distance measures can be combined or used in
conjunction with exact matching on certain covariates. Combining these
distance measures with exact matching on certain covariates sets the
distance between two units equal to infinity if the units are not exactly
matched on those covariates.

Selecting Matches



Once the distance measure is defined, the next step is to choose the
matched samples. This section provides a summary of some of the most
common types of matching methods, given a particular distance measure.
These methods include nearest neighbor matching and its variations (such
as caliper matching) and subclassification methods (such as full matching).
We provide an overview of each, as well as references for further
information and examples.

Nearest Neighbor Matching

Nearest neighbor matching (Rubin, 1973a) generally selects k matched
controls for each treated unit (often, k = 1). The simplest nearest neighbor
matching uses a “greedy” algorithm, which cycles through the treated units
one at a time, selecting for each the available control unit with the smallest
distance to the treated unit. A more sophisticated algorithm, “optimal”
matching, minimizes a global measure of balance (Rosenbaum, 2002).
Rosenbaum (2002) argues that the collection of matches found using
optimal matching can have substantially better balance than matches found
using greedy matching, without much loss in computational speed.
Generally, greedy matching performs poorly with respect to average pair
differences when there is intense competition for controls and performs well
when there is little competition. In practical situations, when assessing the
matched groups’ covariate balance, Gu and Rosenbaum (1993) find that
optimal matching does not in general perform any better than greedy
matching in terms of creating groups with good balance but does do better
at reducing the distance between pairs. As summarized by Gu and
Rosenbaum (1993), “Optimal matching picks about the same controls [as
greedy matching] but does a better job of assigning them to treated units”
(p. 413).

Figure 11.1 illustrates the result of a one-to-one greedy nearest neighbor
matching algorithm implemented using the NSW data described in “The
National Supported Work Demonstration” section. The propensity score
was estimated using all covariates available in the data set. Of the 429
available control individuals, the 185 with propensity scores closest to those
of the 185 treated individuals were selected as matches. We see that there is
fairly good overlap throughout most of the range of propensity scores and



that most of the control individuals not used as matches had very low
propensity scores and so were inapposite for use as points of comparison.

When there are large numbers of control units, it is sometimes possible to
get multiple good matches for each treated unit, which can reduce sampling
variance in the treatment effect estimates. Although one-to-one matching is
the most common, a larger number of matches for each treated unit are
often possible. Unless there are many units with the same covariate values,
using multiple controls for each treated unit is expected to increase bias
because the second, third, and fourth closest matches are, by definition,
further away from the treated unit than is the first closest match, but using
multiple matches can decrease sampling variance due to the larger matched
sample size. Of course, in settings where the outcome data have yet to be
collected and there are cost constraints, researchers must balance the benefit
of obtaining multiple matches for each unit with the increased costs.
Examples using more than one control match for each treated unit include
H. Smith (1997) and Rubin and Thomas (2000).

Figure 11.1 Matches chosen using 1:1 nearest neighbor matching on the propensity score.
Black units were matched; gray units were unmatched. A total of 185 treated
units were matched to 185 control units; 244 control units were discarded.

Another key issue is whether controls can be used as matches for more
than one treated unit, that is, whether the matching should be done “with
replacement” or “without replacement.” Matching with replacement can



often yield better matches because controls that look similar to many treated
units can be used multiple times. In addition, like optimal matching, when
matching with replacement, the order in which the treated units are matched
does not matter. However, a drawback of matching with replacement is that
it may be that only a few unique control units will be selected as matches;
the number of times each control is matched should be monitored and
reflected in the estimated precision of estimated causal effects.

Using the NSW data, Dehejia and Wahba (2002) match with replacement
from the PSID sample because there are few control individuals comparable
to those in the treated group, making matching with replacement appealing.
When one-to-one matching is done without replacement, nearly half of the
treated group members end up with matches that are quite far away. They
conclude that matching with replacement can be useful when there are a
limited number of control units with values similar to those in the treated
group.

Limited Exact Matching

Rosenbaum and Rubin (1985a) illustrate the futility in attempting to find
matching treated and control units with the same values of all the covariates
and thus not being able to find matches for most units. However, it is often
desirable (and possible) to obtain exact matches on a few key covariates,
such as race or sex. Combining exact matching on key covariates with
propensity score matching can lead to large reductions in bias and can result
in a design analogous to blocking in a randomized experiment. For
example, in Rubin (2001), the analyses are done separately for males and
females, with male smokers matched to male nonsmokers and female
smokers matched to female nonsmokers. Similarly, in Dehejia and Wahba
(1999), the analysis is done separately for males and females.

Mahalanobis Metric Matching on Key Covariates Within Propensity Score
Calipers

Caliper matching (Althauser & Rubin, 1970) selects matches within a
specified range (caliper c) of a one-dimensional covariate X (which may
actually be a combination of multiple covariates, such as the propensity
score): |Xtj – Xcj| ≤ c for all treatment/control matched pairs, indexed by j.



Cochran and Rubin (1973) investigate various caliper sizes and show that
with a normally distributed covariate, a caliper of 0.2 standard deviations
can remove 98% of the bias due to that covariate, assuming all treated units
are matched. Althauser and Rubin (1970) find that even a looser matching
(1.0 standard deviations of X) can still remove approximately 75% of the
initial bias due to X. Rosenbaum and Rubin (1985b) show that if the caliper
matching is done using the propensity score, the bias reduction is obtained
on all of the covariates that went into the propensity score. They suggest
that a caliper of 0.25 standard deviations of the logit transformation of the
propensity score can work well in general.

For situations where there are some key continuous covariates on which
particularly close matches are desired, Mahalanobis matching on the key
covariates can be combined with propensity score matching, resulting in
particularly good balance (Rosenbaum & Rubin, 1985b; Rubin & Thomas,
2000). The Mahalanobis distance is usually calculated on covariates that are
believed to be particularly predictive of the outcome of interest or of
treatment assignment. For example, in the NSW Demonstration data,
Mahalanobis metric matching on the 2 years of preprogram earnings could
be done within propensity score calipers.

Subclassification

Rosenbaum and Rubin (1984) discuss reducing bias due to multiple
covariates in observational studies through subclassification on estimated
propensity scores, which forms groups of units with similar propensity
scores and thus similar covariate distributions. For example, subclasses may
be defined by splitting the treated and control groups at the quintiles of the
propensity score in the treated group, leading to five subclasses with
approximately the same number of treated units in each. That work builds
on the work by Cochran (1968) on subclassification using a single
covariate; when the conditional expectation of the outcome variable is a
monotone function of the propensity score, creating just five propensity
score subclasses removes at least 90% of the bias in the estimated treatment
effect due to each of the observed covariates. Thus, five subclasses are often
used, although with large sample sizes, more subclasses, or even variable-
sized subclasses, are often desirable. This method is clearly related to
making an ordinal version of a continuous underlying covariate.



Lunceford and Davidian (2004) assess subclassification on the propensity
score and find that subclassification without subsequent withinstrata model
adjustment (as discussed earlier) can lead to biased answers due to residual
imbalance within the strata. They suggest a need for further research on the
optimal number of subclasses, a topic also discussed in Du (1998).

Subclassification is illustrated using the NSW data in Figure 11.2, where
six propensity score subclasses were formed to have approximately equal
numbers of treated units. All units are placed into one of the six subclasses.
The control units within each subclass are given equal weight, proportional
to the number of treated units in the subclass; thus the treated and control
units in each subclass receive the same total weight.

If the balance achieved in matched samples selected using nearest
neighbor matching is not adequate, subclassification of the matches chosen
using nearest neighbor matching can be done to yield improved balance.
This is illustrated in Figure 11.3, where, after one-to-one nearest neighbor
matching, six subclasses have been formed with approximately the same
number of treated units in each subclass. This process is illustrated in Rubin
(2001) and Rubin (2007).

Full Matching

An extension of subclassification is “full matching” (Rosenbaum, 1991a,
2002), in which the matched sample is composed of matched sets
(subclasses), where each matched set contains either (a) one treated unit and
one or more controls or (b) one control unit and one or more treated units.
Full matching is optimal in terms of minimizing a weighted average of the
distances between each treated subject and each control subject within each
matched set. Hansen (2004) gives a practical evaluation of the method,
estimating the effect of SAT coaching, illustrating that, although the original
treated and control groups had propensity score differences of 1.1 standard
deviations, the matched sets from full matching differed by less than 2% of
a standard deviation. To achieve efficiency gains, Hansen (2004) also
describes a variation of full matching that restricts the ratio of the number
of treated units to the number of control units in each matched set, a method
also applied in Stuart and Green (in press).



Figure 11.2 Results from subclassification on the propensity score. Subclasses are indicated
by vertical lines. The weight given to each unit is represented by its symbol
size; larger symbols correspond to larger weight.

Figure 11.3 One-to-one nearest neighbor matching on the propensity score followed by
subclassification. Black units were matched; gray units were unmatched.
Subclasses indicated by vertical lines.

The output from full matching is illustrated using the NSW data in Figure
11.4. Because it is not feasible to show the individual matched sets (in these
data, 103 matched sets were created), the units are represented by their
relative weights. All treated units receive a weight of 1 (and thus the



symbols are all the same size). Control units in matched sets with many
control units and few treated units receive small weight (e.g., the units with
propensity scores close to 0), whereas control units in matched sets with
few control units and many treated units (e.g., the units with propensity
scores close to 0.8) receive large weight. The weighted treated and control
group covariate distributions look very similar. As in simple
subclassification, all control units within a matched set receive equal
weight. However, because there are many more matched sets than with
simple subclassification, the variation in the weights is much larger across
matched sets.

Because subclassification and full matching place all available units into
one of the subclasses, these methods may have particular appeal for
researchers who are reluctant to discard some of the control units. However,
these methods are not relevant for situations where the matching is being
used to select units for follow-up or for situations where some units have
essentially zero probability of receiving the other treatment.

Weighting Adjustments

Another method that uses all units is weighting, where observations are
weighted by their inverse propensity score (Czajka, Hirabayashi, Little, &
Rubin, 1992; Lunceford & Davidian, 2004; McCaffrey et al., 2004).
Weighting can also be thought of as the limit of subclassification as the
number of observations and the number of subclasses go to infinity.
Weighting methods are based on Horvitz-Thompson estimation (Horvitz &
Thompson, 1952), used frequently in sample surveys. A drawback of
weighting adjustments is that, as with Horvitz-Thompson estimation, the
sampling variance of resulting weighted estimators can be very large if the
weights are extreme (if the propensity scores are close to 0 or 1). Thus, the
subclassification or full matching approaches, which also use all units, may
be more appealing because the resulting weights are less variable.



Figure 11.4 Results from full matching on the propensity score. The weight given to each
unit is represented by its size; larger symbols correspond to higher weight.

Another type of weighting procedure is that of kernel weighting
adjustments, which average over multiple persons in the control group for
each treated unit, with weights defined by their distance from the treated
unit. Heckman, Ichimura, Smith, and Todd (1998) and Heckman, Ichimura,
and Todd (1998) describe a local linear matching estimator that requires
specifying a bandwidth parameter. Generally, larger bandwidths increase
bias but reduce variance by putting weight on units that are further away
from the treated unit of interest. A complication with these methods is this
need to define a bandwidth or smoothing parameter, which does not
generally have an intuitive meaning; Imbens (2004) provides some
guidance on that choice.

With all of these weighting approaches, it is still important to separate
clearly the design and analysis stages. The propensity score should be
carefully estimated, using approaches such as those described earlier, and
the weights set before any use of those weights in models relating the
outcomes to covariates.

Diagnostics for Matching Methods

Diagnosing the quality of the matches obtained from a matching method
is of primary importance. Extensive diagnostics and propensity score model



specification checks are required for each data set, as discussed by
Dehejia (2005). Matching methods have a variety of simple diagnostic
procedures that can be used, most based on the idea of assessing balance
between the treated and control groups. Although we would ideally
compare the multivariate covariate distributions in the two groups, that is
difficult when there are many covariates, and so generally comparisons are
done for each univariate covariate separately, for two-way interactions of
covariates, and for the propensity score, as the most important univariate
summary of the covariates.

At a minimum, the balance diagnostics should involve comparing the
mean covariate values in the groups, sometimes standardized by the
standard deviation in the full sample; ideally, other characteristics of the
distributions, such as variances, correlations, and interactions between
covariates, should also be compared. Common diagnostics include t tests of
the covariates, Kolmogorov-Smirnov tests, and other comparisons of
distributions (e.g., Austin & Mamdani, 2006). Ho et al. (2007) provide a
summary of numerical and graphical summaries of balance, including
empirical quantile-quantile plots to examine the empirical distribution of
each covariate in the matched samples. Rosenbaum and Rubin (1984)
examine F ratios from a two-way analysis of variance performed for each
covariate, where the factors are treatment/control and propensity score
subclasses. Rubin (2001) presents diagnostics related to the conditions
given in the previous section that indicate when regression analyses are
trustworthy. These diagnostics include assessing the standardized difference
in means of the propensity scores between the two treatment groups, the
ratio of the variances of the propensity scores in the two groups, and, for
each covariate, the ratio of the variance of the residuals orthogonal to the
propensity score in the two groups. The standardized differences in means
should generally be less than 0.25, and the variance ratios should be close to
1, certainly between 0.5 and 2, as discussed earlier.

Analysis of Outcome Data After Matching

The analysis of outcome(s) should proceed only after the observational
study design has been set in the sense that the matched samples have been
chosen, and it has been determined that the matched samples have adequate
balance. In keeping with the idea of replicating a randomized experiment,



the same methods that would be used in an experiment can be used in the
matched data. In particular, matching methods are not designed to
“compete” with modeling adjustments such as linear regression, and in fact,
the two methods have been shown to work best in combination. Many
authors have discussed for decades the benefits of combining matching or
propensity score weighting and regression adjustment (Abadie & Imbens,
2006; Heckman et al., 1997; Robins & Rotnitzky, 1995; Rubin, 1973b,
1979; Rubin & Thomas, 2000).

The intuition for using both is the same as that behind regression
adjustment in randomized experiments, where the regression adjustment is
used to “clean up” small residual covariate imbalance between the
treatment and control groups. The matching method reduces large covariate
bias between the treated and control groups, and the regression is used to
adjust for any small residual biases and to increase efficiency. These “bias-
corrected” matching methods have been found by Abadie and Imbens
(2006) and Glazerman, Levy, and Myers (2003) to work well in practice,
using simulated and actual data. Rubin (1973b, 1979), Rubin and Thomas
(2000), and Ho et al. (2007) show that models based on matched data are
much less sensitive to model misspecification and more robust than are
models fit in the full data sets.

Some slight adjustments to the analysis methods are required with some
particular matching methods. With procedures such as full matching,
subclassification, or matching with replacement, where there may be
different numbers of treated and control units at each value of the
covariates, the analysis should incorporate weights to account for these
varying weights. Examples of this can be found in Dehejia and Wahba
(1999), Hill et al. (2004), and Michalopoulos et al. (2004). When
subclassification has been used, estimates should be obtained separately
within each subclass and then aggregated across subclasses to obtain an
overall effect (Rosenbaum & Rubin, 1984). Estimates within each subclass
are sometimes calculated using simple differences in means, although
empirical (Lunceford & Davidian, 2004) and theoretical (Abadie & Imbens,
2006) work has shown that better results are obtained if regression
adjustment is used in conjunction with the subclassification. When
aggregating across subclasses, weighting the subclass estimates by the
number of treated units in each subclass estimates the average treatment
effect for the units in the treated group; if there was no matching done



before subclassification, weighting by the overall number of units in each
subclass estimates the overall average treatment effect for the population of
treated and control units.

COMPLICATIONS IN USING MATCHING METHODS

Overlap in Distributions

In some analyses, some of the control units may be very dissimilar from
all treated units, or some of the treated units may be very dissimilar from all
control units, potentially exhibited by propensity scores outside the range of
the other treatment group. Thus, it is sometimes desirable to explicitly
discard units with “extreme” values of the propensity score—for example,
treated units for whom there are no control units with propensity score
values as large. Doing the analysis only in the areas where there is
distributional overlap—that is, with “common support” (regions of the
covariate space that have both treated and control units)—will lead to more
robust inference. This, in essence, is what matching is usually attempting to
do; defining the area of common support is a way to discard units that are
unlike all units in the other treatment group.

However, it is often difficult to determine whether there is common
support in multidimensional space. One way of doing so is to examine the
overlap of the propensity score distributions. This is illustrated in Dehejia
and Wahba (1999), where control units with propensity scores lower than
the minimum propensity score for the treated units are discarded. A second
method of examining the multivariate overlap involves examining the
“convex hull” of the covariates, essentially identifying the multidimensional
space that allows interpolation rather than extrapolation (King & Zeng,
2007). Imbens (2004) also discusses these issues in an economic context.

Missing Covariate Values

Most of the literature on matching and propensity scores assumes fully
observed covariates, so that models such as logistic regression can be used
to estimate the propensity scores. However, there are often missing values



in the covariates, which complicates matching and propensity score
estimation. Two complex statistical models used to estimate propensity
scores in this case are pattern mixture models (Rosenbaum & Rubin, 1984)
and general location models (D’Agostino & Rubin, 2000). A key
consideration when thinking about missing covariate values is that the
pattern of missing covariates can be prognostically important, and in such
cases, the methods should condition on the observed values of the
covariates and on the observed missing data indicators.

There has not been much theoretical work done on the appropriate
procedures for dealing with missing covariate values. Multiple researchers
have done empirical comparisons of methods, but this is clearly an area for
further research. D’Agostino, Lang, Walkup, and Morgan (2001) compare
three simpler methods of dealing with missing covariate values: The first
uses only units with complete data and discards all units with any missing
data, the second does a simple imputation for missing values and includes
indicators for missing values in the propensity score model, and the third
fits separate propensity score models for each pattern of missing data (a
pattern mixture approach, as in Rosenbaum & Rubin, 1984). All three
methods perform well in terms of creating well-matched samples. They find
that the third method performs the best, evaluated by treating the original
complete-case data set (i.e., all individuals with no missing values) as the
“truth,” imposing additional nonignorable missing data values on that
complete-case data set and examining which method best reproduces the
estimate observed in the original complete-case data, given the imposed
missingness. Song, Berlin, Lee, Gao, and Rotheram-Borus (2001) compare
two methods of using propensity scores with missing covariate data. The
first uses mean imputation for the missing values and then estimates the
propensity scores. The second multiply imputes the covariates (Rubin,
1987) and estimates propensity scores in each “complete” data set. A mixed
effects model is used to analyze the longitudinal outcome data in each data
set, and the multiple imputation combining rules are used to obtain one
estimate of the treatment effect. Results are similar using the two methods.
Both methods show that the covariates are very poorly balanced between
the treated and control groups, and that good matches are hard to find (a
finding that standard modeling approaches would not necessarily have
discovered). Hill (2004) finds that methods using multiple imputation work



better than complete data or complete variable methods (which use only
units with complete data or only variables with complete data).

Unobserved Variables

A critique of any observational study is that there may be unobserved
covariates that affect both treatment assignment and the outcome, thus
violating the assumption of unconfounded treatment assignment. The
approach behind matching is that of dealing as well as possible with the
observed covariates; close matching on the observed covariates will also
lessen the bias due to unobserved covariates that are correlated with the
observed covariates. However, there may still be concern regarding
unobserved differences between the treated and control groups.

The assumption of unconfounded treatment assignment can never be
directly tested. However, some researchers have proposed tests in which an
estimate is obtained for an effect that is “known” to be zero, such as the
difference in a pretreatment measure of the outcome variable (Imbens,
2004) or the difference in outcomes between multiple control groups
(Rosenbaum, 1987b). If the test indicates that the effect is not equal to zero,
then the assumption of unconfounded treatment assignment is deemed to be
less plausible.

Analyses can also be performed to assess sensitivity to an unobserved
variable. Rosenbaum and Rubin (1983a) extend the ideas of Cornfield et al.
(1959), who examined how strong the correlations would have to be
between a hypothetical unobserved covariate and both treatment assignment
and the outcome to make the observed estimate of the treatment effect be
zero. This approach is also discussed and applied to an economic
application in Imbens (2003). Rosenbaum (1991b) describes a sensitivity
analysis for case control studies and discusses how sensitivity could also be
assessed in situations where there are multiple sources of control units
available—some closer on some (potentially unobserved) dimensions and
others closer on other (potentially unobserved) dimensions. See Stuart and
Rubin (in press) for another example of using multiple sources of control
units.

Multiple Treatment Doses



Throughout this discussion of matching, it has been assumed that there
are just two groups: treated and control. However, in many studies, there are
actually multiple levels of the treatment (e.g., doses of a drug). Rosenbaum
(2002) summarizes two methods for dealing with multiple treatment levels.
In the first method, the propensity score is still a scalar function of the
covariates (Joffe & Rosenbaum, 1999). This method uses a model such as
an ordinal logit model to match on a linear combination of the covariates.
This is illustrated in Lu, Zanutto, Hornik, and Rosenbaum (2001), where
matching is used to form pairs that balance covariates but differ markedly in
dose of treatment received. This differs from the standard matching setting
in that there are not clear “treatment” and “control” groups, and thus any
two subjects could conceivably be paired. An optimal matching algorithm
for this setting is described and applied to the evaluation of a media
campaign against drug abuse. In the second method, each of the levels of
treatment has its own propensity score (e.g., Imbens, 2000; Rosenbaum,
1987a), and each propensity score is used one at a time to estimate the
distribution of responses that would have been observed if all units had
received that treatment level. These distributions are then compared.

Encompassing these two methods, Imai and van Dyk (2004) generalize
the propensity score to arbitrary treatment regimes (including ordinal,
categorical, and multidimensional). They provide theorems for the
properties of this generalized propensity score (the propensity function),
showing that it has properties similar to that of the propensity score for
binary treatments in that adjusting for the low-dimensional (not always
scalar, but always low-dimensional) propensity function balances the
covariates. They advocate subclassification rather than matching and
provide two examples as well as simulations showing the performance of
adjustment based on the propensity function.

Diagnostics are especially crucial in this setting because it becomes more
difficult to assess the balance of the resulting samples when there are
multiple treatment levels. It is even unclear what balance precisely means in
this setting; does there need to be balance among all of the levels or only
among pairwise comparisons of dose levels? Future work is needed to
examine these issues.

EVALUATION OF MATCHING METHODS



Two major types of evaluations of matching methods have been done, one
using simulated data and another trying to replicate results from
randomized experiments using observational data. Simulations that
compare the performance of matching methods in terms of bias reduction
include Cochran and Rubin (1973), Rubin (1973a, 1973b, 1979), Rubin and
Thomas (2000), Gu and Rosenbaum (1993), Frolich (2004), and Zhao
(2004). These generally include relatively small numbers of covariates
drawn from known distributions. Many of the results from these simulations
have been included in the discussions of methods provided in this chapter.

A second type of evaluation has attempted to replicate the results of
randomized experiments using observational data. Glazerman et al. (2003)
summarize the results from 12 case studies that attempted to replicate
experimental estimates using nonexperimental data, all in the context of job
training, welfare, and employment programs with earnings as the outcome
of interest. The nonexperimental methods include matching and covariance
adjustment. From the 12 studies, they extract 1,150 estimates of the bias
(approximately 96 per study), where bias is defined as the difference
between the result from the randomized experiment and the result using
observational data. They determine that it is in general difficult to replicate
experimental results consistently and that nonexperimental estimates are
often dramatically different from experimental results. However, some
general guidance can be obtained.

Glazerman et al. (2003) find that one-to-one propensity score matching
performs better than other propensity score matching methods or non–
propensity score matching and that standard econometric selection
correction procedures, such as instrumental variables or the Heckman
selection correction, tend to perform poorly. As discussed earlier, their
results also show that combining methods, such as matching and covariance
adjustment, is better than using those methods individually. They also stress
the importance of high-quality data and a rich set of covariates, and they
discuss the difficulties in trying to use large publicly available data sets for
this purpose. However, there are counterexamples to this general guidance.
For example, using the NSW data, Dehejia and Wahba (1999) found that
propensity score matching methods using a large, publicly available
national data set replicated experimental results very well.



A number of authors, particularly Heckman and colleagues, use data
from the U.S. National Job Training Partnership Act (JTPA) study to
evaluate matching methods (Heckman et al., 1997; Heckman, Ichimura,
Smith, & Todd, 1998; Heckman, Ichimura, & Todd, 1998). Some of their
results are similar to those of Glazerman et al. (2003), particularly stressing
the importance of high-quality data. Matching is best able to replicate the
JTPA experimental results when (a) the same data sources are used for the
participants and nonparticipants, thereby ensuring similar covariate
meaning and measurement; (b) participants and nonparticipants reside in
the same local labor markets; and (c) the data set contains a rich set of
covariates to model the probability of receiving the treatment. Reaching
somewhat similar conclusions, Michalopoulos et al. (2004) use data on
welfare-to-work programs that had random assignment and again find that
within-state comparisons have less bias than out-of-state comparisons. They
compare estimates from propensity score matching, ordinary least squares,
a fixed-effects model, and a random-growth model and find that no method
is consistently better than the others but that the matching method was more
useful for diagnosing situations in which the data set was insufficient for the
comparison. Hill et al. (2004) also stress the importance of matching on
geography as well as other covariates; using data from a randomized
experiment of a child care program for low-birth-weight children and
comparison data from the National Longitudinal Study of Youth, they were
able to replicate well the experimental results using matching with a large
set of covariates, including individual-level and geographic area–level
covariates. Ordinary least squares with the full set of covariates or matching
with a smaller set of covariates did not perform as well as the propensity
score matching with the full set of covariates. Agodini and Dynarski (2004)
describe an example where matching methods highlighted the fact that the
data were insufficient to estimate causal effects without heroic assumptions.

ADVICE TO AN INVESTIGATOR

To conclude, this section provides advice to investigators interested in
implementing matching methods.



Control Group and Covariate Selection

As discussed in Cochran (1965), Cochran and Rubin (1973), and
Rosenbaum (1999), a key to estimating causal effects with observational
data is to identify an appropriate control group, ideally with good overlap
with the treated group. Care should be taken to find data sets that have units
similar to those in the treated group, with comparable covariate meaning
and availability. Approximations for the maximum percent bias reduction
possible can be used to determine which of a set of control groups are likely
to provide the best matches or to help guide sample sizes and matching
ratios (Rubin, 1976c; Rubin & Thomas, 1992b, 1996). Large pools of
potential controls are beneficial, as many articles show that much better
balance is achieved when there are many controls available for the
matching (Rubin, 1976c; Rubin & Thomas, 1996). As discussed earlier,
researchers should include all available covariates in the propensity score
specification; excluding potentially relevant covariates can create bias in the
estimation of treatment effects, but including potentially irrelevant
covariates will typically not reduce the quality of the matches much (Rubin
& Thomas, 1996).

Distance Measure

Once the control pool is selected, propensity score matching is the most
effective method for reducing bias due to many covariates (Gu &
Rosenbaum, 1993; Rosenbaum & Rubin, 1985b). As discussed earlier,
propensity scores can be estimated using logistic regression, and the
propensity score specification should be assessed using a method such as
that in the “Model Specification” subsection. This generally involves
examining the balance of covariates in subclasses defined by the propensity
score. If there are a few covariates designated as particularly related to the
outcome, and thus it is considered desirable to obtain especially close
matches on those covariates, Mahalanobis matching on those key covariates
can be done within propensity score calipers (Rosenbaum & Rubin, 1985b;
Rubin & Thomas, 2000).

Recommended Matching Methods



Our advice for the matching method itself is very general: Try a variety
of methods and use the diagnostics discussed earlier to determine which
approach yields the most closely matched samples. Since the design and
analysis stages are clearly separated and the outcome is not used in the
matching process, trying a variety of methods and selecting the one that
leads to the best covariate balance cannot bias the results. Although the best
method will depend on the individual data set, below we highlight some
methods that are likely to produce good results for the two general
situations considered in this chapter.

To Select Units for Follow-Up

For the special case of doing matching for the purpose of selecting well-
matched controls for follow-up (i.e., when the outcome values are not yet
available), optimal matching is generally best for producing well-matched
pairs (Gu & Rosenbaum, 1993). Optimal matching aims to reduce a global
distance measure, rather than just considering each match one at a time, and
thus reconsiders earlier matches if better overall balance could be obtained
by breaking that earlier match. Further details are given in the “Nearest
Neighbor Matching” subsection. However, if overall balanced samples are
all that is desired (rather than specifically matched pairs), then an easier and
more straightforward nearest neighbor greedy matching algorithm can be
used to select the controls.

Researchers should also consider whether it is feasible (or desirable) to
obtain more than one matched control for each treated unit (or even some
treated units), as discussed earlier. With relatively small control pools, it
may be difficult to obtain more than one match for each treated unit and still
obtain large reductions in bias. However, with larger control pools, it may
be possible to obtain more than one match for each treated unit without
sacrificing bias reduction. This decision is also likely to involve cost
considerations.

If Outcome Data Are Already Available

When the outcome values are already available, first put the outcome
values away when matching! Then, a variety of good methods exist and
should be considered and tried. In particular, one-to-one propensity score



matching is often a good place to start (or k-to-one if there are many
controls relative to the number of treated units). If there is still substantial
bias between the groups in the matched samples (e.g., imbalance in the
propensity score of more than 0.5 standard deviations), the nearest neighbor
matching can be combined with subclassification on the matched samples,
as discussed earlier. Full matching and subclassification on the full data sets
also often work well in practice, where full matching can be thought of as in
between the two extremes of one-to-one matching and weighting.

Outcome Analysis

After matched samples are selected, the outcome analysis can proceed:
linear regression, logistic regression, hierarchical modeling, and so on. As
discussed earlier, results should be less sensitive to the modeling
assumptions and thus should be fairly insensitive to the model specification,
as compared with the same analysis on the original unmatched samples.
With procedures such as full matching, subclassification, or matching with
replacement, where there may be different numbers of treated and control
units at each value of the covariates, the analysis should incorporate
weights to account for these varying distributions.

SOFTWARE

A variety of software packages are currently available to implement
matching methods. These include multiple R packages (MatchIt, Ho, Imai,
King, & Stuart, 2006; twang, Ridgeway, McCaffrey, & Morral, 2006;
Matching, Sekhon, 2006), multiple Stata packages (Abadie, Drukker, Herr,
& Imbens, 2004; Becker & Ichino, 2002; Leuven & Sianesi, 2003), and
SAS code for propensity score matching (D’Agostino, 1998; Parsons,
2001). A major benefit of the R packages (particularly MatchIt and twang)
is that they clearly separate the design and analysis stages and have
extensive propensity score diagnostics. The Stata and SAS packages and
procedures do not explicitly separate these two stages.

NOTES



1. The data for this example are available at http://www.nber.org/%7Erdehejia/nswdata.html and
in the MatchIt matching package for R, available at http://gking.harvard.edu/matchit.

2. With nonnormally distributed covariates, the conditions are even more complex.
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AN INTRODUCTION TO META-
ANALYSIS

 
SPYROS KONSTANTOPOULOS

esearchers in the social sciences often already have access to
completed studies in the literature that relate to or address their
hypotheses. How best, then, to organize and summarize findings from

these studies in order to identify and exploit what is known and focus
research on promising areas? While narrative summaries and analyses of
the literature are important (and the norm), quantitative research synthesis
or meta-analysis is currently considered a best practice across many
disciplines (see Cooper & Hedges, 1994; Hedges & Olkin, 1985).

Meta-analysis refers to quantitative methods of synthesizing empirical
research evidence from a sample of studies that examine a certain topic and
test comparable hypotheses (Hedges & Olkin, 1985). The first step in meta-
analysis involves describing the results of each study via numerical
indicators (e.g., estimates of effect sizes such as a standardized mean
difference, a correlation coefficient, or an odds ratio). These effect size
estimates reflect the magnitude of the association of interest in each study.
The second step involves combining the effect size estimates from each
study to produce a single indicator that summarizes the relationship of
interest across the sample of studies. Hence, meta-analytic procedures
produce summary statistics, which are then tested to determine their
statistical significance and importance.

The specific analytic techniques involved will depend on the question the
meta-analytic summary is intended to address. Sometimes the question of
interest concerns the typical or average study result, such as the effect of
some treatment or intervention, where the average effect of the treatment is



often of interest (see, e.g., Smith & Glass, 1977). In other cases, the degree
of variation in results across studies will be of primary interest, where meta-
analysis can be used to study the generalizability of employment test
validities across situations (see, e.g., Schmidt & Hunter, 1977). Meta-
analysis is also frequently used to identify the contexts in which a treatment
or intervention is most successful or has the largest effect (see, e.g., Cooper,
1989).

Meta-analytic reviews are designed to integrate empirical research with
the objective to create research generalizations; hence, one substantial
advantage of meta-analysis is the generality of the summary estimates
(Cooper & Hedges, 1994). This constitutes a unique aspect of meta-analysis
that is crucial for the external validation of the estimates (see Shadish,
Cook, & Campbell, 2002). Generally, the estimates that are produced from
meta-analyses have higher external validity than estimates reported in
single studies. Other advantages of meta-analytic reviews include the fact
that the summary estimates that are generated from such reviews can
support or refute theories (and hence facilitate the improvement of
substantive theory) and can guide future research by identifying important
issues (Cooper, 1989). In addition, from a statistical point of view, the
results of meta-analytic procedures have higher statistical power than do
indicators obtained from individual studies, which increases the probability
of detecting associations of interest (Cohn & Becker, 2003).

The term meta-analysis is sometimes used to describe the entire process
of research synthesis or integrative research review. However, more
recently, it has been used specifically for the statistical component of
research synthesis (Cooper, 1989; Cooper & Hedges, 1994). Other
components of research synthesis that take place prior to meta-analysis
include the formulation of the question of interest (or problem), the search
of the literature or data collection, and the evaluation and coding of the data
that involve the evaluation of the quality of the data and the creation of
variables and quantitative indexes (see Cooper, 1989). It is crucial to
understand that in research synthesis, as in any research, statistical methods
are only one part of the enterprise. Statistical methods cannot remedy the
problem of poor-quality data. Excellent treatments of the nonstatistical
aspects of research synthesis are available in Cooper (1989), Cooper and
Hedges (1994), and Lipsey and Wilson (2001).



EARLY STAGES OF RESEARCH SYNTHESIS

In the very early stages of meta-analytic reviews, the reviewers need to
clearly formulate a question of interest and familiarize themselves with
what theorists and empirical researchers have discussed on that specific
topic. The next step involves constructing a coding sheet to record
important information from the sample of studies collected. The coding
sheet can include general information about the authors of the study, the
year of publication of the study, the source of the study (e.g., journal title),
the research design used in the study (e.g., correlational or experimental),
the characteristics of the individuals who participated in the study (e.g., age,
gender, numbers of participants), and the outcome measures of the study.
Most important for metaanalysis, however, the coding sheet should include
information about the summary statistics of the study. In the social sciences,
these statistical outcomes typically include means, standard deviations, and
sample sizes (for groups of individuals); correlation coefficients; odds
ratios; and the value of the test (e.g., t test) and the sample or the p value of
the test and the sample size. Cooper (1989) provides a thorough discussion
about coding sheets. Recently, software packages such as Comprehensive
Meta-Analysis (CMA), which are designed especially to conduct meta-
analysis, have offered multiple formats for entering meta-analytic data.1

The next stage involves the literature review in order to locate the
relevant studies. In this stage, it is important that the meta-analyst use
multiple sources of literature retrieval in order to ensure that useful studies
that are related directly to the question of interest are included in the sample
(see White, 1994). Common ways of conducting literature searches include
tracing references in previous relevant review studies, references in relevant
books, references in nonreview relevant studies from journals that
researchers subscribe to, references through computer searches of relevant
databases (e.g., web of science, ERIC, PsycINFO, Econ Lit, Sociological
Abstracts, Dissertation Abstracts, etc.), and references through a manual
search of journals that typically publish work on the specific topic. In
addition, informal channels of locating studies include communication with
researchers who work or have worked on the specific topic and informal
conversations with other researchers or students in conferences (see Cooper,
1989; White, 1994).



It is important at this stage that the sample of studies includes published
and unpublished work so that the sample represents accurately the number
of studies that were actually undertaken. This indicates that the inclusion of
a study in the sample should not depend on the statistical significance of the
results but on the relevance of the study. Specifically, if the sample of
studies includes only published work, it is possible that the largest or more
significant effect size estimates are overrepresented in the sample since
significant results (or larger estimates) are more likely to be published.
Hence, the estimates derived from published work form a selected
subsample, and this can lead to selection or publication bias. There are
several ways to examine publication bias. A common way to examine
publication bias is the funnel plot that plots the sample size versus the effect
size for each study (see Light & Pillemer, 1984). When the graph resembles
a funnel, publication bias seems unlikely. Another way to examine
publication bias is through a z test (see Begg, 1994). In this case, when the z
test is statistically significant, there is evidence of publication bias.
Rosenthal’s (1979) fail-safe (or file drawer) method is another well-known
technique that computes the number of missing studies (with a mean effect
of zero) that would need to be added to the analysis to yield a statistically
insignificant overall effect. Large numbers of missing studies would
indicate that publication bias is rather unlikely. A recent method, called trim
and fill, also accounts for publication bias by imputing the missing studies,
adding them to the analysis, and recomputing an overall effect size (Duval
& Tweedie, 2000). A thorough discussion about publication bias in meta-
analysis is provided by Rothstein, Sutton, and Borenstein (2005). Software
packages such as CMA provide multiple methods that examine publication
bias and assess its impact on the summary estimates.

Finally, at the evaluation stage, the reviewer needs to make critical
judgments about the quality of the data and create consistent and objective
criteria for including studies in the sample (Cooper, 1989; Wortman, 1994).
According to Cooper (1989), the validity of the study’s methods is a crucial
criterion for discarding or including data. That is, the reviewer needs to
evaluate whether the study was conducted in a way that secures the validity
of its estimates. Sometimes, reviewers decide to include a study in the
sample (or exclude it). Other times, the quality of the study can be
represented in a continuous scale and can be used to weight studies
according to their quality (i.e., higher quality studies are assigned higher



weights). Notice that a weight of zero is equivalent to excluding a study.
Shadish and Haddock (1994) demonstrate how weights that indicate the
quality of the study can be incorporated in the computation of meta-analytic
summary estimates. Of course, the inclusion of the study also depends on
whether the study provides the required information for computing
estimates related to the question of interest of the review. A thorough
discussion about data evaluation is provided by Cooper (1989) and
Wortman (1994).

META-ANALYSIS

Effect Size Estimates

Effect sizes are quantitative indexes that are used to summarize the
results of a study in meta-analysis. That is, effect sizes reflect the magnitude
of the association between variables of interest in each study. There are
many different effect sizes, and the effect size used in a meta-analysis
should be chosen so that it represents the results of a study in a way that is
easily interpretable and is comparable across studies. In a sense, effect sizes
should put the results of all studies “on a common scale” so that they can be
readily interpreted, compared, and combined. It is important to distinguish
the effect size estimate in a study from the effect size parameter (the true
effect size) in that study. In principle, the effect size estimates will vary
somewhat from study to study (sampling variation), while the effect size
parameter is in principle fixed (fixed effects models). One might think of
the effect size parameter as the estimate that would be obtained if the study
had a very large (essentially infinite) sample, so that the sampling variation
is negligible.

The choice of an effect size index will depend on the design of the
studies, the way in which the outcome is measured, the statistical analysis
used in each study, and the information provided in each study. Most of the
effect size indexes used in the social sciences will fall into one of three
families of effect sizes: the standardized mean difference family, the odds
ratio family, and the correlation coefficient family.



The Standardized Mean Difference

In many studies of the effects of a treatment or intervention that measure
the outcome on a continuous scale, a natural effect size is the standardized
mean difference. The standardized mean difference is the difference
between the mean outcome in the treatment group and the mean outcome in
the control group divided by the within-group standard deviation. That is,
the standardized mean difference is

where T is the sample mean of the outcome in the treatment group, c is the
sample mean of the outcome in the control group, and S is the within-group
standard deviation of the outcome. The corresponding standardized mean
difference parameter is

where μT is the population mean in the treatment group, μc is the population
mean outcome in the control group, and σ is the population within-group
standard deviation of the outcome. This effect size is easy to interpret since
it is just the treatment effect in standard deviation units. It can also be
interpreted as having the same meaning across studies (see Hedges &
Olkin, 1985). The sampling uncertainty of the standardized mean difference
is characterized by its variance, which is

where nT and nc are the treatment and control group sample sizes,
respectively. Note that this variance can be computed from a single
observation of the effect size if the sample sizes of the two groups within a
study are known. Because the standardized mean difference is
approximately normally distributed, the square root of the variance (the
standard error) can be used to compute confidence intervals for the true
effect size or effect size parameter δ. Specifically, a 95% confidence
interval for the effect size is given by



Several variations of the standardized mean difference are also
sometimes used as effect sizes (see Rosenthal, 1994). A standardized mean
difference can easily be computed so long as a study reports sufficient
information for its computation (e.g., means, standard deviation, sample
sizes, the value and p value of the test, etc.).

The Log-Odds Ratio

In many studies of the effects of a treatment or intervention that measures
the outcome on a dichotomous scale, a natural effect size is the log-odds
ratio. The log-odds ratio is just the log of the ratio of the odds of a particular
one of the two outcomes (the target outcome) in the treatment group to the
odds of that particular outcome in the control group. That is, the log-odds
ratio is

where pT and pc are the proportion of the treatment and control groups,
respectively, that have the target outcome. The corresponding odds ratio
parameter is

where πT and πc are the population proportions in the treatment and control
groups, respectively, that have the target outcome. The log-odds ratio is
widely used in the analysis of data that have dichotomous outcomes and is
readily interpretable by researchers who frequently encounter this kind of
data. It also has the same meaning across studies, so it is suitable for
combining (see Fleiss, 1994).

The sampling uncertainty of the log-odds ratio is characterized by its
variance, which is



where nT and nC are the treatment and control group sample sizes,
respectively. As in the case of the standardized mean difference, the log-
odds ratio is approximately normally distributed, and the square root of the
variance (the standard error) can be used to compute confidence intervals
for the true effect size or effect size parameter ω. Specifically, a 95%
confidence interval for the effect size is given by

There are several other indexes in the odds ratio family, including the risk
ratio (the ratio of proportion having the target outcome in the treatment
group to that in the control group, or pT/pC) and the risk difference (the
difference between the proportion having a particular one of the two
outcomes in the treatment group, and that in the control group, or pT – pC).
For a discussion of effect size measures for studies with dichotomous
outcomes, including the odds ratio family of effect sizes, see Fleiss (1994).
Odds ratios are often reported in studies in medicine and the health
sciences.

The Correlation Coefficient

In many studies of the relation between two continuous variables, the
correlation coefficient is a natural measure of effect size. Often, this
correlation is transformed via the Fisher z transform,

in carrying out statistical analyses. The corresponding correlation parameter
is ρ, the population correlation, and the parameter that corresponds to the
estimate z is ξ, the z transform of ρ. The advantage of this transformation is
that the variance of the Fisher z transform is independent of the correlation
coefficient and is simply a function of the sample size of the study.



Specifically, the sampling uncertainty of the z-transformed correlation is
characterized by its variance,

where n is the sample size of the study, and it is used in the same way as are
the variances of the standardized mean difference and log-odds ratio to
obtain confidence intervals. Bivariate correlations are often reported in
studies in the social sciences.

The statistical methods for meta-analysis are quite similar, regardless of
the effect size measure used. Therefore, in the rest of this chapter, we do not
describe statistical methods that are specific to a particular effect size index
but describe them in terms of a generic effect size measure Ti. We assume
that the Ti are normally distributed about the corresponding θi with known
variance vi. That is, assuming k studies and one estimate per study,

This assumption is very nearly true for effect sizes such as the Fisher z-
transformed correlation coefficient and standardized mean differences.
However, for effect sizes such as the untransformed correlation coefficient,
or the log-odds ratio, the results are not exact but remain true as large
sample approximations. For a discussion of effect size measures for studies
with continuous outcomes, see Rosenthal (1994), and for a treatment of
effect size measures for studies with categorical outcomes, see Fleiss
(1994). A nice feature of software packages such as CMA is that the allow
for transformations from one effect size estimate to another. For example, a
reviewer can enter data in CMA that initially allow the computation of a
standardized mean difference. However, once the standardized effect size
estimate is computed, CMA can transform this estimate to a correlation
coefficient, or an odds ratio, and so on (and hence the summary estimates
can be expressed in various forms).

UNIVARIATE FIXED EFFECTS MODELS



Two somewhat different statistical models have been developed for
inference about effect size data from a collection of studies, called the fixed
effects and the mixed (or random) effects models (see, e.g., Hedges &
Vevea, 1998). Fixed effects models treat the effect size parameters as fixed
but unknown constants to be estimated and usually (but not necessarily) are
used in conjunction with assumptions about the homogeneity of effect size
parameters (see, e.g., Hedges, 1982, 1994; Rosenthal & Rubin, 1982). The
logic of fixed effects models is that inferences are not about any
hypothesized population of studies but about the particular collection of
studies that is observed. The simplest fixed effects model involves the
estimation of an average effect size by combining the effect size estimates
across all studies in the sample.
Let θi be the (unobserved) effect size parameter (the true effect size) in the
ith study, let Ti be the corresponding observed effect size estimate from the
ith study, and let vi be its variance. Thus, the data from a set of k studies are
the effect size estimates T1,…,Tk and their variances v1,…,vk. The effect size
estimate Ti is modeled as the effect size parameter plus a sampling error εi.
That is,

The parameter θ is the mean effect size parameter for all of the studies. It
has the interpretation that θ is the mean of the distribution from which the
study-specific effect size parameters (θ1, θ2,…, θk) were sampled. Note that
this is not conceptually the same as the mean of θ1, θ2,…, θk, the effect size
parameters of the k studies that were observed. The effect size parameters
are in turn determined by a mean effect size β0—that is, θi = β0—which
indicates that the θis are fixed and thus

Note that in meta-analysis, the variances (the vis) are different for each of
the studies. That is, each study has a different sampling error variance. In
addition, in meta-analysis, these variances are known. Since the amount of
sampling uncertainty is not identical in every study, it seems reasonable
that, if an average effect size is to be computed across studies, it would be



desirable to give more weight in that average to studies that have more
precise estimates (or smaller variances) than those with less precise
estimates.

The weighted least squares (and maximum likelihood) estimate of β0

under the model is

where wi = 1/vi. Note that this estimator corresponds to a weighted mean of
the Ti, giving more weight to the studies whose estimates have smaller
unconditional variance (are more precise) when pooling. This is actually a
weighted regression including only the constant term (intercept).
The sampling variance v. of 0 is simply the reciprocal of the sum of the
weights,

and the standard error SE( 0) of 0 is just the square root of v·. Under this
model, 0 is normally distributed, so a 100(1 – ?) percent confidence
interval for β0 is given by

where ta is the 100α percent point of the t distribution with (k – 1) degrees
of freedom. Similarly, a two-sided test of the hypothesis that β0 = 0 at
significance level α uses the test statistic

and rejects if |Z| exceeds tα/2. Note that the same test and confidence
intervals can be computed for any individual coefficient (when multiple
predictors are included in the regression model).



A more general fixed effects model includes predictors in the regression
equation. Suppose that there are k studies and that in each study there are p
predictors. Then the effect size parameter θi for the ith study is modeled as

where β1,…, βp are unknown regression coefficients that need to be
estimated, and xi1, …, xip represent values of the p predictors for study i.
Thus, the model for Ti is written as

To compute the regression coefficients, we use the method of generalized
least squares (see appendix).

Tests for Blocks of Regression Coefficients

In the fixed effects model, researchers sometimes want to test whether a
subset β1, …, βm of the regression coefficients are simultaneously zero, that
is,

This test arises, for example, in stepwise analyses, where it is desired to
determine whether a set of m of the p predictor variables (m ≤ p) are related
to the outcome after controlling for the effects of the other predictor
variables. For example, suppose one is interested in testing the importance
of a conceptual variable such as research design, which is coded as a set of
predictors. Specifically, such a variable can be coded as multiple dummies
for randomized experiment, matched samples, nonequivalent comparison
group samples, and other quasi-experimental designs, but it is treated as one
conceptual variable, and its importance is tested simultaneously. To test this
hypothesis, we compute the statistic



where Σ11 is the variance-covariance matrix of the m regression coefficients.
The test that β1 = … = βm = 0 at the 100α percent significance level consists
of rejecting the null hypothesis if Q exceeds the 100(1 – α) percentage point
of the chi-square distribution with m degrees of freedom. If m = p, then the
procedure above yields a test that all the βj are simultaneously zero. In this
case, the test statistic Q given in (20) becomes the weighted sum of squares
due to regression (see appendix).

Example

Gender differences in field articulation ability (sometimes called visual-
analytic spatial ability) were studied by Hyde (1981). She reported
standardized mean differences from 14 studies that examined gender
differences in spatial ability tasks that call for the joint application of visual
and analytic processes (see Maccoby & Jacklin, 1974). All estimates are
positive and indicate that, on average, males scored higher than females in
field articulation. The effect size estimates are reported in column 2 of
Table 12.1. The variances of the effect size estimates are reported in column
3. The year the study was conducted is in column 4.

First, we compute the weighted mean of the effect size estimates. This
yields an overall mean estimate of 0 with a variance of v. = 0.005. The 95%
confidence interval for β0 is given by 0.40 ≤ β0 ≤ 0.69. This confidence
interval does not include zero, so the data are incompatible with the
hypothesis that β0 = 0. Alternatively, the ratio

which indicates that the overall mean is significantly different from zero
since the observed value is larger than the two-tailed critical t value at the
.05 significance level with 13 degrees of freedom (2.16).

Table 12.1 Field Articulation Data From Hyde (1981)



NOTE: ID = study ID; Year = year of study.

Second, we compute the effect of the year of the study. This yields an
estimate of 1 = –0.04, with a variance var( ) = 0.0002. The 95%
confidence interval for β1 is given by –0.07 ≤ β1 ≤ –0.01. This confidence
interval does not include 0, so the data are incompatible with the hypothesis
that β1 = 0. Alternatively, the ratio

which indicates that the year of the study effect is significantly different
from zero since the absolute observed value is larger than the twotailed
critical t value at the .05 significance level with 12 degrees of freedom
(2.18). This indicates that the effect size estimates get slightly smaller over
time. The above results are easily obtained from the second version of
CMA, developed by Hedges, Borenstein, Higgings, and Rothstein (2005).

UNIVARIATE MIXED EFFECTS MODELS

Mixed effects models treat the effect size parameters as if they were a
random sample from a population of effect parameters and estimate
hyperparameters (usually the mean and variance) describing this population



of effect parameters (see, e.g., DerSimonian & Laird, 1986; Hedges, 1983;
Schmidt & Hunter, 1977). The term mixed effects model is appropriate since
the parameter structure of these models is identical to those of the general
linear mixed model (and their important application in social sciences,
hierarchical linear models).

In this case, there is nonnegligible variation among effect size parameters
even after controlling for the factors that are of interest in the analysis. That
is, there is greater residual variation than would be expected from sampling
error alone after controlling for all of the study-level covariates. If the
researcher believes that this variation should be included in computations of
the uncertainty of the regression coefficient estimates, fixed effects models
are not appropriate because such excess residual variation has no effect on
the computation of estimates or their uncertainty in fixed effects models.
The mixed effects model is a generalization of the fixed effects model that
incorporates a component of between-study variation into the uncertainty of
the effect size parameters and their estimates.

As in fixed effects models, the simplest mixed effects model involves the
estimation of an average effect size by combining the effect size estimates
across all studies in the sample. In the mixed effects model, the effect size
parameter is modeled by a mean effect size  plus a study-specific random
effect ηi, that is,

In this model, the ηi represent differences between the effect size
parameters from study to study. The parameter τ2, often called the between-
study variance component, describes the amount of variation across studies
in the random effects (the ηis) and therefore effect parameters (the θis). It
follows that the effect size estimate Ti is modeled as

where ξi is a composite error defined by ξi = ηi + εi. Equation 22 indicates
that each effect size is an estimate of  with a variance that depends on both
vi and τ2. Hence, it is necessary to distinguish between the variance of the
effect size estimate Ti, assuming a fixed parameter θi and the variance of Ti



incorporating the variance of the parameter θi as well. The latter is the
unconditional sampling variance of Ti (denoted ). Since the sampling error
εi and the random effect ηi are assumed to be independent, and the sample
variance of ηi is , it follows that the unconditional sampling variance of Ti

is  = vi + .
The least squares (and maximum likelihood) estimate of the mean β0

under the model is

where  = 1/(vi + ) = 1/ , and  is the between-study variance component
estimate. Note that this estimator corresponds to a weighted mean of the Ti,
giving more weight to the studies whose estimates have smaller variance
(are more precise) when pooling. Also, note that the estimate of the
between-study variance is close to zero or very small, so the estimates of
the mixed effects model will be similar to those obtain from a fixed effects
model.

The sampling variance v.* of  is simply the reciprocal of the sum of the
weights,

and the standard error SE( ) of  is just the square root of v.* Under this
model,  is normally distributed, so a 100(1 – α) percent confidence
interval for β0 is given by

where ta is the 100α percent point of the t distribution with (k – 1) degrees
of freedom. Similarly, a two-sided test of the hypothesis that  = 0 at
significance level α uses the test statistic



and rejects if |Z| exceeds tα/2. Note that the same test and confidence
intervals can be computed for any individual coefficient (when multiple
predictors are included in the regression).

A more general mixed effects model includes predictors in the regression
equation. Suppose that there are k studies and that in each study, there are p
predictors. Then the effect size parameter θi for the ith study is modeled as

where ηi is a study-specific random effect with zero expectation and
variance τ2 (and all other terms have been defined previously).

Then, the Ti is modeled as

where ξi = ηi + εi is a composite residual incorporating both study-specific
random effect and sampling error. Because we assume that ηi and εi are
independent, it follows that the variance of ξi is τ2 + vi. If τ2 were known, we
could estimate the regression coefficients via weighted least squares (which
would also yield the maximum likelihood estimates of the s). The
description of the weighted least squares estimation is facilitated by
describing the model in matrix notation, and as in fixed effects models to
compute the regression coefficients, we use the method of generalized least
squares (see appendix).

Tests for Blocks of Regression Coefficients

As in the fixed effects model, we sometimes want to test whether a subset
 of the regression coefficients is simultaneously zero, that is,

This test arises, for example, in stepwise analyses, where it is desired to
determine whether a set of m of the p predictor variables (m ≤ p) is related



to the outcome after controlling for the effects of the other predictor
variables. To test this hypothesis, we compute the statistic

where ( ) is the variance-covariance matrix of the m regression
coefficients. The test that  = 0 at the 100α percent significance level
consists of rejecting the null hypothesis if Q* exceeds the 100(1 – α)
percentage point of the chi-square distribution with m degrees of freedom.

If m = p, then the procedure above yields a test that all the  are
simultaneously zero. In this case, the test statistic Q* given in Equation 29
becomes the weighted sum of squares due to regression (see appendix).

Testing Whether the Between-Studies Variance Component τ2 =
0

It seems reasonable that the greater the variation in the observed effect
size estimates, the stronger the evidence that τ2 > 0. A simple test (the
likelihood ratio test) of the hypothesis that τ2 = 0 uses the weighted sum of
squares about the weighted mean that would be obtained if τ2 = 0.
Specifically, it uses the statistic

where 0 is the estimate of β0 that would be obtained under the hypothesis
that τ2 = 0. The statistic Q has the chi-squared distribution with (k – 1)
degrees of freedom if τ2 = 0. Therefore, a test of the null hypothesis that τ2 =
0 at significance level α rejects the hypothesis if Q exceeds the 100(1 – α)
percent point of the chi-square distribution with (k – 1) degrees of freedom.

This (or any other statistical hypothesis test) should not be interpreted too
literally. The test is not very powerful if the number of studies is small or if
the conditional variances (the vi) are large (see Hedges & Pigott, 2001).
Consequently, even if the test does not reject the hypothesis that τ2 = 0, the
actual variation in effects across studies may be consistent with a
substantial range of nonzero values of τ2, some of them rather large. That is,
it is unlikely that the between-study variance is exactly zero. This suggests



that it is important to consider estimation of τ2 and use these estimates in
constructing estimates of the mean.

Estimating the Between-Studies Variance Component τ2

Estimation of τ2 can be accomplished without making assumptions about
the distribution of the random effects or under various assumptions about
the distribution of the random effects using other methods such as
maximum likelihood estimation. Maximum likelihood estimation is more
efficient if the distributional assumptions about the study-specific random
effects are correct, but these assumptions are often difficult to justify
theoretically and difficult to verify empirically. Thus, distribution-free
estimates of the between-studies variance component are often attractive.

A simple, distribution-free estimate of τ2 is given by

where a is given by

and = 1/v. Estimates of τ2 are set to 0 when Q – (k – 1) yields a negative
value since τ2, by definition, cannot be negative.

Testing the Significance of the Residual Variance Component

It is sometimes useful to test the statistical significance of the residual
variance component τ2 in addition to estimating it. The test statistic used is
QE (see appendix).

If the null hypothesis



is true, then the weighted residual sum of squares QE has a chi-square
distribution with k – p degrees of freedom (where p is the total number of
predictors, including the intercept). Therefore, the test of H0 at level α is to
reject if QE exceeds the 100(1 – α) percent point of the chi-square
distribution with (k – p) degrees of freedom.

Example

We return to our example of the studies of gender differences in field
articulation ability (data presented in Table 12.1). First we turn to the
question of whether the effect sizes have more sampling variation than
would be expected from the size of their conditional variances. Computing
the test statistic Q, we obtain Q = 24.10, which is slightly larger than 22.36,
which is the 100(1 –.05) = 95% point of the chi-square distribution with 14
– 1 = 13 degrees of freedom. Actually, a Q value of 24.10 would occur only
about 3% of the time if τ2 = 0. Thus, there is some evidence that the
variation in effects across studies is not simply due to chance sampling
variation.

The next step is to investigate how much variation there might be across
studies. Hence, we compute the estimate of τ2 (the variation of effect size
estimates across studies) using the distribution-free method described above
and τ2 = (24.10 – (14 –1)/195.38 = 0.06. Notice that this value of  is about
65% of the average sampling error variance. This indicates that the
between-study variation is not negligible in this sample.

Now, we compute the weighted mean of the effect size estimates. In this
case, the weights include the estimate of . This yields an overall mean
estimate of  = 0.55 with a variance of  = 0.01. Notice that the variance of
the weighted mean is now two times as large as in the fixed effects case.
The 95% confidence interval for  is given by 0.34 ≤  ≤ 0.76. This
confidence interval does not include 0, so the data are incompatible with the
hypothesis that  = 0. Alternatively, the ratio

which indicates that the overall mean is significantly different from zero
since the observed value is larger than the two-tailed critical t value with 13
degrees of freedom at the a = .05 significance level (2.16).



Now consider the case where the year of study is entered in the
regression equation. Since the year of study will explain between-study
variation, we need to compute the residual estimate of . The distribution-
free method of the estimation involves computing an estimate of the
residual variance component and then computing a weighted least squares
analysis conditional on this variance component estimate. Whereas the
estimates are “distribution free” in the sense that they do not depend on the
form of the distribution of the random effects, the tests and confidence
statements associated with these methods are only strictly true if the random
effects are normally distributed. The usual estimator is based on the statistic
used to test the significance of the residual variance component. It is the
natural generalization of the estimate of the between-study variance
component given, for example, by DerSimonian and Laird (1986).
Specifically, the usual estimator of the residual variance component is given
by

where QE is the test statistic used to test whether the residual variance
component is zero (the residual sum of squares from the weighted
regression using weights wi = 1/vi for each study), and c is defined in the
appendix.

First we compute the constant c as c = 174.54 and the QE as QE = 15.11.
Hence,  = (15.11 – 12)/174.54 = 0.018, which is nearly three times smaller
now. This value of  is now incorporated in the weights and the
computation of the regression coefficients. The estimated regression
coefficients are  = 3.22 for the intercept term and  = –0.04 for the effect
of year. The variances of the regression estimates are 1.26 for the intercept
term and 0.0003 for the year of study effect. The 95% confidence interval
for  is given by –0.08 ≤  ≤ –0.004. This confidence interval does not
include 0, so the data are incompatible with the hypothesis that  = 0.
Alternatively, the ratio

which indicates that the year effect is significantly different from zero since
the absolute observed value is larger than the two-tailed critical t value at



the a = .05 significance level with 12 degrees of freedom (2.18). This
indicates that the effect size estimates get smaller over time (as in the fixed
effects analyses). Again, the above results are easily obtained using the
second version of CMA by Hedges et al. (2005).

MULTIVARIATE META-ANALYSIS

In the previous sections, we portrayed methods for fitting general linear
models to the effect sizes from a series of studies when the effect size
estimates are independent. This assumption is reasonable when each study
provides only one effect size estimate (e.g., a correlation coefficient).
However, there are cases where studies provide information on two or more
effect size estimates. In such cases, the effect size estimates are correlated,
and hence the sampling errors are not independent. Appropriate analyses
should take this correlation between the effect size estimates into account.
In this section, we sketch analogues to the methods portrayed in previous
sections when the sampling errors are not independent. These methods are
essentially multivariate generalizations of the fixed and mixed effects
models given above for univariate metaanalysis. To use these methods, the
joint distribution of the nonindependent effect size estimates must be
known, which typically involves knowing both the variances and the
covariance structure of the effect size estimates. The sampling distribution
of correlated effect size estimates is discussed by Gleser and Olkin (1994).

Fixed Effects Models for Correlated Effect Size Estimates

A researcher may be interested in fixed effects models for the analysis of
the relation between study characteristics (study-level covariates) and effect
sizes. In fixed effects models, the effect size parameter is assumed to be
fixed at a certain value. The only source of variation in such models is the
sampling variation due to different samples of individuals. As in the
univariate case, natural tests of goodness of fit are provided for the fixed
effects analysis. They test the hypothesis that the variability among studies
is no greater than would be expected if all of the variation among effect size
parameters is explained by the linear model. These tests are generalizations



of the test of homogeneity of effect size and the tests of goodness of fit for
linear models given previously.

In the multivariate case, assuming there are q effect size estimates in each
study, the effect size parameter θij for the ith study and the jth estimate is
modeled as

where β1j, …, βpj are unknown regression coefficients that need to be
estimated. Hence, the Tij in each study is modeled as

To compute the regression coefficients, we use the generalized least
squares, which is also the maximum likelihood estimator (see appendix).
Once the regression estimates and their standard errors are computed, one
can construct tests and confidence intervals for individual regression
coefficients or tests for blocks of regression coefficients that are similar to
those used in the univariate fixed effects models. Tests of goodness of fit of
regression models are straightforward generalizations of those used in the
univariate general linear model.

Example: Studies of the Effects of Coaching on the SAT

A collection of 19 studies of the effects of coaching on SAT verbal and
mathematics scores was assembled by Kalaian and Raudenbush (1996). The
authors examined the question of whether the effects of coaching were
greater if the length of coaching was greater. The study-level covariate was
the log of the number of hours spent in coaching classes. The effect size
estimates are standardized mean differences expressing the difference in
SAT mathematics or verbal scores between students who received coaching
and students who did not receive any coaching. These data are summarized
in Table 12.2. Positive estimates indicate the benefits of coaching, while
negative estimates indicate higher performance for students who did not
receive coaching. Using the formulas illustrated in the appendix, we first
compute the estimates of the regression coefficients as 1 = –0.13 (the



intercept for SAT verbal standardized mean differences), 2 = 0.08 (the
association between hours of coaching and SAT verbal standardized mean
differences), 3 = –0.29 (the intercept for SAT mathematics standardized
mean differences), and 4 = 0.13 (the association between hours of coaching
and SAT verbal standardized mean differences). Then, we compute the
standard errors of the coefficients as SE( 1) = 11 = 0.22, SE( 2) = 22 =
0.07, SE( 3) = 33 = 0.22, and SE( 4) = 44 = 0.07. Finally, we compute the
individual test statistics for the four regression coefficients and obtain t1 = –
0.59, t2 = 1.12, t3 = –1.34, and t4 = 1.91. Notice that none of the two-tailed
tests is statistically significant at the .05 significance level, except t4 if we
assume a one-tailed test. Hence, it looks like hours of coaching is not
significantly associated with SAT mathematics or verbal effect size
estimates.

Mixed Models for Correlated Effect Size Estimates

When there is nonnegligible covariation among effect size parameters,
even after controlling for the factors that are of interest in the analysis, a
general linear model analysis of effect size data is more appropriate. In this
case, there is greater residual covariation than would be expected from
sampling variability alone, which indicates systematic variation between
studies. The mixed model incorporates a component of between-study
covariation into the uncertainty of effect size parameters and their
estimates, which has the effect of increasing residual variation. The
multivariate version of mixed effects models is a straightforward extension
of the univariate case.

Let’s assume that there are q effect size estimates in each study. Then, the
effect size parameter θij for the ith study is modeled as

where  are unknown regression coefficients that need to be
estimated, and ξij are study-and effect size–specific random effects. Hence,
the Tij in each study is modeled as



Estimation of the Regression Coefficients and the Covariance
Components

The regression coefficients and the covariance components can be
estimated by weighted least squares as in the case of the univariate mixed
model. The usual procedure is to first estimate the covariance components
and then reweight to estimate the regression coefficients and their standard
errors. There are usually advantages (among them software availability) in
considering the problem as a special case of the hierarchical linear model
considered in the previous section in conjunction with univariate mixed
model analyses. The multivariate mixed model analyses can be carried out
as instances of the multivariate hierarchical linear model (HLM; see Thum,
1997), estimating parameters by the method of maximum likelihood.
However, a simpler alternative is available since the sampling error
covariance matrix is known (Kalaian & Raudenbush, 1996). In particular, it
is possible to transform the within-study model so that the sampling errors
are independent (see appendix). Eventually, the model that results from this
procedure resembles a conventional two-level linear model with
independent sampling errors at the first level. Therefore, conventional
software can be used to estimate the regression coefficients and the variance
components (such as HLM).

Table 12.2 SAT Coaching Data From Kalaian and Raudenbush (1996): Selected Sample



NOTE: ID = study ID; SAT = Scholastic Assessment Test; V = verbal; M = math; VAR = variance;
COV = covariance.

Multivariate Meta-Analysis Using HLM

HLM is a software package designed especially for fitting multilevel
models, and it can be used to fit mixed effects models to effect size data
with study-level covariates (Raudenbush, Bryk, Cheong, & Congdon, 2005;
readers can refer to Chapter 31 for more information on this application of
HLM). It can also be used to fit multivariate mixed models to effect size
data in meta-analysis. Table 12.3 describes the input file for a mixed model
multivariate meta-analysis of the SAT coaching data reported by Kalaian
and Raudenbush (1996). The data for the analysis are read from a separate
file and consist of 19 pairs of effect sizes from 19 studies of the effects of
coaching on the SAT verbal and SAT math tests. The first two lines set the
maximum number of iterations the program will run (NUMIT:1000) and the
criterion for stopping iteration (STOPVAL:0.0000010000), and the third
line specifies that a linear model will be used (NONLIN: n). Lines 4 to 6
indicate the Level 1 model (LEVEL 1: MATH = VERBAL + MATH +
RANDOM) and the Level 2 models (LEVEL 2: VERBAL = INTRCPT2 +
HOURS + RANDOM/and LEVEL 2: MATH = INTRCPT2 + HOURS +



RANDOM/). Lines 7 and 8 indicate that no weights are used in the
computations (LEVELWEIGHT:NONE). Line 9 indicates that the variance
is not known (VARIANCEKNOWN:NONE), line 10 that no output file of
residuals is requested (RESFIL:N), and line 11 that the Level 1 variances
are not heterogeneous (HETEROL1VAR:n). Line 12 indicates that the
default value of the accelerator should be used in estimation (ACCEL:5),
line 13 that a latent variable regression is not used (LVR:N), and line 14
that the OL equations should be printed to 19 units (LEV1OLS:10). Line 15
indicates that restricted maximum likelihood is used (MLF:N), line 16 that
no optional hypothesis testing will be done (HYPOTH:N), and line 17 that
unacceptable starting values of τ will be automatically corrected
(FIXTAU:3). Line 18 indicates that none of the fixed effects is constrained
to be equal to one another (CONSTRAIN:N). Line 19 specifies that the
output file is named “COACHING.OUT,” line 20 specifies that the full
output will be given (FULLOUTPUT:Y), and line 21 specifies the title of
the output.

The results are reported in Table 12.4. The top panel of Table 12.4 shows
the regression coefficient estimates. The estimates are only slightly different
from those in the fixed effects analyses. Overall, as in the fixed effects
analyses, most of the regression estimates are not significantly different
from zero (except for hours of coaching). The predictor, hours of coaching,
is significant in verbal, indicating that hours of coaching matters in verbal.
The bottom panel of Table 12.4 shows the variance component estimates for
the residuals about the SAT verbal and SAT math regressions, respectively,
along with the chi-square test of the hypothesis that the variance component
is zero and the p value for that test. Variance components for both math and
verbal are not significantly different from zero, indicating that there is
negligible between-study variation. This indicates that a fixed effects model
is appropriate.

CONCLUSION

This study presented univariate and multivariate models for meta-analysis.
The use of fixed and mixed effects models in univariate and multivariate
cases was also demonstrated. Specialized statistical software packages such
as CMA can be easily used to conduct univariate weighted least squares



analyses in meta-analysis (for both fixed and mixed effects analyses). Other
specialized software packages, such as HLM, can carry out multivariate
mixed models analyses for meta-analytic data with nested structure. Mixed
effects models analyses can also be performed with specialized software
such as MLwin and the SAS procedure proc mixed. The mixed effects
models presented here can be extended to three or more levels of hierarchy
capturing random variation at higher levels. For example, a three-level
meta-analysis can model and compute variation between investigators or
laboratories at the third level (Konstantopoulos, 2005).

Table 12.3 HLM Input for Mixed Model Multivariate Analyses of SAT Coaching Data
From Kalaian and Raudenbush (1996)

Input File

NUMIT:1000

STOPVAL:0.0000010000

NONLIN:n

LEVEL1:MATH=VERBAL+MATH+RANDOM

LEVEL2:VERBAL=INTRCPT2+HOURS+

RANDOM/

LEVEL2:MATH=INTRCPT2+HOURS+RANDOM/

LEVEL1WEIGHT:NONE

LEVEL2WEIGHT:NONE

VARIANCEKNOWN:NONE

RESFIL2:N

HETEROL1VAR:n

ACCEL:5

LVR:N

LEV1OLS:10

MLF:n

HYPOTH:n



FIXTAU:3

CONSTRAIN:N

OUTPUT:COACHING.OUT

FULLOUTPUT:Y

TITLE:MULTIVARIATE META ANALYSIS USING HLM

Table 12.4 HLM Output for Mixed Model Multivariate Analyses of SAT Coaching Data
From Kalaian and Raudenbush (1996)

APPENDIX

Univariate Meta-Analysis

Fixed Effects Models

The model in Equation 18 can be written in matrix notation as



where θ = (θ1,…, θk)′ and T = (T1,…, Tk)′ denote the k-dimensional vectors
of population and sample effect sizes, respectively; β = (β1,…, βp)′ is the p-
dimensional vector of regression coefficients; ε = (ε1 …, εk)′ = T – θ is a k-
dimensional vector of residuals; and X is a k × p matrix

called the design matrix, which is assumed to have no linearly dependent
columns. The generalized least squares estimator ( , which is also the
maximum likelihood estimator of β, is given by

which has a normal distribution, with mean β and covariance matrix Σ
given by

where V is a diagonal covariance matrix,

Testing the Significance of All Regression Coefficients

When a meta-analyst is interested in testing whether all the βjs are
simultaneously zero, the test statistic becomes the weighted sum of squares
due to regression, namely,

The test that β = 0 is simply a test of whether the weighted sum of squares
due to the regression is larger than would be expected if β = 0, and the test
consists of rejecting the hypothesis that β = 0 if QR exceeds the 100(1 – α)
percentage point of a chi-square with p degrees of freedom.



Mixed Effects Models

The model in Equation 27 can be written in matrix notation as

where η = (η1, …, ηk)′ is the k-dimensional vector of random effects, and ξ
= (ξ1, …, ξk)′ is a k-dimensional vector of residuals of T about Xβ*, and all
other terms have been defined previously. The covariance matrix of ξ is a
diagonal matrix where the ith diagonal element is vi + . If the residual
variance component τ2 were known, we could use the method of generalized
least squares to obtain an estimate of β*. Although we do not know the
residual variance component τ2, we can compute an estimate of τ2 and use
this estimate to compute the generalized least squares estimate of β* —
namely, *—as

which is normally distributed with mean β* and covariance matrix Σ* given
by

where V* is defined as

That is, the estimate of the between-study variance component  is
incorporated as a constant term in the computation of the regression
coefficients and their dispersion via the variance covariance matrix of the
effect size estimates.

Testing the Significance of All Regression Coefficients

When a meta-analyst is interested in testing whether all the s are
simultaneously zero, the test statistic becomes the weighted sum of squares
due to regression, namely,



The test that β* = 0 is simply a test of whether the weighted sum of squares
due to the regression is larger than would be expected if β* = 0, and the test
consists of rejecting the hypothesis that β* = 0 if  exceeds the 100(1 – α)
percentage point of a chi-square with p degrees of freedom.

Testing the Significance of the Residual Variance Component

It is sometimes useful to test the statistical significance of the residual
variance component τ2 in addition to estimating it. The test statistic used is

where V = Diag(v1,…, vk). This statistics is also used to compute the
residual variance component

where c is given by

where tr(A) is the trace of the matrix A.

Multivariate Meta-Analysis

Fixed Effects

Equation 36 can be expressed in matrix notation as

where we denote the kq-dimensional column vectors of population and
sample effect sizes by  and , respectively, where θi =
(θi1, …, θiq)′ and Ti = (Ti1, …, Tiq)′; X = (Iq ⊗ x1, Iq ⊗ x2, …, Iq ⊗ xk)′ is a
kq × pq design matrix, where xi = (xi1, …, xip)′; Iq is a q × q identity matrix;
⊗ is the Kronecker product operator; β = (β11, …, βp1, β2l, …, βpq)′ is a pq



column vector of regression coefficients that need to be estimated; and ε =
(ε1,…, εkq)′ = T – θ is a kq-dimensional column vector of residuals. Each Ti

is assumed to have a q-variate normal distribution (since there are q effect
size estimates in each study) about the corresponding θi with known q × q
covariance matrix Σi. Although there is no need for all studies to have the
same number of effect sizes, we make that assumption here to simplify
notation.

The vector of residuals ε = T – θ follows a kq-variate normal with mean
zero and known kq × kq block-diagonal covariance matrix V given by

where Σi is a known q × q covariance matrix for study i. We can hence use
the method of generalized least squares to obtain an estimate of the
regression coefficients vector β. This is essentially the approach employed
by Raudenbush, Becker, and Kalaian (1988); Gleser and Olkin (1994); and
Berkey, Anderson, and Hoaglin (1996). Specifically, the generalized least
squares estimator , which is also the maximum likelihood estimator of ,
with covariance matrix V, is given by

which has a pq-variate normal distribution with mean β and covariance
matrix Σ given by

Mixed Effects

Equation 38 can be expressed in matrix notation as

where I is a kq-dimensional identity matrix, Ξ is a kq-dimensional vector of
the between-study random effects, and all other terms have been defined



previously. The vector β* of the between-study random effects follows a q-
variate normal with mean zero and q × q covariance matrix Ω.
The regression coefficient vector β* and the covariance component matrix
Ω can be estimated by weighted least squares as in the case of the univariate
mixed model. The usual procedure is to first estimate the covariance
component matrix Ω and then reweight to estimate the regression
coefficient vector β* and its covariance matrix Σ*. Alternatively, one could
orthogonalize the error terms. To achieve this, one can perform the
Cholesky factorization on each sampling error covariance matrix  in each
study so that

where Fi is a known matrix (since  is a known matrix) and is the lower
triangular (square root) matrix of the Cholesky decomposition. The within-
study model is then transformed to

where the transformed effect size vector Zi is given by

and has a sampling error vector

which has covariance matrix I, a qi × qi identity matrix. Thus, one might
write the model as

where the transformed effect size estimates Zi are now independent with a
constant variance, and the effect size parameter vector θi is the same as in
the original model. Thus, the within-study model along with the between-
study model is now a conventional two-level linear model with independent
sampling errors at the first level. Therefore, conventional software can be



used to estimate β* and Ω by the method of maximum likelihood such as
HLM (Raudenbush et al., 2005).

NOTE

1. Comprehensive Meta-Analysis offers about 100 different formats for entering data and is
especially designed to cover various methods for meta-analytic data (see www.meta-analysis.com).
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BEST PRACTICES IN DATA
TRANSFORMATION

 
The Overlooked Effect of Minimum Values

 
JASON W. OSBORNE

ata transformations are commonly used tools that can serve many
functions in quantitative analysis of data, including meeting
assumptions and improving effect sizes, thus constituting important

aspects of best practice.
A transformation is a mathematical modification of the variable to

achieve a particular goal (e.g., normality, enhanced interpretability). There
are an almost infinite variety of possible data transformations, from adding
constants to multiplying, squaring, or raising to a power; converting to
logarithmic scales; inverting and reflecting; taking the square root of the
values; and even applying trigonometric transformations such as sine wave
transformations.

While these are important options for analysts, they do fundamentally
transform the nature of the variable, making the interpretation of the results
somewhat more complex. Furthermore, few (if any) statistical texts discuss
the tremendous influence a distribution’s minimum value has on the
efficacy of a transformation. Specifically, the lowest value (anchor) in your
variable’s distribution can influence the efficacy of a particular
transformation. The goal of this chapter is to promote thoughtful and
informed use of data transformations, focusing on three data
transformations most commonly discussed in social sciences texts (square
root, log, and inverse) for improving the normality of variables.



DATA TRANSFORMATION AND NORMALITY

Many statistical procedures assume that the variables (or their error terms,
more technically) are normally distributed. Significant violation of this
assumption of normality can increase the chances of the researcher
committing either a Type I or a Type II error (depending on the nature of
the analysis and the nonnormality). Yet few of us have truly normally
distributed data (Micceri, 1989), while at the same time, few authors in
peer-reviewed journals note the use of data transformations to correct for
this issue.

Even when one is using nonparametric tests (that do not explicitly
assume normally distributed error terms), authors such as Zimmerman (e.g.,
1995, 1998) have pointed out that violations of this assumption can
adversely harm nonparametric tests as much as, or more than, parametric
tests, confirming the importance of normality in all statistical analysis.

There are multiple options for dealing with nonnormal data. First, the
researcher must make certain that the nonnormality is due to a valid reason
(real observed data points). Invalid reasons for nonnormality include things
such as mistakes in data entry and missing data values not declared missing.
Researchers using National Center for Education Statistics databases such
as the National Education Longitudinal Survey of 1988 will often find
extreme values that are intended to be missing. In Figure 13.1, we see that
the Composite Achievement Test scores variable (BY2XCOMP) ranges
from about 30 to about 75 but also has a group of missing values assigned a
value of 99. If the researcher fails to remove these, the skew for this
variable is 1.46, but with the missing values appropriately removed, skew
drops to 0.35 (where 0.00 is the skew for the standard normal distribution),
and thus no further action is needed. Issues such as these are simple to
remedy through correction of the value or declaration of missing values
(readers interested in handling missing data can refer to Chapter 15, this
volume).

However, not all nonnormality is due to data entry error or nondeclared
missing values. Two other reasons for nonnormality are the presence of
outliers (scores that are extreme relative to the rest of the sample) and the
nature of the variable itself. There is a long-running debate in the literature
about whether outliers should be removed. I am sympathetic to Judd and



McClelland’s (1989) argument that outlier removal is desirable, honest, and
important. However, not all researchers feel that way (cf. Orr, Sackett, &
DuBois, 1991; more detailed discussion of handling outliers is presented in
Chapter 14, this volume). Should a researcher remove outliers and find
substantial nonnormality or choose not to remove outliers, data
transformation is a viable option for improving normality of a variable.

How Does One Tell When a Variable is Violating the
Assumption of Normality?

There are several ways to tell whether a variable is substantially
nonnormal. While researchers tend to report favoring “eyeballing the data,”
or visual inspection (Orr et al., 1991), researchers and reviewers often are
more comfortable with a more objective assessment of normality, which can
range from simple examination of skew and kurtosis to examination of P-P
plots (available through most statistical software packages) and inferential
tests of normality, such as the Kolmorogov-Smirnov (K-S) test (and
adaptations of this test—researchers wanting more information on the K-S
test and other similar tests should consult the manual for their software as
well as Goodman [1954], Lilliefors [1967], Rosenthal [1968], and Wilcox
[1997], probably in that order). These can be useful to a researcher needing
to know whether a variable’s distribution is significantly different from a
normal (or other) distribution.



Figure 13.1 Distribution of standardized test scores from the National Center for Education
Statistics.

As stated above, skew of 0 is the ideal, and increasing deviation from 0
should be met with increasing concern on the part of the researcher. A rule
of thumb often used is that skew should be less than 1.0, although closer to
0 is always better for a variety of reasons.

Notes on the Mathematics of These Data Transformations

While many researchers in the social sciences are well trained in
statistical methods, not many of us have had significant mathematical
training, or if we have, it has often been long forgotten. This section is
intended to give a brief refresher on what really happens when one applies a
data transformation.

Square Root Transformation. Most readers will be familiar with this
procedure—when one applies a square root transformation, the square root
of every value is taken. However, as one cannot take the square root of a
negative number, if there are negative values for a variable, a constant must
be added to move the minimum value of the distribution above 0, preferably
to 1.00, primarily because numbers above 0.00 and below 1.0 behave
differently than numbers 0.00, 1.00, and those larger than 1.00. The square
root of 1.00 and 0.00 remains 1.00 and 0.00, respectively, and remains
constant, while numbers above 1.00 always become smaller, and numbers
between 0.00 and 1.00 become larger (the square root of 4 is 2, but the
square root of 0.40 is 0.63). Thus, if you apply a square root to a continuous
variable that contains values between 0 and 1 as well as above 1, you are
treating some numbers differently than others, which is probably not
desirable in most cases. The constancy of 1.0 is important to remember as
we make recommendations below.

Log Transformation(s). Logarithmic transformations are actually a class of
transformations, rather than a single transformation. In brief, a logarithm is
the power (exponent) a base number must be raised to in order to get the
original number. Any given number can be expressed as y to the x power in
an infinite number of ways. For example, if we were talking about base 10,



1 is 100, 100 is 102, 16 is 101.2, and so on. Thus, log10(100) = 2 and log10(16)
= 1.2. However, base 10 is not the only option for log transformations.
Another common option is the natural logarithm, where the constant e
(2.7182818 …) is the base. In this case, the natural log of 100 is 4.605. As
the logarithm of any negative number or number less than 1 is undefined, if
a variable contains values less than 1.0, a constant must be added to move
the minimum value of the distribution, preferably to 1.00.

There are good reasons to consider a range of bases (Cleveland, 1984,
argues that base 10, 2, and e should always be considered at a minimum).
For example, in cases where there are extremes of range, base 10 is
desirable, as this draws the extreme values in closer to the center of the
distribution. But when there are ranges that are less extreme, using base 10
will result in a loss of resolution in your data (i.e., will make all values
overly compact, limiting variance), and using a lower base (e or 2) will
serve. Thus, in general, higher bases tend to pull extreme values in more
drastically than lower bases when using this transformation. Figure 13.2
graphically presents the different effects of using different log bases.
Readers are encouraged to consult Cleveland (1984) for further discussion
of this issue.

Inverse Transformation. To take the inverse of a number (x) is to compute
1/x. What this does is essentially make very small numbers very large and
very large numbers very small, thus reversing the order of your scores.
Therefore, one must be careful to reflect, or reverse, the distribution prior to
applying an inverse transformation. To reflect, one multiplies a variable by
–1 and then adds a constant to the distribution to bring the minimum value
back above 1.0. Then, once the inverse transformation is complete, the
ordering of the values will be identical to the original data.



Figure 13.2 The effect of log base on the efficacy of transformations.

In general, these three transformations have been presented in the relative
order of power (from weakest to most powerful). It is my preference to use
the minimum amount of transformation necessary to improve normality.

Positive vs. Negative Skew. There are, of course, two types of skew: positive
and negative. All of the above-mentioned transformations work by
compressing the right side of the distribution toward the center, making
them effective on positively skewed distributions. Should a researcher have
a negatively skewed distribution, the researcher must reflect the distribution
(multiply by –1 and add a constant to bring the minimum value to 1.0,
apply the transformation, and then reflect again to restore the original order
of the variable).

Best Practices in the Use of Data Transformations

Data transformations are valuable tools, with many benefits, but only if
used in an informed manner. Too many statistical texts gloss over this issue,
leaving researchers ill-prepared to use these tools appropriately. All of the
transformations examined here reduce nonnormality by reducing the
relative spacing of scores on the right side of the distribution more than the
scores on the left side.



The very act of altering the relative distances between data points, which
is how these transformations improve normality, raises issues in the
interpretation of the data. If done correctly, all data points remain in the
same relative order as prior to transformation. This allows researchers to
continue to interpret results in terms of increasing scores. However, this
might be undesirable if the original variables were meant to be
substantively interpretable (e.g., annual income, years of age, grade, grade
point average [GPA]), as the variables become more complex to interpret
due to the curvilinear nature of the transformations. Researchers must
therefore be careful when interpreting results based on transformed data.
This issue is illustrated in Figure 13.3 and Table 13.1.

In Figure 13.3, you can see that while the original variable has equal
spacing between values, the other transformed variables show the
curvilinear nature of the transformations. The quality of the transformed
variable is different from the original variable. If a variable with those
qualities were subjected to a square root transformation, where the
variable’s old values were {0, 1, 2, 3, 4}, the new values are now {0.00,
1.00, 1.41, 1.73, 2.00}—the intervals are no longer equal between
successive values. The examples presented in Table 13.1 elaborate on this
point. It quickly becomes evident that these transformations change the
relative distance between adjacent values that were previously equidistant
(assuming interval or ratio measurement). In the nontransformed variable,
the distance between values would be an equal 1.0 distance between each
increment (1, 2, 3, etc.). However, the action of the transformations
dramatically alters this equal spacing. For example, where the original
distance between 1 and 2 had been 1.0 in the untransformed data, now it is
0.41, 0.30, or 0.50, depending on the transformation. Furthermore, while
the original distance between 19 and 20 had been 1.0 in the original data, it
is now 0.11, 0.02, or 0.00, depending on the transformation. Thus, while the
order of the variable has been retained, order is all that has been maintained.
The equal spacing of the original variable has been eliminated. If a variable
had been measured on interval or ratio scales, it has now been reduced to
ordinal (rank) data.



Figure 13.3 Different transformations have more powerful effects on variables.

Does the Minimum Value of a Distribution Influence the
Efficacy of a Transformation?

For researchers with a strong mathematical or statistical background, the
points made in this section are self-evident. However, over the years, many
of my students and colleagues have helped me to realize that this point is
not always self-evident to all researchers; furthermore, it is explicitly
discussed in few (if any) statistical texts.

First, note that adding a constant to a variable changes only the mean, not
the standard deviation or variance, skew, or kurtosis. In other words, adding
a constant to a variable does not change the shape of the distribution at all.
However, the size of the constant and the place on the number line that the
constant moves the distribution to can influence the effect of any
subsequent data transformations. As hinted at above, it is my opinion that
researchers seeking to use any of the above-mentioned data transformations
should first move the distribution so its leftmost point (minimum value) is
anchored at 1.0.

This is due to the differential effects of the transformations across the
number line. All three transformations will have the greatest effect if the
distribution is anchored at 1.0, and as the minimum value of the distribution
moves away from 1.0, the effectiveness of the transformation diminishes
dramatically.



Recalling that these transformations improve normality by compressing
one part of a distribution more than another, the data presented in
Table 13.1 illustrate this point. For all three transformations, the gap
between 1 and 2 is much larger than between 9 and 10 (0.41, 0.30, and 0.50
vs. 0.16, 0.05, and 0.01). Across this range, the transformations are having
an effect by compressing the higher numbers much more than the lower
numbers. This does not hold once one moves the anchor point from 1.0,
however. If one had a distribution anchored at 10 and ranging to 20, the gap
between 10 and 11 (0.15, 0.04, 0.01) is not that much different from the
gaps between 19 and 20 (0.11, 0.02, 0.00). In a more extreme example, the
difference between 100 and 101 is almost the same as between 108 and 109.
In other words, over the same 10-point span, all three of these
transformations are more efficacious if anchored at 1.0.

Table 13.1.   Effects of Various Transformations on Variables



In order to demonstrate the effects of minimum values on the efficacy of
transformations, data were drawn from the National Education Longitudinal
Survey of 1988. The variable used, which had been created by the author
for another project, represented the number of undesirable things (offered
drugs, had something stolen, threatened with violence, etc.) that had
happened to a student. This variable ranged from 0 to 6 and was highly
skewed, with 40.4% reporting none of the events occurring, 34.9%
reporting only one event, and less than 10% reporting more than two of the
events occurring. The initial skew was 1.58, a substantial deviation from
normality, making this variable a good candidate for transformation. The



relative effects of transformations on the skew of this variable are presented
in Table 13.2.

As the results indicate, all three types of transformations worked very
well on the original distribution, anchored at a minimum of 1. However, the
efficacy of the transformation quickly diminished as constants were added
to the distribution. Even moving the distribution anchor from 1.0 to 2.0
diminished the effectiveness of the transformation. Once the minimum
reached 10, the skew was over 1.0 for all three transformations, and at a
minimum of 100, the skew was approaching the original, nontransformed
skew in all three cases. These results highlight the importance of the
minimum value of a distribution should a researcher intend to employ data
transformations on that variable.

These results should also be considered when a variable has a range of,
say, 200 to 800, as with SAT or Graduate Record Examination (GRE)
scores, where nonnormality might be an issue. In cases where variables do
not naturally have 1.0 as their minimum, it might be useful to subtract a
constant to move the distribution to a minimum value of 1.0 prior to
applying the data transformation.

CONCLUSIONS AND OTHER DIRECTIONS

Unfortunately, many statistical texts provide minimal instruction on the
utilization of simple data transformations for the purpose of improving the
normality of variables, and coverage of the use of other transformations or
of using transformations for purposes other than improving normality is
almost nonexistent. While seasoned statisticians or mathematicians might
intuitively understand what is discussed in this chapter, many social
scientists might not be aware of some of these issues.

The first recommendation from this chapter is that researchers always
examine and understand their data prior to performing those long-awaited
analyses. To do less is to slight your data and potentially draw incorrect
conclusions.

The second recommendation is to know the requirements of the data
analysis technique to be used. As Zimmerman (e.g., 1995, 1998) and others
have pointed out, even nonparametric analyses, which are generally thought
to be relatively “assumption free,” can benefit from examination of the data.



The third recommendation is to use data transformations with care—and
never without a clear reason. Data transformations can alter the
fundamental nature of the data, such as by changing the measurement scale
from interval or ratio to ordinal, creating curvilinear relationships, and
reversing the order of your values, all of which can confound and
complicate interpretation. As discussed above, there are many valid reasons
for using data transformations, including improvement of normality,
variance stabilization, and conversion of scales to interval measurement (for
more on this, see the introductory chapters of Bond and Fox [2001],
particularly pages 17–19).

Table 13.2.   Variable Skew as a Function of the Minimum Score of a Distribution at Transformation

The fourth recommendation is that, if transformations are to be used,
researchers should ensure that they anchor the variable at a place where the
transformation will have the optimal effect (in the case of these three, I
argue that the anchor point should be 1.0).

Beyond that, there are many other issues that researchers need to
familiarize themselves with. In particular, there are several peculiar types of
variables that benefit from attention. For example, proportion and
percentage variables (e.g., percentage of students in a school passing end-
of-grade tests) and count variables of the type I presented above (number of
events happening) tend to violate several assumptions of analyses and
produce highly skewed distributions. While beyond the scope of this
chapter, these types of variables are becoming increasingly common in
education and the social sciences and need to be dealt with appropriately.
The reader interested in these issues should refer to sources such as Zubin
(1935), Bartlett (1947), or other, more modern sources that deal with these
issues (Hopkins, 2002; Chapters 21 and 26, this volume).
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BEST PRACTICES IN DATA
CLEANING

 
How Outliers and “Fringeliers” Can Increase
Error Rates and Decrease the Quality and
Precision of Your Results
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he presence of outliers can lead to inflated error rates and substantial
distortions of parameter and statistic estimates when using either
parametric or nonparametric tests (e.g., Zimmerman, 1994, 1995,

1998). Casual observation of the literature suggests that researchers rarely
report checking for outliers of any sort. This inference is supported
empirically by Osborne (in press), who found that authors of articles in top-
tier educational psychology journals reported testing assumptions of the
statistical procedure(s) used in their studies—including checking for the
presence of outliers—only 8% of the time. Given what we know of the
importance of assumptions to the accuracy of estimates and error rates, this
in itself is troubling. There is no reason to believe that the situation is
different in other social science disciplines.

WHAT ARE OUTLIERS AND FRINGELIERS AND WHY DO WE CARE

ABOUT THEM?



Although definitions vary, an outlier is generally considered to be a data
point that is far outside the norm for a variable or population (e.g., Jarrell,
1994; Rasmussen, 1988; Stevens, 1984). Hawkins (1980) described an
outlier as an observation that “deviates so much from other observations as
to arouse suspicions that it was generated by a different mechanism” (p. 1).
Outliers have also been defined as values that are “dubious in the eyes of
the researcher” (Dixon, 1950, p. 488) and contaminants (Wainer, 1976).

Wainer (1976) also introduced the concept of the “fringelier,” referring to
“unusual events which occur more often than seldom” (p. 286). These
points lie near three standard deviations from the mean and hence may have
a disproportionately strong influence on parameter estimates, yet are not as
obvious or easily identified as ordinary outliers due to their relative
proximity to the distribution center. As fringeliers are a special case of
outlier, for much of the rest of the chapter, we will use the generic term
outlier to refer to any single data point of dubious origin or disproportionate
influence.

Outliers can have deleterious effects on statistical analyses. First, they
generally serve to increase error variance and reduce the power of statistical
tests. Second, if nonrandomly distributed, they can decrease normality (and,
in multivariate analyses, violate assumptions of sphericity and multivariate
normality), altering the odds of making both Type I and Type II errors.
Third, they can seriously bias or influence estimates that may be of
substantive interest (for more information on these points, see Rasmussen,
1988; Schwager & Margolin, 1982; Zimmerman, 1994).

Screening data for univariate, bivariate, and multivariate outliers is
simple in these days of high-powered personal computing. The
consequences of not doing so can be substantial.

WHAT CAUSES OUTLIERS AND WHAT SHOULD WE DO ABOUT

THEM?

Outliers can arise from several different mechanisms or causes. Anscombe
(1960) sorts outliers into two major categories: those arising from errors in
the data and those arising from the inherent variability of the data. We



elaborate on this to summarize six possible reasons for data points that may
be suspect.

Let us first be careful to note that not all outliers are illegitimate
contaminants, and not all illegitimate scores show up as outliers (Barnett &
Lewis, 1994). It is therefore important to consider the range of causes that
may be responsible for outliers in a given data set. What should be done
about an outlying data point is at least partly a function of the inferred
cause.

Outliers From Data Errors. Outliers are often caused by human error, such
as errors in data collection, recording, or entry. Data from an interview can
be recorded incorrectly or miskeyed upon data entry. One survey the first
author was involved with (reported in Brewer, Nauenberg, & Osborne,
1998) gathered data on nurses’ hourly wages, which at that time averaged
about $12.00 per hour with a standard deviation of about $2.00. In our data
set, one nurse had reported an hourly wage of $42,000.00. This figure
represented a data collection error (specifically, a failure for the respondent
to read the question carefully). Errors of this nature can often be corrected
by returning to the original documents—or even the subjects if necessary
and possible—and entering the correct value. In cases such as that of the
nurse who made $42,000.00 per hour, another option is available—
recalculation or reestimation of the correct answer. We had used anonymous
surveys, but because the nature of the error was obvious, we were able to
convert this nurse’s salary to an estimated hourly wage because we knew
how many hours per week she worked and how many weeks per year she
worked. Thus, if sufficient information is available, recalculation is a
method of saving important data and eliminating an obvious outlier.

Another common source of outliers is data entry. For example, on a
Likert-type scale of 1 to 7, the first author recently found some 0 and 57
values in the data. This obviously arose from human entry error, and
returning to the original documents can solve this problem. If outliers of
this nature cannot be corrected, they should be eliminated as they do not
represent valid population data points.

Outliers From Intentional or Motivated Misreporting. There are times when
participants purposefully report incorrect data to experimenters or
surveyors. A participant may make a conscious effort to sabotage the



research (Huck, 2000) or may be acting from other motives. Social
desirability and self-presentation motives can be powerful. This can also
happen for obvious reasons when data are sensitive (e.g., teenagers
misreporting drug or alcohol use, misreporting of sexual behavior). If all
but a few teens underreport a behavior (e.g., cheating on a test, driving
under the influence of alcohol, etc.), the few honest responses might appear
to be outliers when in fact they are legitimate and valid scores. Motivated
overreporting can occur when the variable in question is socially desirable
(e.g., income, educational attainment, grades, study time, church
attendance, sexual experience) and can work in the same manner.

Environmental conditions can motivate overreporting or misreporting,
such as if an attractive female researcher is interviewing male
undergraduates about attitudes on gender equality in marriage. Depending
on the details of the research, one of two things can happen: inflation of all
estimates or production of outliers. If all subjects respond the same way, the
distribution will shift upward, not generally causing outliers. However, if
only a small subsample of the group responds this way to the experimenter,
or if multiple researchers conduct interviews, then outliers can be created.

Identifying and reducing this issue is difficult unless researchers take care
to triangulate or validate data in some manner.

Outliers From Sampling Error. Another cause of outliers is sampling. It is
possible that a few members of a sample were inadvertently drawn from a
different population than the rest of the sample. For example, in the
previously described survey of nurse salaries, RNs who had moved into
hospital administration were included in the database we sampled from, as
they had maintained their nursing license, despite our being primarily
interested in floor nurses. In education, inadvertently sampling
academically gifted or mentally retarded students is a possibility and
(depending on the goal of the study) might provide undesirable outliers.
These cases should be removed as they do not reflect the target population.

Outliers From Standardization Failure. Outliers can be caused by research
methodology, particularly if something anomalous happened during a
particular subject’s experience. One might argue that a study of stress levels
in schoolchildren around the country might have found some significant
outliers if the sample had included schoolchildren in New York City schools



during the fall of 2001 (or in New Orleans following Hurricane Katrina in
2005). Researchers experience such challenges all the time. Unusual
phenomena such as construction noise outside a research lab, or an
experimenter feeling particularly grouchy, or even events outside the
context of the research lab, such as a student protest, a rape or murder on
campus, observations in a classroom the day before a big holiday recess,
and so on can produce outliers. Faulty or noncalibrated equipment is
another common cause of outliers. These data can be legitimately discarded
if the researchers are not interested in studying the particular phenomenon
in question (e.g., if one were not interested in studying subjects’ reactions to
construction noise outside the lab).

Outliers From Faulty Distributional Assumptions. Incorrect assumptions
about the distribution of the data can also lead to the presence of suspected
outliers (e.g., Iglewicz & Hoaglin, 1993). Blood sugar levels, disciplinary
referrals, scores on classroom tests where students are well prepared, and
self-reports of low-frequency behaviors (e.g., number of times a student has
been suspended or held back a grade) may give rise to bimodal, skewed,
asymptotic, or flat distributions, depending on the sampling design and
variable of interest. Similarly, the data may have a different structure than
the researcher originally assumed, and long- or short-term trends may affect
the data in unanticipated ways. For example, a study of college library
usage rates during the month of September in the United States may find
outlying values at the beginning and end of the month, with exceptionally
low rates at the beginning of the month when students have just returned to
campus or are on break for Labor Day weekend, and exceptionally high
rates at the end of the month, when midterm exams have begun. Depending
on the goal of the research, these extreme values may or may not represent
an aspect of the inherent variability of the data and may or may not have a
legitimate place in the data set.

Outliers as Legitimate Cases Sampled From the Correct Population.
Finally, it is possible that an outlier can come from the population being
sampled legitimately through random chance. It is important to note that
sample size plays a role in the probability of outlying values. Within a
normally distributed population, it is more probable that a given data point
will be drawn from the most densely concentrated area of the distribution,



rather than one of the tails (Evans, 1999; Sachs, 1982). As a researcher
casts a wider net and the data set becomes larger, the more the sample
resembles the population from which it was drawn, and thus the likelihood
of outlying values becomes greater.

Specifically, if you sample in a truly random fashion from a population
that is distributed in an exact standard normal distribution, there is about a
1% chance you will get a data point at or beyond three standard deviations
from the mean. This means that, on average, about 1% of your subjects
should be three standard deviations from the mean. There is also a
nontrivial probability of getting individuals far beyond the three standard
deviation threshold.

When outliers occur as a function of the inherent variability of the data,
opinions differ widely on what to do. Due to the deleterious effects on
power, accuracy, and error rates that outliers and fringeliers can have, it
might be desirable to use a transformation or recoding/truncation strategy to
both keep the individual in the data set and at the same time minimize the
harm to statistical inference (for more on this point, see Chapter 13, this
volume).

OUTLIERS AS A POTENTIAL FOCUS OF INQUIRY

We all know that interesting research is often as much a matter of
serendipity as planning and inspiration. Outliers can represent a nuisance,
error, or legitimate data. They can also be inspiration for inquiry. When
researchers in Africa discovered that some women were living with HIV
just fine for many years longer than expected despite being untreated, those
rare cases were outliers compared with most untreated women, who were
dying fairly rapidly. They could have been discarded as noise or error, but
instead they serve as inspiration for inquiry: What makes these women
different or unique, and what can we learn from them? In a study the first
author was involved with many years ago on social support, a teenager
reported 100 close friends. Is it possible? Yes. Is it likely? Not generally,
given any reasonable definition of “close friends.” So this data point could
represent motivated misreporting, an error of data recording or entry (it
wasn’t), a protocol error reflecting a misunderstanding of the question, or
something more interesting. This extreme score might shed light on an



important principle or issue. Before discarding outliers, researchers need to
consider whether those data contain valuable information that may not
necessarily relate to the intended study but has importance in a more global
sense.

How to Deal With Outliers

There is a great deal of debate as to what to do with identified outliers. A
thorough review of the various arguments is not possible here. We argue
that what to do depends in large part on why an outlier is in the data in the
first place. Where outliers are illegitimately included in the data, it is only
common sense that those data points should be removed (see also Barnett &
Lewis, 1994).

When the outlier is either a legitimate part of the data or the cause is
unclear, the issue becomes murkier. Judd and McClelland (1989) make
several strong points for removal even in these cases in order to get the
most honest estimate of population parameters possible. However, not all
researchers feel that way (e.g., Orr, Sackett, & DuBois, 1991). This is a case
where researchers must use their training, intuition, reasoned argument, and
thoughtful consideration in making decisions.

Keeping Legitimate Outliers and Still Not Violating Your Assumptions. One
means of accommodating outliers is the use of transformations or
truncation. By using transformations, extreme scores can be kept in the data
set, and the relative ranking of scores remains, yet the skew and error
variance present in the variable(s) can be reduced (Hamilton, 1992).

Transformations may not be appropriate for the model being tested or
may affect its interpretation in undesirable ways (see Newton & Rudestam,
1999; Osborne, 2002; Chapter 13, this volume). One alternative to
transformation is truncation, wherein extreme scores are recoded to the
highest (or lowest) reasonable score. For example, a researcher might
decide that in reality, it is impossible for a teenager to have more than 15
close friends. Thus, all teens reporting more than this value (even 100)
would be recoded to 15. Through truncation, the relative ordering of the
data is maintained, and the highest or lowest scores remain the highest or
lowest scores, yet the distributional problems are reduced. However, this
may not be ideal if those cases really represent bad data or sampling error.



Robust Methods.1 Instead of transformations or truncation, researchers
sometimes use various “robust” procedures to protect their data from being
distorted by the presence of outliers. These techniques “accommodate the
outliers at no serious inconvenience—or are robust against the presence of
outliers” (Barnett & Lewis, 1994, p. 35). Certain parameter estimates,
especially the mean and least squares estimations, are particularly
vulnerable to outliers or have “low breakdown” values. For this reason,
researchers turn to robust or “high breakdown” methods to provide
alternative estimates for these important aspects of the data.

A common robust estimation method for univariate distributions involves
the use of a trimmed mean, which is calculated by temporarily eliminating
extreme observations at both ends of the sample (Anscombe, 1960).
Alternatively, researchers may choose to compute a Windsorized mean, for
which the highest and lowest observations are temporarily censored and
replaced with adjacent values from the remaining data (Barnett & Lewis,
1994).

Assuming that the distribution of prediction errors is close to normal,
several common robust regression techniques can help reduce the influence
of outlying data points. The least trimmed squares (LTS) and the least
median of squares (LMS) estimators are conceptually similar to the
trimmed mean, helping to minimize the scatter of the prediction errors by
eliminating a specific percentage of the largest positive and negative
outliers (Rousseeuw & Leroy, 1987), while Windsorized regression
smoothes the Y-data by replacing extreme residuals with the next closest
value in the data set (Lane, 2002).

Many options exist for analysis of nonideal variables. In addition to the
above-mentioned options, analysts can choose from nonparametric
analyses, as these types of analyses have few if any distributional
assumptions, although research by Zimmerman and others (e.g.,
Zimmerman, 1995) does point out that even nonparametric analyses suffer
from outlier cases.

Identification of Outliers

There is as much controversy over what constitutes an outlier as there is
over whether to remove them or not. Simple rules of thumb (e.g., data
points three or more standard deviations from the mean) are good starting



points. Some researchers prefer visual inspection of the data. Others (e.g.,
Lornez, 1987) argue that outlier detection is merely a special case of the
examination of data for influential data points.

Rules such as z = 3 are simple and relatively effective, although Miller
(1991) and Van Selst and Jolicoeur (1994) demonstrated that this procedure
(nonrecursive elimination of extreme scores) can produce problems with
certain distributions (e.g., highly skewed distributions characteristic of
response latency variables), particularly when the sample is relatively small.
To help researchers deal with this issue, Van Selst and Jolicoeur (1994)
present a table of suggested cutoff scores for researchers to use with varying
sample sizes that will minimize these issues with extremely nonnormal
distributions. In univariate data cleaning, we tend to use a z = 3 guideline as
an initial screening tool and, depending on the results of that screening,
examine the data more closely and modify the outlier detection strategy
accordingly.

Bivariate and multivariate outliers are typically measured using either an
index of influence or leverage, or distance. Popular indices, including
Mahalanobis’s distance and Cook’s D, are both frequently used to calculate
the leverage that specific cases may exert on the predicted value of the
regression line (Newton & Rudestam, 1999). Standardized or studentized
residuals in regression can also be useful, and often the z = 3 rule works
well for residuals as well.

For analysis of variance (ANOVA)-type paradigms, most modern
statistical software will produce a range of statistics, including standardized
residuals. In ANOVA, the biggest issue after screening for univariate
outliers is the issue of within-cell outliers, or the distance of an individual
from the subgroup. Standardized residuals represent the distance from the
subgroup and thus are effective in assisting analysts in examining data for
multivariate outliers. Tabachnick and Fidell (2000) discuss data cleaning in
the context of other analyses.

The Effects of Outlier Removal

The rest of this chapter is devoted to a demonstration of the effects of
outliers and fringeliers on the accuracy of parameter estimates, as well as
Type I and Type II error rates.



In order to simulate a real study where a researcher samples from a
particular population, we defined our population as the 23,396 subjects in
the data file from the National Education Longitudinal Study (NELS) of
1988, produced by the National Center for Education Statistics with
complete data on all variables of interest. For the purposes of the analyses
reported below, this population was sorted into two groups: “normal”
individuals, whose scores on relevant variables were between z = –3 and z
= 3, and “outliers,” who scored at least z = 3 on one of the relevant
variables.

In order to simulate the normal process of sampling from a population
but standardize the proportion of outliers in each sample, one hundred
samples of N = 50, N = 100, and N = 400 each were randomly sampled
(with replacement between each sample but not during the creation of a
single sample) from the population of “normal” subjects. Then, an
additional 4% were randomly selected from the separate pool of outliers,
bringing each sample to N = 52, N = 104, or N = 416, respectively. This
procedure produced samples that could easily have been drawn at random
from the full population.

The following variables were calculated for each of the analyses below:
 

Accuracy was assessed by checking whether the original or cleaned correlation was closer to the
population correlation. In these calculations, the absolute difference was examined.

 
Error rates were calculated by comparing the outcome from a sample to the outcome from the
population. If a particular sample yielded a different conclusion than was warranted by the
population, that was considered an error of inference.

The Effect of Outliers on Correlations

The first example looks at simple zero-order correlations. The goal was
to demonstrate the effect of outliers on two different types of correlations:
correlations close to zero (to demonstrate the effects of outliers on Type I
error rates) and correlations that were moderately strong (to demonstrate the
effects of outliers on Type II error rates). Toward this end, two different
correlations were identified for study in the NELS data set: the correlation
between locus of control and family size (“population” r = –.06) and the
correlation between composite achievement test scores and socioeconomic



status (“population” r = .46). Variable distributions were examined and
found to be reasonably normal.

Correlations were then calculated in each sample, both before removal of
outliers and after. For our purposes, r = –.06 was not significant at any of
the sample sizes, and r = .46 was significant at all sample sizes. Thus, if a
sample correlation led to a decision that deviated from the “correct” state of
affairs, it was considered an error of inference.

As Table 14.1 demonstrates, outliers had adverse effects on correlations.
In all cases, removal of the outliers had significant effects on the magnitude
of the correlations, and the cleaned correlations were more accurate (i.e.,
closer to the known “population” correlation) 70% to 100% of the time.
Furthermore, in most cases, errors of inference were significantly less
common with cleaned than with uncleaned data.

The Effect of Outliers on t Tests and ANOVAs

The second example deals with analyses that look at group mean
differences, such as t tests and ANOVA. For the purpose of simplicity, these
analyses are simple t tests, but these results should generalize to ANOVA.
For these analyses, two different conditions were examined: when there
were no significant differences between the groups in the population (sex
differences in socioeconomic status [SES] produced a mean group
difference of 0.0007 with an SD of 0.80 and, with 24,501 df, produced a t of
0.29) and when there were significant group differences in the population
(sex differences in mathematics achievement test scores produced a mean
difference of 4.06 and an SD of 9.75, and 24,501 df produced a t of 10.69, p
< .0001). For both variables, the effects of having outliers in only one cell
as compared with both cells were examined. Distributions for both
dependent variables were examined and found to be reasonably normal.

Table 14.1 The Effects of Outliers on Correlations



For these analyses, t tests were calculated in each sample, both before
removal of outliers and after. For our purposes, t tests looking at SES
should not produce significant group differences, whereas t tests looking at
mathematics achievement test scores should. Two different issues were
examined: mean group differences and the magnitude of the t. If an analysis
from a sample led to a different conclusion, it was considered an error.

The results in Table 14.2 illustrate the effects of outliers on t tests and
ANOVAs. Removal of outliers produced a significant change in the mean
differences between the two groups when the groups were equal in the
population but tended not to when there were strong group differences.
Removal of outliers produced significant change in the t statistics primarily
when there were strong group differences. In both cases, the tendency was
for both group differences and t statistics to become more accurate in a
majority of the samples. Interestingly, there was little evidence that outliers
produced Type I errors when group means were equal, and thus removal
had little discernable effect. But when there were strong group differences,
outlier removal tended to have a significant beneficial effect on error rates,
although not as substantial an effect as seen in the correlation analyses.

The presence of outliers in one or both cells, surprisingly, failed to
produce any differential effects. The expectation had been that the presence
of outliers in a single cell would increase the incidence of Type I errors.

To Remove or Not to Remove?

Although some authors argue that removal of extreme scores produces
undesirable outcomes, they are in the minority, particularly when the
outliers are illegitimate. When the data points are suspected of being



legitimate, some authors (e.g., Orr et al., 1991) argue that data are more
likely to be representative of the population as a whole if outliers are not
removed.

Conceptually, there are strong arguments for removal or alteration of
outliers. The analyses reported in this chapter also empirically demonstrate
the benefits of outlier removal. Both correlations and t tests tend to show
significant changes in statistics as a function of removal of outliers, and in
the overwhelming majority of analyses, accuracy of estimates was
enhanced. In most cases, errors of inference were significantly reduced, a
prime argument for screening and removal of outliers.

Although these were two fairly simple statistical procedures, it is
straightforward to argue that the benefits of data cleaning extend to simple
and multiple regression, as well as to different types of ANOVA
procedures. There are other procedures outside these, but the majority of
social science research uses one of these procedures (which are of course
related directly to each other as special cases of the general linear model).
Other research (e.g., Zimmerman, 1995) has shown the importance of
dealing with the effects of extreme scores in less commonly used
procedures, such as nonparametric analyses.

Table 14.2 The Effects of Outliers on t Tests



NOTE

1. Readers interested in a more thorough discussion of robust methods are referred to Rand
Wilcox’s chapter in this volume (Chapter 18).
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In the past, when data were missing from our sets, any number of
reactions were common. Positive emotions, such as happiness and
contentment, never occurred. Rather, the emotions we felt (often in
this order) were frustration, anger, guilt, fear, and sadness.

Graham, Cumsille, and Elek-Fisk (2003, p. 87) 

We stand at the beginning of an era in which useful and accessible
missing data procedures are an integral part of mainstream
statistical packages.

Graham et al. (2003, p. 88) 

The days when journals tolerate the absence of analysis of the
missing values and the use of traditional approaches to missing
values should be numbered.

Acock (2005, p. 1026)



UNDERSTANDING MISSINGNESS: WHY IS IT IMPORTANT TO ADDRESS

MISSINGNESS

Missing data is a prevalent issue in many fields, yet only about half of
published studies mention dropouts, and less than 20% of those studies
incorporated dropouts into their analyses (Ladouceur, Gosselin, Laberge, &
Blaszcynski, 2001). Nearly all common statistical analyses assume
complete data, yet many statistics books do not deal with missingness.
Proper missing data techniques have therefore gone mostly ignored by
researchers until recently (Rubin, 1996).

Three major problems with incomplete data are (1) loss of information or
power due to loss of data; (2) complication during data management and
analysis, partially because of limitations with standard statistical software;
and (3) potential marked bias because of systematic differences between
observed and missing values (Barnard & Meng, 1999).

Recent advancements in software have made missing data analyses easier
and more prolific. This is critical because gatekeepers in research, such as
grant reviews, regulatory agencies, and journal reviewers, are becoming
more critical of the treatment of missing data.

But when are data truly missing? Many surveys incorporate “skip
patterns,” for example, where a respondent may be instructed to skip a
subsequent question based on a certain response to a key beginning
question in the section. Overall, missing data fall into a similar category of
latent variables—true values exist, but we cannot always accurately
determine the exact value (D. F. Heitjan & Rubin, 1991; Schafer & Graham,
2002).

INTRODUCTION TO THE CONCEPTS OF MISSING DATA

In this section, I introduce three key concepts to the discussion of missing
data: the models (missingness augmentation and analytic), auxiliary
variables, and the missingness mechanism. Effective missing data
techniques will provide unbiased parameter estimates (the expected value of
an estimate from the missing technique is equal to the population value) and



efficient standard errors (the standard error around the estimate is small and
accurate to that with known values) (Graham et al., 2003).

The Models

Many of the modern techniques for addressing missing data require a
synergy between the way we augment our database to address missingness
and the way we analyze our data to test our hypotheses, labeled the
missingness augmentation (MA)1 model and analytic model, respectively.
Simply stated, a model description is a list of the analyzed observed
variables (dependent and independent variables), their interactions, and any
auxiliary variables (variables that attempt to explain why data are missing
though they are superfluous to the analytic model).2

The analytic model drives the creation of the MA model. For example,
the researcher may intend to analyze the influence of age and income (and
their interaction) on the health-related quality-of-life measure (physical
component summary [PCS]). With the analytic model set, we can now
determine the MA model, which would include PCS, age, income, a
variable to represent the interaction of Age × Income, and any necessary
auxiliary variables.

It is important that combinatorial relationships (e.g., interactions)
included in the analytic model must be included in the MA model. Other
nonlinear relationships, such as quadratic trends over time, must be
anticipated before imputation and created as part of the model because
nonlinear relationships are washed out of the imputed values with standard
multivariate normal multiple imputation (MI). Of course, with smaller
amounts of missingness, the washout of nonlinear trends is negligible and
thus may still be appropriate.

The issues of interactions highlight a more general issue: The MA model
and the analytic model should be compatible. Including combinatorial
information in the MA model that will not be analyzed will lead to spurious
underfitting of the data, leading to poor predictive power (Barnard & Meng,
1999) and increasing the odds of a Type II error (Meng, 1994; Rubin,
1996). Meng (1994) has noted that even if an interaction may not be readily
planned in the current analytic model, it should be included in the MA
model if it is commonly examined within the field of research, especially if
the imputer and analyst are not the same person.



Auxiliary Variables

Collins, Schafer, and Kam (2001) introduced the term auxiliary variables
to describe variables added to an MA model solely for the purpose of
improving the accuracy of the missing data method. Auxiliary variables are
included in the MA model when they are potential causes or correlates of
the missingness or if they are strongly correlated with the variables that
have missing data, as they improve estimation of the missing data,
particularly if the auxiliary variables have high correlations with the
variables that have higher rates of missingness.

The Missingness Mechanism

Data may be missing for three general reasons (referred to as the
missingness mechanism). In Table 15.1, we have six columns of data. The
first four columns are subject ID, Health Assessment Questionnaire (HAQ)
score, physical quality of life (PCS), and a mental quality-of-life composite
score (MCS). We create two other variables—PCS-M and MCS-M, coded 0
for observed data and 1 for missing data—and these variables are measures
of the missingness mechanism. Because not all potential causes of
missingness can be known in most studies, these variables are best
conceived as a mathematical procedure to describe rates and patterns of
missingness as well as to capture relationships between missingness and the
likely values of the missing data (Schafer & Graham, 2002). Rather than
obscuring the issue as a cause of missingness, Schafer and Graham (2002)
recommended the use of the term probabilities of missingness. These
probabilities of missingness help describe the types of missingness: missing
completely at random (MCAR; the probability of missingness has no
correlation with our variables of interest), missing at random (MAR; the
missing data process is related to the variables of interest, but that
relationship is fully captured with other observed variables), and missing
not at random (MNAR; the missingness mechanism is correlated with our
variable of interest and cannot be fully explained by other observed
variables; see Rubin, 1976).

MCAR: Missing Completely at Random. The missingness mechanism is
MCAR if the probability of missingness is unrelated to all observed and all



unobserved variables (Abraham & Russell, 2004). When this assumption
holds for all variables in the data set, the set of individuals with complete
data is considered a random subsample of all participants in the database.
The problem with the MCAR assumption is that understanding the
relationship of missingness to all unobserved variables is untenable. There
are times, however, when we have some certainty that specific missingness
is MCAR (e.g., when missingness is part of the research design; Graham,
Taylor, Olchowski, & Cumsille, 2006), wherein certain outcomes are
randomly omitted for each participant to both reduce participant burden and
still collect many outcomes.

Despite the theoretical rarity of unplanned MCAR data, MCAR allows
for a major empirical benefit over the other missingness mechanism.
MCAR is the only missingness mechanism that can be objectively tested
(Enders, 2006a). Little’s (1988) MCAR test has been adapted into SAS
code and is available in the SPSS missing value analysis module. The
curious reader can examine Little’s description of the MCAR test for more
information.

MAR: Missing at Random. MAR is present if the probability of missingness
on a given variable is not related to the participant’s score on that variable,
after controlling for other variables in the study (Acock, 2005). Essentially,
the other variables serve as an explanatory mechanism for the missingness
(Collins et al., 2001) on the given variable. Using Table 15.1 again, this
would mean that PCS-M and PCS are unrelated, once we partial out the
relationship of MCS and HAQ. Thus, even if those who scored in the lower
range of PCS were somewhat more likely to have missing data on PCS, the
increased likelihood was fully omitted when controlling for the relationship
between PCS and HAQ, PCS and MCS, or some combination thereof. It is,
of course, impossible to test if the MAR assumption is satisfied because we
do not know the values of the missingness on PCS (Allison, 2002).
Although we can often expect deviations from MAR in many data sets
(Schafer & Graham, 2002), an erroneous assumption of MAR for all data
may often have only a very minor impact on estimates and standard errors
according to results from simulation work (Collins et al., 2001). Indeed,
when data may be classified as MAR (or MCAR), then there are marked
benefits for the statistician in that one does not need to model the
mechanism by which data became missing. This is why many researchers



label MAR and MCAR data as ignorable. Data are said to be ignorable if
they are (a) MAR or MCAR and (b) the parameters that govern the
missingness mechanism are unrelated to the processes to be estimated.

Table 15.1 Missing Data Mechanisms

Longitudinal studies are particularly susceptible to missingness. Missing
data on an outcome assessed repeatedly throughout a longitudinal study
often are ignorable missingness (Abraham & Russell, 2004). In fact,
ignorable missingness is still valid when the likelihood of missingness
depends on the actual missing values, as long as the outcome with
missingness has zero residual correlations with other variables once the
outcome is controlled (Schafer & Graham, 2002). This does not hold,
however, when one time point does not predict missingness on the same
outcome at another time point, such as in dementia studies (Harezlak, Gao,
& Hui, 2003).

MNAR: Missing Not at Random. MNAR missingness occurs when the
likelihood of missingness depends on the actual value of the missing datum
and not other variables. MNAR missing data are also referred to as
nonignorable missing data. Modeling the missingness mechanism for
nonignorable missingness typically requires highly specialized techniques
that vary with each scenario (Allison, 2002). Therefore, I have not covered
MNAR techniques in detail in this chapter but instead provide references
for the curious reader.



BRIEF HISTORY OF TRADITIONAL TECHNIQUES USED TO ADDRESS

MISSINGNESS

A recent small survey I conducted among users of SEMNET and the APA
Division 5 listserv (Cole, 2007) showed that even skilled applied
statisticians use antiquated procedures for handling missing data: 55%
noted using casewise deletion, 36% noted using mean imputation, and 31%
used regression-based imputation. Moreover, only 35% of the sample of
sophisticated users noted using missing data techniques (of any sort) “most
of the time” or “all of the time.” Although many cogent reviews of the
problems associated with these procedures are available (Allison, 2002;
Graham et al., 2003; Schafer & Graham, 2002), I discuss them briefly
below in order to stress their problematic nature in addressing missingness.

Casewise and Pairwise Deletion

Casewise deletion represents the default technique for addressing
missingness in most statistical software and is therefore the most common
method for addressing missing data (Abraham & Russell, 2004; Acock,
2005; Cole, 2007). This mostly comes from historical apathy for
missingness. As Schafer and Olsen (1998) noted, missingness was viewed
as something “to be gotten rid of” (p. 546) rather than understood.

Casewise deletion refers to a system whereby all participants with any
missingness in an analysis are removed from the analysis. A related
technique, pairwise deletion (otherwise known as available-case analysis),
refers to a technique whereby all available participants for a specific part of
an analysis are used. Detailed reviews of the serious limitations for
casewise and pairwise deletion are abundant in the literature (Little &
Rubin, 2002; Schafer & Graham, 2002). Primarily, disadvantages to these
techniques center on assumption problems, power issues, and
generalizability.

Casewise and pairwise deletion require missing data to be MCAR, an
often untenable assumption when removing all of the participants with any
missingness. Yet even if the data meet the MCAR assumption, the smaller
sample size will increase Type II error rates (Abraham & Russell, 2004). If
the assumption of MCAR is not met, then standard errors will be inefficient,



providing either conservative or liberal results without knowledge as to
which has been obtained (Acock, 1989). Furthermore, removal of
participants can reduce generalizability of the findings. Pairwise deletion
brings other issues, particularly in advanced procedures such as structural
equation modeling (Acock, 2005; Wothke, 1993).

There are a few very specific instances where the use of casewise
deletion may be desired, such as when the amount of missingness is less
than 5% (Fairclough, 2002; Graham & Hofer, 2000; Graham, Taylor, &
Cumsille, 2001). However, overall, there are few instances when casewise
deletion is desirable. Nevertheless, it is preferable to nearly all other
antiquated techniques (Allison, 2002).

Mean Substitution

Mean substitution (imputation) involves imputing any missing value for a
variable with the mean of all observed values on the given variable. The
process is simple to implement in many statistical packages, thereby
making mean imputation one of the most commonly used missing data
techniques. However, mean imputation has been known to produce biased
estimates of the variances and covariances for nearly 40 years (Haitovsky,
1968).

Simulation studies have consistently demonstrated the biased results
from mean imputation (Wothke, 2000). First, people who answer in the
middle of a distribution are more likely to answer questions (Acock, 2005);
therefore, we are typically trying to impute for people who have a lower
likelihood of having the values that we have ascribed to them. Second,
mean imputation increasingly warps the distribution of the imputed variable
as missingness increases because the imputed variable becomes
increasingly leptokurtic and decreasingly variable. The decreasing
variability leads to spuriously smaller correlations with other variables.
Moreover, in a multivariate analysis, when one or more variables have been
mean imputed, their relationships will be biased downward, but other
variables with no imputation will have their relationships biased upward
because of the improper attenuation of the mean-imputed variables (Acock,
1989).

The marked inefficiency and bias created by mean imputation because of
distribution distortion have precluded me from recommending it under any



circumstance.

Regression Imputation

In a regression model, we can regress all other independent variables on
our variable with missingness to obtain a predicted value for each missing
datum (Allison, 2002). For example, if we know that observed data predict
depression scores on the Center for Epidemiologic Studies–Depression
scale (CES-D; Radloff, 1977) based at 1.67*age + –2.8*education + –
0.34*SES for observed data, then we can use these values to estimate a
missing CES-D score based on the regression formula.

Regression-based imputation offers the ability to incorporate multiple
indicators in the imputation of missing values, thereby enhancing the
robustness of the process. Moreover, the bias involved in the point
estimates from regression imputation is consistent (Enders, 2006a), thereby
potentially allowing for control of the bias. These benefits, however, rarely
supersede the significant problems associated with regression imputation.

Model complexity, monotone data, and a lack of efficiency and bias
control are all found in regression imputation. When more than one variable
contains missingness, if the data are not MCAR, or if the dependent
variable is involved in the missingness mechanism, regression models more
complex than standard ordinary least squares must be used (Gourieroux &
Monfort, 1981). Regression imputation also demands that the data have an
unusual format to the missingness, called monotone missingness. Imagine
10 cases on the three aforementioned predictor variables (age, education,
and socioeconomic status [SES]), wherein age had the least amount of
missingness, education the second least missingness, and SES the most
missingness. For the missingness to be monotone, no SES data could be
present when either of the variables with a lower percentage of missingness
had missing data. Likewise, educational data could not be present for any
instance in which age was missing (though SES could be missing). Little
and Rubin (2002) provide an excellent description on monotone
missingness, including the algorithmic benefits and impractical demands.
Thus, regression imputation can be very timeconsuming given that each
pattern of missingness requires a different predictive equation (Enders,
2006a) when nonmonotone missingness is present. Finally, as with all
imputation methods that allow the analyses to treat the data as though they



were complete, regression imputation contributes to underestimated
standard errors and overestimated test statistics (Allison, 2002) because it
reduces the variation around the regression line, leaving the imputed values
with an artificially inflated correlation compared with cases with complete
data.

Last Observation Carried Forward

Last observation carried forward (LOCF) is a popular technique used in
randomized clinical trials when there is a need to account for the intent to
treat for participants who drop out before study completion (Peto et al.,
1977). The purpose of intent to treat is to include some logical value for all
outcome variables after a participant has dropped out of a study in order to
ensure that every patient randomized to a clinical trial will be analyzed. The
alternative to some sort of intent to treat has long been casewise deletion,
something problematic for randomized clinical trials. LOCF and worst-case
scenario are two options (which we treat similarly here). In LOCF, the last
observed value for an outcome variable is imputed for all later times the
outcome would have been collected but was missing because of dropout. In
worst-case scenario imputation, a similar process is conducted by imputing
a logical value for all outcome variables after dropout. Rather than carry the
last value forward, worst-case scenario imputes the lowest possible value on
a scale to participants who dropped out for any reason other than death and
assigns a zero to all participants who died during the trial (though this
particular value could be readjusted depending on the particular outcome).

LOCF imputation has the advantage of providing a particular method to
address intent to treat in randomized clinical trials. Moreover, the method
has long been recognized as acceptable by important regulatory agencies,
such as the Food and Drug Administration. If the researchers can argue that
(a) drop-out rates are similar between the randomized groups and (b) either
LOCF or worst-case imputation reflects a viable imputed value for dropouts
based on prior empirical work, then the process may provide an effective
control for intent to treat (Fairclough, 2002).

Unfortunately, LOCF imputation has been critiqued by most missing data
statisticians as inappropriate on theoretical and practical grounds. Abraham
and Russell (2004) noted that, despite LOCF being touted as a conservative
approach in the past, recent simulations suggest it is not as conservative as



was once believed (Mallinckrodt, Clark, Carroll, & Molenberghs, 2003).
LOCF overestimates treatment effects and underestimates standard errors,
thereby resulting in greater Type I error (Liu & Gould, 2002; Mallinckrodt,
Sanger, et al., 2003). Fairclough (2002) has also noted serious concerns
about the use of LOCF in that authors who use this technique rarely justify
the appropriateness of LOCF for their data or examine the pattern of change
in conjunction with the pattern of dropout (Rabound, Singer, Thorne,
Schechter, & Shafran, 1998). She has further noted that the assumption that
an outcome variable does not change after dropout is untenable in most
studies, and LOCF has such limited utility (Gould, 1980; Heyting,
Tolbomm, & Essers, 1992; Little & Yau, 1996) that it should be employed
only with great caution.

Imputing Items on a Scale

Rather than imputing an entire scale for someone, there may be instances
when we are only interested in imputing values for specific items on a scale
in order to create a new total score for the outcome. Although taking the
mean (or sum) of observed items appears to be akin to mean imputation, it
is different on one key aspect: Variables are being imputed rather than cases
(Graham et al., 2003). It is somewhat akin to a single regression-based
imputation, but rather than having too little variability (as regression-based
imputation can have), it has more error because scores are based on fewer
items. Despite theoretical problems, Schafer and Graham (2002) have
suggested that if MI is not feasible for item-level imputation (e.g., if there
are fewer subjects than variables at the item level), then averaging of the
available items works reasonably well, especially if the reliability is
moderately high (α > .70) and the items to be averaged form a single
unified construct (for applied and theoretical discussion on a single unified
scale, respectively, see Cole et al., 2006; Messick, 1995).

MODERN METHODS

The problem with antiquated techniques is that imputed values must be
treated as estimates and not real data. An analysis with imputed data that



ignores this uncertainty in the imputed values will lead to artificially small
standard errors and p values, as well as inflated Type I error rates (Schafer
& Olsen, 1998). Two techniques that overcome the uncertainty issue are
discussed in detail: maximum likelihood (ML) and MI (Schafer & Graham,
2002).

In 1987, four publications came out that changed how we handle missing
data (Graham et al., 2003). First, ML was introduced using structural
equation modeling (SEM) by Allison (1987) and Muthén, Kaplan, and
Hollis (1987). Second, Little and Rubin’s (1987) seminal book on analysis
with missing data was released, which included discussion of handling
missingness with the expectation-maximization (EM) algorithm (Dempster,
Laird, & Rubin, 1977). Last, but not least, Rubin (1987) introduced MI.
Empirical evidence of modern methods has consistently shown the
comparative value of modern methods for handling missing data (Arbuckle,
1996; Enders, 2001; Enders & Bandalos, 2001; Graham & Schafer, 1999;
Muthén et al., 1987).

Graham and Schafer (1999) suggested being ready to use any of these
techniques based on the appropriateness and ease of use for each situation.
There are many similarities between these methods. Both ML and MI are
based on sound theory, reproduce the data structure accurately, and
incorporate a necessary measure of uncertainty given the estimation of
missing data (Collins et al., 2001). Both MI and ML regard missingness as
a source of random variation to be averaged over rather than simply editing
an incomplete data set until it approximates a complete data set. In addition,
when ML and MI are conducted properly, the results are fully parametric,
using joint probability of manifest and latent data.

Prior to detailing ML and MI, I believe it is important to explain one of
their key building blocks: the EM algorithm, once a popular missing data
technique unto itself (Graham et al., 2003).

A Brief Overview of the EM Process

EM is a maximum likelihood approach that can be used to create a new
data set in which all missing values are imputed with maximum likelihood
values. The EM algorithm (Dempster et al., 1977) is easy to use and has lots
of software to produce it (freeware and commercial). Estimates obtained
from EM are often unbiased, and the EM algorithm provides a data set with



imputed values from which additional analyses can be conducted or used as
an initial step in more advanced missing data techniques (Abraham &
Russell, 2004). In addition, EM avoids one of the difficulties with standard
regression imputation in that there is no decision about which variables
should be used as the predictors, as EM uses all available data as predictors
for the imputed values. However, EM is problematic to use by itself, as the
standard errors and test statistics with EM are not correct.

There are two steps to the EM algorithm: expectation and maximization.
These processes work iteratively to impute missing values and to estimate
the covariance matrix and mean vector. Before the E and M steps begin, an
initial estimate of the covariance matrix and mean vector is calculated from
the observed data (Little & Rubin, 2002). For the first E step, a series of
regressions are derived from the observed covariance matrix and mean
vector in order to determine the contribution of each missing value (for
each missing cell) to the sufficient statistics (i.e., variable sums and sums of
products) necessary for calculating the covariance matrix and mean vector
(Enders, 2006a). A random residual term is added because otherwise, all
predicted values would fall directly on the predicted regression line. Based
on the predicted regressions and residuals, estimates of the sufficient
statistics necessary to calculate a missing-data augmented covariance
matrix and mean vector during the M step are estimated. During the M step,
new estimates of the covariance matrix and mean vector are derived from
the sufficient statistics calculated during the E step. No special techniques
are used for missingness during this step, and the subsequent matrix and
vector are passed along to the next iteration of the E step. The EM
algorithm concludes once the difference between the covariance matrices
from two adjacent M steps is trivial. Figure 15.1 describes the EM sequence
of events.

Running the EM algorithm before MI is highly recommended for two
reasons. First, the resulting parameter estimates make great starting values
for the data augmentation process used in MI. Second, the convergence
behavior witnessed during EM is predictive of the convergence behavior of
data augmentation, which, as will be discussed, is far more esoteric
(Schafer & Olsen, 1998). EM may even provide better estimates under
nonnormality than a nonparametric MI estimation when the missingness
mechanism is MCAR or ignorable, as long as the sample size is 500 or
more (Gold, Bentler, & Kim, 2003).



As has been noted, EM parameter estimates are excellent, but the
standard errors are problematic. Thus, some specific uses of EM work quite
well, including data checks that do not involve hypothesis tests such as
coefficient alpha and exploratory factor analysis (Graham et al., 2003;
Graham & Hofer, 2000). Nevertheless, with the growing software
availability of ML and MI, the use of EM as its own missing data technique
is nearly all but outdated.

Figure 15.1 Progression of EM calculations.

Maximum Likelihood

The ML process for handling missing data was introduced by Allison
(1987) and Muthén et al. (1987). It was when Arbuckle (1996) included ML



in the user-friendly SEM program AMOS in the mid-1990s that the
popularity of this technique increased such that now all of the major SEM
programs (and many other packages) include ML to address missing data.

ML is particularly well suited for handling missing data because ML
estimation is a tool to select estimates that, if correct, would maximize the
probability of observing the data that have been collected (Allison, 2002).
ML estimates are consistent, in that they are essentially unbiased. ML
estimates are efficient, in that standard errors are close to the true standard
errors (especially as sample sizes increase). Finally, ML estimates are
normally distributed in repeated sampling (again, improving with larger
sample sizes), thereby justifying normal probability testing (Agresti &
Finlay, 1997). Simulations have shown that ML is virtually always superior
to traditional missingness techniques (Wothke, 2000), though the quality of
ML does depend on the missing data rate, the covariance structure of the
data, and size of the sample (as with all advanced missing data techniques).
ML is a step beyond EM in that rather than maximizing for the entire
correlation (or covariance) matrix, we maximize just for the model to be
analyzed. This process provides more accurate standard errors (Allison,
2002).

Despite the advantages of ML, one major limitation exists: It requires
specialized software to use it, usually software in the latent variable
modeling realm. ML is available in SEM programs such as AMOS
(Arbuckle, 2006), EQS (Bentler, 2006), LISREL (Jöreskog & Sörbom,
2001), Mplus (Muthén & Muthén, 2006), and Mx (Neale, Boker, Xie, &
Maes, 1999). Nevertheless, ML provides one very important advantage
over MI in that the goodness-of-fit values in SEM are based on the final
ML covariance matrix (Wothke, 2000), whereas MI cannot use Rubin’s
rules to combine fit indices determined for each database.

The ML Process. The calculation details of ML are quite rigorous (Schafer
& Graham, 2002) and beyond the scope of this chapter (for more formulaic
details, see Allison, 1987, 2002, 2003). With missing data, ML uses
observed data in order to calculate a log likelihood from the observed data
points for each case (using information from both the covariance matrix and
the mean vector). The sum of the individual case likelihoods is used for the
total sample log-likelihood function. It should be noted that missing values
are not imputed in this process. Instead, the full observed information is



used to estimate parameter estimates and standard errors (SEs) by
iteratively fitting the sample log likelihood (Enders, 2006a). Also, SEs
should not be calculated using estimated data given that such SEs would
require the missingness to be MCAR (Kenward & Molenberghs, 1998).
Instead, the imputer should opt to use observed data only for the calculation
of SEs in ML (Enders, 2006a). When the missingness is ignorable, the
likelihood function is simply the marginal likelihood for all remaining
predictors (Allison, 2002).

One major aspect of using ML for controlling missing data is that the
MA model and analysis model are conducted concurrently. Indeed, this is
also a limitation of ML: The missingness augmentation cannot be
conducted outside of the statistical analysis. This means that any auxiliary
variable included in the MA model must also be included in the analysis
model, thereby limiting how many auxiliary variables can realistically be
used in ML.

Assumptions of ML. As with all statistical techniques, understanding the
assumptions behind the modern missing data techniques is critical to the
unfettered interpretation of results. First, ML assumes that the missingness
mechanism is ignorable. Enders (2001) found that most of the other
assumptions for ML for missing data are similar to the assumptions for ML
extraction in SEM: ML estimates should come from a sample of sufficient
size, and the covariance matrix should be multivariate normal. When the
data are multivariate nonnormal, three data issues are standard: (1)
Parameter estimates were relatively unbiased, (2) SEs estimated were
biased downward, and (3) chi-square-based model fit statistics had
excessive rejection rates. This was true for both MCAR and MAR
missingness. ML also assumes that the analysis model is correct for the data
(i.e., fit statistics meet appropriate criteria).

There are a few considerations to these assumptions. Regarding
multivariate normality, there are a number of ways to ensure that the
covariance matrix is multivariate normal.3 Regarding the assumption that
the analysis model is correct, it is important to evaluate one’s model from
multiple perspectives using various model fit statistics. When a model is
misfit, the amount of missingness corrected by ML will increasingly affect
the efficacy of techniques used to improve model fit, such as modification
indices (Steiger, 1990).



Finally, although ML is designed for ignorable missingness, it may be
even more generalizable. ML estimates are both consistent and efficient
under MAR (Wothke, 2000), and some have shown that the estimates
remain favorable even when the missingness deviates from MAR (Little &
Rubin, 2002; Muthén et al., 1987).

Limitations. ML provides an excellent modern tool for addressing
missingness and does so with much simplicity, especially given that few
variants to the ML process exist. However, when some of the assumptions
are violated, they can be difficult to overcome. For example, small sample
sizes simply obviate the use of ML for addressing missingness (there are no
studies to determine what a sufficient sample is for ML). Currently, it may
be best to rely on the same standards used in determining a sufficient
sample size for latent models using ML (e.g., Hancock, 2006). Another
limitation of ML for addressing missing data is the inclusion of auxiliary
variables. As discussed above, auxiliary variables can be beneficial in
dealing with missing data, but in ML, that means adding auxiliary variables
to the analysis, which may complicate the analysis (Enders, 2006a).

Multiple Imputation

When the simplicity of ML does not work for a particular situation, the
multiple imputation approach may work. MI is a three-step process to
handling missing data. In the first step, missing data are imputed through a
Bayesian procedure. The key for MI is that more than one data set is
generated during the imputation stage, providing a means of determining
the bias associated from imputing. The second step involves analyzing each
of the imputed databases with standard statistics, such as multiple linear
regression. In the third step, the results of the analyses from each data set
are combined and estimates are adjusted to account for the level of bias
within and between data sets introduced from the use of imputed values as
real data during Step 2.

As noted by Abraham and Russell (2004), the appeal of MI comes from
its adaptability, as shown in many simulation studies (Weinfurt et al., 2003).
MI has been shown to result in efficient and unbiased parameter estimates
and standard errors (Enders, 2006a; Graham et al., 2003), as well as
flexibility in handling numerous data scenarios (Schafer & Olsen, 1998).



MI can be used for data with a higher percentage of missingness (Sinhary,
Stern, & Russell, 2001, found that MI was appropriate for up to 40%
missingness), is appropriate with nested and clustered data (Allison, 2002;
Badzioch, Thomas, & Jarvik, 2003), and is appropriate for categorical data
(Schafer & Graham, 2002; Schafer & Olsen, 1998). Although standard MI
is based on normal modeling theory (Abraham & Russell, 2004), MI
performs well with small sample sizes and nonnormal data (Graham &
Schafer, 1999). Finally, MI splits the imputation and analysis stages into
different steps. Such separation allows for the easy use of numerous
auxiliary variables during the MA stage without affecting the analyses,
imputation that can be conducted on many variables from different analyses
at once to allow for more stable variable interrelationships across analyses,
and incorporation of higher-order data into the imputation stage such as
interactions or hierarchically organized data.

There are many variants to the MI process, and I will focus on the
multivariate normal random MI model, one of the best performing and most
widely available (Allison, 2002, p. 56).4

Processes. Multiple data set imputation, single data set analysis, and
parameter combination are the three steps of MI (for more information on
the process and calculations, see Little & Rubin, 2002; Rubin, 1987, 1996;
Rubin & Schenker, 1991).

Step 1—Imputation. The first task to undertake when conducting MI is to
consider how many data sets of imputations are needed. A small number of
imputations (m = 10) will be adequate for most situations. In fact, when
assumptions are met, 10 imputations will produce standard errors just 2%
larger than an infinite number of imputations (von Hippel, 2005). Rubin
(1987) provided a formula for determining the efficiency of m imputations
with a given fraction of missingness,

where γ is the fraction of missing data. With this formula, one can see that
with 30% missingness, 91% efficiency is obtained with just three imputed
databases, 94% with m = 5, and 97% with m = 10: More than three times
the imputations are necessary to increase efficiency just 6%. Thus,



researchers should consider what level of efficiency is necessary (I would
recommend no less than 90%) and then determine how many imputations
will be necessary given the level of missingness in their database.

Next, one calculates the imputed values. It is important to note that we do
not impute in order to divine what an individual would have said if he or
she had given us data but rather to preserve important characteristics of
parameters (e.g., variances, covariances, means, regression coefficients,
etc.) and distributions (Graham et al., 2003, p. 88). The imputed values in
MI only have purpose in creating an efficient and unbiased manner by
which to properly evaluate all of the observed data in the data set.

Akin to the two-step process of EM, the data imputation in Step 1 of MI
also has a two-step process. During the estimation of values for missing
data, called data augmentation, two steps, called imputation and posterior
distribution, are iteratively conducted. Data augmentation is a type of an
increasingly popular method for determining a posterior distribution in
Bayesian statistics, the Markov chain Monte Carlo (MCMC) algorithm
(Schafer & Olsen, 1998). The starting values for the data augmentation
process are based on an initial estimate of the covariance matrix, usually
garnered from the EM algorithm (Schafer & Olsen, 1998). At this point, the
two-step process begins with the first imputation step, wherein regressions
are conducted from the basal covariance matrix replacing missing values
with the predicted scores from the regressions. Random draws from the
normal residual distribution are added to the missing values in order to
adjust for all estimates being perfectly on the prediction line of the
regressions, thereby adding in a measure of uncertainty for our
understanding of the missing value. After the missingness is replaced, the
covariance matrix and mean vectors are recalculated with the imputed
values, and the imputation step ends. The posterior step then commences by
introducing the Bayesian aspect to the data augmentation calculations.
Randomly sampling elements from a posterior distribution derived from the
covariance matrix and mean vector in the imputation step allows for
refinement of the covariance and mean elements. Values during the random
draws in MI should be based on the Bayesian posterior distribution of the
parameter values in order to fully enmesh the uncertainty of our parameter
estimates. However, if the sample size is large enough, then random
sampling from the Bayesian posterior may not be required (Allison, 2002).
This process continues updating the mean and covariance elements and



random selections of the posterior distribution until indiscriminant
differences are obtained between two consecutive data augmentation steps.
There are several ways of calculating the posterior distribution, but
Schaefer’s (1997) noninformative prior is considered a standard (Enders,
2006a).

Step 2—Single Data Set Analysis. Once m data sets have been created with
imputed values from Step 1, hypothesis testing is conducted with one’s
predefined statistical analysis. The statistical analyses are conducted once
for each of the m data sets. For example, if a researcher planned for
multiple regression with three predictor variables and one indicator, then
after extracting her five data sets from Step 1, she would analyze the first
data set with her multiple regression model, then the second data set, and so
forth. These results would then be used to guide calculations in Step 3.

Step 3—Combination. The true benefit of MI comes in the third step, as we
enact controls for our uncertainty in using imputed data as observed data
during Step 2. Step 3 involves three tasks: Calculate means for all pertinent
parameter values, calculate SEs for all pertinent parameters, and then
calculate p values for the parameters based on a modified df formula. The
first task is the easiest: Create a mean for each important parameter by
summing each variable’s parameter values across the m data sets and
dividing that sum by m, as in Equation 1,

where i is the parameter estimate for the ith data set from the m imputed
data sets.

Next, we determine the SE of the parameter by calculating within and
between data set error from the imputations. To do this, (a) calculate the
within-imputation variance with Equation 2, (b) calculate the between-
imputation variance with Equation 3, and (c) determine the total variance
by combining within- and between-imputation variances per Equation 4:



where i is the variance estimate from the ith imputed data set, and m
remains the number of imputation, and

which is the mean of the variances for a parameter across all databases, and

To get the standard error for multiple imputation for a specific parameter,
just take the square root of T for that parameter (Rubin, 1987).

Finally, we are ready to determine the probability level for each
parameter. Begin by calculating the degrees of freedom via Equation 5. The
df may vary from m – 1 to infinity depending on the rate of missingness.
The following formula is used to get the df:

where  is Equation 2 and B is Equation 3. If the computed value of the df
is less than about 10, then one should consider increasing the number of
imputations (Schafer & Olsen, 1998).

From here, use a Student’s t approximation of

and base the p value off of this t test with the above df. As an example, let’s
examine results from a simple regression where scores from the Beck
Depression Inventory (BDI; Beck, Ward, Mendelson, Mock, & Erbaugh,
1961) were used to predict scores on the 10-item short form of the CES-D
that I previously developed (Cole, Rabin, Smith, & Kaufman, 2004). Ten
data sets were imputed, and the resultant regression coefficients and related
standard errors are now provided in Table 15.2. It should be evident that the
overall standard error, , should be low, and the results of the t test will be



high, as all of the coefficients are markedly higher than their respective
standard errors with little deviation between data sets. Indeed, using the
above formulas, we get the following results:  = 0.593,  = 0.001362, B =
0.0002229,  = .037227, df = 23, 413, and t = 15.91 (with a resulting p
value that is off the charts given the df).

There are other methods for combining more complex estimates, such as
likelihood ratios and chi-square statistics (see Schafer, 1997).

Assumptions

Four general assumptions exist for MI: (1) The missingness mechanism
is MAR (or better), (2) the model used to generate imputed values must be
valid, (3) the analysis and MA models must align, and (4) MI assumes that
the data are both univariate and multivariate normally distributed.

Table 15.2 CES-D Short Form Regressed on the Beck Depression Inventory

Missing at Random. The theory behind MI does not preclude using MI
models for nonignorable missingness, and some studies have been
published using MI with nonignorable missingness (Glynn, Laird, & Rubin,
1993; Verbeke & Molenberghs, 2000). However, without special techniques
applied to the MI process, MI conducted without MAR or MCAR
missingness can result in biased parameter estimates.



Valid Imputation Model. Using the Bayesian sampling from the posterior
distribution to treat parameters as random rather than fixed is a major
benefit of MI. However, a few aspects of Bayesian inference should be
understood when conducting MI. First, all of the data’s evidence about
parameter estimates is summarized in a likelihood function with an
assumed distribution. If the assumption is incorrect, than the prior
distribution from which the likelihood function is derived may be wrong.
Second, Bayesian analysis requires the use of a prior distribution, which is
not always accepted as purely scientific. Nevertheless, with the increase in
sample size comes a decrease of the influence the prior distribution has on
the MI results. Indeed, Schafer and Graham (2002) have noted that the prior
rarely exerts a marked influence on the results in MI. For example, an
alterative to data augmentation can be conducted with an unrestricted
multinomial model or a log-linear model (allowing for restrictions of the
multinomial parameters) (Little & Rubin, 2002; Schafer, 1997). Given the
scope of the current chapter, I will not cover these methods but encourage
the interested reader to review the aforementioned references. If one has
reason to suspect that the MA model may be invalid for a particular use, it
would be beneficial to run a sensitivity analysis examining different priors
or even different Bayesian techniques (such as from different MI software
programs). Sensitivity analyses are discussed in the last section of this
chapter.

Fit Between Analysis and Imputation Model. It is critical to ensure that the
MA model has at least as much information as needed to calculate the
analysis model correctly. For example, if interactions between two variables
will be analyzed, then the interaction term itself must also be in the MI
model. The same is true for multilevel data: Appropriate representation of
the multilevel structure must be present in the MA model if the data are to
be analyzed with multilevel techniques. It is also important to consider
which variables will be used in the imputation phase to help enable the
missingness mechanism to be at least MAR. If auxiliary variables are not
appropriately considered in the MA model, or if they are inserted in during
MA but ultimately inserted into the analysis model as well, the missingness
mechanism could be compromised to become MNAR.



Normality. The typical MI model assumes multivariate normality, thereby
requiring all variables to be normally distributed, as well as that each
variable can be expressed as a linear function of all other variables with a
normal homoscedastic residual (Allison, 2002). However, the MI model
works well even when some of the distributions of the present data are not
normal (Schafer, 1997). Still, normalizing variables with missing data can
have a marked impact on the quality of the imputations (Allison, 2002).

Schafer (1997) argued that the multivariate normal model of MI can be
used for nominal and ordinal variables. When nonnormal data are imputed
with the multivariate normal MI, the imputed values are more normal than
the rest of the data. Given that the imputed values typically make up only a
smaller part of the overall data set, the influence of imputed normality
among nonnormal data has relatively little impact on the results (Graham &
Hofer, 2000; Graham & Schafer, 1999). Moreover, as nonnormality has
little impact on parameter estimates compared with standard errors, it is
important to note that MI has little effect on the computation of SEs.
Indeed, it is one’s software and statistical analysis that has the greatest
impact on the accuracy of SEs under nonnormality (Graham & Hofer,
2000).

Nonnormal, ordinal, and even nominal data have been shown to work
quite well with the multivariate MI model, even with relatively small
sample sizes (Schafer, 1997).

Advanced Issues With MI

Partially Parametric and Nonparametric MI. When the aforementioned
assumptions for MI are known to be violated and irreconcilable, it may be
necessary to invoke a partially parametric or nonparametric MI process.
Many of these exist, and they are detailed well elsewhere.

Limitations of MI

MI provides a process that can be used with almost any software and
nearly any kind of data. Nevertheless, the downside to MI is that it (a) is
time-consuming, (b) can be quite technical, and (c) provides different
estimates with every execution (unless the random start value is fixed). In
addition, whereas ML works sufficiently with only one sampling, critics of



MI have argued that prior simulation studies have failed to control for
random sampling theory issues, and therefore MI may require more than
500 imputations (Hershberger & Fisher, 2003). This issue, however,
requires more investigation (Abraham & Russell, 2004), and most studies in
MI have suggested otherwise (Rubin, 1987; Schafer, 1997).

ML VERSUS MI: WHEN TO USE ONE OR THE OTHER

ML and MI are really not dissimilar techniques. Collins et al. (2001) have
discouraged considering ML and MI as competitors, noting that the two
approaches produce similar results, even indis-tinguishably different under
certain conditions. Because MI is a Monte Carlo-based method, when m <
∞, estimates from MI will contain random error not found in the ML
estimates and thus will have larger standard errors, although this is usually
minimal. Rubin (1987) provides a formula for comparing the relative
efficiency of MI compared with an appropriate ML model, given specific
levels of missingness of a number of imputations.

Alas, there are times when selecting one model over the other makes
sense. I have summarized in Table 15.3 the major scenarios when one
technique may provide benefits over the other techniques.

When ML May Be Best. According to Allison (2002), if the analysis
involves any linear model that can be estimated with SEM software, then
ML is probably the preferred method for conducting MI. This is because
ML in such circumstances is quite easy to implement (literally requiring
only the click of a button or the addition of one to two lines of code,
depending on the software) and, if the model is correct, will produce
estimates that are quite accurate.

There are a few more considerations, however, in order to feel
comfortable with using ML. First, one should have reason to believe that
only a few auxiliary variables will provide sufficient control for the
missingness mechanism to be at least MAR (such as Little’s MCAR test or
previous research on similar data examining the missingness mechanism).
Adding a few auxiliary variables into an ML analysis is not too
cumbersome but quickly becomes difficult when (a) there are a large



number of variables to be analyzed in the analysis model, (b) there are more
than two or three auxiliary variables to be added to the model, or (a) and (b)
are both true. In addition, when one has a large sample size (and other
issues are appropriately attended), ML should work well. Smaller samples
will work best in MI. As noted previously, determining the size of a
sufficiently large sample is not straightforward. Finally, if only one analysis
is needed, or the relationship between the same variable in different
analyses is not critical, then ML may be sufficient. Otherwise, MI may be
more appropriate.

In sum, ML is likely to be the preferred option when the MA model is
simple, only a single analysis is required, and the sample size is moderate to
large. ML’s accuracy in this case is equal to an infinite number of
imputations in MI. Indeed, ML can even handle mixtures of continuous and
categorical data now (Song & Lee, 2003). Nevertheless, ML does not offer
the flexibility that can be found with MI when the data or MA models are
more problematic.

Table 15.3 ML Versus MI: When to Favor One Process Over the Other

Use ML When Use MI When

Software is available, and the analysis model
is a simple linear function

Control of MNAR requires many auxiliary
variables

There is a need to obtain model fit indices
after adjusting for missingness

A polychoric covariance matrix does not make
sense for your data, but you have multivariate
normality violations

There is a sufficient n with only a few
auxiliary variables and few normality issues

There are small sample sizes or a large
percentage of missing data

Only one analysis is required or the
relationship between analyses is not critical

It is easier to impute many variables at once and
do separate analyses based on the same MA
model

When MI May Be Best. Whereas ML is easy to implement but has limited
flexibility to handle diverse data and MA scenarios, MI is more technically
difficult but has much flexibility and appropriateness with many different



data and imputation scenarios. The three most commonly experienced
benefits for MI are the control of MNAR with auxiliary variables,
appropriateness with small sample sizes, and ability to have consistent data
(or sets of data) for any one variable across different analyses.

Because of the simplicity of adding dozens (even hundreds!) of auxiliary
variables into the MA model, MI can provide far greater protection against
MNAR missingness compared with ML. Not only is it easy to add many
auxiliary variables into the MA model, but it is even easier to make sure the
effect of the auxiliary variables is incorporated in the analysis model. As
long as one does not include the intended auxiliary variables in the analysis
model, their protection remains.

Some simulation work suggests that MI may work better with smaller
sample sizes than ML (Graham & Schafer, 1999; Schafer & Graham, 2002).
MI will still require more participants than variables during calculation of
the MA model, and at least a ratio of 10 participants to one variable would
be advisable. However, little work has been conducted to provide
empirically guided instructions on the minimum number of participants
needed for a sufficiently stable MA model. Finally, imputation of an entire
data set can be conducted during a single, carefully considered MA model
calculation. The benefit of such an MA model over ML is that ML will
have differing covariances with the same variable in another model,
assuming that some of the other variables in the model have changed. If
stability of the variable information is important, then MI can provide better
protection. Of course, the analyst will still need to heed caution in that
imputation results will change if the MA model is recalculated and the
random starting seed is not the same.

MISSINGNESS IMPUTATION SEQUENTIAL SYSTEM (MISS):
DISCUSSION AND EXAMPLE

Now that we have discussed basic language and issues related to missing
data, detailed critiques of classic techniques, and provided discussion on the
processes of ML and MI, we are ready to discuss details on how to
implement a full process for handling missing data in one’s database. This
section of the chapter introduces a step-by-step process, the missingness



imputation sequential system (MISS), which is designed to walk a
researcher through each of the pertinent steps necessary to properly rectify
missing data. MISS is presented in the context of a full example using data
and related files, all of which may be downloaded from
www.webcmg.com/missing-example.htm.

Discussion of the Missingness Imputation Sequential System

MISS is an 11-step approach that can be used to ensure that all pertinent
aspects of conquering your missing data are addressed. I have labeled it a
sequential system because most of the steps must be conducted in a
sequential order for later steps to be appropriately conducted. MISS is
intended to encourage its users to consider many of the relevant issues
necessary in addressing missing data, provide instruction on how to
implement ML and MI techniques, and help understand the flow and
relationship of the different steps involved in addressing missing data. Of
course, use MISS with forethought: It is not a panacea, nor can it be used
without knowledge of the issues already discussed in this chapter.

Step 1: Create the Missingness Augmentation Model

Implementation of MISS begins with creation of the MA model. As
noted previously, the MA model must capture at least as much information
as will be analyzed in the analysis model. This means that the MA model
should contain (a) all of the variables in the analysis model (auxiliary
variables will be added in a later step); (b) any advanced relationships in the
analysis model, such as interactions and multilevel data; and (c) the same
level of data that will be analyzed in the analysis. The first aspect is self-
explanatory. For interactions, the type of interaction must be considered. If
one of the variables in an interaction is categorical, the more appropriate
manner for imputation is to conduct a data augmentation run for m data sets
for each group on the categorical variable. After imputation, merge the data
sets and create the interaction term (or evaluate with an interaction-friendly
analysis). However, when both variables are continuous (or have multiple
points on an ordinal scale), then the separate imputations are either
impossible or very laborious. In this instance, one can create an interaction
term before imputation based on centered first-order data (for detailed

http://www.webcmg.com/missing-example.htm


information on centering, see Tabachnick & Fidell, 2007) and impute with
this term in the model. This will almost always lead to nonnormal data, but
the results will frequently be appropriate (Allison, 2002). Moreover, if just
group differences are going to be examined, group membership should be
included in the MA model (Schafer & Graham, 2002). To include
multilevel or clustering information, the categorical variables detailing
levels or clusters should be included in the MA model. Consider if
interactions between different levels or clusters will be analyzed. If so, the
interaction terms will also be added to the MA model.

In addition, consider if the level of analysis will take place on summary
scores or item-level data. If your statistical analyses are on scale-level data,
then there may not be much advantage to imputing the item-level data. I
tend to favor keeping the MA and analysis models consistent by imputing
the scale-level data when analyzing scale-level data.

Depression Example. For our example that we will use throughout these
steps, our database once again involves 189 general-population participants
(Cole et al., 2004). Among other collected data, our analysis model
examines the influence of BDI and age in predicting scores on the 10-item
CES-D short form. Moreover, we have added in an interaction term
between age and BDI score. These data are contained in the online Excel
database called depression database. Currently, our MA model now
contains age, BDI, the centered interaction between age and BDI, and
CESD_10.

Step 2: Examine the Data for Missingness

The second step is where we start digging into the observed data set in
order to determine how missing data may be missing and prepare them for
ML or MI. Before anything else, determine which empty cells are truly
missing. Hopefully, the creator of the database has created several codes for
missing data, including a differentiation between missing and not
applicable. Defining the participants who met inclusion criteria, eliminating
those who do not meet inclusion criteria, and imputing true missingness
must be done with great care.

Next, see if you can determine the type of missingness mechanism
(MCAR, MAR, or MNAR, as discussed above; if the data are not MCAR,



conduct a sensitivity analysis between MAR and MNAR techniques).
Afterward, determine whether your data preclude use of particular missing
data techniques (e.g., discrete data may require MI rather than ML).

Finally, determine the normality of the continuous variables. Although
MI has shown robustness to nonnormal continuous data, adjustment of the
distributions can only help ensure that appropriate standard errors are
obtained. Finally, assessment of multivariate normality can be beneficial,
such as the Mahalanobis test (Tabachnick & Fidell, 2007) or Mardia’s
coefficient (Mardia, 1970). Large violations of these statistics may suggest
that a multivariate normality model could be inappropriate, although MI has
been shown to be relatively robust to such violations.

Depression Example. No inclusion or exclusion criteria were necessary to
control in the current data set. Moreover, all missing cells were intended to
be collected and analyzed; therefore, I did not have applicable missingness
here. Data have been coded so that a “-9” defines a missing value.

Using SAS code from Enders (2006c), Little’s MCAR test obtained a
nonsignificant chi-square = 17.56 (df = 14, p = .227), indicating that the
missing mechanism for the MA model was MCAR. However, there is
evidence that, at least for some depression items, gender leads to
differential bias (Santor, Ramsay, & Zuroff, 1994). Thus, although we
achieved MCAR missingness, it may be prudent to add gender as an
auxiliary variable during Step 5.

We have four variables in the analysis and MA models currently, and all
of these variables are continuous. Standardized skewness and kurtosis
scores (respectively) for the four variables were 4.16 and –0.04 for age,
6.75 and 5.65 for BDI, 5.49 and 5.03 for Age × BDI, and 5.94 and 3.35 for
CES-D. Mardia’s coefficient was a standardized score of 8.81. Overall, it is
clear that these data have moderate normality violations, which should be
appropriately corrected with a square root transformation (Tabachnick &
Fidell, 2007).5 These transformations will be conducted in the imputation
software.

Step 3: Select Which Software to Use

There are too many software programs out there to provide a thorough
review in this chapter, though some reviews do exist (e.g., Acock, 2005). A



few particular programs are worthy of specific mention. Mplus provides for
the use of ML for missing data with data that are continuous, censored,
binary, ordered categorical, nominal (multinomial), counts, or combinations
of all of these. Moreover, it will do so with or without latent variables,
allowing for simple regression, correlation, or other manifest-only analyses
(Muthén & Muthén, 2006). Indeed, Acock (2005) noted that Mplus has a
warehouse of options for handling missing values, including approaches for
data that are MCAR, ignorable, and even nonignorable, as well as the
integration of robust or bootstrapped standard errors. The release of AMOS
7 (Arbuckle, 2006) provides us with the first commercial package that will
conduct MA for both ML and MI. Moreover, Version 7 also allows for
proper calculation of censored, dichotomous, order-categorical, and similar
ordinal-level data with either ML or MI.

A growing number of programs will conduct MI, including multivariate
normal random MI. One example is NORM, freeware from Schafer (2000)6

that performed quite well in a simulation study (Allison, 2000) using data
augmentation. NORM performs well with nonnormal data and with small
sample sizes (Graham & Schafer, 1999). Moreover, the graphical interface
is more user-friendly than some. Finally, the SAS PROC MI and
MIANALYZE set of commands work quite nicely. The ability to conduct
the imputation step, analysis step, and combination of results steps all in
one program without much additional coding is a major benefit. Moreover,
PROC MI has a very useful command for restricting the upper and lower
limits of acceptable random draws for imputed values.

Depression Example. Given the markedly easy interface for NORM and
that it is freeware, I have provided the remainder of the MI examples with
this software. Nevertheless, in order to conserve space, many of the
example figures have been reserved for the supplementary Web site for this
chapter at www.webcmg.com/missing-example.htm.

Step 4: Determine the Number of Imputations Needed

Rubin (1987) provided Equation 6 for determining the efficiency of an
estimate based on m imputations with a given fraction of missingness:

http://www.webcmg.com/missing-example.htm


where γ is the fraction of missing data. Until research determines a
minimum amount of efficiency necessary, I recommend using 90% to 95%.

Depression Example. I began by looking at the variable with the highest
percentage of missingness because if I could achieve acceptable efficiency
without too many imputations for this variable, all other variables should
also be sufficient. For the current data, the interaction term has the largest
amount of missingness (18.52%). With three imputations, we get 94.19%
efficiency; five imputations give us 96.3% efficiency, which is acceptable.

Step 5: Select the Auxiliary Variables

Unless Little’s MCAR test affirms that the data are MCAR, I strongly
encourage the use of auxiliary variables in every missing data problem;
even then, auxiliary variables can help with the estimation accuracy. The
major decision in this step is to determine how many auxiliary variables
should be included. If there is reason to believe that more than three or four
auxiliary variables will be necessary, then MI should be used.

Depression Example. As noted in Step 1, I have included gender as a
covariate in the MA model, mostly for pedagogical purposes, given the
MCAR finding. Gender is a dichotomous variable, with females coded as a
1 and males coded as 2. This variable has no missingness, though Enders
(2006b) has noted that missingness in auxiliary variables does not affect the
quality of MI estimates.

Step 6: Configure the Data in the MI Software

Begin by ensuring that all missing value points have been set to a specific
value, such as –9 (as long as the value is sufficiently out of the range of
possible values for all variables with missingness). The details of
processing the data will vary from program to program, and readers should
consult the documentation for help in this step. I have included some details
on NORM on the supporting Web site.

Depression Example. The supporting Web site shows the final set of options
I have marked in the Data—Variables tab. All five variables are marked to



be in the MA model and in the final imputed databases. All of the variables
except gender are to be transformed during imputation calculations with a
square root transformation, including shifts for CES-D, BDI, and the
interaction. I used integer rounding for all but gender and the interaction.
Gender gets no rounding, which is because it has no missing data. The
interaction term is allowed to go to the ninth decimal place, reflecting the
number of decimal places used by Excel to create the interaction (although
two decimal places is generally sufficient). The output file (summary.out)
for the data summary is provided online.

Step 7: EM Algorithm

Once all of the options have been set on the Data tab, we are ready to
move to the first set of calculations. As you may recall, we begin MI by
calculating the EM algorithm to get an initial covariance matrix and mean
vector for the data augmentation (DA) calculations of MI. One should take
note of the number of iterations necessary to calculate the EM covariance
matrix. This is a good indicator of how many iterations will be necessary
for the DA step. NORM examples are on the supporting Web site.

Depression Example. Using the default settings for the EM algorithm,
convergence occurred in just 12 iterations. The output report (em.out) is
located online.

Step 8: Data Augmentation Step7

This is the first true step of MI. Starting parameters can be calculated
either from the data (skipping the EM algorithm) or from the EM results.
The EM results are almost always best here. Make sure your software will
have enough iterations to work with (more is always better). In other words,
if we determine that 40 iterations are required and five databases will be
imputed, then the number of iterations should be no less than 40 × 5 = 200.
Using more iterations will not create less stability, but having too few will
create problems with the data sets. You also need a random number seed. It
is important to note this number, as the ability to recreate the same imputed
results demands the use of the same random seed. Finally, options are given
for the type of prior to use in the Bayesian estimation. For almost all



circumstances, the noninformative prior will work quite well. If problems
persist, one can consider the ridge prior, but review critiques first. Upon
completion of this step, it is important to review the diagnostics before
moving on to Step 9. Upon verifying that the DA model has converged, you
can open and examine the data sets.

Depression Example. All options from the main DA screen were left as
their defaults. Under computing options, I selected 500 iterations. First,
recall that I selected to impute five data sets during Step 5. Next, although I
only needed twice the amount of iterations than was necessary for the EM
algorithm convergence (12 × 2 = 24), I opted to use 100 iterations per data
set. Given the small sample size and number of variables, I was not worried
about extra computational time. I noted my random seed of 55,028 for any
future need (and saved it in my report for NORM). Finally, I opted to keep
the default standard noninformative prior. For imputation options, I selected
to impute at the end of every kth iteration, and k = 100. Finally, under the
series options, I opted to save on the worst linear function at every one
cycle. The worst linear function and autocorrelations plots (Figure 15.2)
looked excellent, demonstrating clear convergence for the DA step.

Step 9: Calculate the Analysis Model

I will begin by discussing the calculation of the analysis model for MI
first, as it is far easier than for ML, mostly because of auxiliary variables.

MI. There are two general ways to proceed in calculating the analysis model
for multiply imputed data sets, differing by one’s comfort level with SAS.
For those who do not wish to use SAS, one simply needs to conduct the
analyses for each of the m imputed databases, recording the parameter
estimates and standard errors. These are entered into a database for
combination in NORM or are used to calculate on one’s own summary
statistics (see Step 10). Indeed, one could even get creative by combining
the different databases in a single database, adding a dummy code for the
database, and using a process such as SPSS’s organize output by group
command.



Figure 15.2 NORM series plot of worst linear trend.

However, if one is comfortable conducting statistical analyses in SAS,
then Step 9 and Step 10 can be concatenated into a single step (even if the
imputation was conducted with NORM) using the SAS Inference command
available in Version 8.2 and later (see Allison, 2002).

ML. To calculate the analysis model for ML, the model must be created
within the desired modeling software. For the current discussion, I have
used AMOS, given that the graphical interface is quite intuitive and easily
translates into other software coding. The basal MA model without
auxiliary variables is simple and is presented in Figure 15.3. In order to
incorporate auxiliary variables into the model, Graham (2003) outlined
three rules that must be applied. An auxiliary variable must be modeled so
it (a) correlates with all other auxiliary variables, (b) correlates with all
exogenous manifest variables, and (c) correlates with the residual of all
endogenous manifest variables. Figure 15.4 displays the MA model, with
the auxiliary variable of gender added in using Graham rules. As you can



see, adding in additional auxiliary variables can be quite cumbersome with
even a small model.

Once the model is created, complete the rest of the model specifications
and add in the specification for using ML to account for missing data (often
called full-information maximum likelihood in latent modeling programs).
When this option is selected, other options, such as modification indices,
normality estimates, and other features, may, depending on the program, no
longer be available. You will want to consult your software manual for
specific details.

Figure 15.3 ML analysis model without auxiliary variable.

Figure 15.4 ML analysis model with one auxiliary variable.

Depression Example. For the MI results, I calculated the regression
coefficients and standard errors for each of the five databases, and these
results are provided in Table 15.4. A cursory review suggests that age and
BDI are significant predictors of CES-D short-form scores, but the
interaction between age and BDI is not. Steps 10 and 11 will formalize



these observations. For the ML results, estimates for the single calculation
are also presented in Table 15.4. The results from ML tell a story similar to
the cursory review of the MI parameters. However, an important finding
from the ML results is that the model was not appropriate for the data: Fit
statistics were all well off from necessary levels. Modification to the model
was limited because of its small number of variables and many paths
necessary for the auxiliary variable. No appropriate modifications made the
model fit sufficiently. Given that the ML augments to control for missing
data depend on the model being correct, we cannot have much faith in the
ML results at this point.

Step 10: Analyze Combined Results

One could undertake the calculation of Rubin’s rules for combining
multiple parameters and SEs with Excel or a calculator, although NORM
and other MI programs often undertake this task for you.

Depression Example. Based on the integration of results from NORM (see
the Web site for detailed examples), the output report (mi.out) conveyed the
combined parameter estimates and SE results: age = –0.07 with SE = 0.02,
BDI = 0.54 with SE = 0.04, and interaction = –0.21 with SE = 0.36.

Table 15.4 Parameter Estimates (SEs) for Step 9 Analysis Model Results From Five
Imputed Databases



Step 11: Calculate p Values for Estimates Using Modified df Calculations

Using the MI Inference: Scalar option in MI automatically provides the
df, t, and p values for each of the estimates. Recall that if the recalculated df
is below 10, then more imputed databases should be calculated (using the
same random number seed will allow you to generate the same original
databases, with all additional databases being subsequent independent data
sets).

Depression Example. Two significant findings were found: age, t = –2.98,
df = 23, p = .0067; BDI, t = 12.22, df = 307, p < .0001. The t value for the
interaction was not above 1 and thus was far from significant. Nevertheless,
it did have more df than age (36 vs. 23), indicating greater stability of the
MI results compared with age. BDI had 307 df, indicating marked stability.
The percent missing information for age, BDI, and interaction was 45.5,
12.0, and 36.3, respectively.

SENSITIVITY ANALYSES

Sensitivity analyses are a systematic comparison of the effects of different
missing data techniques. For example, sensitivity analyses can be used to
compare MI with simpler, less accurate data replacement techniques (Cook,
1997; Crawford, Tennstedt, & McKinlay, 1995; Lavori, Dawson, & Shera,
1995) or to explore the impact of various assumptions made during the
imputation process (Allison, 2002; D. A. Heitjan & Landis, 1994; Little &
Yau, 1996; Van Burren, Boshuizen, & Knoock, 1999). Moreover, the impact
of assuming different missingness mechanisms can be explored (i.e., MAR
vs. MNAR). Although the impact of nonignorable missingness typically
results in only slight differences when examined with through sensitivity
analyses (Graham, Donaldson, MacKinnon, & Schafer, 1997), it is still
recommended that some kind of sensitivity analysis be conducted in every
research situation to determine the impact of missingness (Graham & Hofer,
2000).

Despite much writing on the topic, there is very little consistent guidance
on how to best conduct a sensitivity analysis. Some researchers (Fairclough,



2002; Fairclough, Fetting, Cella, Wonson, & Moinpour, 1999) will compare
changes in significance (significant vs. nonsignificant) as well as various
descriptive statistics, such as medians and quartiles. Others examine mean
differences (Little & Rubin, 2002) between various missing data
techniques. It is my belief that the outcome is critical to the sensitivity
analysis. Therefore, I posit that two tests should be undertaken in a
sensitivity analysis. First, a comparison between the various missing data
techniques should compare which analyses result in significant results and
which do not. However, just reviewing the significant versus nonsignificant
results can lead to fallacious interpretation of significant differences when
none exist for effects that are right around one’s alpha level. Is it proper to
declare the following results as leading to important differences: MNAR
technique with a result of p = .049 and MAR technique with a result of p =
.052? This is why I also advocate examining significant differences in the
test statistic or parameter estimate.

As an example, with the depression data examined throughout this
chapter, the result for the CES-D short form regressed on BDI for ML was
0.555 (84% CI:8 0.503–0.607), whereas the same parameter under MI was
0.535 (84% CI: 0.474–0.597). Both of these results are markedly
significant, so they pass the first test. Moreover, they are not significantly
different from each other, so they pass the second test. Therefore, the
sensitivity test comparing ML and MI for CES-D regressed on BDI showed
no important differences.

SUMMARY

The pervasive, nearly omnipresent, nature of missing data will evermore
demand the attention of the applied researcher. More and more grant
reviewers, journal editors, regulatory agencies, and other gatekeepers are
demanding more attention to missing data from applied researchers.
Traditional techniques for addressing missing data are nearly all antiquated,
having been shown to perform poorly in creating efficient parameter
estimates and unbiased standard errors. However, the readily available
software for techniques such as ML and MI provides a new era of
opportunity for the applied researcher to address missing data with
techniques that are appropriate for a wide array of missing data problems.



Some missing data problems may require more advanced techniques, such
as pattern mixture models. Whereas ML and MI are now within the grasp of
many applied researchers, some more advanced techniques will require far
greater sophistication. Ideally, as with ML and MI, more advanced models
will be made easier to implement with carefully designed software as
demand for their use increases.

NOTES

1. Others use the term imputation model, but I prefer the term missingness augmentation because
maximum likelihood does not technically impute anything. Instead, it adjusts the covariance matrix
and mean vector to incorporate the influence of the missingness. Thus, missingness augmentation is
meant to describe a process for handling missing data in some particular manner.

2. For example, in family research, men tend to have more missing data than women regardless of
the content (Acock, 2005). Therefore, even though the analytic model may not examine gender
differences, including gender in the MA model can help make sure the missing data technique is
appropriate.

3. For example, the use of polychoric correlations (Song & Lee, 2003) for ordinal data or
corrections to the standard errors and chi-square statistics. In SEM, for example, nonnormal data are
quite frequent among psychological measures (Cole et al., 2004), despite the typical use of ML
extraction in SEM. This will lead to unbiased estimates, but SEs may be quite misleading (Satorra &
Bentler, 1994), thus mandating that the missingness be MCAR (Yuan & Bentler, 2000). Robust
standard errors are used in complete data analysis to correct for nonnormality (Finney & DiStefano,
2006), and these techniques can be conducted for ML analyses with missing data as well. Although
the robust SEs assume MCAR missingness, Enders (2001) found the SEs to be relatively accurate
under MAR missingness as well. In addition, the Bollen-Stine bootstrap can be used for nonnormal
data with missingness, as shown in Enders (2002).

4. The multivariate normal random MI model is available in several software packages, including
an excellent freeware program by Schafer (2000).

5. See Chapter 13 (this volume) on transformations for specific detail on how best to do this.
6. Downloadable at http://www.stat.psu.edu/~jls/misoftwa.html.
7. Of course, there is no data augmentation step for ML.
8. The 84% confidence interval is ideal for comparing two different effects, as no overlap between

the confidence intervals equates to a significance level of .05 (Belia, Fiona, Williams, & Cumming,
2005; Goldstein & Healey, 1995; Tyron, 2001).
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IS DISATTENUATION OF EFFECTS
A BEST PRACTICE?

 
JASON W. OSBORNE

n social science research, many variables we are interested in are also
difficult to measure, making measurement error a particular concern.
Despite impressive advancements in measurement in recent years (see

particularly Chapter 4 on Rasch measurement), simple reliability of
measurement is still an issue in much research. Unreliable measurement
causes relationships to be underestimated (or attenuated), increasing the risk
of Type II errors. In the case of multiple regression or partial correlation,
effect sizes of other variables can be overestimated if another variable in the
equation is not reliably measured, as the full effect of that variable might
not be removed.

This is a significant concern if the goal of research is to accurately model
the “real” relationships evident in the population. Although most authors
assume that reliability estimates (Cronbach alphas) of .70 and above are
acceptable (e.g., Nunnally, 1978), and Osborne, Christensen, and Gunter
(2001) reported that the average alpha reported in top educational
psychology journals was .83, measurement of this quality still contains
enough measurement error to make correction worthwhile (as illustrated
below).

Correction for low reliability is simple and widely disseminated in most
texts on regression but rarely seen in the literature. I argue that authors
should correct for low reliability to obtain a more accurate picture of the
“true” relationship in the population and, in the case of multiple regression
or partial correlation, to avoid overestimating the effect of another variable.



Note that in this age of user-friendly structural equation modeling
programs such as Amos and others, modeling and eliminating measurement
error is a real and present possibility with almost every analysis. While this
topic is discussed in detail elsewhere in this volume (Chapter 32), the
discussion below pertains to this sort of analysis as well. Specifically, one
can view use of structural equation modeling as another option for reducing
the effect of measurement error. Furthermore, readers are encouraged to
explore more modern measurement methodologies as another avenue to
achieving the same goal—the more accurate modeling of that which we
observe and study. For example, primers in Rasch measurement are
presented in Chapters 4 and 5, this volume.

RELIABILITY AND SIMPLE REGRESSION

Since “the presence of measurement errors in behavioral research is the
rule rather than the exception” and the “reliabilities of many measures used
in the behavioral sciences are, at best, moderate” (Pedhazur, 1997, p. 172),
it is important that researchers be aware of accepted methods of dealing
with this issue. For simple correlation, Equation 1 provides an estimate of
the “true” relationship between the independent variable (IV) and
dependent variable (DV) in the population:

In this equation, r12 is the observed correlation, and r11 and r22 are the
reliability estimates of the variables. There are examples of the effects of
disattenuation in Table 16.1 and Figure 16.1. For example, even when
reliability is .80, correction for attenuation substantially changes the effect
size (increasing variance accounted for by about 50% compared with
simple attenuated correlations). When reliability drops to .70 or below, this
correction yields a substantially different picture of the “true” nature of the
relationship and potentially avoids Type II errors.

Table 16.1 Example Disattenuation of Correlation Coefficients



NOTE: Reliability estimates for this example assume the same reliability for both variables. Percent
variance accounted for (shared variance) is in parentheses.

RELIABILITY AND PARTIAL CORRELATIONS

With each independent variable added to the regression equation, the
effects of less than perfect reliability on the strength of the relationship
become more complex and the results of the analysis more questionable.
With the addition of one independent variable with less than perfect
reliability, each succeeding variable entered has the opportunity to claim
part of the error variance left over by the unreliable variable(s). The
apportionment of the explained variance among the independent variables
will thus be incorrect. The more independent variables added to the
equation with low levels of reliability, the greater the likelihood that the
variance accounted for is not apportioned correctly. This can lead to
erroneous findings and increased potential for Type II errors for the
variables with poor reliability and Type I errors for the other variables in the
equation. Obviously, this gets increasingly complex as the number of
variables in the equation grows.

A simple example, drawing heavily from Pedhazur (1997), is a case
where one is attempting to assess the relationship between two variables
controlling for a third variable (r12.3). When one is correcting for low
reliability in all three variables, Equation 2 is used, where r11, r22, and r33 are
reliabilities, and r12, r23, and r13 are relationships between variables. If one is
only correcting for low reliability in the covariate, one could use Equation
3.



Figure 16.1 Selected effect size of original and disattenuated correlation coefficients.

Table 16.2 presents some examples of corrections for low reliability in
the covariate (only) and in all three variables. Table 16.2 shows some of the
many possible combinations of reliabilities, correlations, and the effects of
correcting for only the covariate or all variables. The following points are of
interest: (a) As in Table 16.1, even small correlations see substantial effect
size (r2) changes when corrected for low reliability—in this case, often
toward reduced effect sizes; (b) in some cases, the corrected correlation is
substantially different not only in magnitude but also in the direction of the
relationship; and (c) as expected, the most dramatic changes occur when the
covariate has a substantial relationship with the other variables.

Reliability and Multiple Regression

Research by Bohrnstedt (1983) has argued that regression coefficients are
primarily affected by reliability in the independent variable (except for the



intercept, which is affected by reliability of both variables), while true
correlations are affected by reliability in both variables. Thus, researchers
wanting to correct multiple regression coefficients for reliability can use
Formula 4, taken from Bohrnstedt, which takes this issue into account:

Some examples of disattenuating multiple regression coefficients are
presented in Table 16.3. In these examples (which are admittedly and
necessarily a very narrow subset of the total possibilities), corrections
resulting in impossible values were rare, even with strong relationships
between the variables, and even when reliability is relatively weak.

Table 16.2 Values of r12.3 and  After Correction of Low Reliability

NOTE: Some examples produce impossible values, which are denoted by a dash.

Table 16.3 Example Disattenuation of Multiple Regression Coefficients



NOTE: Calculations in this table used Formula 4, assumed all independent variables (IVs) had the
same reliability estimate, assumed each IV had the same relationship to the dependent variable (DV),
and assumed each IV had the same variance in order to simplify the example. Numbers reported
represent corrected rxz.

Reliability and Interactions in Multiple Regression

To this point, the discussion has been confined to the relatively simple
issue of the effects of low reliability, and correcting for low reliability, on
simple correlations and higher-order main effects (partial correlations,
multiple regression coefficients). However, many interesting hypotheses in
the social sciences involve curvilinear or interaction effects. Of course, poor
reliability in main effects is compounded dramatically when those effects
are used in cross-products, such as squared or cubed terms, or interaction
terms. Aiken and West (1996) present a good discussion on the issue. An
illustration of this effect is presented in Table 16.4.

Table 16.4 The Effects of Reliability on the Reliability of Cross-Products in Multiple
Regression



NOTE: These calculations assume both variables are centered at 0 and assume that both X and Z have
equal reliabilities. Numbers reported are cross-product reliabilities.

As Table 16.4 shows, even at relatively high reliabilities, the reliability of
cross-products is relatively weak. This, of course, has deleterious effects on
power and inference. According to Aiken and West (1996), there are two
avenues for dealing with this: correcting the correlation or covariance
matrix for low reliability and then using the corrected matrix for the
subsequent regression analyses, which of course is subject to the same
issues discussed above, or using structural equation modeling (SEM) to
model the relationships in an error-free fashion.

Protecting Against Overcorrecting During Disattenuation

The goal of disattenuation is to be simultaneously accurate (in estimating
the “true” relationships) and conservative in preventing overcorrecting.
Overcorrection serves to further our understanding no more than leaving
relationships attenuated.

There are several scenarios that might lead to inappropriate inflation of
estimates, even to the point of impossible values. A substantial
underestimation of the reliability of a variable would lead to substantial
overcorrection and potentially impossible values. This can happen when
reliability estimates are biased downward by heterogeneous scales, for
example. Researchers need to seek precision in reliability estimation in
order to avoid this problem.

Given accurate reliability estimates, however, it is possible that sampling
error, well-placed outliers, or even suppressor variables could inflate
relationships artificially and thus, when combined with correction for low
reliability, produce inappropriately high or impossible corrected values. In
light of this, I would suggest that researchers make sure they have checked



for these issues prior to attempting a correction of this nature (researchers
should check for these issues regularly anyway).1

Other Solutions to the Issue of Measurement Error

Fortunately, as the field of measurement and statistics advances, other
options to these difficult issues emerge. One obvious solution to the
problem posed by measurement error is to use SEM to estimate the
relationship between constructs (which can be theoretically error free given
the right conditions), rather than using our traditional methods of assessing
the relationship between measures. This eliminates the issue of over- or
undercorrection, which estimate of reliability to use, and so on. Given the
easy access to SEM software and a proliferation of SEM manuals and texts,
it is more accessible to researchers now than ever before. Having said that,
SEM is still a complex process and should not be undertaken without
proper training and mentoring (of course, that is true of all statistical
procedures).2

Another emerging technology that can potentially address this issue is the
use of Rasch modeling. Rasch measurement uses a fundamentally different
approach to measurement than classical test theory, which many of us were
trained in. Use of Rasch measurement provides not only more sophisticated
and probably accurate measurement of constructs but also more
sophisticated information on the reliability of items and individual scores.
Even an introductory treatise on Rasch measurement is outside the limits of
this chapter, but individuals interested in exploring more sophisticated
measurement models are encouraged to refer to Bond and Fox (2001) or
Chapter 4 (this volume) for an excellent primer on Rasch measurement.

An Example From Educational Psychology

To give a concrete example of how important this process might be as it
applies to our fields of inquiry, I will draw from a survey I and a couple of
graduate students completed of the educational psychology literature from
1998 to 1999 (Osborne, in press). This survey consisted of recording all
effects from all quantitative studies published in the Journal of Educational
Psychology during the years 1998–1999, as well as ancillary information
such as reported reliabilities.



Studies from these years indicate a mean effect size (d) of 0.68, with a
standard deviation of 0.37. When these effect sizes are converted into
simple correlation coefficients via direct algebraic manipulation, d = 0.68 is
equivalent to r = .32. Effect sizes one standard deviation below and above
the mean equate to rs of .16 and .46, respectively.

From the same review of the literature, where reliabilities (Cronbach’s α)
are reported, the average reliability is α = .80, with a standard deviation of
.10.

Table 16.5 contains the results of what would be the result for the field of
educational psychology in general if all studies in educational psychology
disattenuated their effects for low reliability (and if we assume reported
reliabilities are accurate). These results are presented graphically in Figure
16.2 as well. For example, while the average reported effect equates to a
correlation coefficient of r = .32 (accounting for 10% shared variance), if
corrected for average reliability in the field (α = .80), the better estimate of
that effect is r = .40 (16% shared variance, a 60% increase in variance
accounted for). These simple numbers indicate that when reliability is low
but still considered acceptable by many (α = .70, one standard deviation
below the average reported alpha and a level decidedly not considered
acceptable to this author), the increase in variance accounted for can top
100%—in this case, our average effect of r = .32 is disattenuated to r = .46
(shared variance of 21%). At minimum, when reliabilities are good, one
standard deviation above average (α = .90), the gains in shared variance
range around 30%—still a substantial increase.

SUMMARY, CAVEATS, AND CONCLUSIONS

Many of the same concerns people have about dealing with missing data
(see Chapter 15, this volume, on dealing with missing data) are reflected in
discussions of disattenuation. However, if the goal of research is to be able
to provide the best estimate of the true effect within a population, and we
know that many of our statistical procedures assume perfectly reliable
measurement, then we must assume that we are consistently
underestimating population effect sizes, usually by a dramatic amount.
Using the field of educational psychology as an example, and using
averages across 2 years of studies published in top-tier empirical journals,



we can estimate that while the average reported effect size is equivalent to r
= .32 (10% variance accounted for), once corrected for average reliability,
the average effect is equivalent to r = .40 (16% variance accounted for). If
you take these numbers seriously, this means that many studies in the social
sciences underestimate the population effects by about one third.

However, there are some significant caveats to this argument. In order to
disattenuate relationships without risking overcorrection, you must have a
good estimate of reliability, preferably Cronbach’s alpha from a
homogeneous scale. Second, when disattenuating relationships, authors
should report both original and disattenuated estimates and should explicitly
explain what procedures were used in the process of disattenuation. Third,
when reliability estimates drop below .70, authors should consider using
different measures or alternative analytic techniques that do not carry the
risk of overcorrection, such as latent variable modeling, or better
measurement strategies such as Rasch modeling.

Table 16.5 An Example of Disattenuation of Effects From Educational Psychology
Literature



Figure 16.2 What does educational psychology look like disattenuated?

NOTES

1. Interested readers can refer to Chapter 14 (this volume) on detecting and dealing with outliers.
2. Interested readers can refer to Chapter 32 (this volume) for an introduction to best practices in

SEM.
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COMPUTING AND INTERPRETING
EFFECT SIZES, CONFIDENCE
INTERVALS, AND CONFIDENCE
INTERVALS FOR EFFECT SIZES

 
BRUCE THOMPSON

he uptake of null hypothesis statistical significance tests (NHSST) as a
vehicle to evaluate social science results did not occur until the 1950s
(Hubbard & Ryan, 2000), even though many of these tests were first

formulated in the early 1900s (Huberty, 1999). However, the publication of
criticisms of overreliance on NHSST occurred even as many of the tests
first appeared. For example, early in the 20th century, Boring (1919)
published an article titled, “Mathematical vs. Scientific Importance,” in
which he argued that pCALCULATED values should not be the primary focus in
scholarship.

The pCALCULATED values in NHSST are mathematical probability
statements about the likelihood of the sample statistics, assuming samples
came from populations exactly described by the null hypothesis, and given
the sample size (Thompson, 2006a). Because NHSST evaluates the
probability of sample results, and not of populations values, NHSST results
do not evaluate whether the sample results are replicable (Carver, 1978;
Cohen, 1994).

NHSST pCALCULATED values also cannot inform judgment about the
scientific importance of results, because NHSST invokes a deductive logic,
starting with the premise that the null exactly describes the population. A
valid deductive logic cannot contain in conclusions any information not



present in the deductive premises. Because NHSST does not invoke
premises involving human values, NHSST’s mathematical probability
statements contain no information about the scientific import of the sample
results. As Thompson (1993) explained, “If the computer package did not
ask you your values prior to its analysis, it could not have considered your
value system in calculating p’s, and so p’s cannot be blithely used to infer
the value of research results” (p. 365).

The limitations of NHSST have been argued with increasing frequency,
across both decades and a wide array of disciplines, as illustrated in the
graphic offered by Anderson, Burnham, and Thompson (2000). Included
are disciplines such as biology (e.g., Suter, 1996; Yoccuz, 1991), economics
(Ziliak & McCloskey, 2004), education (Carver, 1978; Thompson, 1996),
psychology (Cohen, 1994; Schmidt, 1996), and the wildlife sciences
(Johnson, 1999).

The tenor of the commentary can be represented in Schmidt and Hunter’s
(1997) argument that “Statistical significance testing retards the growth of
scientific knowledge; it never makes a positive contribution” (p. 37).
Rozeboom (1997) was equally direct:
 

Null-hypothesis significance testing is surely the most bone-headedly misguided procedure ever
institutionalized in the rote training of science students…. [I]t is a sociology-of-science
wonderment that this statistical practice has remained so unresponsive to criticism. (p. 335)

Of course, proponents of NHSST have been equally forceful in their
advocacy for the continued use of NHSST, and some thoughtful views have
been offered (cf. Abelson, 1997; Robinson & Wainer, 2002). The book by
Harlow, Mulaik, and Steiger (1997) provided a thorough and balanced
treatment of the various related perspectives (e.g., statistical, philosophical)
on these controversies. However, the most comprehensive and penetrating
treatment is Fidler’s (2005) 70,000-word doctoral dissertation,From
Statistical Significance to Effect Estimation: Statistical Reform in
Psychology, Medicine, and Ecology.

In any case, social scientists today place an increasing emphasis on the
scientific or the practical importance of their results, rather than on the
mathematical probability of their results, as suggested in the title of one of
Roger Kirk’s (1996) important articles, “Practical Significance: A Concept
Whose Time Has Come.” Effect sizes can be used to inform judgment
regarding the practical significance of results. Although effect sizes also



have a long and storied history (Huberty, 2002), advocacy for reporting and
interpreting effect sizes has only reached a crescendo within the past dozen
years. For example, two of the journals to first require effect size reporting
were Measurement and Evaluation in Counseling and Development in
1988, and later Educational and Psychological Measurement (Thompson,
1994).

In 1996, the American Psychological Association (APA) Board of
Scientific Affairs appointed the APA Task Force on Statistical Inference. In
1999, the Task Force issued its recommendations, and emphasized that
effect sizes (e.g., Cohen’s d, Glass’s Δ, η2, adjusted r2 or adjusted R2, Hays’s
ω2) should “always” be reported along with p values, and that “reporting
and interpreting effect sizes in the context of previously reported effects is
essential to good research” (Wilkinson & the APA Task Force, 1999, p.
599, emphasis added).

In response, the fifth edition of the APA (2001) Publication Manual,
used by more than 1,000 journals, included a new declaration that “For the
reader to fully understand the importance of your findings, it is almost
always necessary [emphasis added] to include some index of effect size or
strength of relationship in your results section” (pp. 25–26), and labeled the
“failure to report effect sizes” a “defect in the design and reporting of
research” (APA, 2001, p. 5).

However, given the limitations of the Manual (Fidler, 2002), two dozen
journals have gone further and now explicitly require effect size reporting.
Two of these journals have subscriptions greater than 50,000, and are the
organizational “flagship” journals of the Council for Exceptional Children
and the American Counseling Association.

In 2002, Fidler noted that, “Of the major American associations, only all
the journals of the American Educational Research Association [AERA]
have remained silent on all these issues” (p. 754). Happily, in 2006, the
AERA finally did speak, publishing standards noting that
 

… Statisticians have long warned against overreliance on significance testing to the exclusion of
other methods of interpreting statistical analyses. Statistical significance tests combine both
magnitude of relations (or estimates) and their uncertainty into the same quantity. Interpretation
of statistical analyses is enhanced by reporting magnitude of relations (e.g., effect sizes) and
their uncertainty separately. … It is important to report the results of analyses that are critical for
interpretation of findings in ways that capture the magnitude as well as the statistical
significance of those results. (AERA Task Force on Reporting of Research Methods in AERA
Publications, 2006, p. 37)



Thus, the milestones in the recent movement toward effect size reporting
include as benchmarks:
 

1988 First social science journal requires effect size reporting
1994 Second social science journal requires effect size reporting; APA Publication Manual,
used by more than 1,000 journals, first mentions effect sizes, and “encourages” their reporting
1996 APA appoints Task Force on Statistical Inference to make recommendations on whether
statistical significance tests should be banned from APA journals
1999 Wilkinson and APA Task Force on Statistical Inference publish their recommendations in
the American Psychologist, the APA flagship journal
2005 > 24 journals include explicit effect size reporting expectations within their author
guidelines
2006 AERA publishes its standards on reporting empirical research

Purpose of the Chapter

The purpose of the present chapter is to explain how to compute and
interpret (a) selected effect sizes, (b) confidence intervals, and (c)
confidence intervals for effect sizes. The focus here is on practical
explanations and applications of these important tools.

EFFECT SIZES

As Grissom and Kim (2005) emphasized in their excellent book on effect
sizes, NHSST
 

does not sufficiently indicate how much better the superior treatment is or how strongly the
variables are related. … If two treatments are not equally effective, the better of the two can be
anywhere from slightly better to very much better than the other. (p. 2)

Grissom and Kim (2005) also noted that readers “have a right to see
estimates of effect sizes. Some might even argue that not reporting such
estimates in an understandable manner … may be like withholding
evidence” (p. 5).

Effect sizes can be defined at three different levels of generality. First,
some authors equate effect size with a single, specific effect size (e.g.,
Cohen’s d) from among the 40 or more effect sizes catalogued by Kirk
(1996). Second, some authors somewhat more broadly equate effect sizes
with a particular category of effect sizes (e.g., standardized mean



differences, variance-accounted-for statistics). Third, some authors broadly
define effect sizes as any statistics that quantify the degree to which sample
results diverge from the expectations specified within the null hypothesis
(Kline, 2004).

In this chapter, this last, broadest definition of effect size is invoked. One
crucial implication of the fact that there are dozens and dozens of effect
sizes is that authors must tell readers what effect size they are reporting, and
not ambiguously state merely that “The effect size was …” Because
different effect sizes have different ranges, and different properties, readers
cannot intelligently interpret effect sizes unless they know exactly which
effect size is being reported.

Furthermore, effect sizes can be mathematically converted into each
other’s metrics (e.g., Aaron, Kromrey, & Ferron, 1998; Thompson, 2002a).
But conversions of effect sizes into a common metric across prior reports
are possible only if authors clearly identify which effect sizes are being
reported.

Here, some of the more commonly used effect sizes are discussed. Not
covered are some of the elegant, but less commonly seen effects, such as
the “probability of success” effect (Grissom, 1994) or Huberty’s group
overlap index (I; Hess, Olejnik, & Huberty, 2001; Huberty & Holmes,
1983; Natesan & Thompson, 2007). Alternative treatments of effect size
choices are provided in the book by Grissom and Kim (2005), or the shorter
pieces by Snyder and Lawson (1993), Rosenthal (1994), Kirk (2003),
Vacha-Haase and Thompson (2004), or Thompson (2006a).

FRAMEWORK FOR DISCUSSION

Heuristic Data

The data presented in Table 17.1 are used to make the discussion
concrete and to facilitate the replication by interested readers of the
examples reported here. The table reports a random sample of real data
provided by roughly 1,000,000 library users at more than 1,000 libraries
from around the world with respect to the perceived quality of academic
library services (cf. Thompson, Cook, & Kyrillidou, 2005, 2006).



Included in the data are scores on the LibQUAL+™ total scale, and three
subscales: Affect of Service, involving how librarians are perceived as
interacting with users; Information Control, involving users’ perceptions of
whether users can find information how they want it, when they want it;
and Library as Place, which involves the physical library facility and the
role of the physical library as a symbol. Also included are scores on
perceived outcome impacts of library use, and generic user-reported
satisfaction with library service quality. Finally, user group (1 =
undergraduate student, 2 = graduate student, 3 = faculty) and gender (0 =
female, 1 = male) are reported.

Table 17.1 Random Sample of LibQUAL+™ Data





General Linear Model

Perhaps the most important conceptual framework for understanding
statistical analyses is the General Linear Model (GLM; Thompson, 2000,
2006a). The General Linear Model was popularized within the social
sciences primarily in an important series of papers written by Cohen (1968),
Knapp (1978), and Bagozzi, Fornell, and Larcker (1981), respectively. The
basic concepts of the General Linear Model are that all analyses (a) are
correlational, (b) yield variance-accounted-for effect sizes analogous to the
bivariate r2, and (c) apply weights to measured variables to estimate scores
on composite or latent variables (Thompson, 2006a).



The GLM is a fundamentally important concept in statistics. However,
the statistical concept, the General Linear Model, does not refer to computer
programs presented as menu choices within some statistics software, even
though some software packages may describe a choice as “GLM”. The
take-home message is, do not confuse a software choice with a statistics
concept, even though the software choice might have been somewhat
inspired by the statistics concept.

Statisticians have long recognized that sample estimates of parameters
made within the General Linear Model using ordinary least squares (OLS)
statistical theory tend to overestimate population effect sizes. This is
because samples, like people, each have their own unique features,
colloquially called “flukiness,” or more formally labeled “sampling error
variance.” Three factors impact sampling error, and thus the positive bias of
effect sizes computed using sample data with OLS estimation theory
(Thompson, 2002a, 2006a).

First, studies with smaller sample sizes have more sampling error, and
thus, on average, for a given small n, more positive bias in effect size
estimation, than studies with larger sample sizes. This is because it is easier
to draw unrepresentative or fluky samples when sample size is small.

Second, studies involving more measured variables have more sampling
error, and thus yield more biased effect estimates, than studies involving
fewer measured variables. This is because outliers are people who have
anomalous scores on some variables on some statistics, and probably
everybody is “weird” or an outlier on at least a few variables (Thompson,
2006a). Thus, the more variables we include in a study, the greater is the
likelihood that the “outlyingness” of the particular participants in the
sample will be manifested.

Third, samples drawn from populations with smaller population effect
sizes have more sampling error, and thus more positively biased effect
sizes. This dynamic is not as obvious as the first two influences. But as
Thompson (2002a) explained,
 

As an extreme heuristic example, pretend that one was conducting a bivariate r2 study in a
situation in which the population r2 value was 1.0. In this population scattergram, every person’s
asterisk is exactly on a single regression line. In this instance, even if the researcher draws
ridiculously small samples, such as n = 2 or n = 3, and no matter which participants are drawn,
the researcher simply cannot incorrectly estimate the variance-accounted-for effect size. That is,
any two or three or four people will always define a straight line in the sample scattergram, and
thus r2 will always be 1.0. (p. 68)



Of course, the researcher attempting to correct for this third influence
confronts the dilemma that if the population effect size was known, research
with sample data would not be conducted. In practice, researchers resolve
this dilemma by using the sample effect size estimate to correct itself, or use
as part of the correction a mean or median estimate from prior related
studies.

Three Major Kinds of Effect Sizes

The most commonly used of the dozens of effect sizes can be organized
into three categories, although some effect sizes not considered in detail
here (e.g., the Huberty I indices, and the “probability of superiority”) do not
readily fit within this conceptualization.

Standardized Differences. Standardized differences can be computed easily
in experimental studies in two steps. First, the mean difference is computed
between the mean of the experimental group and the mean of the control
group (i.e., ME – MC). In some disciplines (e.g., medicine), this
unstandardized mean difference is readily understood and universally used
(e.g., deaths per thousand in two groups receiving two different drug
treatments). When unstandardized differences have a recognized meaning,
these effect sizes are strongly recommended (Wilkinson & the APA Task
Force, 1999).

However, in the social sciences, (a) many of our measures (e.g., self-
concept, intelligence, academic achievement) have no intrinsically natural
metric, and (b) different measures have different metrics (i.e., SDs). So, in
such cases, second, we create standardized differences by removing the
metric (i.e., the SD) of the effect via division, so that effect sizes can be
compared for a given outcome across measurements with different scaling.

One common choice is Glass’s (1967) Δ, which uses the standard
deviation of the control group as the estimated population SD. Glass
reasoned that an intervention not only might impact the central tendency of
the intervention, but also might affect the dispersion of that group’s
outcome scores. Under this line of reasoning, because SDC has not been
influenced by intervention, SDC is the best estimate of population σ. So, this
effect estimate is computed as:



Δ = (ME – MC)/SDC. (1)

Of course, medians could also be used in this estimate, because for some
data, medians are better estimates of central tendency than means (Grissom
& Kim, 2005; Thompson, 2006a).

Cohen’s (1969, 1988) d is another standardized difference effect size.
Cohen reasoned that some interventions may not affect the dispersion of
outcome scores, and that in such cases, better estimates of the population σ
would be realized by creating a weighted average of the SDs in both groups,
because the estimate would be based on a larger sample size (i.e., both nE

and nC, rather than only nC). This alternative effect can be computed for
equal-sized groups as:

The fact that these (and other) standardized differences exist makes
explicit that using effect sizes is not about the business of using a single
effect choice in every research situation. The researcher must be guided by
theory about various intervention effects and the sample sizes resulting
from using a single or a pooled estimate of σ. Cohen’s d will be preferred if
(a) nC is small and (b) theory or research suggests that the intervention does
not affect outcome variable dispersion. In the words of Huberty and Morris
(1988), “As in all statistical inference, subjective judgment cannot be
avoided. Neither can reasonableness!” (p. 573).

Variance-Accounted-for Statistics. Because all analyses are correlational, an
r2 analog can be computed in all parametric analyses, and even in some
nonparametric situations (Cohen, 1968; Thompson, 2006a). For example, in
the bivariate case, the Pearson r2 can be computed as:

r2 = SOSEXPLAINED/SOSTOTAL, (3)

where SOS is the sum of squares, and SOSEXPLAINED, SOSREGRESSION,
SOSMODEL, and SOSBETWEEN are all synonymous terms.

In analysis of variance, the related effect size, η2, can be computed as:



η2 = SOSEXPLAINED/SOSTOTAL. (4)

Indeed, recent versions of SPSS provide this computation as an effect
size output under the OPTIONS menu for a wide range of different
analyses.

In multiple regression, the R2 can be computed as:

R2 = SOSEXPLAINED/SOSTOTAL. (5)

The similarity of Equations 3, 4, and 5 is, of course, an artifact of the
reality that these analyses are part of a single General Linear Model.

“Corrected” (or “Adjusted”) Effect Sizes. A “corrected” d, d* (Hedges,
1981, 1982), can be computed as:

d* = d [1 – {3/((4 (nE – nC – 2)) – 1)}]. (6)

The Pearson r2, the multiple R2, and the canonical  can all be corrected
(cf. Thompson, 1990; Wang & Thompson, 2007) using a formula proposed
by Ezekiel (1930):

where the R2 in the rightmost portion of the formula is the relevant
variance-accounted-for estimate, n is the sample size, and v is the number
of predictor variables. The formula can be equivalently expressed as:

In analysis of variance (ANOVA), the corrected estimate, Hays’s (1981)
ω2, can be computed as:

ω2 = [SOSBETWEEN – (k – 1)MSWITHIN]/[SOSY + MSWITHIN], (9)



where k is the number of levels in the ANOVA way, and MS is the mean
square.

Uncorrected and corrected estimates will more strongly diverge as
sample sizes are smaller, the number of measured variables is greater, and
the population effect size is smaller. Corrected effect sizes are theoretically
more accurate estimates of population values, but should be especially
preferred when in the researcher’s judgment the two types of estimates
diverge substantially.

ILLUSTRATIVE EFFECT SIZE CALCULATIONS

The Table 17.1 data will now be used to illustrate various effect size
calculations. This discussion is organized by the various analyses most
frequently seen within the social sciences (cf. Edgington, 1974; Elmore &
Woehlke, 1988; Kieffer, Reese, & Thompson, 2001;Willson, 1980).

t test/One-Way ANOVA

In the presence of an outcome variable that is at least intervally scaled
and a nominal grouping variable, researchers interested in testing mean
differences can conduct either a t test or a one-way ANOVA and will obtain
identical pCALCULATED values and effect sizes from either choice (Thompson,
2006a). A number of effect size choices are possible. Here, from
Table 17.1, LIBQ_TOT is used as the outcome variable, and SEX is used as
the grouping variable.

Standardized Differences (Δ and d). To make this example concrete, and so
that we can talk about a control group, let’s pretend that the Table 17.1
gender variable is instead experimental group assignment, with
“0”indicating assignment to the control group. Using Equation 1 for our
data, we have:

(6.98 – 6.89)/1.47
0.09/1.47



Δ = 0.061

The related d effect size computed using Equation 2 is:

(6.98 – 6.89)/[(1.322 + 1.472)/2]0.5

0.09/[(1.322 + 1.472)/2]0.5

0.09/[(1.74 + 2.16)/2]0.5

0.09/[3.90/2]0.5

0.09/1.950.5

0.09/1.40
d = 0.064

Variance-Accounted-for (η2). If we compute the independent samples t test
for these variables, we obtain tCALCULATED = –.238, PCALCULATED = 0.813. If we
instead conduct a one-way ANOVA, we obtain FCALCULATED = 0.057,
pCALCULATED = 0.813. Of course, for this design,  = –.2382 =
FCALCULATED = 0.057. The uncorrected variance-accounted-for effect size is
computed using Equation 4 as:

0.11/124.77
η2 = 0.00088 = 0.088%

“Corrected” Estimates (d* and ω2). For these data, the d* is computed
using Equation 6 to be:

0.064 [1 – {3/((4(33 + 33 – 2)) –1)}]
0.064 [1 – {3/((4(66 – 2)) – 1)}]

0.064 [1 – {3/((4(64)) – 1)}]
0.064 [1 – {3/(256 – 1)}]

0.064 [1 – {3/255}]



0.064 [1 – 0.012]
0.064 [0.988]

d* = 0.063

The Hays’s ω2 is computed using Equation 9 as:

[0.11 – (2 – 1)1.95]/[124.77 + 1.95]
[0.11 – (2 – 1)1.95]/126.72

[0.11 – (1)1.95]/126.72
[0.11 – 1.95]/126.72

–1.8373/126.72
ω2 = –0.014 = 1.4%

Note that corrected variance-accounted-for effect sizes can be negative,
just as reliability coefficients can be negative, even though both these
statistics are in a squared metric (Thompson, 2003). However, negative
variance-accounted-for effect sizes suggest that the study may have
involved considerably too few participants, given the loss of all the initial
effect size after correction, and then some.

Multiway/Multifactorial ANOVA

Table 17.2 presents the analysis for a 3 × 2 ANOVA (Role × Sex) using
library-related outcomes (SPSS variable OUTCOME) as the dependent
variable. The reader is encouraged to reproduce the η2 values reported in the
table using either SPSS, or Excel, or both.

Multiple R2

Here we illustrate the computation of R2 and R2* values for the
Table 17.1 data using LIBQ_TOT scores as the dependent variable and
OUTCOME and SATISFAC scores as the predictor variables. When the
REGRESSION procedure is invoked, SPSS automatically reports that for



these data, R2 = 72.7%. We can confirm this computation using Equation 5
to determine that:

90.70/124.76
R2 = 72.7%

SPSS also always reports “adjusted” R2 (here 71.8%) when the
REGRESSION procedure is used. We can use Equation 8 to confirm the
computation:

0.727 – ((1 – 0.727) (2/(66 – 2 – 1)))
0.727 – ((1 – 0.727) (2/(64 –1)))

0.727 – ((1 – 0.727) (2/63))
0.727 – ((1 – 0.727) (0.032))

0.727 – ((0.273) (0.032))
0.727 – 0.009

R2* = 0.718 = 71.8%

MANOVA/Descriptive
Discriminant Analysis (DDA)

For this design, we use OUTCOME and SATISFAC as the dependent
variables, and ROLE as the factor for a one-way multivariate analysis of
variance (MANOVA) design. This design can also be called a descriptive
discriminant analysis (DDA; Huberty, 1994). However, conceptualizing the
problem as a DDA (a) yields the standardized weights, the structure
coefficients, and the centroids necessary for a correct post hoc interpretation
of results, and (b) avoids what may well be the most common analytic error
within the published literature (i.e., the use of ANOVA as a method post hoc
to MANOVA).

As Borgen and Seling (1978) argued:
 

When data truly are multivariate, as implied by the application of MANOVA, a multivariate
follow-up technique seems necessary to “discover” the complexity of the data. Discriminant



analysis is multivariate; univariate ANOVA is not. (p. 696)

Table 17.2 Two-Way Factorial ANOVA Example With the OUTCOME Scores as the
Dependent Variable

It simply makes no sense whatsoever to first declare interest in a
multivariate omnibus system of outcome variables, and then to explore
detected effects in this multivariate world by conducting non-multivariate
tests!

SPSS reports that Wilks’s lambda is 0.990. A multivariate η2 value can be
computed as 1 – λ = 0.010 = 1.0%. SPSS upon request when executing the
procedure named GLM reports the multivariate partial η2 value for these
data to be 0.005 = 0.5%.

Canonical Correlation Analysis

The canonical problem requires at least two variable sets each consisting
of at least two measured variables (Thompson, 1984). For this example we
use OUTCOME and SATISFAC as one variable set, and the LibQUAL+™

subscale scores (i.e., SERVAFFE, INFOCONT, and LIBPLACE) as the
second variable set.

The SPSS syntax with which to conduct a canonical correlation analysis
is: 

MANOVA
outcome satisfac WITH
ServAffe InfoCont LibPlace /



PRINT SIGNIF(MULTIV EIGEN DIMENR) /
DISCRIM=STAN COR ALPHA(.99) /
DESIGN.

For our data, SPSS then outputs the two squared canonical correlation
coefficients,  = 0.732 = 73.2% and  = 0.067 = 6.7%. We can apply the
Ezekiel (1930) correction to these values, if we wish to compute “adjusted 

” (Thompson, 1990).

CONFIDENCE INTERVALS

The most recent Publication Manual of the American Psychological
Association (2001) suggested that confidence intervals (CIs) represent, “in
general, the best reporting strategy. The use of confidence intervals is
therefore strongly recommended” (p. 22, emphasis added). However,
empirical studies show that confidence intervals are reported very
infrequently in published research (Finch, Cumming, & Thomason, 2001;
Kieffer et al., 2001). And as Thompson (2002b) suggested, “It is
conceivable that some researchers may not fully understand statistical
methods that they (a) rarely read in the literature and (b) infrequently use in
their own work” (p. 26). Indeed, recent research (Belia, Fidler, Williams, &
Cumming, 2005) confirms that many (perhaps most) researchers do not
understand confidence intervals.

The Exploratory Software for Confidence Intervals (ESCI) developed by
Geoff Cumming, and available at www.latrobe.edu.au/psy/esci, is used here
to produce the graphics that make this discussion accessible. Related
explanations have been offered by Cumming and Finch (2001, 2005) and
Cumming, Williams, and Fidler (2004).

The top portion of Figure 17.1 presents a hypothetical population in
which μ = 50 and σ = 15. Here, 150 random samples of size n = 12 have
been drawn from this population, and results related to the samples and the
sample means are presented in the bottom portion of Figure 17.1. For
example, the last sample of n = 12 scores in the most recent sample are
presented as circles drawn along the top margin of the bottom portion of the
figure. Note that the last (i.e., 150th) sample somewhat undersampled the

http://www.latrobe.edu.au/psy/esci


left half of the population distribution, and the mean for this sample was
54.7 (SD = 10.5).

The bottom of Figure 17.1 presents the distribution of the 150 mean
statistics of the randomly drawn samples. If an infinite number of these
sample means had been drawn and plotted, the resulting distribution
technically would be labeled the sampling distribution of the mean for n =
12. In order to confuse people, who would otherwise understand the related
critical foundational concepts, the standard deviation of the sampling
distribution is not called “the standard deviation of the sampling
distribution,” and instead is called “the standard error of the mean”
(Thompson, 2006a).

The standard error is very important for either or both of two purposes:
(a) inferentially conducting NHSST, or (b) descriptively characterizing the
presumed stability of our point estimate (e.g., here the mean). In inferential
applications, all test statistics and pCALCULATED values are derived by dividing
parameter estimates by their estimated standard errors (Thompson, 2006a).
In descriptive applications, when we focus on the stability of the point
estimate, we place greater faith in the precision of our point estimates (e.g.,
the mean, SD, r, Cohen’s d) when the standard error of the estimate is
smaller. Indeed, we can add to and subtract from our point estimate (e.g.,
here the mean) some function of the standard error, to describe the precision
of our point estimate. We call the resulting range of values a “confidence
interval.”



Figure 17.1 Population for μ = 50 and σ = 15 and sampling distribution of the mean for 150
samples at n = 12.

NOTE: The last (i.e., 150th) sample somewhat undersampled the left half of the population
distribution, and the mean for this sample was 54.7 (SD = 10.5).

Figure 17.2 presents twenty-five 95% confidence intervals drawn from
our population. Note that some intervals are wider (e.g., the bottom, 1st
interval) and some intervals are narrower (e.g., the most recent, 25th
interval at the top of the 25 intervals). More important, note that 3 of the 25
intervals (i.e., the top 2 and the 3rd interval) do not capture what in this case
is the known population parameter, μ = 50.

The figure makes clear what the “95% confidence” statement is about
when dealing with 95% confidence intervals. This confidence statement
says that if we drew infinitely many 95% intervals from our population,
exactly 95% would capture our true population parameter, and exactly 5%
of the intervals would not capture the parameter.

A common misconception about 95% confidence intervals is the belief
that a single interval from a single sample is 95% likely to capture the
population parameter. That is not what confidence intervals do! We can see
the fallacy of confusing (a) a statement about infinitely many intervals with
(b) a statement about a single interval. As Thompson (2006b) proved in his
penetrating proof of his Equation 29.3,

1 ≠ ∞ (Thompson, 2006b, #29.3).

CONFIDENCE INTERVALS FOR EFFECT SIZES

Formulas can be used to compute (a) statistics, (b) confidence intervals for
statistics, and (c) effect sizes. With respect to CIs about a mean, the widths
(W) of the intervals for a given n and a given SD do not vary (i.e., are what
statisticians call “pivotal”).

For example, for n = 10 and SD = 15, for M = 100, the 95% CI about the
mean can be computed as M ± (.5) W. The required tCRITICAL value for df = n
– 1 = 9 can be found using the Excel function:



= tinv(.05, (10-1)),

which returns the value of 2.26. We compute the half-width (W1/2) of the
95% CI for MX (both subtracted and added to the mean to obtain the final
interval with width W) as:

Figure 17.2 95% confidence intervals for the mean of 25 random samples (n = 12) from a
population with μ = 50 and σ = 15.

W1/2 = tCRITICAL (SEM)
tCRITICAL [SDX (n0.5)]
2.26 [15.0 (100.5)]
2.26 [15 (3.16)]

2.26 [4.74]
W1/2 = 10.72

(10)



So our 95% CI about M = 100 is M – W1/2 = 100.0 – 10.72 = 89.28, and M +
W1/2 = 100.0 + 10.72 = 110.72. The full width is W = 10.72 + 10.72 = 21.44
(or 110.72 – 89.28 = 21.44).

If we keep n = 10 and SD = 15, but change M to be 50, for the 95% CI
about the mean, the half-width is nevertheless still computed as:

W1/2 = tCRITICAL (SEM)
tCRITICAL [SDX (n0.5)]
2.26 [15.0 (100.5)]
2.26 [15 (3.16)]

2.26 [4.74]
W1/2 = 10.72

And our 95% CI about M = 50 is 50.0 – 10.72 = 39.28, and 50.0 + 10.72 =
60.72. The full width is W = 10.72 + 10.72 = 21.44 (or still 60.72 – 39.28 =
21.44).

But formulas cannot be used to compute confidence intervals for effect
sizes, because the widths of CIs about effect sizes are not pivotal (see
Cumming & Finch, 2001). Instead, computer-intensive estimation invoking
statistical iteration (i.e., an initial estimate successively tweaked until a
given statistical criterion is approximated) must be used to estimate
confidence intervals for effect sizes.

To illustrate that the widths of CIs for effect sizes are not pivotal, let’s
consider the data set {5.0, 5.5, 5.5, 6.0, 6.0, 6.0, 6.0, 6.5, 6.5, 7.0}. For
these data, n = 10, SD = 0.577, M = 6.0. If we use the null hypothesis that M
is not different from a presumed parameter μ = 5.0, using the ESCI
software, Cohen’s d is computed to be 1.73, and the 95% CI is [0.72, 2.71].
The width of this CI is 1.99 (i.e., 2.71 – 0.72).

However, if we change the data to {6.0, 6.5, 6.5, 7.0, 7.0, 7.0, 7.0, 7.5,
7.5, 8.0}, n remains 10, SD remains 0.577, but now M is 7.0, and d is 3.46.
The 95% CI about d is [1.77, 5.13]. The W of the interval, even though n
and SD remain fixed, is now 3.36 (i.e., 5.13 – 1.77), and not 1.99!

The software required to estimate CIs for various effect sizes is widely
available. The software is available to run stand-alone on a microcomputer



(e.g., Steiger & Fouladi, 1992), in Excel (Cumming & Finch, 2001), in
SPSS (Smithson, 2001), or in SAS (Algina & Keselman, 2003; Algina,
Keselman, & Penfield, 2005a, 2005b). This is an area of quickly developing
theory and methodology (e.g., Keselman, Algina, & Fradette, in press).

BEST PRACTICES

Effect Sizes

A common, but extremely unfortunate practice in interpreting effect sizes
is to use the benchmarks for “small,” “medium,” and “large” effects that
Cohen first offered decades ago. However, the view taken here is that these
benchmarks are not generally useful. Cohen (1988) himself intended these
only as general guidelines, mainly useful when working in unexplored
territory, and he emphasized that
 

these proposed conventions were set forth throughout with much diffidence, qualifications, and
invitations not to employ them if possible [italics added]…. They were offered as conventions
because they were needed in a research climate characterized by a neglect of attention to issues
of [effect size] magnitude. (p. 532)

As noted elsewhere, “if people interpreted effect sizes [using fixed
benchmarks] with the same rigidity that α=.05 has been used in statistical
testing, we would merely be being stupid in another metric” (Thompson,
2001, pp. 82–83). In relatively established areas of research, “there is no
wisdom whatsoever in attempting to associate regions of the effect-size
metric with descriptive adjectives such as ‘small,’ ‘moderate,’ ‘large,’ and
the like” (Glass, McGaw, & Smith, 1981, p. 104).

The correct interpretation of effect sizes instead focuses on “the
retrospective interpretation of new results, once they are in hand, via
explicit, direct comparison with the prior effect sizes in the related
literature” (Thompson, 2002b, p. 28, emphasis added). Such a focus
facilitates the realization of two coequally important benefits from using
effect sizes.

First, the use of effect sizes to inform judgments about practical
significance via these direct comparisons with prior literature forces the
researcher to evaluate effects within a given research context. Very small



effects may still be extremely important when (a) outcomes are especially
valued (e.g., human longevity), (b) outcomes are highly resistant to change,
or (c) small effects cumulate over time (Abelson, 1985; Prentice & Miller,
1992). For example, the variance-accounted-for effect sizes of smoking on
lung cancer incidence (Gage, 1978, p. 21) and aspirin taking on heart attack
incidence (Rosenthal, 1994) are both only about 1%, yet we deem these
both effects remarkably important!

Second, the benefits of using effect sizes to inform judgments about
result replicability are only realized if we make these comparisons across
studies. Unfortunately, p values are completely useless as a mechanism for
evaluating result replicability (cf. Carver, 1978; Cohen, 1994; Thompson,
1996), regardless of how we use pCALCULATED results.

Confidence Intervals

Some researchers erroneously see no comparative benefits of using
confidence intervals as against NHSST (e.g., Knapp & Sawilowsky, 2001).
Certainly, it is true that “if we mindlessly interpret a confidence interval
with reference to whether the interval subsumes zero, we are doing little
more than nil hypothesis statistical testing” (Thompson, 1998, pp. 799–
800). But the correct use of confidence does not employ CIs to conduct
NHSST!

Instead, the correct use of CIs is direct and explicit comparison of CIs
across studies. As Thompson (2006a) emphasized,
 

The beauty of such integrative comparisons is that by comparing CIs across studies (not by
evaluating CIs by whether they subsume an hypothesized expectation) we will eventually
discover the true parameter, even if our initial expectations are wildly wrong (Schmidt, 1996)!
(p. 206)

The integrative use of CIs across studies facilitates the “meta-analytic
thinking” advocated by contemporary scholars (e.g., Thompson, 2002b).
This application also forces us to understand that the p values from a single
study do not evaluate either result import or result replicability and that,
indeed, single studies have limited value, and even that limited value
derives primarily from the single study’s contribution to a larger corpus of
literature. As Schmidt (1996) noted,
 



Meta-analysis … has revealed how little information there typically is in any single study. It has
shown that, contrary to widespread belief, a single primary study can rarely resolve an issue or
answer a question. (p. 127)

The graphic portrayal of CIs is particularly powerful, because a pictorial
representation can “convey at a quick glance an overall pattern of results”
(APA, 2001, p. 176) across either a study or a literature. For this reason, the
APA Task Force on Statistical Inference recommended, “In all figures,
include graphical representations of interval estimates whenever possible”
(Wilkinson & the APA Task Force, 1999, p. 601).

Happily, the Excel software makes the creation of CI graphs quite easy,
and once created, these can be readily cut and pasted into other documents,
such as manuscripts. Simply click on the icon for the CHART WIZARD,
select STOCK, and then input respectively the HIGH, the LOW values of
the CIs, and then the point estimates as CLOSE.

DISCUSSION

Researchers use effect sizes for two purposes, which are of coequal
importance. First, researchers use effect sizes to inform judgments about the
practical significance of results (Kirk, 1996), given the substantive context
of a given study and the researcher’s personal valuing of the dependent
variable(s). As Eden (2002) noted in a recent editorial in the Academy of
Management Journal, “the importance of any particular effect size depends
upon the nature of the outcome studied” (p. 845).

Second, researchers use effect sizes to evaluate the replicability of
results. Researchers judge results to be replicable when the direct and
explicit comparison of their effect sizes with those in related prior studies
suggests that effects are stable over time, or even generalize over some
variations in design or analysis. Finding relationships that replicate over
stated conditions is, after all, the very business of scientific inquiry.

Ironically, this “righteous obsession with result replicability” (Thompson,
2006b, p. 594) is exactly the same concern that has motivated both the
critics (e.g., Carver, 1978; Cohen, 1994; Thompson, 1996) and the
defenders (e.g., Abelson, 1997; Robinson & Wainer, 2002) of statistical
significance testing. Confidence intervals for point estimates, and



confidence intervals for effect sizes, both focus our attention on the
“reflective examination of the replicability of results across related studies”
(Thompson, 2006b, p. 600).
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ROBUST METHODS FOR
DETECTING AND DESCRIBING
ASSOCIATIONS

 
RAND R. WILCOX

wo of the best-known methods for detecting and describing an
association between two or more variables are Pearson’s correlation
and least squares regression. As is well-known, there are conditions

where these methods can provide a satisfactory summary of data and where
the associated inferential techniques, which are typically used, provide an
adequate indication of whether there is an association among variables.
However, there are several fundamental ways in which these methods can
be highly unsatisfactory. Briefly, nonnormality, het-eroscedasticity, and
outliers can mask true associations; they can wreak havoc on Type I errors
and confidence intervals; and they can result in a distorted sense of how the
bulk of the points are related. One immediate goal of this chapter is to
provide a more detailed sense of when and why practical problems can
occur. Then more modern methods, aimed at correcting known problems,
are described, and practical reasons for using these methods are illustrated.
(Comments on easy-to-use software are given near the end of this chapter.)
First, however, some general remarks about power and the meaning of
robustness are provided.

POWER AND NOTIONS OF ROBUSTNESS



At one time, robustness generally referred to the ability of a method to
control the probability of a Type I error. But today, it has a more general
meaning (Hampel, Ronchetti, Rousseeuw, & Stahel, 1986; Huber, 1981;
Staudte & Sheather, 1990). Roughly, a parameter, such as the population
mean, μ, or Pearson’s correlation, ρ, is said to be robust if its value does not
change much with small changes in the underlying distributions.
Estimators, such as the usual sample mean, , or r, are said to be robust if
small changes in the observed data have little or no effect on their values. A
classic illustration that the population variance, σ2, is not robust is based on
a contaminated normal distribution where sampling is from a standard
normal distribution with probability .9; otherwise, sampling is from a
normal distribution with mean 0 and standard deviation 10. Figure 18.1
shows a standard normal and the contaminated normal just described. As is
evident, the two distributions appear to be nearly identical. Although the
standard normal has variance 1, the contaminated normal has variance 10.9.
That is, a small departure from normality can greatly inflate the variance.

Figure 18.1 Normal and contaminated normal distributions.

At first glance, the illustration just given might appear to be in error.
From basic training, when one normal distribution has a standard deviation
that is 50% larger than another normal distribution, there is a very



noticeable difference between the two distributions, even when they have
the same mean. But when dealing with symmetric, bell-shaped distributions
that are not normal, this property does not necessarily hold, as was just
illustrated.

A criticism of this illustration might be that in practice, perhaps we never
encounter a contaminated normal distribution. But robustness concerns do
not hinge on whether data follow a contaminated normal distribution.
Rather, the contaminated normal illustrates a basic principle: Regardless of
which distribution we consider, small changes in the tails of the distribution
can drastically alter the population variance, σ2. In particular, if we assume
normality, but our assumption is off just by a little bit, σ2 can become
relatively large, which can affect power substantially. The same is true for
the population mean μ (e.g., Staudte & Sheather, 1990) as well as ρ. The
left panel of Figure 18.2 shows a bivariate normal distribution with
correlation ρ = .8, and in the right panel, the correlation is ρ = .2. Figure
18.3 shows a bivariate distribution that has an obvious similarity to the left
panel of Figure 18.2, where ρ = .8, but ρ = .2. In Figure 18.3, X has a
normal distribution, but the distribution of Y is contaminated normal.

In terms of observed data, quantities such as the sample mean, the sample
variance, and the usual estimate of ρ, r, are not robust in the sense that even
a single outlier can drastically alter their values. This is of considerable
practical importance because modern outlier detection techniques suggest
that outliers are common, consistent with a prediction made by Tukey
(1960) before good outlier detection techniques were available.

Consider the data shown in Figure 18.4, which were taken from a study
dealing with predictors of reading ability. Pearson’s correlation is r = –.03,
and Student’s t has a p value of .76. Also shown is the least squares
regression line. It is evident, however, that the six largest X values are
outliers. If we eliminate the six points for which X > 120, now r = –.39, and
Student’s t has a p value less than .001. So a very simple process—namely,
eliminating obvious outliers—leads to a decidedly different conclusion.1

Sometimes this simple process is satisfactory, but under general conditions,
it can be unsatisfactory and even disastrous.

There are at least two central issues to keep in mind. The first is that
outliers or influential points are not always obvious when simply looking at
a scatterplot. The second is that eliminating outliers can invalidate Student’s
t as an appropriate test of H0 : ρ = 0. If a data point is simply erroneous, it



can and should be removed, and Student’s t remains valid if erroneous
values occur at random. However, if points are valid but unusual,
eliminating them creates technical difficulties that can cause serious
practical problems.2

Figure 18.2 Two bivariate normal distributions.

Figure 18.3 A bivariate distribution with correlation ρ = .2.

If we simply restrict the range of X values, without regard to the Y values,
Student’s t remains valid. And if we restrict the range of Y values, ignoring
X, again Student’s t can be used. But if we remove outliers among both the
X and Y values, Student’s t is no longer valid because it is based on an
inappropriate estimate of the standard error. More generally, when
eliminating points flagged as outliers by some appropriate outlier detection



method, special techniques are required to control the probability of a Type
I error in a reasonably satisfactory manner. Moreover, the adjustment made
depends on the particular outlier detection technique that is used (e.g.,
Wilcox, 2004).

Figure 18.5 shows the same data as in Figure 18.4, only now, points
declared outliers, using a so-called projection-type outlier detection method
(Wilcox, 2005a, section 6.4.9), are marked by an o.3 Note the two points
flagged as outliers in the left portion of the plot. With the outliers indicated
by an o removed, r = –.49, in contrast to –.39 when only the six obvious
outliers are removed. And using a method in Wilcox (2003, 2005a)
specifically designed to be used with a projection-type outlier detection
method, we reject H0 : ρ = 0 at the .05 level.4

Figure 18.4 Plot of the reading data plus the least squares regression line.



Figure 18.5 Plot of the reading data with outliers marked by an o.

To provide another perspective on power and robustness, consider the
simple ordinary least squares model Y = β0 + β1X + ε, where X and ε are
independent, and ε has mean zero and variance σ2. The lack of robustness
associated with σ2 has practical implications about power when using the
conventional method for testing

H0: β1 = 0.

Let b1 and b0 be the usual least squares estimates of β1 and β0,
respectively, based on the random sample (X1, Y1),…, (Xn, Yn). From basic
principles, assuming the model is correct, the squared standard error of b1 is

where  = ΣXi/n. So, because small departures from normality can greatly
inflate σ2, small departures from normality can result in relatively low
power. A related concern is that even a single outlier can greatly inflate the
usual estimate of σ2,



where ri = Yi – b0 – b1Xi are the residuals. This is a practical concern
because modern outlier detection methods suggest that outliers are
commonly encountered (e.g., Wilcox, 2005a).

Yet another feature of data that can substantially inflate the standard error
of b1 is het-eroscedasticity. Even under normality, if the (conditional)
variance of Y, given X, varies with X, various alternative regression
estimators can have a substantially smaller standard error (e.g., Wilcox,
2003, p. 493). Nonnormality exacerbates practical problems.

AN OVERVIEW OF PRACTICAL CONCERNS WITH STANDARD

TECHNIQUES

The usual regression model assumes that for some outcome variable Y and
p predictors, X1,…, Xp,

Y = β0 + β1X1 + … + βρXp + ε,

where the error term, ε, has a normal distribution with mean zero and
unknown variance σ2, and where ε is independent of X1,…, Xp. Of particular
importance here is the fact that standard inferential techniques not only
assume normality but also assume homoscedasticity. But as pointed out in
numerous journal articles, and for reasons summarized by Wilcox (2003,
2005a), when either of these assumptions is violated, the result can be poor
power, poor control over the probability of a Type I error, and inaccurate
confidence intervals. Indeed, even under normality, heteroscedasticity can
result in poor power. A positive feature of standard inferential techniques is
that under independence, all indications are that they provide reasonably
good control over the probability of a Type I error. That is, when a
significant result is reported, it is reasonable to conclude that the variables
under study are indeed dependent.

A concern, however, is that there are many features of the data that can
account for a significant result, meaning that the nature of the association is
unclear unless very restrictive assumptions are made. Another general



concern is that true associations can be missed for various reasons to be
reviewed.

Pearson’s Correlation

To elaborate a bit, let ρ represent Pearson’s correlation between the
variables X and Y. The usual Student’s t test of

H0 : ρ = 0
assumes that either X or Y has a normal distribution. The test statistic is

which is derived under the assumption that X and Y are independent, which
in turn implies homoscedasticity. If there is heteroscedasticity, the wrong
standard error is being used, which invalidates t as an appropriate test of H0

: ρ = 0. For example, Wilcox (2003) describes a situation where H0 is true,
yet the probability of rejecting increases as the sample size gets large due to
het-eroscedasticity. That is, t is sensitive to more than just situations where
ρ ≠ 0; it is sensitive to heteroscedasticity. So when rejecting with Student’s
t, it is reasonable to conclude that there is dependence, but the main reason
for rejecting could be heteroscedasticity.

To complicate matters, there are at least five features of data that affect
the magnitude of r:

1. The slope of the regression line (e.g., Barrett, 1974; Loh, 1987)
2. The magnitude of the residuals
3. Restriction of range
4. Curvature
5. Outliers

All of these features can affect power when testing H0 : ρ = 0 with
Student’s t. Of course, if H0 is rejected, and if r > 0, for example, a
reasonable conclusion is that the least squares regression line is positive,
but the least squares regression line is itself affected by outliers, curvature,
and a restriction in range. And standard inferential techniques are well-



known to be adversely affected by het-eroscedasticity. In practical terms,
when Pearson’s correlation, or least squares regression, indicates an
association, there is doubt about the nature of the association. Although r >
0 indicates that the least squares line has a positive slope, for the bulk of the
points, a negative association might exist, which was missed due to outliers.
Another result that is often encountered is that a positive (or negative)
association is detected, but modern methods indicate this positive (or
negative) association has a limited range. In particular, it is common to
encounter a range of X values where an association is linear, but outside this
range, no association exists at all. This represents a type of curvature that
modern methods seem to suggest is common. Also, when Student’s t test
fails to reject H0 : ρ = 0, this might be because power is being affected by
heteroscedasticity or one of the five features of data just listed that affect
the magnitude of r. That is, when Pearson’s correlation or least squares
regression fails to detect an association, we cannot assume that no
association exists.

Curvature

Another general concern when dealing with regression problems is
curvature. Of course, a simple strategy is to consider a model where X is
raised to some power—say, a. So in the one predictor case, a simple model
would be

Y = β0 + β1Xa,

where a is to be determined. And of course, more complex models, such as
Y = β0 + β1X+  + ε, could be used, where now a is some constant other than
1 or 0. But with multiple predictors, it can be difficult determining which
powers of the X values should be considered, and even in the single
predictor case, this more general model might not be flexible enough.

As a simple illustration, consider the scatterplot in Figure 18.6, which is
based on data taken from Hastie and Tibshirani (1990) and stems from a
study involving diabetes in children. The goal is to predict log C-peptide
levels at age of diagnosis. The line in Figure 18.6 is an example of what is
called a smooth and was created with the R function lplot. Roughly,



smooths are an attempt to approximate a regression line (or surface) without
specifying a particular parametric form for the regression line. In more
formal terms, assume that

Y = m(X) + λ(X)ε, (1)

where m(X) is some conditional measure of location, given X, such as the
median or mean, and λ is some unknown function used to model het-
eroscedasticity. Smoothers are attempts at estimating m(X). There are many
variations, some of which are outlined later in this chapter. Note that in
Figure 18.6, there appears to be a positive association for X (age) small, but
the association appears to disappear for older children. This illustrates a
situation that smoothers seem to suggest is common: There are regions of X
values where there is an association with Y, but there are regions where no
association appears to exist.

As another example, Denson and Earleywine (2006) conducted an
investigation dealing generally with the amount of marijuana and alcohol
consumed as well as a measure reflecting how often the participants
engaged in acts of aggression (e.g., slapping, pushing, arguing, throwing
things). Figure 18.7 shows an approximation of the regression surface based
on a particular smooth.5 As is evident, the regression surface does not
appear to be a plane but rather a somewhat complex function of the two
predictors (alcohol and marijuana use). The hypothesis that the regression
surface is a plane can be tested using the method in Wilcox (2003, section
14.4.2; Wilcox, 2005a, section 11.5.1), which is rejected for the data used
here when testing at the .05 level.6

Establishing Dependence

One possible way of beginning a regression study is simply to see
whether there is evidence suggesting dependence among the variables under
study. Based on the general model given by Equation 1, there are several
ways this might be done. One broad approach is to consider methods that
test



Figure 18.6 Two smooths of the diabetes data.

Figure 18.7 A smooth where the two predictors are marijuana and alcohol consumption, and
the dependent variable is a measure of aggression.

H0 : m(X) = μy, (2)

where μy is the population mean of Y. So the hypothesis is that the mean of
Y, given X, does not vary with X. That is, the regression line is both straight
and horizontal. The alternative hypothesis is that m(X) varies with X, but



just how it varies is not specified. Another general approach is to test the
hypothesis of independence using some type of correlation coefficient. The
three best-known correlations are Pearson’s, Kendall’s tau, and Spearman’s
rho. But there are some additional correlations that will be described.

Note that independence implies homoscedasticity. That is, in Equation 1,
λ = 1. So yet another way of trying to establish dependence is to test

H0 : λ ≡ 1. (3)

An outline of several methods is provided that might be used to test
Equation 3, but it is stressed that these methods are not recommended for
justifying homoscedastic techniques. The reason is that it is unknown when
these methods have enough power to justify the conclusion that
homoscedasticity is approximately true. Rather, these methods are useful
for establishing that a particular type of dependence exists.

Testing Equation 2

The hypothesis given by Equation 2 can be tested for the general case
where there are p ≥ 1 predictors, but for simplicity, the method is described
only when p =1. (For p >1, see Wilcox, 2005a.) Based on a random sample
of n points, the test statistic is computed as follows. Fix j and let

where  is the usual sample mean of the Y values. Then the test statistic is

D = max | Rj |,

the maximum of all n of the | Rj | values. The null hypothesis is rejected if D
≥ dc, where the critical value dc is determined using what is called a wild
bootstrap method.7 By design, this wild bootstrap method is not sensitive to
heteroscedasticity. For the data in Figure 18.4, testing Equation 2 with D,
the p value is .016 versus .76 using Student’s t test of H0 : ρ = 0.



Robust Correlations

Yet another way of detecting dependence is to test the hypothesis that
some robust correlation coefficient is equal to zero. There are two types of
robust correlations. The first are M-type correlations that guard against
outliers among the marginal distributions. Examples are Spearman’s rho,
Kendall’s tau, and a Winsorized correlation. (Details about this latter
correlation can be found in Wilcox, 2003, 2005a. The R function wincor
performs the calculations.) However, a criticism of these correlations is that
they do not take into account the overall structure of the data when dealing
with outliers. For example, it is possible to find no outliers among the X
values (ignoring Y) and no outliers among the Y values (ignoring X), yet
there are outliers that greatly influence not only Pearson’s correlation but
also Spearman’s rho, Kendall’s tau, and the Winsorized correlation.

Figure 18.8 provides an example. Twenty points were generated where Y
= X + ε and where X and ε are independent, standard normal random
variables. Then two points were added at (X, Y) = (2.1, –2.4). Clearly, these
two points are unusual based on how the first 20 points were generated, and
they are declared outliers by methods that take into account the overall
structure of the data (such as the projection method previously mentioned).
Yet, applying a boxplot rule to the X values, the value 2.1 is not flagged as
an outlier, and similarly, for the Y values, –2.4 is not declared an outlier.
Ignoring the two points at (X,Y) = (2.1, –2.4), r = .68, and Student’s t has a
p value less than .001. But with the two outliers included, r = .21, and the p
value is now .34. Kendall’s tau has a p value of .40, and for Spearman’s rho,
the p value is .48. There are many correlation coefficients that take into
account points flagged by outliers, where the outlier detection method takes
into account the overall structure of the data. But in terms of testing the
hypothesis of a zero correlation, currently only one of these correlations can
be used—namely, the skipped correlation coefficient in Wilcox (2003,
section 9.4.3). For the data in Figure 18.8, the test statistic is 2.2, and the
.05 critical value is 2.6,8 so the method does not quite reject at the .05 level.

Detecting Heteroscedasticity

Another possible approach to detecting dependence is to test the
hypothesis of homoscedasticity, as given by Equation 3. In some cases, tests



of the hypothesis of homoscedasticity can detect dependence when other
methods find no association. Many methods have been proposed, but
currently only three appear to perform well in simulations. One is a method
derived by Koenker (1981). The second is based on a quantile regression
estimator. Using a method in Koenker and Bassett (1978), it is possible to
estimate the γ quantile of Y, say Yγ, given X, assuming that Yγ = β0γ + β1γ X.9

If, for example, β1,2 ≠ β1,8, there is heteroscedasticity and, in particular, a
type of dependence. A method for testing H0 : β1,2 = β1,8 that performs well
in simulations is described in Wilcox and Keselman (2006). Another
approach is to estimate m(X) using a smoother (described in the next section
of this chapter), compute the resulting residuals, and then test the
hypothesis that the absolute values of the residuals do not change with X
(Wilcox, 2006).10

Figure 18.8 A scatterplot of points where there are no outliers among the X values (ignoring
Y) or among the Y values (ignoring X), yet there are outliers that influence
various correlation and regression methods.

Smoothers

Another important tool, particularly in the preliminary stages of analysis,
is a so-called smooth aimed at approximating m(X). There are many
variations (e.g., Efromovich, 1999; Eubank, 1999; Fan & Gijbels, 1996;



Fox, 2001; Green & Silverman, 1993; Gyorfi, Kohler, Krzyzk, Walk, &
Gyorfi, 2002; Hardle, 1990; Hastie & Tibshirani, 1990; Wilcox, 2005a). It
is impossible to give complete details here, but it might help to at least
describe the basic strategy behind these methods. Roughly, given X, the
strategy is to use the Xi values close to X in an attempt to estimate Y. One of
the earliest strategies (Cleveland, 1979) searches for the k closest points to
X, k fixed, and then Y is estimated using weighted least squares, with the
weights depending on how close each point is to X. A closely related
approach is to use all points “close” to X. There are several ways in which
closeness can be measured, but the many details go beyond the scope of this
chapter.

Smoothers can be useful in at least three general ways. First, when p = 1
or 2, they provide a graphical check on the nature of the association. In
particular, these graphs provide an informal check on whether a linear
model provides an adequate summary of the data.11 Second, they provide a
flexible approach when the main goal is to estimate Y. Results comparing
several methods, in terms of mean squared error and bias, can be found in
Wilcox (2005a).12

A third appeal of smoothers is that they provide a flexible approach to
certain inferential problems. For example, a well-known strategy for
investigating regression interactions is to fit the model

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε

and test the hypothesis H0 : β3 = 0. An alternative approach, set in a broader
context, is to fit the model

Y = β0 + m1(X1) + m2(X2) + m3(X1X2) + ε

and then test the hypothesis

H0 : m3(X1X2) ≡ 0,

that is, the null hypothesis is that some function of the product X1X2 is not
needed to model the data.13



As an illustration, consider again the data in Figure 18.7. Using least
squares regression and the standard Student’s t test of H0 : β3 = 0, the p
value is .58. But the function adtest has a p value equal to .01.

A plot of how the regression line between Y and X1 changes as a function
of X2 helps add perspective, and the R function kercon can be used to create
such a plot. By default, it uses three values for X2: the estimated quartiles.
Figure 18.9 shows the output from kercon using the data in Figure 18.7.
The line with the largest slope is the estimated regression line between Y
and X1, given that X2 is equal to its (estimated).25 quantile. The other line
shows the regression when X2 is equal to its median and .75 quantile. (These
latter two regression lines are virtually identical.)

The method for studying interactions, just described, is a special case of a
general approach to regression based on what are called generalized
additive models. When there are p predictors, these methods fit the model

Y = m1(X1) + … + mp(Xp).

This is done by the R function adrun.14 Explicit expressions for the
functions m1…,mp are not provided. The R function adtest can be used to
test

H0 : mk(Xk) = 0

for any k (1 ≤ k ≤ p).

Robust Regression Estimators

In some cases, it might suffice to fit the model

Y = β0 + β1X1+ … + βpXp+ε. (4)

What is needed now are estimators that avoid misleading results or poor
power due to outliers or heteroscedasticity. Numerous alternatives to the
ordinary least squares estimator have been proposed, many of which can



have a considerable practical advantage. Even under normality, several
estimators can have substantially smaller standard errors than the least
squares estimator when there is heteroscedasticity. Space limitations make
it impossible to describe all of these estimators in great detail. A fairly
comprehensive summary can be found in Wilcox (2005b), but even now,
not all estimators are covered. The goal here is to outline a few estimators
and comment on their relative merits.

Minimizing Functions of the Residuals

A general approach, which contains many estimators as a special case, is
to estimate β0, …, βp with the values b0, …, bp that minimize some function
of the residuals. More formally, let

ri = Yi – b0 – b1X1 – … – bpXp

be the residuals corresponding to any choice for b0, …, bp. Then determine
the values b0,…, bp that minimize

Σψ(ri)

for some function ψ to be determined. Least squares corresponds to 
The choice ψ(ri) = | ri | is called least absolute value (LAV) regression and
predates least squares by about a half century. In contrast to least squares,
LAV regression is aimed at estimating the median of Y, given X, as opposed
to the mean. LAV regression provides protection from outliers among the Y
values, but outliers among the X values can cause practical problems.
Moreover, in terms of achieving a small standard error under het-
eroscedasticity, other estimators provide a distinct advantage.

Although the LAV regression estimator has some practical concerns,
relative to other methods that might be used, an extension of this method,
derived by Koenker and Bassett (1978), has practical value. In particular,
they proposed a generalization of the LAV estimator aimed at estimating
any quantile of Y, given X, as opposed to the median only. To estimate the
qth quantile of Y given X, let



ρq(u) = u (q– Iu < 0),

Figure 18.9 A plot used to summarize regression interaction.

where I is the indicator function. Then the regression line is determined by
minimizing

∑ρq(r).

So q = .5 corresponds to the least absolute value estimator and yields an
estimate of the median of Y, given X.15

Williams et al. (2005) conducted a study dealing generally with the
Porteus Maze Test (PMT), which is used to evaluate intelligence and
executive functioning and screen for intellectual deficiency. A portion of
the study dealt with the association between the so-called Q score resulting
from the PMT and a measure of maladjustment for the participants in this
study. The sample size was n = 940. Figure 18.10 shows a plot of the data.
The three straight lines, starting from the bottom, are the .5, .8, and .9
quantile regression lines. So it appears that as we move from the median
value of Y toward the higher quantiles, an association appears.

H0 : β1,9 = 0 is rejected at the .05 level. (The slope of the least squares
regression line is approximately the same as the slope for the .8 quantile.)



Theil-Sen Estimator

Momentarily focus on p = 1. The Theil (1950) regression estimator is
based on the strategy of finding a value for the slope that makes Kendall’s
correlation tau, between Yi – b1Xi and Xi, (approximately) equal to zero. Sen
(1968) showed that this is tantamount to the following method. For any i <
i′, for which Xi ≠ Xi, let

The estimate of the slope is b1ts, the median of all the slopes is represented
by Sii. The intercept is estimated with

My – b1ts Mx,

where My and Mx are the usual sample medians of the Y and X values,
respectively.

There are at least three general ways the Theil-Sen estimator might be
extended to two or more predictors (Wilcox, 2005b), but only one is
described here. The strategy is to determine b1, …, bp so that  is
approximately equal to zero, where  is the estimate of Kendall’s tau
between Xj and Y – b1X1 – … – bpXp. Note that this approach can be used to
generalize the Theil-Sen estimator by replacing Kendall’s tau with any
reasonable correlation coefficient.

A positive feature of the Theil-Sen estimator is that when there is
heteroscedasticity, it can have a substantially smaller standard error than the
ordinary least squares estimator. With p = 1, it can handle a fairly large
proportion of outliers, but as p gets large, the number of outliers it can
handle decreases. One way of possibly reducing this problem is to check for
outliers, remove any that are found, and then apply the Theil-Sen estimator
to the remaining data. One multivariate outlier detection method that seems
to be relatively effective is called a projection method, which is described in
Chapter 6 of Wilcox (2005b). But several other outlier detection methods
probably have practical value. When using the projection method, followed
by the Theil-Sen estimator, this will be called method OP.



Figure 18.10 Quantile regression lines for the Porteus Maze data.

M-Estimators

Yet another approach is based on what are called M-estimators. Roughly,
rather than use the squared residuals, or the absolute value of the residuals,
some other function of the residuals is used with the goal of being relatively
insensitive to outliers and simultaneously performing well when in fact the
usual error term is normal and homoscedastic. There are many variations.
One version, which is called a generalized M-estimator, is computed as
follows:

1. Set k = 1 and compute the residuals, ri,k, based on some initial, such as
least squares. Let Mk be equal to the median of the largest n – p of the 

 and let .
2. Form weights,

where ψ(x) = max(–K, min(K, x)) is Huber’s ψ with



3. Use these weights to obtain a weighted least squares estimate and
increase k by 1.

4. Repeat Steps 1 to 3 until convergence. That is, iterate until the change
in the estimated parameters is small.16

This estimator can have a substantially smaller standard error than the
ordinary least squares estimator under heteroscedasticity, but a criticism is
that it provides relatively poor protection against outliers. Yet another M-
estimator with excellent theoretical properties, which provides relatively
good protection against outliers, was derived by Coakley and
Hettmansperger (1993), but no details are given here.17

Inferential Methods

When testing the hypothesis

H0 : β1 = … = βp = 0, (5)

or when testing hypotheses about the individual parameters, it currently
seems that the most accurate inferential methods are based on a percentile
bootstrap method. When computing a confidence interval for the individual
parameters, the method is applied as follows.

1. Randomly sample with replacement n vectors of observations from
(X11, …, X1p, Y1), …, (Xn1,…, Xnp, Yn).

The result is called a bootstrap sample.
2. Estimate the slope parameters based on the bootstrap sample.
3. Repeat Steps 1 and 2 B times; B = 600 seems to suffice in terms of

controlling the probability of a Type I error. For the jth parameter,
label the results .

4. Put the  in ascending order and label the results .
5. The 1 – α confidence interval for βj. is given by the middle 95% of

these bootstrap estimates:



where ι = αB/2, rounded to the nearest integer, and u = B – 1.
To compute a p value, let  be the proportion of bootstrap estimates

greater than zero. The p value (for a two-sided test) is 2min( , 1 – ).18

No attempt is made to explain the complete computational details when
testing Equation 5. Roughly, the strategy is to determine how deeply the
zero vector is nested within the bootstrap cloud of estimated slopes.
Interested readers can refer to Wilcox (2003, section 14.5.1) or Wilcox
(2005a, section 11.1.1).19

More Illustrations

A practical issue is whether the choice of regression estimator ever
matters, and if the answer is yes, which method should be used? In fairness,
situations are encountered where using some alternative to least squares
regression makes little difference. But the reality is that the choice of
method can make a substantial difference. To complicate matters, the
optimal method for detecting and describing an association is a complex
function of several features of the data, including curvature,
heteroscedasticity, skewness, and outliers. Moreover, the location of the
outliers can be crucial as well.

As a simple illustration, consider again the data in Figure 18.4, but to
demonstrate a point, suppose the goal is to estimate digit-naming speed
based on a measure of word accuracy. Now the data appear in Figure 18.11.
Also shown is a smooth, suggesting that the regression line is reasonably
straight. The p value when using the usual least squares test of H0 : β1 = 0 is
.76. It is evident that the top six points are outliers, and outliers among the
outcome variable can result in low power. But simply removing them and
applying the usual Student’s t test to the remaining data is invalid from a
technical point of view. Although we can restrict the range of the X values,
restricting the range of the Y values and applying the usual t test results in
using the wrong standard error. If instead we use the Theil-Sen estimator,
the p value is .035. Using the Coakley-Hettmansperger estimator, the p
value is .063.

As another illustration, consider the data in Table 6.3 of Wilcox (2003, p.
179). The outcome variable is a recall test score, and the predictor is a
measure of marital aggression. Figure 18.12 shows a scatterplot, and the
ragged line is a smooth based on the goal of estimating the mean of Y given



X. As is evident, there appears to be curvature in the sense that there is a
negative association for low measures of marital aggression, but the
association appears to become negligible as marital aggression increases.
The test of the hypothesis that the regression line is straight, which is based
in part on the Theil-Sen estimator, has a p value of .008 (using the R
function lintest). So in particular, this provides empirical evidence that an
association exists. If we fit a least squares regression line with a quadratic
term—namely, Y = β0 + β1X + β2X2—the hypothesis H0 : β2 = 0 is rejected at
the .05 level, but when testing H0 : β1 = 0, the p value is .061 using the usual
t test. The smooth line in Figure 18.12 is the resulting regression line. If,
however, we test H0 : β1 = 0 using a method that allows heteroscedasticity
(the S-PLUS function lsfitci was used), the p value is .013.

Prediction error refers to the ability to predict future Y values given X.
Using the R or S-PLUS function regpre, which belongs to the library of R
and S-PLUS functions to be described, estimates of prediction error indicate
that the model Y = β0 + β1X performs better than the model Y = β0 + β1X +
β2X2. (The so-called .632 estimator was used, details of which can be found
in Wilcox, 2005a.) Note that the quadratic model, used in conjunction with
the least squares estimator, indicates that β2 is positive, suggesting that as
marital aggression increases, eventually recall test scores will increase as
well, on average. But if we fit a quadratic model using the Theil-Sen
estimator or the Coakley-Hettmansperger estimator, the estimate of β2 is
now negative. The dashed line in Figure 18.12 is the regression line based
on the Theil-Sen estimator. Yet another possible description of the data is
that there is het-eroscedasticity. Tests of the assumption that there is
homoscedasticity failed to reject, but this might be due to low power. So in
summary, there is evidence of a negative association when the aggression
measure is relatively low. But for relatively high aggression, there is doubt
whether an association even exists. The main point here is that multiple
techniques seem to be needed to get a good summary and understanding of
the data.



Figure 18.11 A plot of the reading data used to illustrate the effects of outliers among the
dependent variable.

Figure 18.12 A scatterplot of the marital aggression data. Shown is a smooth and two
regression lines.

Although the Theil-Sen estimator is designed to be robust to outliers,
using something like a projection outlier detection method followed by the
Theil-Sen estimator (method OP) can make a practical difference, but
special methods are needed to test hypotheses (Wilcox, 2005b, p. 480). For



the data in Figure 18.12, using the R (or S-PLUS) function opregpb, which
is based in part on the Theil-Sen estimator, now the test of H0 : β1 = 0 has a
p value of .008.

Software

A practical issue is being able to apply the modern methods, summarized
here, with easy-to-use software. All of the methods that were described are
readily applied using functions written in R or S-PLUS. These software
packages are nearly identical and provide a powerful and flexible approach
to data analysis that, in general, makes modern methods readily accessible.
R is free and can be downloaded from cran.r-project.org. The R functions
for applying the methods covered here are available in two files: Rallfunv1-
v6 and Rallfunv2-v6.

These files can be downloaded from www-rcf.usc.edu/~rwilcox/. With
Version 2.2.0 of R, store these files in C:\Program Files\R\R-2.2.0\. (So as
new versions come out, 2.2.0 will be replaced by the new version number.)
Once R is started, the command source (“Rallfunv1.v6”) will incorporate
all of the functions in the file Rallfunv1.v6 into your version of R. (The
packages listed on the R Web site are another excellent source of functions
aimed at applying recently developed methods.) When using S-PLUS,
download the files allfunv1-v6 and allfunv2-v6 instead and again use the
source command. Some of the functions relevant to the methods covered
here are described in Wilcox (2003) and in Wilcox (2005a). But some of the
newer functions are not covered in any book, so for convenience, the names
of these functions are given here.

CONCLUDING REMARKS

There are many issues and methods beyond those covered in this chapter.
For example, there is a well-known connection between regression and
analysis of variance (ANOVA), it is known that standard ANOVA
techniques suffer from practical problems illustrated here, and many
modern methods are now available aimed at correcting known problems.
The main message here is that many new tools are available for better

http://www-rcf.usc.edu/~rwilcox/


detecting and understanding associations. Some of the more promising
methods have been outlined here, but this is not to suggest that methods not
described have no practical value. Moreover, advances continue to appear
on a fairly regular basis. There is no agreed-on list of methods to try, let
alone an order in which these methods should be used. A suggestion, in the
early stages of an analysis, is to consider flexible methods for establishing
an association, such as the wild bootstrap method, and to take advantage of
modern graphical techniques, particularly smoothers. In the event a linear
model seems appropriate, various robust estimators can be invaluable.
Theil-Sen and robust M-estimators seem like good candidates, but certainly
other estimators can offer distinct advantages in some situations.

NOTES

1. For a more thorough discussion of outliers, see Chapter 14, this volume.
2. Generally, eliminating valid values that happen to be extreme induces dependence among the

remaining observations. The result is that special methods are required to get valid estimates of
standard errors. A relatively nontechnical explanation can be found in Wilcox (2003, section 4.9).

3. The R or S-PLUS function outpro applies this method. The polygon contains the central half of
the data. For details on obtaining the library of R and S-PLUS functions used here, see “Software.”

4. The R function scor can be used.
5. The R function lplot was used.
6. The R function is lintest.
7. The computations are simple, tedious, but readily performed with the R (or S-PLUS) function

indt.
8. Computed with the R function scor.
9. The R or S-PLUS function qreg performs the calculations. When using R, you must first issue

the command install.packages (“quantreg”), assuming you are connected to the Web. This command
makes the quantreg package permanently available. When using S-PLUS, this command is not
needed.

10. The R functions that apply these methods are khomreg (using Koenker’s method), qhomt
(using the quantile regression approach), and rhom.

11. When creating plots with R, and when p = 2, it is necessary to activate the package akima with
the command install.packages (“akima”).

12. Two performed especially well. One is based on a simple extension of a method derived by
Fan (1993), which is applied by the R function kerreg, and the other is a method given in Wilcox
(2005a) and is applied by the R function runpd.

13. The method can be applied with the R function adtest.
14. Another option is to use a function built into R and S-PLUS called gam. To make this a bit

easier, a function called gamplot has been supplied in the library of functions described at the end of
this chapter. (When using R, you must also activate the packages akima and mgcv.)

15. When using R, access to an appropriate function is provided by the command install.packages
(“quantreg”), assuming you are connected to the Web. Once this package is installed, the function
rqfit can be used; it estimates the parameters and returns 1 – α confidence intervals. By default, α =



.05 is used, but rqfit contains an argument alpha allowing the user to reset α. (The function rqfitpv
will report p values, but it has a somewhat higher execution time than the function rqfit.) Setting the
argument xout=T will eliminate outliers among the X values.

16. This estimation method can be applied with the R function bmreg.
17. Use the R function chreg.
18. The computations are performed by the R function regci and can be used with any regression

estimator.
19. The R (or S-PLUS) function regtest performs the calculations.
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RESAMPLING
 

A Conceptual and Procedural Introduction
 

CHONG HO YU

WHAT IS RESAMPLING?

Resampling is a controversial methodology because its inference is based
on repeated sampling within the same finite sample instead of an infinite
theoretical distribution, which is why this methodology is called
resampling. Sometimes, resampling techniques are categorized as
nonparametric procedures (e.g., Cytel Corp., 2004; SPSS, 2006) because
they were originally developed as distribution-free procedures that did not
require parametric assumptions. Thus, in some texts, the status of
resampling is defined as a reactionary force against parametric procedures.
It is unfortunate that many texts introduce resampling in opposition to
parametric methods, and the merits of resampling are usually defined by its
immunity to violations of parametric assumptions, such as departure from
normality and unequal variances. The following statement made by Fisher
(1925) is commonly cited as an indication of the inadequacy of
conventional procedures and as the rationale for replacing legacy statistics
with resampling:
 

The traditional machinery of statistical processes is wholly unsuited to the needs of practical
research. Not only does it take a cannon to shoot a sparrow, but it misses the sparrow! The
elaborate mechanism built on the theory of infinitely large samples is not accurate enough for



simple laboratory data. Only by systematically tackling small problems on their merits does it
seem possible to apply accurate tests to practical data. (p. vii)

Although in his later years, Fisher reinterpreted some components of
significance testing, there is no evidence that he had any intention of
abandoning the theory of infinitely large samples altogether. The above
statement was made in the context of biological sciences. Therefore, at
most, Fisher’s statement expressed the limitations of the theory of infinitely
large samples in certain applications.

It is my conviction that the confrontation between parametric methods
and resampling is unnecessary. Actually, violations of certain parametric
assumptions do not automatically invalidate use of any parametric tests.
There are many remedies to address the issue of assumption violations,
such as robust procedures (as presented in Chapter 18), but there is no
convincing evidence to show that resampling is the best way to go. Hence,
resampling should be treated as one of many options in quantitative
methodologies, and researchers are encouraged to employ multiple ways to
triangulate the data.

Second, as with any research methodology, resampling has both merits
and limitations. Contrary to popular belief, some resampling techniques are
also affected by parametric assumptions. The permutation test, in which
observations are shuffled across groups, assumes that observations in
different groups are exchangeable under the null hypothesis. Thus, the
assumptions of equal variance and independence of observations are also
applicable to the permutation t test. In this sense, the permutation t test has
the same weakness as the classical Student’s t test. Taking the above two
points into consideration, this chapter by no means attempts to declare the
superiority of resampling over parametric procedures. Last, resampling
should not be equated with nonparametric methods because today
parametric bootstrap methods are broadly available (Chernick, 1999).

Resampling is in fact a collection of statistical techniques. On some
occasions, it is considered an extension of existing procedures, while at
other times, it is not, depending on the software used.1

Regardless of how different software developers implement resampling,
this methodology is a way of looking at data analysis that can be applied to
virtually all procedures. Let us take exploratory data analysis (EDA) as a
metaphor. Some researchers still maintain that there is a sharp distinction
between exploratory and classical confirmatory analyses, but this



demarcation will become blurred if EDA is akin to a detective mentality
that is applicable to all scenarios. Specifically, results yielded from
confirmatory procedures can also be taken as tentative conclusions leading
to further inquiry, and there is no reason that data visualization, a common
tool in EDA, cannot be employed in classical analysis. In a similar vein,
resampling should be treated as a reasoning mode that augments classical
probabilistic inferences. For example, at first glance, factor analysis, a
conventional multivariate procedure, is unrelated to resampling, but parallel
analysis, a method of estimating eigenvalues based on repeated sampling,
can be used to determine the proper number of factors to be retained (Horn,
1965).

TYPES OF RESAMPLING

There are at least four major types of resampling. Although today they are
unified under a common theme, it is important to note that these four
techniques were developed by different people at different periods of time
for different purposes.

1. Permutation test: Also known as the randomization exact test, the
permutation test is a type of statistical significance test basing its inference
on an empirical distribution obtained by permuting all possible values of the
test statistic. This test was developed by R. A. Fisher (1960), the founder of
classical statistical testing. Later, this test was refined by Freeman and
Halton (1951) and promoted by Pitman (1937, 1938), Dwass (1957), and
Chung and Fraser (1958). However, Fisher eventually lost interest in the
permutation method because there were no computers back then to
automate such a laborious method. The original goal of developing the
randomization exact test was to explore an alternative to theoretical
distributions as the foundation for probabilistic inferences. Fisher
recognized the usefulness of an empirically generated sampling distribution,
but he was forced to rely on the theoretical sampling due to limited
computational resources at that time. Hence, the exact test was
conceptualized as a forward-looking methodology (Box, 1978).



2. Cross-validation: In cross-validation, a sample is randomly divided
into two or more subsets, and test results are validated by comparing across
subsamples. Simple cross-validation was proposed by Kurtz (1948) as a
remedy for the Rorschach test, a form of personality test that was criticized
by psychometricians for its lack of data normality. Based on Kurtz’s simple
cross-validation, Mosier (1951) developed double cross-validation. Later,
Stone (1974) and Geisser (1975) promoted the idea of crossvalidation as a
tool to verify statistical predictions. Finally, double cross-validation was
extended to multicross validation by Krus and Fuller (1982). The major
goal of cross-validation is to avoid overfitting, which is a common problem
when modelers try to account for every structure in one data set. As a
remedy, cross-validation double-checks whether the alleged fitness is too
good to be true (Larose, 2005). In short, the objective of cross-validation is
to verify replicability and stability of results.

3. Jackknife: Jackknife is a step beyond crossvalidation, in which the
same test is performed repeatedly removing one subject each time. In this
technique, the deleted subject is added back into the sample, and then
another one is chosen for removal. This is also known as the Quenouille-
Tukey jackknife because this tool was invented by Maurice Quenouille
(1949) and later developed by John W. Tukey (1958). As the father of EDA,
John Tukey attempted to use jackknife to explore how a model is influenced
by subsets of observations when outliers are present. Mosteller and Tukey
(1977) stated that jackknife is an all-purpose statistical tool, used as a
substitute for specialized tools that may not be available, just as the Boy
Scout’s trusty tool serves so variedly. Jackknife was developed to assess
stability and bias of estimates rather than performing hypothesis testing,
though the variance estimate obtained through this method can be easily
used to define confidence intervals or to do standard hypothesis testing
(Rodgers, 1999).

4. Bootstrap: “Bootstrap” means that one available sample gives rise to
many others by repeated sampling (a concept reminiscent of pulling
yourself up by your own bootstraps). This technique was invented by Efron
(1979, 1981, 1982, 1983) and further developed by Efron and Tibshirani
(1993). The bootstrap procedure was originally developed as a means of
estimating “statistical accuracy.” However, the objective of “statistical



accuracy” is usually misunderstood as obtaining precision in parameter
estimation or the true parameters (how right it is); rather, the goal is more
about examining bias and variability (how wrong it could be).

Simon (2001) argued that cross-validation and jackknife do not fit the
definition of resampling. According to Simon, resampling, as the name
implies, must involve reuse of samples. However, cross-validation is simply
a one-time sample splitting, and thus no data are reused. Similarly,
jackknife reduces the sample size in each recomputation and never uses the
data in their totality for each calculation. Since systematic reuse of the
available data is the central theme of resampling, cross-validation and
jackknife are not qualified to be classified into the resampling arena. Hence,
this chapter will concentrate on permutation tests and bootstrapping only.
Nevertheless, this does not imply that crossvalidation and jackknife have no
merits. As a matter of fact, cross-validation is still a common practice in
factor analysis. To be specific, usually a factor modeler divides the data set
into two subsets. Exploratory factor analysis is conducted with the first
subsample for proposing a factor structure, whereas confirmatory factor
analysis is employed to verify whether the factor pattern holds in the second
subsample (Mulaik, 1987). By the same token, cross-validation is still
popular in the context of model building, including the time-series models,
regression models, and discrimination models (Chernick, 1999). Also, it is a
common practice for data miners to split the data into a training set, in
which a provisional model is proposed, and a validation set, in which the
fitness is evaluated (Han & Kamber, 2006; Larose, 2005). In some
applications, jackknife and bootstrapping are fused together. For example,
in the resample library of Splus (Insightful, Inc., 2005), there is a function
named “Jack after boot.” As the name implies, jackknife is used first to
subset the data, and then bootstrapping is employed to resample from the
subset. In the following sections, permutation tests and bootstrapping will
be illustrated with concrete examples. The beauty of resampling comes
from its conceptual clarity and procedural simplicity. Henceforth, readers
will not encounter equation-dense pages in this chapter.

PERMUTATION TEST



The permutation test is also known as the randomization exact test, exact
nonparametric inference, or permutational inference (Cytel Corp., 2004).
The best-known type of permutation test is Fisher’s exact test or Fisher’s
randomization test. Edgington (1995) maintained that there is a subtle
difference between permutation tests and randomization tests. For
randomization tests, data permutation generates hypothetical outcomes or
counterfactual scenarios for the same subjects under alternative random
assignments. Swapping observations between two groups in a randomized,
two-independent-sample t test is an example. For permutation tests, data
permutation does not create hypothetical outcomes for the same subjects
but outcomes for other subjects randomly drawn from identical infinite
populations. An example is testing the value of the location parameter of a
distribution using a series of observations from that distribution. However,
in many situations, the two terms are used interchangeably.

As the name implies, Fisher’s randomization test was invented by R. A.
Fisher, and the subsequent development of all other variants of the
permutation test is based on Fisher’s idea. The origin of Fisher’s exact test
is a very interesting story, and it is worthwhile to illustrate the concept of
permutation tests through the telling of this story.

Lady Tasting Tea

In 1920, R. A. Fisher shared a story with his colleagues about how he
resolved a statistical question in an innovative way. Once, Fisher met a lady
who insisted that her tongue was sensitive enough to detect a subtle
difference between a cup of tea with the milk being poured first and a cup
of tea with the milk being added later. Fisher was skeptical, and he
presented eight cups of tea to this lady. Four of these eight cups were “milk
first,” and four others were “tea first.” All cups were arranged in a random
order, yet the lady correctly identified six out of the eight cups (Salsburg,
2001). The test results are summarized in Table 19.1.

Did the woman really have a super-sensitive tongue? This question can
be reformulated as a statistical problem with the following two hypotheses:

Null hypothesis: The order in which milk or tea is poured into a cup
and the lady’s detection of the order are independent.



Alternate hypothesis: The lady can correctly tell the order in which
milk or tea is poured into a cup.

Table 19.1 Test Results of Lady Tasting Tea

In this case, the alternative hypothesis is onesided. Although it is possible
that either the woman’s detection is better than guessing by chance alone or
that her detection is worse than random guessing, Fisher was only interested
in knowing whether her detection was better than guessing by luck. One
way to approach this problem is to employ Pearson’s chi-square test of
goodness of fit, in which a p value of .0786 can be obtained. However, in
order to legitimately use the chi-square test, the minimum expected cell
count for all cells should be at least 5 (Cochran, 1954), and obviously, this
small data set does not satisfy the minimum requirement. The Pearsonian
research tradition, which will be discussed in a later section, insists on
inferences using the data at hand and confines scientific inquiry to mere
description of the observable events. In this sense, the insufficient data from
the “lady tasting tea” experiment would urge the researcher to stop right
here.

The story did not end here, of course. As a counterfactual thinker, Fisher
attempted to make this seemingly untestable problem testable by proposing
that for eight cups of tea, one could enumerate all possible random guesses
and then calculate how many of those guesses would yield six or more
correct responses. It is important to emphasize that the following illustration
is presented with Microsoft Excel, which was not available at Fisher’s time.
For an alternative way of conceptualizing the “lady tasting tea” problem,
please consult the chapter entitled “Introduction to the Fisher Tradition” in
Maxwell and Delaney (2004).

The strategy of solving this problem is as simple as follows:

1. Use the factorial formula to calculate the number of all possibilities.
2. Permute the order of all cups n! times and sum the number of matched

pairs to construct an empirical distribution.



3. Compute the exact probability by comparing the observed data to the
empirical distribution.

Fisher did not have a computer, and thus this tedious permutation was
done by hand. Today we have software to walk through thousands of
permutations in a few seconds. Readers are encouraged to download
“Resampling Stat for Excel” (RSE; Resampling Stat, 2004) from
www.resample.com and follow the instructions below. By the end of the
tutorial, you will know exactly what the exact test means.

1. RSE requires the Analysis ToolPak and Analysis ToolPak—VBA
Extensions to run. Please make sure to check both items in Tools/Ad-ins,
close Excel, and then reopen Excel. In addition, the macro feature in Excel
must be enabled. After installing and configuring RSE, open a new Excel
spreadsheet. The add-in functions for resampling will appear. For this
tutorial, we need only three add-in functions: Shuffle, which is symbolized
by the icon “S”; Repeat and Score, signified by “RS”; and Histogram,
depicted by a histogram icon.

2. In column A of the Excel spreadsheet, enter “Actual” as the header. It
denotes that there are actually four cups of tea with the milk being poured
first and four with the tea being poured first. Next, enter the string “Milk”
from A2 to A5 and the string “Tea” from A6 to A9. You can randomize the
cup order, as Fisher did, but this is not required because the software
package can randomize it in the “guessing” column (see Figure 19.1).

3. Enter “Guess” in B1 as the header. This denotes all the possibilities of
random guessing. Select A2 to A9 and then select the function “Shuffle.”
A2 to A9 will appear in the input range. For the top cell of output range,
enter or select B2. For the number of cells in output range, enter 8. Then
click OK. The Shuffle function will randomly select values from A2 to A9
without replacement and put them into B2 to B9. This simulates random
guessing by the lady tasting tea. Please keep in mind that shuffling is
resampling without replacement. In other words, after a value from column
A is drawn, that particular value will not be put back into column A. In this
way, you will obtain exactly four occurrences of “Milk” and four
occurrences of “Tea” in column B; otherwise, every value can be drawn

http://www.resample.com/


more than one time, and column B could be populated by eight counts of
“Milk” or eight counts of “Tea.”

4. Enter the formula “=IF(A2=B2,1,0)” into C1. Select C1 and then drag
the mouse downward until C9 is reached. Formulas from C2 to C9 will
compare whether the value of each cell in column A is the same as that in
column B. In C10, use the “Summation” function in Excel to sum the
values from C2 to C9. In this simulation, there are six matches between the
actual and the random guess (see Figure 19.2).

5. Select C10 and invoke the function “Repeat and Score.” You can
simulate 1,000 trials (see Figure 19.3). If you have a fast computer, you can
simulate more trials. But please keep in mind that by permuting a different
number of possibilities, you may obtain a slightly different result.

6. By repeating the simulations, sometimes we obtain more than six
matches, but sometimes we have fewer. A distribution can be constructed
using the function called Histogram. This distribution is called the
empirical distribution because it is data driven. It is also known as the
reference set or the reference class because the probability of obtaining the
observed data can be computed with reference to this distribution. Click on
column A and then click on the histogram icon. All 1,000 numbers in
column A will be put into the data input range. Alternatively, you can enter
“A1:A1000” into the data input range. Select C1 as your output area for the
frequency table and accept the default value for other options. Then click
Draw.

Figure 19.1 Simulation of random guess of the milk-tea order.



Figure 19.2 Matching between the actual and the random guess resulting from one shuffle.

Figure 19.3 Repeat the same type of shuffling and score the results.

7. The frequency table shows that there are 218 cases in which six out of
eight pairs are matched, and there are 25 cases in which all pairs are
matched (you may not get the same number). In other words, by chance
alone, 243 (218 + 25) out of 1,000 cases result in six or more correct
answers. This results in a p value of .243 (243/1,000), which is quite
different from the one-sided chi-square test result of .0786 (see Figure
19.4). The p value obtained from the exact test is called the exact p value or
the permutational p value.

As demonstrated above, the original exact test invented by Fisher is used
with a 2 × 2 contingency table. Obviously, its application is too limited, and
thus Fisher’s exact test was extended to unordered R × C tables by Freeman
and Halton (1951). Hence, the exact test is also known as the Fisher-
Freeman-Halton test. Many other permutation tests are built upon the same
simple counterfactual inference proposed by Fisher.



Example of Verifying Survey Findings Using Permutation
Testing

It is a good learning experience to walk through the entire permutation
process as demonstrated in the preceding example. In order to obtain quick
results, many software packages today perform permutations behind the
scenes, and usually all the user needs to do is simply select a test procedure.
A similar example to the “lady tasting tea” is demonstrated with the use of
StatXact (Cytel Corp., 2004). In 2005, in order for Arizona State University
(ASU) to redesign the physical infrastructure of its downtown campus and
evaluate the strategy of using instructional technology, a survey was
distributed to collect information relevant to its readiness for implementing
a one-to-one computing model. A one-to-one computing model is an
instructional technology application that enables all users to have their own
mobile multimedia digital devices, such as iPods used for downloading
Podcast lectures. Despite sending follow-up letters, the overall response rate
of this survey was just 15%, with a total sample of 463 participants
(Table 19.2).

Figure 19.4 Frequency counts and histogram of the number of correct guesses.

One of the survey questions was concerned with the number of students
who owned an iPod. The results are indicated in Table 19.3.

The chi-square test was conducted on the ownership frequency of iPods
to examine whether there was a significant difference between ownership of
iPods across colleges. The p value yielded from the chi-square test is .12,
and thus the difference is considered to be nonsignificant. However, since



the response rate is low relative to the population (see Table 19.2), the ASU
team was highly skeptical of the conclusion. As a countermeasure, Fisher’s
exact test was also conducted for verification. In StatXact, after the
frequency was entered into a 2 × 2 table, it was found that Fisher’s exact
test yields the exact p value as .14, and thus the ASU team stood by the
finding (DiGangi et al., in press).

Do We Need Tests on the Entire Population?

The preceding examples are illustrated with small data sets. Indeed, the
capability of testing untestable problems, such as small n scenarios, is one
of the merits of permutation tests. However, it is a mistake to assume that
resampling cannot be used when the sample size is large. Sometimes, large
data sets result from the situation that one has accessibility to an entire
population. It is a common perception that no statistical analyses are needed
when the full population data are available. First, when the “true”
parameters are certainly known, it does not seem to make any sense to
estimate the confidence interval, which is an expression of uncertainty.
Second, the aim of hypothesis testing is to make inferences from the sample
to the population. However, the knowledge of the population is direct rather
than inferential.

Table 19.2 Sample Pool, Number of Respondents, and Response Rate

Table 19.3 Ownership of iPods by College Students

Whether the population parameter is an invariant constant is highly
debatable because even within the same subject, there is a variability of the



same construct if repeated measures are conducted. Frick (1998) used an
example of the “Planet of Forty” to illustrate why inferences to a finite
population are still necessary. Imagine that on the Planet of Forty, there are
only 40 residents, and they live forever but cannot reproduce offspring.
Imagine that their memory can be erased so that a treatment effect will not
carry over to the next study. When they are split into two groups and are
exposed to two different treatments, are the two mean scores considered
fixed parameters? The answer is no. A month later, when the researcher
wipes out what they have learned in the first experiment and asks them to
start the experiment over, the scores may vary. This is one of the reasons
why statistical tests are still useful even if the researcher has full
accessibility to the population.

Another perspective on this issue is the concept of an infinite population.
The Planet of Forty is fictitious; in reality, there is no finite population.
When a policy maker at a university conducts a campuswide survey of all
university students, the researcher should be aware that the data are nothing
more than a snapshot of an ever-changing population, in which freshmen
keep coming in and graduates keep leaving. Another example can be found
in the debate of university faculty salary equity studies. Haignere, Lin,
Eisenberg, and McCarthy (1996) suggested that use of statistical
significance is improper when the complete population of faculty members
is studied. To counter this argument, Dizinno (1999) stated that the current
faculty group is only a sample that reflects an ongoing reconfiguration of
the population. In other words, they are a sample of the population, not the
complete population. Hence, salary-setting policies must be based on
inferential statistics rather than on “true” parameters.

Conducting a statistical test on the entire population is trickier than one
might expect. When a researcher obtains a sample from a population whose
properties are unknown to us, the researcher may justify using classical
procedures by saying that the sample distribution does not significantly
depart from normality and other parametric assumptions, given that the
sample is large. But, when the researcher has access to the entire
population, obvious violations of assumptions can occur. Permutation tests
are a convenient way to perform tests on populations (Hesterberg,
Monaghan, Moore, Clipson, & Epstein, 2003), for in resampling, it does not
matter whether the data are a sample or the entire population. The
resampling simulates, by chance alone, what the distribution would look



like regardless of whether the source of variation comes from within-
subject variability or between-group variability. If the population data set is
too large, the researcher can employ Monte Carlo–based inferences instead
of exact inferences.

BOOTSTRAPPING

In classical procedures, parameter estimation requires certain parametric
assumptions, but bootstrapping replaces the unknown population
distribution with known empirical distributions, which are also called
bootstrap distributions. The bootstrap methods began to attract more and
more attention after Diaconis and Efron (1983) published an essay
explaining bootstrapping using layman’s terms in Scientific American. As
discussed in this chapter’s introduction, the beauty of resampling is its
conceptual clarity. Resampling is highly accessible to many researchers
whose primary concern is the content area of psychology or biology rather
than mathematics. More important, as many permutation tests are built on
Fisher’s counterfactual reasoning, basic bootstrapping principles also pave
the way to advanced bootstrapping.

In the following example, let us revisit the simple yet intellectually
powerful example depicted by Diaconis and Efron (1983) in Scientific
American. Please notice that in the following, the bootstrap method will be
illustrated with the use of Splus (Insightful, Inc., 2005), which was not
available at the time of Diaconis and Efron’s writing. Henceforth, the
demonstration below is slightly different from that in the Scientific
American essay.

In their article, Diaconis and Efron (1983) asked readers to consider a
group of 15 law schools, for which the academic achievements of each
freshman are measured in terms of the average undergraduate grade point
average (GPA) and the average score on the Law School Admission Test
(LSAT) (Table 19.4). This small data set indicates that the correlation
between GPA and LSAT scores is .776.2

Given Table 19.4, how confidently can the researcher assert that there is a
positive correlation between GPA and LSAT in the law student population?
Diaconis and Efron (1983) proposed the following strategy:



1. The original sample is duplicated 1 billion times. As a result, we have
15 billion observations instead of 15. This expanded sample is treated
as a virtual population or a proxy population.

2. Samples are drawn from this virtual population to verify the
estimators. Unlike permutation methods in which observations are
resampled without replacement, the bootstrap employs resampling
with replacement.

3. Bias is checked by comparing the statistic of the original sample
against that of the empirical distribution. The bias estimated by the
bootstrap method is the mean of the empirical distribution minus the
statistic for the original sample.

Table 19.4 Law School Data Used by Diaconis and Efron (1983)

LSAT GPA
576 3.39
635 3.30
558 2.81
578 3.03
666 3.44
580 3.07
555 3.00
661 3.43
651 3.36
605 3.13
653 3.12
575 2.74
545 2.76
572 2.88
594 2.96

It is highly advisable for readers to walk through the process using the
full version or the trial version of Splus, as explained below:



1. Like RSE to Excel, the Resample Library is an external add-in module
to Splus. After downloading the Resample Library and opening Splus,
select Load Library from File and choose “resample.”

2. Enter the law school data into a data set.
3. Select Correlation/Resample from Statistics/Data Summary.
4. Go to the tab Bootstrap. Check the boxes Perform Bootstrap, Both

Distribution and QQ, Percentiles, BCa Confidence Interval. Set
Number of Resamples to 1,000. Then click OK.

During the bootstrapping process, the computer randomly selects 15 pairs
of scores 1,000 times. At the end, these 1,000 resamplings generate an
empirical distribution as shown in Figure 19.5. As you would expect,
sometimes the resample yields a low correlation coefficient. In some
extreme cases, the correlation is close to zero, but most of the time, it
returns a high correlation. The mean of these correlation coefficients is
depicted as a dotted line, which almost overlaps the original observed
correlation coefficient, 0.776, shown as a solid line.

Besides the graphical output, the bootstrap procedure also returns
numeric output (Table 19.5). In this example, there are three sets of
numbers. The first is the summary statistics based on the observed sample.
The correlation coefficient based on the original 15 pairs of scores is .776,
while the mean of the correlation coefficients that resulted from 1,000
resamples is .77. The bias (observed – mean) is just –0.005869. The second
set informs us about the percentiles of the empirical distribution. The
interval between the 2.5th and 97.5th percentiles of the empirical
distribution is called the bootstrap percentile confidence interval (BPCI).
According to the BPCI, the correlation coefficient between LSAT and GPA
for the law student population could range from .452 to .959.



Figure 19.5 Empirical distribution of correlation coefficients.

Table 19.5 Bootstrap Confidence Intervals

The graphical output indicates that the empirical distribution is skewed,
and thus we need the third numeric output, the bootstrap bias-corrected
accelerated (BCa) confidence interval. The BCa confidence interval’s
endpoints are percentiles of the empirical distribution that are adjusted to
correct for bias and skewness. If the statistic is skewed in either direction,
the BCa bias correction adjusts the endpoints of the interval. According to
the BCa confidence interval, in this example, the population correlation
coefficient spreads from .32 to .94. It is important to note that 1,000
resamples are insufficient for the BCa confidence interval to achieve high



accuracy. This number of resamples is chosen here merely for a faster
computation. Five thousand or more would yield a better result (Hesterberg
et al., 2003).

Advantages of Bootstrapping in One-Sample Problem and
Assumptions

Permutation methods require at least two samples or one sample with two
or more measures: for example, permuting observations in two groups for
conducting randomized two-sample exact t test and shuffling orders for
testing independence between “actual” and “guess” in Fisher’s tea example.
If there is only one sample or one measure, it is virtually impossible to
perform permutations. The only exception is to permute observations from
one sample to test for a location parameter.

But bootstrap can still be employed in a one-sample problem. Take the
law school data as an example again. Before computing correlation
coefficients, researchers who like to scrutinize data sets through data
visualization and EDA may want to look at the attributes of the distribution
of each variable, such as the five-point summary and the trimmed mean,
which is less affected by extreme scores. For this purpose, the Splus user
can select Summary Statistics/Resample from Statistics/Data Summary. Not
surprisingly, only bootstrap is available for this resampling because
shuffling scores within the same variable will not generate any variability.

Let us examine the LSAT scores. After drawing 1,000 resamples, you can
see six empirical distributions: the first quartile, the mean, the trimmed
mean, the median, the third quartile, and the standard deviation. To save
space, these graphics are omitted here, but the numeric output is depicted in
Table 19.6. As with the law school example that estimates the confidence
interval for correlation, these various bootstrap results inform us about the
confidence intervals of the preceding six descriptive statistics.

Following Diaconis and Efron (1983), this chapter uses examples for
computing descriptive statistics, such as correlation coefficient and
summary statistics. Nevertheless, the bootstrap methods can also be used in
inferential statistics. It is crucial to mention that while permutation tests
exhaust all possibilities and obtain the exact p value, bootstrapping
constructs the empirical distribution by many, but not all, combinations.
Thus, the p value yielded from the bootstrap method is not exact. Put



another way, the reference set for permutation tests is a closed set if the
researcher exhausts all possibilities. But this is not the case in
bootstrapping. The reference set, or the empirical distribution, will change
if the researcher increases the number of resamples from 1,000 to 5,000.

Last but not least, permutations test hypotheses concerning distributions,
whereas bootstrap methods test hypotheses concerning parameters. Thus,
bootstrapping entails less stringent assumptions. To be specific, when a test
is conducted in a permutation fashion, it is assumed that all observations
come from the same distribution, but this assumption is not needed for the
bootstrap method (Good, 2000).

Limitations in Small Data Sets

Criticisms against bootstrapping to some extent are understandable
because overly simplistic illustrations using small data sets may give users a
false sense of security. Westfall and Young (1993) called the bootstrap
procedure “a small sample asymptotic procedure” (p. 18). In actuality, using
bootstrapping with a small sample can lead to a test that has low statistical
power. Simulation studies showed that with low-dimensional data sets (e.g.,
k = 1), the bootstrap procedure does not inflate the Type I error, even
though the sample size is as small as 10. However, with the larger number
of variables and small sample sizes, the Type I error rate resulting from the
employment of bootstrapping is greater than .05 (Troendle, Korn, &
McShane, 2004). Although Hesterberg et al. (2003) are vocal advocates for
bootstrapping, they warn that bootstrapping does not overcome the
weakness of small samples as a basis for inference, and thus one must use it
with caution in any inference.

Two Methodological Traditions: Empiricism and
Counterfactual Reasoning

The preceding discussion mentions just one of many potential pitfalls of
bootstrapping. Whether resampling is a viable methodology has been an
ongoing debate for some time, but readers may not necessarily benefit from
revisiting all arguments and counterarguments. Readers who are interested
in the debate can consult Yu (2003). In this short chapter, only one common



objection to resampling will be examined through a historical and
philosophical analysis, namely, “One cannot make something out of
nothing.” At first glance, resampling “invents” data, and thus the
widespread protest against this approach is understandable. Actually,
making statistical inferences based on real data and making inferences
using cases that do not exist represent two different research traditions in
statistics—namely, the Pearsonian and the Fisherian schools.3

Table 19.6 Bootstrap Confidence Interval of Six Descriptive Statistics for LSAT

Karl Pearson was strongly influenced by Ernst Mach, a scientist who
zealously subscribed to the pro-observation and anti-counterfactual
positivist view. Mach initially rejected the existence of shock waves caused
by bullets going faster than the speed of sound because this could not be
directly observed by scientists (as cited in Shipley, 2000). Based on the
same reasoning, Mach was opposed to untestable “absolute space” in



Newtonian physics (as cited in Greene, 2004). In addition, Mach (1941)
said,
 

The universe is not twice given, with an earth at rest and an earth in motion; but only once, with
its relative motions, alone determinate. It is, accordingly, not permitted us to say how things
would be if the earth did not rotate. (p. 284)

Influenced by Mach, Pearson asserted that the goal of scientific methods
is to obtain a mere description of observable phenomena based on the data
at hand (Yu, 2006).

Fisher asserted that Pearson’s pro-observation and anti-counterfactual
approach was a hindrance to science because in Fisher’s view, scientists
must contemplate a wider domain than solely the actual observations. For
instance, biologists would take the existing two sexes for granted; no
biologist would be interested in modeling what organisms might experience
if there were three or more sexes. However, for Fisher, it is logical to
consider this question with reference to a system of possibilities wider than
the actual cases (Box, 1978). Although Fisher did not develop
counterfactual-based methodologies such as modal logic in philosophy or
path-searching algorithms in structural equation modeling, his design of
experiments definitely carries certain counterfactual elements. To be
specific, the researcher designing experiments can go beyond the actual
world to counterfactual worlds by creating situations (treatment groups) that
did not naturally happen (Yu, 2006). Not surprisingly, as a counterfactual
thinker, Fisher is the inventor of permutation testing.

No doubt Karl Pearson and R. A. Fisher were the two most prominent
statisticians in the first half of the 20th century, and it is not exaggerating to
say that today’s statisticians still use, on a day-to-day basis, procedures
developed by these two giants. Today, many researchers have adopted not
only the procedures from both schools but also the implicit assumptions that
could affect how a researcher evaluates the efficacy of a methodology. The
controversy pertaining to resampling may be an echo of the tension between
the research tradition that insists on using empirical data and the tradition
that favors counterfactual reasoning. In the section entitled “Lady Tasting
Tea,” readers saw how the Pearsonian and Fisherian approaches handled the
same problem differently.



ANALOGY OF CONVENTIONAL METHODOLOGY

As mentioned in the previous section, one common criticism against
resampling is that this technique seems to “make something out of
nothing.” Nevertheless, the logic of resampling has a strong connection to
conventional methodology. Consider estimating sample errors in survey
methodology. In probability sampling, the researcher is concerned with two
issues: sampling bias and sampling variance. Both are serious threats to the
validity of the survey results. If some elements in the sampling pool have a
zero probability of being selected, this problem is called sampling bias. If
the sample results yield a wide range of variation and thus precision is low,
this problem is called sampling variance (Groves et al., 2004). Estimating
sampling bias and sampling errors requires a theoretical ground, which
resembles that of resampling. When probability sampling is employed, one
single sample is actually selected. However, given that every element in the
sampling pool has a nonzero probability to be drawn, there are many other
possible samples composed of different elements. In survey methodology,
these alternatives are called realizations. In resampling, these cases are
termed permuted or bootstrap scenarios, whereas in philosophy, they are
known as counterfactuals or possible worlds. Each sample design can yield
many possible sample realizations. The number of possible realizations is a
function of the number of units in the sample, the number in the sampling
pool, and the sample design. If those possible realizations were actualized,
there would be a distribution showing the variability of all the possible
realizations. At this point, readers who are familiar with the central limit
theorem can tell that this distribution is just the sampling distribution.
Based on the theory of sampling distribution, the researcher can use
formulas derived from the theory to compute the variance, the standard
error, and the confidence interval when only the actual sample is available
and other sample realizations were not realized. The major difference
between this methodology and resampling is that the latter actualizes the
potential cases.

Not surprisingly, Hesterberg et al. (2003) used the central limit theorem
and sampling distributions to illustrate the concept of resampling.
According to Hesterberg et al., confidence intervals, hypothesis tests, and
standard errors are all based on the distribution of values taken by the



statistic in all possible samples of the same size from the same population.
In theory, we admit the importance of these realizations, but in practice, we
cannot take a large number of random samples in order to construct this
sampling distribution. As a shortcut, a model for the distribution of the
population and the laws of probability are used to obtain the sampling
distribution. In resampling, the statistician takes things a step further by
constructing the distribution instead of using the shortcut. Hence, viewing
resampling through the lenses of sample realization, sampling distribution,
and the central limit theorem enables us to identify the continuity between
the traditional and the resampling approaches.

SUMMARY

Although permutation and bootstrapping share a common thread in terms of
systematically reusing the available data, they still have quite a few
differences, which are summarized in Table 19.7.

Table 19.7 Differences Between Permutation and Bootstrap

Before arguing for or against a particular school of thought or adopting or
rejecting a specific procedure, it is crucial to understand the philosophical
assumptions of different methodologies and their historical contexts.
Classical procedures were developed along the tension between two
research traditions: the Pearsonian school, which prefers the observable to
the unobservable entities, and the Fisherian school, which embraces
counterfactual reasoning based on scenarios that never existed but could be



actualized. The concepts of sample realization and the central limit theorem
can be viewed as a manifestation of counterfactual reasoning. In this sense,
the confrontation between parametric and resampling methods may be
misguided because the logic of resampling is compatible with that of the
classical Fisherian legacy.

Today, resampling features are available in many statistical software
applications, such as SAS, SPSS, SyStat, Splus, NCSS, ViSta, StatXact, and
Resampling Stat for Excel. Proficient programmers may embrace the
freedom of manipulation in the SAS programming environment, while
visually oriented users may favor the graphical user interface of other
software packages. Instructors may enjoy using Resampling Stats for Excel
to illustrate every step of computation, but others may prefer more
automated methods. Different statistical software packages, however, have
different configurations to which users should pay attention. For example,
where StatXact users can enter data in a crosstab tabular form, the SPSS
Exact Test does not accept data in this format. Where StatXact users can
specify certain options (e.g., sample size) in Monte Carlo tests, options in
SPSS’s Exact Test are limited. Furthermore, in order to use the resampling
features of Splus, users must reload the resample library when the program
starts up. In addition, SyStat outputs individual resampling results but does
not provide users with a summary of all simulations. By no means,
nevertheless, are these comments meant to discourage users from using the
preceding software applications. These so-called limitations may be
amended in the next release. Also, the merits of these software programs
certainly outweigh those minor inconveniences. Users are encouraged to
explore them on their own. The best tool is the one that fits what you need.

APPENDIX: DATA SETS

Lady_tasting_tea.xls (Excel spreadsheet for permutation tests)
Lasy_tasting_tea.rxl (Resampling Stats for Excel algorithms)
Law_school.xls (Excel spreadsheet; can be imported into Splus or SyStat

for bootstrapping)

NOTES



1. For example, Splus (Insightful, Inc., 2005) developers set aside procedures with resampling
capabilities as new modules, such as “Summary statistics/resample” as opposed to “Summary
Statistics” and “Correlation/Resample” as opposed to “Correlations.” On the contrary, SyStat
Software, Inc. (2004) developers did not create new categories such as “regression with resampling”
or “ANOVA with resampling.” Rather, resampling in SyStat is embedded into conventional modules
(e.g., regression and analysis of variance). Some statistical software companies (e.g., SPSS) treat
resampling as a specialized or advanced tool beyond the basic statistical module, whereas others
(e.g., SAS; SAS Institute, 2005) regard resampling as both a basic and a specialized tool.

2. One may argue that Diaconis and Efron (1983) used a bad example because the so-called 15
“observations” are actually summarized data; these are average test scores from 15 unknown
distributions (law schools), not the full data set from individual law students. Like Fisher’s “lady
tasting tea” problem, Diaconis and Efron’s LSAT problem is also presented here in a historical
fashion because Diaconis and Efron’s essay stimulated massive attention to the bootstrapping
methodology.

3. Editor’s note: Readers will note similar arguments against various missing data–handling
procedures as discussed in Chapter 15.
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magine you have developed a great new intervention to help obese
people lose weight. Your intervention works well, but it’s extremely
expensive, and so only those who are most at risk for adverse health

outcomes stemming from their obesity can have access to it. How are you
going to decide who should get the intervention?

Or imagine you are in charge of admissions for your college or
university. You know that certain things predict success in your school, at
least partly. How do you decide who gets admitted?

Most research we hear about is explanatory, meaning the goal of the
research is attempting to understand a phenomenon. Does a particular
variable predict success in your college? What things can help ameliorate
the negative effects of obesity? How can we help students having difficulty
reading? Part of almost every research study published is a section at the
end where the authors tell us why we should care about their particular
findings. In essence, these summary statements (e.g., people with height-to-
waist ratios of less than 1.5 might benefit most from this intervention,
students scoring above the 80th percentile on this particular measure are



three times as likely to succeed in our college as are students scoring lower)
are predictions of efficacy in the future.

But how do we know that these results will generalize to your patients,
your students, your applicants? You can try replicating the results in another
sample (see also Chapter 7 on the prep statistic), and you can keep
replicating the results ad nauseam, and that will give you more confidence
if you keep getting the same results.

This chapter seeks to present a process of validation, as well as an
example of how best to do this, so that scientists are not left attempting to
do prediction in an ad hoc manner. Authors have been writing about this
process for decades, yet it is rarely covered in depth in statistics textbooks.

OVERVIEW

There are two general applications for multiple regression (MR): prediction
and explanation.1 These roughly correspond to two differing goals in
research: being able to make valid projections concerning an outcome for a
particular individual (prediction) or attempting to understand a phenomenon
by examining a variable’s correlates on a group level (explanation). There
has been debate as to whether these two applications of MR are grossly
different, as authors such as Scriven (1959) and Anderson and Shanteau
(1977) assert, or necessarily part and parcel of the same process (e.g.,
DeGroot, 1969; Kaplan, 1964; for an overview of this discussion, see
Pedhazur, 1997, pp. 195–198). As I have asserted above, I believe both are
necessarily part of the scientific process. In almost all cases, we seek to take
our understanding of phenomena from our research and apply it to people
who were not specifically involved in our research (a process called
generalization)—otherwise, why bother to do the research? While they are
theoretically part of the same goal and process, there are different analytic
procedures involved with the two types of analyses. The goal of this chapter
is to present (a) the concept of prediction via MR; (b) the assumptions
underlying multiple regression analysis; (c) shrinkage, cross-validation, and
double cross-validation of prediction equations; and (d) how to calculate
confidence intervals around individual predictions.



What Is the Difference Between Using MR for Prediction and
Using MR for Explanation?

When one uses MR for explanatory purposes, that person is exploring
relationships between multiple variables in a sample to shed light on a
phenomenon, with a goal of generalizing this new understanding to a
general or specific population. When one uses MR for prediction, one is
using a sample to create a regression equation that would optimally predict
a particular phenomenon within a particular population. The difference is
that because the equations are going to be applied to people not yet studied
or measured (i.e., individuals not in the sample used in the analysis), we
need to have some confidence that what we saw in our particular sample
will generalize. Let us imagine researchers creating a regression equation to
predict 12th-grade achievement test scores from 8th-grade variables, such
as family socioeconomic status, race, sex, educational plans, parental
education, grade point average (GPA), and participation in school-based
extracurricular activities. The goal is not to understand why students
achieve at a certain level, as we already have abundant research on these
issues, but to create the best equation so that, for example, guidance
counselors can predict future achievement scores for their students, as well
as (hopefully) intervene with those students identified as at risk for poor
performance, or select students into programs based on their projected
scores. And while theory is useful for identifying what variables should be
in a prediction equation, the variables do not necessarily need to make
conceptual sense. If the single greatest predictor of future achievement
scores was how high that student could jump or the number of hamburgers
the student could eat, it should be in the prediction equation regardless of
whether it makes sense (although researchers paying attention might be
interested enough in this type of finding to pursue some explanatory
research on the topic, again demonstrating the relatedness of these two
processes).

HOW IS A PREDICTION EQUATION CREATED?

The general process for creating a prediction equation involves gathering
relevant data from a large, representative sample from the population you



wish to generalize to. What constitutes “large” is open to debate, and while
guidelines for general applications of regression are as small as 50 + 8 ×
number of predictors (Tabachnick & Fidell, 1996),2 guidelines for
prediction equations are more stringent due to the need to generalize
beyond a given sample. While some authors have suggested that 15 subjects
per predictor is sufficient (Park & Dudycha, 1974; Pedhazur, 1997), others
have suggested a minimum total sample (e.g., 400; see Pedhazur, 1997),
and still others have suggested a minimum of 40 subjects per predictor
(Cohen & Cohen, 1983; Tabachnick & Fidell, 1996). Similar analyses of
exploratory factor analysis (which again seeks to created optimally
weighted linear combinations of variables that generalize) that I conducted
with Anna Costello (see Chapter 6, this volume) indicated that 40 subjects
per predictor may be only marginally sufficient, depending on many factors.
We found significant issues of generalizability even at a ratio of 100:1. Of
course, as the goal is a stable regression equation that is representative of
the population regression equation, more is better, but only to the extent that
it increases the representativeness of the sample. The effect of sample size
on shrinkage and stability will be explored below.

Let me be excruciatingly clear on this next point: Getting a truly
representative sample of the population you wish to generalize to is the key
ingredient in this type of research. You can do all the fancy analyses you
want, but at the end of the day, if you validate a prediction equation on a
sample that does not mirror the intended use, you have wasted your time.
True representativeness is one of the holy grails of research, and something
that is not talked about quite enough. It’s not usually something you can test
for, so most assume their sampling strategies are adequate. Yet this is
probably not the case. Make sure you clearly define your population of
interest, and sample in such a way as to maximize the probability of getting
a representative sample(s).3

Methods for Entering Variables Into the Equation. There are many ways to
enter predictors into the regression equation. Several of these rely on the
statistical properties of the variables to determine order of entry (e.g.,
forward selection, backward elimination, stepwise). Others rely on the
experimenter to specify order of entry (hierarchical, blockwise) or have no
order of entry (simultaneous). Almost all statisticians today eschew
stepwise methods in favor of analyst-controlled entry and discourage entry



based on the statistical properties of the variables as it is atheoretical.4 I
agree with this point of view for the majority of research, which is often
explanatory. But when one comes to creating prediction equations, the only
goal is creating the best prediction equation. If you examine the processes
most authors recommend for creating prediction equations, they essentially
involve manual stepwise entry. I see no compelling reason not to use
stepwise methods, providing (a) your only goal is creating a prediction
equation, and (b) you have a good knowledge of stepwise methods and can
make educated decisions about how to manage the process.

Regardless of the entry method ultimately chosen by the researcher, it is
critical that the researcher examine individual variables to ensure that only
variables contributing significantly to the variance accounted for by the
regression equation are included. Variables not accounting for significant
portions of variance should be deleted from the equation, and the equation
should be recalculated (which is essentially what many stepwise procedures
do automatically). Furthermore, researchers might want to examine
excluded variables to see if their entry would significantly improve
prediction (a significant increase in R-squared; again, what some stepwise
methods do).

WHAT ASSUMPTIONS MUST BE MET WHEN DOING A REGRESSION

ANALYSIS?

It is absolutely critical that researchers assess whether their analyses meet
the assumptions of multiple regression. These assumptions are explained in
detail in many places such as Pedhazur (1997) and Cohen and Cohen
(1983), as well as in detail in Osborne and Waters (2002), and as such will
not be addressed further here. Failure to meet necessary assumptions can
cause problems with prediction equations, often serving to make them less
generalizable than they otherwise would be or causing underprediction
(accounting for less variance than they should, such as in the case of
curvilinearity or poor measurement; note that there is no reason why
curvilinear effects could not be modeled in a prediction equation through
the entry of variables raised to powers).



HOW ARE PREDICTION EQUATIONS EVALUATED?

In a prediction analysis, the computer will produce a regression equation
that is optimized for the sample at hand. Because this process capitalizes on
chance and error in the sample (a phenomenon authors refer to as
“overfitting”), the equation produced in one sample will not generally fare
as well in another sample (i.e., R-squared in a subsequent sample using the
same equation will not be as large as R-squared from the original sample), a
phenomenon called shrinkage. The most desirable outcome in this process
is for minimal shrinkage, indicating that the prediction equation will
generalize well to new samples or individuals from the population
examined. While there are equations that can estimate shrinkage, the best
way to estimate shrinkage and test the prediction equation is through cross-
validation or double cross-validation.

Cross-Validation. To perform cross-validation, a researcher will either
gather two large samples or one very large sample, which will be split into
two samples via random selection procedures. The prediction equation is
created in the first sample. That equation is then used to create predicted
scores for the members of the second sample. The predicted scores are then
correlated with the observed scores on the dependent variable (ryy′) This is
called the cross-validity coefficient. The difference between the original R-
squared and  is the shrinkage. The smaller the shrinkage, the more
confidence we can have in the generalizability of the equation.

In our example of predicting 12th-grade achievement test scores from
8th-grade variables, a sample of 700 students (a subset of the larger
National Education Longitudinal Survey of 1988 from the National Center
for Education Statistics) was randomly split into two groups. In the first
group, analyses revealed that the following 8th-grade variables were
significant predictors of 12th-grade achievement: GPA, parent education
level, race (White = 0, non-White = 1), and participation in school-based
extracurricular activities (no = 0, yes = 1), producing the following
equation:

Y′ = –2.45 + 1.83(GPA) – 0.77(Race)
              + 1.03(Participation) + 0.38(Parent Ed).



In the first group, this analysis produced an R-squared of .55. This
equation was used in the second group to create predicted scores, and those
predicted scores correlated ryy′ = .73 with observed achievement scores.
With an  of .53 (cross-validity coefficient), shrinkage was 2%, a good
outcome.

Double Cross-Validation. In double cross-validation, prediction equations
are created in both samples, and then each is used to create predicted scores
and cross-validity coefficients in the other sample. This procedure involves
little work beyond cross-validation and produces a more informative and
rigorous test of the generalizability of the regression equation(s). In
addition, as two equations are produced, one can look at the stability of the
actual regression line equations.

The following regression equation emerged from analyses of the second
sample:

Y′ = –4.03 + 2.16(GPA) – 1.90(Race)
               + 1.43(Participation) + 0.28(Parent Ed).

This analysis produced an R-squared of .60. This equation was used in
the first group to create predicted scores in the first group, which correlated
.73 with observed scores, for a crossvalidity coefficient of .53. Note that (a)
the second analysis revealed larger shrinkage than the first, (b) the two
cross-validation coefficients were identical (.53), and (c) the two regression
equations are markedly different, even though the samples had large
subject-to-predictor ratios (over 80:1).

So How Much Shrinkage Is Too Much Shrinkage? There are no clear
guidelines concerning how to evaluate shrinkage, except the general
agreement that less is always better. But is 3% acceptable? What about 5%?
10%? Or should it be a proportion of the original R-squared (so that 5%
shrinkage on an R-squared of .50 would be fine, but 5% shrinkage on an R-
squared of .30 would not be)? There are no guidelines in the literature.
However, Pedhazur (1997) has suggested that one of the advantages of
double cross-validation is that one can compare the two cross-validity
coefficients, and if they are similar, one can be fairly confident in the
generalizability of the equation.



The Final Step. If you are satisfied with your shrinkage statistics, the final
step in this sort of analysis is to combine both samples (assuming shrinkage
is minimal) and create a final prediction equation based on the larger
sample. In our data set, the combined sample produced the following
regression line equation:

Y′ = –3.23 + 2.00(GPA) – 1.29(Race)
               + 1.24(Participation) + 0.32(Parent Ed).

How Does Sample Size Affect the Shrinkage and Stability of a
Prediction Equation?

As discussed above, there are many different opinions as to the minimum
sample size one should use in prediction research. As an illustration of the
effects of different subject-to-predictor ratios on shrinkage and stability of a
regression equation, data from the National Education Longitudinal Survey
of 1988 (NELS 88, from the National Center for Education Statistics) were
used to construct prediction equations identical to our running example.
This data set contains data on 24,599 eighth-grade students representing
1,052 schools in the United States. Furthermore, the data can be weighted to
exactly represent the population, so an accurate population estimate can be
obtained for comparison. Two samples, each representing ratios of 5, 15,
40, 100, and 400 subjects per predictor, were randomly selected from this
sample (randomly selecting from the full sample for each new pair of a
different size). Following selection of the samples, prediction equations
were calculated, and double cross-validation was performed. The results are
presented in Table 20.1.

The first observation from the table is that, by comparing regression line
equations, the very small samples have wildly fluctuating equations (both
intercept and regression coefficients). Even the 40:1 ratio samples have
impressive fluctuations in the actual equation. While the fluctuations in the
100:1 sample are fairly small in magnitude, some coefficients reverse
direction or are far off of the population regression line. As expected, it is
only in the largest ratios presented, the 100:1 and 400:1 ratios, that the
equations stabilize and remain close to the population equation.



Table 20.1 Comparison of Double Cross-Validation Results With Differing Subject-to-
Predictor Ratios

Comparing variance accounted for, it is overestimated in the equations
with smaller than 100:1 ratios. Cross-validity coefficients vary a great deal
across samples until a 40:1 ratio is reached, where they appear to stabilize.
Finally, shrinkage appears to minimize as a 40:1 ratio is reached. If one
takes Pedhazur’s (1997) suggestion to compare cross-validity coefficients to
determine if the equation is stable, from these data, one would need a 40:1
ratio or better before that criterion would be reached. If the goal is to get an
accurate, stable estimate of the population regression equation (which it
should be if that equation is going to be widely used outside the original
sample), it appears desirable to have at least 100 subjects per predictor
given these data.

Calculating a Predicted Score and Confidence Intervals
Around That Score

There are two categories of predicted scores relevant here: scores
predicted for the original sample and scores that can be predicted for



individuals outside the original sample. Individual predicted scores and
confidence intervals for the original sample are available in the output
available from most common statistical packages. Thus, the latter will be
addressed here.

Once an analysis is completed and the final regression line equation is
formed, it is possible to create predictions for individuals who were not part
of the original sample that generated the regression line (one of the
attractive features of regression). Calculating a new score based on an
existing regression line is a simple matter of substitution and algebra.
However, no such prediction should be presented without confidence
intervals. The only practical way to do this is through the following
formula:

Y′ ± t(α/2, d/f) (Sy′),

where Sy′ is calculated as

where  is the squared standard error of mean predicted scores (standard
error of the estimate, squared) and the mean square residual, both of which
can be obtained from typical regression output.5

SUMMARY AND SUGGESTIONS FOR FURTHER STUDY

Multiple regression can be an effective tool for creating prediction
equations, provided that adequate measurement, large enough samples, and
assumptions of MR are met and that care is taken to evaluate the regression
equations for generalizability (shrinkage). Researchers interested in this
topic might want to explore the following topics: (a) the use of logistic
regression for predicting binomial or discrete outcomes, (b) the use of
estimation procedures other than ordinary least squares regression that can
produce better prediction (e.g., Bayesian estimation; see, e.g., Raudenbush
& Bryk, 2002), and (c) alternatives to MR when assumptions are not met or
when sample sizes are inadequate to produce stable estimates, such as ridge



regression (for an introduction to these alternative procedures, see, e.g.,
Cohen & Cohen, 1983, pp. 113–115). Finally, if researchers have nested or
multilevel data, they should use multilevel modeling procedures (e.g.,
HLM; see Raudenbush & Bryk, 2002, or Chapters 29 and 30, this volume)
to produce prediction equations.

NOTES

1. Some readers may be uncomfortable with the term explanation when referring to multiple
regression, as these data are often correlational in nature, while the term explanation often implies
causal inference. However, explanation will be used in this chapter because (a) it is the convention in
the field, (b) here I am talking of regression with the goal of explanation, and (c) one can come to an
understanding of phenomena by understanding associations without positing or testing strict causal
orderings.

2. Personally, I find rules of thumb less useful than processes such as power calculations or
calculations such as Killeen’s probability of replication statistic (see Chapter 7, this volume). Please
take all such rules of thumb with a large grain of salt and skepticism.

3. If you happen to have a good, scholarly treatise on representativeness, please contact me so that
I can explore including it in the next version of this book.

4. A thorough discussion of this issue is beyond the scope of this chapter, so the reader is referred
to Cohen and Cohen (1983) and Pedhazur (1997) for overviews of the various techniques, as well as
Thompson (1989) and Schafer (1991a, 1991b) for more detailed discussions of the issues.

5. It is often the case that one will want to use standard error of the predicted score when
calculating an individual confidence interval. However, as that statistic is only available from
statistical program output and only for individuals in the original data set, it is of limited value for
this discussion. Here I suggest using the standard error of the mean predicted scores, as it is the best
estimate of the standard error of the predicted score, knowing it is not completely ideal but lacking
any other alternative.
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n the social sciences, researchers often use variables that take the form of
counts, such as the number of self-explanations generated in a think-
aloud protocol, number of teachers leaving the profession in a given

year, and number of student absences per semester. Counts are typically
treated as interval/ratio variables because the distances between points on
these variables are constant and they have a true zero point. These variables
are then usually analyzed using traditional methods such as t tests, analysis
of variance (ANOVA), or regression by ordinary least squares (OLS).

Unfortunately, count data are often highly skewed, making it more
appropriate to use Poisson methods to analyze these variables, specifically
measuring degree of fit to a Poisson distribution and using Poisson
regression. The Poisson is a skewed, nonnegative distribution that is
especially suited for low-frequency count variables when many of the
counts are zero and/or when the distribution is positively skewed. Poisson
methods are often more statistically powerful than traditional methods with
count variables when the population distribution is skewed and the
distribution approximates the Poisson distribution. Unfortunately, use of



Poisson methods in social science research has been relatively rare to date,
primarily because of a lack of understanding of the underlying theory.1 This
chapter therefore provides an introductory overview of Poisson regression.

THE POISSON DISTRIBUTION

The Poisson distribution is named after the French mathematician and
physicist Siméon- Denis Poisson (1790–1840). Mathematicians at the time
were concerned with developing the foundations of the field of probability,
including various probability formulas, such as the binomial formula.

The Binomial Formula. With the binomial formula, one can theoretically
calculate the probability of a certain number of successful trials (k), given
the number of trials (n) and the probability of a success (π). The formula is

So, for example, the probability of 15 successes out of 20, when π = 0.5,
is

[20!/(15!*5!)]*.515*(.5)5 = .015.

Note that in this example, the factorial 5! (5*4*3*2*1) = 120, 15! =
1,307,670,000,000, and 20! = 2,432,902,008,176,640,000. These numbers
become unmanageably large as n increases, and the binomial formula
cannot be easily applied when n is very large even with contemporary
computer applications.2

Discovery of the Poisson. Poisson addressed this problem by asking what
happens to the binomial distribution, in the limit, as n approaches infinity
and π approaches zero. The result (derived in the appendix) is the Poisson
distribution, a positively skewed, nonnegative distribution (see Figure 21.1,
first two distributions). Poisson suggested that this distribution could be
used as an approximation to the binomial distribution when rare events are
involved, that is, when π is very low and n is high. (This finding is



sometimes called the law of rare events or the law of small numbers.) For
example, the probability of developing a rare disease might be low (one in a
thousand) and the population quite large (for example, hundreds of millions
of people), so that the number of people who contract the disease per year
(or some other period of time or space) might be usefully described by the
Poisson distribution. The distribution is skewed because there is a high
probability of not contracting the disease (the number of zeros is high), and
it is nonnegative because counts cannot be less than zero.

Figure 21.1 Poisson distributions for different values of lambda. Y is a count, and lambda is
the average count per unit of time (or space).

The discovery of the Poisson distribution has been at the same time
productive and unfortunate. It has been productive because it allows the
probability of rare events to be modeled but unfortunate because the manner
in which it was discovered caused a misconception that the distribution
applies only to rare events. In fact, many count distributions are Poisson in
shape even though events are only semi-rare. For example, Nussbaum and
Kardash (2005) encountered a Poisson distribution while conducting
research on argumentation in essay writing. In response to various
interventions, students were asked to write essays on whether watching
television causes children to become more violent. There was a low number



of counterarguments and rebuttals, which is typical of student opinion
essays (Leitão, 2003; Stapleton, 2001). The distributions of these two
variables were Poisson in shape (see Figure 21.2). This was true even
though the probabilities that a student would include a counterargument or
rebuttal in his or her essay, although low (38% and 34%, respectively), were
not extremely rare. Nevertheless, we did not initially consider using the
Poisson distribution to analyze these data.

The rarity misconception stems from the original context in which the
Poisson distribution was developed and applied, but in recent years,
statisticians have adopted a wider view of the Poisson distribution as a
distribution generally applicable to counts, a fact recognized within 50
years of Poisson’s discovery (Larsen & Marx, 1990) and applied to such
things as the total number of particles detected by a Geiger counter
(Rutherford, Chadwick, & Ellis, 1951) or the number of Prussian cavalry
soldiers kicked to death by their horses (Bortkiewicz, 1898). Other
applications have included such things as the number of customers who
arrive at a bank in a given time interval (Padilla, 2003), the number of
accidents per year along a given stretch of highway (Antelman, 1997), the
frequency with which a computer’s CPU fails, or the number of daily
transactions of a particular stock. In business, the Poisson distribution has
been central to queuing and inventory theory and quality control. According
to Padilla (2003), the Poisson distribution has been used in biology and
medicine for
 

analyzing cell and virus counts of a given blood or solution sample; describing the spatial
distribution of bacteria colonies in a plate of agar; studying of neural impulses; counting the
number of defective teeth per individual; enumerating the number of chromosome interchanges
induced by X-ray irradiation; and in generalization of epidemic models to count number of
victims of specific diseases … per year. In terms of agriculture and ecology, the distribution of
plants and animals in either space or time is frequently Poisson. (p. 38)



Figure 21.2 Argumentation histogram. Reflects number of counterarguments and rebuttals
in opinion essays on TV violence.

SOURCE: Nussbaum and Kardash (2005).

Other applications have included frequency of earthquakes, alpha
emissions from radioactive sources, distribution of bones and artifacts in
archeological finds, and, in astronomy, the distribution of stars in space or
the occurrence of meteors over a specific time period.

The Poisson distribution is generated by a Poisson process, which is a
process that generates a number of cases (up to a few) per time period. As
an example, suppose we have 20 orange trees, all of which look alike
(Rosenfeld, 2002). During the harvest season, we put a basket under each
tree hoping to catch a few oranges each day. As long as each tree is similar,
so that the same processes apply to each tree, and as long as each orange’s
fall into the basket is a separate and independent event, this situation will
represent a Poisson process and can be described by the Poisson
distribution. The distribution will tell us how many baskets we can expect
to contain 0, 1, 2, 3, 4, or more oranges on a given day.

A Poisson process can often be represented by a straight line that
represents time (or space). Each point represents an independent Bernoulli
random variable, where the event in question either happens or does not



(Antelman, 1997). Of course, the number of points is infinite, reflecting the
fact that a binomial distribution (series of Bernoulli trials) approaches the
Poisson as N becomes infinite and π approaches zero. But this is an
idealized case, and we can make the number of points finite by making the
points have a length, in effect creating small bins. The bins must be small
enough that the probability that more than one event will occur in the time
period represented by the bin is extremely small (Issac, 1995). As a result,
the probability of an event occurrence in a bin can still be represented by
Bernoulli (yes or no) random variables. Here, π is the Bernoulli probability
of an event occurring in the bin (for example, a radioactive particle being
omitted, a neuron firing, or, in our previous example, an orange being
grown). Although π is small but given a large number of bins, the average
number for a given length of time will typically be in the range of 1 to 5.
Ruhla (1989/1992) states that to have a Poisson process that can be
modeled statistically, π should be less than .01, N should be greater than
100, and the mean should be under 10. However, while a Poisson process
will generate a Poisson distribution, one can still have a variable that
follows the Poisson distribution but that was not necessarily generated
through a Poisson process. These guidelines should therefore not be rigidly
applied in determining when to perform a Poisson analysis.

Form and Parameters of the Poisson. The basic functional form of the
Poisson distribution is

and for the cumulative probability distribution, it is

The basic parameter of the Poisson distribution is the mean (λ), which is
the average number of something (γ) per unit of time or space. For example,
one can calculate the number of deaths per year due to thyroid cancer in the
United States from 1980 to 2000 for a random sample and then calculate a
mean count for your sample. Lambda (λ) represents the mean count for the
population and in some sense represents the likelihood of an event
occurring. (We shall see later that it is related to π, the probability of a hit.)
Figure 21.1 shows Poisson distributions for various values of λ. For low



values of  the distributions have the usual skewed shape, but as λ becomes
large (e.g., a mean of six occurrences), the distribution converges to the
normal distribution.

A special feature of the Poisson distribution is that the variance is equal
to the mean, so λ represents the population variance as well. Recall that the
Poisson distribution was derived from the binomial distribution in the limit
when n approaches infinity and π approaches 0 (with π estimated by the
sample proportion p). The estimated variance of the binomial distribution is
npq (where q is the probability of a miss, so that q = 1 – p). If p approaches
0, q approaches 1, so the estimated variance npq reduces to np. Although p
becomes 0, this does not cause the variance to become 0 because
simultaneously, n approaches infinity. Rather, np remains a positive number.
The term nπ (estimated by np) is the expected or mean number of hits in the
binomial (and Poisson) and is expressed by λ. Thus, λ is the variance, as
well as the mean, of the Poisson distribution.

Random N. Another feature of the Poisson distribution is that there is
typically another source of random variation in addition to the probability
of a success or failure. For example, the number of people who develop
thyroid cancer is affected in a given year not only by the chance of being
exposed to carcinogens but also by variations in the size of the population
(e.g., the number of people living in the United States). This variable is
referred to as the offset, and data are often reported with the offset included.
For example, if one were studying student discourse and presenting the
frequency with which students ask critical questions, one might also count
the number of speech turns as an offset. Other examples might include
number of gang-related crimes per year offset by the number of gangs or
number of dropouts per school district offset by the number of students per
district.

In these situations, one could just calculate a percentage by dividing the
count by the offset; one would then have percentage of speech turns that are
critical questions, percentage of students in each district who drop out, or
probability that a gang member will be involved in a gang-related crime
(since proportions can be used to estimate probabilities). One then becomes
involved in estimating a π rather than λ. It might be tempting in these
situations to just use the binomial distribution (or the normal approximation



to the binomial). But doing so ignores the fact that not only is the count a
random variable, but so is the offset.

A basic difference between the binomial and Poisson distribution is that
with the binomial distribution, the proportion (p) of hits can vary, but n is a
fixed variable. With the Poisson distribution, n is a random variable.
Consider the following thought experiment. A person takes 10 coins,
throws them up in the air, and counts the number of heads. According to the
binomial distribution, the most likely outcome is the mean, which is nπ (or
5), assuming a fair coin and that the probability of a head is one half. The
probability of getting 8 heads, according to the binomial formula, is 0.04. In
this case, n is fixed at 10. Now consider another scenario. The person
reaches into a huge jar of coins, takes a large handful, and throws them up
in the air. The probability of getting 8 heads cannot be predicted by the
binomial formula because we do not know the number of coins that will be
tossed in each trial. The number of coins will vary from toss to toss,
depending on the number of coins grabbed from the jar.

However, the probability can be calculated from the Poisson distribution,
as long as one has an estimate of λ, the mean number of heads per toss.
Suppose the person grabs a handful of coins 100 times, the number of heads
is calculated, and λ is estimated to be 5. Then the probability of obtaining 8
coins in a toss according to the Poisson distribution is .065. Note that the
probability has gone up. It is easier to obtain 8 coins because one can
sometimes grab more than 10 coins. Furthermore, the variances have
increased. The variance of the binomial distribution is given by nπ(1 – π),
or 10 * 0.5 * 0.5 = 2.5. The variance of the Poisson distribution is given by
λ, which is 5.0. The distributions are graphed in Figure 21.3. The Poisson
has a higher variance because of the random nature of n. Thus, even though
the means might be the same (λ = nπ) and can be estimated by np (where p
is the sample proportion), because both n and p are random variables, the
Poisson will have more variation. Also note that with the binomial, the
variance is estimated by npq, whereas with the Poisson, the variance is just
np (= λ). The term q, which is a number less than 1 (estimated probability
of a miss), makes the variance of the binomial distribution smaller.

This discussion shows that even with nonrare events (e.g., π = 0.5), use
of the Poisson distribution is applicable. However, the Poisson distribution
does become more symmetrical and approaches the normal distribution as λ
becomes larger. But count variables are often asymmetrical. It is therefore



important to know whether specific count variables follow a Poisson or
normal distribution. Although nonnormality is often addressed through the
central limit theorem, which shows that in large samples, the sampling
distribution (distribution of possible parameter estimates) follows a normal
distribution, we shall see later that that does not necessarily maximize
statistical power.

Identifying a Poisson Distribution. How can one identify whether the
distribution for a particular variable follows a Poisson distribution? Our
method is to perform a one-sample Kolmogorov-Smirnov (KS) test. The KS
test finds the data point with the greatest difference from the value expected
if the variable had followed a specific distribution and uses this difference
as the test statistic (which follows a z distribution). The KS test is easy to
perform in such statistical packages as SPSS, which can compare a variable
against both the Poisson and normal distributions, as well as exponential
and uniform distributions. (The test is contained within the nonparametric
analysis menu.) A significant value indicates that one can reject the null
hypothesis that the distribution is Poisson, or whatever distribution is being
tested. Theoretically, one could also use a chi-square test to evaluate
hypotheses about the shape of a distribution, depending on the options
afforded in available software.

Figure 21.3 Poisson versus binomial distribution, from number of heads in a coin toss. The
Poisson distribution shown assumes an average of 5 heads per toss (λ = 5); the



binomial distribution shown assumes 10 coins were tossed, and the probability
of a head is 0.5.

One disadvantage of the KS test is that if the sample is very large, the test
gains a lot of statistical power and therefore is sensitive to small departures
from an ideal distribution. Another approach is to construct a Q-Q plot,
which compares the quantiles of the actual distribution with those of an
ideal distribution, in this case the Poisson. A perfect fit would be reflected
by a straight line where X = Y.3 A simple, graphical approach was proposed
by Ord (cited in Johnson, Kotz, & Kemp, 1992, p. 167) and can be
implemented in simple worksheet programs such as EXCEL. Let X be the
values of the variable (e.g., 0, 1, 2, 3, etc.) and fx the frequency of each
value. Define μx as μx = X*fx/f(x–1) and plot μx against X. For a Poisson
distribution, the plot should be a horizontal line with μx = λ.

POISSON REGRESSION MODEL

Poisson regression is appropriate when the dependent (response) variable
approximates a Poisson distribution. Recall that such a distribution may be
generated by a “Poisson process.” Using our previous example of orange
trees, we assumed that each tree generated oranges at the same average rate,
with a mean count of λ1. Suppose, however, that the last row of trees in the
orchard receives more sunlight (Rosenfeld, 2002). In that case, the row of
trees will generate oranges at a higher rate, with a mean count of λ2. The
mean count (λ) will therefore be affected by an independent variable, the
amount of sunlight. In Poisson regression, counts are predicted by one or
more independent variables. The variables can be interval/ratio or nominal.

The regression model is a type of general linear model that can be used
as an alternative to t tests, ANOVA, and OLS regression. While it is not
uncommon for analysts using these approaches to ignore distributional
issues, on the grounds that the central limit theorem can make the sampling
distributions of the estimates approximately normal, this approach may not
be the most statistically powerful one. With traditional methods, skew in the
distribution of a variable—and the Poisson is the quintessential skewed
variable—can reduce statistical power. Compared with normally distributed



variables, skew can increase standard errors, making it harder to achieve
statistical significance. Another common approach is to reduce skew by
using a Box-Cox transformation (Box & Cox, 1964)— for example,
through a logarithmic, square root, or reciprocal transformation. Such
transformations, however, produce parameter estimates that are often
difficult to interpret and explain to readers. Although Poisson regression
also requires some explanation for readers, interpreting the parameter
estimates is much more straightforward, as will be explained later.

Exponential Assumption. The Poisson regression model makes two basic
assumptions: first, that the response variable is Poisson, and second, that the
relationship between the response variables and the predictors is
exponential. The second assumption may initially sound counterintuitive;
why should one assume that the relationship between two variables is
nonlinear just because one of them is Poisson? In fact, exponential growth
curves can approximate a linear relationship for a certain range of the
independent variable if the amount of curvature (i.e., growth) is initially
small. An exponential relationship also has the advantages of affording
certain mathematical properties, for example, ensuring that a count will not
be negative.4

The form of the exponential growth curve is

where e is the constant 2.72. The y-intercept is ea, also written as exp(a).
Exp(b), the exponentiation of the slope, represents the rate of growth. If one
takes the natural logarithms of both sides of Equation 4, we find that

The right side of the equation is linear; thus, this equation is considered a
general linear model using a log link function (the link function connects
the predictor and response variables). Equation 4 forms the starting point of
the Poisson regression model, except that we need to also factor in the
offset as a source of variation. Let us call the offset si. Then the Poisson
regression model is



Greek letters are used in the model to indicate that these are population
parameters; furthermore, the expected value of Yi is used because no error
term is shown. With an error term, we would have

The response variable in Equation 7 is a count, for example, the number
of deaths in a given year. The offset (si) is also a count, for example, the
size of the population in that year. Equation 7 controls for the effect of si.

The next step in interpreting the model (in Equation 7) is to take the
natural log of both sides:

Note that it is not necessary to include an offset term. Mathematically,
omitting an offset term is equivalent to setting si to 1; because ln(1) = 0, the
offset term falls out of the equation. Including or excluding an offset term
can be easily done with statistical programs that perform Poisson
regression, as will be discussed later in the chapter.

Interpreting the β Parameter. Of interest is whether the independent
variable, X, adds anything to the predictions of the counts (i.e., is β
significantly different from zero?). Assuming that β is significant, what
exactly does it represent? Because the relationship is exponential, exp(β) is
akin to the rate of “growth” in the probability that a case will be positive.
This can be seen from Equation 7, which—if one moves the offset to the
left side of the equation—transforms into

where Yi/si is a proportion (Pi = Yi/si) This value reflects the probability that
a randomly chosen case will be positive given a certain value of X. β
represents the rate of growth of this probability. For example, exp(β) = 1.15
would be interpreted as “a one-unit increase in X is associated with a 15%
increase in the probability of an event.” Without an offset, si = 1 and Yi/si =
Yi, so in this situation, the result could be interpreted as a 15% increase in
the expected count given a one-unit increase in X.



Equation 9 is known as a Poisson rate model and is an appropriate
alternative to Equation 7. One simply divides the count by the offset to
obtain a proportion and then uses that as the dependent variable (Selvin,
2001). This is sometimes necessary if the software being used does not
provide an accessible option for an offset. With this model, λ represents an
average rate, rather than an average count, for different values of X.

Risk Ratios. When X is binary, β is sometimes referred to as a relative risk
ratio.5 Use of the term risk reflects the roots of Poisson regression in
biostatistics and epidemiology, where Y typically measures number of
fatalities or people contracting a disease. The term risk can be used more
generally to refer to a probability. The relative risk ratio is therefore just a
ratio of probabilities. For example, suppose you are calculating the voter
turnout rate for a general election in a hypothetical state of several million
people. Suppose the voter turnout rate in 2004 (a presidential election year)
was 87%, but it was 53% the year before. If one assumes that the
percentages presented above are representative of an adult’s propensity to
vote in presidential versus nonpresidential election years, then the relative
risk ratio would be 1.64 (or .87/.53).6 The ratio can be interpreted as
indicating that the probability that a citizen is likely to vote increases by
64% in a presidential election year. However, one cannot necessarily
assume that the percentages are representative of the general probabilities.
That is where Poisson regression comes in. One can collect data over a
period of time—say, 25 years—to estimate the probabilities or, more
specifically, the relative risk ratio (given by the exp(β) estimate). Table 21.1
gives hypothetical data, expressed as counts. The response variable (Y) is
the number of people who vote; the predictor (X1) is a binary variable
indicating whether a specific year is a presidential election year. X2 is an
interval/ratio variable indicating year (under the hypothesis that the rate of
voter turnout may increase over time due to voter education). The offset is
the number of eligible voters in the state.

In this example, the number of time periods is 25. As will be explained
later, this may not be a sufficient number, but the example is kept small for
purposes of exposition. A Poisson regression yielded the following
parameter estimates for the predictors:



The results suggest that, on average, voter turnout is 33.8% higher in a
presidential election year. Furthermore, voter turnout is increasing by 3.8%
per year. The values 1.338 and 1.038 are relative risk ratios for a one-unit
increase in X; because the presidential election year variable (X1) is
nominal, there is only a one-unit increase (from 0 to 1). Note that from
Equation 9, the ratio of the probabilities for (X1 = 1)/(X1 = 0) (i.e., the
relative risk ratio) is simply

Subtracting exponents (because one term is divided by another),
Equation 10 reduces to eβx, which can be estimated by exp(b)*X. This
shows that an estimate of the relative risk ratio is given by exp(b).

Nevertheless, in social science research, as opposed to biostatistics, it is
usually more intuitive to simply present exp(b) as the percentage change in
the probability of a hit. To present the coefficient estimates in this way, it is
necessary to subtract 1.0 from the estimates. As seen in the previous
example, 1.338 reflects a 33.8% increase in the probabilities. A ratio of
2.442 would reflect a 144.2% increase in probability. When the coefficient
estimates are negative, this reflects a decrease in probabilities. For example,
b = –.223 reflects a negative relationship. Exp(–0.223) = 0.80, so 0.80 is the
relative risk ratio. A risk ratio of less than 1.0 reflects a negative
relationship (1.0 reflects a flat relationship, with 0% rate of growth from an
increase in X, so 0.80 reflects a declining “rate of growth”). Subtracting 1.0
from the estimate yields –0.20, which indicates a 20% decline in the chance
of a “success” from a one-unit increase in X. In preparing research reports,
coefficients can be easily interpreted for readers but do require a few
sentences of explanation.

We have one note of caution. Risk ratios are sometimes confused with
odds ratios, which are used in logistic regression. As noted previously, risk
ratios are made up of probabilities, which are not the same thing as odds.
For example, if the probability that a citizen will vote are 87%, the odds
that he or she will vote is 87%/(1 – 87%), or 6.69. Although coefficients in
logistic regression reflect the percentage increase in the log-odds, those in



Poisson regression reflect the percentage increase in the probabilities (after
exponentiating). When probabilities are very high or low, risk ratios
become extremely close to odds ratios (Le, 1998), so the terms are
sometimes used interchangeably when discussing rare events, but Poisson
regression is used in other contexts as well, so it is best to only discuss risk
ratios. It is also typically easier for readers to understand explanations
couched in terms of probabilities than in terms of odds. Terms such as risk,
chance, and likelihood are all familiar to most readers, whereas the concept
of odds is used less extensively in statistics.

Table 21.1 Voter Turnout Data (Hypothetical State)

Parameter Estimation. It is important to remember that the coefficients in
regression are merely estimates of population parameters. Population



parameters emerge from the process by which the data are generated in
nature. The authors, however, generated the hypothetical data in Table 21.1
using preselected beta parameters—specifically, 0.2 (exp(β) = 1.22) for the
election year variable and 0.02 (exp(β) = 1.02) for time. The Poisson
regression estimates (1.34 and 1.04) are somewhat close to the actual
parameter values but not identical because of the inclusion of a random
error term when generating the data. We extended the number of years of
data from 25 to 250 and obtained much more accurate estimates (1.19 and
1.02, respectively).

Poisson regression uses maximum likelihood estimation (MLE), which
chooses the parameter estimates that are most likely to produce the
observed data. (This requires a large sample.) The estimation is performed
by maximizing the likelihood function, L(Y|α, β), which is the likelihood of
obtaining the observed data (Y) given certain parameters (α, β). The
likelihood function combines the two major aspects of Poisson regression:
first, that Y (and the associated error term) follows a Poisson distribution,
and second, that the relationship between Y and X is exponential.
Combining Equation 2, the Poisson distribution, and Equation 6, the
exponential function, and noting that E(Y) = λ, we obtain

The likelihood for all the data points (assuming independence among
them) is the joint probability, which is given by multiplying all the
probabilities together:

Although this equation is formidable, in practice it can be ignored
because software packages automate the MLE process. It is important,
though, to recognize the theoretical assumptions. The most important
assumption is that the response variable, Yi, follows a Poisson distribution.
In this case, the error term will also have a Poisson distribution. The mean
of the error term, for each value of X, will be λ|X, where λ|X = E(Yi) = si* (e
α + βx(i)). The means of the error term, for each value of X, define the
regression line.



It is therefore important to check, before conducting a Poisson
regression, that the response variable does in fact have a rough Poisson
shape. Otherwise, one might not gain much in terms of statistical power
from using Poisson regression. Checking the shape of the distribution also
helps provide a methodological rationale for using the approach. If one uses
traditional methods (e.g., ANOVA, OLS regression) and the response
variable has a skewed, Poisson shape, then this will produce higher standard
errors and a corre-sponding loss of statistical power. This is the key point of
this chapter; researchers may be missing some important findings because
of not taking into account the Poisson shape of many of their count
variables. The point is illustrated in Figure 21.4, again using simulated data.
The variable, Y, has a skewed, Poisson shape at each level of X (which has
seven levels). The means form a regression line (shown by the triangles,
which indicate predicted values). The line has a slight curve shape to satisfy
the assumption of an exponential relationship between X and Y. (It is only
very slightly curved because we wish to focus on the other major
assumption, regarding the distribution of Y, for the time being.) We also
used OLS to fit a line, and graphically that line was not distinguishable
from that fitted with Poisson regression.

The major difference between OLS estimation and Poisson maximum
likelihood estimation is in the statistical power afforded by each approach.
For the null hypothesis that β = 0, probability values were calculated by
dividing the estimated βs by the standard errors. This statistic follows a t
distribution for OLS and a z distribution in MLE (z2 is known as the Wald
statistic). The results are shown in Table 21.2. The Poisson regression
yields a lower standard error; however, that comparison is misleading
because the variables in the different regressions are on different scales.
More notable is that Poisson regression yields the lowest prob-values,
indicating more statistical power than the other methods in this case.
Although all the prob-values are low, the difference in statistical power may
be critical for results at or near significance. The advantage in statistical
power of Poisson regression was large: There was almost a 75% reduction
in the deviance (G2). The reduction was statistically significant (p < .001).

What accounts for this difference? OLS assumes that the error term is
normally distributed, and Poisson assumes a Poisson distribution. The data
here better fit the assumptions of the Poisson approach. The fact that the
sample data are skewed creates what, in the normal general linear model,



are considered a number of extreme observations, or outliers. OLS “thinks”
that there is a lot of variability in the data and that there are many different
regression lines—with different slopes—that could be drawn from the
population data, which is what it means to have high standard errors. The
Poisson model is more robust against having several high counts—in the
midst of many low ones—because (a) such high counts are expected, once
in a while, and (b) the approach is not trying to fit a symmetrical, normal
model to the data and to account for the high counts with high variance
estimates. In addition, with a Poisson distribution, there are fewer possible
regression lines (i.e., lower standard errors) because the distributions (one
for each level of X) are more narrow at the upper ends than with the normal
distribution (see Figures 21.1 and 21.2). This constrains the number of
possible regression lines that can be estimated from the population,
resulting in lower standard errors. These are the features that give the
Poisson model its greater power with positively skewed distributions.

Figure 21.4 Regression with hypothetical data. Y follows a Poisson distribution. The open
circles are the predicted values from a Poisson regression and define a
regression line. The line from an OLS regression was indistinguishable.

Table 21.2 Poisson Versus Ordinary Least Squares Regression Using Hypothetical Data (N
= 148)



One can also perform a Poisson regression when the relationship between
X and Y is linear (a different likelihood function is used). This is considered
a Poisson general linear model with an identity link (Y = a + bX). No
exponentiation is necessary, and the beta estimate is interpreted the same as
in OLS; it gives the expected increase in the mean E(Yi) = λ, from a one-
unit increase in X (Agresti, 2002, p. 128). Remember that the linear
assumption only applies to the link between X and Y; one still needs to
assume that the Y variable (or the error term) follows a Poisson distribution.

Overdispersion. For the standard error estimates of a Poisson regression to
be considered valid, the response variable should follow the Poisson
distribution, at least roughly. This requires that the variance of the response
variable be approximately equal to its mean. When the variance is
significantly greater than the mean, the variable is considered
overdispersed. This often occurs due to uncontrolled variables that increase
the heterogeneity among subjects (Agresti, 2002).

There are two ways of correcting for overdispersion. First, one can
compute a Pearson chi-square (or deviance) fit statistic, reflecting the
deviation of the predicted from the observed values. A dispersion factor, φ,
can be computed by dividing the chi-square statistic by degrees of freedom
(Frome & Checkoway, 1985). If the dispersion factor (φ) is much greater
than 1.0, this is a sign of overdispersion. The variance-covariance matrix
can then be multiplied by φ; in this way, the model recognizes, and accounts
for, the additional variation (Le, 1998).

A second option is to fit a negative binomial distribution to the response
variable. With a series of independent hit-or-miss trials, assume that Y
represents the number of successes before the kth failure; the probability of
Y follows the negative binomial distribution. With a small k (e.g., k = 1), the
distribution is roughly shaped like the Poisson; the probability is initially
high but declines exponentially as the count (i.e., number of successes)
grows. The variance of the negative binomial, however, can exceed the
mean, with k–1 acting as the dispersion factor (φ). (The variance is λ + λ2φ.)
We can test the null hypothesis that φ = 0 against the alternative hypothesis



that φ > 0; if φ = 0, then the variance reduces to λ (and we have a Poisson
distribution). We should reject the null hypothesis of no overdispersion and
use the negative binomial if the latter fits the data significantly better—for
example, if the difference between the likelihood ratio statistics (–2LL) is
greater than χ2(1 – 2α, 1 df) (see Cameron & Trivedi, 1998). This provides a
formal test and correction for overdispersion.

An Empirical Example: Counterargument Frequency

The following example is based on a study by Nussbaum and Schraw (in
press), although only the Poisson estimates are presented there. The purpose
of that study was to examine how a training program (on the normative
criteria of what constitutes a “good” argument) and a graphic organizer
would affect the number of counterarguments generated by students when
writing opinion essays. The graphic organizer involved a worksheet where
students could brainstorm and evaluate arguments and counterarguments on
a controversial question (“Does watching television cause children to
become more violent?”) and then generate an overall final opinion.
Participants were 84 undergraduate college students enrolled in an
educational psychology course, randomly assigned to conditions (2 × 2
factorial). Participants were given 30 minutes to write their essays after
administration of the interventions.

It was found that both conditions resulted in more integration of
arguments and counterarguments. However, integration was measured on an
ordinal scale and was analyzed through ordinal, not Poisson, regression, and
so we do not focus on that here. Rather, we examine the number of
counterarguments that students included in their essays. (Including
counterarguments can increase the persuasiveness of an essay if those
counterarguments are rebutted [see O’Keefe, 1999] or used to argue for a
creative solution that reduces problems identified in the counterarguments.)

Number of counteraguments was a “count” variable, and inspection of
the histogram clearly indicated that its distribution was Poisson. Of the 84
essays, 45% contained no counterarguments, 45% contained one or two,
and a handful (10%) contained three or four. According to a one-sample
Kolmogorov-Smirnov test, the distribution could be rejected as normal (z =
2.40, p < .001) but not as Poisson (z = 0.65, p = .79). The mean number of
counterarguments (estimate of λ) was 0.96 (SD = 1.10).



Table 21.3 shows the results of regression analyses using both OLS and
Poisson regression. Poisson is clearly a more powerful approach, as the
probability values for all the variables were cut in half. In addition, the
training variable was not quite statistically significant using OLS (p = .06)
but was significant using the Poisson approach. The example demonstrates
the value of using more modern statistical methods. The point of
conducting both types of regressions is to demonstrate the increased
statistical power of using Poisson regression; of course, in conducting
actual empirical research, one should use the approach most justified by the
type of data one has. In this case, because the response variable was a count
following the Poisson distribution, it was methodologically better to use
Poisson regression.

Table 21.3 Effects of Training and Graphic Organizer on Number of Counterarguments
and Supporting Reasons, Contrasting OLS and Poisson Regression (N = 84)

The regression coefficients are a bit more complicated to interpret with
Poisson regression, but only a bit. In both cases, the constant is the same,
because exp(–.65) = 0.52. (This result implies that in the control condition
—without either intervention—the average number of counterarguments
was 0.52—that is, about every other essay contained a counterargument.)
With Poisson regression, the coefficient for the training variable was 0.96.
Exponentiating, the coefficient is exp(0.96) = 2.36, which is the relative risk
ratio. In other words, training resulted in a 136% increase in the number of
counterarguments. (One subtracts 1.00 from the ratio to reach this
conclusion; a ratio of 1.00 indicates no effect.) Using the same reasoning,
the graphic organizer resulted in an 84% increase in counterarguments
(exp(0.61) = 1.84). The two treatments did not combine additively; the



authors theorized that the negative interaction was a result of cognitive
load.

Although we have found that reporting percentage increases makes it
easier for readers to understand the results than if just risk ratios are
reported, some critics might argue that percentage increases can be
misleading when the base is low. For example, a 136% increase in
counterarguments might appear to be a huge effect, but it really implies the
mean increased by “only” one unit (i.e., 1.23). The criticism, in our view, is
also misleading because a one-unit increase can still be pedagogically
significant. For a variety of reasons, many students have difficulty
distancing themselves from one side of an issue to consider an opposing
side, so movement from “none to one” may be a significant
accomplishment. Furthermore, in writing opinion essays, students are
normally expected to develop and support their points, so writing a long
paragraph that presents a counterargument can represent a significant
investment of time. This is another reason why one would not expect a large
increase in the counts and why an increase of just one unit can still be
practically significant. The point that we would like to make is that practical
significance is a matter of interpretation. Percentage increases can be used
to mislead, but when properly contextualized and perhaps presented in
conjunction with information on means, this problem can be avoided.

A Simulated Extension

Having considered an empirical example, there is still the question of
generalizability: How much more powerful would Poisson regression be
over OLS for other data sets? To answer this question, we simulated 20
additional data sets in Excel. Each data set consisted of 100 observations;
we did not use a larger N size because we wanted to limit statistical power.
We used one independent variable (X); X values were assigned randomly
using a uniform distribution. Y error values were assigned randomly,
selecting from a Poisson distribution (as we only claim that Poisson
regression is more powerful in this situation).7 Y values were calculated
using Equation 7. For all the simulations, we set the intercept at –0.65,
which was taken from our previous example on argumentation. We
conducted the first half of the simulations with one set of parameter values
for the slope and λ (mean of the Poisson error term) and different parameter



values for the second set. We set the βs small so as to limit statistical power,
as we did not want both regression approaches to yield highly significant
results. The specific parameter values and results (estimated slopes and
probability values) are shown in Table 21.4.

Table 21.4 illustrates that Poisson regression was consistently more
powerful. For the first set of parameter values, the median OLS prob-value
was 0.10; the median prob-value for Poisson regression was one fifth the
size (p = .02). For the second group of parameter values, using Poisson
regression reduced the median prob-value from 0.42 to 0.03.

For both these simulations, we used λ values that were fairly small (0.5
for the first group, 1.0 for the second group), which was in the same range
as our empirical example. We expect that the advantage of Poisson
regression would decrease as λ increases; recall that the Poisson distribution
converges to the normal distribution as λ approaches 6.

Table 21.4 Simulation Results, Comparing OLS and Poisson Regression



A Second Empirical Example: Popcorn

We end with one final empirical example pertaining to how various
factors affect the number of kernels of popcorn that are inedible (because
they haven’t yet popped)! The data were reported in Myers, Montgomery,
and Vining (2002), and although the number of observations was small, the
example is nevertheless illustrative. The independent variables were
temperature, amount of oil, and the time (in seconds) that the kernels were
cooked. The authors do not report the total number of kernels that were
cooked per trial, but we assume that it was held constant. The dependent
variable was found to follow a Poisson distribution using the KS test (z =



1.19, p > .05). Table 21.5 presents the parameter estimates from OLS and
Poisson regression. None of the independent variables were significant with
OLS. Poisson regression cut many of the probability values in half and
identified time as a significant factor. The coefficient for time was negative
(–0.03), indicating that there are fewer inedible kernels with more cooking
time, as one would hope. The exponent of the coefficient (exp(–0.03) =
0.97) reflects the risk ratio; subtracting 1.0 gives the percentage increase,
which is –0.03. This implies that the number of inedible kernels decreases
by 3% with each additional second of cooking. While not necessarily
surprising, the point of the example is that OLS did not identify this finding
as a statistically significant result.

As a final note, we also applied various Box-Cox transformations to the Y
variable, but none of the transformations improved the findings over OLS.

SOFTWARE

One of the best software programs with which to conduct Poisson
regression is SAS. Poisson regression can be easily conducted using the
“genmod” procedure (Le, 1998), specifically with the code in the box
below.

Table 21.5 Effects of Temperature, Oil, and Time on Inedible Popcorn Kernels,
Contrasting OLS and Poisson Regression (N = 15)



“Class” represents categorical independent variables (if any). PSCALE
indicates that the model is being adjusted for overdispersion using the
Pearson chi-square dispersion factor. (To use the deviance, which is an
equivalent fit statistic using logarithms, use DSCALE.) Alternatively, one
can use the negative binomial (dist = negbin) with either a log or identity
link (the latter if the relationship between X and Y is linear). One can also
specify an identity link with the Poisson.

Poisson regression can also be implemented by MLwiN multilevel
statistical software (Rabash et al., 2000) and by R. R is available free at
http://www.r-project.org/. The R code for Poisson regression is shown in the
box above.

Finally, the procedure can be implemented—on a limited basis—with
nominal variables and several covariates in SPSS using the general log-
linear procedure (with cases weighted by the response variable
frequencies). We have found the procedure, however, to be less flexible and
the output more difficult to interpret in SPSS. So that interested readers can
try their hand at Poisson regression, we provide access to several data sets
at http://www.unlv.edu/faculty/nussbaum/poisson/poisson.htm.

SUMMARY

http://www.r-project.org/
http://www.unlv.edu/faculty/nussbaum/poisson/poisson.htm


In analyzing count data, the Poisson distribution can be used as an
approximation to the binomial when rare events are involved. It is also
useful as a distribution in its own right when average counts per time period
are low (say under 6). Poisson regression proves a more powerful approach
than ordinary least squares when the response variable distribution is
Poisson in shape. Additional power is important in such areas as
argumentation research, where highly significant results are rare. (This is
because of substantial measurement error due to subjectivity in coding.) It
is generally good practice to use the most powerful statistical methods
available when those methods are appropriate. Poisson regression has been
underused in the social and behavioral sciences, however, because of a
misconception that the distribution is applicable only to extremely rare
events. It is hoped that this situation will change as researchers begin to
appreciate the underlying theory and the power of this approach.

APPENDIX

Derivation of the Poisson Distribution

The binomial distribution approaches the Poisson distribution as p
(probability of a success) approaches 0 and n approaches infinity. The
formula for the binomial distribution (with k successes) is

Because λ = np, p = λ/n, so the formula can be rewritten:

Because

and because



we have

Breaking the last term into two, we have

The first term approaches 1 as n approaches ∞, since

Because

approaches zero, the last term approaches 1 as well, because, from calculus,
we have

and the equation reduces to

which is the formula for the Poisson distribution.

NOTES



1. Poisson methods are used more extensively in engineering, physics, and epidemiology than in
the social sciences.

2. For example, Excel returns an error message starting with 171!
3. Padilla (2003) recommends calculating the squared correlation between the two quantile

variables to test for linearity and testing the correlation for significance against R2 = 1, but the
procedure is moderately complex, involving bootstrapping a sampling distribution of R2 (for details,
see Padilla, 2003, p. 63).

4. As will be explained later, however, one does have the option of specifying a linear relationship
with certain software packages.

5. A risk ratio is different from an odds ratio because it is composed of probabilities rather than
odds, as discussed in Chapter 25 (this volume), which also discusses odds ratios and risk ratios.

6. The odds ratio, on the other hand, would be (0.87/0.13)/(0.53/0.47) = 5.94. Odds are defined as
P/(1 – P).

7. The RAND() function was used to calculate two random numbers between 0 and 1 for each
observation. The VLOOKUP function was then used to assign values of X and Y error so as to follow
a uniform or Poisson distribution. To create the Poisson look-up table, we used the function for the
Poisson cumulative probability density function.
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TESTING THE ASSUMPTIONS OF
ANALYSIS OF VARIANCE

 
YANYAN SHENG

ANOVA ASSUMPTIONS

The analysis of variance (ANOVA) F test is commonly employed to test the
omnibus null hypothesis regarding the effect of categorical independent
variables (or factors) on a continuous dependent variable. It is generally
well-known that certain assumptions have to be satisfied in order for the F
test to produce valid statistical results. Briefly, the assumptions are
independence of observations, normality in population distributions, and
homogeneity of population variances (Penfield, 1994; Scheffé, 1959;
Stevens, 1996). The first assumption can be handled through research design
and sampling frame, whereas the latter two assumptions are concerned with
the populations under investigation and therefore are oftentimes beyond the
control of the researcher. Statistical methods are called robust if their
inferences are not seriously invalidated by the violations of the assumptions
(Miller, 1986; Scheffé, 1959). Robustness is often operationalized as the
actual Type I error—namely, the probability of erroneously rejecting a true
null hypothesis, being near the nominal α level. When the assumptions for
the ANOVA F test are violated, the Type I error rate can be seriously
inflated, resulting in spurious rejection of the null hypothesis with a reduced
statistical power, the probability of correctly rejecting a false null
hypothesis. Hence, inferences made about a given set of data may be invalid.

Many applied researchers in the social sciences are often tempted simply
to ignore checking the assumptions or ignore the violation of the



assumptions (e.g., Breckler, 1990; Keselman et al., 1998; Micceri, 1989). A
great number of studies have been conducted to evaluate the ANOVA F test
under various degrees of assumption violations in the literature (e.g., Glass,
Peckham, & Sanders, 1972; Harwell, Rubinstein, Hayes, & Olds, 1992; Lix,
Keselman, & Keselman, 1996; Scheffé, 1959; among others). They
concluded that the F test is robust to some but not all of the assumption
violation situations. Consequently, checking the necessary ANOVA
assumptions and, more importantly, understanding the performance of the
ANOVA F test under various degrees of assumption violations are essential
for an applied educational and psychological researcher to understand
specific data-analytic conditions and caution against false results from
invalid F test procedures, for “the relevant question is not whether ANOVA
assumptions are met exactly, but rather whether the plausible violations of
the assumptions have serious consequences on the validity of probability
statements based on the standard assumptions” (Glass et al., 1972, p. 237).

When violation of a particular ANOVA assumption seriously jeopardizes
the validity of statistical inferences for a given data set, one may choose to
either transform the data (such as a logarithm transformation or a square root
transformation) and perform the usual F test or use an alternative procedure
that is robust to assumption violations, which can be a parametric alternative
such as the Welch (1951) test or a nonparamatric alternative such as the
Kruskal-Wallis (Kruskal & Wallis, 1952) test.

However, none of these options are optimal in all situations.
Transformation can create difficulties in interpretation, for the results are
based on the transformed scores instead of the original scores (e.g.,
Krutchkoff, 1988). Conclusions that are drawn on transformed data do not
always transfer neatly to the original measurements. Furthermore,
transformation may not provide a simple solution, for a variety of
transformations can be adopted depending on the type and the degree of
assumption violation presented in the data (cf. Oshima & Algina, 1992).

Regarding the robust alternatives, studies have shown that they may be
superior to the ANOVA F test in the majority of assumption violation
situations (e.g., Levy, 1978; Tomarken & Serlin, 1986), but each procedure
suffers from its own weakness.1 For instance, the Kruskal-Wallis procedure
has possible substantial statistical power when the data are nonnormal (Blair
& Higgins, 1980), but it is sensitive to heterogeneity of variance, especially
with unequal group sizes (Tomarken & Serlin, 1986). The Welch test is



robust to variance heterogeneity but not to the presence of high skewness
(Lix et al., 1996). The effects of assumption violations on ANOVA
alternative procedures have not yet been fully investigated. Furthermore,
some of the alternative procedures are only applicable in one-way designs.
Studies are needed to extend them to a diverse range of design types. Given
these considerations and the popularity of the F test, it is becoming more
vital and necessary to understand the degrees of violations and the
consequences of each violation on the validity of the statistical inference
made on a particular set of data.

In this chapter, I describe the assumptions for the ANOVA F test in the
order of checking sequence, present procedures for testing them, and discuss
the consequences of each assumption violation. For simplicity of illustration,
oneway ANOVA is considered. However, examples of factorial designs are
provided for assessing the assumptions.

The linear model underlying a simple oneway ANOVA fixed effects
design is

Yij = µj + εij, (1)
where Yij is the dependent variable associated with the ith observation in the
jth treatment group for i = 1, …, nj, and j = 1, …, k (where  nj = N is the
total sample size), μj is the population mean for the jth group, and εij is the
random error associated with Yij. The null hypothesis for the omnibus F test,
H0 : μ1 = μ2 = … = μk is tested by comparing the computed F statistic to a
critical F value at the α level with k – 1 and N – k degrees of freedom (df), F1

– α (k – 1, N – k). It is assumed that the εijs are independent and normally
distributed with a mean 0 and a common variance, σ2, within each of the k
levels—that is, εij~N(0, σ2). The linear model for factorial ANOVA designs
can be generalized based on the number of factors in the model.

Independence of Observation

Independence of random errors (i.e., εij in Equation 1) means that the
value of one observation in the dependent variable, Yij, provides no
information about or is not influenced by the value for any other
observation, Yi′j′. The independence of the observation assumption is a basic



requirement of experimental design. Violation of this assumption leads to
dependent or correlated observations. An illustrative example for such a
violation can be students taught by a particular instructor in an educational
setting. They are not independent as they share the same teaching. We say
the students are nested within the instructor. One may also argue that
individuals in a corporation are nested and hence nonindependent due to
similarity in their background and experiences. With such
nonindependent/nested data, one has to adopt techniques such as nested
ANOVA designs and/or hierarchical linear modeling (HLM).

The independence assumption can be decided and controlled by the
researcher when planning and executing the experiment. In most research
situations, the requirement for independence is typically realized by
randomization (i.e., using a random sample of separate, unrelated subjects).

Test the Assumption

For a simple one-way ANOVA design, an intraclass correlation (ICC) can
be used to assess whether this assumption is tenable (Stevens, 1996). One
can compute the ICC using the SPSS RELIABILITY procedure. But the data
layout has to be constructed differently from the format in the usual ANOVA
analysis—for example, the layout in the DIST data (see Appendix A for a
description of the data). For instance, to evaluate the assumption of
independence of correct responses (NUMRIGHT) from three treatment
conditions (CONDIT), one has to create three continuous variables (c1, c2, c3)
out of NUMRIGHT, each representing correct responses in one treatment
condition, so the layout of the data is as shown in Table 22.1. The responses
are randomly arranged in each group. It has to be noted that the order of the
subjects in each group does not affect the extent to which the scores
correlate, although the ICC and p values could be different with another
ordering.

Table 22.2 displays the SPSS syntax and output for computing the ICC
with the data shown in Table 22.1. A large p value (p = .920) suggests low
nonsignificant correlations among observations from the three treatment
conditions. Hence, the independence of observations can be assumed.

However, this procedure is only applicable in a single-factor design. One
may also test this assumption using a run chart of the residual scores (e.g.,
for the one-way design,  = Yij – , where  denotes the sample estimate



of the jth population mean), particularly if the time order of data collection is
available. Unlike the method with ICC, this procedure can be used in
factorial ANOVAs as well. To illustrate, suppose one sets up a two-factor
ANOVA investigating how correct responses (NUMRIGHT) are affected by the
background conditions (CONDIT) and the participant’s gender (GENDER) in the
DIST data. Because the data do not concern the time order of data collection,
one may use the participant’s id number (ID) to check the independence
assumption. Residuals are obtained by fitting a factorial ANOVA model
using the SPSS GLM procedure and are further plotted against ID using the
SPSS GRAPH procedure. Figure 22.1 shows the SPSS syntax and the chart,
which indicates that with no clear patterns in the residuals, the independence
assumption can be assumed.

Table 22.1 Number of Correct Responses in the Three Treatment Conditions



Effects of Violations

In cases of nonindependence, the scores/observations of the subject are
influenced by other subjects or previous scores. Failure to satisfy the
independence assumption can have serious effects on the validity of
probability statements in the ANOVA F procedure (Glass et al., 1972;
Harwell et al., 1992; Scheffé, 1959; Stevens, 1996), leading to tests with
inflated Type I error and reduced power even though the sample size is large
(Scariano & Davenport, 1987). The nature of nonindependence (i.e., positive
or negative relationship in the observations) has different effects on F tests.
Specifically, positive correlations yield a more liberal test, whereas negative
correlations lead to a more conservative test (Cochran, 1947). In addition,
the higher the correlations, the more different the actual significance level is
from the nominal level.

Table 22.2 SPSS Syntax and Output for Evaluating the Independence Assumption With a
Single Factor



Figure 22.1 SPSS syntax and output for a visual check of the independence assumption.

To further illustrate the effect of violation on Type I and II errors, let’s
consider two simulated data sets, each containing three treatment groups and
six observations per group, as displayed in Table 22.3. The two data sets
satisfy two conditions—namely, conditions with and without the
independence of observations. In the latter case where the assumption is
violated, moderate correlations (ρ = 0.5) between treatment groups are
assumed. In addition, in both sets, the values in Groups 1, 2, and 3 are
random draws from normal distributions with a common variance 1 and
means 0, 1, or 2, respectively. The effect size is kept similar in both
conditions. This actually specifies that the true population means are
different among the three groups, and the omnibus F is supposed to show
significance for both data sets. Indeed, with the uncorrelated data (i.e., when
the independence assumption is satisfied), the ANOVA F test shows
significance at the .05 level (p = .038) and a .636 probability of correctly



rejecting a false null hypothesis (see “Summary of Analysis” in Table 22.3
for uncorrelated data). However, the correlated data result in a nonsignificant
F test with a higher p value (p = .063) and a lower power estimate (.542).

Outliers

There are many reasons for an extreme score in ANOVA (discussed in
detail in Chapter 14). As with other procedures, outliers can be detected
using the standardized residuals so that any values more than 3 standard
deviations away from the mean can be considered as outliers. Using the DIST
data, for a two-factor ANOVA using the background conditions (CONDIT)
and the participant’s gender (GENDER) to model correct responses
(NUMRIGHT), standardized residuals can be obtained using the GLM
procedure shown in Table 22.4. From the saved standardized residuals
displayed in the table, it is obvious that ID 35 is an outlier, whose
standardized residual is –3.37. A sensitivity analysis can subsequently be
carried out to check if this outlier seriously affects the F test. Table 22.5
summarizes the ANOVA results using the original data (the upper part of the
table) and using the data without the outlier (the lower part of the table). The
two tests, resulting in different F statistics, p values, or estimated effect
sizes, indicate that the presence of the outlier does affect inferences drawn
from the F tests. Actually, the presence of this outlier depresses the
estimated effect size, especially for the interaction. Hence, the observation of
ID 35 should be examined more carefully to determine whether it should be
retained in the data.

Table 22.3 ANOVA F Tests for the Data Simulated From Uncorrelated and Correlated
Distributions



Homogeneity of Population Variances

The assumption of homogeneity of variances states that the error
variances are the same across the populations under investigation (e.g., 

for a one-way design). In performing F tests, the common
variance, σ2, estimated by the mean square error (or within-group mean
square), is the denominator of the F ratio. Conceptually, the mean square
error is considered as the pooled or the weighted average of the sample
variances. It estimates the baseline variation that is present in a response
variable. When populations differ widely in variances, this average is a poor
summary measure.

Test the Assumption

A visual check of the homogeneity assumption can be made by inspecting
and comparing the side-by-side boxplots of the residuals (e.g., ) from



different populations. The relative height of the boxes or the interquartile
range (IRQ)—that is, the distance between the upper quartile (75th
percentile) and the lower quartile (25th percentile)—indicates the relative
variability of the residual scores in each treatment condition. Equal
variability can be assumed if boxplots have relatively equal spread or IRQ
across populations.

Table 22.4 SPSS Syntax for Detecting Within-Cell Outliers

Table 22.5 Sensitivity Analysis With and Without Case 35



Consider the DIST example of the correct responses (NUMRIGHT)
obtained from three treatment conditions (CONDIT) for male and female
(GENDER) participants, after removing the potential outlying case (ID 35).
The boxplots as well as SPSS syntax for obtaining them on the saved
residuals are shown in Figure 22.2. It is obvious from the figure that the
boxplots are dissimilar in their spread or IRQ. Specifically, the box for the
(FEMALE, CONSTANT SOUND) condition is the smallest, whereas that for the
(MALE, NO SOUND) condition shows the largest distance. The latter appears to
be about twice as wide as the former. However, given the unit of the scale, it
is hard to decide whether the difference in the IRQ or population variances is
substantial. One has to check the significance of this inequality numerically.

There are a number of tests for the homogeneity of variance assumption,
including Bartlett’s chi-square test, Hartley’s F-max test, Cochran’s C test,
Levene’s test, and Brown-Forsythe’s test, and most software packages
incorporate at least one. The first three tests are sensitive to even slight
departures from normality (Box, 1953), while the latter two tests are shown
to be fairly robust even when the underlying distributions deviate
significantly from the normal distribution (Olejnik & Algina, 1987) and
hence are recommended. They have an added advantage of simplifying the
procedure by allowing normality tests conducted after the homogeneity of
variances is tested, which will be explained further in a later section.

The Brown-Forsyth test is a modification of the Levene test (Brown &
Forsythe, 1974). The null hypothesis for the two tests is that the variances
are homogeneous ( ). In both tests, original values of the
dependent variable (Yij) are transformed to derive a dispersion variable on



their absolute deviations from the respective group means ( ) for the
Levene test, or medians (| |, where mj denotes the median of the jth
group) for the Brown-Forsythe test. ANOVA is subsequently performed on
the dispersion variable, and the significance level for the test of homogeneity
of variance is then the p value for the ANOVA F test on this variable. Thus,
if the F test is significant at a predefined critical level (usually .05), the
hypothesis of equal variances should be rejected in conclusion of the
violation of the assumption.

Generally, Brown-Forsythe’s test is preferred over Levene’s test (when
available) when there is unequal sample size in the two (or more) groups that
are to be compared. In addition, it is reported to be the most robust and best
at providing power to detect variance differences while protecting the Type I
error (Conover, Johnson, & Johnson, 1981; Olejnik & Algina, 1987).

The previous side-by-side boxplots suggest that the residuals appear to
differ much in their spread of variability across groups. Formal statistical
tests can be conducted to test the homogeneity of variances in correct
responses (NUMRIGHT) at the three treatment conditions (CONDIT) for
male and female (GENDER) participants by setting up the null and
alternative hypotheses as  and H1: not all  are equal,
respectively.



Figure 22.2 SPSS syntax and output for a visual check of the equal variances assumption.

The result (displayed in Table 22.6) shows a nonsignificant Levene’s test,
F(5, 68) = 2.175, p = .067, on the dispersion variable. Hence, the null
hypothesis is retained, and equal variances can be assumed at the .05 level.

Brown-Forsythe’s test is not directly implemented in SPSS (it is, however,
implemented in SAS). The procedures can get very complicated if there are
many factors or groups (in which case, one can consider using other
statistical packages such as SAS). For the above example, the Brown-
Forsythe test, for which procedures are detailed in Appendix B, results in a
nonsignificant F ratio, F(5, 68) = 1.587, p = .175 (see Table B1 in Appendix
B). The test shows no evidence for heterogeneity. Therefore, one can assume
homogeneity of variances and proceed with an ANOVA F test for the
differences among the population means.

Table 22.6 SPSS Syntax and Output for an Example of Using Levene’s Test



Although Levene’s and Brown-Forsythe’s tests are robust to
nonnormality, some authors (e.g., Glass & Hopkins, 1996) have pointed out
that the tests themselves rely on the homogeneity of variances assumption
(of the absolute deviations from the means or medians), and hence it is not
clear how robust these tests are themselves in the presence of significant
variance heterogeneity and unequal sample sizes.

Effects of Violations

The prevailing conclusion drawn from early studies on the effects of
variance heterogeneity (see Glass et al., 1972, for a review of this earlier
literature) indicated that the F test was quite robust against violations of this
assumption, especially when sample sizes were equal. However, the
robustness of the test has been somewhat misinterpreted in the literature
(Krutchkoff, 1988). Research initiated by Box (1953) has shown that F tests
are not robust to all degrees of variance heterogeneity even when the sample
sizes are equal (e.g., Rogan & Keselman, 1977; Weerahandi, 1995; among
others). It is true that the value of the F statistic does not dramatically
change due to small or even moderate departures from this assumption when
sample sizes are equal. However, as the degree of heterogeneity increases,
the F test is more biased with inflated error rates and reduced power,
especially with small sample sizes. The effect of variance heterogeneity may
be more serious when sample sizes are not equal. It is also noted that when
the variances are positively paired with the sample sizes—that is, when the
group with the largest sample size, for example, has the largest variance—



the true Type I error will be less than the nominal significant level. On the
other hand, when the variances are negatively paired with the sample sizes,
the true Type I error will exceed the nominal level (Glass et al., 1972;
Harwell et al., 1992).

When variances are heterogeneous, Welch’s (1951) test should be used in
most one-way designs with balanced or unbalanced data. However, this test
is sensitive to large skewness in the data. Lix et al. (1996) pointed out that
skewness greater than 2.0 might result in inflated error rates for the Welch
test. They further recommended using sample sizes no less than 10. It has to
be noted that extension of Welch’s test to a variety of univariate and
multivariate designs is possible Lix & Keselman, 1995).

To further illustrate effects of the variance heterogeneity, let’s consider the
DIST data again. One of the variables in the data is HETERVAR, which was
simulated from three normal distributions, each corresponding to the
CONSTANT SOUND, RANDOM SOUND, and NO SOUND conditions, with population
means 3, 10, and 6 and standard deviations 0.1, 10, and 15, respectively. The
F test, Welch’s test, and Levene’s test can be performed simultaneously with
the SPSS ONEWAY procedure. The syntax, together with the output, is
shown in Table 22.7.

The Levene test is significant with an extremely small p value (p < .001),
indicating a great degree of variance heterogeneity in HETERVAR among the
three treatment conditions. This further results in an F test not significant at
the .05 level, F(2, 72) = 2.878 (p = .063, = .074), suggesting that the data do not
provide sufficient evidence against the null hypothesis of equal population
means. However, the Welch test, not assuming equal variances, reports
significant mean differences, Fw(2,32) = 6.875, p = .003, which is consistent
with the actual situation. As pointed out earlier, Welch’s test is not
commonly implemented in statistical packages and is only available for one-
way design in SPSS. Hence, one has to adopt other robust tests when
variance homogeneity is not attainable.

In this example, we see that the heterogeneity of variance has greatly
deteriorated the power of the F test even with equal sample sizes (nj = 25).
For the effect with unequal sample sizes, readers can use the simulated
variable HETERVAR in the HSB data, evaluate the equal variances assumption
of this variable across the three socioeconomic status (SES) levels, and
compare the F test result with the Welch test result. The effects of unequal
variances on the Type I error rates and power for F tests have been mainly



investigated using Monte Carlo studies in the literature. For an excellent
review as well as a summary of consequences of the violations, see Harwell
et al. (1992).

Normality in Treatment Population

In addition to equal variances, ANOVA fixed-factor models make an
additional distributional assumption that the random errors are normally
distributed in all treatment conditions.

Table 22.7 SPSS Syntax and Output for the ANOVA F Test and the Welch Test When
Variances Are Heterogeneous

Test the Assumption



The normality assumption can be assessed using graphics, descriptive
statistics, and formal statistical tests on the residual scores (e.g., ) Graphics
provide the simplest and most direct way to examine the shape of a
distribution. While histograms can aid in visual inspection of normality,
normal probability plots (graphs of the empirical quantiles based on the data
against the actual quantiles of the standard normal distribution, also called
normal Q-Q plots) are considered to be more informative. The points will
fall close to a straight line if the distribution is approximately normal. Points
that are above the straight-line pattern suggest that residuals are smaller than
expected for normal data. Points that are below the straight-line pattern
suggest that residuals are bigger than expected for normal data.

Simple descriptive statistics (i.e., the coefficients for skewness and
kurtosis) provide important information relevant to this issue. For example,
perfect normal distributions are symmetrical with a zero skewness and
moderately spread with a zero kurtosis. If the result of dividing skewness or
kurtosis by its corresponding standard errors exceeds 2, the distribution
departs significantly from a normal distribution.

More precise information can be obtained by performing one of the
statistical tests of normality to determine the probability that the sample
came from a normally distributed population (e.g., the Kolmogorov-Smirnov
[KS] test or the Shapiro-Wilks test). For both tests, a p value smaller than a
predefined critical level (usually .05) suggests rejection of the null
hypothesis that the data follow a normal distribution. It should be noted that
tests of normality do not reflect the magnitude of the departure. That is,
these tests only reflect whether the data depart from normality. Small p
values indicate that the distribution almost definitely departs from normality.
They do not, however, indicate that the distribution departs substantially
from normality, especially when the sample size is large. In general, the
Shapiro-Wilks test is too sensitive to minor deviations from normality, and
even the KS test is relatively sensitive, and none of the statistical tests can
substitute for a visual examination of the data.

Effects of Violations

The fixed effects model F test is relatively robust to deviations from
normality (see Glass et al., 1972; Harwell et al., 1992, for summaries of the
effects), except when sample sizes are small and power is being evaluated.



Studies indicate that severe skewness can have a greater impact than
kurtosis (e.g., Lumley, Diehr, Emerson, & Chen, 2002; Scheffé, 1959). Its
impact on the F test varies. Tiku (1964) concluded that distributions with
skewness in different directions had a greater effect on Type I errors than
distributions with skewness values in the same direction. Harwell et al.
(1992) observed that when sample sizes are unequal, skewed distributions
can result in slightly inflated Type I error rates. Skovlund and Fenstad
(2001) also reported that the level of significance is sensitive to severely
skewed distributions with unequal sample size and unequal variances.

To illustrate the effects of nonnormality due to skewness or kurtosis, let’s
consider the NORMAL, SKEWED, and UNIFORM variables in the DIST data.
Observations for the three variables were randomly simulated from a
normal, a positive skewed, and a uniform distribution, respectively, so that
the cell means are the same for each distribution. It should be noted that a
uniform distribution is an extreme case when the distribution is flatter than a
standard normal distribution with a kurtosis around –1.2. Figure 22.3
displays the histograms of the three variables aggregating over the three
treatment conditions. The overall distributional shapes suggest that SKEWED
and UNIFORM deviate from normal distributions in that the former is right-
skewed whereas the latter looks platykurtic.

F tests are then performed to test the overall mean differences between the
three conditions (CONDIT) in NORMAL, SKEWED, and UNIFORM. To make sure
that nonnormality is not complicated by variance heterogeneity, the
homogeneity of variance is checked using the Levene procedure, and the
resulting nonsignificant p values suggest that equal variances can be
assumed for the three F tests. Table 22.8 summarizes the ANOVA results,
which indicate a significant mean difference in SKEWED (F(2, 72) = 3.584, p =
.033,  = .091) but not in NORMAL (F(2, 72) = .662, p = .519,  = .018) or
UNIFORM (F(2, 72) = .123, p = .884,  = .003).

To evaluate the F results, the Kruskal-Wallis (KW; Kruskal & Wallis,
1952) test, a nonparametric alternative to the F test, is conducted to test the
respective mean differences between CONDIT in the three variables. This test
does not assume normal distributions. However, it can still be affected by
some form of nonnormality when variances are unequal (Cribbie &
Keselman, 2003; Oshima & Algina, 1992; Tomarken & Serlin, 1986). The
KW test results as well as the SPSS syntax are shown in Table 22.9.
Different from the significant F result obtained with the positive skewed



variable (SKEWED), the KW test reports a slightly higher p value (p = .058),
resulting in a nonsignificance test at the .05 level. Actually, the p values for
the normal and uniform variables are a little larger than the corresponding p
values from the F test as well. However, they do not affect the significance
levels tremendously. From this example, we see that skewed distributions
can result in spurious rejection of the null hypothesis. For practice, the
reader can also conduct the F test and the KW test on the simulated variable
NONNORMAL across the levels in SES in the HSB data to further understand the
effect of the assumption violation.

Figure 22.3 Histograms of aggregated NORMAL, SKEWED, and UNIFORM variables.

Table 22.8 F Tests of Mean Differences Between CONDIT in NORMAL, SKEWED, and UNIFORM



Table 22.9 SPSS Syntax and Output for the Kruskal-Wallis Test

Summary Remarks

As most applied researchers who employ inferential statistical techniques
make extensive use of ANOVA procedures, the importance of testing the F
test assumptions and understanding the effects of violations cannot be
overstated. The notions that dependence among observations, heterogeneity
of variance, or nonnormality does not affect inferences based on the
ANOVA F test have to be dispelled. Dependence of observations can be



overcome by carefully designing the research through randomization.
However, unequal variances and nonnormal distributions have to be
evaluated even though the study is carefully designed. From the previous
discussions, we see that F tests are relatively robust to nonnormality
assuming equal variances but not to variance heterogeneity when normality
is assumed, regardless of whether sample sizes are equal. Cramer (1994),
among others, examined the effect of simultaneous violations of normality
and equality of variance assumptions, reported serious problems, and
suggested that the ANOVA F test be avoided when simultaneous violations
are detected. Consequently, it is essential for a researcher to compare
treatment means with an appreciation for the underlying assumptions of the
F test.

Although several statistical procedures are available for examining a
particular ANOVA assumption, no technique is completely adequate.
Statistical tests are flawed in two major ways: (a) The assumption tests were
not designed to show that the null hypothesis is true, and thus, the usual .05
critical level might not be an appropriate significance level; and (b) the
precision of the tests depends on sample sizes. The F test is fairly robust
with respect to nonnormality, and the degree of robustness is dependent on
the number of observations per treatment. As the number of observations
increases, normality tests become more sensitive or more likely to declare
nonnormality. Likewise, testing the variance homogeneity assumption, one
is likely to accept the null hypothesis with small samples even when
variances are heterogeneous but reject the null hypothesis with large samples
even when the differences between treatment variances are too small to be a
problem. Therefore, given the above problems associated with statistical
tests, the use of graphics approaches is generally recommended as a key part
of any examination of assumptions.

When one is conducting an ANOVA with a between-group factor, it is
more appropriate to use the residual scores than the raw scores to check the
assumptions. The ANOVA test is based on the F ratio, which is the between-
groups variance divided by the within-group variance. The latter is the
average squared deviation of scores around their group mean (i.e., the
average squared residuals). In order to ensure that no observation has a
strong influence on the calculation of the within-group variance, we should
examine these residuals and look for heterogeneity in variances, outliers, or
extremely nonnormal distributions. If the assumptions of normality and



variance homogeneity are reasonable, then certain characteristics should be
evident for the residuals. Deviations from these characteristics suggest that
ANOVA assumptions may not be met. It has to be noted again here that the
test of normality on the residuals is not appropriate if there is a heterogeneity
of variance problem. Hence, it is recommended that normality be examined
after the unequal variances problem has been dealt with.

As a practice, the reader can follow the procedures described in this
chapter to evaluate the assumptions for a two-factor ANOVA design using
students’ sex (SEX) and socioeconomic status (SES) to model their science
scores (SCI) in the HSB data.

APPENDIX A: DATA SET

Example Data

Throughout the chapter, a major data set is used to illustrate the
procedures for evaluating ANOVA assumptions and setting up contrast
coding. The data are based on a study investigating the effect of background
sound on learning. It is predicted that students will learn most effectively
with a constant background sound, as opposed to an unpredictable sound or
no sound at all. In order to test this, participants were asked to study a
passage of text for 30 minutes. Then they were given 20 multiple-choice
questions to answer based on the material. Each participant was randomly
assigned to one of the three studying groups. One group had background
sound at a constant volume. A second group studied with noise that changed
volume periodically in the background. A third group had no sound at all.

The data are stored in an SPSS data file DIST.SAV. Each variable is
described in the table to the right. NUMRIGHT shows the number of correct
responses over the 20 items. CONDIT is the grouping variable with the three
experimental conditions. Other quantitative variables—NORMAL, SKEWED,
UNIFORM, and HETERVAR—are variables simulated from distributions that are
normal, positively skewed, uniform, and heterogeneous in variances,
respectively. Furthermore, INDEPEND and DEPEND are variables simulated
from distributions with and without independent observations.



Practice Data

Another data set is provided for those who want to practice or experiment
with the techniques described in this chapter. The data are revised from the
High School and Beyond Study (Glass & Hopkins, 1996) and are stored in
an SPSS data file HSD.SAV. Achievement (reading, math, and science scores)
and demographic (sex, SES) information was recorded for a national
representative sample of 600 high school seniors. HETERVAR and NONNORMAL
are variables simulated from distributions with unequal variances and
nonnormal distributions, respectively. A description of each variable is as
follows.

Variable Name Variable Label/Value Label

ID Participant ID number
CONDIT Treatment condition /

1 = ‘CONSTANT SOUND’
2 = ‘RANDOM SOUND’
3 = ‘NO SOUND’

GENDER Gender of participant / 1 = “Male,” 2 = “Female”
NUMRIGHT The number correct over 20 items
NORMAL A normally distributed variable
SKEWED A positively skewed variable (departure from

normality)
UNIFORM A uniformly distributed variable (departure from

normality)
HETERVAR A variable with heterogeneity of variance between

the three treatment conditions (departure from equal
variances)

DEPEND A simulated variable with dependent observations
and different means across CONDIT

INDEPEND A simulated variable with independent observations
and different means across CONDIT



Variable Name Variable Label/Value Label

ID Student ID number
SEX Gender of student /

1 = “Male,”
2 = “Female”

SES Socioeconomic status/
1 = ‘Lower’
2 = ‘Middle’
3 = ‘Upper’

RDG Reading T-score
MATH Math T-score
SCI Science T-score
HETERVAR A simulated variable with variance heterogeneity

and different means across SES
NONNORMAL A simulated variable with nonnormality and

different means across SES

APPENDIX B: BROWN-FORSYTHE’S TEST

For the DIST example, within-group medians—that is, medians of correct
responses (NUMRIGHT) for male and female participants (GENDER) at three
treatment conditions (CONDIT)—are first computed using the MEANS
procedure:

MEANS

TABLES = numright BY pre_1

/CELLS MEDIAN.

The medians are reported to be as follows for the six (GENDER*CONDIT)
groups.



Then the NUMRIGHT scores are transformed to derive the dispersion
variable on their absolute deviations from the respective group medians (|Yij

– mj|) using the following syntax:
 

IF (pre_1<13) dispersion = ABS(numright-13).
IF (pre_1<15 & pre_1>13) dispersion =
ABS(numright-15).
IF (pre_1<16.5 & pre_1>15) dispersion =
ABS(numright-16.5).
IF (pre_1>16.5) dispersion = ABS(numright-18).

A new variable, DISPERSION, is then created in SPSS. The upper part of
Table B1 shows the values for the original NUMRIGHT and the dispersion
variables at each treatment condition. ANOVA F test is then performed to
test group difference in DISPERSION with the ONEWAY procedure using the
fitted values as the factor:
 

ONEWAY dispersion BY pre_1.

F test results are summarized at the bottom of Table B1, which are the
result for the Brown-Forsythe test.

NOTE

1. Readers can refer to Chapter 18 (this volume) on robust methods for more information, although
the chapter is more focused on regression-style methodology.
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BEST PRACTICES IN THE
ANALYSIS OF VARIANCE

 
DAVID HOWELL

he previous chapter addressed the basic questions behind the analysis
of variance and presented material that is critical to an understanding
of what the analysis of variance is all about. This chapter builds on

that material to discuss important measures of power and effect size, to
expand on alternative ways of approaching comparisons among individual
group means, to discuss the treatment of missing data, and to consider
alternative approaches to the treatment of nonnormal data or heterogeneous
variances. More than the usual focus is given to individual contrasts and
their implications for power and effect size calculations, and less to the
omnibus F and associated measures. This idea is certainly not new, but such
suggestions in the literature have not always led to changes in practice.

ONE-WAY DESIGNS

A study by Foa, Rothbaum, Riggs, and Murdock (1991) evaluated four
different types of therapy for rape victims. The stress inoculation therapy
(SIT) group (n = 28) received instructions on coping with stress. The
prolonged exposure (PE) group (n = 20) went over the events in their minds
repeatedly. The supportive counseling (SC) (n = 22) group was simply
taught a general problem-solving technique. Finally, the waiting list (WL)
control group (n = 20) received no therapy. Data were constructed to have
the same means and variances as the original study, although I have doubled
the sample sizes for purposes of this example. I will use these data to



address a number of issues that are important to a complete analysis of
variance. The questions that we will explore in this analysis will lay the
groundwork for what follows and will also be the general approach that we
will take with other designs.

Predictions

In this example, we basically have two major treatment groups (SIT and
PE) and two different control groups (SC and WL). The authors of the study
would likely expect differences between the two treatment groups and the
two control groups. Depending on the effectiveness of supportive
counseling, we might see a difference between the supportive counseling
group and the waiting list group, which received no treatment, though that
is certainly not the major focus of the study. It would certainly be of some
interest to ask whether stress inoculation therapy is a more or less effective
treatment than prolonged exposure. Notice that these predictions are quite
specific. Predicting that “the four groups will differ” follows from the other
predictions, but the overall main effect is really not the question at hand,
though it is frequently treated that way. To put this differently, if the
analysis found that not all treatments were equally effective, you would be
neither particularly surprised nor satisfied. You would demand more
specific answers. This point is more important than it might at first appear
because it will color our discussion of missing data, power, and effect size.

Sample Sizes

Notice that in this experiment, we have unequal sample sizes. They are
not grossly unequal, but they are unequal. In a one-way design, inequality
of sample sizes is not particularly important unless we have heterogeneous
variances, but it can become a problem when the variances are also
unequal. There is no completely satisfactory way of dealing with this
problem, although it is mitigated to some extent if we focus on specific
contrasts, with error terms based only on the data at issue, rather than on the
omnibus F and its error term. Unequal sample sizes assume a much larger
role in our discussion of factorial designs.



Power

Researchers have recently been asked to pay attention to the power of
their experiments. Important work on power for psychologists has been
available since J. Cohen (1969), though it is only fairly recently that
psychologists have started to take the issue seriously (see Wilkinson, 1999,
for guidelines from the American Psychological Association [APA] panel
on statistical methods). For the example we are using, it would be foolish to
undertake this study unless we were reasonably confident that the study had
sufficient power to find differences between groups if those differences
were as large as we expect. We will look briefly at the power of this design,
assuming that the true differences are similar to the difference we obtained.

Effect Size

Finally, we are going to need to say something about the size of the effect
we found. We want to be able to tell our readers whether the differences that
we do find are important considerations in choosing a treatment or if these
are minor differences that might be overridden by other considerations.
However, it will be important to decide just what effects should play a role
in the determination of effect size.

THE OVERALL ANALYSIS

The results obtained by Foa et al. (1991) follow, where the dependent
variable is based on symptoms of stress. (The data for this example are
available at www.uvm.edu/~dhowell/AnovaChapter/FoaDoubled.dat.)

http://www.uvm.edu/~dhowell/AnovaChapter/FoaDoubled.dat


The following analyses were produced by SPSS ONEWAY, though any
standard software will produce similar results. In this situation, SPSS’s
ONEWAY is more useful than GLM because it allows you greater
flexibility in specifying the contrast coefficients for subsequent analyses.

ANOVA

The results show a significant difference among the groups, as expected,
although it is not a particularly meaningful finding. The effect size estimate
(eta-squared = 0.18) refers to the omnibus F test, which is of little interest
to us, as does the post hoc test of power (which was 0.96).1

Unequal Variances

We should note that Levene’s test for heterogeneity of variance, which
follows the analysis of variance (ANOVA) summary table, shows that the
variances are not homogeneous, and this should give us some pause. I
would be much more concerned if our sample sizes were more unequal, but
we still need to attend to them. Both Welch (1951; see Howell, 2007) and
Brown and Forsythe (1974; see B. H. Cohen, 2000, or Field, 2004) have
proposed tests that can be used in place of the standard omnibus F when the
sample sizes and variances are unequal. Of these, the Welch test tends to be
more conservative and more powerful at the same time (Tomarken & Serlin,
1986) and is the test of choice. SPSS calculates the results of both tests, and
these are shown below. Again, there is no question that the differences
among the groups are significant. But, again, it isn’t the overall F that is of
central concern to us.

Test of Homogeneity of Variances



Robust Tests of Equality of Means

Individual Contrasts

Before discussing questions of power and effect size, it is important to
look at individual comparisons among the groups. Those contrasts are more
in line with our interests than is the omnibus F, and our concerns about
effect size and power are more appropriately directed at those contrasts.

The traditional approach to testing differences between individual groups
relies heavily on standard multiple comparison procedures such as the
Tukey or Scheffé tests. These procedures compare each group with every
other group and produce a display indicating which group means are
heterogeneous and which are homogeneous. A common textbook
characterization of post hoc tests is that they allow you to make
comparisons of means even if they were not planned before the experiment
was conducted. (A priori tests are normally restricted to situations where
the contrasts were planned.) We sell ourselves short if we routinely assume
that we have not thought through our analysis when we design a study, and
post hoc tests generally extract a heavy penalty in terms of power. However,
the output from a post hoc test which follows on the next page, to illustrate
the approach. In our particular example, which has unequal sample sizes
and unequal variances, the most appropriate approach is the Games-Howell
procedure because it is designed to handle such conditions. (Tukey’s test
does not handle heterogeneity of variance well, and contrasts such as those
by Helmert rarely address questions of interest.)



From this table, we can see that the SIT group is significantly different
from the SC and WL groups, but no other groups are different from each
other. There are two things about this answer that are not very satisfying. In
the first place, we see that SIT and PE are not different, but although SIT is
different from SC and WL, PE is not. This appears to fly in the face of
common sense because if A is equal to B and A is unequal to C, we expect
that B will be unequal to C. The problem is that the structural rules of logic
and the probabilistic rules of statistics do not always mesh.2

The other difficulty with this approach (which is shared by all multiple
comparison procedures such as the Tukey and the Scheffé tests) is that we
are asking a number of questions that are not really of interest to us, and
doing so detracts from the statistical power to find differences on the things
that really do matter. I do care if the major therapies (SIT and PE) are better
than the control conditions (SC and WL), and I care if one of the therapies
is better than the other, but that is as far as it goes. I want to ask two
questions, but the multiple comparison procedures ask six questions (there
are six pairwise comparisons), extracting an unnecessary price in power and
sensitivity.

Multiple Comparisons



If we want to compare the therapy conditions with the control conditions,
as well as the SIT condition with PE, we can do so with a simple set of
contrast coefficients rather than using a less powerful multiple comparison
procedure. These coefficients (cj) are shown in the following table.3

These coefficients can be applied to the individual group means to
produce a t statistic on the relevant contrast. We simply define

and



Applying these coefficients to the group means, we obtain the set of
contrasts shown on the next page for the equal variance case. For the
unequal variance case, we replace MSerror with more specific error terms and
define

This gives us a t statistic based only on the variances of the groups involved
in the contrasts.

Here you can see that both contrasts are significant if we assume equal
variances, but only the contrast between the therapy groups and the control
groups is significant if we do not assume equal variances. The Levene test
was significant, in part because the variance in PE is many times larger than
the variance for SIT, so I would have to choose the unequal variance test.
The equal variance solution would use the common (average) error term
(MSerror) for each contrast, and when the variances are unequal, that does not
make much sense.4

Contrast Tests

Power



The traditional treatment of power would concern the probability of
finding a significant omnibus F if the population means are as we think that
they should be. Suppose that on the basis of prior studies, Foa et al. (1991)
hypothesized that the two control groups would present about 20 symptoms
of stress, that the SIT group would present about half that number (i.e., 10
symptoms), and the PE group would be somewhere in between (say about
14 symptoms). This is usually about the best we can do. Assume that Foa et
al. also think that the standard deviation of the SIT group will be
approximately 4, and those of the other groups will be approximately 8.
They plan to have approximately 20 subjects in each group. The “what-if”
and “approximate” nature of these predictions is quite deliberate because
we rarely have more specific knowledge on which to base comparisons.
Using G*Power,5 we can calculate that the power of this experiment is .99,
which is extremely high. But that answer is not directly relevant to my
needs. That result tells me that I am almost certain to reject the omnibus
null hypothesis, but what I really care about are the two contrasts discussed
above. And of these two contrasts, the one least likely to be significant is
the contrast between SIT and PE. What I really want to know is the power
to find a significant difference for that contrast. We can answer that
question using G*Power for what amounts to a t test between those two
groups. With homogeneity of variance, df for error would be based on
MSerror for all four groups and would be 76. However, with heterogeneous
variances, the appropriate t test would consider only the two groups of 20
participants per group. This test would have approximately 28 degrees of
freedom using the standard Satterthwaite correction. To be safe, we will
assume that we’ll have heterogeneous variances. This yields a power of
0.40, which is not very encouraging. Increasing the sample size to
approximately 40 subjects in each condition will be necessary to have a
good chance of rejecting the null hypothesis for that contrast (although the
exact calculation requires an iterative process).

To reiterate the fundamental point being made here, we need to tailor our
analysis to the questions we want to answer. There is nothing wrong with
having four groups in this experiment—in fact, that is a perfectly
reasonable way to design the study. However, when looking at power or, as
we will shortly do, effect sizes, we want to tailor those estimates to the
important questions we most want to answer.



Effect Size Estimates

As you can guess, an effect size measure that involves all four conditions
is not particularly useful. I can find one, however, and it is estimated by
either η2 or ω2, the latter being somewhat less biased. For this experiment,
we have

Whichever measure we use, we can say that we are explaining under a fifth
of the variation in our data on the basis of treatment differences. Rosenthal
(1994) referred to measures such as η2 and ω2 as r-family measures because
they are essentially squared correlations between the independent and
dependent variables. One problem with r-family measures is that most
people do not have an intuitive understanding of what it means to say that
we can account for x% of the variation, and, in fact, that percentage may
depend on other variables in our design.

When we look at effect sizes for specific contrasts, which is what we
really want to do, we have better measures than those in the r-family.
Rosenthal (1994) referred to these as d-family measures because they focus
on the size of the difference between two groups or sets of groups.
Measures in the d-family represent the difference between groups (or sets of
groups) in terms of standardized units, allowing us to make statements of
the form, “The means of Groups A and B differ by approximately 0.5
standard deviations.” There are a number of related measures that we could
use, and they differ primarily in what we take as the standard deviation by
which we standardize the difference in means. If we let cj represent the set
of coefficients that we used for individual contrasts, then we can define our
measure of effect size for contrast  as



The numerator is a simple linear contrast, while the denominator is some
unspecified estimate of the within-groups standard deviation.

The preceding formula raises two points. In the first place, the
coefficients must form what is sometimes called a “standard set.” This
simply means that the absolute values of the coefficients must sum to 2.
This is why I earlier used fractional values for the coefficients, rather than
simplifying to integers. The resulting F or t for the contrast would be the
same whether I used fractional or integer values, but only the standard set
would give us a numerical value for the contrast that is the difference
between the mean of the first two groups and the mean of the last two
groups. This is easily seen when you write

The second point raised by our equation for d is the choice of the
denominator. There are at least three possible estimates. If we could
conceive of one of the groups as a control group, we could use its standard
deviation as our estimate. Alternatively, we could use the square root of
MSerror, which is the square root of the weighted average of the four within-
group variances.6 Finally, we could use the square root of the average of the
variances in those groups being contrasted.7 That makes sense when the
groups you are contrasting (such as SC and WL, though not others) have
homogeneous variances. But in a case such as the contrast of SIT with PE,
the variances are 15.03 and 117.09, respectively, and it is hard to justify
averaging them. But I have to do something, and there can be no hard-and-
fast rule to tell me what to do. For this contrast, I will use the square root of
the weighted average of the variances of the two control conditions because
those conditions form a logical basis for standardizing the mean difference.8

In describing the results, we should point out that the large variance of the
SIT data suggests that stress inoculation therapy may work well for some
victims but not for others.

For the contrast of the treatment groups with the control groups, we have



and

Our effect size is –5.56/6.94 = –0.80, which can be interpreted as indicating
that those who receive one of the two major forms of therapy have fewer
symptoms, by approximately eight tenths of a standard deviation, than do
those in the control groups.

Two questions arise over the computation of the effect size for the
contrast of the SIT and PE groups. That difference was not significant when
we controlled for heterogeneous variances (p = .101). So if we have
concluded that we do not have a reliable difference, does it make sense to
go ahead and report an effect size for it? A solution would be to report an
effect size if the difference is “nearly significant” but, at the same time, to
remind the reader of the nonsignificance of the statistical test.9 The second
question concerns the denominator for our effect size. As I suggested
earlier, one possibility is to use the square root of the weighted average
variance of the control conditions, and we just found that to be 6.94, and it
seems like a reasonable scalar.

For this contrast, we have

Using the standard deviation defined above as the standardizing statistic
produces an effect size measure of –4.33/6.94 = –0.62, indicating that the
participants receiving SIT therapy are a bit less than two thirds of a standard
deviation lower on symptoms than are the PE participants.

But we need to keep two things in mind. First, the contrast was not
significant, and second, the variances are very heterogeneous. This suggests
to me that we might want to examine our data even more closely for
outliers and consider alternative transformations of the data. (For these data,



neither approach is productive.) The best solution is probably to conduct
another study looking more closely at those two treatments, perhaps
dropping the control conditions. The present data might suggest that SIT is
useful for some victims but not for others, and an effect size comparison of
its mean with the mean of PE may not be relevant. A subsequent study
looking closely at whether there are important individual differences in the
effectiveness of SIT would seem useful in clarifying the clinical
implications of the treatment.

NONNORMAL DATA

It is well-known that the traditional analysis of variance assumes that the
random errors within each condition are normally distributed in the
population. We often say that the analysis of variance is robust to violations
of this assumption, although we know that this is not always the case.
Especially when we have long-tailed distributions, alternative procedures
may better approximate the desired level of α and have more power than a
standard analysis of variance. (We might have long-tailed distributions for
the example used here because it is easy to imagine a few participants who
report many more symptoms of stress than do others in their group and a
few that, for whatever reason, are reluctant to report any symptoms.)
Wilcox and Keselman (see, e.g., Keselman, Holland, & Cribbie, 2005) have
done considerable work on robust measures and strongly favor the use of
trimmed means and Winsorized variances10 in place of the usual least
squares estimates of means and variances. It has taken a long time for this
approach to take hold, but it slowly seems to be doing so. A different
approach to multiple comparison procedures, using bootstrapping and
randomization tests, is discussed by Keselman and Wilcox (2006). In
addition, for count data of this nature, Poisson analysis (see Chapter 21, this
volume) may be more appropriate.

FACTORIAL DESIGNS



Almost all issues in the analysis of variance become somewhat more
complex when we move from one-way designs to factorial and, later,
repeated-measures analysis of variance. In this section, I will expand on the
basic material on factorial designs in ways that are similar to what I said
about one-way designs.

I have chosen an example that again involves unequal sample sizes and
presents some interesting challenges to interpretation. Much that was said
about one-way designs, such as the need to focus on the specific questions
of interest and to calculate power and effect sizes accordingly, would apply
equally well here. I will not belabor those points in this discussion. Instead,
the main focus will be on the treatment of unbalanced designs and some
interesting questions that arise concerning effect sizes.

The following example came from Jo Sullivan-Lyons, who was at the
time a research psychologist at the University of Greenwich in London. In
her dissertation, she was concerned primarily with how men and women
differ in their reports of depression on the HADS (Hospital Anxiety and
Depression Scale) and whether this difference depends on ethnicity. So we
have two independent variables, gender (male/female) and ethnicity
(White/Black/other), and one dependent variable, the HADS score.

I have created data that reflect the cell means and standard deviations that
Sullivan-Lyons obtained, and these are available at
www.uvm.edu/~dhowell/AnovaChapter/JSLdep.sav. The cell means and
standard deviations are given in the table below.

Unequal Sample Sizes

One of the first things to notice from this table is that the cell sizes are
very unequal. That is not particularly surprising when dealing with ethnicity
because very often a sample will be heavily biased in favor of one ethnic
group over others. What would at first seem somewhat reassuring is that the
imbalance is similar for males and females.

Dr. Sullivan-Lyons was primarily concerned with a difference due to
gender, and she noted that a t test on males versus females produced a
statistically significant result, with males reporting a mean HADS score that
was approximately half of that for females. (Even when we allow for
heterogeneity of variance, t = –5.268, p < .000). However, because ethnicity

http://www.uvm.edu/~dhowell/AnovaChapter/JSLdep.sav


was also an independent variable, she ran a factorial analysis of variance
and found the following results.

Notice that in this analysis, the effect due to gender is not close to
statistical significance (p < .83). Her question to me was,“What happened?”
I think almost anyone would be inclined to ask such a question, and the
answer highlights the importance of careful consideration of unbalanced
factorial designs, especially in the presence of a significant interaction
effect, which we have for these data.

A standard t test or a one-way analysis of variance on gender is heavily
influenced by the difference in sample sizes. The predominance of White
participants means that their mean difference between genders dominates
the overall gender effect. The most common form of a factorial analysis of
variance, however, treats the means differently.

Before discussing the alternative models for dealing with unbalanced
factorial designs, it would be helpful to go back to a technique that was
particularly common before desktop computing was widely available.
Notice that the table of means shows that White males report fewer
symptoms than White females, but the direction of that difference is
reversed for the other two ethnic categories. In what used to be called an
“unweighted means solution,” the analysis would weight all means equally
rather than allowing dominance by the large cells. For example, the male
mean would be

Descriptive Statistics



Tests of Between-Subjects Effects

Similarly, for females:



Notice that the two unweighted means are almost equal.
Current practice in the treatment of unequal sample sizes with factorial

designs produces results that are very similar to the old practice of
comparing unweighted means. So it is not surprising that the analysis of
variance gave us a nonsignificant result for gender. Once we control for
ethnicity and the Gender × Ethnicity interaction, there really is no effect due
to gender. The interaction and the unequal sample sizes work in concert
here. If we hold the interaction constant but balance the sample sizes, our
overall significant t will disappear, and the analysis of variance and t will be
consonant.

The default for SPSS, SAS, and many other statistical programs is to
compute what are called Type III sums of squares, which adjust each effect
for all other effects in the model. In other words, we look at gender adjusted
for ethnicity and the Gender × Ethnicity interaction, at ethnicity adjusted for
gender and the Gender × Ethnicity interaction, and at the Gender ×
Ethnicity interaction adjusted for gender and ethnicity.

There are other ways to compute this analysis of variance. We could use
Type II sums of squares, which adjust the gender effect for ethnicity but not
for the interaction (and similarly for ethnicity) but adjust the interaction for
the two main effects. If we used a Type II analysis here, we would find an F
for gender of 14.402, p < .000. Alternatively, we could use Type I sums of
squares, which would apply no adjustment to the first-named main effect,
adjust the second-named main effect for the first, and adjust the interaction
for both main effects. If we ran that analysis, specifying gender before
ethnicity and therefore not adjusting gender for ethnicity or the interaction,
we would obtain an F for gender of 90.296, which is huge.11

You might very well ask why you would choose one of these analyses
over the other. If you have a balanced design, all approaches produce
identical results. The Type III analysis generally makes the most sense
when we think in terms of an analysis of variance, which is why it is
usually the default. Someone looking at a Type I analysis might wonder
why anyone would ever entertain such an approach. However, the Type I
analysis bears a strong relationship to what you might do in a study where



the main analysis was multiple regression instead of the analysis of
variance. There, for example, you might wish to look at the relationship
between stress and internal factors and then ask what effect external factors
have on stress after adjusting for internal factors.

That is exactly what the Type I analysis is doing. To put this in terms that
are more common in regression studies than in the analysis of variance, an
analysis with Type I sums of squares allows gender to assume priority over
other variables, then lets ethnicity assume priority over variables other than
gender, and so on. Type III analyses do not give priority to any variable.

Dealing With the Interaction

So what was Dr. Sullivan-Lyons to conclude from her data? To answer
that, we need to look a bit further into the results of the analysis of variance.
There we will see that the interaction of gender and ethnicity was
significant. That tells us that unless we have strong reasons to the contrary,
it would be appropriate to look at the simple effects of gender at each level
of ethnicity or ethnicity at each level of gender. In her study, she was
concerned primarily with difference due to gender, with only subsidiary
interest in ethnicity. Therefore, it would make the most sense for her to look
at gender at each level of ethnicity. We can best accomplish that by splitting
the file by ethnicity and then comparing gender at each level of ethnicity
using a one-way analysis. The results are shown in the table below.

Here you can see that there are gender differences for White participants,
F(1, 245) = 28.991, but not for either of the other two ethnic groups.
Although examining an interaction by looking at simple effects is the
standard approach, it does increase the probability of a Type I error by
increasing the number of significance tests. One way around this problem is
to set the required significance level more stringently (for example, from
.05 to .01). Doing so in this case would still leave the gender difference for
Whites but not for the other ethnic groups. It is entirely possible that the
lack of significance for the other two ethnic groups was due, in part, to the
small sample sizes and lack of power. But it appears likely that even if there
actually are differences in the populations, they are small compared with
those for Whites and perhaps even in the opposite direction.

For the simple effects, you could have computed the Fs somewhat
differently, basing each F on MSerror from the overall analysis. That was the



approach that nearly all textbooks once advocated. However, with such
disparate sample sizes and with such clear differences due to ethnicity, it
would make more sense, as well as avoid possible problems with
heterogeneity of variance, to run separate analyses. This will be particularly
true when we look at repeated-measures designs.

ANOVA

COMPARING MEANS ON ETHNICITY

It is quite apparent in this study that Whites report far fewer symptoms of
depression than do participants from the other two groups. We could follow
up this difference using post hoc multiple comparison procedures, or we
could run simple contrasts. In this case, it probably does not matter which
we use because there are only three possible pairwise comparisons,
resulting in only modest adjustment to the Type I error rate. Using Tukey’s
test or the slightly more powerful Ryan-Einot-Gabriel-Welsch-Q test shows
that all three groups are different from each other. You might legitimately
argue that because there was a significant interaction, these tests should be
done on the simple effects, but the same results would hold in that analysis.
Clearly, the degree to which people report symptoms of depression depends
on their ethnicity.



Effect Sizes

Now that we have shown that there are differences between gender (for
White respondents) and differences due to ethnicity (either collapsing
across gender or analyzing data for each gender separately), it is important
to tell our readers something about the size of these effects. This is where
things get interesting.

When discussing the one-way design, we defined our effect size measure
as

and discussed possible choices for se. In discussing factorial designs, we
will take our independent variables one at a time. When we look at the
effect size for gender, we are faced with two questions. The first concerns
how we calculate the numerator. In our analysis, the only real gender effect
was for White participants, who were by far the most numerous ethnic
group, and it would seem reasonable to calculate the numerator only using
the data from Whites. We would have c1 = 1 and c2 = –1, and the numerator
is simply the difference between the means of White males and White
females. So ψ = 1.48 – 2.71 = –1.23. For the denominator, we would most
likely use the square root of MSerror, but which MSerror? We could use the one
from the overall factorial analysis, but that is based on data that include
responses from ethnic groups not represented in the calculation of the
numerator. Instead, we will take the square root of MSerror from the simple
effect of gender for White participants, which is  Then,

We can conclude that the mean number of symptoms reported by White
females is about of a standard deviation higher than the mean number of
symptoms reported by White males, a notable difference.12

Now let’s look the effect size of ethnicity. Although there was a
statistically significant interaction, we will not do very much injustice to the
effect size by basing it on the main effect. Doing so will allow me to



introduce one of the complicating factors in effect sizes with factorial
designs.

Again, the first problem that we have in calculating an effect size is in
deciding what we want for the numerator. Remember that the numerator (ψ)
is a contrast between two means or sets of means. We do not ask how all
three means differ from each other, but how one mean differs from another
mean. If it is important to look at the mean difference between Whites and
the average of the other two groups, we will use cj = [1, –.5, –.5]. This gives
us

There are several different denominators that we could use in a factorial
design, and the choice hinges on the nature of the independent variables
(Kline, 2004). Kline distinguishes between the factor of interest (in this
case, ethnicity) and off-factors (in this case, gender). If the off-factor varies
naturally in the population, then its variability should contribute to the
denominator—the standardizing term. If the off-factor does not vary
naturally in the population (which often means that it is a manipulated
variable), then it should not contribute to the denominator. In this particular
study, there is a good deal of variability that is “natural” to the setting.
There is random noise (MSerror), there is variability due to differences in
gender, and there is variability due to the Gender × Ethnicity interaction.
All of those logically form a background against which to compare the
mean difference between Whites and non-Whites. Thus, our denominator
would not be the square root of MSerror, which has these effects partialed out,
but

If, instead of gender, our off-factor for this effect had been treatment
(e.g., therapy vs. control), we would have a different situation. Here our



manipulation has introduced differences into the experiment by way of the
treatment variable, leading to an artificial increase in variability. In this
case, it would make sense to remove the treatment and T × G interaction
effects from the denominator by using MSerror from the overall analysis.

Returning to our contrast on White versus non-White with gender as the
off-factor, we would have

The mean symptom level of Whites is about  standard deviations below
the mean of non-Whites. This suggests that ethnicity plays a major role in
depression. (This is a common finding in the literature; see Plant & Sachs-
Ericsson, 2004.)

Power

There is not much that needs to be said about power for factorial designs
beyond what was discussed for the one-way design. When we have two
factors, such as gender and ethnicity, we have two main effects and an
interaction. When we calculate the power of such a design, we need to ask,
“Power for what?” There is the level of power to detect a gender effect, a
different level of power to detect an ethnicity effect, and yet a third level of
power for the interaction. I recommend that you determine which effect(s)
are most important to you and calculate power accordingly. This way, you
can be sure that the effects you care most about have at least a minimally
acceptable degree of power. Alternatively, if you think that all effects are
important, you should try to maximize power for the smallest of the effects.

REPEATED-MEASURES DESIGNS

There are many different kinds of repeatedmeasures designs, and I certainly
cannot cover them all. This section will include observations about the
treatment of missing data, the role of trend analyses, some interesting



findings on power by Bradley and Russell (1998), and a discussion of effect
sizes.

We will take as an example a modification of a study by Evans,
Bullinger, and Hygge (1998). Evans et al. were interested in the effects of
noise exposure on the physiological responses of children. It comes down to
the public policy issue of whether loud noise from airports is a serious
stressor to those who live nearby. The city of Munich recently built a new
airport, and the authors were able to test children before the airport was
built, 6 months after it was opened, and 18 months after it was opened. I
have extended the study by adding fictitious data for 24 months after it was
opened to allow me to better discuss the analysis of trends in the data. The
authors used the same children at each of the four times and had a control
group of children from the same city who lived outside the noise impact
zone. One of their dependent variables was the epinephrine level in these
children. This is a variable that would be expected to increase with
increases in stress.

The data can be found at
www.uvm.edu/~dhowell/AnovaChapter/AirportModified.dat, and the
results follow, where higher scores represent greater stress. It is apparent
from these data that children living near the airport show an increase in
stress over time, whereas those living away from the airport show little, if
any, change.

The analysis of variance follows and confirms the previous statement.

http://www.uvm.edu/~dhowell/AnovaChapter/AirportModified.dat


Although there is a significant group effect and a significant effect due to
time, neither of those deserves much attention in this analysis. It is clear
that the groups were very similar at baseline and only differed later in the
study, making the overall group effect ambiguous. Similarly, it is clear that
stress increased in one group but not in the other. Since main effects are
averaged over the levels of the other variable, whether the resulting average
is significant or not is unimportant. What is important is the significant
interaction, which results from the characteristics just described. From the
table, we can see that the “Partial Eta Squared” for the interaction is .025.
This statistic is referred to as “partial” because group effects and error
associated with between-subject differences have not been included in the
calculation. The partial eta squared is defined here as SSTXG/SSwithin subjects =



519,425.04/21,488,017.10 = .025. This can be interpreted to mean that the
interaction accounts for 2.5% of the within-subject variability. It is difficult
to know whether we should consider .025 to be large. This is a problem
with most r-family measures of effect size.

Comparing Means With a Trend Analysis

The interaction suggests that we should look closely at the simple effects
of time for each group, and the ordered spacing of the time intervals
suggests that we look at polynomial contrasts on the means. Instead of
comparing the means at two different times, as we would with standard
contrasts, it makes more sense to try to understand what is happening across
the four times taken together. On the basis of past experience, we might
expect that for the near group, stress levels will increase over time but
would probably level off eventually. This would suggest both a linear and a
quadratic trend. We would expect no trend in the away group because there
is nothing to cause a change in stress levels. The results of the trend
analysis are shown in the table above.13

As expected, there is a linear trend for children near the airport. The
expected quadratic trend was not significant (p = .089), suggesting that
stress levels have not begun to level off after 24 months—although visual
inspection of the data and the relatively small associated p value suggest
that they may be starting to. What looks like a nearly significant quadratic
trend for the away children probably simply reflects the unexpected bump
in scores at Time 2, and there seems no theoretical reason to make much of
this effect.14



Effect Size

While it would be theoretically possible to calculate an overall d-family
measure of effect size for the linear trend in the near group, I am not sure
what it would mean. What would standardized units in a linear trend
represent? We could calculate an r-family measure of effect size with
polynomials, but it is also difficult to give the reader an intuitive
understanding of what that would mean. Perhaps a better way of calculating
an effect size is to set aside the two intermediate measures and express the
gain (from baseline to 24 months) in terms of the standard deviation at
baseline. This would be

and shows that epinephrine levels have increased to nearly half of a
standard deviation over a 24-month period. This is a substantial increase.

Missing Data

Missing data are not usually a problem for repeated-measures designs in
experimental psychology, but they can be a problem in clinical settings. In
an experimental study, participants often either have no (or very little) data,
in which case they are discarded from the analysis, or they have complete
data, in which case there is no problem. In long-running clinical studies, we
frequently have participants who are missing one or more pieces of data,
and it is often feasible to replace those observations by imputation (see
Howell, 2008).15

Power

We often think of repeated-measures designs as providing improved
statistical power by removing subject differences from the analysis. While
this is generally true, Bradley and Russell (1998) have pointed out an
anomaly that is worth mentioning. It is logical to think that if we simply
collect more data from each participant, we will increase the power of our
design. Similarly, it seems intuitively clear that the higher the correlation



between trials, the less the random error and the more powerful the
analysis. While these conclusions might seem correct, they are in fact
wrong in many cases.

Bradley and Russell (1998) investigated the question of increasing the
number of repeated measures and came to some unexpected conclusions
(see also Overall, 1996). If we think for a moment about a standard factorial
design (such as a 2 × 5)with both variables representing between-subject
differences, the expected mean square for the error term is

Now suppose that we compare those same two treatments across five trials,
where trials is a within-subject variable. Then there are two error terms, the
first testing between-subjects effects and the second testing within-subject
effects. The expected mean squares for error are now those shown below,
where the subscripts b and w stand for between- and within-subject terms.

Note that the error term for the within-subject effect will shrink as ρ
increases, giving us greater power to detect a within-subject difference.
However, the error term for the between effects will increase as ρ increases.
It will also increase as t, the number of trials, increases. Thus, for tests on
the between-subjects effects, power will decrease as we increase the
number of trials—all other things being equal. If our interest were primarily
in our repeated-measures variable, there would not be a problem. However,
the repeated measure, such as trials, is often not of primary concern, or the
effects are so strong that power is not an issue. Generally, it is the between-
subjects measures that we care most about, and there we often do not have
power to spare.
This is not to suggest that repeated-measures designs are not a good choice
—they are often a very good choice. But we need to be judicious in how we
set up our studies and not add additional trials just to be thorough.
McClelland (1997) has made similar suggestions dealing with the design of
between-subjects studies.



HIERARCHICAL LINEAR MODELS

Repeated-measures analysis of variance requires several assumptions to be
valid, and these are discussed in detail in any standard work on the analysis
of variance (e.g., Howell, 2007). The assumption of sphericity assumes a
specific pattern for the variance/covariance matrix, and violations of this
assumption can radically alter the power of the design.16 The analysis also
requires complete data on all trials from all participants or at least
estimation of missing observations by a procedure such as multiple
imputation. Finally, repeated-measures analysis of variance can only handle
certain types of nested designs. In recent years, there has been considerable
work on hierarchical or multilevel linear modeling (HLM), and these
approaches circumvent the limitations of repeated-measures analysis by
allowing missing data, giving the data analyst the option of specifying an
unstructured covariance matrix, and easily handling multiple levels of
nesting. There is, however, a considerable increase in the complexity of the
analysis. Discussion of these models does not fall within the range of this
chapter, but the interested reader is referred to Bryk and Raudenbusch
(1992), Maxwell and Delaney (2004), and Chapter 30 in this volume.

CONCLUSIONS

The analysis of variance is a powerful tool that has served behavioral
scientists well over the years. We know how to calculate power for various
designs, we can derive effect size measures to provide meaningful
interpretation of our results, and we have developed ways to work with
missing observations and heterogeneous variances. However, most
discussions of the analysis of variance focus on the omnibus F test, which
considers all means simultaneously, or on traditional or innovative multiple
comparison procedures focusing on all pairwise comparisons. One purpose
of this chapter was to point out that we will do well to attend clearly and
directly to those effects that we consider most important. That means that
we need to derive our power estimates based on those contrasts rather than
on the omnibus F; that we need to direct our attention to very specific and,



it is hoped, few contrasts; and that we will do well to present effect size
measures that speak to those contrasts.

NOTES

1. Hoenig and Heisey (2001) have criticized post hoc power as not a particularly useful statistic.
Editor’s note: Others have pointed out that post hoc power is important when interpreting null results.

2. The nonsignificant difference might be attributable to the unusually large variance in the PE
condition, but the point about logical and probabilistic rules still holds.

3. Many readers will be more familiar with using integers than with using fractional values for the
coefficients (e.g., 1, 1, –1, –1 instead of .5, .5, –.5, –.5).I use fractional values because they fit nicely
with the following discussion on effect sizes. The results for significance tests are the same
whichever coefficients we use.

4. Both logarithmic and square root transformations fail to reduce the heterogeneity of variance, in
part because the PE group does not contain any unusual outliers. Readers can refer to Chapter 13 on
transformations for more information.

5. A freely available program available at http://www.psycho.uni-
duesseldorf.de/abteilungen/app/gpower3.

6. This is often known as Hedge’s g and is what you obtain from standard formulas for converting
t or F directly to an effect size measure.

7. This approach is closely related to a measure often known as Glass’s Δ.
8. This approach is in line with the suggestion by Kline (2004) that it is appropriate for cases of

heterogeneity of variance.
9. Editor’s note: The reader should refer to Chapter 7 (this volume) on prep as it seems to eliminate

some of these thorny issues when p values are close to .05.
10. An h% trimmed mean has h% of the observations at each end of the distribution removed from

the data. A Winsorized mean or variance is calculated on data for which we have replaced the
trimmed values with the largest or smallest of the remaining values, adjusting the degrees of freedom
for the removed or replaced values.

11. This F is not equal to the squared value of t that we computed earlier (5.2682 = 27.75)
because, although we have not adjusted the means, variability due to ethnicity and the interaction
have been partialed from MSerror. This was not the case with our t test.

12. There are no important differences found for the other ethnic groups, and we would not
calculate effect size measures for them—their differences were so far from statistically significant
that the effect sizes would not have any meaning.

13. For this analysis, I have split the data by group. The standard Greenhouse-Geisser or Huyhn-
Feldt adjustments for violations of the sphericity assumption are very effective for the overall
analysis but do not necessarily apply if we use overall error terms for simple effects or contrasts (see
Howell, 2007).

14. I could easily be faulted for essentially suggesting that a p value of .089 is “borderline
significant” but that a p of .054 is not worth worrying about. My only defense is that there appears to
be something meaningful going on in the near group but not in the away group.

15. Readers can refer to Chapter 15 on missing data for a more thorough discussion of this issue.
16. There are corrections for violations of sphericity, but these are not always applicable for the

problem at hand.

http://www.psycho.uni-duesseldorf.de/abteilungen/app/gpower3
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BINARY LOGISTIC REGRESSION
 

JASON E. KING

egression procedures aid in understanding and testing complex
relationships among variables and in forming predictive equations. Linear
modeling techniques, such as ordinary least squares (OLS) regression, are

appropriate when the predictor (independent) variables are continuously or
categorically scaled and the criterion (response, dependent) variable is
continuously scaled. Discriminant analysis allows prediction of a categorical
criterion when all predictors are continuous and strong assumptions are met.
However, a more intuitively appealing approach is to directly model the
nonlinear relationship using a nonlinear methodology. In fact, discriminant
analysis “is in the process of being replaced in most modern practice by
logistic regression” (Darlington, 1990, p. 458). Logistic regression allows
categorically and continuously scaled variables to predict any categorically
scaled criterion. Applications include predicting or explaining pass/fail in
education, survival/nonsurvival in medicine, or presence/absence of a clinical
disorder in psychology.

Though logistic regression was slow to catch on initially (White, Long,&
Tansey, 1997), the past two decades have seen tremendous growth in its use
within the social sciences. Nevertheless, many social scientists remain
unfamiliar with its workings. One reason is the complexity of the procedure.
Textbooks such as those by Hosmer and Lemeshow (2000) and Kleinbaum
and Klein (2002) are valuable resources but are written at an intermediate
level of difficulty. There is also a general lack of agreement on terminology.

The aim of this chapter is to describe binary logistic regression at an
introductory level with the realization that some important complexities and
nuances will be neglected. Significant attention is given to odds ratios, effect
size measures, and variable selection procedures. Best practices are
emphasized. The chapter by Drs. Anderson and Rutkowski (Chapter 26, this



volume) offers a more advanced treatment of logistic regression, including
prediction to a polytomous criterion.

HEURISTIC DATA SET

Illustrations are made using the Employee data set, which comes bundled
with recent versions of the Statistical Package for the Social Sciences (SPSS)
and can also be freely downloaded at http://support.spss.com. The database
includes measures of employee education level (in years), sex (recoded as 0 =
male, 1 = female), minority status (0 = no, 1 = yes), current salary, previous
experience (in months), case ID, and job category (custodial, clerical,
managerial). The custodial and clerical job categories were combined to form
a dichotomous criterion and recoded as custodial/clerical = 0 and managerial
= 1. Deleting 24 cases with missing values on the experience variable left 450
usable observations, which were the basis of all analyses.

WHY NOT USE LINEAR REGRESSION?

A brief review of the workings of OLS linear regression will lay the
groundwork for explaining logistic regression. In linear regression, one
derives an estimation equation composed of predictors (X variables) that
maximally explain the variation of scores on the criterion (Y variable). The
equation is composed of an intercept/additive constant (a weight) and one or
more slopes/multiplicative constants (b weights), also called unstandardized
regression coefficients. When an error term (e) is included, the equation
perfectly defines the criterion variable:

where k = the number of predictor variables. If the error term is excluded,
scores resulting from the equation produce a synthetic variable composed of
predicted scores or fitted values:

http://support.spss.com/


where the hat (Λ) indicates an estimated or predicted value. The estimated
intercept (â) is the criterion score when all predictors are set to 0. The
estimated b weight (b

�
) is the change in the mean of the criterion probability

distribution for a unit increase on the predictor while holding all other
predictors constant.
The b weights are derived such that the sum of the squared deviations of the
criterion (Y) scores from the predicted (  scores are minimized. This is
equivalent to saying that the (squared) errors are minimized, and hence the
mathematical method of obtaining such a solution is denoted ordinary least
squares estimation. No other solution will produce smaller (squared) errors if
the assumptions of linear regression are met. A standardized weight (beta; )
quantifies the amount that a standardized criterion will change when a
standardized predictor is increased by one unit and all other predictors are
held constant. Larger coefficients indicate stronger predictors in the equation.
Yet because collinearity may exist, one should also interpret structure
coefficients in determining variable importance (Courville & Thompson,
2001; Thompson & Borrello, 1985). If the criterion variable is a dichotomy, a
predicted value is equal to the predicted probability of a criterion value of 1.
In this special case, the OLS regression model is called the linear probability
model.
Among the assumptions required for linear regression, several are of interest
here: (a) The relation between the criterion and each predictor is linear in the
parameters, (b) error variance is constant across levels of each predictor (i.e.,
homoscedasticity), (c) errors are normally distributed, and (d) the criterion is
a random variable. Assumption (a) does not require a linear relationship
between the criterion and each predictor but only linearity in the parameters.
Nonlinear relations can be modeled by transforming (e.g., raising to powers,
multiplying, taking the square root of) the predictors and/or criterion, yet the
parameters themselves (i.e., the a and b weights) cannot be transformed.

Unweighted OLS regression applied to a categorical criterion will
invalidate these assumptions. For example, (d) suggests that Y has a range of
possible values each having an associated probability. If a criterion is
dichotomous, then its relationship with each predictor cannot be made linear
without transforming parameters. Second, a dichotomous criterion will not
yield normally distributed error terms, which can affect statistical
significance tests and confidence intervals. Furthermore, linear regression
assumes that a change in one of the predictors has a constant marginal effect
on the probability of the event occurring. This assumption may be invalidated



because criterion values near the extremes will be weakly related to the
predictor, yet predicted probabilities will not reflect the curvilinear
relationship. To understand this dynamic, consider the relationship between
income level and home ownership. For persons in the top and bottom income
brackets, an increase of $10,000 will have little effect on the probability of
owning a home (i.e., the probabilities will approach 1 and 0, respectively).
The strongest effect will be in the middle of the distribution, such as moving
from the $50,000 to $60,000 income level. A sample drawn from the middle
of the salary distribution will consequently produce a different prediction
equation than one drawn from the tails.

Model A predicts job category (custodial/clerical, managerial) using sex,
minority status, education, and experience (see Appendix A for a list of
illustrative models used in this chapter). The linear regression estimates in
Table 24.1 point to sex, minority status, and education as the most important
predictors in the equation.

Figure 24.1 demonstrates how the qualitative criterion caused failure to
meet the error distributional assumptions.

As another example, in Model B, salary predicts job category and yields
these linear regression estimates: â = –0.45, b

�
salary = 0.000018. The observed

probabilities (equivalently, observed proportions or observed conditional
means) are calculated by taking the mean proportion of cases in which job
category = 1 (managerial) for each salary level represented in the data set.
From Figure 24.2, it is evident that there is a nonlinear relationship between
salary and the observed conditional probabilities.

Table 24.1 Linear Regression Predicting Job Category—Model A



Figure 24.1 Detrended probability plot of residuals from a linear regression of Model A.
Points should cluster above and below the reference line with no discernible
pattern if errors are normally distributed.

A well-fitting model should yield predicted probabilities that are similar to
the observed probabilities. Yet the relationship between salary and predicted
probabilities is linear (see Figure 24.3), unlike the nonlinear relationship
reflected in the observed probabilities. Clearly, the linear probability model
does not accurately model the observed relationship. In addition, probabilities
exceeding the permissible range of 0 to 1 are uninterpretable.



Figure 24.2 Observed probabilities for Model B demonstrating a nonlinear relationship.

WHY NOT USE DISCRIMINANT ANALYSIS?

Discriminant analysis attempts to estimate a linear function that best
discriminates between scores on the criterion (Huberty & Barton, 1989). One
or more canonical discriminant functions are created by linearly combining
the discriminating (predictor) variables to maximally divide the groups (i.e.,
scores on the criterion). As in linear regression, discriminant analysis
employs OLS estimation and makes use of additive and multiplicative
weights in deriving the equation. Yet unlike regression, predicted
probabilities of group membership will always fall within acceptable bounds
(0 to 1).

Among the assumptions required by discriminant analysis are the
following: (a) Each group must be drawn from a population that is
multivariate normal, and (b) population covariance matrices must be equal
for each group (Klecka, 1980). Table 24.2 presents results from a
discriminant analysis applied to Model A. Again, sex, minority status, and
education are the strongest discriminators in the equation, as evidenced by
their relatively large structure coefficients and standardized discriminant



function coefficients. Predicted probabilities for membership in Group 1 vary
from 0.0004 to 0.9973, all within the desirable range.

Assumption (a) may be assessed via scatter-plots and more complex
methods. The assumption cannot hold for minority status and sex because
these qualitative variables are not normally distributed and will not yield
bivariate normal distributions. Thus, a significant limitation of discriminant
analysis is inability to include categorical predictor variables. Though
perhaps overly conservative, Box’s test of equality of covariance matrices
may be used to evaluate assumption (b). Here, the test fails, F(10,100696.7) =
11.389, p < .001. These data appear to invalidate at least two assumptions
required of discriminant analysis.

Figure 24.3 Predicted probabilities from a linear regression of Model B.

Table 24.2 Discriminant Analysis Predicting Job Category—Model A



LOGISTIC REGRESSION

The procedures examined above are subsumed under the general linear
model, which posits that errors are normally distributed and the model is
linear in the parameters. Logistic regression frees up these expectations and is
more robust across varied conditions (for a comparative simulation study, see
Pohar, Blas, & Turk, 2004). Logistic regression falls within the family of
generalized linear models in which “some nonlinear function of the
conditional mean [predicted probability] can be written as a linear function of
the parameters” (Dunteman & Ho, 2006, p. 4). The underlying relationship
between criterion and each predictor is assumed to be nonlinear and
represented by an S-shaped function called a sigmoid. A sigmoid is linear in
the middle and nonlinear at the ends so that the strength of relationship
differs across values of the predictor. Logistic regression does not assume
normally distributed errors but rather a binomial distribution, a more
reasonable expectation given a dichotomous criterion. Of particular benefit is
the ability to easily model both categorical and continuous predictors in the
logistic equation.1 Table 24.3 lists variable scaling requirements for several
widely used statistical procedures.2

There are three approaches from which logistic regression results may be
viewed. These can be thought of as three “worlds,” each having unique
terminology and unique variable transformations applied in defining the
logistic regression equation. In the log-odds world, only the criterion is
transformed; in the odds world, both the criterion and predictors are
transformed; and in the probability world, only the predictors are
transformed. It is important to keep in mind, however, that all three
approaches are equivalent ways of modeling the relationship between



predictors and criterion, varying only in the perspective from which the
variable relationships are viewed.

Table 24.3 Selecting a Statistical Procedure Based on Variable Scaling

The Probability World

The probability world employs this logistic regression equation,

and this estimated prediction equation,

Equation 4 is called the logistic probability model and is analogous to the
linear probability model. A predicted score (here,  rather than  is
equivalent to the probability that group membership equals 1. The left side of
Equation 4 is identical to the linear regression model, but the exponentiated
weights cause the model to be nonlinear in the parameters (for a review of
exponents, see Appendix B). This transformation hinders interpretation
because the strength of the predictive relationship becomes dependent on
which values of the predictor variable are under consideration.

Illustration

To illustrate how logistic regression models the non-constant relationship,
recall that in linear regression, a b weight indicates how much the dependent
variable will change given a one-unit increase on a predictor. The linear
model is additive in the sense that change is constant across the entire range
of scores (Figure 24.3). Using the linear regression estimates for Model B (â



= –0.45,  = 0.000018), suppose that George is earning $35,000 and wants
to know the probability of someone with his salary being in management.
Equation 2 yields a predicted probability for that salary level of  0.185936, a
relatively low probability.3 Kramer’s salary is one dollar higher and yields a 
of 0.185954. The change in predicted probabilities is 0.000018, which
exactly matches the b weight. Similarly, Jerry and Elaine earn $50,000 and
$50,001, respectively, and also have a difference in predicted probabilities of
0.000018. Therefore, the linear regression model produces an additive,
constant rate of change across values of the predictor (see Table 24.4).4

Yet under the logistic probability model, because the slope parameters
form a ratio of exponentiated terms, the amount that Y increases for a unit
increase in X will vary depending on where the X value falls along the
function. The expected increase is neither additive nor multiplicative but
interactive depending on the values of the predictor. Consequently, b cannot
be interpreted as a constant change expected of the criterion. Instead, the
functional relationship must be evaluated across a range of values to
understand the impact of the predictors on the criterion.

A logistic regression applied to Model B yields the following logistic
coefficients: â = –11.26,  = 0.00024. The predicted probability for a
person at George’s salary level is calculated from Equation 4 as  = exp(–
11.26 + (0.000239 × 35,000))/(1 + exp(–11.26 + (0.000239 × 35,000))) =
0.052334. The  for Kramer’s salary is 0.052346. The one-unit difference
between their salaries is associated with an increased predicted probability of
0.000012. On the other hand, a one-unit change between Jerry and Elaine’s
salary levels yields an increase of 0.000053. Neither matches the b weight of
0.00024. Table 24.5 lists changes in predictive probabilities across several
salary levels.

Table 24.4 Additive Change in Predicted Probabilities for the Linear Probability Model—
Model B



Figure 24.4 plots the logistic predicted probabilities with the predictor. All
probabilities now fall within the permissible range of 0 to 1. The changes in
predictive probabilities in the tail of the function are smaller than those near
the middle because a weaker relationship is modeled for that portion of the
curve.

To summarize, logistic regression models a nonlinear relationship between
the predictors and the dichotomous criterion. Even if linear regression
produces similar parameter estimates, inaccurate standard errors may affect
results. In the logistic probability model, changes in predicted probability are
conditioned on the values of the predictors, with a weaker predictive
relationship modeled for the tails of the distribution.

Table 24.5 Interactive Change in Predicted Probabilities for the Logistic Probability Model
—Model B



Figure 24.4 Predicted probabilities from a logistic regression of Model B

The Odds World

A second interpretive framework is the odds world. Instead of
transforming only the predictors, here the criterion is modified as well. This
is needed because assigning a conceptual meaning to the logistic regression
coefficients in the probability world is all but impossible due to the ratio of
exponentiated terms in Equation 4. The equation is rearranged such that the
right side becomes only a single exponentiated term, thereby causing the left
side of the equation to form a ratio of two probabilities, otherwise known as
an odds:

This is termed the logistic odds model. We will come back to interpreting
the equation after a brief discussion of odds.

Odds



Many social scientists are initially uncomfortable in this world due to
limited experience with odds. A probability is the chance or likelihood that
something has occurred or will occur, while the odds are equivalent to the
ratio of two probabilities, namely, the probability that something occurs
divided by the probability that it does not occur.5 The following equalities
allow conversion between odds and probabilities: prob = odds/(1 + odds);
odds = prob/(1 – prob). Unlike probabilities, odds can range from 0 to
infinity. When odds are greater than 1, the event is more likely to occur than
not. When odds are between 0 and , the event is less likely to occur. When
the probability of occurrence equals the probability of nonoccurrence, the
condition is termed even odds.

Suppose it is known that the probability of a filmmaker releasing another
Harry Potter movie is 0.80. We could say that there is an 80% likelihood
(i.e., probability) of the event, and the probability of the occurrence is four
times greater than the probability of nonoccurrence. The odds of the event are
equivalently 4 parts (80%) to 1 part (20%) = “4 to 1” = 0.80/0.20 = 4/1 = 4.
The reverse condition can also be predicted. The probability of NOT making
the movie is 1 – 0.80 = 0.20, with odds calculated as 0.20/0.80 = “1 to 4” =
1/4 = 0.25. See Table 24.6 for additional examples.

Table 24.6 Calculation and Interpretation of Odds

Odds Ratio

Although odds are calculated by dividing two probabilities, an odds can be
divided by another odds to form an odds ratio (OR). This descriptive statistic
is especially useful for comparing groups. When the odds for Group 1 is
divided by the odds for Group 2, an odds ratio greater than 1 indicates a



larger odds associated with Group 1, and conversely. A simple formula that
expresses the OR as a percentage change in odds aids in interpretation:

An OR of 1.5 is interpreted as follows: The odds for the event or group in the
numerator are 100(1.5 – 1) = 50% larger than the odds for the event or group
in the denominator. Odds ratios of 2, 0.5, and 1 indicate, respectively, that the
odds of the group in the numerator are 100% larger (doubled), 50% smaller
(halved), and neither larger nor smaller than the odds of the group in the
denominator.

Say we wish to compare the odds of two movie sequels being produced.
Using the scenario described earlier in which the odds of another Harry
Potter production are 4, assume it is also known that there is only a 0.33
probability of production of another Rocky movie, yielding an odds for this
occurrence of 0.5. Dividing the odds of 4 by the odds of 0.5 yields an OR of
8 having this interpretation: The odds of a Harry Potter sequel are eight
times as large as the odds of a Rocky sequel (see Table 24.7).

The odds ratio has several desirable properties as a measure of association.
First, whether an odds ratio is greater than or less than 1 can be thought of as
its “sign” because this value separates increasing from decreasing odds.
Second, shifts in sample size do not affect its value. Morgan and Teachman
(1988) list additional properties.

It is important to understand that the OR does not quantify the increase in
the probability associated with an event or group (Zhang & Yu, 1998). Odds
ratios are often misinterpreted such that an OR of 10 is treated as a 10-point
increase in likelihood or probability. Yet the odds ratio says very little about
the probabilities underlying the odds estimates. Various probabilities can be
combined into odds to yield equivalent odds ratios. If the probabilities
associated with the Harry Potter and Rocky movies were reduced to 0.40 and
0.08, respectively, the OR would still equal 8.

Nor does an odds ratio indicate absolute strength or weakness. Suppose
that we wished to compare the odds of boys eating Play-Doh to the odds of
girls eating Play-Doh. Assume that an odds ratio of 3 is found. The result
sounds impressive in that the odds of boys eating Play-Doh are three times as
high as those of girls, yet less so if it is discovered that the odds for each
group were very low to begin with, only 0.09 and 0.03, respectively. In
absolute terms, the odds do not differ much between the groups.



Table 24.7 Calculation and Interpretation of Odds Ratio

Interpreting Change in Odds

Coming back to the logistic odds model, it is instructive to rewrite
Equation 5 as

A property of this model is that a one-unit change in X, while holding all
other predictors constant, multiplies the odds (i.e., the criterion) by exp( ).
Thus,

Equation 8a can then be expressed as a ratio of two odds:

It is now clear that exp( ) can be interpreted as an odds ratio estimating the
multiplicative change required to move from odds1 to odds2, given a one-unit
increase on X.6 Consequently, the logistic odds model is said to be
“multiplicative in the odds.” Like the logistic probability model, there is a
nonlinear relationship between the criterion (i.e., the odds) and the predictor,
yet the rate of change is multiplicative and constant. This steady rate of
change allows for easier interpretation of parameters.

Illustration With a Continuous Predictor



To illustrate the multiplicative relationship, assume that a single predictor
model yields x = 0.6932. This number is easy to work with because
exp(0.6932) = 2. Assume also that X and Y are standardized so that the a
weight can be safely ignored in Equation 7 because exp(0) = 1. If X = 0, the
odds will be exp(0.6932 × 0) = 1, meaning that there is an “even” chance of
the criterion taking the value of 1. The predictive probability is calculated as
exp(0)/(1 + exp(0)) = 0.5 and is congruent with that interpretation. Now if X
is increased to 1, the odds double to become exp(0.6932 × 1) = 2, yet the
probability increases only to 0.67. So the odds increase multiplicatively per
unit increase in X but not the predicted probabilities.

Taking a slightly more complex example, recall that Model B yielded the
following logistic regression coefficients: â = –11.255,  = 0.00024. The
estimated odds ratio is  = exp(0.00024) = 1.00024.7 From Equation 6, this
value is associated with a percentage increase of 100(1.00024 – 1) = 0.024.
So we expect that the predicted odds of being a manager will increase by a
multiplicative constant of 0.024% with each one-dollar increase in salary. To
verify, we will first determine the predicted odds of holding a management
position for a person at George’s salary level of $35,000. Applying Equation
7, we obtain an odds of exp(–11.26) × exp(0.000239 × 35,000) = 0.055224.
Kramer’s one-dollar higher salary yields an odds of 0.055238. We can now
use Equation 8a to demonstrate that a one-dollar increase in salary raises the
odds by exp(b). Multiplying George’s estimated odds of 0.055224 by the
exponentiated b value of 1.00024 yields Kramer’s odds of 0.055238.

The formula exp(cb) is useful in computing change in odds in increments
other than a single unit for continuous predictors. For example, a $1,000
change in salary would be associated with a 27% increase in odds:  =
exp(1000 × 0. 00024) = 1.2697 (see Table 24.8). Figure 24.5 plots predicted
odds against a subset of salary levels to further illustrate the multiplicative
relationship.



Figure 24.5 Predicted odds for Model B calculated for salary levels between $30,000 and
$50,000.

Table 24.8 Change in Logistic Regression Predicted Probabilities, Odds, and Logits

Illustration With a Dichotomous Predictor

The odds model is particularly useful for interpreting a dichotomous
predictor.8 Model C predicts job category = 1 using sex and produces the
following logistic regression results: â = –0.91,  = –1.99,  = 0.14, p <
.001. Applying Equation 6 leads to the conclusion that a one-unit change on
the predictor from male (0) to female (1) reflects an 86% decrease in the odds



of holding a management position. Had our statistical software predicted a
criterion score of 0, the estimated odds ratio would have been 7.32 and
interpreted as follows: The odds of a male holding a management position are
632% as large as the odds of a female doing so. These are two equivalent
ways of describing the same relationship. In interpreting odds ratios, a
researcher must be aware of the scale of the predictor as well as the value of
the criterion modeled in the software.

Illustration With Multiple Predictors

Table 24.9 presents logistic regression results for Model A. When
modeling multiple predictors, neither unstandardized logistic coefficients nor
odds ratios should be used to directly compare the importance of variables in
the equation unless the units of measurement are comparable. Only
standardized coefficients and statistical significance tests should be used for
this purpose (see discussion below). Furthermore, the odds ratios of greatest
magnitude will not necessarily be associated with the smallest p values (e.g.,
in Table 24.9 the reciprocal of the odds ratio for minority status [11.49] is
larger than the odds ratio for education [5.88]).

Nevertheless, in comparison to unstandardized coefficients, odds ratios
offer a more intuitive and practical understanding of the marginal effect of
each predictor on the criterion. Consider the odds ratio interpretations for sex,
minority, and experience:

(a) In the previous section, we noticed a large and statistically significant
effect for sex on the odds of holding a management position in Model C
But with the addition of other predictors in Model A, the odds ratio for
sex drops to 0.45 and is no longer statistically significant. This indicates
that sex is not strongly related to the odds of holding a management
position after controlling for the other variables. The odds ratio is
interpreted as follows: The odds of females holding management
positions are about half as large (–45%) as the odds of males doing so.

(b) Minority is a categorical variable that produced a statistically significant
coefficient in the equation. Its odds ratio is interpreted as follows: The
odds of minorities holding management positions are 93% lower than
the odds of nonminorities doing so.

(c) Previous experience is a continuously scaled variable. We can interpret
its odds ratio of 1.002 to mean the following: While holding all other



variables constant, every 1-month increase in experience is associated
with a trivial 0.2% increase in the odds of holding a management
position.

Although one cannot strictly compare odds ratios across variables, it is
possible to roughly gauge relative magnitude by making comparisons in
terms of the values needed to see equivalent effects on the criterion variable.
For example, we know that the odds of males being in management is 124%
greater than those of females and that a 0.2% increase in predicted odds is
associated with every 1 month gained in experience. Dividing 124 by 0.2
allows us to determine that an increase of approximately 620 months (52
years) of experience is needed to equal the difference in predicted odds
observed for males over females. Such a comparison sheds light on the
relative magnitude of each variable’s effect. Similar comparisons could be
applied to the other predictors.

Table 24.9 Logistic Regression Predicting Job Category—Model A

The Log-Odds World

In the log-odds or logit world, the predictive relationship involving the X
variables is linear:

Although the right side of the equation is linear with constant, additive
effects, the criterion values are no longer probabilities or odds but the natural
log of odds. Log-odds are equivalently termed logits. Though not technically



identical, logistic regression is often referred to as “logit modeling.” Odds
and odds ratios can range from 0 to positive infinity and are asymmetric
around 1. By taking the log of the odds, the floor restriction is removed so
that logits can vary from negative to positive infinity. Because all three
“worlds” are interrelated, it is useful to remember that a logit of 0, an odds of
1, and a probability of 0.05 are equivalent quantities.

Illustration

Returning to Model B with salary as the predictor, the logistic parameter
estimates (â = –11.26,  = 0.00024) can now be interpreted as in linear
regression, with logits serving as the criterion variable; b is the amount the
logit changes for a one-unit increase on the predictor. In this case, a one-
dollar increase in salary produces a 0.00024 increase in the log-odds of job
category.

Equation 9 gives the predicted logit for George’s salary level as –11.26 +
0.00024(35,000) = –2.896348. The logit for Kramer’s salary level is –
2.896109. The difference between their logits (i.e., 0.00024) exactly matches
the value of b, as in OLS regression. It is evident from Figure 24.6 and
Table 24.8 that changes in logits are linear, unlike changes in probabilities
and odds.

Yet the transformed criterion is difficult to interpret. What does it mean to
say that the log-odds of George being a manager is –2.896? What
interpretation can be given to the 0.00024 change in log-odds? Due to
unfamiliarity with the log-odds metric, researchers typically prefer to
interpret the probability and odds models.

STATISTICAL COMPUTING SOFTWARE

Most of the popular software packages now contain at least one logistic
regression routine. Both SPSS 13.0 and SAS 9.1 allow “point-and-click”
access to most options. Keep in mind the following issues when using these
packages. SAS code models a criterion value of 0 by default, whereas SPSS
models the largest criterion value. This will occasion some estimates to
diverge. One should always run descriptive statistics to verify the direction of
relationships indicated by the sign of the b weights and to ensure proper



interpretation of the odds ratio estimates. Second, when using a categorical
predictor, the SAS CLASS subcommand applies design coding (i.e., values of
1 and –1) in transforming the variable, which will generate different
coefficients, standard errors, and Wald statistics than will dummy coding.
The SPSS CATEGORICAL subcommand assigns 0 to the largest value on
the predictor by default (i.e., the “Last” category is set as the referent in
defining contrasts). So a 0/1 dichotomy is essentially transformed into a 1/0
dichotomy. This transformation will affect the coefficient for the constant
term and can affect main effects in an interaction model. The interaction
effect will be correctly estimated, but the sign of the coefficient will depend
on which value of the predictor is modeled. To avoid confusion, the safest
course is always to set the contrast reference category to “First.” If one does
not have access to SAS or SPSS, a free online calculator for computing
logistic regression estimates is available at http://statpages.org/logistic.html
(last accessed June 16, 2007).

Model Building

Data modeling is a complex process that entails assessing the fit of sample
data to a theoretically derived model or evaluating multiple competing
models. Modeling may aim to identify predictors that best explain the
criterion or that most accurately predict the criterion, with the ultimate goal
of finding a parsimonious model that fits the data well and makes substantive
sense. After establishing a candidate model, it is often informative to add
back in excluded variables one by one and reassess model fit. This process
aids in identifying variables that act only in combination with other variables
(e.g., suppressors). Hosmer and Lemeshow (2000) present a logistic
modeling approach that is both systematic and relatively comprehensive.

http://statpages.org/logistic.html


Figure 24.6 Predicted log-odds for Model B.

The software packages deluge the researcher with tests and indices for
comparing logistic models. We will notice only a few of the more useful
measures, including the likelihood ratio test, the Wald test, Hosmer and
Lemeshow’s goodness-of-fit test, and various measures of association,
keeping in mind that one should never base decisions entirely on statistical
significance tests (Thompson, 2006a; Ziliak & McCloskey, 2004).

Assessing the Full Model
Maximum Likelihood Estimation

Researchers typically use a maximum likelihood algorithm to estimate
logistic parameters (for details, see Neter, Kutner, Nachtsheim, &
Wasserman, 1996). Contrary to linear regression, in which predicted scores (

) and observed scores (Y) are compared in a squared metric (i.e., sum of
squares), logistic regression compares predicted scores ( ) and observed
probabilities (Y) using a log-likelihood (LL) function:



Maximum likelihood procedures are iterative in that various a and b
weights are tried until a best-fitting solution is found, one that maximizes the
log-likelihood function. A disadvantage of iterative procedures, and thereby
of logistic regression, is the possibility that the solution will not converge on
a best estimate. For statistical significance testing, it is necessary to multiply
the log likelihood by –2, denoted –2LL. Table 24.10 illustrates calculation of
a log likelihood for Model B using the final 13 observations in the Employee
data set (i.e., ID numbers 462–474).

Likelihood Ratio Test

The first step in modeling is to determine whether a relationship exists
between the criterion and predictor variables. In linear regression, three sum
of squares (SS) estimates are used in making model comparisons. SSTotal

quantifies the total variability in the data set, SSRegression the variability
attributable to the model, and SSError the variability not explained by the
model. Each component has an analogous log likelihood in logistic
regression (see Table 24.11).

Table 24.10 Calculation of Log Likelihood Using the Final 13 Observations in the Employee
Data Set—Model B



Analogous to SSTotal, D0 is computed as –2 times the log likelihood of an
intercept-only model (LLIntercept). The zero subscript indicates that no
predictors are included in this null/baseline model. Model A produces a D0 of
433.22 (see Table 24.9).

Analogous to SSError, DM is computed as –2 times the log likelihood of the
full model. Though some computing packages treat DM as having a known
distribution and report an associated p value, DM is not necessarily chi-square
distributed and generally should not be tested for significance (Katsaragakis,
Koukouvinos, Stylianou, & Theodoraki, 2005; Menard, 2002; Simonoff,
1998).9 The DM for Model A is 165.89.

To quantify the extent to which inclusion of the set of predictors improves
model fit, DM is subtracted from D0 and multiplied by –2. This holds
similarities to SSRegression. Essentially, we are asking how much the predictors
reduce unexplained variability in the criterion, with a better fitting model
yielding a greater reduction in D0. The resulting difference is variously
referred to as model chi-square, improvement chi-square, G, deviance
difference, and likelihood ratio statistic.10 G follows a chi-square distribution
with p degrees of freedom, where p = the number of predictors in the model,
and can be tested for significance. This likelihood ratio test is equivalent to
the overall model F test in linear regression in which the null hypothesis
states that b1 = b2 = … = bp, where p equals the number of predictors in the
full model. Applying the likelihood ratio test to Model A produces the
following results: G(4) = 433.22 – 165.89 = 267.33,p < .001. We conclude that
the full model containing all predictors improves on the intercept-only model.

More broadly, the likelihood ratio test allows comparisons between any
two log likelihoods if the models are nested. Nesting implies that all
parameters in the smaller model are found in the larger model. For example,
an intercept-only model is nested within a larger model containing the
intercept, variable X, and variable Z. A model containing X and Z is nested
within a model containing X, Z, and the X × Z interaction. In this case, the G
statistic would be calculated as (–2LLLarger model)–(–2LLSmaller model)and tested
with degrees of freedom equal to the difference in degrees of freedom
between the two models.

Table 24.11 Analogous Quantities in Linear Regression and Logistic Regression



NOTE: LLIntercept = log likelihood of the intercept model. LLModel = log likelihood of the full model.

Goodness of Fit

Another set of measures that should inform modeling decisions are
goodness-of-fit tests. These tests appraise the difference between pairs of
observed and predicted values in an absolute sense, not in comparison to
predicted values from another model as with the likelihood ratio test. A well-
fitting model is suggested when the contribution from each pair of differences
is small and not systematically related to the error variance. Goodness-of-fit
tests assess overall model fit, while diagnostics (discussed later) are
analogous measures at the individual case level.

One of the most available and widely reported indices is a test proposed by
Hosmer and Lemeshow (1980) that entails rank ordering the observations by
predicted probability and then splitting them into g groups based on the
percentiles associated with the ordered values. The observed probabilities are
then compared with the predicted probabilities falling into each group via the
Hosmer-Lemeshow goodness-of-fit statistic, Ĉ. Ĉ is obtained by calculating
the Pearson chi-square statistic on the frequencies of observed and predicted
values in each of the g groups. The statistic is approximately chi-square
distributed with g – 2 degrees of freedom. A small p value indicates that the
model is inadequate. Because 10 groups are typically formed, it is sometimes
denoted the “deciles of risk” test. The authors of the test suggest a minimum
sample size of n = 400 to achieve acceptable probability values.

The Hosmer-Lemeshow test is based on the asymptotic assumption that the
expected cell frequencies are large. If some of the cells contain small
frequencies, one may combine adjacent cells and reduce the number of
groups. Fewer groups means fewer degrees of freedom and less statistical
power. This should be considered before endorsing a model that passes the
test based on a limited number of groups (e.g., fewer than 6; Hosmer &
Lemeshow, 2000). Applying the test to Model A yields the following results: 



 = 74.88, p < .001. The significant p value suggests lack of fit. In
examining the contingency table used to calculate  (see Figure 24.7), it is
observed that several cells have expected frequencies less than 1. Combining
the first five rows to form a total of five groups yields the following results: 

 = 10.83, p = .013. Even with lessened power, the test suggests
unacceptable fit.

The Hosmer-Lemeshow test is appropriate for models in which one or
more predictors are continuously scaled. The test is not valid for saturated
models in which there are no degrees of freedom available for testing. Due to
lack of power and dependence on arbitrarily defined groupings of predicted
probabilities, newly developed alternatives to this index may be preferred
(Hosmer, Hosmer, le Cessie, & Lemeshow, 1997; Lin, Wei, & Ying, 2002;
Verdes & Rudas, 2002). Tang (2001) has proposed an exact goodness-of-fit
test to minimize reliance on asymptotic dynamics (cf. Mehta & Patel, 1995).
These newer measures are currently unavailable in most computing packages,
though other overall model tests such as the Wald test and the score test are
available. Indices such as the Akaike information criterion (AIC) are useful
when comparing nonnested models (e.g., comparing Model X with Model Z).

Figure 24.7 Contingency table for the Hosmer-Lemeshow goodness-of-fit test applied to
Model A.

Strength of Association

Effect sizes should always be reported when possible (Thompson, 2006b;
Vacha-Haase, Nilsson, Reetz, Lance, & Thompson, 2000). There exist a large



number of logistic regression R2-type measures, with two accessible through
SAS and SPSS. The maximum likelihood R2 (  aka Cox & Snell R2,
generalized R2, Maddala R2), which SAS labels “R-Square,” can be
interpreted as a measure of information gained due to inclusion of the
predictors in comparison to an intercept-only model. The Nagelkerke
adjusted R2 (  aka Craig & Uhler’s R2, Max-rescaled R2) corrects  to
equal 1 under perfect prediction. Both are limited by their “lack of a
reasonable interpretation” (Shtatland, Kleinman, & Cain, 2002, p. 2).

Of greater benefit would be an index analogous to the linear regression R2.
One option is to apply the ordinary linear regression R2 to predicted
probabilities saved from a logistic regression. The squared correlation
between the criterion scores and predicted probabilities reflects the reduction
in sum of squares (R2; aka Efron’s R2, sum of squares R2). Though the
measure can only be used with a dichotomous criterion, R2 is intuitively
appealing because it is bounded between 0 and 1, allows comparisons
between logistic regression models and linear models, and has a familiar
interpretation (Menard, 2002).

The McFadden or likelihood ratio R2 ( ; aka deviance R2, entropy R2) is
closely related to the linear regression R2 when calculated using this formula:
1 – SSError/SSTotal. In view of the analogies between sums of squares quantities
and log likelihoods, the parallel is evident:

Regrettably, neither the SPSS BINARY routine nor SAS calculates the
McFadden measure. Macros are available (e.g., Mittlböck & Schemper,
1999), but  is easily calculated from the values of DM and D0 from the
logistic output. This index measures the reduction in maximized log
likelihood, or the percentage that the fitted model increases the log likelihood
in comparison to the intercept model. Simulations indicate that  typically
runs lower than R2 (Mittlböck & Schemper, 1996). Parsimony-adjusted R2

measures are available (Liao & McGee, 2003), with Shtatland, Moore, and
Barton (2000) offering a corrective to :



where k equals the number of predictors in the full model. (Note that the
equation requires dividing the outputted –2LL values by –2.) Strengths of 

 include the following: (a) a correction for sample size bias, (b) a range
between 0 and 1 (usually), (c) an interpretation analogous to the linear
regression-corrected R2, and (d) application to both nested and nonnested
models.

No consensus has emerged as to an optimal R2 measure, and some
discourage reporting any value (Hosmer & Lemeshow, 2000). The two
McFadden measures are attractive due to their straightforward interpretation
and relationship to linear regression measures of association. Model A yields
the following effect sizes:  = 1 – (165.89 / 433.22) = 0.62,  = 0.60 (with
k = 4 and n = 450). Thus, the four predictors explain about 60% of the total
variance. For comparison, squaring the correlation between  and Y values
yields R2 = 0.67, while the  and  values obtained from the computer
output are 0.45 and 0.73, respectively.

Classification of Cases

Another approach to appraising model fit is to measure the accuracy of
classifying each case into one of two groups based on predicted criterion
scores. The process is simple: (a) Select a criterion cutoff value, (b) place
cases with predicted probabilities above the cutoff value into one group and
those below in another group, and (c) report the percentage of cases correctly
classified in comparison to observed scores on the criterion variable. The
accuracy of classification is dependent on the cutoff value. Typically, 0.5 is
the default cut point, but other values may be selected if the costs of
mistakenly predicting a case are not equivalent for both categories (e.g., in
predicting pass/fail, it may be more detrimental to incorrectly classify
individuals as having failed when they really passed).



Figure 24.8 Classification table for Model A.

Predicted probabilities obtained from Model A result in 94.0% of cases
correctly classified (see Figure 24.8). Comparatively, we could correctly
predict 81.3% of the cases by merely assuming that every case falls into the
custodial/clerical category. The question then arises as to the extent to which
the model has improved classification. There are a number of tests and
measures of association that assist in answering this question (see Hosmer &
Lemeshow, 2000; Menard, 2002).

A weakness of classification procedures is the discarding of reliable score
variance as a result of dichotomizing the predictor (Taylor, West, & Aiken,
2006). It is possible for a strong relationship to exist between predictors and
criterion yet produce predicted values that do not fall cleanly into two groups.
In sum, unless the stated goal of the study is classification, these indices
generally should not be reported.

Assessing the Contribution of Individual Predictors

Wald Test

The full-model likelihood ratio test allows us to determine whether one or
more b weights in the equation differ significantly from zero. A logical next
step is to examine each coefficient individually. Both the Wald and score tests
have univariable analogs. A Wald statistic for testing the statistical
significance of a b weight is found by dividing the coefficient by its standard
error and then squaring the result. The variate will follow a chi-square



distribution with 1 df. This statistic is analogous to the t test in linear
regression. A Wald test is calculated for each predictor in the model.

To illustrate, consider Model D predicting job category by experience and
yielding the following parameter estimates: â = –1.19,  = –0.00309; 
= 0.001384;  = 0.997. The Wald statistic Exper for  is calculated as (–
0.00309/0.001384)2 =Exper-4.98, with an associated p value of .026. We
reject the null hypothesis of  = 0 and conclude that the log likelihood of
being a manager is reduced with increased experience. This seems plausible
because those individuals having higher levels of education are likely to have
spent more time in school and less time acquiring work experience.

Likelihood Ratio Test

Because the Wald test loses power under some conditions, a preferred
approach is to compute a likelihood ratio test for each parameter of interest.
This entails calculating logistic regression results for models with and
without the predictor of interest and then testing the difference in chi-square
values. An alternative to this time-intensive process is to use Wald tests in
preliminary model building and then move to likelihood ratio tests when
refining models.
Applying a likelihood ratio test to Model D yields chi-square values of  =
433.22 and  = 427.53. The resultant difference of 5.69, tested with 1 df
because a single predictor is under consideration, yields a p value of .017.
Here, both the Wald test and likelihood ratio test yield significant results, but
that will not always be the case. The likelihood ratio test is versatile and can
be used to test various effects within nested models, including variable
transformations and interaction effects.

Confidence Intervals

The formula for calculating a confidence interval (CI) around a logistic
coefficient is

where z1–α/2 is the upper 100(1 – α/2)% point from the z distribution. If a
given interval spans 1, the hypothesis of no relation between predictor and



criterion cannot be rejected. We obtain a 95% confidence interval for the
education variable in Model A of 1.77 ± (1.96 × 0.28) and are thus 95%
confident that the change in logits for a 1-year increase in education is
between 1.23 and 2.31. Upon request, SAS and SPSS will calculate
confidence intervals around odds ratio estimates as well.

Standardized Coefficients

Though some researchers discourage the use of standardized coefficients
(Darlington, 1990) or warn against interpreting them as indicators of variable
importance (Neter et al., 1996; Pedhazur, 1997), the most recent publication
manual of the American Psychological Association (2001) encourages their
routine use and reporting. They are especially useful when variables are
measured on an arbitrary scale (e.g., Likert-type ratings). Although things
become appreciably more complex, it is possible to obtain standardized
coefficients in logistic regression (Long, 1997). SAS prints a partial or
semistandardized coefficient that is not without limitations (Kaufman, 1996).
I have elsewhere (King, 2007) described standardized coefficients in detail
and provided computer capabilities for a useful coefficient developed by
Kaufman (1996).

Assessing the Contribution of Individual Cases

Upon request, both SPSS and SAS output casewise diagnostic criteria such
as standardized residuals, leverage, Cook’s distance, and dfbeta. These
indices aid the researcher in identifying observations that act as outliers or
strongly influence the prediction equation. Most of the indices function in a
manner analogous to their application within linear regression.

Additional Issues in Modeling
Model Selection Procedures

Theory and application should guide variable selection. Yet in some
exploratory studies, a strong theoretical base is lacking. In other studies,
prediction is of sole concern irrespective of theoretical underpinnings. In
these cases, statistical algorithms that assist in reducing a large number of
predictors to one or more sets of “best” predictors may prove useful.



Stepwise Logistic Regression. A family of computer-automated statistical
algorithms known as stepwise logistic regression procedures ostensibly
selects for the user an optimal set of predictors. There are several variations
on the algorithm. Forward-variable selection enters the predictors one by one
into an empty regression equation based on an entry criterion (e.g.,p < .05).
Backward selection begins with a full or saturated model that includes all
predictors and then eliminates them one at a time based on an exclusion
criterion. Stepwise selection combines forward and backward procedures by
entering or excluding variables according to specified criteria. SAS and SPSS
contain forward and backward selection algorithms, with SAS additionally
permitting a stepwise procedure.

Though perhaps useful in rare instances, stepwise methods are not
recommended for several reasons (Huberty, 1989; Thompson, 2001). Most
important, stepwise methods ignore the cumulative effect of variable
combinations. Adding the “best” predictor followed by the “second best” and
the “third best” is not equivalent to adding all three variables simultaneously
to determine their joint effects. As with adolescents, variables often behave
differently when acting in concert!

Best Subsets Logistic Regression. A preferable approach is to use a best
subsets or all possible regressions routine to obtain comparative indices for
every combination of predictor variables. Unlike stepwise methods, best
subsets allows the researcher to thoughtfully appraise cost and benefit
attendant to various models. For example, a researcher comparing four- and
five-variable models may decide that a modest increase in predictive power is
not worth the trouble of attaining scores on a difficult-to-measure fifth
variable.

Best-subsets procedures are currently unavailable in SPSS. SAS includes a
best-subsets routine within PROC LOGISTIC that outputs two comparative
indices: the maximum likelihood R2 and the relatively unfamiliar score
statistic. A more useful and familiar index for evaluating models of differing
size is Mallows’s Cp (Mallows, 1973). This measure of predictive squared
error penalizes less parsimonious models. Smaller values of Cp are preferred,
with adequate models expected to produce a Cp roughly equal to p + 1, where
p = the number of predictors in the fitted model. Although Cp is unavailable
in PROC LOGISTIC, the SAS linear regression routine (PROC REG)
permits the calculation. Hosmer, Jovanovic, and Lemeshow (1989)



demonstrated how logistic estimates can be obtained from a linear regression
routine through transformations and case weights. Appendix C presents the
relevant SAS code (for a fuller description, see King, 2003). A second option
is to transform the score statistic estimated for each model into Mallows’s Cp

(see Hosmer & Lemeshow, 2000, p. 134).

Illustration. For Model A, the forward-selection procedures in SPSS and SAS
both settled on an “optimal” model consisting of minority and education. The
SAS backward and stepwise procedures chose the same model, while SPSS
backward elimination chose minority, education, and sex. The latter
discrepancy is due to varying default p values used for variable removal (i.e.,
0.05 in SAS, 0.10 in SPSS). This illustrates another problem with stepwise
methods: Results vary based on the probability settings selected.

Table 24.12 depicts results from a best-subsets logistic regression. In
addition to Cp, SAS outputs R2 values in the modified PROCp REG
procedure. These R2 values are invalid and for heuristic purposes have been
replaced in the table with the adjusted McFadden index and the ordinary R2

(i.e., the squared correlation between the criterion and the logistic-predicted
probabilities). To obtain these two indices, it was necessary to test and run all
possible models separately. Of course, one would ordinarily select candidate
models based on the Cp values.

According to model fit and parsimony, the model consisting of education is
optimal (C = –0.34). Here, one variable strongly predicts the criterion with
weaker contributions from the remaining variables. Based on theoretical or
predictive reasons, however, the researcher may see value in a model having
more parameters (i.e., predictors) that still produces an acceptable Cp. Several
models in Table 24.12 fit those criteria. The point is that in using a best-
subsets procedure, the researcher is not forced to blindly accept a single
model determined by a stepwise algorithm; she or he may allow theory to
inform decision making.

Table 24.12 Summary Statistics for a Best Subsets Logistic Regression—Model A



NOTE:  = Adjusted McFadden R2. R2 = ordinary R2. Cp = Mallows’s C.

Because there are 2 Λ p – 1 (where p = number of predictors) possible
variable combinations, it may not be practical to examine every model given
a very large number of predictors. An alternative offered by Shtatland, Cain,
and Barton (2001) combines stepwise and best-subsets procedures in
conjunction with the AIC in selecting a range of viable models (Shtatland,
Kleinman, & Cain, 2003, extend this approach to ).

Confounding and Interaction Effects

Confounding and interaction effects can greatly complicate model
interpretation and are often present whether realized or not (for a full
discussion, see Kleinbaum & Klein, 2002; Rice, 1994). When the relationship
between X and Y is interpreted differently due to inclusion of Z in the model,
Z is said to be a confounder. A confounder must be controlled for before
assessing other predictive relationships. Some suggest that this be done by
inclusion of every imaginable confounder, but such an approach can lead to
increased standard errors and biased estimates of effect (Sonis, 1998).
Identification of confounding in logistic regression should proceed by
selecting a potential confounder based on theory and then comparing the odds
ratios estimated for the other predictors when modeled with and without the



variable in question. Large changes in odds ratios indicate strong
confounding. Commonly used rules of thumb are based on the percentage
change between the two odds ratios (e.g., a 5% or 10% change may point to
confounding).

For Model C in which sex predicts job category, recall that sex was
statistically significant (p < .001) and yielded an odds ratio of 0.14, meaning
that the odds of males being managers are 7.3 times as large as the odds for
females. Once education is added to the equation, sex is no longer significant
(p = .125), and the odds ratio drops to 0.52. The odds for males are now only
about two times as large as the odds for females after controlling for
education. Inclusion of education decreased the odds ratio of sex by 277%,
which identifies it as a strong confounder. Descriptive statistics reveal the
cause: Only 29% of females in the sample had completed postsecondary
education in comparison to 67% of males. Variation in education levels
should be controlled for by comparing the sex groups at a common level of
education or through matching or stratification.

An interaction occurs when the relationship between X and Y depends in
some way on Z (commonly denoted a moderating variable or an effect
modifier). In the example above, an interaction would be present if the
relationship between sex and job category differed in strength or form (e.g.,
linear/nonlinear) at various levels of education. A variable may function as a
confounder, a moderator, or both. Interaction effects take precedence over
confounding and should always be assessed initially.

Addition of an education × sex interaction term to the model produces
nonsignificant results (  = 2.14, p = .143). Had an interaction been present,
odds ratios for females and males would need to be computed separately for
various levels of education. Another option would be to graph the
relationship between logits and education separately for females and males.
The nonparallel lines would reveal the form of the interaction. Variables are
often centered prior to computing interaction effects.

Confounding and interaction can also occur with two ordinal/continuous
predictors. In the Employee data set, education interacts with experience.
Specifically, a strong relationship is found between experience and the log-
odds of being a manager for those with an eighth-grade education, while a
weaker relationship is seen for high school graduates and no relationship for
college graduates. The reader is encouraged to independently verify these
findings.



Nonlinear Predictors

Nonlinear predictors may be modeled in logistic regression by taking the
usual approach followed in linear regression. Nonlinear predictors may also
be modeled by necessity if an important logistic regression assumption fails.
Unlike linear procedures described earlier, logistic regression does not
assume homoscedasticity, normality of errors, equality of covariance
matrices, or multivariate normality, though meeting these conditions will
usually produce more stable parameter estimates. Nevertheless, logistic
regression is not without model assumptions, including independence of
observations, predictors measured without error, inclusion of all relevant
predictors in the equation, and errors distributed as a logistic function. In
assessing goodness-of-fit indices, all pairs of categorical predictors should
meet the usual chi-square requirement of no expected frequencies less than 1
and no more than 20% of cells with observed frequencies greater than 5.
Categories may be collapsed to meet this assumption. Some researchers
mistakenly assume that because logistic regression does not require the
criterion to be linearly related to a function of the predictors, there is no
linearity assumption. In fact, the logistic model assumes linearity between the
transformed criterion (i.e., the log-odds) and a function of the continuous
predictors in the model. The Box-Tidwell procedure aids in assessing
linearity of the logit (see Tang & Hirji, 2002, for newer tests). The method
proceeds by multiplying each continuous predictor by its natural logarithm
(i.e., X × ln(X)) and adding the resulting cross-product to the full model. If
the term is statistically significant, then nonlinearity in the logit exists. The
procedure does not identify the precise form of nonlinearity, so follow-up
assessment is needed, at which point the predictors can be transformed as
needed.

Model E consists of the following predictors: sex, minority, education,
experience, and salary. The latter three variables are approximately
continuously scaled and require assessment of linearity in the logit. After
multiplying each predictor by its natural log, the three transformed variables
were added as a block to Model E. The statistically significant block change
in chi-square indicates nonlinearity:  = 11.97, p = .007. The only
significant Wald test within the block is the transformed salary variable (p <
.001). One approach to identifying the shape of a suspected nonlinear
relationship is to group values of the predictor into categories, take the log-
odds of the mean of the criterion for each category, and then graph the



categories against the log-odds (see Figure 24.9). Adding a term for the
square of salary to Model E results in a significant change in chi-square,  =
8.69, p = .003, though an even better fit is achieved by taking the natural log
of salary,  = 13.47, p = .001. Interpretation becomes appreciably more
complex with inclusion of nonlinear predictors in an already nonlinear
model.

Collinearity

Collinearity (or multicollinearity) indicates a linear relationship among the
predictors due to high intercorrelations. Outlying cases can also strongly
influence collinearity (Sengupta & Bhimasankaram, 1997). Collinearity does
not affect the ability of the equation to predict the criterion but can produce
unreliable b weights and inflated standard errors, which affects how one
interprets the contribution of individual predictors.

Figure 24.9 Observed log-odds plotted against salary for Model E.



Essentially, the same dynamics are in play in logistic regression as in linear
regression. As explained by Menard (2002), “Because the concern is with the
relationship among the independent variables, the functional form of the
model for the dependent variable is irrelevant to the estimation of
collinearity” (p. 76). This allows use of familiar linear regression indices for
detecting collinearity (e.g., variance inflation factor, tolerance, condition
index, variance proportions).

Contrary to popular opinion, centering is not recommended for reducing
collinearity (Gatignon & Vosgerau, 2005; Katrichis, 1992; Kromrey &
Foster-Johnson, 1998). One solution is removal of one of the offending
variables. Perhaps a better alternative is to combine the correlated variables
into a latent factor or component, which should be measured with less error
than each variable taken individually.

The trade-off is the complexity of interpreting a structural model.
Commonality analysis (Beaton, 1973) is a particularly effective tool for
decomposing the variances unique to each predictor and common across all
predictors or sets of predictors.

Nonconvergence

Logistic regression employs maximum likelihood estimation, a procedure
that sometimes fails to converge on permissible estimates. Unusually large
coefficients or standard errors are red flags that suggest estimation problems.
Nonconvergence occurs in the Employee data set when modeling sex,
minority, and sex × minority as predictors. The cause is likely a cell with zero
frequency counts—namely, there were no minority females holding
managerial positions in the sample. Discussion of alternative solutions is
beyond the scope of this chapter, with the interested reader referred to
Hosmer and Lemeshow (2000, pp. 135–141).

Alternatives to “Nil” Null Hypotheses

The discussion so far has assumed a null hypothesis of no relationship
between criterion and predictors, which is certainly improbable. There is no
requirement that one make comparisons to such a “nil null” hypothesis
(Cohen, 1994). The nested and nonnested model comparison procedures and
R2 statistics available in logistic regression easily allow a researcher to
compare any number of reasonable alternative models. Such an approach



more faithfully represents the goal of scientists to develop and refine theories
consistent with previous studies rather than assuming a theoretical “tabula
rasa.”

Assessing Result Replicability

The generalizability of sample results is strengthened through replication.
Though cost may prohibit the drawing of multiple, independent samples for
the purpose of assessing replicability, a practical alternative is to hold out a
portion of the sample to confirm or disconfirm initial findings (i.e., cross-
validation). Another approach is to resample cases with replacement to
determine whether various configurations of the data yield similar results
(i.e., bootstrapping). These can be implemented in logistic regression (e.g.,
Lunneborg, 2000). In the past, bootstrap and cross-validation were viewed as
separate procedures, each with its own limitations. With the recent
development of hybrid approaches, distinctions between the two may blur in
future developments (Shtatland, Kleinman, & Cain, 2004).

CONCLUDING REMARKS

This brief treatment necessarily neglects a number of topics that are
important for valid interpretation of logistic regression results (e.g., detailed
assessment of assumption testing). It is hoped that this introduction prompts
the reader into further study of this sophisticated modeling technique. As
logistic regression grows in popularity and usage, social scientists should
occupy the forefront in applying the most current and effective
methodological practices, which will in turn lead to stronger scientific
research.

APPENDIX A: ILLUSTRATIVE MODELS



APPENDIX B: AN OVERVIEW OF EXPONENTS AND LOGARITHMS

The exponent of a number is equal to the constant e raised to that number,
where e equals approximately 2.718. The exponent of 3 is equivalently
written as exp(3) = e3 = 2.7183 = 2.718 × 2.718 × 2.718 = 20.09. A related
mathematical function is the natural logarithm, or just natural log, written as
ln or logc. As subtraction negates addition, the natural log negates an
exponent, and vice versa. The natural log of 20.09 is written as ln(20.09) =
logc(20.09) = 3. On most calculators, the exponent and natural log functions
are on the same button, with one function accessed by first pressing the
inverse (“inv”) button. The abbreviations “ln” and “logc” both refer to the
natural log, whereas “log” typically refers to a different calculation.

APPENDIX C: SAS SYNTAX FOR OBTAINING A BEST SUBSETS

LOGISTIC REGRESSION WITH MALLOWS’s Cp

* Run logistic regression for full model, saving predicted probabilities (pred);
 

PROC LOGISTIC;
  MODEL jobcat = educ exper sex minority;
   OUTPUT out = output1
                     p = pred;
* Define two new variables: z and u;
z = log(pred / (1 – pred)) + ((jobcat – pred) / (pred 11 (1 – pred)));

    u = pred * (1- pred);

* Run linear regression with case weights;
PROC REG;



    MODEL z = educ exper sex minority / SELECTION = RSQUARE CP;
WEIGHT u;

NOTES

1. The similar, but not identical, logit model is appropriate if all predictors are categorical (Demaris,
1990).

2. The table is not meant to be exhaustive. When faced with all categorical variables, for example, a
chi-square test of independence could be applied. However, log-linear analysis is preferable due, in
part, to its ability to include interaction terms in the model.

3. Note that we are calculating an expected probability for a given salary level, not for a specific
individual. George is either a manager or he is not.

4. It is possible to calculate change in predicted probabilities in increments other than a single unit,
which is useful with a continuous predictor variable. The difference in probabilities associated with a
change in c units is given by the expression cb. For example, changes in salary levels in 1,000-unit
increments correspond to changes in predicted probabilities of 1,000 × 0.000018 = 0.018.

5. Odds may also be calculated using frequency counts in a contingency table.
6. For this reason, SPSS labels odds ratio estimates as “Exp(B).”
7. The estimated beta and odds ratio here do not share identical values to the right of the decimal but

only appear so due to rounding.
8. Dummy coding can be used to compare odds ratios for values on a polytomous predictor.
9. Some writers refer to this quantity as the deviance and use the notation G2.
10. The reader is warned that researchers are not agreed on equivalent usage for all of these terms.
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BRINGING BALANCE AND
TECHNICAL ACCURACY TO
REPORTING ODDS RATIOS AND
THE RESULTS OF LOGISTIC
REGRESSION ANALYSES

 
JASON W. OSBORNE

ogistic regression is becoming more widely used in the social sciences
as more texts (e.g., Pedhazur, 1997) include chapters on the technique
and more articles aimed at the social science researcher introduce the

concept (e.g., Davis & Offord, 1997; Peng, Lee, … Ingersoll, 2002).
However, with more widespread adoption of the technique comes more
opportunity for researchers to incorrectly interpret the results of this
analysis. As Pedhazur (1997) and others (e.g., Davies, Crombie, …
Tavakoli, 1998; Holcomb, Chaiworapongsa, Luke, … Burgdorf, 2001) have
pointed out, correctly interpreting odds ratios for either a scientific or
practitioner audience is particularly challenging and usually done
incorrectly. For example, Holcomb et al. (2001) reported that in a survey of
high-quality medical journals, more than one quarter of the articles
explicitly misinterpreted odds ratios. As the technique is newer to the social
sciences, it is more likely that misinterpretation is happening in these
literatures.

The goal of this chapter is to briefly review the challenges to successfully
and (more important) correctly interpreting the odds ratio (as compared to
the more intuitive probability ratio or relative risk estimate), to highlight a



simple way for transforming odds ratios to the more easily interpreted
relative risk estimate, and to highlight a method of dealing with odds ratios
(ORs) and relative risk (RR) that are less than 1.0 to bring them into
perceptual balance with those mathematically identical (but perceptually
different) ratios over 1.0.

WHAT IS AN ODDS RATIO?

The odds ratio has a long tradition in epidemiological and medical research
where one is examining whether different factors contribute to disease
(morbidity) or mortality. There are several ways to produce odds ratios,
some of which are directly computed by hand from 2 × 2 contingency tables
but most commonly are produced from logistic regression and similar
analyses. Logistic regression brings the general processes of ordinary least
squares regression (including multiple regression) to bear on dependent
variables that are either categorical (yes/no outcomes, such as whether
students have dropped out or individuals have become pregnant, voted,
purchased a specific product, etc.) or discrete and categorical (e.g., choice
of major, purchase of one of several products, and many behavioral
outcomes such as educational attainment).

Yet with the advantages of logistic regression comes a challenge:
interpreting the standardized coefficients, which are not betas but rather
often odds ratios (exp(b)). To more concretely understand these odds ratio
(and also relative risk, as well as the computational and conceptual
differences between the two), refer to Table 25.1, which uses some sample
data we will use for illustrative purposes.

In order to understand the difference between relative risk (probability
ratios) and odds ratios, one can simply examine the (completely fabricated)
data above. The probability that a student would be recommended to
remedial reading is computed as the number recommended divided by the
total possible, which equals 45/200 or 0.225. However the probability (or
risk) of being recommended to remedial reading varies as a function of
student sex. Specifically, the probability that a boy would be recommended
is 35/100 (0.35) while the probability that a girl would be recommended is
10/100 (0.10). These are straightforward to interpret.



While probability uses group total as the denominator, the odds are a
different animal. The odds of a student being recommended is the number
recommended divided by the number not recommended. Note that this is a
very different denominator, especially when researching an outcome that is
relatively common such as in these data. The odds of a student being
recommended are 45/155 (0.29), but again that varies by student sex. The
odds of a boy being recommended are 35/65 (0.54) while the odds of a girl
being recommended are 10/90 (0.11).

Note that the difference between probability (risk) and odds is the
denominator, which then influences their interpretation. Probability (risk) is
interpreted in a straightforward manner: Boys will be recommended for
remedial reading about 35% of the time, on average, while girls are
recommended about 10% of the time. Odds are less well understood by
researchers, practitioners, and the lay public (Davies et al., 1998; Holcomb
et al., 2001). The odds of a boy being recommended for remedial reading
are 0.54:1, while for girls they are 0.11:1. In other words, for each boy not
recommended for remedial reading, 0.54 boys will be recommended. A
similar interpretation would be offered for girls.

This brings up two important points: First, as authors such as Davies et
al. (1998) point out and as we have demonstrated empirically, odds tend to
inflate the effect size of an analysis (this is particularly true when events
being studied are relatively common; see Davies et al., 1998, for more
explication). Second, because of the different denominators between
probabilities (risk) and odds, probabilities are relatively straightforward to
interpret, yet odds can be tricky. This will be discussed more below.

Ratios. Analyses rarely end with the calculations of odds or probabilities.
Generally, researchers want to calculate probability ratios (also called
relative risk or RR) and/or odds ratios (OR). Using the data in Table 25.1, if
one wants to know if boys are at greater risk of being recommended to
remedial reading than girls, we can calculate a relative risk by dividing the
probability for boys by the probability for girls (.35/.10), which yields a
relative risk of 3.50. In other words, boys are 3.50 times as likely to be
recommended for remedial reading than girls. This is intuitive, yet this
statistic is rarely the one reported in research. Odds ratios are much more
common, partly because many popular software packages readily report
ORs. The odds ratio for these data is the odds for boys divided by the odds



for girls (.54/.11), which yields an odds ratio of 4.91. In this case, the odds
for boys are 4.91 that of girls.

Table 25.1 Sample Data for Student Sex and Remedial Reading classification

However, that does not mean one can say that boys are 4.91 times as
likely or 4.91 times more likely to be recommended to remedial reading
than girls. Technically, the odds of being assigned are 4.91 times greater for
boys relative to girls. But since odds are tricky to understand, the meaning
of this is less clear. Technically, it means that for every boy not
recommended to remedial reading, 4.91 times as many boys will be
recommended for remediation (0.54) than the number of girls
recommended for every girl not recommended.

Confused? You should be. Unless you work with odds and probabilities
for a living, you should find relative risk (probability ratios) much easier to
understand than odds ratios. Odds are not intuitive like probabilities are,
and the language needed to technically describe an odds ratio is (as you can
see) quite convoluted.

The situation is not helped by authors’ tendency to whitewash this
important distinction and use probabilistic language when discussing odds
ratios. Even highly sophisticated researchers will summarize odds ratios
using language similar to “boys are 4.91 times more likely to be
recommended to remedial reading than girls” or “boys are 4.91 times as
likely to be recommended” when technically the odds ratio should be
summarized as “the odds of boys being recommended are 4.91 times
greater than the odds of girls being recommended,” which does not address
exactly what it means for odds to be greater in one group than another.
Pedhazur (1997, pp. 760–761) takes great pains to highlight this common
error, as do other authors (e.g., Cohen, 2000; Davies et al., 1998; Holcomb
et al., 2001). Holcomb et al. (2001) report that 26% of authors in top-tier
medical journals explicitly misinterpreted ORs as RRs.



Why is this an issue? First, it is incorrect. While the OR and RR will be
in the same direction (both will be either above or below 1.0 if they are
significant), ORs can illegitimately inflate the effect size substantially, as
Davies et al. (1998) demonstrate. This effect is particularly egregious when
the outcome being examined is not rare (e.g., occurs in more than 5% of the
population) and becomes magnified as the RR moves away from 1.0—
commonly inflating the apparent effects 80% to 90% or more.

FIXING THIS ISSUE

One can report odds ratios as long as an accurate interpretation of the OR is
provided. However, as noted above, odds are nonintuitive and not easily
understood by nontechnical audiences. It is probably more effective to
calculate relative risk directly or, if that is not possible, calculate it from the
following formula (presented in Davies et al., 1998; Holcomb et al., 2001;
original work presented by Zhang … Yu, 1998).

where RR = relative risk, OR = calculated odds ratio, and P0 = the
proportion of nonexposed individuals (e.g., those lacking the independent
variable or the reference group) that experience the outcome in question. In
the case of our example, P0 would be .10, the probability that girls would be
referred to remedial reading, and the OR is 4.91. Completing the
calculations, we end up with an estimated RR of 3.53, a very close
approximation to the actual RR of 3.50. While this might seem like a trivial
issue, as both effects are large, alert readers will note that the effect size
estimate is inflated 39.1%. I doubt we would accept that in other effect size
estimates.

HOW SHOULD WE INTERPRET ODDS RATIOS OR RELATIVE RISKS

LESS THAN 1.0?



One significant problem with RRs and ORs is that they are asymmetrical.
They can theoretically range from 0.00 to ∞. A value of 1.0 means there is
no difference in risk or odds (i.e., there is no effect of the independent
variable). Ratios less than 1.0 indicate that being in the exposed/selected
group decreases the odds/risk of experiencing the outcome, whereas ratios
greater than 1.0 indicate that being in the exposed/selected group increases
the odds/risk of experiencing the outcome.1 The imbalance comes with the
fact that increasing ratios are unbounded. They can vary from 1.0 to
infinity, yet decreasing odds ratios are bounded by 0. They can range from
1.0 to 0 only, yet they encompass, technically, the same infinite range.2

Two issues arise here. First, use of directional language such as
“individuals in Group 1 are X times more likely to experience a specific
outcome than in Group 2” or “individuals in Group 2 are X times less
likely.” Leaving for a moment the difficulty with cogently describing an
odds ratio, the difficulty here comes in the common mistake people make in
describing decreasing ratios. If you have an RR of 3.50, as we did, it is
straightforward to say, “Boys are 3.50 times more likely (or “as likely” as I
prefer) to be referred than girls.” But what if we had coded the variables
differently, so we were comparing girls to boys? With the same numbers,
we would have gotten an RR of 0.29, meaning exactly the same thing—that
girls are much less likely than boys to be referred. Yet the careless author
(and many of my former students) might be tempted to say, “Girls are 0.29
times less likely than boys” when in fact that is not the case. And
furthermore, to say that girls are .71 times less likely fails to convey the
same magnitude as an RR = 3.50, although mathematically they are
identical.

My advice has always been to use as likely rather than less or more likely.
Saying “girls are 0.29 times as likely as boys” is more accurate and
foolproof (providing you are discussing an RR rather than OR) and carries
some more of the psychological gravity as saying “3.50 times as likely” …
but not quite. Which brings us to the second issue: the psychological impact
of ratios and accurately conveying effect sizes when the effect sizes
themselves vary depending on whether they are increasing or decreasing
odds.

Taking a more extreme example, imagine a drug that made the risk of
experiencing a cancer relapse RR = 0.001 compared to people who do not
take the drug. Mathematically, that is identical to saying that taking the drug



makes you 1,000 times less likely to experience relapse, or not taking the
drug makes you 1,000 times more likely to have a relapse. But are they
perceptually identical? No. Further elaborating, let us say you have two
drugs. One produces an RR = 0.001 and one an RR = 0.01. Even the most
technically proficient of us will view these as pretty close (i.e., really
small). However, if the direction of the independent variable were
arbitrarily reversed, the RRs would be 1,000 and 100, respectively. Most
people will interpret those both as “pretty large,” but in the latter case, it is
much more apparent that the magnitude of the effect is 10 times different.

Thus, the final recommendation for those of you engaged in logistic
regression and similar analyses using odds or probability ratios—When
possible, refrain from reporting RRs or ORs less than 1.0. It would make
sense to standardize the reporting of this effect size so that all ratios be
reported as > 1.0. Analyses that result in ratios less than 1.0 would take the
inverse of the RR/OR and reverse the categories or the description of the
results to keep the conclusion consistent.3

Not only do ratios less than 1.0 have a different psychological impact
(despite being mathematically identical), but as Figure 25.1 shows, the
relationship between ratios > 1.0 and their mathematically equivalent < 1.0
counterpoints is nonlinear. This is suboptimal for an effect size, which RR
and OR are de facto, and a situation easily remedied in most cases.

SUMMARY

In sum, procedures such as logistic regression are powerful and useful tools
to scientists. However, the commonly reported odds ratio is difficult to
understand conceptually, quite often misinterpreted, and particularly
difficult to disseminate to a lay/practitioner audience. Relative risk
(probability ratios) is more intuitive and much easier to disseminate, so
when possible, researchers should report and interpret RRs rather than ORs.
Second, ORs/RRs are relatively unique in the effect size world in that they
are asymmetrical. Ratios below 1.0 behave very differently than ratios
above 1.0 because they asymptote toward 0.0, whereas ratios above 1.0 are
unbounded. More important, this creates asymmetry in the perception of
effect size, which is also undesirable. The second recommendation,
therefore, is to convert all ratios <1.0 to their corresponding ratio



counterpart above 1.0 by taking the inverse of the RR/OR and adjusting the
narrative accordingly.

These simple steps should increase the technical quality of reporting
these analyses and standardize the metric of the effect size being used.

Figure 25.1 The nonlinear relationship between increasing and decreasing ratios.

NOTES

1. Be sure to examine confidence intervals and significance values for ORs and RRs. If either
includes 1.0, then the effect is not significant and should not be interpreted. There are many
examples of published studies with nonsignificant results (i.e., ORs that incorporate 1.0 in the
confidence interval) that are interpreted substantively by the authors.

2. Which brings us to the confusing mathematical world of “smaller” and “larger” infinities,
which tends to give me a headache. Those of you interested in understanding how infinities can be
smaller or larger are referred to the works of Georg Cantor and his followers.

3. Pedhazur (1997) suggests an alternative solution to this issue—taking the natural log (ln) of all
RRs/ORs. This has the effect of moving the “null effect” point from 1.0 to 0.0 and removing the
lower bound so that effect size distribution is symmetrical. The drawback to this elegant solution is
that it changes the effect from substantively interpretable (relative risk) or interpretable with some
difficulty (odds ratio) to something much more complex to interpret—the natural log of a relative
risk or an odds ratio. Thus, I would not recommend this solution.
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hapter 24 presented logistic regression models for dichotomous
response variables; however, many discrete response variables have
three or more categories (e.g., political view, candidate voted for in an

election, preferred mode of transportation, or response options on survey
items). Multicategory response variables are found in a wide range of
experiments and studies in a variety of different fields. A detailed example
presented in this chapter uses data from 600 students from the High School
and Beyond study (Tatsuoka & Lohnes, 1988) to look at the differences
among high school students who attended academic, general, or vocational
programs. The students’ socioeconomic status (ordinal), achievement test
scores (numerical), and type of school (nominal) are all examined as
possible explanatory variables. An example left to the interested reader
using the same data set is to model the students’ intended career where the
possibilities consist of 17 general job types (e.g., school, manager, clerical,
sales, military, service, etc.). Possible explanatory variables include gender,
achievement test scores, and other variables in the data set.

Many of the concepts used in binary logistic regression, such as the
interpretation of parameters in terms of odds ratios and modeling
probabilities, carry over to multicategory logistic regression models;
however, two major modifications are needed to deal with multiple
categories of the response variable. One difference is that with three or
more levels of the response variable, there are multiple ways to dichotomize



the response variable. If J equals the number of categories of the response
variable, then J(J – 1)/2 different ways exist to dichotomize the categories.
In the High School and Beyond study, the three program types can be
dichotomized into pairs of programs (i.e., academic and general, vocational
and general, and academic and vocational).

How the response variable is dichotomized depends, in part, on the
nature of the variable. If there is a baseline or control category, then the
analysis could focus on comparing each of the other categories to the
baseline. With three or more categories, whether the response variable is
nominal or ordinal is an important consideration. Since models for nominal
responses can be applied to both nominal and ordinal response variables,
the emphasis in this chapter is on extensions of binary logistic regression to
models designed for nominal response variables. Furthermore, a solid
understanding of the models for nominal responses facilitates mastering
models for ordinal data. A brief overview of models for ordinal variables is
given toward the end of the chapter.

A second modification to extend binary logistic regression to the
polytomous case is the need for a more complex distribution for the
response variable. In the binary case, the distribution of the response is
assumed to be binomial; however, with multicategory responses, the natural
choice is the multinomial distribution, a special case of which is the
binomial distribution. The parameters of the multinomial distribution are
the probabilities of the categories of the response variable.

The baseline logit model, which is sometimes also called the generalized
logit model, is the starting point for this chapter because it is a well-known
model, it is a direct extension of binary logistic regression, it can be used
with ordinal response variables, and it includes explanatory variables that
are attributes of individuals, which is common in the social sciences. The
baseline model is a special case of the conditional multinomial logit model,
which can include explanatory variables that are characteristics of the
response categories, as well as attributes of individuals.

A word of caution is warranted here. In the literature, the term
multinomial logit model sometimes refers to the baseline model, and
sometimes it refers to the conditional multinomial logit model. An
additional potential source of confusion lies in the fact that the baseline
model is a special case of the conditional model, which in turn is a special
case of Poisson (log-linear) regression.1 These connections enable



researchers to tailor models in useful ways and test interesting hypotheses
that could not otherwise be tested.

MULTINOMIAL REGRESSION MODELS

One Explanatory Variable Model

The most natural interpretation of logistic regression models is in terms
of odds and odds ratios; therefore, the baseline model is first presented as a
model for odds and then presented as a model for probabilities.

ODDS

The baseline model can be viewed as the set of binary logistic regression
models fit simultaneously to all pairs of response categories. With three or
more categories, a binary logistic regression model is needed for each
(nonredundant) dichotomy of the categories of the response variable. As an
example, consider high school program types from the High School and
Beyond data set (Tatsuoka & Lohnes, 1988). There are three possible
program types: academic, general, and vocational. Let P(Yi = academic),
P(Yi = general), and P(Yi = vocational) be the probabilities of each of the
program types for individual i. Recall from Chapters 24 and 25 that odds
equal ratios of probabilities. In our example, only two of the three possible
pairs of program types are needed because the third can be found by taking
the product of the other two. Choosing the general program as the
reference, the odds of academic versus general and the odds of vocational
versus general equal



The third odds, academic versus vocational, equals the product of the two
odds in (1a) and (1b)—namely,

More generally, let J equal the number of categories or levels of the
response variable. Of the J(J – 1)/2 possible pairs of categories, only (J – 1)
of them are needed. If the same category is used in the denominator of the
(J – 1) odds, then the set of odds will be nonredundant, and all other
possible odds can be formed from this set. In the baseline model, one
response category is chosen as the baseline against which all other response
categories are compared. When a natural baseline exists, that category is the
best choice in terms of convenience of interpretation. If there is not a
natural baseline, then the choice is arbitrary.

As a Model for Odds

Continuing our example from the High School and Beyond data, where
the general program is chosen as the baseline category, the first model
contains a single explanatory variable, the mean of five achievement test
scores for each student (i.e., math, science, reading, writing, and civics).
The baseline model is simply two binary logistic regression models applied
to each pair of program types; that is,

and

where P(Yi = academic|xi), P(Yi = general|xi), and P(Yi = vocational|xi) are
the probabilities for each program type given mean achievement test score
xi for student i, the αjs are intercepts, and the βjs are regression coefficients.



The odds of academic versus vocational are found by taking the ratio of (3)
and (4),

where α3 = (α1 – α2) and β3 = (β1 – β2).
For generality, let j = 1, …, J represent categories of the response

variable. The numerical values of j are just labels for the categories of the
response variable. The probability that individual i is in category j given a
value of xi on the explanatory variable is represented by P(Yi = j|x). Taking
the Jth category as the baseline, the model is

When fitting the baseline model to data, the binary logistic regressions
for the (J – 1) odds must be estimated simultaneously to ensure that
intercepts and coefficients for all other odds equal the differences of the
corresponding intercepts and coefficients (e.g., α3 = (α1 – α2) and β3 = (β1 –
β2) in Equation 5). To demonstrate this, three separate binary logistic
regression models were fit to the High School and Beyond data, as well as
the baseline regression model, which simultaneously estimates the models
for all the odds. The estimated parameters and their standard errors are
reported in Table 26.1. Although the parameters for the separate and
simultaneous cases are quite similar, the logical relationships between the
parameters when the models are fit separately are not met (e.g.,  =
0.1133 + 0.0163 = 0.1746 ≠ 0.1618); however, the relationships hold for
simultaneous estimation (e.g.,  = 0.1099 + 0.0599 = 0.1698).

Besides ensuring that the logical relationships between parameters are
met, a second advantage of simultaneous estimation is that it is a more
efficient use of the data, which in turn leads to more powerful statistical
hypothesis tests and more precise estimates of parameters. Notice that the
parameter estimates in Table 26.1 from the baseline model have smaller



standard errors than those in the estimation of separate regressions. When
the model is fit simultaneously, all 600 observations go into the estimation
of the parameters; however, in the separately fit models, only a subset of the
observations is used to estimate the parameters (e.g., 453 for academic and
general, 455 for academic and vocational, and only 292 for vocational and
general).

A third advantage of the simultaneous estimation, which is illustrated
later in this chapter, is the ability to place equality restrictions on parameters
across odds. For example, if two βs are very similar, they could be forced to
be equal. The complexity of the baseline model increases as the number of
response options increases, and any means of reducing the number of
parameters that must be interpreted can be a great savings in terms of
interpreting and summarizing the results. For example, if we modeled
career choice with 17 possible choices, there would be 16 nonredundant
odds and 16 different βs to interpret for each (numerical) explanatory
variable in the model.

Table 26.1 Estimated Parameters (and Standard Errors) From Separate Binary Logistic
Regressions and From the Simultaneously Estimated Baseline Model

Turning to interpretation, the regression coefficients provide estimates of
odds ratios. Using the parameter estimates of the baseline model (column 5
of Table 26.1), the estimated odds that a student is from an academic
program versus a general program given achievement score x equals



and the estimated odds of an academic versus a general program for a
student with achievement score x + 1 equals

The ratio of the two odds in Equations 8 and 7 is an odds ratio, which
equals

This odds ratio is interpreted as follows: For a one-unit increase in
achievement, the odds of a student attending an academic versus a general
program are 1.12 times larger. For example, the odds of a student with x =
50 attending an academic program versus a general one is 1.12 times the
odds for a student with x = 49. Given the scale of the achievement variable
(i.e.,  = 51.99, s = 8.09, min = 32.94, and max = 70.00), it may be
advantageous to report the odds ratio for an increase of one standard
deviation of the explanatory variable rather than a one-unit increase.
Generally speaking, exp(βc), where c is a constant, equals the odds ratio for
an increase of c units. For example, for an increase of one standard
deviation in mean achievement, the odds ratio for academic versus general
equals exp(0.1099(8.09)) = 2.42. Likewise, for a one standard deviation
increase in achievement, the odds of an academic versus a vocational
program are exp(0.1698(8.09)) = 3.95 times larger, but the odds of a
vocational program versus a general program are only exp(–0.0599(8.09)) =
0.62 times as large.

Odds ratios convey the multiple one odds is relative to another odds. The
parameters also provide information about the probabilities; however, the
effects of explanatory variables on probabilities are not necessarily
straightforward, as illustrated in the “Multiple Explanatory Variables”
section.



As a Model of Probabilities

Probabilities are generally a more intuitively understood concept than
odds and odds ratios. The baseline model can also be written as a model for
probabilities. There is a one-to-one relationship between odds and
probabilities. Using Equation 6, the model for probabilities is

where j = 1, …, J. The sum in the numerator ensures that the sum of the
probabilities over the response categories equals 1.

When estimating the model, identification constraints are required on the
parameters. These constraints do not influence the goodness of model fit,
odds ratios, estimated probabilities, interpretations, or conclusions.
Identification constraints do affect the specific values of parameter
estimates. The typical constraints are to set the parameter values of the
baseline category equal to zero (e.g., aJ = βJ = 0) or to set the sum of the
parameters equal to zero (e.g., Σj aj = Σj βj = 0). In practice, it is very
important to know what constraints a computer program uses when writing
the model as a model for probabilities. In our example, the software
program (by default) set aJ = βJ = 0. Since exp(0) = 1 for the general
program, the estimated models for probabilities equal that shown in
equation 10.

The estimated probabilities are plotted in Figure 26.1. The baseline
model will always have one curve that monotonically decreases (e.g., P(Yi =
vocational|xi)) and one that monotonically increases (e.g., P(Yi =
academic|xi)). All others will increase and at some point start to decrease
(e.g., P(Yi = general|xi)). At any point along the horizontal axis, the sum of
the three probabilities equals 1.



Multiple Explanatory Variables

Multiple explanatory variables are typically available in most studies.
Models with multiple explanatory variables are illustrated here by adding to
our model a nominal (i.e., whether the school a student attends is public or
private) and an ordinal variable (i.e., socioeconomic status reported as low,
middle, or high).

Discrete variables are added using either dummy or effect coding. For
example, school type could be coded either as a dummy variable (Equation
11a) or as an effect code (Equation 11b):

or

Most computer programs will automatically create the codes for discrete
variables; however, proper interpretation requires that the user know how
variables are coded.

The model presented and developed here has main effects for
achievement, school type, and socioeconomic status (SES). Effect codes for
school type, which are given in Equation 11b, are used to add school type to
the model. The effects codes used to add SES, which has three levels, to the
model are as follows:



Figure 26.1 Estimated probabilities of attending different high school programs as a
function of mean achievement.

and

Defining j = 1 for academic, j = 2 for vocational, and j = 3 = J for general
program, the first model with multiple explanatory variables examined here
is

for j = 1, …, J – 1. Additional regression coefficients (i.e., βjs) are
estimated, one for each explanatory variable or code in the model. The
same model expressed in terms of probabilities is



The model has main effects of each of the variables. The estimated
parameters and their standard errors are reported in Table 26.2.

The parameter estimates and statistics given in Table 26.2 have been
rounded to two decimal places, which reflects a reasonable level of
precision and is in line with American Psychological Association (APA)
guidelines for reporting results. It should be noted that more decimal places
were used in computations. For simplicity, in Table 26.2 and the remainder
of the chapter, the explanatory variables are dropped from the symbols for
the modeled probabilities; that is, P(Yi, = j) will be used instead of P(Yi, = j|
xi, pi, s1i, s2i). The values of the parameter estimates for high SES and
private schools are included explicitly in the table to aid in the proper
interpretation of the model.

The interpretation in terms of odds ratios is the same as binary logistic
regression; however, the number of parameters to interpret is much larger
than in binary logistic regression. Using the parameters reported in
Table 26.2, for a one-unit increase in mean achievement, the odds of an
academic versus a general program are 1.10 (13) times larger, and for a one
standard deviation increase, the odds are exp(0.10(0.809)) = 2.25 times
larger. The odds of academic versus general programs are larger for higher
levels of achievement, private schools, and higher SES levels. It appears
that the odds of vocational versus general programs are larger for public
schools and lower SES levels; however, this conclusion is not warranted.
These parameters are not significantly different from zero (see the last two
columns of Table 26.2). Statistical inference and nonsignificant parameters
are issues that are returned to later in this chapter.

Table 26.2 Estimated Parameters, Standard Errors, and Wald Test Statistics for All Main
Effects Model



NOTE: SES is treated as a nominal variable.

To illustrate the effect of the extra variables on probabilities, the
estimated probabilities of attending an academic program are plotted
against mean achievement scores in Figure 26.2 with a separate curve for
each combination of SES. The figure on the left is for students at public
schools, and the figure on the right is for private schools. The discrete
variables shift the curves horizontally. In particular, the horizontal distance
between the curves for high and middle SES for either public or private
schools is the same regardless of the mean achievement value.

When there is no interaction, the curves for the estimated probabilities of
the response category that is monotonically increasing (e.g., academic
programs) will be parallel; that is, they will have the same shape and are
just shifted horizontally. The curves for the response category where the
probabilities monotonically decrease (e.g., vocational programs) will also
be parallel; however, this is not true for the other categories. In fact, the
curves for responses whose probabilities increase and then decrease are not
parallel and may even cross within the range for which there are data. To
illustrate this, the probabilities of students attending a general program for
private schools are plotted against mean achievement scores with a separate
curve for each SES level at the top of Figure 26.3. The curves for different
SES levels cross. In normal linear regression, this would indicate an
interaction between achievement and SES; however, this is not the case in
logistic regression. Crossing curves can occur in the baseline model with
only main effects because the relative size of the numerator and



denominator changes as values of the explanatory variables change. If there
are no interactions in the model, then curves of odds ratios and logarithms
of odds ratios will not cross. This is illustrated at the bottom of Figure 26.3,
where the logarithms of the odds are plotted against mean achievement. The
logarithms of the odds are linear, and the lines are parallel. Although
probabilities are more intuitively understandable, figures of estimated
probabilities may be misleading to researchers unfamiliar with
multicategory logistic regression models. Care must be taken when
presenting results such as these.

Figure 26.2 Estimated probabilities of attending an academic high school program as a
function of mean achievement with a separate curve for each SES level.



Figure 26.3 At the top is a plot of estimated probabilities of attending a general high school
program for private schools as a function of mean achievement with a separate
curve for each SES level from the model with only main effects. The two lower
figures are plots of the estimated logarithm of odds ratios using parameters
from the same model.

With ordinal explanatory variables such as SES, one way to use the
ordinal information is by assigning scores or numbers to the categories and
treating the variables as numerical variables in the model (e.g., like mean
achievement). Often, equally spaced integers are used, which amounts to
putting equality restrictions on the βs for the variable. In our example,
suppose we assign 1 to low SES, 2 to middle SES, and 3 to high SES and
refit the model. In this model, only one β parameter is estimated for SES
rather than two for each of the (J – 1) odds. Using SES as a numerical
variable with equally spaced scores in the model imposes restrictions on the
βs. In our example, βj3= βj4 for the odds for j = 1 and 2 (i.e., academic and
vocational, respectively). The parameter estimates for the model where SES
is treated numerically are reported in Table 26.3.

Placing the restrictions on the βs for ordinal variables is often a good way
to reduce the complexity of a model. For example, the estimated odds ratio
of academic versus general for middle versus low SES equals exp( (2–1))
= exp ( ) = 1.70, which is the same as the odds ratio of high versus middle
SES, exp( (3–2)) = 1.70.

In our example, putting in equally spaced scores for SES is not warranted
and is misleading. When no restrictions were imposed on the parameters
(see Figure 26.3 and Table 26.2), the order of the SES levels for the odds of
academic (versus general) schools is in the expected order (i.e., the odds of
an academic program are larger the higher the student’s SES level), and the
parameter estimates are approximately equally spaced. On the other hand,
the parameter estimates of SES for odds of vocational schools do not follow
the natural ordering of low to high, are relatively close together, and are not
significantly different from zero. The numerical scores could be used for the
SES effect on the odds of academic programs but the scores are
inappropriate for the odds of vocational programs. There may not even be a
difference between vocational and general programs in terms of SES.
Furthermore, there may not be a difference between students who attended
vocational and general programs with respect to school type (Wald = 0.27,



df = 1, p = .60). In the following section, these conjectures are incorporated
into the model, which permits statistical testing of these hypotheses.

Conditional Multinomial Logistic Regression

The conjectures described above regarding possible equalities,
nonsignificant effects, and restrictions on parameters can be imposed (and
tested) by reexpressing the baseline model as a conditional multinomial
logistic regression model, which is a more general model. The conditional
multinomial logistic regression model is also known as the “discrete choice
model,” “McFadden’s model,” and “Luce’s choice model.” Some sources
for more complete introductions to this model include Long (1997), Agresti
(2002), and Powers and Xie (2000). Unlike the baseline model, the
conditional model permits explanatory variables that are attributes of
response categories.

The general form of the conditional multinomial logistic model is

where β* is a vector of coefficients and  is a vector of explanatory
variables. The explanatory variables  may depend on the attributes of an
individual (i), the response category (j), or both, but the coefficients β* do
not depend on the response categories. To reexpress the baseline model in
the general form of the conditional logistic model given in Equation 15,
data need to be reformatted from having one line in the data file for each
individual to multiple lines of data for each individual. When fitting
conditional multinomial models, the data must have one line of data for
each response category for each individual to incorporate explanatory
variables that are characteristics of the response categories.

Table 26.3 Estimated Parameters, Standard Errors, and Wald Statistics for All Main Effects
Model



NOTE: SES is treated as a numerical variable with scores of 1 = low, 2 = middle, and 3 = high.

The format of the data file for the baseline model where mean
achievement is the only explanatory variable in the model is given in
Table 26.4. In the data, Y is the response variable that indicates a student’s
high school program. The indicators, dij, are the key to putting the baseline
model into the form of the conditional multinomial model, as well as to
specifying different models for the different program types (i.e., levels of
the response variable). In our example, the two indicator variables, di1 and
di2, indicate the category of the response variable corresponding to
particular line in the data file. They are defined as

For general programs, di1 = di2 = 0.
For our simple baseline model with only achievement test scores in the

model, β*′ = (α1, α2, β11, β21) and ′ = (di1, di2, di1xi, di2xi). Using the
definitions of dij, β*, and , we obtain our familiar form of the baseline
model,

which, for our example, corresponds to



Table 26.4 The Format of the Data File Needed to Fit the Baseline Multinomial Model as
Conditional Multinomial Model With Mean Achievement as the Explanatory
Variable

Note that the parameters for the last category, which in this case is general
programs, were set equal to zero for identification (i.e., α31= 0 for the
intercept, and β31= 0 for achievement test scores).

The conditional model was introduced here as a means to refine and
reduce the number of parameters of the baseline model. First, the complex
model will be represented as a conditional multinomial model, and then, by
appropriately defining , restrictions will be imposed on the parameters. To
express the complex baseline model as a conditional multinomial logistic
model, we define β* and  as



β*′ = (α1, α2, β11, β21, β12, β22, β13, β23, β14, β24)
and

Using these β* and  in Equation 15, the complex baseline model with
main effects for achievement (xi) school type (pi) and SES (s1i s2i,) expressed
as a conditional multinomial model is

When reexpressing the baseline model as a conditional multinomial model,
a good practice is to refit the baseline models that have already been fit to
the data as conditional models. If the data matrix and conditional models
have been correctly specified, then the results obtained from the baseline
and conditional models will be the same (i.e., parameters estimates,
standard errors, etc.).

One simplification of Equation 20 is to treat SES numerically for
academic programs (i.e., use si = 1, 2, 3 instead of s1i and s2i). The
parameters for SES and school type for vocational and general programs
can be set to zero by deleting the terms di2 pi di2 s1i and di2 s2i, from the data
matrix, which implicitly sets β22= β23= β24= 0. Making these changes, the
models for the probabilities for each high school program type become



The parameter estimates for this final model are given in Table 26.5 and
are similar to those in the baseline model with no restrictions on the
parameters (i.e., Table 26.2). The model with restrictions fit as a conditional
multinomial model is more parsimonious than the baseline model (i.e.,6 vs.
10 nonredundant parameters). The models for the probabilities of different
high school programs do not have the same effects. As stated earlier, by
fitting all of the odds simultaneously, the logical restrictions on the
parameters are maintained, and the standard errors of the parameters are
smaller (i.e., there is greater precision).

Switching to the conditional multinomial model emphasizes that users of
multinomial logistic regression are not restricted to the standard models that
computer programs fit by default, which often fail to address specific
research questions. By creating new variables, using indicator variables,
and using a slightly more general model, researchers can tailor their models
to best match their research questions. Imposing restrictions on parameters
when they are warranted can greatly simplify a complex model. This was
illustrated in our example. Compare Tables 26.2 and 26.5. In the model
reported in Table 26.2, there were 10 nonredundant parameters, some of
which are not significant and others that are. An additional reason for going
the extra step of using the conditional model is that novice users often
succumb to the temptation of interpreting nonsignificant parameters such as
those in Table 26.2. The better approach is to avoid the temptation.
Alternatively, researchers may simply not report the nonsignificant effects
even though they were in the model. This also is a poor (and misleading)
practice. Table 26.5 contains only 6 nonredundant parameters, all of which
are significant. What is statistically important stands out, and the
interpretation is much simpler. In our example, it is readily apparent that
students in general and vocational programs only differ with respect to
achievement test scores, whereas students in academic programs and those
in one of the other programs differ with respect to achievement test scores,
SES, and school type.

Table 26.5 Estimated Parameters From the Conditional Multinomial Logistic Regression



Model

STATISTICAL INFERENCE

Simple statistical tests were used informally in the previous section to
examine the significance of effects in the models discussed. The topic of
statistical inference is explicitly taken up in detail in this section. There are
two basic types of statistical inference that are of interest: the effect of
explanatory variables and whether response categories are indistinguishable
with respect to the explanatory variables.

Tests of Effects

If β = 0, then an effect is unrelated to the response variable, given all the
other effects in the model. The two test statistics discussed here for
assessing whether β = 0 are the Wald statistic and the likelihood ratio
statistic.

Maximum likelihood estimates of the model parameters are
asymptotically normal with mean equal to the value of the parameter in the
population—that is, the sampling distribution of . This fact can be
used to test the hypothesis β = 0 and to form confidence intervals for β and
odds ratios.

If the null hypothesis H0 : β = 0 is true, then the statistic



where SE is the estimate of , has an approximate standard normal
distribution. This statistic can be used for directional or nondirectional tests.
Often, the statistic is squared, X2 = z2, and is known as a Wald statistic,
which has a sampling distribution that is approximately chi-square with 1
degree of freedom.

When reporting results in papers, many journals require confidence
intervals for effects. Although many statistical software packages
automatically provide confidence intervals, we show where these intervals
come from, which points to the relationship between the confidence
intervals and the Wald tests. A (1 – a)% Wald confidence interval for β is

where z(1 – α)/2is the (1 – α)/2th percentile of the standard normal distribution.
A (1 – α)% confidence interval for the odds ratio is found by exponentiating
the end points of the interval for β.

As an example, consider the parameter estimates given in Table 26.5 of
our final model from the previous section. The Wald statistics and
corresponding p values are reported in the seventh and eighth columns. For
example, the Wald statistic for achievement for academic programs equals

The 95% confidence interval of β for achievement equals

0.0987 ± 1.96(0.0155)→(0.06742, 0.12818),

and the 95% confidence interval for the odds ratio equals

(exp(0.06742), exp(0.12818))→(1.07, 1.14).

The ratio of a parameter estimate to its standard errors provides a test for
single parameters; however, Wald statistics can be used for testing whether
any and multiple linear combinations of the βs equal zero (Agresti, 2002;
Long, 1997). Such Wald statistics can be used to test simultaneously



whether an explanatory variable or variables have an effect on any of the
models for the odds. Rather than present the general formula for Wald tests
(Agresti, 2002; Long, 1997), the likelihood ratio statistic provides a more
powerful alternative to test more complex hypotheses.

The likelihood ratio test statistic compares the maximum of the
likelihood functions of two models, a complex and a simpler one. The
simpler model must be a special case of the complex model where
restrictions have been placed on the parameters of the more complex model.
Let ln(L(M0)) and ln(L(M1)) equal the natural logarithms of the maximum
of the likelihood functions for the simple and the complex models,
respectively. The likelihood ratio test statistic equals

G2 = –2(ln(L(M0)) – ln(L(M1))).

Computer programs typically provide either the value of the maximum of
the likelihood function, the logarithm of the maximum, or –2 times the
logarithm of the maximum. If the null hypothesis is true, then G2 has an
approximate chi-square distribution with degrees of freedom equal to the
difference in the number of parameters between the two models.

The most common type of restriction on parameters is setting them equal
to zero. For example, in the baseline model with all main effects (nominal
SES), we could set all of the parameters for SES and school type equal to
zero; that is, βj2 = βj3 = βj4 = 0 for j = 1 and 2. The complex model is

and the simpler model is

The maximum of the likelihoods of all the models estimated for this
chapter are reported in Table 26.6. The difference between the likelihood
for these two models equals

G2 = –2(–541.8917 + 520.26080) = 43.26.



The degrees of freedom for this test equal 6, because 6 parameters have
been set equal to zero. Comparing 43.26 to the chi-square distribution with
6 degrees of freedom, the hypothesis that SES and/or school type have
significant effects is supported.

Equality restrictions on parameters can also be tested using the likelihood
ratio test. Such tests include determining whether an ordinal explanatory
variable can be treated numerically. For example, when SES was treated as
a nominal variable in the baseline model, SES was represented in the model
by βj3s1i + βj4s2i, where s1i and s2i were effect codes. When SES was treated
as a numeric variable (i.e., si = 1,2,3 for low, middle, high), implicitly the
restriction that βj3 = βj4 was imposed, and SES was represented in the model
by βj3si. The likelihood ratio test statistic equals 3.99, ‘with df = 2 and p =
.14 (see Table 26.6). Even though SES should not be treated numerically for
vocational and general programs, the test indicates otherwise. It is best to
treat categorical explanatory variables nominally, examine the results, and,
if warranted, test whether they can be used as numerical variables.

Tests Over Regressions

A second type of test that is of interest in multinomial logistic regression
modeling is whether two or more of the response categories are
indistinguishable in the sense that they have the same parameter values. If
there is no difference between two responses—say, j and j *—then

Table 26.6 Summary of All Models Fit to the High School and Beyond Data Where Mean
Achievement, School Type, and SES Are Explanatory Variables



where K equals the number of explanatory variables. If two response levels
are indistinguishable, they can be combined (Long, 1997). In our example,
the parameter estimates for the two main effect models have nonsignificant
odds for vocational versus general (see Tables 26.2 and 26.3). This suggests
that vocational and general programs may be indistinguishable.

The indistinguishability hypothesis represented in Equation 21 can be
tested in two ways. The simple method is to create a data set that only
includes the two response variables, fit a binary logistic regression model to
the data, and use a likelihood ratio test to assess whether the explanatory
variables are significant (Long, 1997). In our example, the model in
Equation 13 was fit to the subset of data that only includes students from
general and vocational programs. According to the likelihood ratio test, the
explanatory variables are significant (G2 = 17.53, df = 4, p < .01).

The second and preferable way to test the indistinguishability hypothesis
makes use of the fact that the baseline model is a special case of the
conditional model. Besides using all of the data, this second method has the
advantage that it can be used to simultaneously test whether three or more
of the responses are indistinguishable or to place restrictions on subsets of
parameters. To test the indistinguishability hypotheses for vocational and
general programs relative to the baseline model with all main effects, we fit
the conditional multinomial model with β*′ = (α1, α2, β11, β12, β13, β14) and 
′ = (di1, di2, di1 xi, di1 pi, di1 s1i, di1 s2i); that is, the terms with di2indicators
were all dropped from the model except for the intercept α2. The reduced
model is M4 in Table 26.6, and G2 = 16.22, df = 4, and p < .01. The null
hypothesis is again rejected, and the general and vocational programs are
distinguishable on at least one of the three explanatory variables.

MODEL ASSESSMENT

Before drawing conclusions, the adequacy of the model or subset of models
must be assessed. Goodness of fit, model comparisons, and regression
diagnostics are discussed below.

Goodness of Fit



Two typical tests of goodness of fit are Pearson’s chi-square statistic and
the likelihood ratio chi-square statistic; however, for tests of goodness of fit
to be valid, these statistics should have approximate chi-square
distributions. For the sampling distribution of the goodness-of-fit statistics
to be chi-square requires two conditions (Agresti, 2002, 2007). First, most
fitted values of “cells” of the cross-classification of the response variable by
all of the explanatory variables should be greater than 5. Second, as more
observations are added to the data set, the size of the cross-classification
does not increase. In other words, as observations are added, the number of
observations per cell gets larger.

The High School and Beyond data set, even with 600 students, fails both
of the requirements. Consider the model with only achievement. The cross-
classification of students by high school program type and achievement is
given on the right side of Table 26.7. There are 545 unique values of the
mean achievement scores, so most cells equal 0. If a new student is added
to the data set, it is possible that his or her mean achievement level will be
different from the 545 levels already in the data set, and adding a new
student would add another row to Table 26.7. Even if only school type and
SES are included in the model, the closeness of the approximation of the
sampling distribution of goodness-of-fit statistics is uncertain. The cross-
classification of programs by SES by school type is given on the left side of
Table 26.7, and 5 of the 18 (28%) of the cells are less than 5. The sampling
distributions of Pearson’s chi-square and the likelihood ratio statistics may
not be close to chi-square. The solution is not to throw away information by
collapsing data. Alternatives exist.

In the case of binary logistic regression, the Hosmer-Lemeshow statistic
is often used to assess model goodness of fit (Hosmer & Lemeshow, 2000);
however, no such statistic is readily computed for the multinomial case.
Goodness-of-fit statistics for large, sparse contingency tables, including
multinomial logistic models, is an active area of research (e.g., Maydeu-
Olivares & Joe, 2005). Until more suitable procedures become available in
standard statistical packages, one suggestion is to perform dichotomous
logistic regressions and compute the Hosmer-Lemeshow statistic for each
of them (Hosmer & Lemeshow, 2000).

The Hosmer-Lemeshow statistic is basically Pearson’s chi-square
statistic,



The observed and expected values are frequencies found by ordering the
predicted values from a binary logistic regression model from smallest to
largest and then partitioning the cases into approximately equal groups.
Both the data and the expected values from the regression are
crossclassified into tables of group by response category. Even though the
sampling distribution of the Hosmer-Lemeshow statistic is not chi-square,
comparing the Hosmer-Lemeshow statistic to a chi-square distribution
performs reasonably well.

A dichotomous logistic regression model for academic versus general
was fit with achievement, school type, and SES as an ordinal variable and
yielded a Hosmer-Lemeshow statistic = 8.84, df = 8, and p = .36. For the
binary logistic regression model of vocational and general programs with
only achievement as an explanatory variable, the model had a Hosmer-
Lemeshow statistic = 9.00, df = 8, and p = .34. In both cases, the models
appear adequate.

Model Comparisons

When a subset of models is available and a user wishes to select the
“best” one to report and interpret, various measures and statistics are
available for model comparisons. If the models are nested, then the
conditional likelihood ratio tests discussed in the “Statistical Inference”
section are possible. Although the goodness-of-fit statistics may not have
good approximations by chi-square distributions, the conditional likelihood
ratio tests often are well approximated by chi-square distributions. One
strategy is to start with an overly complex model that gives an adequate
representation of the data. Various effects could be considered for removal
by performing conditional likelihood ratio tests following the procedure
described earlier for testing effects in the model.

Table 26.7 Cross-Classifications of the 600 Students in the High School and Beyond Data
Set by School Type, SES, and High School Program (Left) and by Mean
Achievement and High School Program Type (Right)



When the subset of models is not nested, information criteria can help to
choose the “best” model in the set. Information criteria weight goodness of
model fit and complexity. A common choice is Akaike’s information
criterion (AIC), which equals

–2(maximum log likelihood – number of parameters)

(Agresti, 2002). The model with the smallest value of AIC is the best. The
AIC values for all the models fit in this chapter are reported in Table 26.6.
The best model among those fit to the High School and Beyond data is
model M5, which is the conditional multinomial model with different
explanatory variables for the program types.

When AIC statistics are very close (e.g., M1 and M3), then the choice
between models must be based on other considerations such as
interpretation, parsimony, and expectations. An additional consideration is
whether statistically significant effects are significant in a practical sense
(Agresti, 2007). Although many statistics can be reported, which make
model selection appear to be an objective decision, model selection is in the
end a subjective decision.

Regression Diagnostics

Before any model is reported, regression diagnostics should be
performed. Lesaffre and Albert (1989) extended diagnostic procedures for
dichotomous responses to the multicategory case of multinomial logistic
regression. Unfortunately, these have not been implemented in standard
statistical packages. One recommendation is to dichotomize the categories
of the response, fit binary logistic regression models, and use the regression



diagnostics that are available for binary logistic regression (Hosmer &
Lemeshow, 2000).

Observations may have too much influence on the parameter estimates
and the goodness of fit of the model to data. Influential observations tend to
be those that are extreme in terms of their values on the explanatory
variables. Most diagnostics for logistic regression are generalizations of
those for normal linear regression (Pregibon, 1981; see also Agresti, 2002,
2007; Hosmer & Lemeshow, 2000), but there are some exceptions
(Fahrmeir & Tutz, 2001; Fay, 2002). One exception is “range-of-influence”
statistics. Rather than focusing on whether observations are outliers in the
design or exert great influence on results, range-of-influence statistics are
designed to check for possible misclassifications of a binary response (Fay,
2002). They are particularly useful if the correctness of classifications into
the response categories is either very costly or impossible to check.

PROBLEMS WITH MULTINOMIAL REGRESSION MODELS

Two common problems encountered in multinomial regression models
when there are multiple explanatory variables are multicollinearity and
“quasi” or “complete separation.” As in normal multiple linear regression,
multicollinearity occurs when explanatory variables are highly correlated.
In such cases, the results can change drastically when an explanatory
variable that is correlated with other explanatory variables is added to the
model. Effects that were statistically significant may no longer be
significant.

To illustrate multicollinearity, two-way interactions between all three
main effects in our model were added (i.e., between mean achievement,
SES as a numerical variable [1, 2, and 3], and school type). Table 26.8
contains the Wald chi-square test statistics for testing whether the βs for
each effect equal zero, the degrees of freedom, and p value for each test.
The third and fourth columns contain the results for the model with only
main effects and show that the three effects are statistically significant.
When all twoway interactions are added to the model, nothing is significant
(i.e., the fifth and sixth columns). To reveal the culprit, correlations between
achievement, SES, school type, and interactions containing them are



reported in Table 26.9. Four of the nine correlations are greater than 0.70,
and two of these are greater than 0.90.

Table 26.8 Statistical Test for Effects When There Are Only Main Effects in the Model,
All Two-Way Interactions (Highly Correlated Effects) and All Two-Way
Interactions Where Mean Achievement and SES Are Standardized

Dealing with multicollinearity is the same as that for normal multiple
linear regression. If correlations between main effects and interactions lead
to multicollinearity, then the variables can be standardized. Table 26.9 also
contains the correlations between the standardized explanatory variables,
and these are all quite small. In our example, standardization solved the
multi-collinearity problem. As can be seen in the right side of Table 26.8,
the main effects are significant when the explanatory variables are
standardized.

A problem more unique to multinomial logistic regression modeling is
“quasi-complete separation” or “complete separation of data points.”
Separation means that the pattern in the data is such that there is no overlap
between two or more response categories for some pattern(s) of the values
on the explanatory variables (Albert & Anderson, 1984). In other words,
using the model to classify individuals into response levels performs
perfectly for one or more of the response categories. In a very simple case,
if only men attend vocational programs, then including gender in the model
would lead to separation. Typically, the situation is not quite so simple
when specific combinations among the explanatory variables occur such
that one or more categories of the response variable can be predicted
perfectly. When data exhibit quasi-complete or complete separation,
maximum likelihood estimates of the parameters may not exist. Some
computer programs will issue a warning message that quasi-complete
separation has occurred, and others may not. The estimated standard errors



for the parameter estimates get very large or “blow up.” For example,
separation is a problem in the High School and Beyond data set if the
variable race is added to the model that includes all two-way interactions
for achievement, SES, and school type. Most of the standard errors are less
than 1; however, there are many that are between 10 and 64. Separation
occurs when the model is too complex for the data. The solution is to get
more data or simplify the model.

Table 26.9 Correlations Between Unstandardized Explanatory Variables and Standardized
Explanatory Variables

SOFTWARE

An incomplete list of programs that can fit the models reported in this
chapter is given here. The models were fit to data for this chapter using
SAS Version 9.1 (SAS Institute, Inc., 2003). The baseline models were fit
using PROC LOGISTIC under the STAT package, and the conditional
multinomial models were fit using PROC MDC in the econometrics
package, ETS. Input files for all analyses reported in this chapter as well as
how to compute regression diagnostics are available from the author’s Web
site at http://faculty.ed.uiuc.edu/cja/BestPractices/index.html. Also available
from this Web site is a SAS MACRO that will compute range-of-influence
statistics. Another commercial package that can fit both kinds of models is
STATA (StataCorp LP, 2007; see Long, 1997). In the program R (R
Development Core Team, 2007), which is an open-source version of
SPLUS (Insightful Corp., 2007), the baseline model can be fit to data using
the glm function, and the conditional multinomial models can be fit using
the coxph function in the survival package. Finally, SPSS (SPSS, 2006) can
fit the baseline model via the multinomial logistic regression function, and
the conditional multinomial model can be fit using COXREG.

http://faculty.ed.uiuc.edu/cja/BestPractices/index.html


MODELS FOR ORDINAL RESPONSES

Ordinal response variables are often found in survey questions with
response options such as strongly agree, agree, disagree, and strongly
disagree (or never, sometimes, often, all the time). A number of extensions
of the binary logistic regression model exist for ordinal variables, the most
common being the proportional odds model (also known as the cumulative
logit model), the continuation ratios model, and the adjacent categories
model. Each of these is a bit different in terms of how the response
categories are dichotomized as well as other specifics. Descriptions of these
models can be found in Agresti (2002, 2007), Fahrmeir and Tutz (2001),
Hosmer and Lemeshow (2000), Long (1997), Powers and Xie (2000), and
elsewhere.

MANOVA, DISCRIMINANT ANALYSIS, AND LOGISTIC REGRESSION

Before concluding this chapter, a discussion of the relationship between
multinomial logistic regression models, multivariate analysis of variance
(MANOVA), and linear discriminant analysis is warranted. As an
alternative to multinomial logistic regression with multiple explanatory
variables, a researcher may choose MANOVA to test for group differences
or linear discriminant analysis for either classification into groups or
description of group differences. The relationship between MANOVA and
linear discriminant analysis is well documented (e.g., Dillon & Goldstein,
1984; Johnson & Wichern, 1998); however, these models are in fact very
closely related to logistic regression models.

MANOVA, discriminant analysis, and multinomial logistic regression all
are applicable to the situation where there is a single discrete variable Y
with J categories (e.g., high school program type) and a set of K random
continuous variables denoted by X = (X1 X2, …, XK)′ (e.g., achievement test
scores on different subjects). Before performing discriminant analysis, it is
the recommended practice to first perform a MANOVA to test whether
differences over the J categories or groups exist (i.e., H0: μ1 = μ2 = … = μJ,
where μj is a vector of means on the K variables). The assumptions for
MANOVA are that vectors of random variables from each group follow a



multivariate normal distribution with mean equal to μj for group j, the
covariance matrices for the groups are all equal, and observations over
groups are independent (i.e., Xj ~ NK (μj, Σ) and independent).

If the assumptions for MANOVA are met, then a multinomial logistic
regression model must necessarily fit the data. This result is based on
statistical graphical models for discrete and continuous variables (Laurizten,
1996; Laurizten & Wermuth, 1989). Logistic regression is just the “flip side
of the same coin.” If the assumptions for MANOVA are not met, then the
statistical tests performed in MANOVA and/or discriminant analysis are not
valid; however, statistical tests in logistic regression will likely still be
valid. In the example in this chapter, SES and school type are discrete and
clearly are not normal. This poses no problem for logistic regression.

A slight advantage of discriminant analysis and MANOVA over
multinomial logistic regression may be a greater familiarity with these
methods by both researchers and readers and the ease of implementation of
these methods. However, when the goal is classification or description,
these advantages may come at the expense of classification accuracy,
invalid statistical tests, and difficulty describing differences between
groups. As an illustration of classification using the High School and
Beyond data, discriminant analysis with achievement as the only feature
was used to classify students, as well as a discriminant analysis with all
main effects. Frequencies of students in each program type and the
predicted frequencies under discriminant analysis and multinomial logistic
regression are located in Table 26.10. In this example, logistic regression
performed better than discriminant analysis in terms of overall classification
accuracy. The correct classification rates from the multinomial logistic
regression models were .58 (achievement only) and .60 (main effects of
achievement, SES, and school type), and those for linear discriminant
analysis were .52 in both cases.

If a researcher’s interest is in describing differences between groups,
multinomial logistic regression is superior for a number of reasons. The
flexibility of logistic regression allows for a number of different models. In
our example, we were able to test whether SES should be treated as an
ordinal or nominal variable. Furthermore, we were also able to discern that
students who attended general and vocational programs were
indistinguishable in terms of SES and school type, but students who
attended academic programs versus one of the other programs were



distinguishable with respect to achievement test scores, SES, and school
type. We were also able to describe the nature and amount of differences
between students who attended general and vocational programs in a
relatively simple way. The differences between students in academic
programs and either a general or vocational program were slightly more
complex but still straightforward to describe.

EXERCISES

1. Use the High School and Beyond data set (Tatsuoka & Lohnes, 1988)
to model students’ career choice as the response variable. Consider gender,
achievement test scores, and selfconcept as possible explanatory variables.
Do any of the careers have the same regression parameters? Note that some
careers have very low numbers of observations; these may have to be
deleted from the analysis.

2. The English as a second language (ESL) data come from a study that
investigated the validity and generalizability of an ESL placement test (Lee
& Anderson, in press). The test is administrated to international students at
a large midwestern university, and the results are used to place students in
an appropriate ESL course sequence. The data set contains the test results
(scores of 2, 3, 4), self-reported Test of English as a Foreign Language
(TOEFL) scores, field of study (business, humanities, technology, life
science), and topic used in the placement exam (language acquisition,
ethics, trade barriers) for 1,125 international students. Controlling for
general English-language ability as measured by the TOEFL, use this data
set to investigate whether the topic of the placement test influences the test
results. In particular, do students who receive a topic in their major field of
study have an advantage over others? Majors in business were thought to
have an advantage when the topic was trade, and those in humanities might
have had an advantage when the topic was language acquisition or ethics.
Create a variable that tests this specific hypothesis.

Table 26.10 Predicted Frequencies of Program Types for Linear Discriminant Analysis
(DA) and Multinomial Logistic Regression (LR)



NOTE

1. See Chapter 21 (this volume) for details on Poisson regression.
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onventional regression analysis is typically used in social science
research. Usually, such an analysis implicitly assumes that a common
set of regression parameter estimates captures the population

characteristics represented in the sample. In some situations, however, this
implicit assumption may not be realistic, and the sample may contain
several subpopulations such as high math achievers and low math
achievers. In these cases, conventional regression models may provide
biased estimates since the parameter estimates are constrained to be the
same across subpopulations. This chapter advocates the applications of
regression mixture models, also known as latent class regression analysis,
in educational and social sciences research. Regression mixture analysis is
more flexible than conventional regression analysis in that latent classes in
the data can be identified and regression parameter estimates can vary
within each latent class, which enhances prediction accuracy. An illustration
of regression mixture analysis is provided based on an authentic data. The
strengths and limitations of the regression mixture models are discussed in
the context of educational research.

Typical ordinary least squares (OLS) regression analyses are common in
educational and social science research. Typically, regression analysis is
used to investigate the relationships between a dependent variable (either
continuous or categorical if using logistic regression) and a set of
independent variables based on a sample from a particular population.



Often, the particular interest is placed on assessing the effect of each
independent variable on the dependent variable, and such an effect is
considered as the average effect value across all subjects in the sample. For
example, if math achievement scores of 500 students are regressed on a
measure of their motivation, the value for the slope or the regression
coefficient quantifies the average change in math achievement across all
500 students for one unit change in motivation. The problem is that these
500 students are treated as one homogeneous group regarding motivation
influences on math achievement, and the implicit assumption is that these
students are from the same population with similar characteristics. What if
the relationship between these two variables is different between different
groups of students in some way that is not explicitly modeled? These (often
interesting) differences would be masked.

This chapter describes the use of the regression mixture model as a tool
to study the relationship between a dependent variable and a set of
independent variables by taking into consideration unobserved population
heterogeneity, which can enhance the prediction accuracy.

BACKGROUND

In any standard statistical textbook, a general regression model can be
written as

yi = β0 + β1 x1 + β2 x2 + … + βk xk + εi, (1)
 

where β0is the intercept, βk is the regression slope or coefficient for a given
independent variable k, and εi is the error term for individual i. Equation 1
has one key feature. It assumes that all individuals are drawn from a single
population with common population parameters.

However, when a sample consists of various groups of individuals, such
as males and females, or different intervention groups, regression analysis
can be performed to examine whether the effects of independent variables
on a dependent variable differ across groups, in terms of either intercept or
slope. These groups can be considered from different populations (e.g.,
male population or female population), and the population is considered



heterogeneous in that these subpopulations may require different population
parameters to adequately capture their characteristics. Since this source of
population heterogeneity is based on observed group memberships such as
gender, the data can be analyzed using regression models by taking into
consideration multiple groups. In the methodology literature,
subpopulations that can be identified beforehand are called groups (e.g.,
Lubke & Muthén, 2005; Muthén, 2001).

In this chapter, nevertheless, special attention is devoted to the situations
in which population heterogeneity is unobserved. In other words, group
membership of individuals in the population is latent (McCutcheon, 1987;
Waller & Meehl, 1998). For example, students may differ with respect to
socioemotional development, and they may belong to either of two
qualitatively different types, such as children with high math self-efficacy
and children with low math self-efficacy. If we were to study the effect of
socioemotional development on student math achievement using a
regression model as represented in Equation 1, we would evaluate the
average values of intercept and slope (or rate of change) across these two
types of students; that is, there is one regression line that describes the
relationships between student socioemotional development and math
achievement. In this typical regression analysis, the investigator assumes
that the sample is from a homogeneous population and that the common
parameter estimates are adequate to depict the population characteristics
represented in the sample. In other words, the conventional regression
model assumes that all individuals belong to a single population, and
independent variables have the same influence on the dependent variable
for all individuals (often not a tenable assumption). The variance that
cannot be explained by this common model is treated simply as random
error. For example, Figure 27.1 shows the association between the teacher’s
rating on the child’s math proficiency level and his or her math test score
based on a large data set (the data will be discussed below). It seems likely
that there may be some distinct subgroups in these data, especially when
national representative data are involved. If we ignore such heterogeneity in
the data, the regression model in Equation 1 may provide biased estimates
for the data at hand. For instance, it is possible that children with a larger
math gain may be more influenced by math self-efficacy with respect to
their proficiency level than by school environment, while children with low
math gain may be more influenced by both math self-efficacy and school



environment. Thus, the assumption of population homogeneity may not be
realistic. As another example, the variation in reading development among
poor readers may be affected more by family environment, whereas the
variation in reading development for good readers may be more influenced
by teaching methods or vice versa. Moreover, the variances of the residuals
may also differ for these two groups of students, and such group differences
in variance may contribute to the unequal variance across combinations of
the levels of the independent variables.

Figure 27.1 Scatterplot between children’s math proficiency probability scores and the
teacher’s rating of the child’s math self-concept of proficiency. Different shapes
may suggest the possible existence of different subpopulations or latent classes
of children in the sample.

LINEAR REGRESSION MIXTURE MODEL

This chapter focuses on applications of the linear regression mixture model
in situations where population heterogeneity is unobserved (i.e., latent



class) and observed group variables such as gender are incorporated in the
analysis as covariates. Regression mixture models,1 also known as latent
class regression analysis (Andersen, 2004; Bouwmeester, Sijtsma, &
Vermunt, 2004; Vermunt & Magidson, 2005), are a part of a general
framework of finite mixture models (Lubke & Muthén, 2005; Muthén,
2001; Muthén & Muthén, 2000; Nagin & Tremblay, 2001; Vermunt &
Magidson, 2002) and can be viewed as a combination of the conventional
regression model and the classic latent class model (Lazarsfeld & Henry,
1968; McCutcheon, 1987). These models are used to identify the
relationships between the dependent variable and a set of independent
variables along with the number of latent classes that best fit the data and to
test potential predictors for a given latent class. Unlike conventional
regression analysis, which assumes that the regression function in the
sample arises from a single multivariate normal distribution, the linear
regression mixture model allows for heterogeneous regression functions by
modeling a mixture of distinct multivariate normal distributions, each
corresponding to a latent class. Individuals within each latent class share the
same regression function.

Thus, regression mixture analysis relaxes the single population
assumption to allow for parameter differences across unobserved
subpopulations. This is accomplished by using latent classes, which implies
that individuals vary around different regression functions. For example, in
a study of the factors that may influence student math achievement, a
researcher may include student self-efficacy, motivation, teaching methods,
and classroom size as independent variables. The starting point of
performing regression mixture analysis is first to identify the number of
latent classes that best fit the data. Then the influences of independent
variables on the dependent variable can be examined within each latent
class. It may be possible that for a given latent class, only self-efficacy has
any effect on math achievement, while for a second latent class, math
achievement may be influenced by teaching methods and classroom size.
Combined use of latent classes with regression models results in a very
flexible analysis framework. On the other hand, certain unique issues of
regression mixture analysis deserve some special attention:

1. Deciding the number of latent classes. Since the linear regression
mixture model is a part of finite mixture models (B. O. Muthén, 2001),



multiple criteria are available to evaluate the number of latent classes for
regression analysis because different indices provide information about
different aspects of model fit. Comparisons between competing models
assess relative fit to the data. For instance, the likelihood ratio test (Lo,
Mendell, & Rubin, 2001) can be used to compare regression mixture
models with differing numbers of latent classes; a significant chi-square
value (e.g., p < .05) indicates that the specified model is unlikely to be
generated by a model with one less class. Also, selection of a final model
can be based on information criteria, such as the Akaike information
criterion (AIC; Akaike, 1973) or the Bayesian information criterion
(Schwarz, 1978). Lower observed criterion values are indicative of
improved fit. Another index is Entropy (Ramaswamy, DeSarbo, Reibstein,
& Robinson, 1993), which assesses the classification accuracy of placing
people into classes based on their model-based probabilities. It ranges from
0.00 to 1.00, with higher values indicating better classification. Also,
proportion of classification errors, which is the opposite of Entropy, is used
as well (Bouwmeester et al., 2004). It should be pointed out that although a
number of model fit statistics can be used to evaluate a plausible model, the
choice of a final model also depends on considerations of substantive
issues, previous research results, model parsimony, consistency with theory,
and so on. One should note that it is difficult to identify the exact number of
latent classes that represent true population heterogeneity (Bouwmeester et
al., 2004). Model selection is a complex issue (Burnham & Anderson,
2002), and so far there is no consensus regarding the best criteria for
determining the number of classes in the mixture modeling literature.

2. Interaction between categorical and continuous variables. In a
conventional regression analysis, one often examines whether the intercept
or slope of a regression model is common among different groups (e.g.,
gender or ethnic groups) when such grouping variables are included in the
model. This is usually specified in terms of interaction between categorical
variables and continuous variables in an analysis.2 In regression mixture
analysis, however, the observed group membership variables are specified
as covariates rather than as predictors, and they are used to predict the latent
class membership. In other words, the formation of the latent classes is
expected to be influenced by the covariates. Thus, the power of regression
mixture analysis is that the specific behavior patterns as measured by the



dependent variable can be distinguished by a particular class, and
comparison of regression models across various classes can be examined
with respect to the influence of covariates.

3. Curvilinear effects. As in conventional regression analysis, curvilinear
effects can be modeled by adding powered terms of a certain predictor.3 For
example, if a curvilinear relationship (e.g., quadratic shape) between
reading achievement and hours spent on reading is hypothesized based on
previous results, a quadratic term for hours spent on reading can be added
to the regression mixture model. Then one can examine whether such a
quadratic shape holds across different latent classes of individuals.

4. Outliers and equal variance. Two key assumptions of conventional
regression analysis are equal variance and being free from outliers.4 When
outliers occur, one simple strategy can be to delete them, provided that
these “outliers” are from a different population. With regression mixture
analysis, these outliers may be considered as members of some latent
classes. This is one of the advantages of regression mixture analysis when
the population is heterogeneous. For example, there may be some slower
learners in a sample under study who may have a much lower math score
than the rest of the “normal” students. Parameter estimates from regular
regression analysis may be biased when a common set of parameters is
estimated for all students. But these slower learners can be identified as a
distinct latent class in regression mixture analysis, thus leading to a more
accurate prediction of math achievement for this class of students as well as
that of other classes. Moreover, since individuals in each latent class are
more likely to be homogeneous with respect to certain personal
characteristics, the likelihood of equal variance across different values of
predictors is also increased within each class. This possibility of violating
these two assumptions, which is sometimes difficult to deal with, can be
alleviated.

Through the above brief discussion of those four issues, one can see
some advantages of regression mixture models as well as unsolved
problems. But the regression mixture model is a very general and flexible
model that can be applied to a wide range of behavioral phenomena. A
basic linear regression mixture model can be conceptualized as follows:5



Equation 2 has the appearance of a conventional regression model except
for the subscript c (c = 1, 2, …, C), which indicates that the parameters may
vary around different latent classes. In other words, individuals within each
latent class c have the same parameter estimates, which, however, differ
across latent classes. Equation 2 says that a dependent variable can be
predicted as a function of predictor variables, and a C category latent class
variable c is included, with each category representing a homogeneous
subpopulation having identical regression coefficients. In essence, this
represents another way of modeling Group × Predictor interactions that
many of us attempt to model in conventional regression.6

Although a few software programs can perform regression mixture
analysis, the major computer programs for such an analysis are Mplus
(Muthén & Muthén, 2001), GLLAMM (Skrondal & Rabe-Hesketh, 2004),
and LatentGold (Vermunt & Magidson, 2005). In the following section, the
LatentGold 4.0 program was used to demonstrate the linear regression
mixture analysis based on a real data set.

ILLUSTRATION OF REGRESSION MIXTURE ANALYSIS

To illustrate these points, I present an example of how relationships
between independent variables and a dependent variable in the potential
presence of population heterogeneity may be investigated with the linear
regression mixture model. The latent class variable c is used to model
unknown heterogeneity, whereas observed group membership variables that
are known to introduce heterogeneity are treated as covariates. In linear
regression mixture analysis, one first needs to specify the number of latent
classes. In the model estimation process, the parameters of the model are
estimated, and the posterior probabilities with which each individual
belongs to each of the classes are computed. The results include the model
parameters such as within-class regression coefficients, within-class and an
overall R2, within-class error variance, and so on, as well as the posterior
class probabilities for each individual.



Research Questions. To illustrate linear regression mixture analysis in
comparison to conventional regression analysis, this example is framed
around the following research questions:

1. What is the relationship between children’s fifth-grade math
achievement, children’s math self-concept, and teachers’ rating of
children’s math proficiency, approaches to learning, and self-control? This
research question addressed the issues of (a) whether self-reported math
selfconcept is predictive of children’s math achievement, (b) how predictive
teacher judgments of students’ academic performance are, and (c) whether
teachers’ assessment of children’s adaptive behaviors and approach to
learning predicts children’s math achievement.

Marsh, Relich, and Smith (1983) found that math self-concept was most
highly correlated with math achievement (r = .55). In addition, it has been
found that teacher judgment of children’s academic competence has
concurrent or predictive validity. For example, Hoge and Butcher (1984)
found a correlation coefficient of .71 between the teacher’s judgment and
the student’s actual scores on standardized tests. In the studies they
reviewed, Hoge and Coladarci (1989) indicated that judgment accuracy
ranged from .28 to .92, with a median correlation of .66. Thus, it would be
interesting to replicate such a finding using a national representative sample
of actual children.

Regarding teachers’ rating of children’s social competence, extensive
research has taken place regarding the importance of social competence and
the skills that contribute to that competence. Social competence has been
found to be a significant predictor of academic achievement from
kindergarten through sixth grade (Clark, Gresham, & Elliot, 1985). On a
study of fifth graders, Walker, Stieber, and Eisert (1991) have found
teachers’ ratings of social skills to be the best predictor of future academic
achievement, school adjustment, and delinquency in the next 3-year period.
Therefore, teachers’ ratings on the approach to learning and self-control
were used to see whether some of the findings could be replicated.

2. Do children in different latent classes vary in terms of children’s
gender and race? In this research question, we attempted to examine



whether children’s gender and racial background were associated with
latent classes in the data.

It is important to note that many of the variables may be related to
children’s math achievement, and they are not explored in this
investigation. The variables examined here were just a few of the variables
that can or should be examined in the data and were selected to demonstrate
the range of information that may be obtained from the linear regression
mixture analysis and may help shape the design for future studies. Readers,
however, are cautioned not to draw definitive causal inferences based on the
results presented in this example but rather to focus on the proposed
analysis paradigm.

Data. The data used in this illustrative analysis were from the Early
Childhood Longitudinal Study (ECLS), an ongoing study by the U.S.
Department of Education, National Center for Education Statistics, that
focuses on children’s early school experiences beginning with kindergarten
(Tourangeau, Nord, Lê, Pollack, & Atkins-Burnett, 2006). The study
follows a nationally representative sample of children from kindergarten
through fifth grade. The sample reflected all children from various racial
and language backgrounds. Sampling for the ECLS was based on a dual-
frame, multistage sampling design, with 100 primary sampling units
(PSUs). For simplicity, only the data collected during 2004 from the fifth
graders were in this study. The sample size in the current analysis was 1,342
children, which included 650 males and 692 females. Among the total
analysis sample of children, 797 were White, 126 were Black, 230 were
Hispanic, 141 were Asian, and 48 were multiracial.

Measures. In the present analysis, four measures were used as independent
variables. They were the following:
 

Self-Description Questionnaire—Math Self-Concept (Marsh, 1990). This measure assesses how
children think and feel about themselves in terms of math competence. This scale includes eight
items on math grades, the difficulty of math work, and interest in and enjoyment of math, with
the score scale ranging from 1 to 4. The analysis used the average score of each participant.
Academic Rating Scale—Math. This is the teachers’ ratings of children’s academic performance
in math. Teachers were asked to rate each child’s proficiency in the following areas: number
concepts, measurement, operation, geometry, math strategies, and beginning algebraic thinking,
with the score scale ranging from 1 to 5. The analysis used the average score of each participant.



Social Rating Scale—Approach to Learning. This is the teachers’ judgment of children’s social
competence. The approach to learning scale measures behaviors that affect the ease with which
children can benefit from the learning environment. It includes six items that rate the child’s
attentiveness, task persistence, eagerness to learn, learning independence, flexibility,
organization, and following of classroom rules, with the score scale ranging from 1 to 4. The
analysis used the average score of each participant.
Social Rating Scale — Self-Control. This measure has four items that rate the child’s ability to
control behavior by respecting the property rights of others, controlling temper, accepting peer
ideas for group activities, and responding appropriately to peer pressure, with the score scale
ranging from 1 to 4. The analysis used the average score of each participant.

In all above measures, the scores were coded positively, with high scores
indicating higher self-concept and higher teacher rating on academic and
social competence. The reported reliability for these independent variables
ranged from .79 to .92 (Tourangeau et al., 2006).

The dependent variable used was a composite math proficiency
probability score that was computed as an average across nine math skill
levels: count/number, relative size, ordinality/sequence, add/subtract,
multiply/divide, place value, rate and measurement, fractions, and
area/volume. The probability scores were from 0.00 to 1.00, with a larger
probability score indicating an overall higher achievement across these
math skill levels.

In addition, children’s gender and race were included as covariates. They
were used to increase the classification accuracy of individuals into each
latent class. In this chapter, children’s race was represented in five
categories: White, Black, Hispanic, Asian (which includes Pacific Islanders
and American Indians), and multiracial.

Fitting the Linear Regression Mixture Model. Since the scores of the
dependent variable used were continuous, the appropriate regression
mixture model was a linear analysis. The analysis was exploratory with
respect to the sources of latent population heterogeneity. Commonly, a key
interest in an exploration of population heterogeneity is to determine the
number of latent classes that best fit the data.

Regression mixture models ranging from a one-class latent model to a
four-class mixture model were tested using LatentGold 4.0. In all of these
models, the dependent variable was math proficiency probability scores,
and the same set of independent variables was used, with child’s gender and
race as covariates. Among these four models, we sought a model with the
smallest AIC value and a large overall R2.



Table 27.1 shows the evaluation statistics that were used to choose a final
model. Although a four-class model had the smallest AIC value, the
difference from the AIC value of a three-class regression model was less
than 10 points, indicating that a three-class regression model was also
plausible (Burnham & Anderson, 2002). In addition, overall R2 for the
three-class regression model was only 3% less than that of the four-class
regression model, and the proportion of classification errors increased again
after the three-class regression model. It was interesting to notice that the
model with one class had the largest AIC in comparison with other models,
which suggested that population homogeneity was not likely to be a
realistic assumption in the sample. On the basis of the evaluation of fit
statistics, the three-class linear regression model was selected as optimal. In
this three-class model, regression coefficients and error variance were class
dependent; that is, they were freely estimated without any equality
constraints.

Results. Table 27.2 provides the regression coefficients for each of the three
latent classes, along with the estimated class proportions and the mean math
probability scores. Table 27.3 shows the classification profile information.
It can be seen that for Class 1, which consisted of 57% of the sample, math
achievement was significantly associated with only the teacher’s rating on
math competence. This variable only accounted for about 49% of the
variance in math achievement. What this implied was that for individuals
within this class, teacher judgment of these children’s math competence was
statistically accurate in predicting their actual achievement. Other
information provided in the analysis, as shown under “Covariates” in
Table 27.2, was that male children were more likely to be members of Class
1 than were female children, and White children were also more likely to be
members of Class 1 than were children of other ethnic backgrounds. The
class proportion size for Class 1 suggested (as shown in Table 27.3) that
57% were male children and 43% were female children. White children
constituted 82% of Class 1 individuals.

Table 27.1 Model Fit Statistics for Four Latent Class Models



NOTE: AIC = Akaike information criterion.

For individuals in latent Class 2, their math achievement was
significantly associated with teacher rating on math competence and on
approach to learning. These two variables accounted for about 63% of
variances in math achievement. Thus, it seemed that children with higher
math achievement had a higher teacher rating on math competence and
approach to learning. This class consisted of 39% of the total sample, of
which 61% were female children and 39% were male children. Class 2 also
had 33% White children, 18% Black children, 29% Hispanic children, 16%
Asian children, and 4% multiracial children (see Table 27.3).

Table 27.2 Parameter Estimates and Model-Based Class Size



Table 27.3 Covariates Associated With Latent Class Membership (in Percentages)



For Class 3, children’s math achievement was significantly associated
with children’s math selfconcept, teacher rating of math competence, and
self-control. Children with high math scores thus tended to report a higher
math self-concept and had a higher teacher rating for math competence and
self-control. There was some information about children in Class 3 that was
interesting to note: (a) About 95% of the variance in math achievement was
accounted for by these three variables; (b) this class consisted of about 4%
of the total sample, of which 75% were female children; (c) among these
4% of the children, 62% were Asian, 15% were Hispanic, 14% were
multiracial, 8% were Black, and about 1% were White (see Table 27.3); and
(d) White children were less likely to be members of this class (β = –2.73, p
< .05).

To contrast the linear regression mixture model with the conventional
regression analysis, a conventional regression analysis was performed with
the same dependent variable and independent variables while controlling
for gender and race. The results are shown in the last column of Table 27.2.
It can be seen that children’s math achievement was significantly related to
their math self-concept, teacher rating on math competence, and teacher
rating of approach to learning. Teacher rating of children’s self-control was
not significantly related to math achievement. On the surface, the
conclusion could be that, on average, children who had high math scores
tended to report high self-concept in math and had higher teacher ratings of
math competence and approach to learning. However, it was important to
point out that although it almost looked to the readers that the conventional
regression model provided a “superior” analysis since three predictors were
statistically significant, the key issue was that each class had its own unique
predictor pattern rather than a number of statistically significant predictors.
Thus, the results from conventional regression analysis were biased since it
failed to consider population heterogeneity in the data. It was inappropriate
to compare what type of analyses (i.e., regression vs. regression mixture)
would be better on the basis of the number of statistically significant
predictors.

Conclusion. To address the research question regarding relationship
between children’s math achievement with math self-concept and teacher
judgment of math competence and of social competence, the findings
indicated that teacher judgment of math competence was statistically



accurate in predicting children’s math performance across all three latent
classes. This was a quite robust finding and replicated the previous findings
about accuracy of the teacher judgment (e.g., Hoge & Butcher, 1984).
However, children’s math self-concept and teacher ratings of their approach
to learning and self-control were statistically significantly associated with
math achievement only for distinct subgroups of children. That is, this
relationship depended on types of children in the population. Thus, the
previous findings concerning this association were replicated only for some
children, particularly children of specific ethnic groups. For instance,
teacher rating of selfcontrol was found to be statistically significantly
related to math performance for children who consisted of only 4% of the
sample, of whom 62% were Asian children and 75% were female children.
It was interesting to note that if the conclusions were based on the results
from conventional regression analysis, then the previous findings would be
replicated, in that the children’s math self-concept would be a strong
predicator of actual math performance (Marsh et al., 1983), social
competence, and approach to learning; however, self-control would not be
predicative of math performance (e.g., Clark et al., 1985) for “average”
children. Population heterogeneity in the sample, therefore, would be
completely overlooked, and valuable information regarding differential
subgroup performance would be lost in explaining mathematics
achievement.

DISCUSSION

Regression mixture models are a tool to investigate population
heterogeneity. As anticipated, this application of regression mixture
modeling to an actual data set indicated that multiple latent classes might be
embedded with the single regression functional form. Compared with
conventional regression analysis, which assumes one equation would fit all
individuals, a regression mixture analysis can provide a detailed description
of subpopulations of individuals within a sample. In the illustration, the
conventional regression analysis revealed only average results across all
children, the error variance was quite large, and R2 was quite small in
comparison to the results of linear regression mixture analysis. For instance,
the error variance was close to zero, and R2 was .94 for Class 3, indicating a



good fit between the model and the data from these individuals. In contrast,
the conventional regression model had an inferior modeldata fit. Thus,
regression mixture models may improve predictability because the
individual differences are systematically classified to form homogeneous
groups. The regression mixture analysis resulted in subpopulations with
specific patterns of regression function and with differing proportions of
female and ethnic children.

It should be pointed out that regression mixture modeling is a different
analytical technique for studying population heterogeneity than multiple
group modeling. The purpose of regression mixture analysis is to identify
differing regression functions across latent classes, and such an approach is
appropriate if the interest is in detecting and characterizing the relationships
among variables according to subpopulations of individuals. The observed
grouping variables such as gender may be used as covariates to help predict
the latent class membership. For instance, in the illustration, Class 1 is
predicted by gender and race, while Class 2 is not predicted by either
grouping variables. Thus, the latent class has a different interpretation, and
it is used to describe a different kind of heterogeneity in the sample. But
one should realize that classification of individuals into latent classes is
model dependent, and it is not intrinsic to the individuals in the sample
(Lubke & Muthén, 2005). On the other hand, the purpose of multiple-group
regression analysis is to compare these groups with respect to their
regression functions, and the observed group membership is an intrinsic
characteristic of the individual (e.g., individuals are either male or female).

Regression mixture analysis is not without its limitations. First is the
determination of the proper number of latent classes in the data. As Bauer
and Curran (2003) suggested, mixture modeling can detect population
heterogeneity as well as distribution skewness. If there exists nonnormality
within class, nonnormality of observed variables, or nonlinearity, the latent
class may simply describe the skewness and may not reflect latent classes
of individuals in the sample. Thus, in addition to ensuring the normality and
linearity assumptions, one should also consider at a conceptual level
whether an additional class is providing meaningful information about the
heterogeneity.

Second, a model identification index such as AIC may not provide
sufficient evidence for models of heterogeneity (Bauer & Curran, 2004).
There is no consensus, as discussed previously, regarding which model



identification index can be used to select “best” models. Therefore,
ambiguity in model selection will continue. In this chapter, linear regression
mixture analysis is used as one possible way of exploring the data; such an
approach is similar to conventional exploratory regression analysis, and
results should be regarded as preliminary. Independent replication of the
study would be essential for generalizing the results.

Readers should keep these limitations in mind when applying regression
mixture models. But it seems that regression mixture models are a useful
tool and can be used to model heterogeneity in regression function, thus
leading to improved regression solutions. In a sense, conventional
regression models are a special case of regression mixture models where
only one class is assumed and aggregate regression function is concerned.
However, it would be necessary to investigate this constraint that a set of
common parameter estimates is sufficient to capture the population
characteristics. Regression mixture models, on the other hand, place the
regression structure in a much more flexible way.

NOTES

1. It should be noted that there are various types of regression mixture models (e.g., Vermunt &
Dijk, 2001), but this chapter will only focus on the linear regression mixture model. There are also
different terms used for what I will refer to as the regression mixture model, including latent
regression analysis (e.g., Andersen, 2004), the mixture regression model (e.g., Zhu & Zhang, 2004),
or the finite mixture regression model (e.g., Grun & Leisch, 2004).

2. Editor’s note: For more information on testing interactions in multiple regression, the interested
reader may refer to Aiken and West (1996).

3. Editor’s note: For more information on testing curvilinear relationships in multiple regression
formats, the interested reader may refer to Aiken and West (1996).

4. Readers interested in outliers should refer to Chapter 14 (this volume) on the benefits of outlier
removal, as well as Chapter 18 (this volume) on robust methods.

5. Technically speaking, formulation of the regression mixture model is mathematically much
more complicated than that in Equation 2. For the purpose of simplicity, Equation 2 shows that the
conceptual idea of a multiple regression function is estimated for a number of classes, including
influence of covariates.

6. As mentioned earlier, different types of regression mixture models exist. Depending on the
scale type of the dependent variable, various regression mixture models can be estimated. For
instance, if a dependent variable is continuous, the linear regression mixture model can be performed,
as shown in Equation 2. On the other hand, if the dependent variable is dichotomous or nominal,
binary or multinomial logistic regression mixture analysis can be formulated and performed, which
would require a substantially different model. Moreover, for models containing C > 1 latent classes,
covariates such as gender can be included in the model to improve classification of each case into the
most likely class; that is, covariates can be used to predict the latent class membership.
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MEDIATION, MODERATION, AND
THE STUDY OF INDIVIDUAL
DIFFERENCES

 
A. ALEXANDER BEAUJEAN

century ago, psychology was a young field, greatly influenced by the
physiological tradition of Hemholtz and Weber, that looked at
psychological phenomena in an experimental fashion, and “only that

which could be directly observed and studied under controlled laboratory
conditions was deemed worthy of study” (Minton & Schneider, 1980, p. 7).
Any individual variation in these experiments was just considered error.

Galton, with his precocious nature and Darwinian influence, sought to
apply “the principles of variation, selection, and adaptation to the study of
human individuals” through his study of quantitative genetics, mental
chronometry, and statistics (Anastasi & Foley, 1949, p. 9). Likewise, Cattell
(1890) sought to assess individual differences in his “mental tests,” which
he administered to a generation of freshmen at Columbia College. It was the
work of Binet and Henri (1896) and Stern (1900) that focused psychologists
on major concerns such as (a) the nature and extent of differences in
individuals and groups, (b) the factors that determine these differences, and
(c) how the differences are manifested.

Paramount to this study of individual variation was the study of
psychometrics and statistics, as “an intelligent interpretation of almost any
study in differential psychology requires an understanding of certain
fundamental statistical concepts” (Anastasi, 1958, p. 9). Yet few texts on
individual differences include sections on the appropriate statistical
methods for studying these issues, such as statistical moderation, mediation,



and moderated mediation (but see Reyonds & Willson, 1985). In fact, it was
not until Baron and Kenny (1986) published their paper on testing these
ideas systematically that the issue was brought to the fore. In the 20 years
since, the importance of individual differences has continued to grow, yet
many researchers fail to use best practices in properly testing for these
phenomena. Consequently, this chapter will focus on the concepts of
moderation, mediation, and moderated mediation within the framework of
ordinary least squares (OLS) multiple regression. Although more advanced
modeling techniques are available—for example, covariance structure
analysis (Jaccard & Turrisi, 2003) and multilevel models (Davison, Kwak,
Seo, & Choi, 2002; Raudenbush & Bryk, 2002)1—the ubiquitous use of
multiple regression within the field of individual differences suggests that
determining and delineating best practices are both necessary and
advantageous. Moreover, alternative techniques can be overly complex and
require a more refined statistical background for their interpretation, and
currently, there is no consensus as to what non regression procedure is “the
best” for a given analysis. Third, and probably most important, the best
practice concepts involved in mediation, moderation, and moderated
mediation are not strictly dependent on a specific method per se. Thus,
gaining an understanding of best practices within a multiple regression
framework can help determine the same in more complex models.

DEFINING THE CONCEPTS

Moderation

Statistical moderation is the specification of a variable (or variables)
whose variation determines the conditions upon which a given magnitude
of an effect occurs. Put another way, a moderator variable affects the
relationship between two other variables, so that the nature of the impact of
the predictor on the criterion varies according to the level or value of the
moderator (Holmbeck, 1997).2 While Baron and Kenny (1986) write that
moderator variables are typically introduced when there is an unexpectedly
weak or inconsistent relation between an independent and an outcome
variable, moderation is also of specific concern to many studies in the social



sciences because results indicate “when” or “for whom” a variable most
strongly predicts or causes an outcome variable (Frazier, Tix, & Barron,
2004).

Some examples of studies ripe for moderation analysis include the
following:
 

Is the relationship between Spearman’s (1904) g and academic achievement the same for males
and females?
 
Does reaction time predict psychometric test performance the same across the entire spectrum of
cognitive abilities?
 
Do race and level of extroversion interact in the prediction of sexual orientation from serotonin
reuptake ability?

Mediation

Mediation is the specification of a variable (or set of variables) that
provides a link (often causal in nature) between an independent variable and
a dependent variable that have an already determined effect.3 It is “the
generative mechanism through which the focal independent variable is able
to influence the dependent variable of interest” (Baron & Kenny, 1986, p.
1173). In other words, mediating variables offer an explanation as to why or
how certain effects occur.

Historically, mediation hypotheses, per se, have not held as much interest
in the field of individual differences as moderation studies, although they
can be of value to the field, as they can help identify variables that might be
plausible moderators for a given relationship (Baron & Kenny, 1986).
Moreover, they can help give a stronger theoretical justification for the
presence of moderation. For example, if sex moderates a given relationship,
further inquiry may find that estrogen level is the causal mechanism behind
that relationship.

Moderated Mediation

Moderated mediation is the specification of a variable (or variables)
whose variation determines the conditions upon which a mediation effect
occurs. In other words, “if the moderator is an individual differences
variable, then it would mean that the mediating process that intervenes



between the treatment and the outcome is different for people who differ on
that individual difference” (Muller, Judd, & Yzerbyt, 2005, p. 854).

An example may help clarify the concept. It is known that socioeconomic
status (SES) and longevity are positively related, as people who have more
money tend to live longer (Adler et al., 1994; Adler & Ostove, 1999).
Gottfredson (2004; Gottfredson & Deary, 2004) hypothesized that the
relationship is due to cognitive ability (i.e., cognitive ability is the
underlying variable that explains why SES and longevity are related). Thus,
cognitive ability is hypothesized to mediate the SES-longevity relationship.
One could take Gottfredson’s hypothesis a step further and hypothesize that
cognitive ability mediates the SES-longevity relationship for Caucasians
but not for people of color. If the second hypothesis holds, then race is said
to moderate the ability of cognitive ability to mediate the SES-longevity
relationship.

FORMULAIC STRUCTURES AND RELATED ISSUES

Moderation

Before going into the statistical details, it is wise to heed the advice of
Frazier et al. (2004), who write that any study involving moderation needs
to be well based in theory. This is important for any branch of systematic
scientific inquiry, but especially when related to moderation. First, in order
to apply the findings to some new set of conditions, one must understand
the underlying mechanisms of the initial moderation. Second, to develop an
appropriate design (i.e., adequate power, appropriate levels of the
moderating and outcome variables), one has to have a grasp of the
underlying reasons why a moderation effect might be found (B. Smith &
Sechrest, 1991). Third, for a study to be set up properly (e.g., testing a
specific hypothesis), there has to be an overarching theory on which to base
the design (i.e., do not commit a Type III error; Mitroff & Featheringham,
1974). For example, if one of the moderating variables is categorical, theory
should, a priori, give an indication of what specific categories should be
assessed and how the effect(s) will differ across them.



Conceptually, Figure 28.1 represents multiple regression with a
moderating variable: X is related to Y of the magnitude B1. Now, if a third
variable was added, Z, that affects the X-Y relationship at different levels of
Z (e.g., Z1, Z2, …, Zm), then Z is a moderator.

Formulaically, a simple moderation model looks as follows:

Y = B0 + B1X + B2Z + B3XZ, (1)

where the moderation effect is quantified by B3, the unstandardized
regression coefficient associated with the interaction.4

When there is an interaction term in the equation, the magnitude of the
regression of the dependent variable on the predictor(s) depends specifically
on the particular value of the moderator at which the regression of the
outcome variable on the predictor is taken (Cohen, Cohen, West, & Aiken,
2003), which means the Bs are conditional and require special
interpretation. This is dealt with in depth later in the chapter.

Figure 28.1 Models of moderation effects.

Types of Moderators

In ordinary multiple regression, predictor variables can be either
categorical (qualitative) or continuous (quantitative), but the outcome
variable is expected to be quantitative (Cohen et al., 2003; Kutner,
Nachtsheim, Neter, & Li, 2004; Pedhazur, 1997).5 Likewise, moderating
variables can be either qualitative or quantitative.



Qualitative Moderator

When using a qualitative variable (e.g., race, sex, current school
attending), one must code the data appropriately, and the appropriateness is
dependent on the questions being asked (Aguinis, 2004; Cohen et al., 2003).
Briefly, dummy coding compares the means of all groups with the mean of
one specified comparison group, effect coding compares each group’s mean
with the overall mean (either weighted or unweighted), and contrast coding
makes a specific set of planned comparisons. For more detailed overviews
of data coding, see Chapter 8 of Cohen et al. (2003) or Chapters 11 and 12
of Pedhazur (1997).

Multiple Levels for the Qualitative Variable

It is not uncommon for the qualitative variable to have more than two
levels. The only major difference is that the statistical test for the presence
of an interaction does not rely on a single B coefficient; rather the omnibus
hierarchical F test needs to be used. Moreover, when making the model’s
interaction terms, terms need to be made between the independent
variable(s) and each variable representing an aspect of the qualitative
variable. That being said, the B coefficients for the multiplicative terms
have the same interpretation—namely, they represent slope differences
between the two groups coded by the qualitative variable. Likewise, the B
coefficients for the simple effects (i.e., the terms without an interaction)
carry similar meanings, although the exact interpretation is dependent on
the coding scheme used (for more information on this and other topics, such
as homogeneity of error variance, see, e.g., Aguinis, 2004; Cohen et al.,
2003).6

Quantitative Moderator

Structurally, the formula for a regression with a quantitative moderator is
the same as that for a qualitative one (i.e., Formula 1). The difference is in
the interpretation, as the moderation effect is not just between a finite
number of groups but (in theory) across the infinite spectrum of values the
quantitative variable can take.

The major assumption in using Formula 1 to assess a quantitative
moderator is that the interaction between the predictor and moderator is



linear at every value of the moderator (i.e., the B associated with the
independent variable changes at a constant rate as a function of changes in
the moderator; Cohen et al., 2003). If this is not the case, it can be
accounted for in the model, but that is beyond the scope of this chapter.

Testing Moderation Effects

The method for testing moderation is dependent on the nature of the
independent and moderating variables. More specifically, testing of
moderation effects depends on the dimensionality of the regression
equation. With two continuous variables, one continuous variable and one
categorical variable with only two levels, or two categorical variables each
with only two levels, a t test of the interaction (i.e., the B associated with
the multiplicative term) will provide a test of the significance of the
interaction. When there are more than two variables and/or a categorical
variable has more than two levels, the moderator effect needs to be tested
with a multiple df F test that represents the change in the regression model
by adding the interaction(s). If this omnibus test is significant, then the
single df t tests related to the specific interaction terms are assessed to
determine what interactions are important. Failure to find a moderation
effect could mean that (a) there is no interaction, (b) an interaction exists
but is of a different functional form (i.e., a quadratic moderation effect), or
(c) the study does not have enough power to detect an extant effect. Even if
a given interaction is not significant, though, one may still choose to keep it
in the model if there are very strong theoretical reasons for expecting the
interaction. This is a rather tenuous issue, though, and interested readers
should see Aiken and West (1991) for a more elaborate discussion.

If an F test is going to be used to test significance, Frazier et al. (2004)
recommend that the first step in testing the moderation model is to enter all
the predictor and moderator variables and then, as a second step, enter the
interaction terms, noting that in the case where two or more interaction
terms were created because the qualitative variables had more than two
levels, all the product terms associated with a given predictor and
moderating variable should be entered in the same step. Once the B
coefficients for the two models are estimated, compare the R2 values across
models. If an interaction is present, then the difference between the two R2

values will be significant, using the hierarchical F test.7



Interpreting the Moderation Study

One needs to interpret the unstandardized regression coefficients (i.e.,
Bs) instead of the standardized ones (i.e., beta weights, or βs) for models
that have a multiplicative term.8 In a “regular,” additive (only) multiple
regression, regression coefficients (i.e., Bs) describe the effects of each
independent variable on the dependent variable as constant (i.e., overall
values of the other independent variables); in a moderation model, though,
the regression coefficients are interpreted as conditional effects. More
specifically, without an interaction (from Equation 1), B1 is the effect of X
on Y, taking into account each level of Z (i.e., it is a general relationship,
averaging across all levels of Z). With an interaction, though, B1 then
becomes the measure of influence of X on Y when Z equals 0 (i.e., the
relationship is conditioned on a specific value of Z). This then raises a
problem in most research in individual differences. Namely, the measures
do not usually contain a valid zero point. For example, if IQ was a
moderating variable, academic achievement was the predictor variable, and
annual income was the outcome variable, then B1 would be the influence of
academic achievement on annual income, for people whose IQ is 0. But IQ
instruments do not have 0 as a valid, obtainable value, making the
interpretation of B1 nonsense. This issue is addressed in the following
section, on centering variables.

Assuming the moderator has a valid zero value, the B3 coefficient for a
two-variable moderation analysis indicates the number of units that the
slope of Y on X changes given a one-unit increase in Z. In other words, for
every one-unit change in Z, the slope of Y on X is predicted to change by B3

units. Using the rules of algebra, it is possible to calculate the estimated
effect of X on Y, for any given value of Z. If Z assumes a specific numerical
value, Z0, the value of Y, as a function of X, at Z0, is

Y = B0 + B1X + B2Z0 + B3XZ0, (2a)

Y = B0 + B2Z0 + X(B1 + B3Z0), (2b)



The standard error for  in (2d), , is

where  is the variance of a B coefficient, and  is the covariance of B1

and B3. Formula 3 indicates that, like the slope, the standard errors of the
conditional coefficients vary according to the level of the Z.

Centering Variables

Only rarely in the social sciences do scales exist such that zero has
meaning (Blanton & Jaccard, 2006; Jensen, 2005). Consequently, because
moderation model Bs are interpreted as conditional effects—at the value of
0 for the other variables in the model—it makes sense to center quantitative
variables that do not have natural, meaningful 0 points (Cohen et al., 2003;
Frazier et al., 2004). Using centered independent variables, the Bs represent
the first-order relationship at the new center point on both predictors. In
addition, not only does centering help with interpretation, but it reduces
problems associated with multicollinearity.

While centering a variable will, in general, affect the magnitude of the B
coefficient associated with the variable, it has no effect on the B associated
with the highest order term in the equation.9 Likewise, centering a variable
has no effect on the statistical significance associated with its Bs or multiple
R (Cohen, 1978). Consequently, “any additive transformation of the original
variables has no effect on the overall interaction or on any aspect of the
interaction we might choose to examine” (Aiken & West, 1991, p. 32).

When choosing to center a variable, the obvious choice is to use the
variable’s mean as the center point. One need not necessarily use the mean,
though, as any specific, valid, obtainable value of the variable will suffice.
For example, if using IQ, again, as a moderating variable, one may wish to
center the variable on an IQ of 70, thus making B1 the influence of variable
X on variable Y for those individuals at the threshold of mental retardation.



If the predictor and moderator variables are centered, their interaction
term does not need to be centered. Likewise, as most qualitative coding
schemes use 0 as a real value, there is usually no need to center the
qualitative variables, nor is there a need to center the outcome variable, as
leaving it in its original metric allows predicted scores to be on the same
scale as the outcome variable (Aiken & West, 1991).

Graphing

If the moderation effect is significant (or if it is not, but for theoretical
reasons, the interaction term is kept in the model), it is beneficial to create a
graphical depiction or a table summarizing the form of the moderator effect,
as it can help in understanding moderation effects. A pictorial
representation of the data, even if incomplete, can offer key insights into
both the data’s structure and the exact nature of the interaction. This is
tantamount to specifying the various regression equations for the different
groups (if the moderator is qualitative) or selecting points on the
moderator’s continuum to form the regression equation (if the moderator is
quantitative).

Following Cohen et al. (2003) and Aiken and West (1991), the regression
of the outcome variable on the predictor variable, at a finite point of the
moderator, is a simple regression line or a simple slope. If these simple
regression lines are not parallel to each other, then they interact at some
point—with one of the questions to determine in an analysis being if the
interaction occurs within the range of the moderator’s valid data points.

If the moderating variable is qualitative, the number of simple slopes to
plot is the number of levels of the moderating variable. If the moderating
variable is quantitative, this can become a bit trickier, as there are an infinite
number of points on the moderator’s continuum at which to compare the
regression lines. Ideally, the theory behind the analysis will have specified
points on the continuum at which to test for differences. As a rule of thumb,
though, plotting the lines at the mean value of the moderator as well as ±1
or ±2 standard deviations will give a general impression of how the
moderating variable is influencing the predictor-outcome relationship. If the
moderating variable also has finite bounds (e.g., if a Likert-type scale is
used as the moderator), then plotting at the maximum and minimum might
also be informative. As a third option, the Johnson-Neyman technique



(Johnson & Neyman, 1936) can be used to find the limiting points for the
“region(s) of significance,” which are viable candidates on the moderating
variable of where to plot the simple slopes (discussed below).

Of interest in some analysis is the point where two given simple
regression lines cross. If the moderator has finite bounds, it can be very
informative to determine if the simple slopes derived from conditioning on
the extreme moderating values cross within the data range or outside it. To
find the value of the predictor where the simple slopes cross, simply set the
two regression lines equal to each other and solve for X; this will yield the
following formula for a two-variable model:

Johnson-Neyman (J-N) Procedure

Johnson and Neyman (1936) first developed a procedure to find two
points (if they exist) that define ranges for which the slopes of the
regression lines are (or are not) significantly different at a given α value.
The purpose of the J-N technique, at least in moderation studies, is simply
to identify the values of the moderator that are associated with significant
group differences on the outcome variable, that is, to be able to make a
statement about regions of significance and nonsignificance (Huitema,
1980; Rogosa, 1980, 1981). The reasoning behind needing such a procedure
is as follows. The test to see if a simple slope differs from zero, conditional
on a specific value of the moderator (Z0), is distributed as a t statistic, with
(n – k – 1) df, that is,

where  are defined as in Equation 3, and k is the number of
predictor variables in the model. Note that the denominator in Equation 5
varies as Z varies, and thus the slope may be significant at one value of Z,
say Z0, but not at another, say Z0′. Unless the moderator is qualitative or
theory specifies differently, the value chosen for Z0 is ultimately arbitrary.
Thus, an alternative procedure is to determine the values of Z for which the



simple slope (i.e., the regression of Y onto X) is statistically significant,
which is what the J-N procedure does.

For the J-N procedure, first an α is chosen based on the level of
significance desired, α0. Then, the associated t value is found, given α0, n,
and k: t0; Equation 5 (with uncentered variables) is then reversed to solve
for Z. As Equation 5 is quadratic, there will be two solutions, although one
or more may be nonapplicable. The reversed equation for a two-variable
moderation model is shown in Equation 6.

Again, the obtained values answer the question: For what values of Z is
the simple regression equation (i.e., Y = a + bX) significant? For a simple
walk-though on how to use the J-N procedure with two variables, see the
walkthrough section of this chapter as well as Bauer and Curran (2005). For
details of how to implement the J-N procedure under other conditions, see
Chapter 13 of Huitema (1980).

Specific Type of Single-Moderator, Single-Predictor
Relationships

If there is only one moderator and one predictor variable, then there are
four different types of moderation relationships, depending on the nature of
the variables (e.g., qualitative or quantitative). This section gives brief
overviews of each, with the idea that if there are more than two independent
variables, the examples are easy to extend.

Moderation 1: Independent: Qualitative; Moderator: Qualitative

This is perhaps the easiest case to assess, as it is done via a two-factor
analysis of variance (ANOVA).10 When one qualitative variable moderates
another, there is an interaction between the two factors. In ANOVA
terminology, moderation (interaction) exists when two (or more) factors
account for variance in the outcome variable if, above and beyond any
additive combination of the separate (main) effects, they have a joint effect.
The major issues of concern here are to match the coding method with the



hypotheses of the analysis and, if a variable has more than two levels, to
make sure all the interaction terms are specified (Kutner et al., 2004).

Moderations 2 and 3: Independent: Quantitative; Moderator: Qualitative
OR Independent: Qualitative; Moderator: Quantitative

The analysis here is simply looking to see if regression equations are the
same across groups. In some contexts, this type of moderation is called an
aptitude-treatment interaction (Cronbach & Snow, 1977; Pedhazur, 1997),
and in others it is called an analysis of covariance (Kutner et al., 2004).
While the mathematics behind these models does not necessitate the
delineation of whether the predictor or moderator variable is qualitative or
quantitative, it significantly aids in interpretation to delineate them before
performing any type of analysis.

When the moderator variable is qualitative and the predictor is
quantitative, then the analysis is simply looking to see if the slopes across
the various levels of the qualitative variable are the same. If reversed, the
analysis looks to see if group differences are the same across the levels of
the quantitative moderator.

A major caveat in this type of moderation analysis is that the amount of
measurement error in the quantitative variable across levels of the
qualitative variable needs to be approximately the same (Baron & Kenny,
1986). If this is not the case, bias results and reliabilities need to be
estimated separately for the quantitative variable across the levels of the
qualitative variable, and the slopes disattenuated accordingly. This can be
implemented in most structural equation modeling programs via a multiple-
group analysis, but this is beyond the scope of this particular chapter (for
more information, see Jaccard & Wan, 1996).

Moderation 4: Independent: Quantitative; Moderator: Quantitative

Here, the analysis seeks to find out if a regression equation holds across
the spectrum of values available for the moderating variable. For example,
if IQ predicts salary well after someone has been out of school for at least
10 years, does the magnitude of the IQ-salary relationship hold across all
levels of perceived job satisfaction, or does it shrink as job satisfaction



increases (i.e., Are people willing to sacrifice a high salary for high job
satisfaction?)?

A major assumption when there are two quantitative variables is that the
effects of the independent variables (predictor and moderator, alike) are
linear in form. This means that the predictor variable’s relationship to the
outcome variable is linear (i.e., Y is a linear function of X) and that, if an
effect exists, it is an orderly, monotonic linear relationship between changes
in the slope and changes in the moderator variables. Moderation need not
necessarily be constrained to a bilinear model, but nonlinear models (either
for the independent variables or the moderation variables) are more
complex and require more detail.11

Measurement error in either the independent or moderating variables can
have a detrimental effect on this moderation analysis (Baron & Kenny,
1986). If much error exists in the instruments, structural equation modeling
would be a better approach than multiple regression.

More Than One Moderator

Moderation models are not limited to one moderating variable. In fact, as
interaction models are merely extensions of “regular” multiple regression
models, in theory, the models can have an unlimited number of independent
and moderating variables (although as the number increases, interpretation
and obtaining a suitable N become much more difficult).

As a starting place, the formula for a model with three independent
variables, two of which are significant moderators, is as follows:

where X, Y, and Z are the same as in Equation 1, and W is the second
moderating variable.

Before starting the analysis, one needs to first specify the independent
and moderator variables and to map out the logic for the underlying,
complex interactions (Jaccard & Turrisi, 2003). As there are two different
moderators, one must also decide which moderator is going to be the first-
order moderating variable (i.e., moderate the relationship between X and Y)
and the second-order moderating variable (i.e., moderate the relationship



between Z and its relationship with X and Y). Moreover, one must make all
the multiplicative variables, including pairwise products (e.g., XZ) and the
three-way interaction (i.e., XZW).

Once the models are specified (i.e., the full and reduced models), the
variables should be centered (if needed), and the test for a three-way
interaction is simply the test of the B associated with the three-way
multiplicative term (assuming the variables are quantitative or have only
two levels if qualitative). The tricky part is in interpreting the B coefficients.
B1 is still the measure of influence of X on Y when Z = W = 0, but the B
associated with the two-way interactions (e.g., XZ) reflects the effect of the
interaction between the two variables on Y, when the third variable (in this
case, W) is equal to 0.

The B associated with the three-way multiplicative term, if significant, is
interpreted as the predicted change in the two-way interaction of B
associated with XZ given a one-unit change in W.

MEDIATION

Picking a Mediating Variable

When picking the mediating variable, theory is of great importance in
determining the proposed relationships (Frazier et al., 2004). There should
be a clear reason, based in the literature within a given field, for the
hypothesis that the predictor is related to or causes the mediator. Another
factor to consider when picking a mediating variable is the size of the
relationship between the mediator and the outcome variables, in comparison
to the size of the relation between the predictor and mediator variables, as
this has a direct influence on power to detect mediation (more detail is
given in the section on power).

Error

As discussed in Chapter 16 (this volume), measurement error generally
works to attenuate the size of association measures (cf. Ree & Carretta,
2006). Baron and Kenny (1986) write that the presence of error in the



mediator tends to produce an underestimate of the mediator and an
overestimate of the effect of the independent variable on the dependent
variable (assuming coefficients are positive). The common approach to
unreliability is to have multiple operations or indicators of the construct,
such as is readily done in structural equation modeling (Bollen, 1987).

A second source of bias in mediation models is feedback. In multiple
regression analysis of mediation, there is the assumption that the mediator
is not caused by the dependent variable. If the model is misspecified in such
a manner (i.e., a confusion of mediating and dependent variables), this is
feedback bias (Baron & Kenny, 1986). A solution to this was provided by
E. R. Smith (1982) that involves two-stage least squares estimation. A
second solution is to use structural equation modeling and incorporate
feedback directly into the model. Neither method is within the scope of this
chapter.

Analyzing Mediation Data

Baron and Kenny (1986) contend that mediation analysis is a procedural
process. More specifically, three conditions must be met for a variable to be
considered a mediator. Assuming the mediating variable is significantly
related to the outcome variable, (a) the independent variable must be
significantly related to the mediating variable, (b) the independent variable
must be significantly related to the outcome variable, and (c) the magnitude
of relationship between the independent variable and the outcome variable
must (significantly) decrease after controlling for the mediating variable.12

If the predictor-outcome relationship goes to 0, this evinces a single-
variable mediation process. If the relation significantly decreases but does
not go to zero, it indicates that other mediating processes are involved.13

Frazier et al. (2004) emphasize that it is not enough to show that the
predictor-outcome relationship is smaller when the mediator variable is
added to the model, but rather a test for the significance of the change is
critical. MacKinnon, Lockwood, Hoffman, West, and Sheets (2002)
reviewed 14 different ways to test for a mediation effect, and while they did
not explicitly state the best way to assess for mediation, they wrote that the
aforementioned causal steps “have very low power, unless the effect or
sample size is large…. Studies that use the causal steps methods described



by Kenny and colleagues are the most likely to miss real effects but are very
unlikely to commit a Type I error” (p. 96).

Figure 28.2 Models of mediation effects.

One way to assess for the significance of a mediation effect was
developed by Sobel (1982). Using the labels from Figure 28.2, the
difference between the total effect of the predictor on the outcome  and
the direct effect of the predictor on the outcome  is equal to the product
of the paths from the predictor to the moderator (B2) and from the mediator
to the outcome (B3). Thus, the significance of the difference between 
and  can be assessed by testing the significance of the products of paths
B2 and B3. More specifically, B2B3 is divided by its standard error, which
yields a test in the z score metric. The error term derived by Sobel (1982) is

where B2 and B3 are unstandardized regression coefficients, and  and  are
their standard errors.

A problem with using a normal z distribution to assess the significance of

is that the statistic is not normally distributed (Shrout & Bolger, 2002); so,
using a standard z table will give biased results, usually resulting in
underpowered tests of mediation. MacKinnon, Lockwood, and Hoffman
(1998) developed empirical sampling distributions for B2B3 via extensive
simulations for various values of B2 and B3. Thus, using the standard error



Sobel (1982) developed (see Formula 8) and the table of critical values
(MacKinnon et al., 1998), one can test if a mediation effect exists.14

An alternative method to using MacKinnon et al.’s (1998) distribution,
and one that is likely a better alternative given typical sample sizes in the
behavioral sciences, is to use bootstrap methods to derive the test of
significance (and confidence intervals) for the numerator in Equation 9.
Based on the work of Bollen and Stine (1992) and Shrout and Bolger
(2002), Preacher and Hayes (2004) developed macros for SPSS and SAS to
compute bootstrap estimates for the significance test (more detail below).

Interpreting Mediation Analysis

At its core, mediation hypotheses are causal hypotheses (Cole &
Maxwell, 2003; Kenny, Kashy, & Bolger, 1998; MacKinnon & Dwyer,
1993; but see Kraemer, Wilson, Fairburn, & Agras, 2002), but assuming the
analysis shows a significant mediation affect, the conclusions are only
correct if the causal assumptions are valid. In addition to the normal
regression assumptions, Kenny et al. (1998) delineate three specification
assumptions.

First, it is assumed that the mediating variable causes the outcome
variable. If this is not the case (i.e., the outcome variable causes the
mediator), this is a reverse causal effect. As the mediating and outcome
variable are not manipulated variables, if they are interchanged in the
regression model and the outcome appears to “cause” the mediator, then
this is an indication to be wary of the initial model. While the model may fit
well, an alternative specification would be equally viable in this case. If,
theoretically, the reverse effects are implausible, then this particular
misspecification issue becomes less of an issue. Likewise, if the study’s
design has the mediating variable being measured temporally before the
outcome, then the reverse causal hypothesis becomes less viable.

Even if the mediation study shows complete mediation (which they
seldom do), there are likely to be other models (i.e., other mediating
variables) that are consistent with the data, indicating that there is likely to
be more than one “correct” mediation model (Frazier et al., 2004;
MacCallum, Wegener, Uchino, & Fabrigar, 1993). Unfortunately, for
nonexperiential or cross-sectional studies, the number of alternative models
is much greater than for experimental studies (MacCallum et al., 1993).



A second assumption is that all the variables involved in the causal chain
are specified in the mediation model. If, for instance, there is a fourth
variable in the mediation model (Figure 28.2) that causes both X′ and Y, yet
the regression model does not include it, then this is an omission error, and
the regression coefficients are likely to be biased (Frazier et al., 2004; Judd
& Kenny, 1981). Unfortunately, the only real solution to the problem is to
measure and specify such variables and control for their effects in the
regression model. One artificial source of the mediator-outcome covariance
can be controlled by design, though. That is, if the mediator and outcome
variables are measured the same way (e.g., by the same instrument
completed by the same person), then this common method effect is likely to
be a common cause of the mediator and outcome. Thus, the mediation
design should avoid this situation by using different variables, different
instruments, or different respondents.

The third assumption is that the mediating variable is measured without
error. If there is significant error in measuring the mediator, B1 is likely to
be overestimated and B3 is likely underestimated, assuming B2B3 is positive
(which it often is). The solution, obviously, is to measure the mediator with
an instrument that is highly reliable. If this is not possible, then use a latent
variable approach (e.g., Holbert & Stephenson, 2001).

In sum, causation is hard to establish in the social sciences, much less if
the studies are nonexperimental in design. Thus, it has been a source for
much discussion not only in the mediation literature (Frazier et al., 2004;
James & Brett, 1984; MacKinnon et al., 2002) but in the sciences in general
(Humphreys, 1989). This chapter will simply state that causation is difficult
to establish and that much care must be taken before absolute causal
language should permeate a given mediation analysis (Rubin, 1974; Spirtes,
Glymour, & Scheines, 1993).

Multiple Mediators

Complete mediation is rare in the social sciences, especially in
nonexperimental studies. Preacher and Hayes (2006) write that multiple
mediation models are advantageous for multiple reasons, with the foremost
being that the omitted variable problem is less likely to occur, and including
more than one mediator in the same allows research to pit competing



theories against each other in a single model. Nonetheless, these models are
seldom used or presented (but see MacKinnon, 2000; West & Aiken, 1997).

As with simple mediation models, there are multiple approaches to assess
the effects, including causal steps, product of coefficients, and
bootstrapping.15

MODERATION AND MEDIATION

Although moderation and mediation are distinct concepts, with different
types of hypotheses and different tests of effects (Frazier et al., 2004;
Holmbeck, 1997; Rose, Holmbeck, Coakley, & Franks, 2004), it does not
mean they cannot be used together. For example, Baron and Kenny (1986)
write that one may begin with a moderator but end up finding a mediation
process. More explicitly, they write that finding a moderating variable could
help suggest a possible mediation variable. Thus, when predicting
moderating variables, one should select them to do more than improve
predictive power: “One should choose the [moderating] variable that more
readily lends itself to specification of a mediational mechanism” (p. 1178).
Likewise, mediators can help to find moderating variables. If one can
understand the mediational process behind a relationship, one can choose an
appropriate intervention and then test whether the intervention has a
moderating effect on the variables’ relationships. In other analyses,
mediators and moderators can work together to help better understand the
predictor-outcome relationship (Kraemer, Stice, Kazdin, Offord, & Kupfer,
2001). Of particular note, a variable, in and of itself, does not necessarily
lend itself to either mediation or moderation analysis; the same variable can
serve as either (or both), depending on the underlying theory and research
question at hand.

Moderated Mediation: Combining Mediation and Moderation

One way of using both moderating and mediating variables is to
explicitly combine them in a single model, such as with moderated
mediation. James and Brett (1984) first used the term moderated mediation,
defining it as a mediation model that requires the addition of a moderator to



the predictor-mediator relationship, the mediator-outcome relationship, or
both.16 Similarly, Muller et al. (2005) write that moderated mediation
happens when the mediating process that is responsible for producing the
effect of the predictor on the outcome depends on the value of a moderator
(cf. Rose et al., 2004). Their definition implies that the mediating variable
mediates the predictor-outcome relationship for some particular group of
people, but it does not imply any overall moderation of the treatment effect.
Thus, what varies as a result of the moderator is not the magnitude of the
predictor’s overall effect on the outcome but the mediating process that
produces it.

Perhaps the most generic, and hence most encompassing, definition
comes from Preacher, Rucker, and Hayes (2006), who define moderated
mediation as when “the strength of an indirect effect depends on the level of
some variable … when mediation relations are contingent on the level of
the moderator” (p. 12). For the purposes of this chapter, we will assume
there is a moderating variable (Z) that affects the predictor-mediator
relationship, the mediator-outcome relationship, or both. More specifically,
looking at Figure 28.3A, there is an overall treatment effect  that is not
moderated. Figure 28.3B posits that the mediator, X′, explains at least part
of the predictor-outcome relationship, as  or, to put it in terms of a
significance test, . Figure 28.3C takes the mediation a step further
and posits that the mediating process is moderated; either the effect of the
predictor on the mediator depends on the moderator , the effect of the
mediator on the outcome is moderated , or both.

Testing Moderated Mediation Models

In one of the first articles to discuss moderated mediation, Baron and
Kenny (1986) extended their causal steps approach, writing that analyzing a
moderated mediation model is a three-step process. Muller et al. (2005)
extended Baron and Kenny’s (1986) conceptualization, noting that, parallel
to the case of simple mediation, there exists the following fundamental
equality among the parameters:



Figure 28.3 Models of moderated mediation effects.

Thus, if moderated mediation exists, first, . Then, using (10), if the
predictor’s effect on the mediator depends on the moderator  there
must be an effect of the mediator on the outcome , or likewise, if the
effect of the mediator on the outcome depends on the moderator , then
the predictor should have an overall effect on the mediator . Stated
another way, if moderated mediation exists, one of the terms on the right-
hand side of Equation 10 must not be 0, which then implies that  also
departs from 0. This, in turn, means that the residual direct effect of the
predictor on the outcome, controlling for the mediator, is moderated.

Muller et al.’s (2005) procedure for testing moderated mediation is as
follows:

1. Run the simple moderation model (i.e., Equation 1), expecting B3 to
equal 0 but B1 to be different from 0.

2. Test the models in Figure 28.3C:

Either  and  are both significant, or  and  are both significant
(or both).



3.  is likely to be significant now, although Muller et al. (2005) do not
see this as a necessary step.

Like Baron and Kenny’s (1986) approach, Muller et al.’s (2005)
approach is rather piecemeal. Preacher, Rucker, and Hayes (2006) have
developed an alternative method for testing the whole moderated mediation
model. Drawing on the fact that in simple mediation models, the strength of
the mediator is assessed by examining the  and  terms in Figure 28.3B,
a variable that moderates this quantity means that the indirect effect is
conditional on this other variable. Consequently, they extended their
bootstrap mediation approach (Preacher & Hayes, 2004) to include
moderated mediation. While they specify five different types of moderated
mediation, this chapter will focus on the three that match the
aforementioned definition: (a) The predictor-mediator relationship and the
mediator-out-come variable are moderated by the same fourth variable, Z;
(b) only the predictor-mediator relationship is moderated; or (c) only the
mediator-outcome relationship is moderated. More information about the
bootstrap procedure is found in the walk-through section.

Predictor-Mediator Relationship and the Mediator-Outcome
Are Moderated by the Same Variable

Using Figure 28.3C, if the path from the predictor to the mediator and the
path from the mediator to the outcome are both moderated by the same
variable, Z, then the indirect effect of X on Y is , and
this term’s (approximate) variance is as follows (Preacher, Rucker, &
Hayes, 2006, p. 21):

Thus, given a specific value of the moderator, Z0, one can assess whether
there is a significant mediation effect using a standard normal table, that is,



As with simple moderation, it is possible, using the J-N technique, to find
the bound(s) on Z that define a region of significance.

Path From Predictor to Mediator Is Moderated

This is just a simplification of the previous case. Specifically, using
Figure 28.3C, only the path from the predictor to the mediator is moderated,
so the indirect effect of X on Y simplifies to , and this
term’s (approximate) variance is then as follows (Preacher, Rucker, &
Hayes, 2006, p. 18):

As with the previous example, given a specific value of the moderator, Z0,
one can assess whether there is significant mediation using a standard
normal table; likewise, it is possible to find the bound(s) on Z that define a
region of significance.

Path From Mediator to the Outcome Is Moderated

This situation is directly analogous to the previous one, except that the
variables whose relationship is moderated differ. Thus, using Figure 28.3C,
if the path from the moderator to the outcome is the only moderated
relationship, then the indirect effect of X on Y is f3(X,Y) = , and this
term’s (approximate) variance follows directly from (11) and (13).
Likewise, it is possible to find the bound(s) on Z that define a region of
significance.

POWER, N, AND EFFECT SIZES

Both the moderation and mediation literature are replete with the finding
that both effects are difficult to find and thus require relatively large sample
sizes to find them (Aguinis, 2004; Hoyle & Kenny, 1999; MacKinnon et al.,
2002; McClelland & Judd, 1993). This is largely due to the fact that



mediation and moderation effects tend to be small, at least when compared
with other effects, such as those in a singlefactor ANOVA. While design
and analysis features can be implemented in both types of analyses to
increase power, the fact will still remain that before any undertaking of
mediation or moderation studies, the N will necessarily need to be large and
likely larger than most any other type of “regular” regression studies.

Power and Moderation

Authors have frequently expressed concerns about the low power to
detect an interaction effect in regression models (Aguinis, 1995; Aguinis &
Stone-Romero, 1997), arguing that their detection is unlikely even when the
moderator test is the focal issue in a research study. One of the most
influential factors in this is that the effect size for most interaction work is
small (Chaplin, 1991; Frazier et al., 2004).

For moderation studies, the strength of the interaction can be measured in
multiple ways. One of the most common unstandardized ways is to look at
the B coefficient associated with the interaction term(s), for as the farther
away it is from 0, the stronger the interaction, ceteris paribus. Regarding
standardized metrics, the most common is to compare the squared multiple
correlations for the models both with and without the interaction terms. For
small sample sizes, this index is biased, but for larger samples and higher
values of R2, the bias is negligible. Aiken and West (1991; cf. Cohen, 1978)
define a different moderation effect size, f2, as

where M are the main effects, I is the interaction term, rY.MI is the multiple
correlation for all variables, and rY.M is the multiple correlation for the “main
effects” only. For additional effect sizes under different conditions, as well
as “measures of improved condition,” see Chapter 9 of Aguinis (2004).

In addition to the interaction’s effect size, though, the regression’s total
effect (i.e., the R2 of the full model) should be estimated before collecting
data, as moderator effects have the most power when the overall
relationship between the predictors and outcome variables is large (Chaplin,
1991; Jaccard, Turrisi, & Wan, 1990). Consequently, one way to increase



power is to increase the overall R2 by adding additional (significant)
predictors in the model as covariates (Jaccard & Wan, 1996).

A second factor affecting power is the decision of which variable(s) to
use as moderator(s). If the moderator is categorical, one needs to pay
attention to the differences in n across groups as well as differences in error
variances (Aguinis, 2004; Aguinis & Pierce, 1998). If the moderator is
continuous, one needs to consider the reliability of the moderator (as well as
the independent variable[s]), as unreliability dramatically reduces power,
especially in the interaction term, which, in turn, increases the standard
error and decreases the power of the significance test. One also needs to be
cognizant of range restriction (i.e., the sample does not adequately represent
a random selection of individuals from a population), as it can have a
significant effect on power (Aguinis & Stone-Romero, 1997). Last, the
outcome variable should be reliable and have enough variability (i.e., have
a wide range of response options). At a minimum, the outcome should have
a number of responses that are equal to the product of the number of
predictor and moderator responses; otherwise, the scale may be too coarse
to detect a moderation effect (Russell & Bobko, 1992).

Aguinis (2004) and Frazier et al. (2004) both describe multiple methods
to increase power in moderated multiple regression: (a) Rely on theory
when planning a moderator analysis; (b) use an experimental design when
appropriate; (c) determine and obtain a sample size needed to achieve
adequate power based on estimated effect sizes; (d) if an independent
variable is qualitative, attempt to collect equal numbers of participants for
different levels; (e) test the homogeneity of error variance assumption and
use appropriate tests if violated; (f) find instruments that are highly reliable
for your population; (g) use an outcome variable that approximates a
continuous variable as much as possible (i.e., do not use a Likert-type scale
with seven response options as the sole outcome variable);17 (h) do not di-
or polychotomize a truly continuous variable; (i) if possible, choose
outcome and predictor variables that are strongly related to each other; and
(j) weigh the pros and cons of increasing the α from the traditional .05.

Determining Power

For a model with a single qualitative moderator, Aguinis, Boik, and
Pierce (2001) have developed a free program called MMRPOWER.18 Using



this program, one can plug in various values for the subgroup ns, α, and
predictor-outcome correlations (as well as other factors, such as range
restriction and reliability estimates) and obtain power estimates. For a
single continuous moderator, Jaccard et al. (1990) provide tables for power
estimation in moderation (some of which are reproduced in Aiken & West,
1991) that require the R2 estimates before and after the addition of the
multiplicative term.

Alternatively, from Maxwell (2000) and Aiken and West (1991), a rough
rule of thumb for an appropriate N, assuming one predictor, one moderator,
and setting power to .80, is

where M, I, rY.MI, and rY.M are the same as in Equation 14.

POWER AND MEDIATION

Power in mediation studies is essentially a function of collinearity—
specifically, the relationship between the predictor and the mediator. While
the pattern somewhat varies depending on the effect size, the N, and the
mediator’s reliability, in general, Hoyle and Kenny (1999) found that
mediation studies maximize their power (using the Sobel test in Equation 8)
when the effect of the mediator on the outcomes exceeds the effect of the
predictor on the mediator. “Thus, from a statistical power perspective, the
ideal spacing between observations of the [predictor] and the mediator and
the mediator and the outcome would ensure that path [B3] equals or exceeds
path [B2] in magnitude” (p. 218).

As was emphasized with moderators, mediation analysis is affected by
the reliability of the variables, specifically the mediating variable. As the
reliability of the mediating variable decreases, the effect of the mediator on
the outcome variable is underestimated, and the effect of the predictor
variable on the outcome variable is overestimated (Frazier et al., 2004).
Hoyle and Robinson (2003) recommend that the reliability be at least .90
and, if it is not, then use methods of analysis that can account for
unreliability (e.g., covariance structure analysis). In their Monte Carlo study



on statistical power in mediation, Hoyle and Kenny (1999) concluded that
even for studies with highly reliable measurement, the sample needed was
usually close to 200.

WALK-THROUGH

Data for the following analyses were simulated specifically for this chapter
(see Table 28.1) and can be found on the book’s accompanying data CD.
The variables and their descriptions are given in Table 28.1.

Moderation

This moderation walk-through will use continuous variables for the
outcome, predictor, and mediator. For a similar walk-through using a
qualitative moderator, see Chapter 3 of Aguinis (2004). For the moderation
study, we want to see if achievement motivation (motiv) moderates the
relationship between years in school (school) and annual income (salary).
The usual first steps are to mean-center the predictor and the potential
moderator, and then create the interaction term between the predictor and
potential moderator. These steps were already completed, and the
interaction term is labeled schmot in the data set.

Now, the first step is to run a regression model with just years of school
and achievement motivation predicting salary. This yields the following
regression equation:

 = 79.015 + 3.567(school) – .487(motiv),
with an R2 value of .167. The next step is to run the same model but add the
interaction term, schmot. This yields the following equation:

 = 74.360 + 3.400(school) – .488(motiv) + 3.032(schmot),
with an R2 value of .205. Using the hierarchical F test,

Table 28.1 Description of Variables



partic Participant’s number

salary Participants annual salary in $10 increments.
school Number of years (and months) the participant attended

school
 The mean was 14.28, and it has already been mean

centered.
iq Participant’s Intelligence Quotient measured during this

study
sex Participant’s sex. As the data are simulated, labeled

nondescriptively as Sex 1 and Sex 2
motiv Participant’s average score on a set of instruments designed

to measure achievement motivation
schmot motiv × school

indicating that achievement motivation modifies the years in the school–
annual salary relationship. Note that if the bilinear nature of the moderating
relationship is assessed, there is some evidence, however slight, that the
moderating relationship is curvilinear (in the X2Z2 term), but probing that is
beyond the scope of this text.

To find the region(s) of significance using α/2 = .025 and a two-sided
test, we simply plug in the numbers required from (6). Of note, though, the
J-N formula requires uncentered values, so 25.1347 was added to each
value of motiv and 14.28 was added to each value of school, and the
interaction term was recalculated:

To test to see where the region of significance lies, the significance of B1

was calculated at Z = 23 by fitting an equation with school (mean centered),



motiv (using 23 as the centering value instead of the mean score of 25.13),
and an interaction of both of these variables.

This yielded a B1 value of –3.07 with a standard error of 1.83 and a t
value of 1.682, which is not significant at α = .05. Thus, for all values of Z
> 24.53 and Z < 22.17, years of education significantly predicts annual
salary.

Next, a graphical representation of the data will be useful to better
understand the moderation effect. Three different values of the moderator to
use will be 13.39, 23.50, and 36.88. The first and last values represent
values at two standard deviations away from the moderator’s mean, while
the third is in the region of nonsignificance. Because motiv is already mean
centered, we need to use the Z values of –3.91, –1.63, and 3.91. The
corresponding three regression equations are

YZ = 36.88 = 76.26 – 8.46(school),

YZ = 23.5 = 75.16 – 1.54(school), and

YZ = 13.39 = 72.45 + 15.26(school).

The equations are plotted in Figure 28.4. The figure also makes the
notion of a region of significance more explicit, as at ±2 standard deviations
of motiv, the regression of salary on school has relatively steep slopes,
whereas when motiv equals 23.50, the regression line is almost completely
horizontal.

For this particular study, it appears that years of education does predict
annual salary, but this effect is moderated by the individual’s achievement
motivation. More specifically, around the “average” achievement
motivation (i.e., 22.17 < Z < 24.53), years in school does not predict annual
salary; around the high end of achievement motivation (Z = 36.88), there is
a negative relationship between years in school and annual salary, while
around the low end of achievement motivation (Z = 13.39), there is a
positive relationship between years in school and annual salary.19 For a
more explicit example of graphing moderation in regression models, see
Preacher, Curran, and Bauer (2006).



Figure 28.4 Graph of moderation analysis.

Mediation and Moderated Mediation

For the mediation and moderated mediation walk-through, we will use
the same data set used in the moderation example, although this time,
instead of hypothesizing that the years in school–annual salary relationship
is moderated, we will test to see if the relationship is mediated by IQ (iq in
the data set). Then we will take the analysis one step further and check to
see whether the mediational relationship (or lack thereof) is then moderated
by sex (sex in the data set).

As discussed above, mediation relationships are best analyzed by testing
to see if the B2B3 relationship is significant (MacKinnon et al., 2002). Of
course, this assumes that the statistic’s distribution is normal, which does
not appear to be the case (MacKinnon et al., 1998; Preacher & Hayes,
2004). Thus, a bootstrap approach is likely the best way to assess the
relationship. While the concepts involved in bootstrapping analysis are not
necessarily complex (Effron & Tibshirani, 1993) and good introductions
can be found in many mathematically oriented and nonparametric statistics
texts (e.g., Wilcox, 2003), the process can be tedious because it involves
computer programming. Preacher and Hayes (2004) developed SAS and



SPSS macros that provide bootstrap analysis of a mediation study, so it will
be used for this walk-through.20

First, the indirect effect is as follows: B2B3 = (2.961)(.325) = .962, which,
using (8), is significant at α = .05. Second, bootstrapping B2B3 5,000 times
produces a distribution similar to Figure 28.5, although the distribution will
slightly differ for each bootstrap analysis due to random sampling. The
sample’s 2.5th and 97.5th percentiles are .302 and 1.609, respectively. Since
the percentiles do not contain 0, this is an indication that there is a
significant mediation effect.

The next question that arises is whether the mediation effect is
moderated. That is, does IQ explain the same amount of the schooling-
salary effect for males as it does for females? To assess this, one has to
assess a moderated mediation model. There are multiple moderated
mediation models to assess (Muller et al., 2005; Preacher, Rucker, & Hayes,
2006), and for this particular analysis, we are going to assess whether the
relationship between the mediator and outcome variable is moderated.21 To
do that, we are going to use the macro written by Preacher, Rucker, and
Hayes (2006) that not only assesses for the various moderated mediation
models but provides bootstrap estimates of the effect.22



Figure 28.5 Bootstrap distribution of B2B3.

The results from the macro indicate that for Sex 1, the indirect effect
(B2B3) is .512, but for Sex 2, the indirect effect is 1.338, with the former
being insignificant and the latter being significant at α = .05. When the
statistics were bootstrapped, Sex 1’s average effect was .489, while Sex 2’s
average effect was 1.303, with the former not being significant and the
latter being significant. Because bootstrapping techniques do not rely on the
normality assumption, taking values at the 2.5th and 97.5th percentiles will
give a 95% confidence interval around the statistic instead of assessing for
significance. The (bias-corrected) 95% confidence interval of the effect for
Sex 1 is [–.311, 1.449], while for Sex 2, it is [.545, 2.334], giving evidence
that the former could be 0, while the latter likely is not 0. Thus, it appears
that sex does moderate the mediated relationship.

NOTES

1. Editor’s note: Interested readers can refer to Chapter 29 (this volume) for more information on
multilevel models. Although mediation and moderation and mediated moderation are not specifically
addressed in the chapter, they can be assessed via structural equation modeling (SEM), and therefore
readers may want to refer to Chapter 32 on best practices in SEM.

2. In other words, it represents an interaction between two variables.
3. If there is not an already determined effect, then the analysis could be a suppression study

(MacKinnon, Krull, & Lockwood, 2000), which is a similar analysis but beyond the scope of this
chapter.

4. Moderation and interaction are used somewhat synonymously in the psychological and
educational literature. For this text, interaction will refer to the multiplicative term in the regression
equation, while moderation will refer to the overall principle.

5. The principles discussed in this chapter can equally apply to logistic regression frameworks.
For an explicit introduction to the topic, see Jaccard (2001). For a more general introduction to
logistic regression, see Chapters 24—26 in the current volume.

6. Editor’s note: In the case of a categorical moderator variable, it may be easier to use SEM to
model parallel models and test the interaction by testing whether corresponding relationships are
constant across groups. This topic needs its own chapter, hopefully in a future version of this book!

7. The hierarchical F test is as follows:

where  is the squared multiple R value of the initial model,  is the
squared multiple R value of the supplemental model, k is the number of



predictors in the respective models, and N is the total sample size. F is then
distributed with ks – ki and N – ks – 1 degrees of freedom.

8. Because variables and their multiplicative terms are highly colinear, estimations of the βs are
not substantially interpretable (Frazier et al., 2004). Unstandardized regression coefficients are not
affected by differences in the variances of the moderator or differences in measurement error in the
dependent variable (Baron & Kenny, 1986). If one is interested in standardized regression
coefficients, though, one need only standardize the initial variables and read the B coefficients (for
more information, see Aiken & West, 1991).

9. This is the multiplicative term in simple moderated regression, but in other models, it can be the
B associated, for example, with a quadratic, cubic, quadric, and so on, term.

10. For an overview of best practices in ANOVA, see Kutner et al. (2004) and Chapter 23 in the
current volume.

11. The interested reader can find a good introduction to the topic in Chapter 5 of Aiken and West
(1991).

12. Kenny et al. (1998) write that the demonstration of a significant effect between the predictor
and outcome variables is not necessary if, for example, one is looking at a suppression study
(MacKinnon et al., 2000) or a multiple mediator study (for more examples, see Frazier et al., 2004),
or if the predictor-outcome relation is temporally distal (Shrout & Bolger, 2002).

13. Editor’s note: Other options exist, such as poor measurement of the construct, incomplete
measurement of the proposed mediator, and so on.

14. The MacKinnon et al. (1998) values are available freely at
http://www.public.asu.edu/davidpm/ripl/methods.htm.

15. Bootstrapping (see Chapter 19, this volume) is an attractive alternative because it does not
impose a theoretical sampling distribution. For a particularly informative walk-through of the
bootstrapping approach using multiple mediators, as well as comparing indirect effects from the same
model, see Preacher and Hayes (2006).

16. Moderated mediation and mediated moderation rely on the same analytic models (and the
same fundamental equality; see Equation 10) (Muller et al., 2005; Preacher, Rucker, & Hayes, 2006).
The difference in emphasis depends on the theoretical rationale behind the analysis. This chapter will
examine the phenomenon from the moderated mediation perspective.

17. Editor’s note: The obvious exception to this would be for logistic regression-style analyses.
18. MMRPOWER is freely available on the Internet at http://carbon.cudenver.edu/~haguinis/mmr/

and http://www.math.montana.edu/~rjboik/power.html.
19. The graph was generated in S-Plus, but a similar graph can be computed using Rweb at

http://www.quantpsy.org.
20. Andrew Hayes has developed a more complete macro entitled INDIRECT.SPS, which is

freely available at his Web site: http://www.quantpsy.org/.
21. Some examples of an alternative moderated mediation are having one variable affect the

predictor-mediator relationship, while another affects the mediator-outcome relationship; likewise,
the independent variable could also moderate one (or both) of those paths.

22. The macro is entitled MODMED.SPS and is freely available at http://www.quantpsy.org/.
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ierarchical, or nested, data structures are common throughout many
areas of research. However, until recently, there has not been any
appropriate technique for analyzing these types of data. Now, with

several user-friendly software programs available1 and some more readable
texts and treatments on the topic, researchers need to be aware of the issue
and how it should be dealt with. The goal of this chapter is to introduce the
problem and how it is dealt with appropriately, as well as to provide
examples of the pitfalls of not doing appropriate analyses.

WHAT IS A HIERARCHICAL DATA STRUCTURE?

People (and most living creatures, for that matter) tend to exist within
organizational structures, such as families, schools, business organizations,
churches, towns, states, and countries. In education, students exist within a
hierarchical social structure that can include family, peer group, classroom,
grade level, school, school district, state, and country. Workers exist within
production or skill units, businesses, and sectors of the economy, as well as
geographic regions. Health care workers and patients exist within
households and families, medical practices and facilities (e.g., a doctor’s



practice or hospital), counties, states, and countries. Many other
communities exhibit hierarchical data structures as well.

Raudenbush and Bryk (2002) also discuss two other types of data
hierarchies that are less obvious: repeated-measures data and meta-analytic
data.2 Once one begins looking for hierarchies in data, it becomes obvious
that data repeatedly gathered on an individual are hierarchical, as all the
observations are nested within individuals. While there are other adequate
procedures for dealing with this sort of data, the assumptions relating to
them are rigorous, whereas procedures relating to hierarchical modeling
require fewer assumptions. Also, when researchers are engaged in the task
of metaanalysis, or analysis of a large number of existing studies, it should
become clear that subjects, results, procedures, and experimenters are
nested within experiment.

Why Is a Hierarchical Data Structure an Issue?

Hierarchical, or nested, data present several problems for analysis. First,
people that exist within hierarchies tend to be more similar to each other
than people randomly sampled from the entire population. For example,
students in a particular third-grade classroom are more similar to each other
(especially after several months of class) than to students randomly sampled
from the school district as a whole or from the national population of third
graders. This is because students are not randomly assigned to classrooms
from the population but rather are assigned to schools based on geographic
factors. Thus, students within a particular classroom tend to come from a
community or community segment that is more homogeneous in terms of
morals and values, family background, socioeconomic status, race or
ethnicity, religion, and even educational preparation than the population as a
whole. Furthermore, students within a particular classroom share the
experience of being in the same environment—having the same teacher,
being in the same physical environment, and having similar experiences—
which may lead to increased homogeneity over time.

The Problem of Independence of Observations. This discussion could be
applied to any level of nesting, such as the family, school district, county,
state, or even country. Based on this discussion, we can assert that
individuals who are drawn from an institution, such as a classroom, school,



business, or health care unit, will be more homogeneous than if they had
been randomly sampled from a larger population. Herein lies the first issue
for analysis of this sort of data. Because these individuals tend to share
certain characteristics (environmental, background, experiential,
demographic, or otherwise), observations based on these individuals are not
fully independent. However, most analytic techniques require independence
of observations as a primary assumption for the analysis. Because this
assumption is violated in the presence of hierarchical data, ordinary least
squares regression produces standard errors that are too small (unless these
so-called design effects are incorporated into the analysis). In turn, this
leads to an inappropriately greater probability of rejection of a null
hypothesis than if (a) an appropriate statistical analysis were performed or
(b) the data included truly independent observations.

The Problem of How to Deal With Cross-Level Data. Going back to the
example of our third-grade classroom, it is often the case that a researcher is
interested in understanding how environmental variables (e.g., teaching
style, teacher behaviors, class size, class composition, district policies or
funding, or even state or national variables, etc.) affect individual outcomes
(e.g., achievement, attitudes, retention, etc.). But given that outcomes are
gathered at the individual level and other variables at the classroom, school,
district, state, or nation level, the question arises as to what the unit of
analysis should be and how to deal with the cross-level nature of the data.

One strategy would be to assign classroom or teacher (or school, district,
or other) characteristics to all students (i.e., to bring the higher-level
variables down to the student level). The problem with this approach, again,
is nonindependence of observations, as all students within a particular
classroom assume identical scores on a variable.

Another way to deal with this issue would be to aggregate up to the level
of the classroom, school, district, and so on. Thus, we could talk about the
effect of teacher or classroom characteristics on average classroom
achievement. However, there are several issues with this approach,
including (a) the fact that much (up to 80%–90%) of the individual
variability on the outcome variable is lost, which can lead to dramatic
under- or overestimation of observed relationships between variables
(Raudenbush & Bryk, 2002), and (b) the fact that the outcome variable



changes significantly and substantively from individual achievement to
average classroom achievement.

Neither of these strategies constitutes a best practice, although they are
commonly performed. Neither of these strategies allows the researcher to
ask truly important questions, such as, What is the effect of a particular
teacher variable on student learning? A third approach, that of hierarchical
modeling, becomes necessary in this age of educational accountability and
more sophisticated hypotheses.

HOW DO HIERARCHICAL MODELS WORK? A BRIEF PRIMER

The goal of this chapter is to introduce the concept of hierarchical modeling
and explicate the need for the procedure. It cannot fully communicate the
nuances and procedures needed to actually perform a hierarchical analysis.
The reader is encouraged to refer to Raudenbush and Bryk (2002; see also,
e.g., Draper, 1995; Nezlek & Zyzniewski, 1998; Pedhazur, 1997) for a full
explanation of the conceptual and methodological details of hierarchical
modeling.

The basic concept behind hierarchical modeling is similar to that of
ordinary least squares (OLS) regression. On the base level (usually the
individual level, referred to here as Level 1, the lowest level of your data),
the analysis is similar to that of OLS regression: An outcome variable is
predicted as a function of a linear combination of one or more Level 1
variables, plus an intercept, so

Yij = β0j + β1jX1 + … + βkjXk + rij,

where β0j represents the intercept3 of group j, β1j represents the slope of
variable X1 of group j, and rij represents the residual for individual i within
group j. On subsequent levels, the Level 1 slope(s) and intercept become
dependent variables being predicted from Level 2 variables:

β0j = γ00 + γ01W1 + … + γ0kWk + u0j,



β1j = γ10 + γ11W1 + … + γ1kWk + u1j,

and so forth, where γ00 and γ10 are intercepts, and γ01 and γ11 represent slopes
predicting β0j and β1j, respectively, from variable W1. Through this process,
we accurately model the effects of Level 1 variables on the outcome, as
well as the effects of Level 2 variables on the outcome. In addition, as we
are predicting slopes as well as intercepts (means), we can model cross-
level interactions, whereby we can attempt to understand what explains
differences in the relationship between Level 1 variables and the outcome.
This will be discussed a bit more below.

AN EMPIRICAL COMPARISON OF THE THREE APPROACHES TO

ANALYZING HIERARCHICAL DATA

To illustrate the outcomes achieved by each of the three possible analytic
strategies for dealing with hierarchical data, disaggregation (bringing Level
2 data down to Level 1), aggregation (bringing Level 1 data up to Level 2 in
the form of averages), and multilevel modeling, data were drawn from the
National Education Longitudinal Survey of 1988 from the National Center
for Education Statistics. This data set contains data on a representative
sample of approximately 25,000 eighth graders in the United States at a
variety of levels, including individual, family, teacher, and school. The
analysis we performed predicted composite achievement test scores (math,
reading combined) from student socioeconomic status (family SES), student
locus of control (LOCUS), the percentage of students in the school who are
members of racial or ethnic minority groups (%MINORITY), and the
percentage of students in the school who receive free lunch (%LUNCH).
Achievement is our outcome, SES and LOCUS are Level 1 predictors, and
%MINORITY and %LUNCH are Level 2 indicators of school environment.
In general, SES and LOCUS are expected to be positively related to
achievement, and %MINORITY and %LUNCH are expected to be
negatively related to achievement. In these analyses, 995 of a possible
1,004 schools were represented (the remaining 9 were removed due to
insufficient data).4



Disaggregated Analysis. In order to perform the disaggregated analysis, the
Level 2 values were assigned to all individual students within a particular
school. A standard OLS multiple regression was performed via SPSS,
entering all predictor variables simultaneously. The resulting model was
significant, with R = .56, R2 = .32, F(4, 22899) = 2648.54, p < .0001. The
individual regression weights and significance tests are presented in
Table 29.1.

All four variables were significant predictors of student achievement. As
expected, SES and LOCUS were positively related to achievement, while
%MINORITY and %LUNCH were negatively related.

Aggregated Analysis. In order to perform the aggregated analysis, all Level
1 variables achievement, LOCUS, SES) were aggregated up to the school
level (Level 2) by averaging. A standard OLS multiple regression was
performed via SPSS, entering all predictor variables simultaneously. The
resulting model was significant, with R = .87, R2 = .75, F(4, 999) = 746.41, p <
.0001. As seen in Table 29.1, both average SES and average LOCUS were
significantly positively related to achievement, and %MINORITY was
negatively related. In this analysis, %LUNCH was not a significant
predictor of average achievement.

Table 29.1 Comparison of Three Analytic Strategies for Dealing With Nested Data

Multilevel Analysis. In order to perform the multilevel analysis, a true
multilevel analysis was performed via hierarchical linear modeling (HLM),
in which the respective Level 1 and Level 2 variables were specified
appropriately. Note also that all Level 1 predictors were centered at the



group mean, and all Level 2 predictors were centered at the grand mean.5

The resulting model demonstrated goodness of fit (  for change in model
fit = 4231.39, p < .0001). This analysis reveals significant positive
relationships between achievement and the Level 1 predictors (SES and
LOCUS) and strong negative relationships between achievement and the
Level 2 predictors (%MINORITY and %LUNCH). Furthermore, the
analysis revealed significant interactions between SES and both Level 2
predictors, indicating that the slope for SES gets weaker as %LUNCH and
%MINORITY increase. Also, there was an interaction between LOCUS
and %MINORITY, indicating that as %MINORITY increases, the slope for
LOCUS weakens. Although there are effect size estimates in HLM, there is
no clear preference in the literature as to which one is superior at this time.

Comparison of the Three Analytic Strategies

For the purposes of this discussion, we will assume that the third analysis
represents the best estimate of what the “true” relationships are between the
predictors and the outcome. Unstandardized regression coefficients (Bs in
OLS, betas and gammas in HLM) were compared statistically via
procedures outlined in Cohen and Cohen (1983).

In examining what is probably the most common analytic strategy for
dealing with data such as these, the disaggregated analysis provided the best
estimates of the Level 1 effects in an OLS analysis. However, it
significantly overestimated the effect of SES and significantly and
substantially underestimated the effects of the Level 2 effects. The standard
errors in this analysis are generally lower than they should be, particularly
for the Level 2 variables.

In comparison, the aggregated analysis overestimated the multiple
correlation by more than 100%, overestimated the regression slope for SES
by 79% and for LOCUS by 76%, and underestimated the slopes for
%MINORITY by 32% and for %LUNCH by 98%.6

These analyses reveal multilevel modeling as a best practice for anyone
with nested or multilevel data. Neither OLS analysis accurately modeled the
true relationships between the outcome and the predictors. In addition,
HLM analyses provide other benefits, such as easy modeling of cross-level
interactions, which allows for more interesting questions to be asked of the
data. With nested and hierarchical data common in the social and other



sciences, and with recent developments making HLM software packages
more user-friendly and accessible, it is important for researchers in all fields
to become acquainted with these procedures.

ADVANCED TOPICS IN HLM

As many authors have discovered in the years since HLM became
available, there are many applications for these analyses. Generalizations to
three- and four-level models are available, as are logistic regression analogs
(e.g., HLM with binary or polytomous outcomes), applications for meta-
analysis, powerful advantages for longitudinal analysis (as compared with
other methods such as repeated-measures analysis of variance [ANOVA]),
and many of the fun aspects of OLS regression (such as modeling
curvilinear effects) possible in HLM as well.

There is little downside to HLM, aside from the learning curve. If one
were to use HLM on data where no nesting, dependence, or other issues
were present, one would get virtually identical results to OLS regression
from statistical software packages such as SPSS or SAS or R.

Two particular topics merit brief discussion. Chapter 30 discusses
applications of multilevel modeling to longitudinal data. There are
significant issues with longitudinal data, including the fact that the
assumptions of repeated-measures ANOVA (RMANOVA) are rarely met in
practice and that missing data and unequal time periods between measures
can severely cripple a RMANOVA analysis. However, HLM has none of
these drawbacks. So long as any individual has one data point, it can be
included in a repeated-measures HLM analysis. Furthermore, unequal time
intervals between measurements can be explicitly modeled to remove as
much potential for error variance as possible. Growth curves are easily
modeled, and the estimation procedures in HLM tend to produce smaller
standard errors, all of which make HLM a best practice for longitudinal data
analysis.

Another less common but equally interesting application is that of meta-
analysis, which is discussed in Chapters 12 and 31. In particular, any meta-
analysis is automatically a nested data situation, as subjects are nested
within experiments or studies. Many meta-analytic strategies involve
summary statistics, which amount to the aggregation strategy presented



above. This represents a significant loss of information over using HLM,
where one can use all subjects as Level 1 data and study characteristics as
Level 2 (or higher) data. Meta-analysis in itself represents a best practice, as
it leverages the efforts of many researchers to produce higher-quality
conclusions, and meta-analysis using multilevel modeling is the best
practice for performing this important and useful analysis.

NOTES

1. My personal favorite is HLM, most likely because I have been using it since the mid-1990s.
There are many high-quality packages out there for this type of analysis, and readers are encouraged
to explore them.

2. Readers interested in these applications can refer to Chapters 30 and 31 in this volume or
Raudenbush and Bryk (2002).

3. This can be left uncentered or moved to represent the mean, as one can do in OLS regression
(see, e.g., Hoffman & Gavin, 1998).

4. This highlights one of the restrictions of multilevel modeling—in general, you need complete
data on all subjects at the highest level of analysis, in this case, Level 2. Of course, missing data
procedures can ameliorate this problem, as outlined in Chapter 15. Furthermore, one of the strengths
of this over other procedures is that you do not need complete data at the lower level(s), a significant
advantage over repeated-measures ANOVA. Refer to Chapter 30 for applications of HLM to
repeated-measures data.

5. Centering variables in HLM changes the intercept’s meaning from the value of Y when X = 0
(traditional interpretation) to the value of Y when X = the average score. For more on the technical
interpretations of intercepts when various centering strategies are used, see Hoffman and Gavin
(1998) and Raudenbush and Bryk (2002).

6. Because I group-mean centered the Level 1 variables in HLM (as is often desirable), the
comparisons of the school-level variables across methods (disaggregated, aggregated, HLM) are not
truly equivalent. In the disaggregated and aggregated versions, the student-level variables act as
controls so that the school variables are adjusted effects (adjusted for either SES and locus at Level 1
or average SES and average locus at Level 2); when group-mean centering is used, however, the
levels are orthogonal. The large discrepancy in the effect for %LUNCH between HLM and the other
methods may be due to the absence of SES effects at Level 2. Grand-mean centering can handle this
issue and may make the Level 2 coefficients look more similar to the coefficients with the aggregated
method, but when discussing random effects for the Level 1 measures in your model, grand-mean
centering makes less sense when the Level 1 coefficients vary between groups. This model (with
group-mean centering) provides more accurate estimates for the respective Level 1 and Level 2
coefficients because these effects are not confounded across levels (i.e., the models are orthogonal).
If the researcher wanted to know what these effects might be controlling for average SES or average
locus, he or she could include them at the appropriate level in the model. While HLM can disentangle
effects across levels of a hierarchy (actually, regardless of centering), the other methods cannot.
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nalyzing longitudinal data has important advantages over cross-
sectional data because it can distinguish between changes that occur
within subjects and differences between subjects. In cross-sectional

data, subjects are measured at a particular moment in time. The differences
in characteristics of the subjects are the only source of variation that can be
used to explain the outcome of scientific interest. The standard ordinary
least squares (OLS) linear regression technique is often sufficient to
describe and to make inferences about the relationship between variables in
crosssectional data. There are a number of excellent standard textbooks
about this topic at a basic (e.g., Kleinbaum, Kupper, Muller, & Nizam,
1998) and advanced level (e.g., Weisberg, 1985).

Statistical analysis methods for longitudinal data should be able to
distinguish between the two sources of variation—that is, the within-
subjects variation that accounts for changes within each subject through
repeated measurements in time and the between-subjects variation
accounting for differences between the subject’s performances. The OLS
linear regression technique is in general not suitable to analyze longitudinal
data because it incorrectly treats all observations as if they were
uncorrelated.

Longitudinal data are correlated because of the hierarchical structure of
data sampling (i.e., repeated measurements are nested within subjects).
Another type of correlation between repeated measurements could arise



when, for example, each subject is measured by an observer (possibly self-
reporting) whose measurement is influenced by the previous measurement
on the same subject. This type of correlation is known as serial correlation,
which is different from the former type. One common and appropriate
method of analyzing this type of data is repeated-measures analysis of
variance (ANOVA) or multivariate ANOVA (MANOVA; see, e.g., Hand &
Taylor, 1987, for an introduction to this topic). However, multilevel
modeling (often referred to as hierarchical linear modeling or mixed-effects
regression) has significant fundamental advantages over repeated-measures
ANOVA (RMANOVA) and therefore constitutes a best practice.1

EXAMPLES OF LONGITUDINAL DATA

Anti-Alcohol Campaign

The first example is a hypothetical study about the effects of an anti-
alcohol campaign, which is performed in different European countries. The
objective is a cross-country comparison of the relationship between alcohol
consumption and violent behavior. In some countries, there was a large-
scale anti-alcohol campaign. Seven of these countries were compared with
eight other countries without antialcohol campaigns. Within each country, a
random sample of about 3,000 subjects was collected. The countries were
also subdivided into northern and southern parts. Each subject was
measured three times.

This example is structured according to a multilevel design. In general,
the number of levels in a multilevel design is determined by the number of
random factors. Whether a factor is fixed or random depends primarily on
whether the sampling is a random sample from some well-defined
population of subjects (within each country) and whether the results will be
generalized to a larger population or not. The results of an analysis, based
on the subjects in the sample, will be generalized to the population;
therefore, subjects will be treated as a random factor. However, if in some
(rare) situation, the interest is only to draw conclusions with respect to the
subjects in the sample, then the results of the statistical analysis will not be
generalized to a larger group, and the subjects as a factor will be considered



to be fixed. Variables such as geographic position, treatment status,
socioeconomic status, gender, and marital status are usually considered to
be fixed factors because interest is only restricted with respect to the
observed levels of the variable.

The design of the anti-alcohol campaign study can be considered as an
example of a three-level design. The repeated measurements nested within
each subject are denoted as first-level observations. The subjects are
denoted as second-level observations, while the countries can be denoted as
third-level observations. It should be noted that although the countries were
nested within the intervention status, the anti-alcohol campaign is not
considered to be a level. The same applies for the geographic position.
These variables are denoted as third-level factors.

If there is only one country in the sample, then all subjects can be
assumed to be uncorrelated. In the present situation, however, the subjects
are nested within the presumed independently sampled countries. Alcohol
behavior of the subjects within countries is more alike than that of
respondents between countries. For example, the amount of alcohol
consumption in the Netherlands is, on average, much lower than in France.
Consequently, given an observation of a French person, one can almost
predict whether an observation of another person is French or Dutch. This
induces an arbitrary country correlation between observations at the
(second) subject level. We will see later that the amount of correlation is
determined by the amount of between-country variability. The same
reasoning can also be applied regarding the repeated measurements within
each subject. The differences between countries and subjects induce
correlation between first-level observations. Apparently, observations at the
lower levels tend to be correlated due to the multilevel structure.

Growth Study

The second example is a study of orthodontic growth of 11 girls and 16
boys that was first analyzed by Potthoff and Roy (1964). In this study, the
distance (in millimeters) between the pituitary and the maxillary fissure was
recorded at four different ages: 8, 10, 12, and 14. These two locations can
easily be identified on an X-ray.

This is an example of a two-level longitudinal design. The first-level
observations are the (four) repeated measurements, nested within subjects.



The second-level observations are the subjects that are considered to be an
independent random sample. Since measurements within subjects are more
alike than measurements between subjects, there is correlation induced by
the multilevel structure. On top of this, there might be serial correlation due
to, for example, memory effects. The variable sex is a second-level time-
independent factor. We will see later in what way the linear mixed-effects
regression model can distinguish between serial correlation and correlation
induced by the multilevel structure.

Interpersonal Proximity Study

The third and last example is a study concerning the evaluation of
teachers’ interpersonal behavior in the classroom. The teachers were
evaluated on their interpersonal behavior in the classroom each year for a
period of 4 years, starting with a baseline measurement at time zero. The
degree of closeness between a teacher and the students was measured by
means of a “proximity” score. A total of 51 teachers were evaluated. The
number of observations for the four time points decreased from 46 at t = 0
to 32 at t = 3. Hence, we are dealing with an unbalanced design in regard to
time. Nonresponse at various time points may be considered to be missing
at random.2 Another Level 2 (person) variable is gender (0 = male; 1 =
female). Gender could possibly be a predictor of the proximity score of the
teacher. It is also possible that gender has an influence on the relationship
between the measurement occasion and the proximity score (i.e., an
interaction between gender and occasion may be considered).

It is likely that respondents remember their proximity scores of the
preceding years, leading to serial correlations between repeated
measurements in addition to the correlation induced by the multilevel
structure. Note that serial correlation due to memory effects or other factors
that cause a time lag can also be present in the previous two examples.
However, in this chapter, we will exclusively approach the problem of serial
correlation for the proximity study.

WHY NOT STANDARD REGRESSION TECHNIQUES?



Analyzing Longitudinal Data With OLS

Aggregation

A possible way to deal with correlated data is to aggregate the data. For
example, the growth data can be aggregated by first calculating the average
head circumference per subject and then using these for further analysis.
Standard OLS regression techniques would then be suitable to analyze
global sex differences in head circumference. Another possibility is to first
calculate the average head circumference for each time point. As Osborne
(Chapter 29) discussed, neither of these approaches is desirable.

Disaggregation

Another way to deal with correlated data is to neglect the multilevel
structure and serial correlation. By disaggregating the data, all observations
are treated as if they were uncorrelated. The standard OLS method would
then be applicable. We will discuss the consequences of disaggregating the
data with respect to point estimation and corresponding standard errors of
the regression parameters. The growth data serve as an example. For ease of
presentation, we suppose that there is no missing observation and no serial
correlation.

It can be seen from the profiles of all subjects in Figure 30.1a that there is
more or less a linear growth of the head circumference (distance). The
consequence of disaggregating the data is that all observations are treated
equally without distinguishing within- and between-subjects measurements.
Figure 30.1b shows the average growth of the head circumference of boys
and girls. This suggests that there is an age-by-sex interaction effect
because the head circumference for boys grows more rapidly than that for
girls. Therefore, it makes sense to specify the underlying regression model
as

where βk, k = 1, 2, 3 are the regression parameters and Vij is the error term
for subject i at time point j,i = 1, …, n, j = 1, …, m, which is supposed to be



uncorrelated and normally distributed with mean zero and constant variance
. Note that  indicates the deviations of the observations around the sex-

specific regression lines. The variable Distanceij is the head circumference.
The variable Sexi is coded as boys = 0 and girls = 1. The time-dependent
variable ageij is measured in years.

Consequence of Using OLS

From Tables 30.1 and 30.2, a comparison can be made regarding the
point estimates and the corresponding standard errors. Table 30.1 shows the
results when treating the data as if they were uncorrelated (i.e., neglecting
the multilevel structure).

Table 30.2 shows the results of an appropriate analysis, which accounts
for the multilevel structure and hence the correlation structure of the data.
We will see later that the random intercept regression model appears to be a
better model to describe these data.

First, note that the point estimates of the OLS method are the same as in
the appropriate method. Pleasurable as it may seem, this situation only
occurs when all subjects are measured at the same time points (balanced in
time) and when there are no missing observations. The parameter estimates
of the OLS method are biased for unbalanced data and/or when missing
observations occur. Second, as can be seen from Tables 30.1 and 30.2, the
standard errors of the estimates are not the same. To explain the
discrepancy, let us take a closer look at the sex-specific age effect and the
age-specific sex effect.



Figure 30.1 (a) Subject-specific profiles of the growth study and (b) average profile for
boys and girls.



Table 30.1 OLS (Restricted Maximum Likelihood): Growth Data

Table 30.2 Appropriate Analysis (Random Intercept Model [Restricted Maximum
Likelihood]): Growth Data

Age-Specific Sex Effect

An age-specific sex effect reflects the difference between boys and girls
for each age-group separately. In terms of the regression parameters, this
difference is equal to

The corresponding standard errors are shown in Table 30.3. The OLS
estimates of the standard errors are biased downward. This can be
understood as follows. The amount of information of an additional
correlated (repeated) measurement is less than that of an additional
independent subject. Therefore, treating correlated observations (over time)
as independent observations leads to an exaggeration of the sample size (or,
more precisely, exaggeration of the degrees of freedom). Consequently, the
standard error of the estimated sex effect for each age level will be too low.

Sex-Specific Age Effect



A sex-specific age effect reflects the amount of growth for boys and girls
separately. In terms of the regression parameters, this effect can be
determined by substituting the codes of the variables into the regression
model (1):

Table 30.3 Estimated Age-Specific Sex Effects and Their Standard Errors (Restricted
Maximum Likelihood)

The corresponding standard errors are shown in Table 30.4. As can be
seen from Table 30.4, the OLS estimates of the standard errors are biased
upward. This can be understood as follows. Using OLS, the standard error
of the estimated age effect is calculated based on the combined variability
between and within subjects for boys and girls separately. For the
estimation of the amount of change over time, however, one should only
account for the within-subjects variability. Differences between subjects
should not affect the precision of this estimate. Hence, the sex-specific
standard errors of the estimated age effects will be too large when using
OLS.

The interaction term in model (1) can be interpreted as the difference in
growth velocity between boys and girls and should be estimated accounting
for only the within-subjects variability.



Table 30.4 Estimated Sex-Specific Age Effects and Their Standard Errors (Restricted
Maximum Likelihood)

This situation is comparable with that of the sex-specific age effect.
Consequently, the standard error of the interaction term and the
corresponding p values will be too large when using OLS.

In this example, the OLS method leads to a nonsignificant contribution of
the interaction term (p = .13), whereas the appropriate analysis method
leads to a highly significant contribution (p = .01). Consequently, the
analysis of the growth study with the incorrect OLS method leads to the
wrong conclusion that the growth velocity of the boys is equal to that of the
girls.

ACCOUNTING FOR THE MULTILEVEL STRUCTURE

There are several ways to deal with correlated data: Treat subjects as either
a fixed or a random factor in the model. Each alternative has its own pros
and cons.

Treat Subjects as a Fixed Factor in the Model

An obvious way to deal with longitudinal data is to fit separate regression
lines for each subject. This can be accomplished by treating the subjects as
a fixed factor and including the regression model using dummy variables.
For the growth study, the model can be specified as



where the error terms Vij are normally distributed with mean zero and
variance , i = 1, …, 27 and j = 1, …, 4. The variables D1, …, D10 are
dummy variables for the female subjects, and D12, …, D26 are the dummy
variables for the male subjects, respectively. One of the boys (and girls) is
chosen to be the reference subject. Each of the regression parameters β4, …,
β13 can be interpreted as the subject-specific deviation from the reference
female subject, and β14, …, β28 are the subject-specific deviations from the
reference male subject. We will denote this as the analysis of covariance
(ANCOVA) approach.

Table 30.5 shows some results. Note that the significance of the
interaction term in Table 30.5 is equal to that in Table 30.2. In fact, the
ANCOVA approach also leads to unbiased results. It enables one to
estimate the separate regression lines even when the subjects are not
measured at the same time points (unbalanced) and when missing
observations (missing at random) occur. Some of the subjects are allowed to
have only one measurement. The average profile is determined using all
available information contained in the data (also from the subject with only
one measurement). Time-independent covariates can also be included in the
model.

Two major drawbacks of this approach are worthwhile to mention. First,
since the subjects are treated as a fixed factor, no generalizations can be
made to a larger group. Second, the ANCOVA approach should not be used
if there are serial correlations because the within-subjects observations will
then be correlated.

Table 30.5 ANCOVA Approach of the Growth Study



Treat Subjects as a Random Factor in the Model

Usually, the purpose of a study is to generalize the findings to a larger
group (population) of subjects than indicated by the sample. This problem
can be solved by assuming the subjects in the study form a random sample
from a certain known distribution. The subjects are then treated as a random
factor. This approach also allows the modeling of subject-specific
intercepts. In most software programs, these intercepts are assumed to be
realizations from a normal distribution. To be more specific, consider the
following simplified model for the growth data.



Distanceij = β0i + β1ageij + Rij, (5)

given the following:

Model (5) can be schematically visualized according to Figure 30.2. For
ease of presentation, we do not distinguish between boys and girls at this
moment. In this example, we assume that the subject-specific regression
lines only differ in intercept, which is similar to the ANCOVA approach.
That is why the lines in the figure are parallel, with the slope equal to β1,
which can be interpreted as the average growth velocity of the children.
Furthermore, the regression intercepts are supposed to be a random sample
of a normal distribution. The different intercepts are specified in model (5)
as β0i, i = 1, …, n, which is denoted as a random intercept, normally
distributed with mean value β0 and variance . The second-level variance 
indicates how far the separate regression lines are from the average
regression line. The first-level variance σ2 indicates for each subject how far
the observations are from its corresponding regression line, which is
assumed to be equal for all subjects.

Comparable to the ANCOVA approach, the random intercept model
specifies each subject-specific regression line separately. All regression
lines are connected to each other through the underlying assumption of the
random intercept and the functional relationship as specified in the model.
The maximum likelihood method (e.g., Diggle, Liang, & Zeger, 1994) is
used to estimate all model parameters. The average profile is determined
using all available information contained in the data.



Figure 30.2 Graphical representation of a random intercept model.

Usually, inferences are only made about the average growth. Information
about individual regression lines is often not of main interest. Model (5) can
be rewritten in a form that is similar to the standard (fixed) regression
specification, decomposing the responses into a fixed part of averages and a
random part as follows:

ICC is the intraclass correlation. Just like in the fixed effect situation, the
responses Distanceij can be decomposed into a fixed systematic part β0 +
β1ageij (average regression line) and into a random part Vij with overall
variance . This variance is a combination of the first-level within-subjects
(σ2) and second-level between-subjects ( ) variances.

In general, the specification of the systematic part is completely similar
as in the fixed regression case, involving quantitative as well as qualitative



independent variables. However, the error terms Vij are correlated. It can be
shown that these are correlated with correlation equal to

It reflects the proportion of the total amount of variance explained by the
differences between subjects. If the between-subjects variance  is large
relative to the within-subjects variance (σ2), then the numerator of the ICC (

) will be approximately equal to the denominator of the ICC (σ2 + ). The
value of the ICC will be close to 1, which corresponds to highly correlated
error terms between the time points.

Usually, these variances and correlations are summarized in a table that
consists of m rows and m columns. The m rows and columns represent the
m different time points. The element in the jth row and j′th column is equal
to corr(Vij, Vij′). In particular, the correlation between the responses at the
same time point j is equal to corr(Vij, Vij′) = 1. It is assumed that the
correlations between time points are equal for all subjects, so that we can
drop the subscript i.

In the literature, such a table is denoted as a correlation matrix Vcorr,
leaving out the rows and columns specification. If the number of time
points is equal to m = 4, the matrix Vcorr can be written as

or in terms of the corresponding matrix of variances and covariances



This type of correlation (covariance) matrix is called compound symmetry
or exchangeable. The covariation between time points is fully determined
by the between-subjects variance  (i.e., induced by the two-level design).
Note that the covariance can be obtained from the correlation by using the
following formula:

where sd(Vij) is the standard deviation of the response of subject i at time
point j.

It should be noted that SPSS presents the results of the covariance matrix
in a table format (see Tables 30.7, 30.9, and 30.10).

In general, Vcov is a matrix that consists of overall variances and
covariances of the responses. These variances and covariances are
combinations of the between-subjects (Level 2) variances and covariances
of the random effects and those of the within-subjects (Level 1)
measurement errors. The variances and covariances of the random effects
are summarized in a so-called Gcov matrix, whereas those of the
measurement errors are summarized in a so-called Rcov matrix.

Table 30.6 summarizes the notations of the various variance and
covariance components for a random intercept (RI) model. For this RI
model (Table 30.6, column 3), the subjects only differ with respect to the
intercepts. Hence, the Level 2 G matrix only consists of the random
intercept variance Gcov = ( ).The Level 1 observations are supposed to be
uncorrelated with equal variances over time (i.e., no serial correlations are
imposed). The corresponding Rcov matrix for the random intercept model
has covariances equal to zero and constant variance equal to σ2. Note that
all elements of the Rcov matrix should be added by  to obtain the Vcov matrix
(see Equation 8).
In summary, can be stated the following:

The elements of Rcov are the Level 1 within-subjects variances and
covariances indicating the discrepancy between the observations and
the subject-specific regression lines. Usually, the same amount of
discrepancy is assumed for all subjects.



The elements of Gcov are the Level 2 between-subjects variances and
covariances indicating the discrepancy between the subject-specific
regression lines and the average regression line.
The elements of Vcov are the overall variances and covariances of the
responses indicating the discrepancy between the observations and the
average regression line.

Random Intercept Model for the Growth Study

The  LINEAR option of SPSS 133 has been used to estimate the
model parameters (see Landau & Everitt, 2004, appendix). The systematic
part of the model is given in Equation 1. The restricted maximum likelihood
(REML) approach was performed to obtain unbiased estimates of all model
parameters. A random intercept model seems plausible because the subject-
specific profiles (see Figure 30.1a) were more or less parallel with
considerable between-subjects variability. Part of the SPSS output is
depicted in Table 30.7. Note that covariance matrices are presented here in
table format.

The random intercept variance in Table 30.7 is estimated as ,
which is the only element of Gcov. The Rcov matrix has equal residual
variances estimated by . Note that all covariances are equal to zero
because no serial correlations were assumed. The corresponding overall
correlation matrix Vcorr is equal to

Table 30.6 Variance-Covariance Components of the Random Intercept Model for m = 4
Time Points



Table 30.7 SPSS Output Regarding Gcov and Rcov Matrix

The estimated correlation  between time point j and j′ is calculated as

Apparently, the observations are fairly highly correlated (r = .63) solely due
to the two-level structure. The within-subjects residual variance ( ) is
smaller than the between-subjects variance ( ), as expected from
Figure 30.1a. The estimates of the fixed parameters are shown in
Table 30.2.

Random Slope Model



In many cases, individual regression lines may reveal different regression
slopes. To model different regression slopes, a random slope can be added
to the random intercept model. An example of a random effects model with
a random intercept and slope is

Yij = β0i + β1itij + Rij, (11)
where

We assume that the subject-specific regression lines differ in intercept
and slope. The regression intercepts and slopes are supposed to be samples
of normal distributions. The random intercept is specified in model (11) as
β0i, i = 1, …, n, with mean value β0 and variance . The different slopes are
specified as β1i, i = 1, …, n, which is denoted as random slope, normally
distributed with mean value β1 and variance . Moreover, the random
intercept (RI) and the random slope (RS) are supposed to be correlated with
covariance equal to τ01. The second-level variances and covariances matrix
Gcov of the random effects and the first-level matrix Rcov of measurement
errors for m = 4 time points are shown in Table 30.8.

It appears that the variances and covariances of the responses (the Vcov

components of Table 30.8, column 3) are determined according to the
following formula:



with j, k = 1, …, m. No serial correlations are imposed in this example. All
covariances between the responses (see Equation 12) are due to the
multilevel design.

Another type of correlation is not due to the multilevel structure but due
to the fact that the error of a measurement at a particular point in time on a
subject somehow influences the error of measurement at another (possibly
adjacent) point in time. This may be due to memory effect or due to other
reasons that cause a carryover in time within a subject.

Table 30.8 Variances and Covariances of the Random Intercept/Slope Model for m = 4
Time Points

SERIAL CORRELATION

Differences between subject characteristics induce correlation between time
points. The difference in intercept, for example, may cause correlation that
is proportional with it (see Equations 7 and 8). In the random effects model
mentioned previously, it is assumed that the Rcov matrix contains zero
covariances. However, serial correlation affects the structure of the Rcov

matrix because it affects the first-level within-subjects dependency of
observation errors between time points. The AR (1) (first-order
autoregressive) correlations are very common in practice. They assumes
that the amount of correlation between two time points t1 and t2 only
depends on the length of the interval between the two time points—that is,



the correlation Rjk = , with –1 < ρ < 1 and j, k = 1, …, m. Consequently,
the AR (1) serial correlations decrease as the interval length between two
time points increases. In the growth study, for example, one could argue
whether memory effects may influence measurements at consecutive time
points. If they do, then it is plausible to assume that the influence weakens
as the time interval length increases. Hence, an AR (1) correlation structure
would be a candidate to describe the dependency between the four repeated
measurements.

Random Slope Model With Serial Correlation for the
Proximity Study

To model the systematic (fixed) part of the model of the proximity data,
consider Figure 30.3a. From this, it can be seen that one of the average
profiles (female teachers) shows a nonlinear relationship. After a
considerable increase in average score from the start of the study to the
evaluation after 1 year, the average proximity scores drop again in the
second and third years. The profile of the male teachers shows a linear
relationship. In this study, however, we are only interested in the
comparison of average proximity scores between the different observed
occasions. As the regression analog of the ANOVA modeling for group
comparisons, the occasions can be considered as four different (time)
groups, and this time variable as a factor (discrete variable with four
categories) should be included in the regression model. Because an
interaction could be expected between occasion and gender, the following
regression model is specified.

The dependent variable Proxij is the proximity score of subject i at occasion
j = 0, …, 3. The systematic part consists of

the variables occkij, k = 1, 2, 3, which are dummy variables for
occasion k;
the variable genderi, which is coded 0 for males and 1 for females; and



the interaction terms intkij, k = 1, 2, 3, which are the gender-by-
occasion interaction.

The random terms Vij indicate the deviations of the observed values
around the lines through the male and female average scores.

The structure of the overall variance and covariances (Vcov matrix) should
be established first before estimating the regression parameters. As
mentioned before, the estimated standard errors of the regression
parameters could be biased if an incorrect covariance structure is imposed.
A number of covariance structures can be specified by statistical packages
such as SPSS. Instead of trying all available covariance structures, we could
also try to make an educated guess by first looking at the scatterplot of the
observed profiles of all subjects as shown in Figure 30.3b. From this figure,
it can be seen that there is a considerable amount of variability between
subjects, suggesting the presence of a second-level intercept variance .
Moreover, the amount of variability seems to decrease with time,
suggesting that a random intercept model is not sufficient to describe the
data properly. A model with a random intercept as well as a random slope
might be a better choice, suggesting the presence of a second-level slope
variance . Covariation between the random intercept and random slope is
also possible.

On the other hand, serial correlations are expected because the
performances of the teachers were evaluated by the students on a yearly
basis. The scores on the proximity scale at a particular time point might be
influenced by the scores at preceding time points, leading to correlated
errors. Furthermore, there is also a considerable number of missing
observations. About 30% of the subjects drop out from the study. By means
of an example, two competing covariance structures will be modeled:

1. A random-effects regression model with AR (1) serial correlations for
balanced data with heterogeneous variances

2. A random-effects regression model with random intercept and random
slope and with no serial correlations

Tables 30.9 and 30.10 show part of the SPSS output of an AR (1) and a
random intercept/slope model without serial correlation model, respectively.
In Table 30.9, the variances and covariances of the responses (Vcov matrix)



are presented. This SPSS output can be obtained by specifying the Rcov

matrix (within-subject variances and covariances) to be AR (1)
heterogeneous and leaving the random components (Gcov matrix)
unspecified. As a result, the Vcov matrix equals the Rcov matrix (see
Table 30.8, column 4). Looking at the elements of the Vcov matrix in
Table 30.9, it can be seen that the variances decrease with time, which is
also observed from the plot in Figure 30.4b. Moreover, the covariances also
decrease as the interval width between two time points increases. This is a
direct consequence of the AR (1) structure.

Note that in the model specification (13), the variable occasion is treated
as a discrete variable. To specify a random slope, we assume that the
deviation of the subject-specific slope around the line through the averages
is changing linearly. This can be accomplished by adding a continuous
variable Z with the same values as the discrete variable occasion and with
random parameter β8i, normally distributed with mean zero and variance ,
indicating the subject-specific slope.

When a random intercept/slope model is analyzed, SPSS does not
calculate the elements of the Vcov matrix. This matrix can be calculated from
the Gcov and the Rcov matrix by using the formula in Equation 12. It turns out
that the Vcov matrix is estimated as

From Equation 14, it can be seen that the variances of the responses
decrease with time, and the covariances also decrease as the interval width
between two time points increases.

It should be noted that the form of the Vcov matrix in Equation 14, which
shows decreasing variances and covariances, is not typical for a random
intercept/slope model. If the same study were performed in a different
period, say starting between Occasion 1 and Occasion 4, then the Vcov

matrix could be different. Consequently, the scatterplot of the dependent
variable against time can have different shapes depending on the period in
which the study is performed. Figure 30.4 shows the three different
possibilities:



Figure 30.3 (a) Average profile of the proximity study and (b) subject-specific profile of the
proximity study.

Table 30.9 SPSS Output of the AR (1) Serial Correlations Model With Heterogeneous
Variances of the Proximity Study



Table 30.10 SPSS Output of the Random Intercept/Slope Model (No Serial Correlations) of
the Proximity Study



Figure 30.4 Three different fan shapes of the random slope model.

a. The observations spread as time passes.
b. The observations close together as time passes.
c. The observations cross as time passes.

There are no other possibilities due to the quadratic nature and the
positive values of the variances of the random effects. For the sake of
comparison, suppose that this proximity study was performed between
Occasion 1 and Occasion 4. The Vcov components would still show
decreasing covariances, but the variances are not decreasing and resemble a
crossover fan situation, as shown in Figure 30.4c. The corresponding Vcov

matrix would be

In Equation 15, the variances first decrease and increase again at the last
occasion.

If the study was performed between Occasion 3 and Occasion 6, the
variances (Equation 16) would increase in agreement with a spreading fan,
as shown in Figure 30.4a. Note that in this case, the covariances do not
decrease.

Let us go back to the results of the analysis of the observed occasions (0–
3). For both the AR (1) heterogeneous model and the random
intercept/slope model, all the estimates of the variances and the covariances
are significant at the .05 significance level. This can be seen from the Wald
test depicted in Tables 30.9 and 30.10. Both models are competing
alternatives to describe the variance-covariance structure of the responses.
These tests, however, do not provide any evidence favoring one model over



another. Some selection criteria on how to choose the most suitable model
will be discussed briefly in the next paragraph.

LIKELIHOOD-BASED TEST STATISTICS FOR MODEL SELECTION

A number of test statistics are used to compare alternative models. For
hierarchical (nested) models, the well-known “restricted –2LL” (log-
likelihood) test statistic can be used for comparing alternative models that
only differ in covariance structures. The term restricted (based on the
REML) estimates is added to distinguish this test from the commonly used
–2LL (based on the maximum likelihood [ML] principle). The ML
estimates of the variances and covariances lead to an underestimation of the
standard errors of the estimates of the variances and covariances and are
therefore not recommended in this phase of the analysis (see Verbeke &
Molenberghs, 2000, for a thorough discussion).

Roughly speaking, the restricted –2LL is a distance measure between the
fitted model and the observed data. The smaller the restricted –2LL, the
better the model will be considered. When comparing two hierarchical (or
nested) models that only differ in covariance structures, the difference in the
distance from model to data will be calculated. This difference is called the
log-likelihood ratio and refers to the difference in –2LL between the two
random effects models. According to the statistical theory, this difference
has an asymptotically known chi-square distribution with known degrees of
freedom. The calculation of the degrees of freedom is not straightforward in
all situations. For a thorough discussion, refer to Verbeke and Molenberghs
(2000) and Snijders and Bosker (1999). For ease of presentation, we
propose to follow basically the ideas mentioned by Snijders and Bosker:

1. The two competing hierarchical models should have the same fixed
effects part.

2. Estimate all parameters with REML.
3. Calculate the difference in –2LL between the two models (log-

likelihood ratio test).
4. If the test concerns the significance of covariances, then the log-

likelihood ratio test should be used as a two-sided chi-square test with



degrees of freedom equal to the difference in the number of model
parameters.

5. If the test concerns the significance of variances, then the log-
likelihood ratio test should be used as a one-sided chi-square test with
degrees of freedom equal to the difference in the number of model
parameters.

Suppose, for example, that the random intercept/slope model is to be
compared with the random intercept model. The random intercept model is
nested within the random intercept/slope model because the first model can
be obtained from the second one by imposing a zero restriction to the
random slope variance  and the covariance parameter τ01. Table 30.11
shows the results of this comparison. The random intercept model is
depicted in Table 30.11 as Model 2. The –2LL value is 137.66. Ten
parameters were estimated. Eight parameters were needed for the fixed part
(Equation 13). One parameter was for the random intercept variance , and
one was for the residual variance σ2. Model 3 is the random intercept/slope
model with the same fixed part as given in Equation 13. The –2LL value of
this model is 122.82. Comparing these two models leads to a log-likelihood
ratio value of 14.84 with 2 degrees of freedom. These test statistics can be
used to test the null hypothesis

To test this hypothesis, consider it a onesided test because the variance 
cannot be negative. The corresponding one-sided p value is equal to .00,
which is highly significant. As expected from the plot (Figure 30.4b), the
random intercept/slope model performs better than the random intercept
model. On the other hand, The AR (1) heterogeneous model (Model 8 in
Table 30.11) has a –2LL value of 120.23. Unfortunately, this model cannot
be compared with the random intercept/slope model because these
competing models are not hierarchically related.

Table 30.11 Comparison Between Hierarchical Models With the Same Fixed Part in the
Proximity Study



A popular criterion for model selection is the Bayesian information
criterion (BIC). The BIC is a measure of evidence favoring one model over
another, and these models are not hierarchically related to each other. It is
also a likelihood-based measure with a penalty for the sample size and
degrees of freedom. In the proximity study, the BIC favors the random
intercept/slope model slightly. The BIC for the random intercept/slope
model is equal to 142.70, whereas the BIC for the AR (1) heterogeneous
model is equal to 145.10.

A major drawback of this information criterion is the fact that it tends to
favor simple models in practice.4 Nevertheless, this information criterion
seems to be a good alternative to compare nonnested models. It should be
noted that subject matter reasoning should prevail over statistical testing,
which (not in the least) also applies when the statistical theory does not give
a clear-cut rule. Table 30.11 also displays a few other covariance structures.
The reader may check that there are only two possible covariance structures
left if the –2LL test statistic is used to compare different covariance
structures (Model 3 and Model 8 in Table 30.11).

Table 30.12 Maximum Likelihood Estimates of the Regression Parameters for the AR (1)
Heterogeneous Model



Once a choice has been made about the covariance structure, the fixed
part of the model can be evaluated for significance. The analysis of the
proximity study starts with the specification of the fixed part of the model
according to Equation 13. Suppose that we choose for the AR (1) a
heterogeneous option.

The top portion of Table 30.12 shows that none of the estimates of the
regression parameters are significant at the .05 level. A closer look at the
results reveals that the profile of the male teachers does not show any
significant trend, whereas the average scores among the female teachers
show a significant growth after the first years and then a drop to the
reference level in the third year. The same results also apply if the random
intercept/slope model is analyzed. Hence, if the covariance structure of the
responses is considered to be nuisance, then it does not matter which one
we choose because the same results will be found.



To evaluate the fixed regression parameter estimates, it is recommended
to use the maximum likelihood estimates and the corresponding –2LL
based on these maximum likelihood estimates (cf. Verbeke & Molenberghs,
2000). For large samples, both likelihood methods give unbiased estimates
of the fixed parameters, but testing the significance of the fixed parameters
estimates cannot be done by means of the restricted –2LL.

EPILOGUE

The past decade has seen a growing number of longitudinal data analyses in
the social and behavioral sciences. Random effects modeling offers a very
flexible way of analyzing such longitudinal data. Analysis with linear
random effects models uses maximum likelihood methods and produces
unbiased estimates even when the data are unbalanced in time and contain
missing observations. Further advantages include fewer assumptions,
particularly some of the often-untenable assumptions of RMANOVA. These
types of analyses are commonly available in statistical software packages
and specialty packages, leaving few reasons for researchers not to use these
powerful tools.

APPENDIX

The following are general guidelines to perform a multilevel and
longitudinal data analysis with SPSS 13 and higher option “Mixed
Linear.”

Plotting longitudinal data
Subject-specific profiles
Open your data set.
Go to Graphs → Interactive → Line …
Drag the dependent variable to the box for the y-variable.
Drag the independent variable to the box for the x-variable.
Drag the identification variable to the “Color” box.
Drag the grouping variable to the “Style” box. Select Convert.
Right-click on the identification variable and select Categorical.



Mean profiles
Go to Graphs → Interactive → Line …
Click on Reset.
Drag the dependent variable to the box for the y-variable.
Drag the (time-dependent) independent variable to the box for the x-

variable.
Drag the grouping variable to the “Color” box.
Right-click on the grouping variable and select Categorical.
Performing an OLS regression model
Click on the reset button.
Click Continue.
Click the dependent variable into the “Dependent variable” box.
Click the quantitative (or dichotomous) independent variables into the

“Covariate(s)” box.
Click the qualitative independent variables into the “Factor(s)” box.
Click the fixed button.
Select the independent variables.
Click the add button.
Click Continue.
Click the statistics button and select the following checkboxes: parameter

estimates and covariances of residuals.
Click Continue.
Performing a random effects model
Go to Analyze → Mixed models → Linear …
Click on the reset button.
Click the identification variable into the “Subjects” box.
Click Continue.
Click the dependent variable into the “Dependent variable” box.
Click the quantitative independent variables into the “Covariate(s)” box.
Click the qualitative independent variables into the “Factor(s)” box.
Click the fixed button. Select the independent variables.
Click the add button.
Click Continue.
Click the random button.
Select the “Include Intercept” checkbox if a random intercept is required.

If random slope is required, then select the relevant independent variable
and put it in the Model box. Choose unstructured as Covariance type.



Click the identification variable from the “Subjects” into the
“Combinations” box.

Click Continue.
Click the statistics button and select the following checkboxes: parameter

estimates, covariances of random effects, and covariances of residuals.
Click Continue.
Specifying a serial correlation
Go to Analyze → Mixed models → Linear…
Click on the reset button.
Click the identification variable into the “Subjects” box and age into the

“Repeated” box. Choose a covariance structure option as the Repeated
Covariance type.

Click Continue.
Click the dependent variable into the “Dependent variable” box and age

and sex into the “Covariate(s)” box.
Click the statistics button and select the following checkboxes: parameter

estimates, covariance of random effects, and covariances of residuals.
Click Continue.
Click the fixed button.
Select the required independent variables and click the add button.
Click Continue.

NOTES

1. The computer program SPSS Version 13 is used for all mixed regression calculations. Further
reading on this topic can be found in, for example, Hox (2002), Twisk (2003), and Tabachnick and
Fidell (2007) at introductory and intermediate levels, as well as in Diggle, Liang, and Zeger (1994)
and Verbeke and Molenberghs (2000) at an advanced level. For an introduction to hierarchical linear
modeling, see Chapter 29 (this volume).

2. Readers interested in dealing with missing data can refer to Chapter 15, although multilevel
modeling does not require complete data at all time points, a significant strength over RMANOVA. A
thorough discussion about missing observations and mixed effects regression analysis can be found
in, for example, Verbeke and Molenberghs (2000).

3. Editor’s note: Many software packages allow estimation of multilevel models, including SAS,
HLM, MLM, R, and many more. Readers should explore different options to best meet their needs
(see, e.g., Tabachnick & Fidell, 2007, for an overview).

4. The reader is referred to Weakliem (1999), who criticized the use of the BIC.
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ANALYSIS OF MODERATOR
EFFECTS IN META-ANALYSIS

 
WOLFGANG VIECHTBAUER

s discussed in Chapter 12 (this volume), meta-analysis is a
quantitative method for leveraging the proliferation of published
research to more scientifically and comprehensively synthesize

bodies of research (e.g., Chalmers, Hedges, & Cooper, 2002). Social policy
decisions and best practices in various fields are increasingly influenced not
by the results from single isolated studies but by the findings from meta-
analyses (Cook et al., 1992).

A meta-analysis not only helps to determine whether a particular
treatment is actually effective or whether there is indeed an association
between variables but also allows the reviewer to examine whether the
treatment effectiveness or relationship strength is influenced by the
characteristics of the studies. For example, it is conceivable that the
effectiveness of a treatment observed in a particular study depends on the
treatment duration or intensity (e.g., the length of the psychotherapy or the
medication dosage), the characteristics of the sample, the study setting, or
the type of outcome measure used. Examining these hypotheses is difficult
when conducting a traditional narrative literature review, but such
moderator analyses constitute an integral and important aspect of a meta-
analysis (Lau, Ioannidis, & Schmid, 1998; Thompson, 1994).

SCOPE OF THIS CHAPTER



One can roughly break the process of a metaanalysis down into five
stages (Cooper, 1998): (a) problem formulation, (b) data collection, (c) data
evaluation, (d) analysis and interpretation, and (e) presentation of results.
The majority of the time and effort will typically be spent on the first three
stages, which are briefly outlined in Chapter 12 and elsewhere.1 For the
purposes this chapter, we will assume that these steps have already been
completed. Instead, the present chapter is meant to provide some guidelines
on how to conduct the statistical analysis, once the first three steps have
been completed. Again, several books deal extensively with this topic (e.g.,
Cooper & Hedges, 1994; Hedges & Olkin, 1985), and a single chapter
cannot replace these references. However, the statistical methods that
should be used for a meta-analysis are constantly being improved and
extended. The goal is then to highlight those methods that currently
represent best practices.

A Sample Data Set

An example will be used throughout this chapter to make the discussion
more concrete and to allow the reader to experiment with the techniques
discussed. Consider Table 31.1, which provides the results from k = 16
studies examining the effectiveness of massage therapy for reducing state
anxiety. In each study, the amount of anxiety was measured among subjects
randomly assigned to either a massage therapy or a control/standard
treatment group. For each study (i being the index for the studies), the table
lists the sample size of the control/comparison and the treatment group (
and  respectively), the effect size estimate (Yi) in the form of a
standardized mean difference (to be discussed in more detail below), the
estimated sampling variance ( ) of the effect size estimate, the minutes per
session of massage therapy provided, whether a fully trained massage
therapist or layperson provided the therapy (coded as 1 and 0, respectively),
the mean age of the sample, and whether the study was conducted by the
Touch Research Institute (TRI) or not (coded as 1 and 0, respectively). The
last four variables are examples of moderator variables that may influence
the effectiveness of massage therapy for reducing state anxiety.2

Standardized Mean Difference



The standardized mean difference (SMD) is usually the effect size
measure of choice when we are interested in the difference between a
treatment/experimental and a control/comparison group and the outcome
variable is quantitative. Let  and  denote the true (population) means of
the control and treatment groups in the ith study, and let σi denote the
common standard deviation of these groups. Then the effect size in the ith
study is defined as

so that θi indicates, in standard deviation units, by how much the mean in
the control group differs from that of the experimental group after the
treatment. For the massage therapy meta-analysis, θi can be interpreted as a
measure of the effectiveness of massage therapy for reducing state anxiety.
Specifically, positive values of θi indicate lower amounts of anxiety in the
treatment group, values around zero indicate no difference between the two
groups, and negative values indicate lower anxiety in the control group.
Expressing the effect size in standard deviation units makes the results from
studies using different outcome measures (i.e., studies using anxiety scales
with different raw units) comparable.

Table 31.1 Results From 16 Studies on the Effectiveness of Massage Therapy for Reducing
State Anxiety



NOTE: Adapted from Moyer, Rounds, and Hannum (2004), leaving out three studies with missing
data and two studies where the duration of massage therapy provided was less than 10 minutes.
Minutes per session = minutes of therapy provided per session; trained therapist = 0 for a layperson
providing the therapy and 1 for a trained therapist; mean age = mean age of the sample; TRI study =
1 when the study was conducted by the Touch Research Institute (TRI) and 0 otherwise.

Hedges (1981) showed that an approximately unbiased and normally
distributed estimate of θi is given by

where  and  are the observed means of the treatment and control group
in the ith study, and si is the pooled standard deviation of the two groups.
The sampling variance of Yi can be estimated with

Therefore, Yi is an estimate of θi, and  is an estimate of the amount of
variability in Yi we would expect due to subject-level sampling variability.
In other words, even if the θi values (i.e., the true SMDs) are identical in
two studies, we would not expect the corresponding Yi values (i.e., the



observed SMDs) to coincide due to sampling differences among the
samples. However, should the sample sizes be very large in the two studies,
then  is small (which should be evident from Equation 2); hence, sampling
variability decreases, and the two Yi values would tend to be very close to
each other.

META-ANALYTIC DATA IN GENERAL

The SMD is not the only effect size measure used in meta-analyses. Others
include correlation coefficients and odds ratios (as discussed in Chapter
17).3

However, regardless of the specific effect size measure used in a meta-
analysis, assume that k independent effect size estimates have been
collected along with information about one or more moderator variables. As
discussed earlier, each effect size estimate Yi is an estimate of a
corresponding parameter θi, which indicates the true effect size in the ith
study. In general, we can express this idea by writing

Yi = θi + εi, (3)

where εi is the sampling error for the ith study. The sampling errors are
assumed to be normally distributed with mean zero and variance .

Meta-Analytic Models

Once a collection of effect size estimates (like the one in Table 31.1) has
been obtained, several questions arise:

1. Is massage therapy an effective treatment for reducing state anxiety
(i.e., how large is the overall effect of massage therapy on state
anxiety?)?

2. Does the treatment effectiveness vary across studies and, if yes, by
how much (i.e., is the effect size the same in all studies, and if not,
how much variability is there among the effect sizes?)?



3. If there is variability in the treatment effectiveness across studies, is
this variability, at least in part, systematic and explainable (i.e., do the
effect sizes depend on one or more moderators—in particular, the
treatment duration, the level of training of the therapist, the mean age
of the sample, or whether the study was conducted by the TRI or
not?)?

To answer these questions, we must identify the model that most closely
approximates the true structure underlying the collection of effect size
estimates.

Fixed Effects Model

The simplest case we may consider is the fixed effects model. According
to this model, the effect sizes are homogeneous (i.e., θ1 = … = θk), so the
model is given by

Yi = θ + εi, (4)

where θ denotes the (homogeneous) effect size for all k studies. In the
context of the massage therapy meta-analysis, this would imply that the
treatment effectiveness is the same in all studies, regardless of treatment
duration, level of training of the therapist, mean age of the sample, whether
the study was conducted by the TRI or not, or any other moderator variable
that we did not collect any information on (i.e., the studies may differ in
other aspects unknown to us). Therefore, differences among the observed
standardized mean differences (i.e., the effect size estimates) are assumed to
be a result of sampling variability alone.

Fixed Effects With Moderators Model

On the other hand, when the effect sizes are not all equal to each other,
they are said to be heterogeneous. Heterogeneity among the effect sizes
may be a result of moderators and therefore entirely systematic. For
example, when the effectiveness of massage therapy increases with the
minutes of treatment provided and/or the training level of the therapist, then



θi will be systematically higher in studies where the duration of the therapy
was longer and/or the therapy was provided by a trained massage therapist
as opposed to a layperson. Differences between the effect size estimates are
then not only a result of sampling variability but also a result of the
influence of moderators on the effect sizes. This case can be described by a
fixed effects with moderators model, which is given by

where Xij denotes the value of the jth moderator variable for the ith effect
size. The fixed effects with moderators model therefore assumes that the
effect sizes are a linear function of one or more moderator variables. For
example, in the massage therapy meta-analysis, the true effectiveness of the
treatment may be a linear function of the p = 4 moderator variables
described earlier.

Random Effects Model

Alternatively, the heterogeneity among the effect sizes may be
completely random (unsystematic). In that case, the θi values will differ
from each other randomly, and it will not be possible to account for
differences among the effect sizes based on moderator variables such as
treatment duration or the training level of the therapist. In this case, the
random effects model applies, which is given by

Yi = μ + ui + εi, (6)

where μ denotes the average effect size, and ui is assumed to follow a
normal distribution with mean zero and variance . Therefore,  denotes
the total amount of heterogeneity among the effect sizes. Differences
between the effect size estimates are now assumed to be a result of
sampling variability and random differences among the effect sizes.

Mixed Effects Model

Finally, it is possible that the heterogeneity among the effect sizes is, in
part, a result of moderators and, in part, random. In that case, the mixed



effects model applies, which is given by

Yi = β0 + β1Xi1 + … + βpXip + ui + εi. (7)

The variance of ui, now denoted by , represents the amount of residual
heterogeneity, that is, the amount of excess or unexplainable variability in
the effect sizes (i.e., heterogeneity that cannot be accounted for by the
moderator variables included in the model). Therefore, the mixed effects
model assumes that the effect sizes are a linear function of one or more
moderator variables but also allows for the possibility that residual
heterogeneity may exist in the effect sizes. It is therefore the most general
of the four meta-analytic models and should be the starting point in most
meta-analyses (this point will be elaborated on below). In fact, it is easy to
see that the fixed effects, fixed effects with moderators, and random effects
models are just special cases of the mixed effects model.4 The nested
hierarchy among the four models is illustrated in Figure 1.31. For further
discussion of these models, see, for example, Hedges (1994), Hedges and
Olkin (1985), and Raudenbush (1994).

Note that the mixed effects and fixed effects with moderators models can
accommodate quantitative and categorical moderator variables. For
categorical moderator variables, one has to employ an appropriate coding
scheme as used in regression analysis when including categorical
independent variables in the model (e.g., Neter, Kutner, Nachtsheim, &
Wasserman, 1996).

Why Start With the Mixed Effects Model?

The mixed effects model was earlier suggested as the starting point for
meta-analyses that are focusing on moderators. This recommendation
actually goes contrary to typical practice, as meta-analysts usually first
report an overall effect size estimate from a fixed or random effects model
before considering the influence moderators. However, several reasons
speak against this practice. First of all, heterogeneity is typically present
among the effect sizes. Empirical evidence strongly suggests that the effect
sizes are influenced considerably, for example, by the methods and
procedures used in the studies, the characteristics of the samples, the study



settings, or the types of outcome measures used (e.g., Wilson & Lipsey,
2001). Exploring the source of the heterogeneity by examining the
influence of moderators on the effect sizes is often one of the most
important and useful aspects of a meta-analysis (Lau et al., 1998;
Thompson, 1994).

In fact, an estimate of the overall effect size is meaningless at best and
can even be misleading when moderators are present. Consider, for
example, the admittedly extreme but illustrative case where (a) the
effectiveness of massage therapy depends only on whether the treatment is
given by a trained therapist or by a layperson, (b) the true SMD is equal to
0.5 in studies using a trained therapist and equal to –0.5 in studies using a
layperson (i.e., massage therapy given by a trained therapist results in
decreased anxiety levels, while a layperson does more harm than good and
actually causes an increase in anxiety levels), and (c) the treatment was
given by a trained therapist in about half of the studies, while the other half
used a layperson. Then an estimate of the overall effect size would fall
around zero, suggesting the total absence of an effect.

Moreover, it is unclear what such an overall effect size estimate
represents. For the dichotomous moderator that distinguishes between a
layperson and a trained therapist, an overall estimate may, with some
imagination, represent the effect size for a semi-trained therapist. However,
for the dichotomous moderator that distinguishes between studies
conducted by the TRI and other laboratories, it is difficult to imagine what
such an estimate would describe. Therefore, in those cases where
moderators influence the effect sizes, one should resist the temptation to
oversimplify matters by reporting a single overall effect size estimate. This
implies that we should actually start out with a model that examines the
influence of moderators on the effect sizes. If the influence of the
moderators is large (either practically speaking or in terms of statistical
significance), then one can provide estimated or predicted effect sizes for
some sensible values of the moderator variables based on the fitted model
(to be illustrated later on).



Figure 31.1 The nested hierarchical structure between the meta-analytic models.

Another issue to consider in this context is the use of models that
acknowledge the possible presence of (residual) heterogeneity. Although
the issue continues to be debated in the literature, a general consensus is
beginning to emerge that one should employ random/mixed instead of fixed
effects procedures, at least as a starting point in the analysis (e.g., Field,
2003; Hedges & Vevea, 1998; Hunter & Schmidt, 2000; National Research
Council, 1992; Overton, 1998). Given the hierarchical nature of the models
(cf. Figure 1.31), the mixed or random effects models may ultimately
reduce to a simpler model. Specifically, when residual heterogeneity is
absent (i.e.,  = 0), the mixed effects model automatically simplifies to a
fixed effects with moderators model, while the random effects model
automatically simplifies to a fixed effects model when there is no
heterogeneity at all (i.e.,  = 0). Therefore, instead of adopting a simpler
(and possibly incorrect) model a priori, we should examine what model is
actually supported by the data.

Fitting the Mixed Effects Model

Fitting the mixed effects model is done in two steps. First, we estimate 
, the amount of residual heterogeneity in the effect sizes. We then estimate
β0 through βp, the parameters specifying the relationship between the effect
sizes and the moderators.

Estimating the Amount of Residual Heterogeneity



Numerous methods for estimating  have been discussed in the
literature (e.g., Raudenbush, 1994; Raudenbush & Bryk, 1985; Sidik &
Jonkman, 2005; Thompson & Sharp, 1999), but a description of the various
methods is beyond the scope of the present chapter. Here, we will simply
focus on a commonly used method of moments estimator (e.g.,
Raudenbush, 1994).

Let the (k × (p + 1)) matrix X contain the values of the p moderator
variables to be included in the model, where the first column consists of a
vector of 1s, corresponding to the intercept parameter β0. Also, collect the
effect size estimates into the (k × 1) vector y. Next, let wi = 1/ , and define
W as the diagonal matrix using those weights. Now calculate

P = W – WX (X′WX)–1 X′W

and finally

where X′ denotes the transpose of X and y′ the transpose of y, (X′WX)–1

denotes the inverse of (X′WX), and tr[P] denotes the trace of the P matrix.
Should the estimate be negative, then this indicates the absence of residual
heterogeneity, and we set  = 0.

Illustrative Example

Four moderators will be included in the model for the massage therapy
meta-analysis—namely, the minutes of therapy provided, whether a
layperson or a fully trained massage therapist provided the therapy, the
mean age of the sample, and whether the study was conducted by the TRI
or some other laboratory. Therefore, X, y, and W are given by



Applying Equation 8 then yields  = –0.023. Since the estimate is
negative, we set  = 0 and conclude that no residual heterogeneity is
present, or, in other words, the moderators included in the model account
for all of the heterogeneity in the effect sizes.

Estimating the Moderator Parameters

Having obtained an estimate of  (with this or any other method), we
can then estimate β0 through βp with

b = (X′WX)–1 X′ Wy, (9)

where the elements of the diagonal W matrix are now set to . The
variance-covariance matrix of the parameter estimates in b is then obtained
with

Taking the square root of the diagonal elements of  yields the standard
errors of the estimates, which will be denoted by SE [bj].



Illustrative Example

Since the estimate of the amount of residual heterogeneity happened to
be zero in our example,  actually simplifies to  and the
W matrix remains unchanged. The parameter estimates and variance-
covariance matrix obtained by applying Equations 9 and 10 are equal to

Therefore, for a 1-minute increase in session duration, the effectiveness of
massage therapy is estimated to increase by b1 = 0.025 points in SMD units
( ). For example, an increase in 12 minutes should result in
a 0.3 increase in the effect size. Lacking further information about the
domain being studied, 0.2, 0.5, and 0.8 are conventionally thought of as
small, medium, and large SMDs (Cohen, 1988). Therefore, 12 minutes can
mean the difference between a small and a medium or a medium and a large
effect. Moreover, the effect size is estimated to be b2 = 0.338 points higher
for a trained massage therapist when compared with a layperson providing
the treatment ( ). Furthermore, for a 1-year increase in the
average age of the sample, the effect size is estimated to change by b3 = –
0.007 points ( ).

Finally, studies conducted by the TRI are estimated to yield an effect size
that differs by b4 = –0.061 SMD units from that of other laboratories (

). The b0 value should not be interpreted here, as it
estimates the effectiveness of zero minutes of therapy provided by a
layperson to a sample with an average age of zero in a study that was
conducted in a laboratory other than the TRI.5

Returning to the point made earlier about avoiding a single overall effect
size in the presence of moderators, we may now report the estimated effect
size for some sensible and representative moderator values. For example,
the estimated effect size for 10 minutes of massage therapy provided by a
layperson in a non-TRI study to a group with an average age of 40 is –0.293



(i.e., –0.263 + 0.025(10) + 0.338(0) – 0.007(40) – 0.061(0) = –0.293). On
the other hand, 30 minutes of therapy provided by a trained therapist to the
same group in a non-TRI study is estimated to yield an effect size of 0.545
(i.e., –0.263 + 0.025(30) + 0.338(1) – 0.007(40) – 0.061(0) = 0.545). The
estimated effect is actually negative in the first and positive in the second
case, and the difference between the two amounts to more than 0.8 SMD
units. A simple average would not be able to properly represent such
differences.

MODERATOR ANALYSIS

Although we have already seen that the estimated effect changes drastically
as a function of the moderators, we may want to test whether the
moderators included in the model exert a statistically significant influence
on the effect sizes in general. Also, when several moderators are included in
the model, we may want to examine the statistical significance of each
moderator variable individually. Refined procedures for carrying out such
tests, which have been developed in recent years (e.g., Knapp & Hartung,
2003; Sidik & Jonkman, 2003, 2005), will be discussed in the present
section.

We start by calculating an adjusted variance-covariance matrix with

where either

or it is set equal to 1 if the value calculated with Equation 12 falls below 1.

Omnibus Test of all Moderators

When multiple moderators are included in the model, we can test the null
hypothesis H0 : β1 = … = βp = 0 (i.e., whether any of the moderator



variables are related to the effect sizes) by computing

where b[2] is the (p × 1) vector of parameter estimates excluding the first
element (which corresponds to the intercept estimate, which we do not want
to include in the test), and  is the: lower right (p × p) matrix obtained
from  after deleting the first column and first row. We compare the QR

value against p × F (α; p, k – p – 1), where F (α; df1, df2) denotes the critical
value of an F distribution with df1 and df2 degrees of freedom at the desired
α–level. If QR > p × F (α; p, k – p – 1), we reject the null hypothesis and
conclude that at least one of the moderators is related to the effect sizes.
Otherwise, we conclude that the effect sizes are not influenced by any of the
moderators included in the set that was tested.

Illustrative Example

Applying Equation 12 after we have fitted the mixed effects model yields
a value of  = 0.822. Therefore,  is set equal to 1, so that the adjusted
variance-covariance matrix, obtained with Equation 11, is identical to the
one given earlier. Finally, to test whether at least one moderator is related to
the effect sizes, we apply the Qr test (Equation 13), with

The value of QR is 28.91, which we compare against 4 × F (.05; 4, 11) =
13.43. We therefore conclude that at least one of the moderator variables
influences the effectiveness of massage therapy.

Individual Moderator Tests



We can also test the statistical significance of each moderator variable
individually with

which we compare against the critical values of a t distribution with k – p –
1 degrees of freedom. Alternatively,

provides a (1 – α) × 100% confidence interval for βj.

Illustrative Example

Since  was set equal to 1, the  values (Equation 14) are obtained by
dividing the parameter estimates by the standard errors given earlier. We
compare these values against ± 2.20, the critical bounds of a t-distributed
random variable with 16 – 4 – 1 = 11 degrees of freedom (using α = .05,
two-tailed). Alternatively, 95% confidence intervals can be computed with
Equation 15. These results are summarized in Table 31.2, which indicates
that only the minutes per session moderator is statistically significant.

The effect size estimates are shown in Figure 2.31 after ordering the
studies by the minutes per session moderator variable. The approximate
bounds of individual 95% confidence intervals are also shown, which are
given by

(note that  ME happens to be zero in this particular case). As Figure 2.31
clearly demonstrates, the effect size estimates tend to increase
systematically with treatment duration. Such a pattern of results could occur
by chance, but a more likely explanation is that the effectiveness of
massage therapy depends on (or is moderated by) the duration of the
treatment. So-called forest plots, such as the one shown in Figure 2.31, can
be useful devices for concisely displaying the results from a meta-analysis
and revealing interesting trends.



Table 31.2 Results From Fitting the Mixed Effects Model to the Data Moderators
Simultaneously in the Modelin Table 31.1 When Entering All Moderators
Simultaneously in the Model

NOTE: bj = parameter estimate; sŵ SE[bj] = adjusted standard error of the parameter estimate;  = bj
/ (sŵ SE [bj]) (critical values = ± 2.20); estimate of residual heterogeneity:  = 0; test whether at
least one moderator is significant: QR = 28.91 (critical value = 13.43); test for residual heterogeneity:
QE = 9.05 (critical value = 19.68).

The influence of treatment duration is also apparent after plotting the
effect size estimates against minutes of therapy provided, as shown in
Figure 3.31. Circles represent effect size estimates from studies where a
trained therapist provided the treatment, while squares represent effect size
estimates from studies with a layperson. Moreover, larger points correspond
to effect size estimates with smaller sampling variances. The lines indicate
the estimated effect sizes as a function of minutes of therapy provided to a
sample with an average age of 40 in a non-TRI study, once for a layperson
and once for a trained therapist. The lines were plotted separately just for
illustration purposes since the moderator distinguishing between a
layperson and a trained therapist providing the treatment was not
statistically significant.

Other Models as Special Cases of the Mixed Effects Model

As discussed earlier, the fixed effects with moderators, the random
effects, and the fixed effects models are all special cases of the mixed
effects model. Therefore, these models are applicable depending on the fit
of the mixed effects model and the results from a moderator analysis.

Fixed Effects With Moderators Model

The mixed effects model reduces to the fixed effects with moderators
model when  = 0 (cf. Equations 5 and 7). Therefore, when the estimate of



 is zero, this indicates that no residual heterogeneity is present, and the
fixed effects with moderators model applies. This is exactly what happened
in the illustrative example since  = 0. Therefore, the mixed effects model
we fitted earlier actually corresponds to a fixed effects with moderators
model. In general, then, to fit a fixed effects with moderators model, we
simply need to apply all of the equations given earlier, except that wi is
always set equal to 1/ .

Random Effects Model

When none of the moderators included in the model influence the effect
sizes (i.e., we conclude that β1 … βp = 0), but heterogeneity is present (i.e., 

 > 0), then this suggests either that the heterogeneity in the effect sizes is
entirely random (and could not be accounted for, no matter which set of
moderators is included in the model) or that the heterogeneity is (at least in
part) a result of moderators, but we lack the necessary information about the
relevant moderators to account for it. In either case, the best we can usually
do is to adopt the random effects model (Equation 6) and treat the
heterogeneity as purely random.

Figure 31.2 Individual effect size estimates (ordered by minutes of therapy provided per
session) with corresponding 95% confidence intervals.



Figure 31.3 Effect size estimates and estimated effect sizes as a function of minutes of
therapy provided to a sample with an average age of 40 in a non-TRI study,
once for a layperson and once for a trained therapist.

Fitting the random effects model requires that we estimate μ, the average
effect size, and , the amount of heterogeneity in the effect sizes. First, we
estimate  with

where wi = 1/ ,

and

After obtaining  we can estimate μ with



where wi = 1/(  + ). The standard error of  is approximately equal to

Finally, we can test if the average effect size differs significantly from zero
(i.e., H0 : μ = 0) by comparing

against the critical values of a t distribution with k – 1 degrees of freedom,
where  is the larger of

and 1. Alternatively, a confidence interval for μ can be constructed with

Illustrative Example

Although the data strongly suggest that the heterogeneity in the effect
sizes is not random, we now fit the random effects model to the data for
illustration purposes. First, we calculate the value of θ (Equation 18), which
is equal to 0.280. We then apply Equation 17, which yields Q = 37.959.
From this, we can obtain the estimate of  (Equation 16), which is equal to
0.175. This value is now an estimate of the total amount of heterogeneity in
the effect sizes (as opposed to the estimate of the residual amount of
heterogeneity we obtained earlier when fitting the mixed effects model).
The average effect size μ, estimated with Equation 19, is equal to  = 0.379
(SE [ ] = 0.138). Equation 22 then yields a value of 0.912 for , which is
below 1 and therefore set to 1. The value of t (Equation 21) is equal to 2.75,
and a 95% confidence interval for μ is given by (0.09, 0.67). This interval



excludes zero, which indicates that, on average, massage therapy is
effective for reducing state anxiety.

Fixed Effects Model

Should we find that  = 0, this would provide evidence that the effect
sizes are homogeneous. In other words,  = 0 suggests that neither
moderators nor an additional source of random variability are influencing
the effect sizes. Equation 18 then yields the estimate of θ, the homogeneous
effect size for all studies. The standard error of the estimate, the statistic for
testing whether H0 : θ = 0, and a confidence interval for θ can then be
obtained with Equations 20 through 23, replacing  with  and setting wi =
1/  in all of the equations. The application of the fixed effects model will
not be illustrated with the example since the data clearly indicate that the
effect sizes are not homogeneous.

Testing for the Presence of Residual Heterogeneity

A common practice in meta-analysis is to test whether the estimated
amount of residual heterogeneity in a mixed effects model (i.e., ) is
significantly greater than zero. To test the null hypothesis H0 :  = 0, we fit
the fixed effects with moderators model (i.e., we set wi = 1/  and use
Equations 9 and 10 to obtain b and ) and then calculate

If QE exceeds the critical value of a chi-square random variable with k – p –
1 degrees of freedom, we conclude that there is additional heterogeneity in
the effect sizes that is not accounted for by the moderators included in the
model. This might indicate the presence of other moderators that we have
missed, additional random heterogeneity, or both.

Illustrative Example

Since we found  = 0 in the example given earlier, we have already
fitted the fixed effects with moderators model to our data. Therefore, the QE



statistic can be directly computed with b and  as given above and is equal
to 9.05. Compared against 19.68, the critical value of a chi-square random
variable with 16 – 4 – 1 = 11 degrees of freedom, we conclude that no
residual heterogeneity is present. This is not a surprising finding since the
estimate of residual heterogeneity was zero.

Confidence Interval for the Amount of Residual Heterogeneity

Instead of (or in addition to) testing whether the amount of residual
heterogeneity is equal to zero, one can also report a confidence interval for 

. The most accurate method to obtain such a confidence interval works as
follows (Viechtbauer, 2007a). Let QE ( ) denote the value of Equation 24
when setting  (note that b and  also need to be recalculated to
obtain this value). Moreover, let  and  denote the 2.5th and
97.5th percentiles of a chi-square distribution with k – p – 1 degrees of
freedom. Then the lower and upper bounds of a 95% confidence interval for

 are given by those two  values, where QE  and 
 These values must be obtained iteratively. The simplest

approach is to start with  = 0 and to compute QE ( ) repeatedly for
increasing  values until QE ( ) is equal to  and then equal to 

 then the lower bound is set to zero. Moreover, if 
even falls below , then the lower and upper bounds are
both below zero, and the confidence interval is equal to the null set.

Illustratiye Example

With 11 degrees of freedom,  and . We have seen
earlier that QE = 9.05, which is actually the value of  for  = 0.
Therefore, the lower bound of a 95% confidence interval for  is 0. To
obtain the upper bound, we increase  in small steps, each time
recalculating QE ( ). For  = 0.185, QE ( ). Therefore, a 95%>
confidence interval for  is given by (0, 0.185).

Testing for the Presence of Heterogeneity



We can also test whether the amount of heterogeneity in the random
effects model is significantly greater than zero. If the amount of
heterogeneity is zero, then this implies that the effect sizes are
homogeneous. The null hypothesis is therefore given by H0: θ1 = … = θk (or,
equivalently, H0 :  = 0). The statistic needed for this test is actually the
one given in Equation 17. The null hypothesis is rejected when Q exceeds
the critical value of a chi-square random variable with k – 1 degrees of
freedom. In that case, we conclude that the effect sizes are heterogeneous,
which might indicate the presence of moderators, random heterogeneity, or
both.

Illustrative Example

We found earlier a value of Q = 37.96. The critical value of a chi-square
random variable with 16 – 1 = 15 degrees of freedom is 25.00; therefore,
we reject H0 and conclude that the effect sizes are heterogeneous.

Confidence Interval for the Total Amount of Heterogeneity

Using the method described earlier, one can also obtain a confidence
interval for  in the random effects model. Letting  and  denote
the 2.5th and 97.5th percentiles of a chi-square distribution with k – 1
degrees of freedom and

where  and  is calculated with Equation 19 after setting 
, we start with  = 0 and iteratively increase  until we find

those two  values, such that  and .

Illustrative Example

With 15 degrees of freedom,  and . We found that Q
= 37.96, which is the value of Q ( ) for  = 0, Increasing  slowly and
recalculating Q ( ) each time reveals that Q ( ) = 27.49 when  = 0.034
and Q ( ) = 6.26 when  = 0.524. Therefore, a 95% confidence interval
for  is given by (0.034, 0.524).



A Note About the Heterogeneity Tests

When we fail to reject the null hypothesis H0 :  = 0 with the Q test, one
should not automatically conclude that the effect sizes are truly
homogeneous. The test lacks power to detect heterogeneity when k, the
within-study sample sizes, or the amount of heterogeneity are small (Hunter
& Schmidt, 2000; Sánchez-Meca & Marín-Martínez, 1997; Viechtbauer,
2007b). This, in turn, might lead researchers to adopt a fixed effects model
too often, to miss the presence of moderators, or to attribute unwarranted
precision to their results (National Research Council, 1992). Moreover, the
Type I error rate of the Q test is only nominal when the within-study sample
sizes are sufficiently large. In other words, when analyzing studies with
small sample sizes, the test may be very inaccurate (Viechtbauer, 2007b).
Therefore, a better approach would be to always adopt a random effects
model. When the amount of heterogeneity is estimated to be zero (i.e.,  =
0), then the random effects model simplifies to the fixed effects model
anyway.

The same concerns apply to the QE test. In other words, one should not
assume that residual heterogeneity is completely absent when we fail to
reject H0 :  = 0 with the QE test. Again, the better approach would be to
always start with a mixed effects model, which will automatically reduce to
a fixed effects with moderators model when  = 0 (as demonstrated with
the example given earlier).

Quantifying the Amount of (Residual) Heterogeneity

Raw estimates of  and  are difficult to interpret. For example, in our
example, we found that  = 0.175. Does this value indicate a small or large
amount of heterogeneity among the effect sizes? To answer this question, it
may be useful to express the amount of heterogeneity in terms of a value
that is easier to interpret.

First note that the amount of variability among the effect size estimates
can be decomposed into two parts: heterogeneity among the effect sizes
(i.e., variability among the θi values) and sampling variability. The amount
of sampling variability can be estimated by the  values, while the amount
of heterogeneity among the effect sizes is estimated with . Therefore, 



 estimates the total amount of variability across the k effect size
estimates. Consequently,

denotes the proportion of total variability in the effect size estimates that is
due to heterogeneity (i.e., the proportion of variability in the effect size
estimates that is not accounted for by sampling variability). An alternative
method for estimating this quantity is discussed in Higgins, Thompson,
Deeks, and Altman (2003).

Turning now to the amount of residual heterogeneity, first note that 
will tend to be smaller than  if the moderator(s) included in the mixed
effects model account for (at least some of) the heterogeneity among the
effect sizes. Consequently,

denotes the proportion of total variability among the effect size estimates
that is due to residual heterogeneity (i.e., not accounted for by sampling
variability and the moderator[s] in the model). A value of  larger than 1
should be truncated to 1. Finally, we can also compute

as an estimate of the proportion of heterogeneity that is explained by the
moderator(s) included in the model (Raudenbush, 1994). In rare cases, 
may become negative, in which case it should be set to zero.

Illustrative Example

In the random effects model, we found that . Based on Equation
26, we then find that , indicating that 56% of the total variability in
the effect size estimates is due to heterogeneity (and therefore unaccounted
for). On the other hand,  = 0 in the mixed effects model. It requires no
further computation to see that  and  = 1, indicating that the proportion



of total variability unaccounted for is zero and that the proportion of
heterogeneity accounted for by the moderators is 1.

Testing One Moderator at a Time Is Not Generally a Best
Practice

While many authors choose to fit a separate model for each moderator
variable of interest (instead of fitting a single mixed effects model that
includes all moderators simultaneously), when moderators are correlated,
this can cause drastic overestimation of moderator effects.6 Taking the
current example, Table 31.3 summarizes the effects when each moderator is
analyzed individually as compared with simultaneously.

In terms of the statistical significance of the moderators, the conclusions
from this approach are identical to the ones we obtained earlier (cf.
Table 31.2). However, some of the parameter estimates have changed
substantially. In particular, massage therapy from a fully trained therapist is
now estimated to be 0.6 SMD units higher than when a layperson provides
the treatment, almost double compared to what we found when fitting the
mixed effects model with all moderators entered simultaneously (cf.
Table 31.2).

The reason why this moderator now appears to have a stronger impact on
the effect sizes can be explained based on the correlation among the
moderators. Specifically, a layperson provided the therapy in Studies 1, 2,
and 8, two of which (Studies 2 and 8) also happen to be studies where only
10 minutes of therapy were provided (see Figures 31.2 and 31.3). Since the
effectiveness of therapy increases with treatment duration, the difference in
the effectiveness between a layperson and a trained therapist is exacerbated
when this moderator is examined by itself.

Note also that the sign of the TRI study moderator has changed. When
this moderator is examined by itself, the data suggest that TRI studies yield
SMDs that are 0.232 units larger than those in non-TRI studies. On the
other hand, with all moderators entered simultaneously into the model, TRI
studies are estimated to yield SMDs that are 0.061 units below those of
non-TRI studies. In general, one may draw completely different conclusions
from the analysis depending on the approach chosen.



MODEL SELECTION STRATEGY

To summarize and complete the recommendations given throughout this
chapter, the following model selection strategy is suggested. First, an
estimate of the total amount of heterogeneity (i.e., ) should be calculated
when starting with the meta-analysis. This estimate can be supplemented
with the results from the Q test and, for easier interpretation, given as a
proportion relative to the total amount of variability (Equation 26). When 
is estimated to be zero and the Q test is not significant, one has support for
the hypothesis that the fixed effects model holds. However, when in doubt
(such as when  > 0, regardless of the results from the Q test), one should
not adopt the fixed effects model.

Table 31.3 Results From Fitting the Mixed Effects Model to the Data in Table 31.1 When
Examining One Moderator at a Time

NOTE: bj = parameter estimate; SŵSE[bj] = adjusted standard error of parameter estimate; 
(critical values = ± 2.14);  = estimate of residual heterogeneity; QE = test for residual
heterogeneity (critical value = 23.68);  = proportion of total variability in the effect size estimates
due to residual heterogeneity;  = proportion of heterogeneity that is explained by the moderator.

When heterogeneity appears to be present, one can try to account for the
heterogeneity by fitting a mixed effects model to the data. However, the
number of potential moderator variables is usually quite large, especially
when compared with the number of effect size estimates. This may lead to
overfitting and increases the risk of finding significant moderators by
chance alone. Prespecification of moderator variables based on expert
knowledge and theoretical considerations is therefore a necessary
prerequisite in most metaanalyses (Thompson & Higgins, 2002).

After fitting the mixed effects model, one can proceed with the moderator
analysis as demonstrated earlier. A significant QR test (Equation 13) can be
followed by individual moderator tests with the  statistic (Equation 14)



and/or corresponding confidence intervals (Equation 15). Moreover, liberal
use of plots and figures such as the ones shown in Figures 31.2 and 31.3 can
greatly improve the interpretability of the results.

Due to missing data, it is often not possible to include multiple
moderators in the mixed effects model simultaneously. Each study with
missing data on any one of the moderator variables would have to be
excluded from the model. In this case, one can fit the mixed effects model
to each moderator variable separately. The Bonferroni correction may be
used then to account for the fact that multiple hypothesis tests are being
conducted. However, as demonstrated earlier, this approach is less than
ideal, especially when the moderator variables are strongly correlated.7

In the unlikely event that none of the moderators appear to be related to
the effect sizes, the best we can usually do is to treat the heterogeneity as
completely unsystematic and adopt the random effects model. On the other
hand, if a model is found that can account for all of the heterogeneity (i.e.,
the estimate of residual heterogeneity is zero), one automatically adopts the
fixed effects with moderators model (as shown in the example given
earlier). However, if the estimate of residual heterogeneity is greater than
zero (regardless of the results from the QE test), the results from the mixed
effects model should be reported.

Other Issues

There are many issues one may encounter while conducting a meta-
analysis that are beyond the scope of the present chapter. For example,
publication bias is a salient issue in meta-analysis and is discussed in
Chapter 12 (see also Rothstein, Sutton, & Borenstein, 2005).

Dependent Effect Size Estimates

It was assumed throughout this chapter that the effect size estimates are
independent. This assumption may be violated if multiple effect size
estimates are obtained from the same sample of subjects. Methods for
dealing with dependent effect size estimates can be found in Gleser and
Olkin (1994), Kalaian and Raudenbush (1996), and Raudenbush, Becker,
and Kalaian (1988).



CONCLUSIONS

Over the past three decades, meta-analysis has established itself as a viable
approach for dealing with the ever increasing body of primary research. A
quick search of the PsychINFO database revealed 17 citations involving the
search term meta-analysis up to 1979, 918 citations between 1980 and
1989, 2,412 citations between 1990 and 1999, and already 2,418 citations
between 2000 and 2005. The same search within the MEDLINE database
revealed 1, 497, 5,851, and 9,622 citations involving that search term in the
same intervals.

However, meta-analytic techniques currently employed in practice often
lag behind recent methodological developments. Too much emphasis is still
put on simple overall effects that do not take into account the heterogeneity
typically present in the data (Lau et al., 1998). Models that allow for
(residual) heterogeneity remain underused (Field, 2003; Hunter & Schmidt,
2000; National Research Council, 1992. Refined techniques for moderator
analysis have been developed but appear to be largely unknown among
practitioners.

Some of the current meta-analytic methods were introduced in the
present chapter, with particular emphasis on model fitting, model selection,
and moderator analysis. While this chapter can only scratch the surface of
the entire array of techniques available, it is hoped that it will help to make
some of these techniques more accessible to the practitioner.

NOTES

1. Several books have already been written that describe in detail the entire process from
beginning to end (e.g., Cooper, 1998; Cooper & Hedges, 1994; Hunter & Schmidt, 2004; Lipsey &
Wilson, 2001; Rosenthal, 1991), and those planning to conduct a meta-analysis would be well
advised to consult these sources.

2. Note that we could have considered other moderator variables as well, such as the instrument
used in each study to measure anxiety levels (some studies used the State-Trait Anxiety Inventory,
others used a visual analog scale, and yet others used measures constructed by the investigator), type
of control group (in some studies, subjects in the control group received no treatment at all, while
some form of alternative or placebo treatment was used in others), or the gender distribution of the
subjects (the percentage of females in the studies ranged from 24% to 100%). However, for this
example, we will concentrate on the four moderator variables given in Table 31.1.

3. A more complete discussion of these and other effect size measures is beyond the scope of the
present chapter. The interested reader could consult, for example, Fleiss (1994), Lipsey and Wilson



(2001), and Rosenthal (1994) for further information.
4. The mixed effects model is, in turn, a special case of a two-stage hierarchical linear model (e.g.,

Raudenbush & Bryk, 1985). Specifically, the Level 2 structure (for the effect sizes) is given by θi =
β0 + β1Xi1 + … + βpXip + ui, while the Level 1 structure (for the effect size estimates) is given by
Equation 3. For more information on hierarchical linear modeling, see Chapters 29–31.

5. By centering the moderator variables (in particular, the minutes of treatment and the mean age
variables), one can make the intercept more interpretable. For example, subtracting 30 from the
minutes of treatment variable and 40 from the mean age variable leaves all of the parameter estimates
unchanged, except for the intercept, which is now equal to .214 and indicates the estimated effect for
30 minutes of treatment by a layperson to a sample with a mean age of 40 in a non-TRI study.

6. Editor’s note: This issue is similar to running multiple simple regressions to assess the effect of
multiple predictors or performing a single multiple regression. Few would argue that multiple simple
regressions are superior to one multiple regression.

7. See Pigott (1994, 2001) for information on dealing with this issue. The more general issue of
missing data is addressed in Chapter 15.
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tructural equation modeling (SEM) has evolved into a mature and
popular methodology to investigate theory-derived structural/causal
hypotheses. Indeed, with the continued development of SEM software

packages such as AMOS (Arbuckle, 2007), EQS (Bentler, 2006), LISREL
(Jöreskog & Sörbom, 2006), and Mplus (Muthén & Muthén, 2006), SEM
“has become the preeminent multivariate method of data analysis”
(Hershberger, 2003, pp. 43–44). Yet, we believe that many practitioners still
have little, if any, formal SEM background, potentially leading to
misapplications and publications of questionable utility. Drawing on our
own experiences as authors and reviewers of SEM studies, as well as on
existing guides for reporting SEM results (e.g., Boomsma, 2000; Hoyle &
Panter, 1995; McDonald & Ho, 2002), we offer a collection of best
practices guidelines to those analysts and authors who contemplate using
SEM to help answer their substantive research questions. Throughout, we
assume that readers have at least some familiarity with the goals and
language of SEM as covered in any introductory textbook (e.g., Byrne,
1998, 2001, 2006; Kline, 2005; Loehlin, 2004; Mueller, 1996; Schumacker
& Lomax, 2004). For those desiring even more in-depth or advanced
knowledge, we recommend Bollen (1989), Kaplan (2000), or Hancock and
Mueller (2006).



SETTING THE STAGE

The foundations of SEM are rooted in classical measured variable path
analysis (e.g., Wright, 1918) and confirmatory factor analysis (e.g.,
Jöreskog, 1966, 1967). From a purely statistical perspective, traditional data
analytical techniques such as the analysis of variance, the analysis of
covariance, multiple linear regression, canonical correlation, and
exploratory factor analysis—as well as measured variable path and
confirmatory factor analysis—can be regarded as special cases of SEM.
However, classical path- and factor-analytic techniques have historically
emphasized an explicit link to a theoretically conceptualized underlying
causal model and hence are most strongly identified with the more general
SEM framework. Simply put, SEM defines a set of data analysis tools that
allows for the testing of theoretically derived and a priori specified causal
hypotheses.

Many contemporary treatments introduce SEM not just as a statistical
technique but as a process involving several stages: (a) initial model
conceptualization, (b) parameter identification and estimation, (c) data-
model fit assessment, and (d) potential model modification. As any study
using SEM should address these four stages (e.g., Mueller, 1997), we
provide brief descriptions here and subsequently use them as a framework
for our best practices analysis illustrations and publication guidelines.

Initial Model Conceptualization

The first stage of any SEM analysis should consist of developing a
thorough understanding of, and justification for, the underlying theory or
theories that gave rise to the particular model(s) being investigated. In most
of the traditional and typical SEM applications, the operationalized theories
assume one of three forms:

A measured variable path analysis (MVPA) model: hypothesized
structural/causal relations among directly measured variables; the four-
stage SEM process applied to MVPA models was illustrated in, for
example, Hancock & Mueller, 2004.
A confirmatory factor analysis (CFA) model: structural/causal
relations between unobserved latent factors and their measured



indicators; the four-stage SEM process applied to CFA models was
illustrated in, for example, Mueller & Hancock, 2001.
A latent variable path analysis (LVPA) model: structural/causal
relations among latent factors. This type of SEM model is the focus in
this chapter and constitutes a combination of the previous two. A
distinction is made between the structural and the measurement
portions of the model: While the former is concerned with causal
relations among latent constructs and typically is the focus in LVPA
studies, the latter specifies how these constructs are modeled using
measured indicator variables (i.e., a CFA model).

More complex models (e.g., multisample, latent means, latent growth,
multilevel, or mixture models) with their own specific recommendations
certainly exist but are beyond the present scope. Regardless of model type,
however, a lack of consonance between model and underlying theory will
have negative repercussions for the entire SEM process. Hence, meticulous
attention to theoretical detail cannot be overemphasized.

Parameter Identification and Estimation

A model’s hypothesized structural and non-structural relations can be
expressed as population parameters that convey both magnitude and sign of
those relations. Before sample estimates of these parameters can be
obtained, each parameter—and hence the whole model—must be shown to
be identified; that is, it must be possible to express each parameter as a
function of the variances and covariances of the measured variables. Even
though this is difficult and cumbersome to demonstrate, fortunately, the
identification status of a model can often be assessed by comparing the total
number of parameters to be estimated, t, with the number of unique
(co)variances of measured variables,

where p is the total number of measured variables in the model. When t > u
(i.e., when attempting to estimate more parameters than there are unique
variances and covariances), the model is underidentified, and estimation of
some (if not all) parameters is impossible. On the other hand, t ≤ u is a



necessary but not sufficient condition for identification, and usually
parameter estimation can commence: t = u implies that the model is
justidentified, while t < u implies that it is overidentified (provided that
indeed all parameters are identified and any latent variables in the system
have been assigned an appropriate metric; see Note 4).

SEM software packages offer a variety of parameter estimation
techniques for models whose identification can be established. The most
popular estimation method (and the default in most SEM software
packages) is maximum likelihood (ML), an iterative large-sample technique
that assumes underlying multivariate normality. Alternative techniques exist
(e.g., generalized least squares [GLS], asymptotically distribution free
[ADF; Browne, 1984], and robust estimators [Satorra & Bentler, 1994]),
some of which do not depend on a particular underlying distribution of the
data, but still, the vast majority of substantive studies use ML.

Data-Model Fit Assessment

A central issue addressed by SEM is how to assess the fit between
observed data and the hypothesized model, ideally operationalized as an
evaluation of the degree of discrepancy between the true population
covariance matrix and that implied by the model’s structural and
nonstructural parameters. As the population parameter values are seldom
known, the difference between an observed, sample-based covariance
matrix and that implied by parameter estimates must serve to approximate
the population discrepancy. For a justidentified model, the observed data
will fit the model perfectly: The system of equations expressing each model
parameter as a function of the observed (co)variances is uniquely solvable;
thus, the sample estimate of the model-implied covariance matrix will, by
default, equal the sample estimate of the population covariance matrix.
However, if a model is overidentified, it is unlikely that these two matrices
are equal as the system of equations (expressing model parameters as
functions of observed variances and covariances) is solvable in more than a
single way.

Abiding by a general desire for parsimony, overidentified models tend to
be of more substantive interest than justidentified ones because they
represent simpler potential explanations of the observed associations. While
data-model fit for such models was initially conceived as a formal statistical



test of the discrepancy between the true and model-implied covariance
matrices (a chi-square test with df = u–t; Jöreskog, 1966, 1967), such a test
now is often viewed as overly strict given its power to detect even trivial
deviations of a proposed model from reality. Hence, many alternative
assessment strategies have emerged (for a now classic review, see Tanaka,
1993) and continue to be developed. Data-model fit indices for such
assessments can be categorized roughly into three broad classes (with
recommended indices in italics):

• Absolute indices evaluate the overall discrepancy between observed and
implied covariance matrices; fit improves as more parameters are added to
the model and degrees of freedom decrease: for example, the standardized
root mean square residual (SRMR), the chi-square test (recommended to be
reported mostly for its historical significance), and the goodness-of-fit
index (GFI).

• Parsimonious indices evaluate the overall discrepancy between
observed and implied covariance matrices while taking into account a
model’s complexity, fit improves as more parameters are added to the
model, as long as those parameters are making a useful contribution: for
example, the root mean square error of approximation (RMSEA) with its
associated confidence interval, the Akaike information criterion (AIC) for
fit comparisons across nonnested models, and the adjusted goodness-of-fit
index (AGFI).

• Incremental indices assess absolute or parsimonious fit relative to a
baseline model, usually the null model (a model that specifies no relations
among measured variables): for example, the comparative fit index (CFI),
the normed fit index (NFI), and the nonnormed fit index (NNFI).

If, after considering several indices, data-model fit is deemed acceptable
(and judged best compared to competing models, if applicable), the model
is retained as tenable, and individual parameters may be interpreted. If,
however, evidence suggests unacceptable data-model fit, the next and often
final stage in the SEM process is considered: modifying the model to
improve fit in hopes of also improving the model’s correspondence to
reality.



Potential Model Modification

In a strict sense, any hypothesized model is, at best, only an
approximation to reality; the remaining question is one of degree of that
mis-specification. With regard to external specification errors—when
irrelevant variables were included in the model or substantively important
ones were left out—remediation can only occur by respecifying the model
based on more relevant theory. On the other hand, internal specification
errors—when unimportant paths among variables were included or when
important paths were omitted—can potentially be diagnosed and remedied
using Wald statistics (predicted increase in chi-square if a previously
estimated parameter were fixed to some known value, e.g., zero) and
Lagrange multiplier statistics (also referred to as modification indices;
estimated decrease in chi-square if a previously fixed parameter were to be
estimated). As these tests’ recommendations are directly motivated by the
data and not by theoretical considerations, any resulting respecifications
must be viewed as exploratory in nature and might not lead to a model that
resembles reality any more closely than the one(s) initially conceptualized.

BEST PRACTICES IN SEM DATA ANALYSIS: A SET OF

ILLUSTRATIONS

Using the four-stage SEM process as a framework, we turn to an illustration
of best practices in the most common type of SEM analyses. We chose to
focus on a set of hypothesized models involving structural/causal relations
among latent factors (i.e., LVPA models) to demonstrate our preference for
using a two-phase approach (i.e., a measurement phase followed by a
structural phase) over a single-phase, all-in-one analysis. We conclude this
section by illustrating the statistical comparison of hierarchically related or
nested models (occurring, for example, when one model’s parameters are a
proper subset of another model’s parameters) and addressing the
disattenuation (i.e., purification and strengthening) of structural parameter
estimates obtained from an LVPA when compared with those obtained from
an analysis of the same overall structure but one that uses measured
variables only.



Suppose an educational researcher is interested in investigating the
structural effects of girls’ reading and mathematics self-concept (Read-SC
and Math-SC, respectively) on mathematics proficiency (Math-Prof), as
potentially mediated by task-goal orientation (Task-Goal). More
specifically, the investigator might have strong theoretical reasons to
believe that at least one of three scenarios is tenable: In Model 1 (Figure
1.32a), it is hypothesized that the effects of Read-SC and Math-SC on
Math-Prof are both completely mediated by Task-Goal. In Model 2 (Figure
1.32b), only the effect of Read-SC on Math-Prof is completely mediated by
Task-Goal, while Math-SC affects Math-Prof not only indirectly via Task-
Goal but also directly without other intervening variables. Finally, in Model
3 (Figure 1.32c), Read-SC and Math-SC are thought to affect Math-Prof
directly as well as indirectly via Task-Goal. To illustrate the testing of the
tenability of these three competing models, multivariate normal data on
three indicator variables for each of the four constructs were simulated for a
sample of n = 1,000 ninth-grade girls. Table 32.1 describes the 12 indicator
variables in more detail, while Table 32.2 contains relevant summary
statistics.1

At this point, it is possible and might seem entirely appropriate to address
the research questions implied by the hypothesized models through a series
of multiple linear regression (MLR) analyses. For example, for Model 2 in
Figure 1.32b, two separate regressions could be conducted: (1) An
appropriate surrogate measure of Math-Prof could be regressed on proxy
variables for Math-SC and Task-Goal, and (2) a suitable indicator of Task-
Goal could be regressed on proxies for Read-SC and Math-SC. If the
researcher would choose items ReadSC3, MathSC3, TG1, and Proc from
Table 32.1 as surrogates for their respective constructs, MLR results would
indicate that even though all hypothesized effects are statistically
significantly different from zero, only small amounts of variance in the
dependent variables TG1 and Proc are explained by their respective
predictor variables (  = 0.034,  = 0.26; see Table 32.6 for the
unstandardized and standardized regression coefficients obtained from the
two MLR analyses2). As we will show through the course of the
illustrations below, an appropriately conducted LVPA of the models in
Figure 1.32 and the data in Table 32.2 will greatly enhance the utility of the
data to extract more meaningful results that address the researcher’s key
questions.



SEM Notation

As the three alternative structural models depicted in Figure 1.32 are at
the theoretical/latent construct level, we followed common practice and
enclosed the four factors of Read-SC, Math-SC, Task-Goal, and Math-Prof
in ellipses/circles. On the other hand, a glance ahead at the operationalized
model in Figure 2.32 reveals that the now included measured variables
(items RSC1 to RSC3, MSC1 to MSC3, TG1 to TG3, Math, Prob, and
Proc) are enclosed in rectangles/squares. Using the Bentler-Weeks “VFED”
labeling convention (V for measured Variable/item, F for latent
Factor/construct, E for Error/measured variable residual, D for
Disturbance/latent factor residual), the latent and measured variables in the
current models are labeled F1 through F4 and V1 through V12,
respectively. The hypothesized presence or absence of relations between
variables in the model is indicated by the presence or absence of arrows in
the corresponding path diagram: One-headed arrows signify direct
structural or causal effects hypothesized from one variable to another, while
two-headed arrows denote hypothesized covariation and variation without
structural specificity. For example, for Model 1 in Figure 1.32a, note (a) the
hypothesized covariance between Read-SC and Math-SC and the
constructs’ depicted variances (two-headed arrows connect the factors to
each other and to themselves, given that a variable’s variance can be
thought of as a covariance of the variable with itself), (b) the hypothesized
structural effects of these two factors on Task-Goal (oneheaded arrows lead
from both to Task-Goal), but (c) the absence of such hypothesized direct
effects on Math-Prof (there are no one-headed arrows directly leading from
Read-SC and Math-SC to Math-Prof; the former two constructs are
hypothesized to affect the latter only indirectly, mediated by Task-Goal).
Finally, because variation in dependent variables usually is not fully
explainable by the amount of variation or covariation in their specified
causes, each dependent variable has an associated residual term. For
example, in the operationalized model in Figure 2.32, D3 and D4 denote the
prediction errors associated with the latent factors F3 (Task-Goal) and F4
(Math-Prof), while E1 through E3 indicate the residuals associated with the
measured indicator variables (V1 to V3) of the latent construct Read-SC.



Figure 32.1 The theoretical models.



Table 32.1 Indicator Variable/Item Description

Table 32.2 Correlations and Standard Deviations of Simulated Data



For purposes of labeling structural and non-structural parameters
associated with the connections between measured and/or latent variables in
a path diagram, we used the abc system3 (Hancock & Mueller, 2006, pp. 4–
6). Structural effects from one variable (measured or latent) to another are
labeled bto,from, with the subscripts indicating the to and from variables (e.g.,
in Figure 2.32, bF3F1 indicates the path to F3 from F1, and bV2F1 denotes the
path/factor loading to item V2 from factor F1). On the other hand, variances
and covariances are labeled by the letter c (e.g., in Figure 2.32, cF1 denotes
the variance of the latent construct F1, while cF2F1 represents the covariance
between the factors F2 and F1).



Figure 32.2 Initially operationalized Model 1.

All-in-One SEM Analysis— Generally Not Recommended

Although we generally do not recommend the analytic strategy outlined
in this section, it nevertheless will prove pedagogically instructive and will
motivate arguments in later sections. With a hypothesized structure among
latent constructs in place and associated measured indicators selected,
Model 1 in Figure 1.32a can be operationalized as illustrated in Figure 2.32.
This path diagram implies a set of 14 structural equations, one for each
dependent variable: two equations from the structural portion of the model
(i.e., the part that specifies the causal structure among latent constructs) and
12 equations from the measurement portion of the model (i.e., the part that
links each of the indicator variables with the designated latent constructs).
Table 32.3 lists all 14 structural equations and their associated endogenous
(dependent) and exogenous (independent) variables that together specify the
model in Figure 2.32 (variables are assumed to be mean-centered, thus
eliminating the need for intercept terms; items V1, V4, V7, and V10 are
used as reference variables for their respective factors, and thus their factor
loadings are not free to be estimated but fixed to 1.0; also see Note 4).



Though it might seem that the statistical estimation of the unknown
coefficients in the structural equations (the b and c parameters) should be
the focus at this stage of the analysis, a prior assessment of the data-model
fit is more essential as it allows for an overall judgment about whether the
data fit the structure as hypothesized (indeed, should evidence materialize
that the data do not fit the model, interpretations of individual parameter
estimates might be useless). As can be verified from the path diagram in
Figure 2.32 by counting one- and two-headed arrows labeled with b or c
symbols, the model contains t = 28 parameters to be estimated:4 two
variances of the independent latent constructs and one covariance between
them, two variances of residuals associated with the two dependent latent
constructs, three path coefficients relating the latent constructs, eight factor
loadings, and 12 variances of residuals associated with the measured
variables. Furthermore, the 12 measured variables in the model produce u =
12 (12 + 1)/2 = 78 unique variances and covariances; the model is
overidentified (t = 28 < u = 78), and it is likely that some degree of data-
model misfit exists (i.e., the observed covariance matrix will likely differ, to
some degree, from that implied by the model). To assess the degree of data-
model misfit, various fit indices can be obtained and then should be
compared against established cutoff criteria (e.g., those empirically derived
by Hu & Bentler, 1999, and listed here in Table 32.4). Though here LISREL
8.8 (Jöreskog & Sörbom, 2006) was employed, running any of the available
SEM software packages will verify the following data-model fit results for
the data in Table 32.2 and the model in Figure 2.32 (because the data are
assumed multivariate normal, the maximum likelihood estimation method
was used): χ2 = 3624.59 (df = u – t = 50, p < .001), SRMR = 0.13, RMSEA
= 0.20 with CI90: (0.19, 0.20), and CFI = 0.55. 90

Table 32.3 Structural Equations Implied by the Path Diagram in Figure 2.32



As is evident from comparing these results with the desired values in
Table 32.4, the current data do not fit the proposed model; thus, it is not
appropriate to interpret any individual parameter estimates as, on the whole,
the model in Figure 2.32 should be rejected based on the current data. Now
the researcher is faced with the question of what went wrong: (a) Is the
source of the data-model misfit indeed primarily a flaw in the underlying
structural theory (Figure 1.32a), (b) can the misfit be attributed to
misspecifications in the measurement portion of the model with the
hypothesized structure among latent constructs actually having been
specified correctly, or (c) do misspecifications exist in both the
measurement and structural portions of the model? To help address these
questions and prevent potential confusion about the source of observed
data-model misfit, we do not recommend that researchers conduct SEM
analyses by initially analyzing the structural and measurement portions of
their model simultaneously, as was done here. Instead, analysts are urged to
follow a two-phase analysis process, as described next.

Table 32.4 Target Values for Selected Fit Indices to Retain a Model by Class



SOURCE: Partially taken from Hu and Bentler (1999).
NOTE: CFI = comparative fit index; NFI = normed fit index; NNFI = nonnormed fit index; GFI =
goodness-of-fit index; AGFI = adjusted goodness-of-fit index; RMSEA = root mean square error of
approximation; SRMR = standardized root mean square residual.

Two-Phase SEM Analysis—Recommended

Usually, the primary reason for conceptualizing LVPA models is to
investigate the tenability of theoretical causal structures among latent
variables. The main motivation for recommending a two-phase process over
an all-in-one approach is to initially separate a model into its measurement
and structural portions so that misspecifications in the former, if present,
can be realized and addressed first, before the structure among latent
constructs is assessed.5 This approach will simplify the identification of
sources of data-model misfit and might also aid in the prevention of
nonconvergence problems with SEM software (i.e., when the iterative
estimation algorithm cannot converge upon a viable solution for parameter
estimates).

Consider the path diagram in Figure 3.32a. It is similar to the one
depicted in Figure 2.32 as it involves the same measured and latent
variables but differs in two important ways: Not only are Read-SC and
Math-SC now explicitly connected to Math-Prof, but all structural links
among latent variables have been changed to nonstructural relations (note in
Figure 3.32a the twoheaded arrows between all latent constructs that are
now labeled with c symbols). That is, latent constructs are allowed to freely
covary without an explicit causal structure among them. In short, Figure
3.32a represents a CFA model of the latent factors Read-SC, Math-SC,
Task-Goal, and Math-Prof, using the measured variables in Table 32.1 as
their respective effect indicators.6



Measurement Phase. An analysis of the CFA model in Figure 3.32a
constitutes the beginning of the measurement phase of the proposed two-
phase analysis process and produced the following data-model fit results: χ2

= 3137.16 (df = 48, p < .001), SRMR = 0.062, RMSEA = 0.18 with CI90:
(0.17, 0.18), and CFI = 0.61. These values signify a slight improvement
over fit results for the model in Figure 2.32. To the experienced modeler,
this improvement was predictable given that the model in Figure 2.32 is
more restrictive than, and a special case of, the CFA model in Figure 3.32a
(with the paths from Read-SC and Math-SC to Math-Prof fixed to zero);
that is, the former model is nested within the latter, a topic more fully
discussed in the next section. Irrespective of this minor improvement,
however, why did the data-model fit remain unsatisfactory (as judged by the
criteria listed in Table 32.4)? Beginning to analyze and address this misfit
constitutes a move toward the fourth and final phase in the general SEM
process, potential post hoc model modification.

First, reconsider the list of items in Table 32.1. While all variables
certainly seem to “belong” to the latent factors they were selected to
indicate, note that for the reading and mathematics selfconcept factors,
corresponding items are identical except for one word: The word reading in
items RSC1 through RSC3 was replaced by the word math to obtain items
MSC1 through MSC3. Thus, it seems plausible that individuals’ responses
to corresponding reading and mathematics self-concept items are influenced
by some of the same or related causes. In fact, the model in Figure 3.32a
explicitly posits that two such related causes are the latent constructs Read-
SC and Math-SC. However, as the specification of residual terms (E)
indicates, responses to items are influenced by causes other than the
hypothesized latent constructs. Those other, unspecified causes could also
be associated. Thus, for example, the residual terms E1 and E4 might
covary to some degree, particularly since both are associated with items that
differ by just one word. Based on similar theoretical reasoning, a nonzero
covariance might exist between E2 and E5 and also between E3 and E6. In
sum, it seems theoretically justifiable to modify the CFA model in Figure
3.32a to allow residual terms of corresponding reading and mathematics
self-concept items to freely covary, as shown in Figure 3.32b. In fact, with
enough foresight, these covariances probably should have been included in
the initially hypothesized model.



Second, as part of the analysis of the initial CFA model in Figure 3.32a,
Lagrange multiplier (LM) statistics may be consulted for empirically based
model modification suggestions. These statistics estimate the potential
improvement in data-model fit (as measured by the estimated decrease in
chi-square) if a previously fixed parameter were to be estimated. Here, the
three largest LM statistics were 652.0, 567.8, and 541.7, associated with the
fixed parameters cE5E2, cE4E1, and cE6E3, respectively. Compared with the
overall chi-square value of 3137.16, these estimated chi-square decreases
seem substantial,7 foreshadowing a statistically significant improvement in
data-model fit. Indeed, after respecifying the model accordingly (i.e.,
freeing cE5E2, cE4E1, and cE6E3; see Figure 3.32b) and reanalyzing the data, fit
results for the modified CFA model improved dramatically: χ2 = 108.04 (df
= 45, p < .001), SRMR = 0.018, RMSEA = 0.037 with CI90: (0.028, 0.046),
and CFI = 0.99.

Though the degree of improvement might have been a pleasant surprise,
some improvement was again to be expected: When compared with the
initial CFA model, the modified model places fewer restrictions on
parameter values (hence, better data-model fit) by allowing three error
covariances to be freely estimated. Once again, the two CFA models are
nested, and their fit could be statistically compared with a chi-square
difference test, as discussed in the next section. For now, suffice it to say
that an informal, descriptive comparison of the fit results for the initial and
modified CFA models (e.g., a decrease from  = 3137.16 to  = 108.04,
a drop from SRMRinitial = 0.062 to SRMRmod = 0.018, and a reduction from
RMSEAinitial = 0.18 to RMSEAmod = 0.037) seems to indicate that the data fit
the modified model much better. In more absolute terms, comparing the fit
results from the modified model to the target values in Table 32.4 suggests
that the data fit the model very well (due to the large sample size of n =
1,000, relatively little weight should be placed on the still significant  =
108.04). An examination of the remaining modification indices indicated
that, even though further modifications would continue to slightly improve
fit, none of the suggested modifications were theoretically justifiable (e.g.,
the largest estimated drop in chi-square, 23.0, could be obtained by freeing
cE8E2, the error covariance associated with the items TG2 and RSC2). Thus,
no further modifications to the measurement model seem warranted. Figure
4.32 lists partial results for this final CFA model: Standardized factor



loadings were statistically significant and sizable, estimated correlations
among error terms and among latent factors were significant and of
moderate size (except for the nonsignificant correlation between the latent
factors Read-SC and Math-Prof), item reliabilities (the squared standardized
factor loadings, ) ranged from  = .36 for RSC3 to  = .81 for Math, and
construct reliabilities8 for the latent factors ranged from H = .74 for Read-
SC to H = .89 for Math-Prof. Thus, with solid evidence of a quality
measurement model, we now are ready to proceed to the second phase of
the analysis.

Structural Phase. With a final measurement model in place, the structural
phase consists of replacing the nonstructural covariances among latent
factors with the hypothesized structure that is of main interest (currently,
Model 1 in Figure 1.32a) and reanalyzing the data. When comparing these
new data-model fit results (χ2 = 601.85 with df = 47, p < .001, SRMR =
0.12, RMSEA = 0.10 with CI90: [0.096,0.11], and CFI = 0.93) to those from
the final CFA model, we learn that the introduction of two key restrictions
—namely, the a priori specified zero paths from Read-SC and Math-SC to
Math-Prof—significantly eroded data-model fit.9 Consulting cutoff criteria
in Table 32.4, we may conclude that the data do not fit the conceptual
model in Figure 1.32a. Having conducted a two-phase analysis, however,
we now know something we could not glean from the all-in-one analysis:
The observed data-model misfit must largely be due to misspecifications in
the structural portion of the model since modifications to the measurement
portion of the model (freeing error covariances for corresponding reading
and mathematics self-concept items) led to a CFA model with no evidence
of substantial data-model misfit. Having not yet reached a state where the
data fit the hypothesized structure to an acceptable degree, we forego an
interpretation of individual parameter estimates for a while longer in favor
of illustrating how to compare and choose among the current model (Model
1) and the two remaining a priori hypothesized structures (Models 2 and 3)
in Figure 1.32.





Figure 32.3 The measurement (CFA) models.



Choosing From Among Nested Models

Thus far in the illustrations, the comparison of models with respect to
data-model fit could be accomplished only by descriptively weighing
various fit index values across models. However, in the special case when
two models, say Model 1 and Model 2, are nested (such as when the
estimated parameters in the former are a proper subset of those associated
with the latter), fit comparisons can be accomplished with a formal chi-
square difference test. That is, if Model 1 (with df1) is nested within Model
2 (with df2), their chi-square fit statistics may be statistically compared by 

 = , which is distributed as a chi-square distribution with df =
df1 – df2 (under conditions of multivariate normality).

Now reconsider the three theoretical models in Figure 1.32, all now
incorporating the final measurement model in Figure 3.32b. As the fit
information in Table 32.5 shows, Models 2 and 3 seem to fit well,10 while
Model 1 does not, as previously discussed. Furthermore, note that Model 1,
the most parsimonious and restrictive model, is nested within both Models
2 and 3 (letting bF4F2 ≠ 0 in Model 1 leads to Model 2; allowing both bF4F2 ≠
0 and bF4F1 ≠ 0 in Model 1 leads to Model 3) and that Model 2 is nested in
Model 3 (permitting bF4F1 ≠ 0 in Model 2 leads to Model 3). Thus, the chi-
square fit statistics for the three competing models can easily be compared
by chi-square difference tests. Based on the three possible chi-square
comparisons shown in Table 32.5, we glean that out of the three
alternatives, Model 2 is the preferred structure (when weighing chi-square
fit and parsimony):

1. Both Models 2 and 3 are chosen over Model 1 (they both exhibit
significantly better fit,  = 492.56, p < .001;  = 493.81, p < .001;
respectively), and

2. Model 2 is favored over Model 3 (even though it is more restrictive—
but hence more parsimonious—the erosion in fit is nonsignificant, 
= 1.25, p = .264).

Having chosen Model 2 from among the three alternative models and
judging its data-model fit as acceptable (Table 32.5), what remains is an
examination and interpretation of the structural parameter estimates that
link the latent constructs (see Table 32.6; interpretations of results from the



measurement phase are listed in Figure 4.32 and were examined earlier).
Note that the latent factors Read-SC and Math-SC explained 20% of the
variance in Task-Goal (R2 = 0.20) and that the Math-SC and Task-Goal
factors explained more than 70% of the variance in latent mathematics
proficiency (R2 = 0.71). All structural estimates were statistically significant
and can be interpreted in a manner similar to regression coefficients, but
now with a focus on structural direction, given the specific causal nature of
the underlying hypothesized theory. For example, considering the
standardized path coefficients,11 one might expect from within the context
of Model 2 that a one standard deviation increase in ninth-grade girls’ latent
reading self-concept causes, on average, a bit more than a third (0.36) of a
standard deviation increase in their latent task-goal orientation; similarly, a
one standard deviation increase in girls’ task-goal orientation leads, on
average, to a 0.38 standard deviation increase in latent mathematics
proficiency. Given the hypothesized structure, the effect of reading self-
concept on mathematics proficiency is completely mediated by Task-Goal,
with an estimated standardized indirect effect of 0.36 × 0.38 = 0.14 (p < .05,
as indicated by SEM software).

Finally, recall from the beginning of this section the two separate
multiple linear regression analyses for a somewhat crude initial attempt at
addressing coefficient estimation for the structure in Model 2. In addition to
LVPA results, Table 32.6 also lists R2 values and the unstandardized and
standardized regression coefficients associated with the two implied
structural equations (using the proxy variables ReadSC3 for latent reading
self-concept, MathSC3 for latent mathematics self-concept, TG1 for latent
task-goal orientation, and Proc for latent mathematics proficiency). First,
compare the two regression R2 values with those obtained from the SEM
analysis and appreciate the huge increases observed with the LVPA
approach: Explained variability in task-goal orientation jumped from 3.4%
to 20%; in mathematics proficiency, it improved from 26% to 71%. Second,
compare the MLR to the LVPA coefficients and note how in each case, the
standardized LVPA estimates are higher/stronger than their MLR
counterparts. This disattenuation of relations among variables is due to
LVPA’s ability to “cleanse” estimates of the “noise” in the system that was
introduced by the indicator variables’ inevitable measurement error. Herein,
then, lies one of the strengths of latent variable SEM approaches: Structural
parameter estimates become purer, untangled from errors that originated in



the measurement portion of the system, thus generating a higher portion of
explained variability in dependent constructs.

Figure 32.4 Standardized results for final CFA model.
NOTE:  is indicator reliability computed as the squared standardized loading. H is Hancock and
Mueller’s (2001) measure of construct reliability.
a. Unstandardized loading fixed to 1.0; thus, no standard error computed.
*p < .05.



Table 32.5 Data-Model Fit and Chi-Square Difference Tests for Nested Models

BEST PRACTICES IN SEM: SHARING THE STUDY WITH OTHERS



The four-stage SEM process and pointers gleaned from the above analysis
illustrations map nicely onto the broadly accepted manuscript sections of
introduction, methods, results, and discussion. What follows are some brief
and general best practices guidelines on communicating research that uses
SEM.

Introduction Section

Early in a manuscript—in the introduction and background to the
problem under study—authors should convey a firm, overall sense of what
led to the initial model conceptualization and of the specific model(s)
investigated. The existence of latent constructs, as well as the hypothesized
causal relations among them, must be justified clearly and convincingly
based on theoretical grounds. Often, the articulation of competing,
alternative models strengthens a study as it provides for a more complete
picture of the current thinking in a particular field. The justification of
measured and/or latent variables and models is accomplished by analyzing
and synthesizing relevant literature by authors who proposed particular
theories or empirically researched the same or similar models as the one(s)
under current investigation. Path diagrams often are helpful in expressing
the hypothesized structural links relating the measured and/or latent
variables. Especially in complex models involving many variables, the
hypothesized causal structure among latent variables can be easily
illustrated in a diagram, while the psychometric details of how each latent
variable was modeled may be left for the method section.

Table 32.6 Regression/Structural Coefficients for Model 2



Method Section

In addition to specific information on participants, instruments, and
procedures, this section should include a reference to the specific version of
the SEM software package used since results can vary not only across
programs but also across versions of a single package (mainly due to
differences and continual refinements in estimation algorithms). Given the
complexities of demonstrating each parameter’s identification—and its
necessity for parameter estimation—it is generally accepted to omit detailed
discussions of identification issues from a manuscript, unless some unique
circumstances warrant their inclusion. However, since the accuracy of
parameter estimates, associated standard errors, and the overall chi-square
value all depend on various characteristics of the indicators chosen and the
data collected, authors should address issues such as multivariate
distributions, sample size, missing data, outliers, and potential multilevel
data structures, if applicable.

In most applied studies, ML estimates are presented that assume
underlying multivariate normality and continuity of the data. Studies have
shown that if sample size is sufficiently large, ML parameter estimates are
quite robust against violations of these assumptions, though their associated
standard errors and the overall chi-square might not be (e.g., West, Finch, &



Curran, 1995). Some have suggested, as a rough guideline, a 5:1 ratio of
sample size to number of parameters estimated in order to trust ML
parameter estimates (but associated standard errors and the model chi-
square statistic might still be compromised; e.g., Bentler & Chou, 1987).
We hesitate to endorse such a “one-size-fits-all” suggestion for three
reasons. First, if data are not approximately normal, then alternate strategies
such as the Satorra-Bentler rescaled statistics should be employed that have
larger sample size requirements. Second, even under normality,
methodological studies have illustrated that for models with highly reliable
factors, quite satisfactory solutions can be obtained with relatively small
samples, while models with less reliable factors might require larger
samples (e.g., Gagné & Hancock, 2006; Marsh, Hau, Balla, & Grayson,
1998). Third, such general sample size recommendations ignore issues of
statistical power to evaluate models as a whole or to test parameters within
those models (see, e.g., Hancock, 2006).

If the model posits latent constructs, the choice of indicators usually is
justified in an instrumentation subsection. First, for each construct modeled,
the reader should be able to determine if effect or cause indicators were
chosen: Only the former operationalize the commonly modeled latent
factors; the latter determine latent composites (see Note 6). In some SEM
analyses, emergent constructs are erroneously treated as latent, implying a
mismatch between the modeled and the actual nature of the construct, hence
leading to the potential for incorrect inferences regarding the relations the
construct might have with other portions of the model. Second, each latent
construct should be defined by a sufficient number of psychometrically
sound indicators: “Two might be fine, three is better, four is best, and
anything more is gravy” (Kenny, 1979, p. 143). Doing so can prevent
various identification and estimation problems as well as ensure satisfactory
construct reliability (since latent constructs are theoretically perfectly
reliable but are measured by imperfect indicators, numerical estimates of
construct reliability are likely to be less than 1.0 but can be brought to
satisfactory levels with the inclusion of quality indicator variables; see, e.g.,
Hancock & Mueller, 2001). Finally, the scale of the indicator variables
should be accommodated by the estimation method, where variables clearly
yielding ordinal data might warrant the use of estimation strategies other
than ML (see Finney & DiStefano, 2006).



Results Section

How authors structure the results section obviously is dictated by the
particular model(s) and research questions under study. Notwithstanding, it
is the researcher’s responsibility to provide access to data in order to
facilitate verification of the obtained results: If moment-level data were
analyzed, a covariance matrix (or correlation matrix with standard
deviations) should be presented in a table or appendix; if raw data were
used, information on how to obtain access should be provided.

When analyzing LVPA models, results from both the measurement and
structural phases should be presented. For overidentified models, judging
the overall quality of a hypothesized model usually is presented early in the
results section. Given that available data-model fit indices can lead to
inconsistent conclusions, researchers should consider fit results from
different classes so readers can arrive at a more complete picture regarding
a model’s acceptability (Table 32.4). Also, a comparison of fit across
multiple, a priori specified alternative models can assist in weighing the
relative merits of favoring one model over others. As illustrated, when
competing models are nested, a formal chi-square difference test is
available to judge if a more restrictive—but also more parsimonious—
model can explain the observed data equally well, without a significant loss
in data-model fit (alternative models that are not nested have traditionally
been compared only descriptively—relative evaluations of AIC values are
recommended, with smaller values indicating better fit—but recent
methodological developments suggest statistical approaches as well; see
Levy & Hancock, 2007).

If post hoc model modifications are performed following unacceptable
data-model fit from either the measurement or structural phase of the
analysis, authors owe their audience a detailed account of the nature and
reasons (both statistical and theoretical) for the respecification(s), including
summary results from Lagrange multiplier tests and revised final fit results.
If data-model fit has been assessed and deemed satisfactory, with or without
respecification, more detailed results are presented, usually in the form of
individual unstandardized and standardized parameter estimates for each
structural equation of interest, together with associated standard errors
and/or test statistics and coefficients of determination (R2). When latent
variables are part of a model, estimates of their construct reliability should



be presented, with values ideally falling above .70 or .80 (see Hancock &
Mueller, 2001).

Discussion Section

In the final section of a manuscript, authors should provide a sense of
what implications the results from the SEM analysis have on the theory or
theories that gave rise to the initial model(s). Claims that a well-fitting
model was “confirmed” or that a particular theory was proven to be “true,”
especially after post hoc respecifications, should be avoided. Such
statements are grossly misleading given that alternative, structurally
different, yet mathematically equivalent models always exist that would
produce identical data-model fit results and thus would explain the data
equally well (see Hershberger, 2006). At most, a model with acceptable fit
may be interpreted as one tenable explanation for the associations observed
in the data. From this perspective, a SEM analysis should be evaluated from
a disconfirmatory, rather than a confirmatory, perspective: Based on
unacceptable data-model fit results, theories can be shown to be false but
not proven to be true by acceptable data-model fit (see also Mueller, 1997).

If evidence of data-model misfit was presented and a model was
modified based on statistical results from Lagrange multiplier tests, readers
must be made aware of potential model overfitting and the capitalization on
chance. Statistically rather than theoretically based respecifications are
purely exploratory and might say little about the true model underlying the
data. While some model modifications seem appropriate and theoretically
justifiable (usually, minor respecifications of the measurement portion are
more easily defensible than those in the structural portion of a model), they
only address internal specification errors and should be cross-validated with
data from new and independent samples.12

Finally, the interpretation of individual parameter estimates can involve
explicit causal language, as long as this is done from within the context of
the particular causal theory proposed and the possibility/probability of
alternative explanations is raised unequivocally. Though some might
disagree, we think that explicit causal statements are more honest than
implicit ones and are more useful in articulating a study’s practical
implications; after all, is not causality the ultimate aim of science (see
Shaffer, 1992, p. x)? In the end, SEM is a powerful disconfirmatory tool at



the researcher’s disposal for testing and interpreting theoretically derived
causal hypotheses from within an a priori specified causal system of
observed and/or latent variables. However, we urge authors to resist the
apparently still popular belief that the main goal of SEM is to achieve
satisfactory data-model fit results; rather, it is to get one step closer to the
“truth.” If it is true that a proposed model does not reflect reality, then
reaching a conclusion of misfit between data and model should be a
desirable goal, not one to be avoided by careless respecifications until
satisfactory levels of fit are achieved.

CONCLUSION

Throughout the sections of this chapter, we have attempted to provide an
overview of what we believe should be considered best practices in typical
SEM applications. As is probably true for the other quantitative methods
covered in this volume, a little SEM knowledge is sometimes a dangerous
thing, especially with user-friendly software making the mechanics of SEM
increasingly opaque to the applied user. Before embracing SEM as a
potential analysis tool and reporting SEM-based studies, investigators
should gain fundamental knowledge from any of the introductory textbooks
referenced at the beginning of this chapter. In an effort to aid in the conduct
and publication of appropriate, if not exemplary, SEM utilizations, we
offered some best practices guidelines, except one, saving it for last. While
SEM offers a general and flexible methodological framework, investigators
should not hesitate to consider other analytical techniques—many covered
in the present volume—that potentially address research questions much
more clearly and directly. As it was explained to the second author several
years ago, “Just because all your friends are doing this ‘structural equation
modeling’ thing doesn’t mean you have to. If all your friends jumped off a
cliff….” (Marta Foldi,13 personal communication, 1992).

NOTES

1. Several indicator variables are rating scales that could be argued to provide ordinal-level rather
than interval-level data. Given the relatively high number of scale points, however, we analyzed these
data as if they were interval (see Finney & DiStefano, 2006).



2. Using different proxy variables, or even composites of indicators, would still yield attenuated
results as none of the options filter the inherent measurement error.

3. Only b and c coefficients are used here; the letter a denotes intercept and mean terms in the
analysis of mean structures.

4. To help ensure identification and to provide a metric for each latent factor, reference variables
were specified (i.e., one factor loading for each latent construct was fixed to 1.0 as indicated in
Figure 2.32).

5. Here it is assumed that measured variables of “high quality” were chosen to serve as indicator
variables of the latent constructs (i.e., measured variables with relatively high factor loadings).
Somewhat paradoxically, the use of low-quality indicators in the measurement portion of the model
can erroneously lead to an inference of acceptable data-model fit regarding the structural portion (see
Hancock & Mueller, 2007).

6. Effect indicators are measured variables that are specified to be the structural effects of the
latent constructs that are hypothesized to underlie them (e.g., Bollen & Lennox, 1991). The analysis
of models involving cause indicators—items that contribute to composite scores to form emergent
factors, or latent composites—is theoretically different but also possible, albeit more difficult (see
Kline, 2006).

7. Typically, LM statistics are not additive; that is, the chi-square statistic is not expected to drop
by 1761.5 (= 652.0 + 567.8 + 541.7). When a fixed parameter is estimated in a subsequent reanalysis,
LM statistics for the remaining fixed parameters usually change. Hence, theoretically justifiable
model modifications motivated by LM results should usually occur one parameter at a time unless
there is a clear theoretical reason for freeing multiple parameters at once, as is the case here.

8. One way to assess construct reliability is through Hancock and Mueller’s (2001, p. 202)
coefficient H. H is a function of item reliabilities, , and is computed by the equation

where k is the number of measured variables associated with a given latent factor.
9. Such a statistical comparison is possible with a chi-square difference test since the current

model is nested within the final measurement model, as explained next.
10. Perceptive readers will have noticed that fit results for Model 3 equal those previously

discussed for the final measurement model. Indeed, this is no coincidence but an illustration of two
equivalent models, that is, models that differ in structure but exhibit identical data-model fit for any
data set (see Hershberger, 2006).

11. For a given sample, only the interpretation of standardized coefficients is meaningful as the
latent factor metrics are arbitrary (different choices for reference variables could lead to different
latent metrics); unstandardized coefficients can be useful in effect comparisons across multiple
samples or studies.

12. If this is impractical or impossible, a crossvalidation index could be computed (see Browne &
Cudeck, 1993).

13. Mrs. Foldi is the second author’s mother; she has no formal training in SEM or in any other
statistical technique.

REFERENCES

Arbuckle, J. L. (2007). AMOS (Version 7) [Computer software]. Chicago: SPSS.



Bentler, P. M. (2006). EQS (Version 6.1) [Computer software]. Encino, CA: Multivariate Software.
Bentler, P. M., & Chou, C.-P. (1987). Practical issues in structural equation modeling. Sociological

Methods & Research, 16, 78–117.
Bollen, K. A. (1989). Structural equations with latent variables. New York: John Wiley.
Bollen, K. A., & Lennox, R. (1991). Conventional wisdom on measurement: A structural equation

perspective. Psychological Bulletin, 110, 305–314.
Boomsma, A. (2000). Reporting analyses of covariance structures. Structural Equation Modeling: A

Multidisciplinary Journal, 7, 461–483.
Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance

structures. British Journal of Mathematical and Statistical Psychology, 37, 62–83.
Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J.

S. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park, CA: Sage.
Byrne, B. M. (1998). Structural equation modeling with LISREL, PRELIS, and SIMPLIS. Mahwah,

NJ: Lawrence Erlbaum.
Byrne, B. M. (2001). Structural equation modeling with AMOS. Mahwah, NJ: Lawrence Erlbaum.
Byrne, B. M. (2006). Structural equation modeling with EQS: Basic concepts, applications, and

programming. Mahwah, NJ: Lawrence Erlbaum.
Finney, S. J., & DiStefano, C. (2006). Nonnormal and categorical data in structural equation

modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second
course (pp. 269–314). Greenwich, CT: Information Age Publishing.

Gagné, P. E., & Hancock, G. R. (2006). Measurement model quality, sample size, and solution
propriety in confirmatory factor models. Multivariate Behavioral Research, 41, 65–83.

Hancock, G. R. (2006). Power analysis in covariance structure modeling. In G. R. Hancock & R. O.
Mueller (Eds.), Structural equation modeling: A second course (pp. 69–115). Greenwich, CT:
Information Age Publishing.

Hancock, G. R., & Mueller, R. O. (2001). Rethinking construct reliability within latent variable
systems. In R. Cudeck, S. du Toit, & D. Sörbom (Eds.), Structural equation modeling: Present
and future—A Festschrift in honor of Karl Jöreskog (pp. 195–216). Lincolnwood, IL: Scientific
Software International, Inc.

Hancock, G. R., & Mueller, R. O. (2004). Path analysis. In M. Lewis-Beck, A. Brymann, & T. F.
Liao (Eds.), Sage encyclopedia of social science research methods (pp. 802–806). Thousand
Oaks, CA: Sage.

Hancock, G. R., & Mueller, R. O. (Eds.). (2006). Structural equation modeling: A second course.
Greenwich, CT: Information Age Publishing.

Hancock, G. R., & Mueller, R. O. (2007, April). The reliability paradox in structural equation
modeling fit indices. Paper presented at the annual meeting of the American Educational
Research Association, Chicago.

Hershberger, S. L. (2003). The growth of structural equation modeling: 1994–2001. Structural
Equation Modeling: A Multidisciplinary Journal, 10, 35–46.

Hershberger, S. L. (2006). The problem of equivalent structural models. In G. R. Hancock & R. O.
Mueller (Eds.), Structural equation modeling: A second course (pp. 13–41). Greenwich, CT:
Information Age Publishing.

Hoyle, R. H., & Panter, A. T. (1995). Writing about structural equation models. In R. H. Hoyle
(Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 158–176).
Thousand Oaks, CA: Sage.

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis:
Conventional criteria versus new alternatives. Structural Equation Modeling: A
Multidisciplinary Journal, 6, 1–55.

Jöreskog, K. G. (1966). Testing a simple structure hypothesis in factor analysis. Psychometrika, 31,
165–178.



Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika,
32, 443–482.

Jöreskog, K. G., & Sörbom, D. (2006). LISREL (Version 8.80) [Computer software]. Lincolnwood,
IL: Scientific Software International.

Kaplan, D. (2000). Structural equation modeling: Foundations and extensions. Thousand Oaks,
CA: Sage.

Kenny, D. A. (1979). Correlation and causation. New York: John Wiley.
Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd ed.). New York:

Guilford.
Kline, R. B. (2006). Formative measurement and feedback loops. In G. R. Hancock & R. O.

Mueller (Eds.), Structural equation modeling: A second course (pp. 43–68). Greenwich, CT:
Information Age Publishing.

Levy, R., & Hancock, G. R. (2007). A framework of statistical tests for comparing mean and
covariance structure models. Multivariate Behavioral Research, 42, 33–66.

Loehlin, J. C. (2004). Latent variable models (4th ed.). Hillsdale, NJ: Lawrence Erlbaum.
Marsh, H. W., Hau, K.-T., Balla, J. R., & Grayson, D. (1998). Is more ever too much? The number

of indicators per factor in confirmatory factor analysis. Multivariate Behavioral Research, 33,
181–220.

McDonald, R. P., & Ho, M. R. (2002). Principles and practice in reporting structural equation
analyses. Psychological Methods, 7, 64–82.

Mueller, R. O. (1996). Basic principles of structural equation modeling: An introduction to LISREL
and EQS. New York: Springer-Verlag.

Mueller, R. O. (1997). Structural equation modeling: Back to basics. Structural Equation Modeling:
A Multidisciplinary Journal, 4, 353–369.

Mueller, R. O., & Hancock, G. R. (2001). Factor analysis and latent structure, confirmatory. In N. J.
Smelser & P. B. Baltes (Eds.), International encyclopedia of the social & behavioral sciences
(pp. 5239–5244). Oxford, UK: Elsevier.

Muthén, B. O., & Muthén, L. K. (2006). Mplus (Version 4.1) [Computer software]. Los Angeles:
Author.

Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance
structure analysis. In A. von Eye & C. C. Clogg (Eds.), Latent variables analysis: Applications
for developmental research (pp. 285–305). Thousand Oaks, CA: Sage.

Schumacker, R. E., & Lomax, R. G. (2004). A beginner’s guide to structural equation modeling
(2nd ed.). Mahwah, NJ: Lawrence Erlbaum.

Shaffer, J. P. (Ed.). (1992). The role of models in nonexperimental social science: Two debates.
Washington, DC: American Educational Research Association.

Tanaka, J. S. (1993). Multifaceted conceptions of fit in structural equation models. In K. A. Bollen
& J. S. Long (Eds.), Testing structural equation models (pp. 10–39). Newbury Park, CA: Sage.

West, S. G., Finch, J. F., & Curran, P. J. (1995). Structural equation models with nonnormal
variables. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and
applications (pp. 56–75). Thousand Oaks, CA: Sage.

Wright, S. (1918). On the nature of size factors. Genetics, 3, 367–374.

 

Authors’ Note: During the writing of this chapter, the first author was on sabbatical leave from The
George Washington University and was partially supported by its Center for the Study of Language
and Education and the Institute for Education Studies, both in the Graduate School of Education and
Human Development. While on leave, he was visiting professor in the Department of Measurement,
Statistics and Evaluation (EDMS) at the University of Maryland, College Park, and visiting scholar



in its Center for Integrated Latent Variable Research (CILVR). He thanks the EDMS and CILVR
faculty and staff for their hospitality, generosity, and collegiality. Portions of this chapter were
adapted from a presentation by the authors at the 2004 meeting of the American Educational
Research Association in San Diego.



I

33
 

INTRODUCTION TO BAYESIAN
MODELING FOR THE SOCIAL
SCIENCES

 
GIANLUCA BAIO

MARTA BLANGIARDO

n the context of statistical problems, the frequentist interpretation of
probability has historically played a predominant role in modern
statistics. In this approach, probability is defined as the limiting

frequency of occurrence in an infinitely repeated experiment. The
underlying assumption is that of a “fixed” concept of probability, which is
unknown but can be theoretically disclosed by means of repeated trials,
under the same experimental conditions.

However, although the frequentist approach still plays the role of the
standard in various applied areas, many other possible conceptualizations of
probability characterize different philosophies behind the problem of
statistical inference. Among these, an increasingly popular one is the
Bayesian (also referred to as subjectivist), originated by the posthumous
work of Reverend Thomas Bayes (1763)—see Howie (2002), Senn (2003),
or Fienberg (2006) for a historical account of Bayesian theory.

The main feature of this approach is that probability is interpreted as a
subjective degree of belief in the occurrence of an event, representing the
individual level of uncertainty in its actual realization (cf. de Finetti, 1974,
probably the most comprehensive account of subjective probability). One of
the main implications of subjectivism is that there is no requirement that
one should be able to specify, or even conceive of, some relevant sequence



of repetitions of the event in question, as happens in the frequentist
framework, with the advantage that events of the “one-off” type can be
assessed consistently.

In the Bayesian philosophy, the probability assigned to any event
depends also on the individual whose uncertainty is being taken into
account and on the state of background information underlying this
assessment. Varying any of these factors might change the probability.
Consequently, under the subjectivist view, there is no assumption of a
unique, correct (or “true”) value for the probability of any uncertain event
(Dawid, 2005). Rather, each individual is entitled to his or her own
subjective probability, and according to the evidence that becomes
sequentially available, individuals tend to update their beliefs.1

Bayesian methods are not new to the social sciences—from Phillips
(1973) to Iversen (1984), Efron (1986), Raftery (1995), Berger (2000), and
Gill (2002)—but they are also not systematically integrated into most
research in the social sciences. This may be due to the common perception
among practitioners that Bayesian methods are “more complex.”

In fact, in our opinion, the apparent higher degree of complexity is more
than compensated by at least the two following consequences. First,
Bayesian methods allow taking into account, through a formal model, all
the available information, such as the results of previous studies. Moreover,
the inferential process is straightforward, as it is possible to make
probabilistic statements directly on the quantities of interest (i.e., some
unobservable feature of the process under study, typically represented by a
set of parameters).

Despite their subjectivist nature, Bayesian methods allow the practitioner
to make the most of the evidence: In just the situation of “repeated trials,”
after observing the outcomes (successes and failures) of many past trials
(assuming no other source of information), the individuals will be drawn to
an assessment of the probability of success on the next event that is
extremely close to the observed proportion of successes so far. However, if
past data are not sufficiently extensive, it may be reasonably argued that
there should indeed be scope for interpersonal disagreement as to the
implications of the evidence. Therefore, the Bayesian approach provides a
more general framework for the problem of statistical inference.2

In order to facilitate comprehension, we shall present two worked
examples and switch between theory and practice in every section. In the



first part of the chapter, we consider data about nonattendance at school for
a set of Australian children, with additional information about their race
(Aboriginal, White) and age band also included. We use this data set to
present the main feature of Bayesian reasoning and to follow the
development of the simplest form of models (conjugated analysis). In the
last section of the chapter, we describe a more realistic representation for
the analysis of SAT score data. The main objective of this analysis is to
develop a more complex model combining information for a number of
related variables, using the simulation techniques of Markov chain Monte
Carlo methods.

CONDITIONAL PROBABILITIES AND BAYES THEOREM

A fundamental concept in statistics, particularly within the Bayesian
approach, is that of conditional probability (for a technical review, see
Dawid, 1979). Given two events A and B, we can define A | B (read “A
given B”) as the occurrence of the event A under the circumstance that the
event B has already occurred.

In other words, by considering the conditional probability, we are in fact
changing the reference population; the probability of the event A, Pr(A), is
generally defined over the space Ω, which contains all the possible events
under study, including A. Conversely, when considering the conditional
probability Pr(A | B), we are restricting our attention to the subspace of Ω
where both the events A and B can occur. Such a subspace is indicated as (A
& B). Moreover, the basis of our comparison will not be Ω but just its
subspace where B is possible. Consequently, the probability of the
occurrence of the event A conditional on the event B is formally defined as

Example: Nonattendance at School in Australia

Paul and Banerjee (1998) studied Australian educational data on the days
of nonattendance at school for 146 children by race (Aboriginal, White) and
age band (primary, first form, second form, third form). The observed



average value of nonattendance days is 16, which will be used as a cutoff
threshold for our analysis.

Suppose we are interested in the probability that a student accumulates
more than the average number of nonattendance days, conditional on his or
her race. We can define the events of interest as follows:

H = {>16 nonattendance days}

W = {White race}

(where H stands for high nonattendance) and their complement as

 {≤16 nonattendance days}

 = {Aboriginal race}

Table 33.1 reports the observed frequency for each combination of the four
events.

In this simple example, we can interpret the concept of probability in its
“statistical” sense (i.e., in terms of the proportion of relevant cases in a
suitable population). Therefore, applying (1), we can calculate

that is,

Similarly,



that is, in symbols,

From this analysis, we can conclude that it is more likely for an
Aboriginal child to experience more than the average number of
nonattendance days than for a White child (0.46 vs. 0.25).

Table 33.1 The Original Data on Nonattendance in Australian Schools by Race

Bayes Theorem

Conditional probability is the basic concept of Bayes theorem. The
intuition is that, rearranging (1), we can write the joint probability of events
A and B (i.e., the probability that the pair occurs at the same time) as

Pr(A & B) = Pr(A | B) × Pr(B). (2)

Suppose now that we are interested in the probability of the event B,
conditional on the occurrence of the event A. Applying again definition (1),
we have

Finally, substituting (2) into (3), we have Bayes theorem:



As suggested before, the qualitative interpretation of (4) is quite interesting.
In other words, we take into account the prior knowledge of the occurrence
of the event B, expressed by Pr(B), and combine it with a new finding (i.e.,
the occurrence of the event A) to update our knowledge into the posterior
probability Pr(B | A).

This process is relevant in many practical situations: Back to the
example, suppose now that, instead of the whole data of Table 33.1, we
only have available partial information. For instance, suppose we just know
that (a) the probability that a student chosen at random experiences high
nonattendance (H) is 34.93% (0.3493), (b) the probability that a student
chosen at random is Aborigine ( ) is 47.26% (0.4726), and (c) given that a
student experiences high nonattendance, the probability that he or she is
Aborigine (  | H) is 62.75% (0.6275). These figures can actually be derived
from Table 33.1, but again, suppose that this is all you know.

Using Bayes theorem, we can now calculate the probability that, given
that a student is Aborigine, he or she experiences high nonattendance at
school (H | ):

The first piece of information that we analyze is the original probability of
high nonattendance (34.93%). Then we process the fact that an Aborigine
child is observed, and we use it to update the probability of high
nonattendance, conditional on this new piece of information. Since the
Aboriginal race is associated with higher probabilities of nonattendance
(see also Table 33.1), this observation increases the initial chance of H,
which is updated to 46.38%.

BAYESIAN MODELING

The implications of (4) can be extended to more complex statistical models,
where we deal with random variables (i.e., mathematical functions that map
events into numbers) instead of simple events.



Suppose, for instance, that we observe a random variable Y. Typically,
even within the classical framework, the uncertainty about this variable is
modeled by means of a probability distribution, indexed by a (set of)
parameter(s) θ, which is normally the object of the inference we want to
draw. For example, Y could represent the observed rate of passing a certain
exam, and we might be interested in the average rate of “success” for the
whole student population, θ.

Let us indicate this probability distribution3 by p(y | θ), to stress the
dependence of the variable Y and its possible realization y on the parameters
θ. Within the Bayesian framework, unlike the classical approach, the
parameters are considered to be random variables (instead of fixed and
unknown quantities) and therefore are associated with a suitable probability
function, in order to describe the experimenter’s uncertainty on their actual
value. This distribution is indicated by p(θ).

Notice that, for the observed data, the variability depends essentially on
the sampling selection. Typically, we assume that the data y = {y1,…, yn}
are a random sample of observations from a reference population, made by
N > n units. The uncertainty on the observed variable is given by the fact
that we observe a single sample that is just n out of the possible N units
(sampling variability).

Conversely, the uncertainty about parameters is generated by our limited
knowledge. Usually, we are not able to observe parameters, which represent
latent features of the process under study; the only information that we have
on the parameters is that provided by the observed evidence. Consequently,
we are usually not able to describe θ with certainty; we only have limited
information about it, maybe solely our subjective beliefs, and we can use
whatever knowledge we have on θ to define the prior distribution, p(θ).

Also notice that in general, it will be possible to describe this prior
knowledge by means of (a set of) hyperparameters, ψ. For this reason, it
would be more appropriate to write the prior distribution as a function p (θ |
ψ) = f (ψ), to emphasize this relationship. However, for the sake of
simplicity, unless strictly necessary, we shall use the notation p (θ) instead
of p (θ | ψ), considering only implicitly the background information
provided by ψ.

The inferential problem is solved within the Bayesian framework,
applying (4) to compute



The quantity p(y | θ) represents the likelihood of the observed data under the
assumed parametric model (defined by θ). This should not be too
controversial, as it is used also in the frequentist approach, a classic
example being the wellknown Normal model, where the parameters are θ =
(μ, σ2), representing the population mean and variance, respectively.

The quantity p(y) is the marginal distribution of Y and can be considered
a normalization constant (we shall discuss it in more detail later).

Finally, p(θ | y) is the object of the inference, the posterior distribution,
which is defined conditionally on the observed random variable Y. With the
denominator of (5) being a constant (i.e., not depending explicitly on θ),
Bayes theorem is often reported as

(read “the posterior is proportional to the product of the prior and the
likelihood”).

The relations between the observable variable Y and the parameter θ (and
possibly the hyperparameter ψ) might be better appreciated using the
graphical representation of directed acyclic graphs (DAGs; see Whittaker,
1990, and Gilks, Richardson, & Spiegelhalter, 1996, or Edwards, 2000, for
a less technical introduction). In a DAG, the nodes (represented as circles)
denote random quantities, while the arrows between the nodes represent
stochastic dependencies.

Figure 33.1a shows the alleged data-generating process: The arrow
leaving the node θ toward the node y means that the distribution of the
observable variable depends (i.e., is conditional) on the parameter θ.
Conversely, the inferential process is depicted in Figure 33.1b. The variable
Y is actually observed (i.e., it becomes evidence, whence it is represented
by means of a square instead of by a circle); it should be clear that at this
point, there is no uncertainty left on Y. The evidence provided by this
observation travels “against the arrows” of the DAG (the dashed line). This
information is used to update the probability of θ, in light of the observation
of Y, by applying Bayes theorem, yielding the posterior distribution p(θ | y).



“Integrating Out” Uncertainty

Let us consider again the situation described in Table 33.1 and suppose
that we are interested in the probability of high attendance for a random
student, regardless on his or her race group—that is, Pr(H). This condition
can happen when (a) the random student has a high nonattendance at school
and is White, or (b) the random student has a high nonattendance at school
and is Aborigine, which can be expressed in formula as

Pr(H) = Pr(H & W) + Pr(H & ).

since the two events (H & W) and (H & ) are mutually exclusive.

Figure 33.1 The DAG representation of (a) the data-generating process and (b) the
probability updating process.

We refer to this probability as marginal; the process whereby we obtain it is
called marginalization, and it is crucial in the Bayesian framework. In
particular, using (1), we can reexpress the marginal probability as a function
of the conditional rather than the joint probabilities, that is,

Now, suppose we consider more generally a bidimensional probability
distribution p(x, y), which describes the joint variation of a pair of variables
(X, Y). For the sake of simplicity, suppose further that X is a discrete
variable, taking on the set of values {0, 1, …, k}. We can apply the same
process used for the simpler case of events to probability distributions and
obtain the marginal probability of the variable Y as



just extending the above reasoning.
Sometimes, we refer to this operation as integrating out or averaging out

the variable X, and this procedure is particularly important when we know
or assume that X and Y have a joint probability structure, and although we
cannot observe X (for example, when it represents a latent parameter), we
still need to compute a probability distribution for Y.

In this case, we first consider the probability of Y for a fixed level of X,
which is expressed by p(y | X = x). Then, in the absence of the knowledge of
which exact value of X obtains, we average over the possible values that it
can take on. The marginal distribution of Y can then be regarded as a
weighted average of the conditional distributions p(y | X = x), the weight
being represented by the probability Pr(X = x) for all the possible values x, a
condition that may be expressed as4 p(y) = Ep(x)[p(y | x)].

When the role of X is played by a continuous variable, marginalization is
performed solving an integral calculation, instead of the simpler sum that is
required in the discrete case. For instance, if we consider again the
denominator of (5) assuming that the parameter θ is associated with a
continuous distribution, the marginal distribution of the observable variable
Y is calculated as

p(y) = ∫p(y | θ) p(θ)dθ.

In this case, the process of marginalization has the effect of integrating out
the uncertainty about the parameter.

EXCHANGEABILITY AND PREDICTIVE INFERENCE

One of the most common assumptions underlying statistical models
(particularly in the frequentist approach) is that the observed data y = {y1,
…, yn} form a random sample of independent and identically distributed
(iid) observations. This amounts to assuming that if we were able to know



the exact value of the parameter θ, considered as a fixed quantity, then the
observations yi (for i = 1, …, n) would be conditionally independent on one
another, a condition that can be expressed in formula as

Recall from probability calculus that if A and B are conditionally
independent given C, then Pr(A & B | C) = Pr(A | C) × Pr(B | C), that is, the
joint distribution is the product of the marginal probabilities.

A more general concept, which proves to be more realistic in many
practical applications, is that the probabilistic structures of the units are just
similar (rather than identical), with respect to a common random generating
process. This idea is generally referred to as exchangeability, and it has
strong connections with the Bayesian framework, thanks to the work of
Bruno de Finetti (1974).

In a nutshell, under exchangeability, we regard the data y = {y1, …, yn} as
a random sample of iid observations conditionally on the parameter θ, but
we also assume that the parameter is a random quantity, represented by a
probability distribution p(θ)—exactly how it happens in a Bayesian
analysis.

If we consider the simple case with two observations y = {y1, y2}, then
the assumption of exchangeability implies that p(y1 | θ) is not identical with
p(y2 | θ), as would happen if (6) held. This is because they both depend on a
parameter that is not fixed but, on the contrary, is generated by the random
process described by p(θ).

For this reason, we consider the two observations as only similar, in the
sense that there is a common process that generates the value of the
parameter, which in turn determines their probabilistic structure.

The result proved by de Finetti is that exchangeability can be expressed
formally as



where θ is a continuous random parameter (whence the use of the integral).
Notice that (7) is an application of the concept of marginalization described
above and a generalization of (6).

Figure 33.2 shows the differences between iid and exchangeable samples
in terms of DAGs. As one can appreciate, in the former situation, the
parameter generates the probability distribution of the observations, and it is
considered as fixed, whereby it is represented by a square in the DAG of
Figure 33.2a. Conversely, in the case of exchangeable observations, the
parameter is a random quantity (i.e., represented by a circle), associated
with its own probability distribution. In either case, the observations are
conditionally independent given (i.e., if we could observe) the value of θ.
However, the nature of the unobservable parameter is intrinsically different
in the two circumstances.

Apart from relaxing the assumption of identical distribution,
exchangeability is also important because from (7) we can derive a
predictive result on the observable variable. Suppose that y* represents a
future occurrence (or a value not yet observed in the current experiment) of
the random phenomenon described by the information gathered by means
of the sample y. In our running example, we might think of y* as a new
student joining the class for whom we assume the information on absence
of days from school is not yet available.

If we assume exchangeability for the augmented data set y* = (y* y)—
that is, the new student has individual characteristics that are similar to
those of the other children—we then see that assuming throughout that θ is
a continuous variable.

Figure 33.2 The DAG representation of (a) a sample of iid observations and (b) a sample of
exchangeable observations. In either case, the observed variables depend on a
parameter θ, which in case (a) is a fixed quantity (i.e., represented as a square),



whereas in case (b), it is a random variable, associated with the distribution
p(θ).

Equation (8) is meaningful under the assumptions that the variables in y*
are exchangeable (i.e., that the new realization y* is similar to the ones that
have already been observed, y). The quantity p(y* | y) is known as
predictive distribution. Figure 33.3 shows the concepts of exchangeability
and predictive distribution in terms of a DAG. The variables y and y* are
generated by the same random process, which is governed by the parameter
θ, associated with a suitable prior distribution, p(θ). Once Y is observed to
the value y, the uncertainty about the parameter is updated into the posterior
distribution p(θ | y), which in turn is used to infer the future realization y*.

Figure 33.3 A DAG representation of the concept of predictive distribution.

Again referring to the new student in the class, using (8) we can predict
his or her probability of nonattendance, using the updated (posterior)
information gathered from the rest of the class. A practical example is
provided in a later section.

CHOOSING THE PRIOR DISTRIBUTION



According to the Bayesian approach, besides the definition of a probability
model for the observed data, we also need to choose a suitable distribution
for the parameters of interest. In other words, we need to specify a
mathematical model, which could well represent the nature of the
parameters and our uncertainty about their values. As suggested above, the
definition of the prior distribution should be informed by whatever
knowledge is available on the parameters. For instance, we can derive the
prior distribution from the results of previous experiments on the same topic
or from elicitation of experts’ opinions (Ayyub, 2001; O’Hagan et al., 2006;
see also Raiffa, 1968, pp. 161–165, for a nontechnical description of a
process of formalization of expert opinions).

Table 33.2 Some Standard Prior Distributions

Sometimes it is assumed that the prior information is too poor: In this
circumstance, it is possible to use a “minimally informative” prior, which
basically does not favor any of the possible values that θ can take. For this
reason, this is often referred to as “flat” (or “dispersed”) prior distribution
(see Bernardo & Smith, 1999, for a critical discussion).

Although generally the choice of the prior distribution depends on the
specific problem at hand, there are some circumstances in which the nature
of the parameters is such that at least one natural candidate exists (some of
these classic examples are reported in Table 33.2).

For example, suppose we have conducted a survey to find out which of
the two candidates in a political election is most likely to win. One
parameter of interest would be the probability of occurrence of the event
“Candidate A wins,” and for such a situation involving a parameter defined
as a continuous variable in the interval [0;1], two standard possibilities for
the prior are then represented by the Beta or the Uniform(0,1) distributions.

Obviously, it is not always possible to concentrate on standard models—
for example, particularly complex prior information can be encoded in the
form of mixture prior (Robert, 2001), that is, a combination of different



distributions. However, in many practical situations, the options for the
prior are restricted to a reasonably small number of possibilities.

Example (Continued)

Back to the example, starting from the total number of days of absence,
for each child we can recode our data into a new variable Y that takes the
value 1 if a child experienced “high nonattendance” (>16 days of absence)
and 0 otherwise (Table 33.3).

For each child, race, and age-group, the variable Y can be suitably
represented by a Bernoulli5 distribution:

Yijk | θjk ~ Bernoulli (θjk),

where the symbol “~” is read “is distributed as.”
In this case, we suppose that this distribution is governed by a parameter

θjk for each combination of race (j = 1 is Aborigine and j = 2 is White) and
age band group (k = 1 is primary school, k = 2 is first grade, k = 3 is second
grade, and k = 4 is third grade). The index i = 1, …, njk represents the
number of children in each subgroup, and the parameters θjk represent the
average probability of high nonattendance for each combination of race and
age-group of students surveyed. This construction amounts to assuming that
the Yijks are exchangeable. In other words, we assume that all the children in
the same subgroup (j, k) are similar in terms of their outcome (number of
absence days).

Table 33.3 The Original Data on Nonattendance and the Recoded Series (Y)



The next step in the analysis is the definition of the prior distribution for
the parameters θjk to describe our state of information about them. Each of
these represents a proportion—that is, a continuous number in the interval
[0;1] that specifies the level of nonattendance rate for each subgroup. Under
these modeling assumptions, a good candidate for the prior is the Beta
distribution (see Table 33.2).

This is a continuous distribution defined in the set [0;1], and it is
characterized by two hyperparameters (usually indicated as α and β).
Changing the value for α and β affects the shape and the scale of the
distribution. This circumstance renders the Beta distribution quite flexible
and applicable to a number of similar situations.

As a first approximation, we suppose that the eight parameters θjk all
come from the same Beta distribution specified by a pair of α and β
hyperparameters: θjk | α, β ~ Beta(α, β)—notice that in this case, the
distribution of θjk is explicitly written as a function of the hyperparameters
ψ = (α, β), as opposed to the simpler formulation used earlier.

Once a suitable functional form is identified for the prior, we further need
to define the value of the hyperparameters. For the sake of simplicity, we
assume for now that the α and β are fixed quantities (for this reason, in
Figure 33.4, which depicts the DAG for this model, they are represented in
a square).

Suppose that from a survey conducted the year before the current data
collection, it emerged that the overall average probability of high
nonattendance at school was μ = 0.4, with an estimated variance of σ2 =
0.03. We can use this information to define the parameters of the prior. In
fact, by the properties of the Beta distribution, we get that

or equivalently,



Figure 33.4 DAG of the model: Within each group, the individuals are exchangeable, as
they depend on a common random parameter. The parameters are a sample of
iid realizations from a common distribution that depend on fixed
hyperparameters.

Figure 33.5 Plot of the prior distribution θ | α,β ~ Beta(2.8, 4.2).

Assuming that the parameters θjk all come from a common distribution
with the same mean and variance, we can substitute the values of μ and σ2



into (10), which yields α= 2.8 and β = 4.2. These values are used as
hyperparameters of the Beta prior distribution θ | α,β ~ (2.8, 4.2).

Figure 33.5 depicts the prior distribution that we have just derived. As it
is possible to see, the experimenter is assigning a positive “belief” to all the
values in the admissible interval for the parameter (i.e., [0; 1]). However,
the prior assumption is that the values around 0.4 are the most likely,
whereas the extremes (such as θ > 0.9 or θ < 0.1) are considered as very
unlikely and therefore associated with a low (almost null) probability mass.

INFERENCE ON THE POSTERIOR DISTRIBUTION

One of the advantages of the Bayesian approach is that, unlike the classical
methods, the final inference is performed directly on the whole posterior
distribution for the variable of interest θ.

On the one hand, the standard frequentist approach considers the
parameter (that is, the objective of inference) as a fixed but unknown
quantity and uses the random observed data to perform the inferential
process (i.e., to estimate the value of the parameter), using a function of the
data, conditionally on the parameter, usually in the form  = t(Y | θ). As a
typical example, the maximum likelihood estimator (MLE) of a Normal
population mean is defined as

The true value of the parameter is considered as fixed, and it does not enter
in the estimator, which is built using the n data points.

On the other hand, the Bayesian procedure is based on a completely
reversed philosophy. In fact, it considers the data as a fixed quantity; this is
because we have actually observed the value of the sample of interest, and
therefore there is no uncertainty left on the value of Y. Conversely, the
parameter (still the objective of inference) is not known, and therefore it is
considered as a random quantity, associated with a probability distribution.
The inferential process is performed by means of a function of the
parameter, conditionally on the observed data—that is, the posterior
distribution p(θ | y). This distinction is fundamental from both the



philosophical and the pragmatic point of view, as it is the feature that allows
Bayesian inference to be performed directly on the parameters of interest.

Traditionally, the main practical (but not theoretical!) drawback of the
Bayesian approach has been the computational difficulties associated with
the calculation of the posterior distribution. In particular, it is in general
complicated to derive the normalization constant, which usually involves
complex integrations during the process of marginalization. However, a
special case in which this problem does not occur is that of conjugated
models.

A prior distribution p(θ | ψ) = f(ψ), as a function of the (set of)
hyperparameters ψ, is said to be conjugated for the data model p(y | θ) if the
posterior distribution p(θ | ψ) = f(ψ*) belongs to the same family of
probability distributions f. In this case, the update from the prior to the
posterior only involves the hyperparameters, which are modified from ψ to
ψ* (cf. Table 33.4 and see Bernardo & Smith, 1999, for a taxonomic
account of conjugate families).

The first column of Table 33.4 presents some of the most used statistical
models. Probably the most famous is the Normal model, which we might
use to describe a continuous and symmetrical phenomenon, such as the
height of a given population. Throughout the table, the relevant parameter
(for which we want to make inference) is indicated by θ (other parameters
might be included but not investigated, as in the case of the variance σ2 in
the Normal model).

The second column depicts the conjugate prior distribution for each data
model. Again, in the case where we can use a Normal distribution for the
observed data, the parameter of interest could be the population average
height, θ, assuming that the variance σ2 is known. As suggested in the table,
a suitable conjugate distribution for the mean is again Normal, with
hyperparameters (μ0, ).

In the third column, we present the functional form of the posterior
distribution. In the example of the population height, we see that, after
observing a sample y, the mean height is associated again with a Normal
distribution with updated parameters (μ1, ), whose exact formulation is
given in the fourth column of the table.

As one can appreciate, with this model being conjugated, the functional
form of the distribution for the parameter is unchanged after observing the
sample, and the information is included by means of an update of the



hyperparameters. Similar reasoning applies for the other standard models
described in Table 33.4 .

Obviously, given all of the information provided by the posterior
distribution, it is possible and useful to summarize it through some suitable
synthetic indicators.

Point Estimates

Although Bayesian analysis is mainly concerned with the entire posterior
distribution, it is generally useful to determine some point estimators to
summarize it. Similarly to what happens in classical statistics, typical point
estimators of location parameters are the mean, the median, and the mode
of the posterior distribution. These estimators are calculated according to
the usual definitions provided in statistical literature (see, e.g., Mood,
Graybill, & Boes, 1993).

Table 33.4 Some Relevant Conjugated Models

For instance, the posterior mean is calculated as6 E(θ | y) =  θp(θ | y),
where Θ represents the set of possible values for the variable θ (as we have
seen earlier, the sum is replaced by the integral when the variable is
continuous). Similarly, we can calculate the posterior median as the value
that separates the highest half of the posterior distribution from the lowest
half: θmed, such that Pr(θ < θmed | y) = 0.5, or the posterior mode as the
value(s) associated with the maximum frequency (or with the maximum
density in case of a continuous variable): θ* = maxΘ p(θ | y)—this kind of
estimator is often referred to as maximum a posteriori (MAP).



Credibility Intervals

The parallel with the classical approach extends to interval estimation.
However, the philosophy underlying Bayesian methods is obviously
completely different. Actually, in the frequentist framework, a 100 × (1 –
α)% confidence interval (CI) suggests that if we could repeat the same
experiment, under the same conditions, for a large number M of times, then
the real value of θ would fall outside of that interval only (100 × α)% of the
times (usually α = 0.05). This convoluted statement is not equivalent to
asserting that the probability that θ lies in the CI is 100 × (1 – α)% since the
parameter is considered as a fixed, unknown value, not as a random
variable. Moreover, the definition of the frequentist CI does not help clarify
what we can say about the current experiment (cf. Table 33.5).

Conversely, within the Bayesian approach, CI will be explicitly related to
this probability, that is, in the form Pr(θ  CI | y). This is made possible by
the fact that the parameter of interest is associated with a probability
distribution, which allows us to make probabilistic statements and to take
the underlying uncertainty into account. Moreover, no particular reference
is made to long-run frequency properties of this estimate. To highlight this
difference, we talk about credibility (as opposed to confidence) intervals.
Without the need of approximations or convoluted statements, it is
straightforward (at least theoretically) to calculate a size 100 × (1 – α)%
posterior credibility interval, in general, simply solving for any level α of
interest the following probabilistic inequality:

p(θ  CI | y) ≥ 1 – α. (11)

Consequently, credibility intervals do not rely on replications of the same
experiment or on the reliability of the observed result with respect to the
“long run.” They are a measure of uncertainty in a particular event of
interest, as measured at this occurrence, on the basis of all the pieces of
information available to the analysts.

Example (Continued)



Besides representing an appropriate way of describing the natural
uncertainty associated with the parameter θ, the Beta distribution has also
the good property of being conjugated for the Bernoulli model that we have
previously established for the observed data. Consequently, it is possible to
show that in this case, the posterior distribution is also a Beta:

p(θjk | y) ~ Beta (α*jk, β*jk),

where α*jk = (α + sjk, β*jk = (njk + β – sjk), and sjk =  is the observed
number of successes over all the children belonging to the race j and of age
k; each of these subgroups is formed by njk units (cf. Table 33.4).

Notice that, although a priori, each θjk is associated with the same Beta(α,
β) distribution, a posteriori, we obtain eight different distributions since the
update of the hyperparameters involves the observed values sjk, which are
obviously specific to each subgroup. For this reason, the posterior
distribution is indexed by group-specific hyperparameters. Table 33.6
shows the values for α*jk and β*jk for the eight groups, the expected value
and the variance calculated using (9), and the credibility intervals at the
95% CI for the parameters θjk.

The posterior for α*jk and β*jk show a very different behavior reflecting
the number of successes (a success being defined as “high nonattendance at
school”) in each group: The range varies from 6.8 to 14.8 for α*jk and from
11.2 to 20.2 for β*jk. Bearing in mind that α*jk = (α + sjk), where sjk is the
number of successes in the group, it is clear that a larger α*jk is associated
with a higher success rate. On the other hand, β*jk = (njk + β – sjk), so that
this hyperparameter takes into account the number of successes and the size
of the group (njk). Given the same number of successes, larger groups tend
to have larger β*jk than smaller ones.

Table 33.5 The Basic Differences Between the Frequentist and the Bayesian Approach



SOURCE: Adapted from Luce and O’Hagan (2003).

The posterior mean E(θjk | y) reflects the size of the parameter α*jk, as
larger values of α*jk are associated with larger values for the posterior mean.
On the other hand, the variance determines the width of the 95% CI: The
parameter associated with the smallest variance (θ22) is associated with the
narrowest credibility interval (width = 0.223), while those that present the
highest variability (θ11 and θ21) are associated with the largest credibility
interval (width = 0.4).

Comparing these values to those observed during the previous year
(which were used to define the hyperparameters of the prior distribution of
θ), it is possible to notice a large variability within the groups. For some of
them, the mean is almost halved, from 0.4 to around 0.2, which is probably
an indication of an improvement in the attendance at school, while for
others it remains around the prior value, and for two of them, it increases up
to 0.5. On the other hand, the variability is generally reduced: The variance,
which was 0.03 the previous year, decreases to values from 0.004 to 0.011.

It is also interesting to compare the results from the Bayesian analysis
with the MLEs: In general, there are only minor differences in the values.
This is mainly due to the fact that the prior distribution is not particularly
restrictive, so that “we are open to revision” of our belief, in light of the



observations. The only important exception is for θ22: The MLE is very
close to 0, as the observed number of successes is very low, as compared
with the total number of cases considered: .

This is very different from the Bayesian estimation, which gives a value
of 0.145. The reason for this difference is that the Bayesian procedure takes
into account also the background information that sets the value of the
parameters around 0.4. The observation of a very low number of successes
for the group (White, first grade) does decrease the value of the posterior
mean. However, the extreme result is mitigated by the effect of the prior,
providing a more reliable estimation.

Table 33.6 The Posterior Values of the Hyperparameters a*jk and β*jk and the Expected
Value and the Variance for θjk | y

These results can be appreciated also by inspecting the entire
distributions by means of the density plots. In particular, we can see how
the posterior distribution is shifted with respect to the prior in the plots in
Figure 33.6.

Again, a differentiation between the groups is evident: The distributions
for θ22 and θ23 show a large shift to the left for the posterior; this happens
since the prior supposes a rather large probability of high nonattendance at
school (the mean is 0.4), whereas in those groups, the observed rate of high
nonattendance is rather low (0.145 and 0.252, respectively). On the other
hand, the posterior distributions for θ13, θ14, and θ24 are shifted toward the
right, as the number of successes is greater than that assumed under the



prior distribution (respectively 0.548, 0.513, and 0.450 vs. the prior value of
0.4).

The remaining groups show a high nonattendance probability similar to
the one assumed for the prior; this results in an overlap of the prior and the
posterior distributions, which is clear in the corresponding plots for θ11, θ12,
and θ21.

HYPOTHESIS TESTING

The natural extension of the inference using the posterior distribution is
hypothesis testing.7 Generally, the hypotheses of interest—usually indicated
by H0 (referred to as the null hypothesis) and H1 (alternative hypothesis)—
are defined in terms of a statement about some properties of the relevant
parameters, such as H0 : θ  Θ0 vs. H1 : θ  Θ1. A typical example considers
H0 : θ = 0 vs. H1 : θ ≠ 0, where θ is the population mean of a Normal
population with unknown variance (i.e., the well-known two-sided t test).

Within the Bayesian approach, each hypothesis can be naturally
associated with its own prior distribution, representing the experimenter’s
uncertainty about its truthfulness, which can be updated by the data y using
the posterior distribution Pr(H0 | y).

The framework for Bayesian testing can be schematically described as
follows:

1. Define the hypotheses of interest. Typically, we shall be concerned
with two different “explanations” of the phenomenon under study. In either
case, the probability model chosen to represent the problem will be different
(be it because of different values for the parameters of interest or of a
completely different probabilistic model). For instance, we might be
interested in assessing the theory under which the population average effect
of a treatment for a certain disease is 0, as opposed to an alternative theory
whereby the treatment is actually efficacious. We can express these
hypotheses as H0 : θ = 0 vs. H1 : θ > 0.

2. Define a probabilistic model for the observed data y, as a function of
the parameter θ. As an example, we might model the observations of



responses for a set of relevant patients as a random sample from a Normal
population—that is, y ~ Normal(θ, σ2), possibly assuming that the variance
is known.

Figure 33.6 Prior posterior plot for each group: The posterior distribution is shifted and the
variability is lower, as compared with the prior.

3. Define the probabilistic structure associated with the parameters of
interest within each hypothesis. In other words, this step amounts to
reexpressing the conditions defining H0 and H1 in terms of a prior
probability distribution for the parameter, such as H0 : θ ~ p0 and H1 : θ ~ p1,
where p0 and p1 are two probability distributions that suitably represent the
behavior of the parameter under the circumstances originally specified by
H0 and H1. In the example used above, with the null hypothesis being that
the parameter θ can assume only one value (namely 0), the associated
probability structure is p0(θ = 0) = 1. On the other hand, under the
alternative hypothesis H1, θ can assume every positive value, so that an
associated probability structure can be a distribution characterized by a
positive support, such as the lognormal distribution (see Table 33.2) defined



as a function of some (possibly known) hyperparameters (λ, τ2): H1 : θ ~
lognormal(λ, τ2).

4. Define a prior probability for the two hypotheses being tested (which
might be supported by previous data or subjective opinions). A typical
choice might be to assume minimal information and consider H0 and H1 as
equally likely—that is, Pr(H0) = Pr(H1) = 0.5. Obviously, there is no reason
why we should use this specification in every experiment; in fact, this is
just a convenient choice (as we shall show in the following), but this prior
distribution, as should all prior distributions, should be based on the
available knowledge of the problem at hand.

5. Compute the posterior distributions under the two competing
hypotheses. The observed data y will support H0 if Pr(H0 | y) > Pr(H1 | y).

Therefore, Bayesian procedures will not require the definition of a
prespecified level of significance, as happens in the classical framework,
which can be seen as a major advantage of this approach.

On the other hand, the choice of the prior distribution for θ and for the
hypotheses of interest can obviously influence the result. Nevertheless, all
the assumptions that lead to the final results are clearly and explicitly stated
in this approach and therefore are open to criticism and revision. In the
classical framework, the choice of the standard 1% or 5% significance
thresholds is almost dogmatic, and sometimes the underlying procedures
are just obscure, not allowing for a clear understanding of the testing
methodology.

For practical purposes, it is often convenient to report the comparison
between the two alternative theories by means of the “odds” form of Bayes
theorem:

which is easily derived from (4). The quantity



is usually referred to as the Bayes factor (BF) and represents the weight of
the evidence—that is, an indication of how strongly the observed data y
support each of the two hypotheses, regardless of the prior distributions (see
Mortera & Dawid, 2006, for an application of Bayesian statistical analysis
to forensic problems using the BF).

In (12), p(y | θ) represents the probabilistic model for the observed data
as a function of the relevant parameter, whereas p(θ | H0) is the probabilistic
structure associated with θ under the null hypothesis—which can be
equivalently written as p0(θ) (a similar reasoning applies for the alternative
hypothesis).

By the usual argument of marginalization, we can integrate out the
uncertainty about the parameter under the two competing models.
Therefore, the Bayes factor is essentially the weighted average of the
likelihood functions with respect to the distributions p0 and p1 (cf. Equation
12).

Jeffreys (1961) provided a calibration of the Bayes factor that can be
used as a rough guide in interpreting the evidence (see Table 33.7).

Example (Continued)

Suppose that we want to test the hypothesis that the general average
attendance probability θ is in fact equal to the value previously observed,
that is, H0 : θ = 0.4. The alternative hypothesis could be H1 : θ ≠ 0.4—that
is, we do not favor any other possible value for the parameter of interest.

In order to formulate the Bayesian hypothesis testing, we need to
translate H0 and H1 in terms of suitable probability distributions. The null
hypothesis is simple and just assigns probability 1 to the event {θ = 0.4}.
Therefore, we can define



On the contrary, the alternative hypothesis is just telling that any other value
in support of θ—that is, the interval [0;1]—is possible and equally likely, so
that we can translate this into the assumption that p1(θ) = Uniform(0,1).8

Leaving aside for the moment any discussion of subgroups, we model Yh

~ Bernoulli(θ) for each child. Consequently, from standard probability
theory, we know that the total number of children with a high
nonattendance (regardless on their race or age) is associated with a
Binomial9 distribution: Z ~ Binomial(θ, n), with n = 146. The observed
value of Z in the sample is z = 51.

Table 33.7 Calibration of the Bayes Factor

SOURCE: Jeffreys (1961).

Now, we have to assign a prior probability for the occurrence of each of
the two hypotheses of interest. For the sake of simplicity, we assume they
are equally likely, that is, Pr(H0) = Pr(H1) = 0.5. In this case, the prior odds
are

and therefore the Bayesian test will be only concerned with the calculation
of BF since it will coincide with the posterior odds.

Using the definition of the Binomial distribution, the numerator of BF is



since p0(θ) gives positive weight only to the value θ = 0.4.
As for the denominator, since p1(θ) specifies a continuous distribution,

the sum in (12) is replaced by an integral over the space Θ1 = [0,1], which is
the support of the Uniform10 distribution chosen as p1(θ):

From these probabilities, we can derive

which in this case also equals the posterior odds. Comparing this result with
Table 33.7, we can conclude that the data provide “substantial evidence” in
favor of the null hypothesis H0. In other words, H0 is 4.6 times more likely
than H1, and therefore we have not enough evidence to reject the theory
under which the overall probability of high nonattendance is 0.4, as
measured the previous year.

Notice that if we chose a different null hypothesis—for instance,  : θ =
0.35—then using the same procedure shown above, we would compute the
BF as



so that in this case, the null hypothesis would be more than 10 times more
likely than the generic alternative, leading to a more refined estimation.

Finally, it is also possible to perform a sensitivity analysis to the choice
of the prior distribution for the null hypothesis. Figure 33.7 shows the
values of the (log) posterior odds upon varying the value of Pr(H0)—we
plot the graph on the log scale just for better visualization.

As one can appreciate, when a priori we are not too confident about the
null hypothesis (for instance, for values lower than 0.2), the weight of
evidence is such that a posteriori, we do not favor it. In the range [0.2, 0.4]
for the prior, we then obtain updated posterior odds so that the evidence is
poor but still favors H0. When the prior is in [0.4, 0.65], the evidence
becomes substantial, whereas in the range [0.65, 0.85], it is strong. Finally,
in [0.85, 0.95], the evidence can be considered as very strong, and if we are
willing to assign to the null hypothesis a prior probability of at least 0.95,
then the evidence in its favor is decisive.

A Comparison With Significance Tests

In this section, we show a brief comparison with the frequentist alternative
to the Bayesian testing procedure, the significance test (see also Goodman,
1999, for a discussion of the different approaches to hypothesis testing).
Suppose we still want to test H0 : θ = 0.4; the procedure based on the
Fisherian significance test aims at calculating the probability that the
observed data are “extreme” under the null hypothesis. Intuitively, if this is
the case, then either a very unlikely observation obtains, or the null
hypothesis is not supported, with the comparison being made with respect
to the usual probability yardstick of 0.05.



Figure 33.7 Posterior odds in favor of the hypothesis H0 as a function of Pr(H0).

Practically, given again the assumptions that Z ~ Binomial(θ, n), with n =
146 and the observed value of z = 51, the significance test is based on the
calculation of

Pr(Z≤ 51 | H0 is true) =
Pr(Z≤ 51 | θ = 0.4) = 0.1214.

(13)

Generically, in a significance test, we use a “two-sided” alternative
hypothesis H1 : θ ≠ 0.4; therefore, we obtain the so-called p value, simply
multiplying this probability by 2 (i.e., p = 0.2428 > 0.05). Consequently, the
typical interpretation of the significance test is that “there is no evidence to
claim that the true proportion θ is different from the postulated value 0.4” or
that “the data are consistent with the null hypothesis”—a conclusion similar
to the one we reached in the previous section using the Bayesian
methodology.

However, care is needed in this interpretation, in order to avoid
confusion: By means of Equation 13, we just compute a probability under
the assumption that the null hypothesis is true (the conditioning event),
which we use to support (or disprove) H0. We cannot interpret (13) as the
probability that the null hypothesis is true, simply because under (13), the
null hypothesis is assumed to be true. Such probability Pr(H0 | y) is only



meaningful in the Bayesian approach, where it is indeed calculated as the
basis of the test procedure. Moreover, contrary to what happens in (12),
Equation 13 does not take into account by any means how likely the
observed data are under the alternative hypothesis, which should be used to
provide a comparative result.

Model Selection

Another interesting issue related to the Bayes factor is that of model
selection. With this terminology, we refer to the sensitivity analysis of the
prior specification (i.e., not only in the context of hypothesis testing but in
the general Bayesian framework).

In fact, whenever we specify a prior distribution (say a model M0), it is
always possible to think of an alternative model, M1, under which the prior
is different. The analysis of the Bayes factor can help identify which of the
two models (i.e., which of the two prior specifications) is the most
supported by the observed data (notice, though, that this is not the only
method that can be applied for model selection—see, for instance,
Spiegelhalter, Best, Carlin, & van der Linde, 2002).

A deeper discussion of the problems related to model selection is far
from the objective of this chapter, and therefore we avoid it, referring the
reader to other pieces of literature such as Raftery (1995).

MONTE CARLO INTEGRATION

Bayesian inference is centered on the posterior distribution, and the
calculation of some relevant syntheses becomes of great interest, as shown
in the example above. The distribution might be known in closed form (as,
for instance, in the case of conjugated models), but it is often not tractable,
meaning that it is extremely difficult to find an analytical result.

The basic idea behind Monte Carlo (MC) integration is that instead of
performing calculations analytically, we can compute an approximate result
based on a large number of simulations from the model being investigated.
The underlying assumption is that the probability distributions involved in
the model are all known.



Suppose, for instance, that we know the functional form of the posterior
distribution for the parameter of interest θ. We can draw samples from this
distribution θ(1), θ(2), …, θ(S), and then any summary statistic can be obtained
using Monte Carlo integration instead of analytical calculations (possibly
involving complex integrals). For example, the posterior mean can be
simply obtained as

which represents the MC estimation.

Example (Continued)

Since the Beta distribution is conjugated for the Bernoulli likelihood, we
were able to write down the posterior distribution analytically, and therefore
we could calculate point and interval estimators through (9) and (11).
However, a more convenient, alternative approach is to use MC sampling.

We already found out that the posterior distributions for the θjk are Beta
with parameters α*jk and β*jk depicted in Table 33.6. Using one of the many
available statistical packages, we can sample a large number of values, say
S = 10,000, from these distributions using a random-number generator. For
instance, considering just the first group of students (j = 1 and k = 1), in the
language of the software R,11 this can be done by means of the following
commands: 

alphastar = 6.8
betastar = 13.2
S = 10000
thetaMC = rbeta(S,alphastar,betastar)

This produces a vector of S simulations from the posterior distributions
(α*jk, β*jk) for the given values alphastar and betastar. In other words, first
we assign the values for the hyperparameters and the number of
simulations, and then we can draw a MC sample from the posterior
(obviously, this operation can be looped over j and k to obtain a MC sample
for all the subgroups).



Using these vectors, we can calculate all the estimators of interest. For
instance, still using the syntax of R, the MC estimations of the mean and the
variance will be as follows: 

meantheta = (1/S) * sum(thetaMC)
vartheta = (1/(S – 1)) * sum(thetaMC – meantheta)^2

Table 33.8 presents the MC estimates for E(θjk | y) and Var(θjk | y), upon
varying the number of replications used; as one can see, the approximation
level increases with S.

The comparison with the analytical values shows that the MC estimates
are close to the real values already using just 1,000 iterations. They become
closer to the true values with S = 100,000 iterations, and they even equalize
the analytical results for some θ.

Table 33.8 Analytical and MC Results for Expected Value and Variances of θjk | y

NOTE: S = number of values from the posterior distribution.

If we imagine that a new student joins the class, we would be interested
in predicting his or her probability distribution for absence from school,
knowing which race and age-group he or she belongs to. Recalling the
concepts presented earlier and assuming exchangeability between the new
students and the ones that we already observed, we can derive the predictive
distribution using the following algorithm.

1. Sample a value from the posterior distribution θfk | y ~ Beta .



2. Sample a value for the variable Y*—that is, the indicator variable for
the new child that takes on 1 if he or she will experience high
nonattendance at school and 0 otherwise, using the sample from the
appropriate posterior distribution (upon varying race and age-group)
p(θjk | y).

3. Repeat N times to obtain a sample from the predictive distribution p(y*
| y).

Again using the syntax of R, we could use the sample from the posterior
distribution for the race and age-group (j = 1, k = 1) to obtain a sample from
the predictive, simply by means of the following command: 

ystar = rbern(thetaMC)

Table 33.9 reports the predictive mean and variance for each group. The
expected values generally reflect what we already pointed out for the
posterior distribution of the parameters (see Table 33.6). On the other hand,
the variability for the predictive distribution is larger than the one observed
for the posterior in Table 33.6. This is due to the fact that trying to predict
what a future observation will be always includes more variability because,
apart from that on the parameters, we have a further layer of uncertainty as
the observation of the value for y* has not been made available yet. This is
reflected in the credibility interval as well.

NONCONJUGATED MODELS

Although clearly useful for computational reasons, the property of
conjugacy is often too restrictive in practical modeling. When it does not
hold, the computation of the posterior distribution is more complicated.

Furthermore, it happens often that nuisance parameters are involved in
the data model. A typical example is to consider y ~ Normal(μ, τ); in this
case, the parameters are the population mean μ and the population variance
τ, which will be typically correlated, thus implying a prior joint distribution
p(μ, τ). Suppose also that, although we are uncertain about the actual value
of τ, we are really interested only in the assessment of the mean μ. In this
case, through the Bayesian approach, we obtain a joint posterior distribution



p(μ, τ | y), and we can integrate out the nuisance parameter to obtain the
marginal distribution of the parameter of interest:

Table 33.9 Expected Value and Variance for the Predictive Distribution of the Indicator
Variable for Nonattendance at School, for Each Student Group

where T is the domain of the variable τ, that is, the interval [0;∞].
Unfortunately, this marginalization is not usually easy to perform in a

standard form, as conjugacy is typically violated by the correlation among
the parameters of the model; therefore, approximation by simulations is the
solution of choice, and for this reason, computational resources become
vital. In fact, the reason for the limited development of Bayesian
applications before the 1990s is essentially the lack of powerful calculators
able to perform the required integrations.

After the great improvements in computer power, it became relatively
easy to perform Bayesian analysis with the advantage that more complex
problems could be treated. Among the simulation techniques, the most
important are Markov chain Monte Carlo methods.

Markov Chain Monte Carlo Methods

Markov chain Monte Carlo (MCMC) methods are a class of algorithms
for sampling from generic probability distributions (again, we do not deal
here with technicalities but refer the reader to Robert & Casella, 2004).



A basic concept of MCMC methods is that of the Markov chain—that is,
a sequence of random variables Y0, Y1, Y2, …, for which the distribution of
the future state of the process, given the current and the past values,
depends only on its current state and not on the past:

p(Yt+1 | Y0, Y1, …, Yt) = p(Yt+1 | Yt).

In a nutshell, MCMC methods are based on the construction of a Markov
chain that converges to the desired target distribution p (i.e., the one from
which we want to simulate, for instance, the unknown posterior distribution
of some parameter of interest). More formally, we say that p is the
stationary distribution of the Markov chain.

Under regularity conditions (that are usually met by most practical
problems), after a sufficiently large number of iterations, referred to as
burn-in, the chain will forget the initial state and will converge to a unique
stationary distribution, which does not depend on t or Y0. Once convergence
is reached, it is possible to calculate any required statistic using MC
integration.

Figure 33.8 shows an intuitive representation of the process of
convergence for a Markov chain. Initially, the values sampled for the two
chains are dependent on the two different starting points. However, after the
burn-in period, they tend to converge to the same distribution (this process
is also known as mixing up). We can then discard the first set of simulated
values and use the ones after convergence as a sample from the target
distribution.

One of the most popular MCMC methods is the Gibbs sampling (Geman
& Geman, 1984). The steps needed to perform an MCMC simulation via
Gibbs sampling are schematically described in the following.

1. Define an initial value to be arbitrarily assigned to the parameter of
interest. The sampling procedure starts from that value.

2. Perform a set of simulations during which the Markov chain converges
to the stationary distribution (i.e., the required posterior). It is usually
convenient to define more than one chain (two are generally
sufficient), starting from distant initial values, in order to assess the
convergence more efficiently (see Figure 33.8).



3. Once convergence is reached (this process can be monitored by
suitable statistics, such as that proposed by Gelman & Rubin, 1996),
draw a sample of values from the estimated target distribution. Using
this sample, all the inference of interest can be performed; for instance,
the whole distribution might be analyzed (i.e., by means of graphical
methods, such as histograms or kernel density estimations), or point
estimations such as the posterior mean or median can be computed.

A more detailed description of simulation methods can be found in Gilks
et al. (1996) and Gamerman (1997). Jackman (2000) provides an
introduction to MCMC methods for social scientists and several
applications of Bayesian methodology to political science problems
(Jackman 2004a, 2004b).

Example: Analysis of the SAT Score

The SAT score is derived from a 3-hour examination that measures
verbal and mathematical reasoning, and it is widely used in the United
States. Many colleges and universities use SAT results as part of the data on
which they base admissions decisions.

Guber (1999) used the data from the 1997 Digest of Education Statistics
to evaluate how the average performance of the students in the different
U.S. states varies according to variations in some relevant covariates, such
as expenditure per student and the percentage of students taking the SAT
test.12 More formally, the variables used in this analysis are the following:

X1 = average annual expenditure per student
X2 = percentage of students taking the SAT
Y = total SAT score

The analysis is performed by means of a linear regression model. This is
probably the most common statistical analysis and is generally used to
predict a response variable using the observed values of a set of covariates.

Since the response Y can be considered as a continuous and symmetric
variable, we can describe its variability by means of a Normal distribution
(see Table 33.2). For each U.S. state, we can specify a Normal model: yi ~



Normal(μi ), where μi represents the population average. For each i = 1,
…, 50, the regression model is expressed as follows:13

where α represents the intercept, β1 is the effect of the variable X1, and β2 is
the effect of the variable X2. Each regression coefficient can be interpreted
as the variation in Y associated with a unit variation in the relative
covariates, all other things being equal.

In the Bayesian framework, the coefficients are assumed as random
quantities, and therefore we need to define a plausible prior structure. A
standard minimally informative prior can then be specified for each of the
effects—that is, α ~ Normal(0, 0.001), β1 ~ Normal(0, 0.001), β2 ~
Normal(0, 0.001)—notice that in this case, according to WinBUGS syntax,
we model the Normal distribution in terms of the precision, rather than the
variance, i.e. 0.001 = . This is a simplistic assumption, as we could have
different prior knowledge on each of those effects; however, for the sake of
simplicity, we use it in this example.

Modeling the regression coefficients implies a probability distribution on
the population mean μi. As for the population variance, we can further
assume that all the observed data yi share the same value. Hence, we can
specify a disperse Gamma prior on the precision τ = 1/σ2 (see Table 33.2): τ
= 1/σ2 ~ Gamma(0.001, 0.001).

Figure 33.9 shows the DAG representation of the model. The variables yi

and the covariates are observed and therefore are represented in squares. On
the other hand, the uncertainty about the parameter μi is accounted for by
the model for the parameters in the regression (α, β1, β2). Moreover, all the
regression parameters are assumed to be independent (therefore they are not
linked in the DAG), and finally, the link between the node τ and the
variance σ2 is represented as a dashed arrow to stress the fact that this
relationship is essentially deterministic (as are the links connecting the
covariates and the regression coefficients to the mean).



Figure 33.8 A graphical representation of the process of convergence of a Markov chain:
The two chains start from very different points, but after the burn-in, they
converge to the stationary distribution.

We have performed the MCMC simulations14 using WinBUGS (Bayesian
Analysis Using Gibbs Sampling; Spiegelhalter, Thomas, & Best, 2002; see
also Congdon, 2001, 2003, for numerous worked examples using
WinBUGS and Woodworth (2004) for a tutorial on the use of the software),
a freely available software created specifically to analyze Bayesian models
through Gibbs sampling.15 Table 33.10 reports the results from the MCMC
simulation based on a sample of 1,000 iterations obtained after a burn-in of
5,000 iterations, to ensure convergence.

The posterior mean of α and β1 is positive and quite large; in particular,
the coefficient α shows a very large standard deviation (SD) and hence a
wide credibility interval.

From the analysis of β1, we can conclude that the variable X1 (the average
expenditure for each student in 1 year) is directly associated with the SAT
score, so that the higher the expenditure, the larger the observed value of
the SAT score. On the other hand, β2 is negative and smaller than the other
parameters; therefore, we can conclude that the covariate X2 (percentage of



students taking the SAT) is negatively associated with the SAT score,
meaning that the larger the proportion of students taking the SAT, the
smaller the score, on average.

Figure 33.9 DAG of the regression model.

Table 33.10 Synthesis of the MCMC Simulation, Based on a Sample of 1,000 Replicates
From the Posterior Distributions

If the first relation is relatively easy to understand, as the more money
invested in each student means more resources that can potentially help
reach better results, it is more difficult to understand the second relation.
Guber (1999) proposes a plausible explanation as related to a self-selection
of students taking the SAT (as those more interested in attending college)
and to the presence of other systems of evaluation (for instance, the ACT is
an alternative to the SAT that is popular among many college admission the
offices).

CONCLUSIONS

Why should social scientists bother to learn yet another statistical
methodology, which involves a more profound knowledge of probability



theory and the acquisition of intensive computational skills? In our opinion,
there are at least two orders of reasons why this should happen: First, from
the philosophical point of view, many logically unsound characteristics of
the classical methodology have been pointed out in the literature (see, e.g.,
Lindley, 2006)—and some of them have been highlighted in this chapter. It
has been suggested that scientific methods should not rely on procedures
that are potentially dangerous by virtue of some intrinsic logical failures.
Bayesian analysis provides a framework that is consistent and more
straightforward (as we pointed out earlier) in the interpretation of the
findings, therefore representing a more reliable alternative for the problem
of statistical inference.

Second, from a more pragmatic point of view, in social sciences,
practitioners are confronted with two typical features:

1. Prior knowledge of the phenomenon under study is usually available in
the form of previous studies, personal opinions (think, for instance, of
election polls), or historical data. The Bayesian approach can include
all these pieces of information to provide a coherent estimation
procedure.

2. Unlike some natural sciences (such as chemistry or physics), social
sciences are characterized by a layer of variability related to the
individuals observed in a particular study. Even if the general
properties of a system can be postulated and a theory constructed
accordingly, in social sciences, we will always observe individual
variations. Bayesian methods and the strictly connected principle of
exchangeability (which is particularly helpful in such circumstances)
can provide a more suitable framework for the problem of inference.

For these reasons, we reckon that the understanding of a problem can be
greatly improved when the overall modelization is made in Bayesian terms.

It is true that this involves more complex computations, and generally
there is no standard computer software that can be used, simply pressing a
button to obtain the results. However, as statisticians, we regard this as a
great advantage instead, as it forces every user, even those trained in
statistics, to think of the following: (a) What are the questions that we can
or cannot answer with the data at hand, (b) what is the information that we
have about the problem and how can we use it, and (c) what is the



probabilistic structure that can best model the uncertainty related to the
problem?

NOTES

1. Several studies in psychology and cognitive science suggest that human reasoning is in fact
based on these principles—see, for instance, Dayan, Kakade, and Montague (2000) or Gold and
Shadlen (2001).

2. The account of Bayesian statistics that is presented in this chapter is far from exhaustive—more
comprehensive references are Lee (1998), Robert (2001), and the less technical, but quite specific,
Spiegelhalter, Abrams, and Myles (2004). Lindley (2006) provides an overview of Bayesian
reasoning as applied to different situations dealing with uncertainty.

3. We use the symbol Pr(·) to indicate the probability of a single event, whereas we use the symbol
p(y) to describe the probability distribution associated with a random variable Y.

4. The operator E represents the expected value (i.e., the average). Therefore, the notation used
here, p(y) = Ep(x)[p(y | x)], can be read as the average value (with respect to the distribution of X,
which we generally refer to as p(x) here) of the conditional distribution of Y given X.

5. A Bernoulli model is used to describe the variability associated with dichotomous quantities—
that is, random phenomena that only take on two possible different values (typically 0 or 1). In
general, we assume that a variable X has a Bernoulli distribution if it takes on the value 0 in case of a
“failure” (i.e., absence of a particular characteristic) or 1 in case of a “success” (i.e., when that
characteristic is present).

6. The notation E(θ | y) is used interchangeably with Ep(θ|y)(θ). In either case, the expected value is
calculated with respect to the posterior distribution p(θ| y).

7. In this section, we provide just a flavor of Bayesian methods for hypothesis testing: More
advanced references include O’Hagan (1994), Lee (1998), Robert (2001), and the less technical
Lindley (2006).

8. For the nonmathematical reader: For any continuous probability distribution associated with a
variable X, a property holds by which the probability that X is exactly equal to a point is effectively 0
(intuitively, that is why the distribution is continuous: It does not concentrate on any point, but it is
spread over an entire interval). Therefore, we can calculate the integral over the whole segment [0;1],
including the point 0.4 because p1(θ = 0.4) = 0.

9. Since the possible value of Y for each child is either 1 or 0 (by the definition of the Bernoulli
distribution), the sum of the Yh will be equal to the total number of “successes” out of the total
number of individuals. This situation is naturally described by a Binomial distribution.

10. For the nonmathematical reader: If X ~ Uniform(a, b), then its probability function is defined
as

Therefore, in this case, (b – a) is simply 1, and p1(θ) = 1. This integral can be solved analytically or
by using the extremely precise numerical approximations provided by the most common statistical
packages.

11. The software R can be freely downloaded from the R project Web site: www.r-project.org.

http://www.r-project.org/


12. The data and the paper are publicly available from the American Statistical Association Web
site: www.amstat.org/publications/jse/secure/v7n2/datasets.guber.cfm.

13. Although not strictly necessary, centering the variables around their mean improves the
convergence of the MCMC chains.

14. Technically, the Bayesian analysis of this model does not require the use of MCMC
simulations, as the prior established for the population average is actually conjugate; therefore, in
theory, it is possible to work out analytically all the posterior distributions for the parameters of
interest (i.e., using a Monte Carlo estimation). Nevertheless, the calculations are computationally
intensive, and consequently, the use of MCMC simulations is of great help in estimating the posterior
distributions of interest.

15. BUGS and the Windows version (WinBUGS) are freely available from http://www.mrc-
bsu.cam.ac.uk/bugs/, where also several worked examples can be found. The idea behind the
software is that the user can write his or her own model, specifying the distribution for the data and
the prior for the parameters of interest; then, through Gibbs sampling, he or she can obtain a sample
from the posterior distribution of the parameters. There are several tools to check the convergence
and to visualize the results.
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USING R FOR DATA ANALYSIS
 

A Best Practice for Research
 

KEN KELLEY, KEKE LAI, AND PO-JU WU

is an extremely flexible statistics programming language and
environment that is Open Source and freely available for all
mainstream operating systems. R has recently experienced an

“explosive growth in use and in user contributed software” (Tierney, 2005,
p. 7). The “user-contributed software” is one of the most unique and
beneficial aspects of R, as a large number of users have contributed code for
implementing some of the most up-to-date statistical methods, in addition to
R implementing essentially all standard statistical analyses. Because of R’s
Open Source structure and a community of users dedicated to making R of
the highest quality, the computer code on which the methods are based is
openly critiqued and improved.1 The flexibility of R is arguably unmatched
by any other statistics program, as its object-oriented programming
language allows for the creation of functions that perform customized
procedures and/or the automation of tasks that are commonly performed.
This flexibility, however, has also kept some researchers away from R.
There seems to be a misperception that learning to use R is a daunting
challenge. The goals of this chapter include the following: (a) convey that
the time spent learning R, which in many situations is a relatively small
amount, is a worthwhile investment; (b) illustrate that many commonly
performed analyses are straightforward to implement; and (c) show that
important methods not available elsewhere can be implemented in R (easily
in many cases). In addition to these goals, we will show that an often
unrealized benefit of R is that it helps to create “reproducible research,” in
the sense that a record will exist of the exact analyses performed (e.g.,



algorithm used, options specified, subsample selected, etc.) so that the
results of analyses can be recovered at a later date by the original researcher
or by others if necessary (and thus “How was this result obtained?” is never
an issue).

Currently, R is maintained by the R Core Development Team. R consists
of a base system with optional add-on packages for a wide variety of
techniques that are contributed by users from around the world (currently,
there are more than 1,100 packages available on the Comprehensive R
Archival Network, http://cran.r-project.org/). An R package is a collection
of functions and corresponding documentation that work seamlessly with
R.R has been called the lingua franca of statistics by the editor of the
Journal of Statistical Software (de Leeuw, 2005, p. 2).2

One of R’s most significant advantages over other statistical software is
its philosophy. In R, statistical analyses are normally done as a series of
steps, with intermediate results being stored in objects, where the objects
are later “interrogated” for the information of interest (R Development Core
Team, 2007b). This is in contrast to other widely used programs (e.g., SAS
and SPSS), which print a large amount of output to the screen. Storing the
results in objects so that information can be retrieved at later times allows
for easily using the results of one analysis as input for another analysis.
Furthermore, because the objects contain all pertinent model information,
model modification can be easily performed by manipulation of the objects,
a valuable benefit in many cases. R packages for new innovations in
statistical computing also tend to become available more quickly than do
such developments in other statistical software packages.

As Wilcox (Chapter 18, this volume) notes, a practical problem with
modern methods is their implementation. Without accessible tools (i.e.,
software) to implement new methods, the odds of them being implemented
is slim. Because R is cutting edge, many modern methods are available in
R.

The need for implementing methods has led to much interest in R over
the past few years in the behavioral, educational, and social sciences
(BESS), and this trend will likely continue. For example, Doran and
Lockwood (2006) provide a tutorial on using R to fit value-added
longitudinal models for behavioral and educational data using the nonlinear
mixed effects (nlme) package (Pinheiro, Bates, DebRoy, & Sarkar, 2007).
There is also a special issue in the Journal of Statistical Software, with 10

http://cran.r-project.org/


articles on psychometrics in R, and statistical texts used in the applied
BESS are beginning to incorporate R (e.g., Fox, 2002; Everitt, 2005).
Further evidence comes from Wilcox (Chapter 18, this volume), who
provides R functions that implement the methods he has developed for
robust methods in R (and S-Plus, a related program).3 Methods for the
Behavioral, Educational, and Social Sciences (MBESS; Kelley, 2007a,
2007b, in press) is an R package that implements methods that are
especially helpful for the idiosyncratic needs of the BESS researchers. For
example, a set of functions within MBESS is for confidence interval
formation for noncentral parameters from t, F, and chi-square distributions,
which lead to functions for confidence interval formation for various effect
sizes that require noncentral distributions (as discussed in Thompson,
Chapter 17, this volume). In addition to confidence interval formation,
MBESS contains functions for sample size planning from the power-
analytic and accuracy in parameter estimation approaches for a variety of
effects commonly of interest in the BESS.

Perhaps R’s biggest hindrance is also its biggest asset, and that is its
general and flexible approach to statistical inference. With R, if you know
what you want, you can almost always get it … but you have to ask for it.
Using R requires a more thoughtful approach to data analysis than does
using some other programs, but that dates back to the idea of the S language
being one where the user interacts with the data, as opposed to a “shotgun”
approach, where the computer program provides everything thought to be
relevant to the particular problem (Becker, 1994, p. 1). For those who want
to stay on the cutting edge of statistical developments, using R is a must.
This chapter begins with arithmetic operations and illustration of simple
functions. Commonly used methods (e.g., multiple regression, t tests,
analysis of variance, longitudinal methods) and advanced techniques within
these methods (e.g., confidence intervals for standardized effect sizes,
visualization techniques, sample size planning) are then illustrated. We
hope this chapter will convey that using R is indeed a best practice and can
be a valuable tool in research.

BASIC R COMMANDS



As mentioned, R is an object-oriented language and environment where
objects, whether they be a single number, data set, or model output, are
stored within an R session/workspace. These objects can then be used
within functions, used to create other objects, or removed as appropriate. In
fact, a function itself is an object. The expression <– is the assignment
operator (assign what is on the right to the object on the left), as is –>
(assign what is on the left to the object on the right). Expressions are
entered directly into an R session at the prompt, which is generally denoted
>. In this chapter, we use R> as the prompt to emphasize that the R code
that follows is directly executable.

Suppose a data set, my.data, exists within an R session (we discuss
loading data files in the next section). Typing my.data and then pressing
enter/return will display the values contained in the my.data data set:

As can be seen, my.data is a 5-by-2 matrix with the first column labeled x
and the second labeled y.

The square brackets, “[ ],” can be used to extract information from a data
set (or matrix), by specifying the specific values to extract. For example,
consider the following commands:

R> x <– my.data[,1]
R> y <– ma.data[,2]
R> x
[1] 1 3 3 4 5
R> y
[1] 2 4 8 9 10



The first command extracts the first column of my.data, the vector x, and
the second command extracts the second column, the vector y. Notice the
comma that separates rows and columns. Since no rows were specified, all
were selected. We can obtain various pieces of information from the objects
by using functions. For example, applying the following functions returns
the sum, length, mean, and the variance of the vector x, respectively:

R> sum(x) #the summation of x
[1] 16
R> length(x) #the number of components of x
[1] 5
R> mean(x) #the mean of x
[1] 3.2
R> var(x) #the variance of x
[1] 2.2

Notice the use of the number sign (#) for comments; anything that follows a
number sign on a line is ignored. R uses vectorized arithmetic, which
implies that most equations are implemented in R as they are written, both
for scalar and matrix algebra (in general). Many computing languages have
their own idiosyncratic language for scalar and especially matrix algebra.

To obtain the summary statistics for a matrix instead of a vector,
functions can be used in a similar fashion. Using the data set my.data,
consider the following commands, which are analogous to the commands
applied to the vector:



In fact, the same functions were used, but R is intelligent enough to apply
them differently depending on the type of data specified (e.g., a vector,
matrix, data frame, etc.). Notice that the use of length() with x returned 5,
the number of elements in the vector, whereas the use of length() with
my.data returned 2, indicating there are two variables (i.e., columns), x and
y, in the matrix. To obtain the dimensions of matrix or data frame, the dim()
function can be used.

R> dim(my.data)
[1] 5 2

Thus, my.data is a 5 (number of rows) by 2 (number of columns) matrix.
Help files for R functions are available with the help() function. For

example, if one were interested in the additional arguments that can be used
in the mean, help(mean) could be used. Sometimes one might be interested
in a function but not know the name of the function. One possibility is to
use the search function, where the term(s) to search are given as a text
string in quotes. For example, suppose one were interested in a function to
obtain the median but unsure of the function name. The help.search()
function could be used as

R> help.search(“median”)



which returns information on functions that have “median” in their
documentation. Another resource is the R Web site, where search facilities
allow for searching across help files and mailing list archives: http://r-
project.org.

LOADING DATA

R can be used in conjunction with other commonly used statistical (and
mathematical) programs, such as Excel, SPSS, and SAS.

Files in the Format of .txt and .dat

The function to load a data set in the form of .txt or .dat file is
read.table(). This function has a rich array of arguments, but the most
common specification is of the form

read.table(file, header=FALSE, sep=“ ”)

where file is the argument that identifies the file to be loaded into R, header
is a logical argument of whether the file’s first line contains the names of
the variables, and sep denotes the character used to separate the fields
(e.g.,“*”, “,”,“&”, etc.).

For example, consider the following command:

R> data1 <– read.table(file=“data1.dat”, header=TRUE, sep=“ ”).

This command loads the data file “data1.dat” from the current working
directory into R (since a specific file location is not specified) and stores the
data into the R object data1. R’s working directory is the folder where R
reads and stores files; the default position is where R is installed. If the data
file to be loaded is not in the current directory, the user also needs to define
the file’s position, such as

http://r-project.org/


R> data2 <– read.table(file=“c:/My Documents/data2.txt”,
header=FALSE, sep=“,”).

Notice in the first example that the sep argument used a space, whereas a
comma was used in the second. This is the case because data1.dat and
data2.txt have fields separated with spaces and commas, respectively.
Furthermore, R requires the use of “/” or “\\” to signal directory changes,
whereas the notation commonly used for folder separation in Microsoft
Windows (i.e., “\”) is not appropriate in R; this is the case because R has its
origins in Unix, which uses the forward slash. Note that the extension name
(e.g., .dat, .txt, .R, etc.) of the file should always be specified. Using
setwd(), one can set the current working directory to a desired folder, so that
one does not need to specify the file’s position in the future. To load
“data2.txt” in the previous example, instead of defining the file’s position,
one can use the following commands.

R> setwd(“C:/My Documents”)
R> data2 <– read.table(file=“data2.txt”, header=FALSE, sep=“,”)

It is important to note if the working directory is modified, R, however, sets
the default working directory back to where the program is installed
whenever R is closed. Because most mainstream statistical and
mathematical programs are able to convert data files of their own format
into either .dat or .txt format ASCII files, such a conversion and use of the
procedures described is always one approach to load data files into R.

Loading Excel Files

We will use the data set in file salary.xls to illustrate the methods in this
section. This data set, which contains the salaries and other information of
62 professors, comes from Cohen, Cohen, West, and Aiken (2003, pp. 81–
82). In future sections, we will also use this data set to illustrate graphical
techniques and regression analysis in R. To import Excel files into R
requires the RODBC (Lapsley & Ripley, 2007) package. RODBC stands for
R Open DataBase Connectivity; ODBC is a standard database access



method for connecting database applications. By default, this package is not
loaded into an R session. To see which packages are currently loaded, the
search() function is used, which shows the basic packages that are loaded
by default when R is opened:

When using R in Microsoft Windows, loading a package can be done by
selecting the “Packages” tab on the tool bar and then selecting “Load
package.” A window opens that lists the packages that are installed on the
system, which can be selected and loaded. If RODBC is not on the list, it
will need to be installed. In Microsoft Windows, select the “Packages” tab
on the toolbar and then “Install package(s),” select a server/mirror
(generally the closest location), and then choose RODBC. An alternative
way to load installed packages is with the library() function, which is
illustrated with the RODBC package:

R> library(RODBC).

Note that running the library() function without any arguments in the
parentheses lists all available packages.

After RODBC is loaded, use odbcConnect Excel() to open an ODBC
connection to the Excel database:

R>connect <– odbcConnectExcel (“salary.xls”).

Then function sqlTables() lists the sheets in the Excel file:

R> sqlTables(connect)
TABLE_CAT TABLE_SCHEM TABLE_ NAME TABLE_TYPE
1 G:\\Program Files\\R\\R-2.4.1\\salary <NA> salary$ SYSTEM



TABLE

Notice that the first sheet, whose name is “salary” (in the column
TABLE_NAME), is the sheet that contains the data of interest. Therefore,
we use sqlFetch() to obtain the data of interest as follows:

R> prof.salary <– sqlFetch(connect, “salary”)

The data set is then loaded into R and stored in the object called prof.salary.

Loading SPSS Files

The function read.spss(), which is in the foreign package (R
Development Core Team, 2007a), is used to load an SPSS file into R. For
example, after loading the foreign package, the following command:

R> prof.salary2 <– read.spss(file=“salary .sav”)

loads salary.sav into R and stores the data set in the object prof.salary2. The
file salary.sav contains the same data set as the one in “salary.xls.”

Creating and Loading .R Files

After data are created in R, or data of other formats are imported into R,
many times it is desirable to save the data in R format, denoted with a .R
file extension, so that loading data can be easily done in a future session.
This can be achieved by using the dump() function:

R> dump(“prof.salary”, file=”prof.salary.R”)

which creates a file called “prof.salary.R” that contains the object
prof.salary in the current working directory. Alternatively, as before when



the data were loaded into R, a particular file location can be specified where
the data should be “dumped” (i.e., exported/stored).

Loading data from a .R data file can be done in several ways, the easiest
of which is to source the data set into R with the source() command, which
runs a selected file. When a file consists of a .R data set, that file is then
loaded into R and made available for use. For example, to load the data in
file “prof.salary.R,” consider the following command:

R> source(“prof.salary.R”)

GRAPHICAL PROCEDURES

We will use the professor salary data from Cohen et al. (2003), prof.salary,
to illustrate some of R’s graphical functions.4 After loading the data, use
names() to determine the names of the variables.

R> names(prof.salary)
[1] “id” “time” “pub” “sex” “citation” “salary”

Here, (a) id represents the identification number; (b) time refers to the time
since getting the Ph.D. degree, (c) pub refers to the number of publications,
(d) sex represents gender (1 for female and 0 for male), (e) citation
represents the citation count, and (f) salary is the professor’s current salary.
To reference a column of the data set (e.g., pub), one needs to use the dollar
sign “$”:

R> prof.salary$pub
18 3 2 17 11 6 38 48 9 22 30 21 10 27 37 8 13 6 12 29 29 7 6 69 11
…



A more convenient way is to attach the data set to R’s search path. Then the
user can reference pub in prof.salary simply with pub.

R> attach(prof.salary)
R> pub
18 3 2 17 11 6 38 48 9 22 30 21 10 27 37 8 13 6 12 29 29 7 6 69 11
…

An attached data set is one where the column names have been
“attached,” which implies the columns can be directly called upon. At any
time, only one data set can be attached. To attach a new data set, one must
detach the data set that is currently attached to R. R automatically detaches
the data set whenever the user exits the program:

R> detach(prof.salary)
R> attach(newdata).

Scatterplot

The function plot() can be used to plot data. Although it has a diverse
array of arguments, the most common specifications is of the form

plot(x, y, type, col, xlim, ylim, xlab, ylab, main),

where x is the data to be represented on the abscissa (x-axis) of the plot; y is
the data to be represented on the ordinate (y-axis; note that the ordering of
the values in x and y must be consistent, meaning that the first element in y
is linked to the first element in x, etc.); type is the type of plot (e.g., p for
points, l for lines, n for no plotting but setting up the structure of the plot so
that points and/or lines are added later); col is the color of the points and
lines; xlim and ylim are the ranges of x-axis and y-axis, respectively; xlab



and ylab are the labels of x-axis and y-axis, respectively; and main is the
title of the plot. All of the above arguments, except x and y, are optional, as
R automatically chooses the appropriate settings (usually). For example, to
plot the relationship between salary and pub (without the regression line),
the following can be used:

R> plot(x=pub, y=salary, xlim=c(0, 80), xlab=”Number of
Publications”,
ylab=”Professor’s Salary”)

Note in the application of the plot() function that the range of the x-axis
is defined by c(), which is a function to generate vectors by combining the
terms (usually numbers). A regression line or a smoothed regression line
can be added to the scatterplot if desired. The smoothed regression line fits
a regression model to a set of points in a certain “neighborhood,” or locally.
Such a technique is called lowess (or loess; see Cleveland, 1979, 1981, for a
detailed discussion of smoothed locally weighted regression lines). Adding
such a smoothed regression line to a plot can be done as follows using the
lines() function combined with the lowess() function:

R> lines(lowess(x=pub, y=salary, f=.8)).

The lines() function is used to draw lines or line segments, whose basic
specification is of the form lines(x, y), where the arguments are the same as
those in plot(). The lowess() function has f as a smoothing span that defines
the width of the neighborhood in which points are treated locally, with a
larger f representing a larger “neighborhood,” which then gives more
smoothness.



Figure 34.1 Scatterplot for professor’s salary as a function of the number of publications.

The function locator() helps to determine which point in a plot
corresponds with which individual in the data. It can be used, for example,
to identify outliers and miscoded data. After a scatterplot has been plotted,

R> locator()

turns the mouse pointer into a cross for point identification by selecting a
specific point.

Matrix Plot

The function pairs(), whose arguments are all the same as those of plot(),
can be used to produce scatterplot matrices. For example,

R> pairs(prof.salary[–1])



plots all the variables except the first one (i.e., id) in prof.salary. When the
user is interested in only a few variables in a data set, one possibility is to
create a new object with only those variables. For example, suppose one is
interested in only pub, citation, and salary and does not want all five
variables in the matrix plot.

R> pub.cit.sal <– data.frame(pub, citation, salary)
R> pairs(pub.cit.sal)

Histogram

The function to plot histograms is hist(). The basic specification is of the
form

hist(x, breaks, freq)

where x is the data to be plotted, breaks defines the way to determine the
location and/or quantity of bins, and freq is a logical statement of whether
the histogram represents frequencies (freq=TRUE) or probability densities
(freq= FALSE). For example, to plot histograms of pub, consider the
following commands:



Figure 34.2 A smoothed regression line is added on the scatterplot for professor’s salary as
a function of the number of publications.

R> par(mfrow=c(2,2))
R> hist(pub, main=“1st”)
R> hist(pub, freq=FALSE, main=“2nd”)
R> hist(pub, freq=FALSE, breaks=10, main= “3rd”)
R> hist(pub, freq=FALSE, breaks=seq (from=0, to=75, by=6),

main=“4th”)
R> lines(density(pub, bw=3))

The function par() is used to modify graphical parameters, and it has a
rich array of arguments to control line styles, colors, figure arrangement,
titles and legends, and much more. With the function par(), the user can
customize nearly every aspect of the graphical display. Moreover, all of the
arguments in par() can be included in, and thus control, other graphical
functions, such as hist() and lines(); put another way, a uniform set of
parameters controls all graphical functions and all aspects of figure



presentation. The argument mfrow in par() is used to arrange multiple
figures on the same page. If mfrow is defined as mfrow=c(m,n), then
figures will be arranged into an m-row-by-n-column array.

If breaks in hist() is defined by a single number, then the number is
considered by R as the number of bins. In order to define the range of a
single bin, the user needs to use a vector giving the breakpoints between the
cells. The function to generate such vectors is seq(), whose basic
specification is of the form

seq(from, to, by)

where from and to are the starting and end values of the sequence,
respectively, and by is the increment of the sequence. Thus, the fourth
histogram bins the data every 6 units. When included as an argument in
lines(), the function density() can be used to add a smoothed density line to
the histogram. In density(), bw is the smoothing bandwidth to be used,
analogous to the span in lowess()—the larger the bw, the smoother the
density line. Only when the vertical axis represents the probability can the
probability density curve be drawn on the histogram.



Figure 34.3 Scatterplot matrix for the time since getting the Ph.D. degree, the number of
publications, gender, the number of citations, and the current salary.

QQ Plot

The graphical functions to visually inspect for normality are qqnorm(),
qqplot(), and qqline(). The function qqnorm() plots the sample quantiles
against the theoretical quantiles from a normal distribution. The function
qqline() adds a line to the current QQ plot, indicating where the observed
values are expected given a normal distribution. The function qqplot() is
used to examine the relationship between two variables. Their basic
specifications are

qqnorm(y)



qqline(y)
qqplot(x, y)

where x and y are data to be represented on the x-axis and y-axis,
respectively. Suppose we want to examine the normality of pub and the
relationship between pub and salary. Because standardized scores are
generally preferred in QQ plots, we first standardize pub and salary. The
function mean() calculates the mean of a set of data and sd() the standard
deviation.

R> std.pub <– (pub – mean(pub)) / sd(pub)
R> std.salary <– (salary - mean(salary)) / sd(salary)
R> qqnorm(std.pub)
R> qqline(std.pub)
R> qqplot(std.pub, std.salary, xlab=“Standardized Publications”,

 ylab=“Standardized Salary”)

Figure 34.4 Histograms with different specifications for the number of publications.



Another way to standardize, which is much simpler, is to use scale(),
whose common specification is of the form

scale(x)

where x is the data to be standardized. Therefore, instead of using mean()
and sd(), the following commands produce the same QQ plot as Figure
34.5.

R> scale.pub <– scale(pub)
R> qqnorm(scale.pub)
R> qqline(scale.pub)

MULTIPLE REGRESSION

In this section, we will continue to use the professor salary data set from
Cohen et al. (2003), prof.salary, to illustrate how to conduct multiple
regression analysis with R.

Fitting Regression Models

R uses ~, +, and –, along with a response variable(s) and K predictor
variables, to define a particular model’s equation. The generic formula is of
the form

response variable ~ predictor1 + (or –) predictor2 … + (or –) predictorK

where + signals inclusion of the predictor, and – signals exclusions of the
predictor. The minus sign may seem meaningless when defining a new
formula, but it is useful in removing predictors from a currently existing
model in the context of model modifications.



The function for fitting a linear model is the linear model function, lm(),
whose basic specification is in the form of

lm(formula, data)

where formula is a symbolic description of the model to be fitted (just
discussed), and data identifies the particular data set of interest. For
example, to study the regression of professors’ salaries (Y) conditional on
publications (X1) and citations (X2), we use the following syntax to fit the
model and obtain the model summary:

Figure 34.5 QQ plot for the number of publications with the equiangular line indicating the
expected publications given the normal distribution as a reference.



Figure 34.6 QQ plot for standardized professor’s current salary and standardized number of
publications.

The fitted regression model is thus

(1)



Ŷ = 40493 + 251.8X1 + 242.3X2,

with the model’s squared multiple correlation coefficient being 0.4195. In
later sections, we will discuss forming confidence intervals for the
population regression coefficients and for the population squared multiple
correlation coefficient.

After fitting the model, the residuals can be plotted for visual inspection
of the quality of fit:

R> par(mfcol=c(2,2))
R> plot(model1)

The anova() function can be used to obtain a table of the sums of squares
(i.e., an ANOVA table) for the fitted model:

The object model1 contains rich information about the fitted regression
model. To see the available objects, the function names() can be used:

For example, suppose one wants to check whether there is systematic
relationship between the residuals and the predictors. The following



commands should be considered (recall how we extracted pub from
prof.salary with the sign“$”):

R> par(mfrow=c(2,2))
R> plot(pub, model1$residuals, main=”Residuals vs Predictor 1”)
R> plot(citation, model1$residuals, main=”Residuals vs Predictor 2”)

Model Comparison

The function update() is a convenient function for situations where the
user needs to fit a model that only differs from a previously fitted model in
a nested form. Its basic form is

Figure 34.7 Scatterplot for residuals as a function of fitted values with a smoothed
regression line (top left), scatterplot for standardized residuals as a function of
fitted values (top right), QQ plot for standardized residuals (bottom left), and
scatterplot for standardized residuals as a function of leverage (bottom right),
all of which are produced by plotting the fitted linear regression model object.



Figure 34.8 Scatterplots for residuals as a function of the number of publications (on the
left) and for residuals as a function of the number of citations (on the right).

update(object, formula)

where object is the originally fitted model, and formula is the new model to
be calculated. Also, in defining the new formula, the period (i.e., “.”)
denotes the corresponding part of the old model formula.

For example, suppose there was interest in adding the predictor time (X3)
and sex (X4) to the previous model:



Given the specifications above, the new model obtained is

Ŷ = 39587.35 + 92.75X1 + 201.93X2 + 857.01X3 – 917.77X4, (2)

with the squared multiple correlation coefficient increasing from 0.4195 in
the previous model to 0.5032 in the present model.

To compare the full model (i.e., the one with four predictors) with the
reduced one (i.e., the one with two predictors), anova() can be used, which
evaluates if the sum of squares accounted for by the additional two
predictors in the full model leads to a significant decrease in the proportion
of variance in Y that was previously unaccounted for in the reduced model.
Interested readers may refer to Cohen et al. (2003) or Maxwell and Delaney
(2004) for a discussion of model comparisons:

Notice that with the additional two variables, a significant reduction (p <
.05) in the unaccounted for variance was achieved.

Interaction Plots

A general expression for a regression equation containing a two-way
interaction is

Ŷ = β0 + β1X + β2Z + β3XZ, (3)

where β0 is the intercept; β1 and β2 are the regression coefficients of the
main effects of X and Z, respectively; and β3 is the regression coefficient for



the interaction between X and Z. Many theories in the social sciences
hypothesize that variables interact (there are moderators), and thus the idea
of testing interactions is fundamental in many areas of the BESS (Cohen et
al., 2003; Aiken & West, 1991). The MBESS R package contains functions
to plot two- and three-dimensional interaction plots.

The function intr.plot() in MBESS plots a three-dimensional
representation of a multiple regression surface containing one two-way
interaction. The most common specification of this function is in the form

intr.plot(b .0, b.x, b.z, b.xz, x.min, x.max,
z.min, z.max, hor.angle, vert.angle)

where b .0, b.x, b.z, b.xz are the estimates of β0, β1, β2, β3 in Equation 3,
respectively; x.min, x.max, z.min, and z.max define the minimum and
maximum values of X and Z of interest, respectively; hor.angle is the
horizontal viewing angle; and vert.angle is the vertical viewing angle.

Cohen et al. (2003, pp. 257–263) provide an example for a regression
containing one twoway interaction, whose model equation is

Ŷ = 2 + 0.2X + 0.6Z + 0.4XZ, (4)

with X being [0, 2, 4, 6, 8, 10] and Z being [0, 2, 4, 6, 8, 10]. To replicate
this example, intr.plot() can be defined as follows:

R> par(mfrow=c(2,2))
R> intr.plot(b .0=2, b.x=.2, b.z=.6, b.xz=.4, x.min=0, x.max=10,

z.min=0, z.max=10)
R> intr.plot(b .0=2, b.x=.2, b.z=.6, b.xz=.4, x.min=0, x.max=10,

z.min=0, z.max=10, hor.angle=-65, vert.angle=15)
R> intr.plot(b .0=2, b.x=.2, b.z=.6, b.xz=.4, x.min=0, x.max=10,

z.min=0, z.max=10, hor.angle=-65, vert.angle=5)
R> intr.plot(b .0=2, b.x=.2, b.z=.6, b.xz=.4, x.min=0, x.max=10,

z.min=0, z.max=10, hor.angle=45)



The function intr.plot .2d() in MBESS is used to plot regression lines for
one two-way interaction, holding one of the predictors (in this function, Z)
at values –2, –1, 0, 1, and 2 standard deviations above the mean. The most
common specification of intr.plot .2d() is of the form

Figure 34.9 Regression surface for Ŷ = 2 + 0.2X + 0.6Z, + 0.4XZ displayed from –45°
horizontal angle and 15° vertical angle (upper left), –65° horizontal angle and
15° vertical angle (upper right), –65° horizontal angle and 5° vertical angle
(lower left), and 45° horizontal angle and 15° vertical angle (lower right). The
three bold lines on the regression surface are regression lines holding Z
constant at –1, 0, and 1 standard deviations from Z’s mean.

intr.plot .2d(b.0, b.x, b.z, b.xz, x.min, x.max, mean.z, sd.z)

where b.0, b.x, b.z, b.xz, x.min, x.max have the same meaning as those in
intr.plot(), and mean.z and sd.z are the mean and standard deviation of Z,
respectively.

Cohen et al. (2003, pp. 263–268) give an example for the regression lines
of

Ŷ = 16 + 2.2X + 2.6Z + 0.4XZ, (5)



holding Z constant at values –1, 0, and 1 standard deviations above the
mean, when X  [0, 50], the mean of Z is 0, and the standard deviation of Z
is 1. We can replicate and extend this example by specifying intr.plot .2d()
as follows.

R> intr.plot .2d(b.0=16, b.x=2.2, b.z=2.6, b.xz=.4, x.min=0, x.max=50,
mean.z=0, sd.z=1)

Confidence Intervals for Regression Parameters

Forming confidence intervals for standardized effect sizes is quite
involved because such intervals require the use of noncentral distributions
(Kelley, 2007a; Smithson, 2003; Steiger, 2004; Steiger & Fouladi, 1997).
Linking the confidence intervals for a statistic of interest and noncentral
distributions is achieved with the confidence interval transformation
principle and the inversion confidence interval principle, as discussed in
Steiger and Fouladi (1997) and Steiger (2004). Although methods to
construct confidence intervals for the population squared multiple
correlation coefficient (e.g., Algina & Olejnik, 2000; Smithson, 2003) and
for the population standardized regression coefficients (e.g., Kelley, 2007a;
Kelley & Maxwell, 2003, in press) have been developed, no mainstream
statistical packages besides R with MBESS can perform such tasks without
using special programming scripts. Although such confidence intervals are
difficult to obtain, they are important nonetheless. The benefits of
confidence intervals for standardized effect sizes are the focus of Thompson
(Chapter 18, this volume). MBESS has a powerful set of functions that
implements confidence intervals for noncentral t, F, and chi-square
parameters. These functions (conf.limits.nct(), conf.limts.ncf(), and
conf.limits.nc.chi.square()) return the confidence interval for noncentrality
parameters, which are then used in other MBESS functions to implement
confidence intervals for specific effect sizes that are commonly used in the
BESS.



Figure 34.10 Regression lines for Ŷ = 16 + 2.2X + 2.6Z, + 0.4XZ, holding Z, whose mean is 0
and standard deviation is 1, constant at values –2, –1, 0, 1, and 2 standard
deviations from the mean.

Confidence Intervals for Omnibus Effects

The sample squared multiple correlation coefficient, denoted R2, often
termed the coefficient of multiple determination, is defined as

MBESS includes the function ci.R2() to form the exact confidence
intervals for the population squared multiple correlation coefficient in the
context of fixed (e.g., Smithson, 2003; Steiger, 2004) or random regressors
(Algina & Olejnik, 2000; Ding, 1996; Lee, 1971; Steiger & Fouladi, 1992).
In almost all applications of multiple regression in the behavioral,
educational, and social sciences, regressors are random. When the
predictors are random, a basic specification of the function is of the form



ci.R2(R2, N, K, conf.level=.95)

where R2 is the observed (i.e., sample) squared multiple correlation
coefficient, conf.level is the desired confidence interval coverage, N is the
sample size, and K is the number of predictors. In the case of fixed
regressors, the statement

Random.Regressors=FALSE

should be included in the ci.R2 function.
For example, to form the 95% exact confidence interval for P2, the

population squared multiple correlation coefficient, of model2, where the
predictors are regarded as random, ci.R2() is specified as follows:

R> ci.R2(R2=0.5032, N=62, K=4)
$Lower.Conf.Limit.R2
[1] 0.2730107
$Prob.Less.Lower
[1] 0.025
$Upper.Conf.Limit.R2
[1] 0.6420285
$Prob.Greater.Upper
[1] 0.025

Recall that the observed squared multiple correlation coefficient can be
obtained from the function summary(). Therefore, the 95% confidence
interval for the population squared multiple correlation coefficient of
model2, when the predictors are considered random, is

CI.95 = [0.273 ≤ P2 ≤ 0.642],



where CI.95 represents a 95% confidence interval.
The function ci.R() is used to obtain the confidence interval for the

population multiple correlation coefficient (i.e., P). The most common
specification of this function is of the form

ci.R(R, N, K, conf.level=.95)

where R is the observed multiple correlation coefficient, and other
arguments are the same as those in ci.R2(). This function also by default
considers the predictors random; when the predictors are fixed, the user can
include Random.Regressors=FALSE in the argument.

Because ci.R() and ci.R2() require only the observed multiple correlation
coefficient or its square, respectively, and the degrees of freedom, these
functions can also be used to form confidence intervals for effects reported
in published articles or multiple regression models that were fitted in other
programs that do not have the capabilities available in R to implement the
confidence intervals.

Confidence Intervals for Targeted Effects

The function confint() is used to construct confidence intervals for
unstandardized regression coefficients from a fitted linear model. Its basic
specification is of the form

confint(object, parm, level=.95)

where object is the fitted linear model, parm is the parameter whose
confidence intervals are to be formed, and level is the desired confidence
level; if parm is not specified, confidence intervals for all regression
coefficients will be computed. To obtain a 90% confidence interval for pub
in model2, the function confint() is specified as follows:



Therefore, the 90% confidence interval for the population unstandardized
regression coefficient of pub in model2 (i.e., B1) is CI.90 = [–50.93 ≤ B1 ≤
236.42], where CI.90 represents a confidence interval at the subscripted
level.

However, confint() can only be used to form confidence intervals for
unstandardized regression coefficients and always returns a two-tailed
confidence interval. Another function to obtain confidence intervals for
targeted regression coefficients is ci.rc(), which is contained in the MBESS
package. The basic specification of ci.rc() is of the form

ci.rc(b.k, s.Y, s.X, N, K, R2.Y_X, R2.k_X.without.k, conf.level=.95)

where b.k is the value of the regression coefficient for the kth regressor of
interest (i.e., Xk), s.Y is the standard deviation of the response variable Y,
s.X is the standard deviation of Xk, N is sample size, K is the total number
of regressors, R2.Y_X is the squared multiple correlation coefficient
predicting Y from all the predictors, R2.k_X.without.k is the squared
multiple correlation coefficient predicting Xk from the remaining K – 1
predictors, and conf.level is the desired confidence interval coverage.5

Unlike confint(), which is based on R’s fitted linear model objects, ci.rc()
requires only summary statistics, and thus the output from other statistical
programs and published articles can be used as input.

For example, to obtain the 90% confidence interval for the population
regression coefficient of pub in model2, consider the following steps:

R>model.pub <– update(model2, pub ~ . – pub)
R> summary(model.pub)
Call:
…
Residuals:
…
Coefficients:
…



Multiple R-Squared: 0.433, Adjusted R-squared: 0.4037
…
R> ci.rc(b.k=92.75, s.Y=sd(salary), s.X=sd(pub), N=62, K=4,

R2.Y_X=0.5032, R2.k_X.without.k=0.433, conf.level=.90)
$Lower.Limit.for.beta.k
[1] –50.92821
$Prob.Less.Lower
[1] 0.05
$Upper.Limit.for.beta.k
[1] 236.4282
$Prob.Greater.Upper
[1] 0.05

Therefore, the 90% confidence interval for the population unstandardized
regression coefficient of pub in model2 (i.e., B1), computed by ci.rc(), is

CI.90 = [–50.93 ≤ B1 ≤ 236.42],

which is the same as what confint() returned previously. Moreover, with
some additional arguments (namely, alpha.lower and alpha .upper), ci.rc() is
also able to form one-tailed confidence intervals or other nonsymmetric
confidence intervals, which is not possible with confint(). Note that
R2.Y_X is obtained from model2’s summary table (the model with all
predictors), and R2.k_X.without.k is obtained from model.pub’s summary
table (the model without the predictor of interest).

The function ci.src() in MBESS is used to form confidence intervals for
the population standardized regression coefficient. A basic specification of
this function is of the form

ci.src(beta.k, SE.beta.k, N, K, conf.level=0.95)

where beta.k is the standardized regression coefficient of the kth predictor
(i.e., the one of interest), SE.beta.k is the standard error of the kth regression



coefficient, and N, K, and conf.level are the same as those in ci.rc().
For example, suppose we want to obtain the 95% confidence interval for

the population standardized regression coefficient of pub in model2.
Because the data used in model2 are unstandardized and beta.k in ci.src()
requires standardized ones, we first need to standardize the fitted model’s
regression coefficients. When the user inputs standardized data to fit the
linear model, the regression coefficients returned are already standardized.

Thus, the 95% confidence interval for the population standardized
regression coefficient of pub in model2 (i.e., β1) is CI.95 = [–0.111 ≤ β1 ≤
0.377].

Sample Size Planning in Multiple Regression

Sample Size Planning for the Omnibus Effect: Power Analysis

Cohen (1988) discussed methods of sample size planning for the test of
the null hypothesis that P2 = 0, where P2 is the population squared multiple
correlation coefficient. Cohen provided an extensive set of tables for sample



size determination for a large but limited set of conditions. Those methods,
and related ones, have been implemented in MBESS so that researchers can
plan sample size for a desired power for the omnibus effect in multiple
regression.

The function ss.power.R2() in MBESS can be used to plan sample size so
that the test of the squared multiple correlation coefficient has sufficient
power. Its basic specification is of the form

ss.power.R2(Population.R2, alpha.level=0.05, desired.power=0.85, K)

where Population.R2 is the population squared multiple correlation
coefficient, alpha.level is the Type I error rate, desired .power is the desired
power, and K is the number of predictors.

For example, to obtain the necessary sample size when the population
multiple correlation coefficient is believed to be .25, Type I error rate is set
to .05, the desired power is .85, and the regression model includes four
predictors, ss.power.R2() would be specified as

R> ss.power.R2(Population.R2=.25, alpha.level=0.05,
desired.power=0.85, K=4)

$Necessary.Sample.Size
[1] 46
$Actual.Power
[1] 0.8569869
$Noncentral.F.Parm
[1] 15.33333
$Effect.Size
[1] 0.3333333

Thus, the necessary sample size is 46.

Sample Size Planning for the Omnibus Effect: Accuracy in Parameter
Estimation (AIPE)



The sample size for multiple regression can be planned in such manner
that the confidence interval for the population squared multiple correlation
coefficient is sufficiently narrow; “sufficiently narrow” is something
defined by researchers depending on the particular situation, much like the
desired level of power. This approach to sample size planning is termed
accuracy in parameter estimation (AIPE; Kelley & Maxwell, 2003; Kelley,
Maxwell, & Rausch, 2003; Kelley & Rausch, 2006) because the goal of
such an approach is to obtain an accurate parameter estimates. Interested
readers may refer to Kelley and Maxwell (2003, in press) and Kelley
(2007b, 2007c) for a discussion of AIPE for omnibus effects in multiple
regression.

The function ss.aipe.R2() in MBESS can be used to determine necessary
sample size for the multiple correlation coefficient so that the confidence
interval for the population multiple correlation coefficient is sufficiently
narrow. Its basic specification is of the form

ss.aipe.R2(Population.R2, conf.level=.95, width, Random.Regressors, K,
verify.ss=FALSE)

where width is the width of the confidence interval, Random.Regressors is a
logical statement of whether the predictors are random (TRUE) or fixed
(FALSE), conf.level is the confidence interval coverage, Population.R2 and
K are the same as those arguments in ss.power.R2(), and verify.ss is a
logical statement of whether the user requires the exact sample size
(verify.ss=TRUE), which involves a somewhat time-consuming set of
intense calculations (specifically an a priori Monte Carlo simulation), or a
close approximation (verify.ss=FALSE).

For example, suppose the population squared multiple correlation
coefficient is believed to be .5, the confidence level is set to .95, and the
regression model includes five random predictors. If one wishes to obtain
the exact necessary sample size so that the expected full confidence interval
width is .25, ss.aipe.R2() would be specified as

R> ss.aipe.R2(Population.R2=.5, width=.25, K=5, conf.level=.95,
verify.ss=TRUE)



$Required.Sample.Size
[1] 125

An additional specification in ss.aipe.R2() allows for a probabilistic
component that the confidence interval obtained in a study will be
sufficiently narrow with some desired degree of probability (i.e.,
assurance), which is accomplished with the additional argument assurance.
For example, suppose one wishes to have 99% assurance that the 95%
confidence interval will be no wider than .25 units. The ss.aipe.R2()
function would be specified as

R> ss.aipe.R2(Population.R2=.5, width=.25, K=5, conf.level=.95,
assurance=.99,
verify.ss=TRUE)

$Required.Sample.Size
[1] 145

Sample Size Planning for Targeted Effects: Power for Regression
Coefficients

Cohen (1988) and Maxwell (2000) develop methods to plan the
necessary sample size so that the hypothesis test of a targeted regressor has
a sufficient degree of statistical power to reject the null hypothesis that the
regressor is zero in the population. Those methods have been implemented
in MBESS with the ss.power.rc() function, which returns the necessary
sample size from the power approach for a targeted regression coefficient.
Its basic specification is of the form

ss.power.rc(Rho2.Y_X, Rho2.Y_X.without.k, K, desired.power=0.85,
alpha.level=0.05)

where Rho2.Y_X is the population squared multiple correlation coefficient,
Rho2.Y_X.without.k is the population squared multiple correlation



coefficient predicting the response predictor variable from the remaining K
– 1 predictors, K is the total number of predictors, desired.power is the
desired power level, and alpha.level is the Type I error rate. Maxwell (2000)
describes an example in which the population squared multiple correlation
coefficient is .131 and reduces to .068 when the predictor of interest is
removed in a situation where there are five regressors.6 This example can be
implemented with ss.power.rc() as follows:

R> ss.power.rc(Rho2.Y_X=0.131, Rho2.Y_X.without.k= 0.068, K=5,
alpha.level=.05, desired.power=.80)

$Necessary.Sample.Size
[1] 111
$Actual.Power
[1] 0.8025474
$Noncentral.t.Parm
[1] 2.836755
$Effect.Size.NC.t
[1] 0.2692529

Thus, in the situation described, necessary sample size in order to have a
power of .80 is 111.7

Sample Size Planning for Targeted Effects: AIPE for a Regression
Coefficient

Kelley and Maxwell (2003, in press) develop methods for sample size
planning for unstandardized and standardized regression coefficients from
the AIPE perspective. These methods have been implemented in functions
ss.aipe.rc() and ss.aipe.src() from within MBESS so that the necessary
sample size can be obtained. The basic specification of the ss.aipe.rc()
function is of the form

ss.aipe.rc(Rho2.Y_X, Rho2.k_X.without.k, K, b.k, width, sigma.Y,
sigma.X.k, conf.level=.95)



where Rho2.Y_X is the population squared multiple correlation coefficient,
K is the number of predictors, b.k is the regression coefficient for the kth
predictor variable (i.e., the predictor of interest), Rho2.k_X.without.k is the
population squared multiple correlation coefficient predicting the kth
predictor from the remaining K – 1 predictors, sigma.Y is the population
standard deviation of the response variable, sigma.X.k is the population
standard deviation of the kth predictor variable, and width and conf.level
are the same as those in ss.aipe.R2() function. From the example for the
power of an individual regression coefficient, suppose that the standard
deviation of the dependent variable is 25 and the standard deviation of the
predictor of interest is 100. The regression coefficient of interest in such a
situation is 1.18. Supposing a desired confidence interval width of .10,
necessary sample size can be planned as follows:

R> ss.aipe.rc(Rho2.Y_X=0.131, Rho2.k_X.without.k=0.068,
K=5, b.k=1.18, width=.10, which.width=”Full”, sigma.Y=25,
sigma.X.k=100)
[1] 99

Thus, necessary sample size in the situation described is 99.
The function ss.aipe.src() in MBESS can be used to determine the

necessary sample size for the AIPE approach for a standardized regression
coefficient of interest. The most common specification of this function is of
the same form as given in ss.aipe.src(), except the standardized regression
coefficient is specified. Supposing the desired width is .30 for the
standardized regression coefficient of .294, necessary sample size can be
planned as follows:

R> ss.aipe.src(Rho2.Y_X=0.131, Rho2.k_X.without.k=0.068,
K=5, beta.k=.294, width=.30, which.width=“Full”)
[1] 173



where beta.k is used instead of b.k to emphasize that the regression
coefficient is standardized. Thus, the necessary sample size in such situation
is 173.

STUDENT’S T TEST IN R

Student’s t test is used for testing hypotheses about means when the
population variance is unknown. There are three types of t tests: (a) one-
sample t test, which compares the sample mean to a specified population
mean; (b) paired-samples t test, which compares the means of two paired
samples; and (c) the two-group t test, which compares the means of two
independent samples. We can use the function t.test() to do all three types of
t tests.

One-Sample t Test

When a one-sample t test is desired, the basic specification of t.test() is of
the form

t.test(x, mu, conf.level=.95)

where x is the particular data of interest, mu is the specified population
value of the mean, and conf.level is desired confidence interval coverage.

To illustrate the one-sample t test, we employ the data reported in Hand,
Daly, Lunn, McConway, and Ostrowski (1994) on the estimation of room
length. Shortly after metric units were officially introduced in Australia, a
group of 44 students was asked to estimate in meters the width of the
lecture hall in which they were sitting. The true width of the hall was 13.1
meters. To test the hypothesis that students’ estimation of the width of the
hall in metric units was equal to the true value, the following code is used to
load the data and then to test the hypothesis:

R> meter <– c(8,9,10,10,10,10,10,10,11,11,



11,11,12,12,13,13,13,14,14,14,15,15,15,15,15,
15,15,15,16,16,16,17,17,17,17,18,18,20,22,25, 27,35,38,40)

R> t.test(meter, mu=13.1)
One Sample t-test
data: meter
t = 2.7135, df = 43, p-value = 0.009539
alternative hypothesis: true mean is not equal to 13.1
95 percent confidence interval:
13.85056 18.19490
sample estimates:
mean of x
16.02273

The summary table shows that the t statistic, with 43 degrees of freedom, is
2.714 with a corresponding (two-sided) p value less than .01. The 95%
confidence interval for the population mean is

CI.95 = [13.851 ≤ μ ≤ 18.195],

where μ is the population mean. Thus, the students’ estimate of the room
length in meters differed significantly from its actual value. Both p value
and confidence interval reveal that it is unlikely to observe data such as
those in this study if the students were able to make a correct guess in
meters.8

Paired-Sample t Test

When a paired-sample t test is desired, t.test() is specified as

t.test(x, y, mu, paired=TRUE, conf.level=.95)

where x and y are the paired groups of data of interest, paired=TRUE
signals that the procedure for the paired t test is to be used, and other



arguments are the same as those in the one-sample t test context.
We will demonstrate a paired-samples t test using the data from Cushny

and Peebles (1905), which was used by Gosset (“Student”) to demonstrate
the theoretical developments of the t distribution (Student, 1908). The data
are the average number of hours of sleep gained by 10 patients on two
different drugs, Dextro-hyoscyamine hydrobromide and Laevo-
hyoscyamine hydrobromide. Gosset used the paired-sample t test to test the
hypothesis that the average sleep gain by two different drugs was the same.
We define two vectors, Dextro and Laevo with the scores from Dextro-
hyoscyamine hydrobromide and Laevo-hyoscyamine hydrobromide,
respectively, and then implement a paired-samples t test:

R> Dextro <– c(.7, —1.6, —.2, —1.2, —.1, 3.4, 3.7, .8, 0, 2)
R> Laevo <– c(1.9, .8, 1.1, .1, —.1, 4.4, 5.5, 1.6, 4.6, 3.4)
R> t.test(Dextro, Laevo, paired=TRUE)
Paired t-test
data: Dextro and Laevo
t = –4.0621, df = 9, p-value = 0.002833
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
–2.4598858 –0.7001142
sample estimates:
mean of the differences
–1.58

Thus, the observed t statistic, with 9 degrees of freedom, is –4.0621 with a
corresponding (twosided) p value of .0028. The mean of the differences is –
1.58 in the sample, and the 95% confidence interval for the population
mean difference is

CI.95 = [–2.460 ≤ μD – μL ≤ –0.700],



where μD and μL are the population mean of the hours of sleep for Dextro
and Laevo, respectively.

Another way to conduct a paired-sample t test is to calculate the
difference between each pair first and then conduct a one-sample t test on
the differences. Therefore, an equivalent way to test the hypothesis that the
two drugs have equivalent effects on drugs is to calculate the differences
and use the t.test() function in the same manner as was done previously in
the one-sample context:

R> D <– Dextro—Laevo
R> t.test(D, mu=0)
One Sample t-test
data: D
t = –4.0621, df = 9, p-value = 0.002833 alternative hypothesis: true

mean is not equal to 0
95 percent confidence interval:
–2.4598858 –0.7001142
sample estimates:
mean of x
–1.58

Notice that the results of the analyses are the same.9

Two Independent Group t Test

To perform a two independent group t test, the most common
specification of t.test() is of the form

t.test(y ~ x, var.equal=TRUE)

where x and y are the particular groups of data of interest, and var.equal is a
logical statement of whether the variances of the two groups of data are
assumed equal in the population. By default, R assumes that the variances



are unequal and uses a degrees-of-freedom correction based on the degree
of observed heterogeneity of variance. Because most other statistical
programs assume homogeneity of variance, in that they use the standard
two-group t test, we have specified var.equal=TRUE in our example for
comparison purposes.

We use the data reported from Thompson (Chapter 17, this volume),
denoted LibQUAL+™, which is a random sample of perceived quality of
academic library services from a larger data set (see also Thompson, Cook,
& Kyrillidou, 2005, 2006). The data have been added as a data set in the
MBESS package and can be loaded with the following data function:

R> data(LibQUAL).

The grouping variables are (a) Role (undergraduate student, graduate
student, and faculty) and (b) Sex. The outcome variables are (a) LIBQ_tot,
(b) ServAffe, (c) InfoCont, (d) LibPlace, (e) Outcome, and (f) Satisfac.
Thompson (Chapter 17, this volume) uses a t test to compare the sex
differences on the outcome variable LIBQ_tot and conducts a two-way
ANOVA to compare the effects of role and sex on LIBQ_tot. In the
following section, we will demonstrate how to use t.test() and other
functions to reproduce the methods discussed in Chapter 17 and related
methods with R and MBESS. More specifically, we will discuss how to
compute standardized effect sizes, confidence intervals for standardized
mean differences, and sample size planning in the t test context in R.

After loading the data set LibQUAL, the function class() is used to
determine the attribute of the object LibQUAL.

R> class(LibQUAL)
[1] “data.frame”

Thus, LibQUAL is a data frame, which is a special type of data structure
where numeric and categorical variables can be stored. We also need to
verify whether Sex has the attribute of a factor because only when a



variable is defined as factor can that variable be used as a grouping
variable:

R> class(LibQUAL$Sex)
[1] “integer”

Because the vector Sex is specified as an integer, it needs to be converted
to a factor for analysis. Notice that the dollar sign ($) is used to extract a
named column from the data frame. We use the function as.factor() to
convert the attribute into a factor and then redefine Sex in the data frame as
a factor (notice that the dollar sign is used on both sides of the assignment
operator) so that we can easily perform the two-group t test:

R> LibQUAL$Sex <– as.factor(LibQUAL$Sex)
R> class(LibQUAL$Sex)
[1] “factor”
R> t.test(LIBQ_tot ~ Sex, data=LibQUAL, var.equal=TRUE)
Two Sample t-test
data: LIBQ_tot by Sex
t = –0.2381, df = 64, p-value = 0.8125
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
–0.7682029 0.6045665
sample estimates:
mean in group 0 mean in group 1
6.893636 6.975455

Notice that the use of the function t.test() on two independent samples is
a bit different from the other two kinds of t test. A formula much like that
discussed in the lm() function is used where the dependent variable,
LIBQ_tot, is predicted by the grouping variable, Sex. This implies that the
outcome variable LIBQ_tot is modeled by the grouped variable Sex, and



the model formula form in t.test()is the general format used in R for model
specification.

From the output, the t statistic is –.2381 with 64 degrees of freedom with
a corresponding (two-sided) p value of .8125. The mean of the first group
(labeled 0) is 6.894, and the second group (labeled 1) is 6.975 in the
sample. The 95% confidence interval for the population mean difference is

CI.95 = [–0.768 ≤ μ0 – μ1 ≤ 0.605].

Alternatively, we can perform the two-group t test in a similar fashion as
was done with the one-sample t test and the paired-samples t test. That is,
we can specify the form

t.test(x, y, mu, var.equal=TRUE, conf.level=.95)

where x and y are the two independent groups of data of interest. Notice
that compared to paired-samples t tests, we exclude the command
paired=TRUE but add the command var.equal=TRUE.

Confidence Intervals for Effect Sizes Related to the Group
Means and Group Mean Differences

Although the confidence interval from the t test output provides helpful
information, at times what is of interest is the standardized mean difference
and its corresponding confidence interval. A commonly used effect size in
the t test is the standardized mean difference (e.g., Cohen, 1988), d, which
is defined as

in the sample, where M1 is the mean of Group 1, M2 is the mean of Group 2,
and s is the square root of the pooled variance, assumed equal across groups
in the population.

The function smd() in MBESS can be used to calculate the standardized
mean difference. It is most commonly specified in the form



smd(Group.1, Group.2)

where Group.1 and Group.2 are the particular data of interest from Group 1
and Group 2, respectively. Hence, specifying smd() as follows returns the
standardized mean difference between the scores on the LibQUAL+™ total
scale of the female group (Sex=0) and of the male group (Sex=1):10

R> smd(Group.1=LibQUAL[1:33,4], Group.2=LibQUAL[34:66,4])
[1] —0.05862421

To obtain the unbiased estimate of the population standardized mean
difference (d is slightly biased), the option Unbiased=TRUE can be used:

R> smd(Group.1=LibQUAL[1:33,4], Group.2=LibQUAL[34:66,4],
Unbiased=TRUE)

[1] —0.05793406

The correction used in the function smd() yields an exactly unbiased
statistic (based in part on the gamma function), whereas that used in
Thompson (Chapter 17, this volume) yields an approximately unbiased
statistic (see Hedges & Olkin, 1985, for derivations and discussion of the
exact and approximately unbiased statistics).

We can obtain the confidence interval for the standardized mean
difference with the function ci.smd() in MBESS. Its basic specification is of
the form

ci.smd(smd, n.1, n.2, conf.level)

where smd is the observed standardized mean difference; n.1 and n.2 are
sample sizes of Group 1 and Group 2, respectively; and conf.level is the
desired confidence interval coverage. Therefore, to construct the 95%



confidence interval for the standardized mean difference in the scores on
the LibQUAL+™ total scale of the female group and the male group,
ci.smd() could be specified as follows:

R> ci.smd(smd=–0.05862421, n.1=33, n.2=33, conf.level=.95)
$Lower.Conf.Limit.smd
[1] –0.541012
$smd
[1] –0.05862421
$Upper.Conf.Limit.smd
[1] 0.4242205

Power Analysis for t Test

It is important to consider statistical power when designing a study, as the
power of a statistical test is the probability that it will yield statistically
significant results (e.g., see Cohen, 1988, for a review). Since power is a
function of Type I error rate, standardized effect size, and sample size, after
specifying the Type I error rate and standardized effect size, the necessary
sample size given a specified power value or power given a specified
sample size can be determined. The function power.t.test() in R is used to
plan necessary sample size. It is usually specified as

power.t.test(power, delta, sd, type)

where power is the desired power level, delta is the (unstandardized) mean
difference, sd is the population standard deviation, and type is the type of
the t test (“one.sample” for one sample, “two.sample” for two independent
sample, and “paired” for paired sample). Note that when sd=1 (which is the
case by default), delta can be regarded as the standardized mean difference.
For example, we can get the necessary sample size for each group to
achieve a power = 0.8 for a two-sample t test when the standardized mean
difference is 0.5:



R> power.t.test(power=.8, delta=.5, type=“two.sample”),
Two-sample t test power calculation
n = 63.76576
delta = 0.5
sd = 1
sig.level = 0.05
power = 0.8
alternative = two.sided
NOTE: n is number in *each* group

Thus, after rounding to the next larger integer, it can be seen that a per
group sample size of 64 is necessary to achieve a power = 0.8 (128 is thus
the total sample size). Alternatively, power can be determined when n is
specified (instead of power) in the power.t.test() function.

AIPE for Mean Differences and Standardized Mean
Differences

The AIPE approach to sample size planning can be used in a similar
manner, where what is of interest is the necessary sample size for the
expected confidence interval width to be sufficiently narrow, optionally
with some assurance that the confidence interval will be sufficiently narrow
(Kelley & Rausch, 2006). For example, suppose the population
standardized mean difference is .50, and it is desired that the total 95%
confidence interval width be .50. The ss.aipe.sm() function in MBESS
could be specified as follows:

R> ss.aipe.smd(delta=.5, conf.level=.95, width=.50)
[1] 127

Because the standard procedure is for the expected width, which implies
that roughly 50% of the time, the confidence interval will be wider than
desired, a desired degree of assurance can be incorporated into the sample



size procedure to specify the probability that a confidence interval will not
be wider than desired. For example, suppose one would like to be 99%
assurance that the computed confidence interval will be sufficiently narrow.
The ss.aipe.smd() function could be specified as follows:

R> ss.aipe.smd(delta=.5, conf.level=.95, width=.50, assurance=.99)
[1] 133

ANALYSIS OF VARIANCE

Analysis of variance (ANOVA) is a method to compare the means of two or
more groups. The function for fitting an ANOVA model in R is aov(),
whose usage is very similar to that of the lm() function illustrated for the
multiple regression examples. The difference between aov() and lm() is
that, when summary() is used to present the model summary, aov() objects
return an ANOVA table, whereas lm() objects return a regression table.
There is a function anova(), not to be confused with aov(), that is used to
return the ANOVA table of an existing object or a comparison between
nested models.

The basic specification of the function for ANOVA is aov() and is used in
the following manner:

aov(formula, data)

where both arguments are the same as those in lm(). Note that the grouping
variable in the formula must have one or more factors (i.e., groups)
identified. For example, to perform ANOVA on the LibQUAL+™ data,
where the hypothesis is that no mean differences exist in the effects of Role
on the outcome variable, LIBQ_tot, consider the following specification of
aov():

R> LibQUAL.aov.Role <– aov(LIBQ_tot ~ Role, data=LibQUAL).



The object LibQUAL.aov.Role contains the necessary information to
report results, but it does so in only a limited way. The results of interest
(i.e., the ANOVA table) are obtained by using either summary() or anova()
on the object fitted by aov():

We can also use lm() to conduct an ANOVA on the previous example
(notice the F-statistic at the end of the output):

R> LibQUAL.lm.Role <– lm(LIBQ_tot ~ Role, data = LibQUAL)

as both ANOVA and regression are special cases of the general linear
model. However, the summary() function for an lm object does not return
an ANOVA table; instead, it returns a regression table:



Because the lm() function was used, the sample multiple correlation
coefficient, Multiple R-Squared, and the adjusted multiple correlation
coefficient, Adjusted R-squared, are made available with the summary()
function.

Confidence Intervals for Standardized Effect Sizes for
Omnibus Effects

The effect size for the pth factor of the ANOVA model is defined as

or

where σ2
p is the variance due to factor p, σ2

T is the total variance of the
dependent variable, and σ2

E is the within-group variance of the dependent
variable (Fleishman, 1980; Kelley, 2007a; Steiger, 2004).11 Due to the
structure of the effect size, η2

p is the proportion of variance in the dependent
variable accounted for by the grouping factor, and φ2

p is the signal-to-noise



ratio. The MBESS package contains functions to calculate confidence
intervals for these quantities.

The function ci.pvaf() in the MBESS package can be used to calculate
the confidence limits for the proportion of variance in the dependent
variable accounted for by the grouping variable (i.e., η2

p). Its basic
specification is of the form

ci.pvaf(F.value, df.1, df.2, N, conf.level=0.95)

where F.value is the observed F value from fixed effects ANOVA for the
particular factor, df.1 is the numerator degrees of freedom for the F test,
df.2 is the denominator degrees of freedom, N is the sample size (which
need not be specified for single-factor designs), and conf.level is the
confidence interval coverage. To obtain the 95% confidence interval for η2

p

in the example we used when discussing the function aov(), ci.pvaf() should
be specified as follows.

R> ci.pvaf(F.value=0.6961, df.1=2, df.2=63, N=66)
$Lower.Limit.Proportion.of.Variance.

Accounted.for
[1] 0
$Upper.Limit.Proportion.of.Variance.Accounte d.for
[1] 0.1107225

The function ci.snr() in MBESS can be used to obtain the confidence limits
for the signal-to-noise ratio (i.e., ). Its basic specification is of the form

ci.snr(F.value, df.1, df.2, N, conf.level=0.95),

where all the arguments are the same as those of ci.pvaf(). To obtain the
95% confidence interval for φ2

p from the example we used when discussing
aov(), ci.snr() should be specified as follows:



R> ci.snr(F.value=0.6961, df.1=2, df.2=63, N=66)
$Lower.Limit.Signal.to.Noise.Ratio
[1] 0
$Upper.Limit.Signal.to.Noise.Ratio
[1] 0.1245084

Confidence Intervals for Targeted Effects

Although the omnibus F test often addresses an important research
question, it is many times desirable to perform follow-up comparisons in an
effort to examine specific targeted effects. The ci.c() function from MBESS
can be used to form confidence intervals for the population contrasts in an
ANOVA setting. Its basic specification is of the form

ci.c(means, error.variance, c.weights, n, N, conf.level)

where means is a vector of the group means, error.variance is the common
variance of the error (i.e., the mean square error), c.weights is a vector of
contrast weights, n is a vector of sample sizes in each group, N is the total
sample size (which need not be specified in a single-group design), and
conf.level is the confidence interval coverage. For example, to obtain the
95% confidence interval for the difference between the mean of students
(weighted mean of undergraduate and graduate) versus the mean of faculty
in the example we used when discussing aov(), ci.c would be specified as
follows.

R>
ci.c(means=c(6.792727,6.790454,7.220454),
c.weights=c(1/2, 1/2, –1), n=c(22,22,22),
error.variance=1.859, conf.level=.95)

$Lower.Conf.Limit.Contrast
[1] –1.140312
$Contrast



[1] –0.4288635
$Upper.Conf.Limit.Contrast
[1] 0.282585

The function ci.sc() in MBESS can be used to form confidence intervals
for the population standardized contrast in an ANOVA setting. Its basic
specification is of the same form as ci.c(), except that the standardized
contrast and confidence limits are returned. For example,

R>
ci.sc(means=c(6.792727,6.790454,7.220454),
error.variance=1.859, c.weights=c(–1, 1/2, 1/2), n=c(22,22,22),
conf.level=.95)

$Lower.Conf.Limit.Standardized.Contrast
[1] –0.3570958
$Standardized.contrast
[1] 0.1560210
$Upper.Conf.Limit.Standardized.Contrast
[1] 0.6679053

LONGITUDINAL DATA ANALYSIS WITH R

Longitudinal research has become an important technique in the BESS
because of the rich set of research questions that can be addressed with
regards to intra- and interindividual change (e.g., Collins & Sayer, 2001;
Curran & Bollen, 2001; Singer & Willett, 2003). Multilevel models (also
called hierarchical models, mixed-effects models, random coefficient
models) are a commonly used method of modeling and understanding
change because these models explicitly address the nested structure of the
data (e.g., observations nested within individual, individual nested within
group, etc.). The nlme package (Pinheiro et al., 2007) provides powerful
methods for analyzing both linear and nonlinear multilevel models.



We will use the data set Gardner.LD in the MBESS package for
illustration purposes. The data set Gardner.LD contains the performance
data of 24 individuals, who were presented with 420 presentations of four
letters and were asked to identify the next letter that was to be presented.
The 420 presentations were (arbitrarily it seems) grouped into 21 trials of
20 presentations. Twelve of the participants were presented the letters S, L,
N, and D with probabilities .70, .10, .10, and .10, respectively, and the other
12 were presented the letter L with probability .70 and three other letters,
each with a probability of .10. The analysis of longitudinal data in nlme
requires data to be coded in person-period (Singer & Willett, 2003) form
(also known as the “the univariate way”) so that each person has a row for
each of the different measurement occasions. There are four variables in the
Gardner.LD data set: ID, Score, Trial, and Group. Because each participant
had 21 trials, the dimension of the data matrix is 504 (24 × 21) by 4. As an
initial step after loading the nlme package and calling into the session the
Gardner.LD data, it is desirable to group the data using the groupedData()
function, which contains not only the data but also information on the
nesting structure of the design:

R> data(Gardner.LD)
R> grouped.Gardner.LD <– groupedData (Score ~ Trial|ID,

data=Gardner.LD)

The formula Score ~ Trial|ID implies that the response variable, Score, is
modeled by the primary covariate, Trial, given the grouping factor, ID. In
longitudinal data, the primary covariate that is monotonically related to time
(e.g., time itself, grade level, occasion of measurement, etc.) and the
grouping factor indicates the variable used to denote the individual. After
creating the groupedData object, we can use plot() to plot individual
trajectories.



Figure 34.11 The growth trajectories of 24 participants in the Gardner learning data.

R> plot(grouped.Gardner.LD)

Because information on the nesting structure is contained within
groupedData object, the plot() function creates trajectories conditional on
each individual in separate plots.

However, it is sometimes desired to plot the trajectories in a single plot to
help visualize the amount of interindividual differences in change. The vit()
function in MBESS provides the plot with all trajectories in a single figure.
Consider the following application of the vit() function:

R> vit(id=“ID”, occasion=“Trial”, score=“Score”, Data=Gardner.LD,
xlab=“Trial”)

Similar figures with other options can be obtained with the xyplot()
function from the lattice package (Sarkar, 2006). Figure 34.12 shows that



the change curves for most individuals are nonlinear, starting at relatively
low point and growing toward the upper value of 20.

After plotting the data, it is decided to use a logistic change curve to
model the trajectories (a negative exponential model should also be
considered). The model selected is defined as

where yij is the score for individual i at time j; tij is the jth trial for individual
i; φ1i φ2i, and φ3i are parameters for individual i; and εij is the error for the ith
individual at the jth measurement occasion. The nlme package enables the
user to use several self-starting functions for commonly used nonlinear
regression models. We will use the SSlogis() function within the nlsList()
function to obtain parameter estimates for each of the individuals. This can
be done with the following commands:



Figure 34.12 The growth trajectory of each participant in the Gardner learning data in a
grouped plot.

The individuals are fitted using a separate (three-parameter) logistic
model to each subject (the ID number is in the first unmarked column). The
model from the SSlogic() function in the current example shows the
following:



Score ~ SSlogis(Trial, Asym, xmid, scal) | ID

and thus the fitted model becomes

where Asym represents the asymptote, xmid represents the value of trial (or
time, more generally) at the inflection point of the curve, and scal is the
scale parameter. The trajectory of Individual 17 differs considerably from
the others individuals and from the logistic model, which is why this
individual’s parameter estimates differ so considerably from the others.
Note that both Individuals 6 and 19 do not have parameter estimates
because the logistic model failed to converge. Examination of the plot
reveals that the logistic change model does not adequately describe the
trajectories of Individuals 6 and 19 (a negative exponential change model
would be more appropriate). Specification of the subset.ids argument in the
vit() function allows specific individual IDs to be plotted, which can be
helpful for identifying misfits.

The nlsList model is useful when the goal is to model the growth
trajectory of a particular fixed set of individuals. However, when interest is
in estimating a multilevel model with fixed effects and covariance structure
—to examine the variability within and among individuals—the function
nlme() can be used.

Since we already have a fitted nlsList() object (NLS.list.GL) for each
individual, we can input that object into the function nlme(), where starting
values are automatically obtained. To examine the results, consider the
following commands:



From the output, information about fixed effects, random effects, and the
fit of the model is available. Using the object obtained from the nlsList() in
nlme() automatically considers each of the fixed effects to be random. This
can be modified by specifying fixed and random effects explicitly with the
fixed and random options within nlme().

To visually examine the residuals, the following commands can be used:

R> plot(nlme.GL)
R> qqnorm(nlme.GL, abline=c(0,1))



The residual plot shows that the assumption of equal variances across time
seems reasonable. This assumption can be relaxed with additional
specification in nlme(). A normal QQ plot for the residual shows that the
distribution of residuals seems normal.

Figure 34.13 Scatterplot for standardized residuals as a function of fitted values for the fitted
logistic change model.

We can also plot the fitted trajectories for each individual by applying
plot() to certain functions of a fitted nlme() object, which provides
important information about potential model misfits:

R> plot(augPred(nlme.GL, level=0:1))

This section serves as only a brief introduction to the nlme package.
Readers interested in more comprehensive discussion on analyzing mixed
effects models (both linear and nonlinear) with the nlme package are



referred to Mixed-Effects Models in S and S-PLUS (Pinheiro & Bates,
2000). Also helpful is Doran and Lockwood (2006), who recently provided
a tutorial on linear multilevel model with the nlme package, with special
emphasis on educational data.

CONCLUSIONS

We hope that we have successfully illustrated R as a valuable tool for
performing a wide variety of statistical analyses. Of course, R can do much
more than has been presented. The use of R and the plethora of tools made
available with R packages should be considered by researchers who
perform statistical analyses. One thing not mentioned is an implicit benefit
of R, that many times R code can be slightly modified from analysis to
analysis for similar data and research questions, which greatly facilitates
future analyses. For researchers who often perform the same type of
analysis with different data, such a benefit can save a great deal of time.

We know from experience that many statisticians and quantitative
methodologists within the BESS use R for their research. Such research is
at times implemented in collaborative efforts with substantive researchers,
where R is used to implement the particular method. Having R as a
common language would be beneficial in such collaborative relationships.
We also know from experience that R is beginning to be used in graduate
courses in the BESS at well-known institutions, both in “first-year graduate
statistics” sequences and (more commonly) for advanced statistics classes.
Thus, more and more future researchers will have at least some exposure to
statistical analyses implemented in R. Evidence is thus beginning to mount
that R will be even more important and widely used in the coming years
than it is today. Thus, there is no time like the present to begin
incorporating R into one’s set of statistical tools.



Figure 34.14 Observed values (circles), individuals’ fitted values (dashed line), and
population estimates of change curve (solid line) for the logistic change model
applied to the Gardner learning data.

R cannot do everything, and we do not want to imply that it can. For
some techniques, R is quite limited. A large portion of the statistical
procedures implemented within R has come from mathematical statisticians
and statisticians working outside the BESS. Since such individuals do not
use some of the methods that are important to researchers within the BESS,
some methods important to BESS researchers have not yet been
implemented in R. However, as more packages become available that
implement methods especially useful for the BESS, such as MBESS, the
“missing methods” will continue to decrease in quantity. We realize that not
everyone will immediately download, install, and start using R. However,



we do hope that researchers will be open to using the program, realize that
it is not as difficult as it might initially seem, and consider making it part of
their repertoire of statistical tools.

NOTES

1. The “community of R users,” freely available downloadable books, documentation, mailing
lists, and software downloads are available at the R Web site: http://r-project.org.

2. He was once editor (1993–1997) of the Journal of Educational [now and Behavioral] Statistics.
3. Like R, S-Plus is a program based on the S language. S-Plus is a proprietary program owned by

Insightful Corporation. R and S-Plus share a common history because of the S language, but they are
ever growing further apart.

4. This data set has been made available in the MBESS R package. For those who did not create
prof.salary.R in the previous sections, after loading MBESS, the following will load the data:
data(prof.salary).

5. Note that R2.k_X.Without.k is equal to 1 – Tolerancek, and R2.k_X.Without.k is equivalent to

where rkk is the kth diagonal element of the inverse of the covariance matrix of the K regressors
(Harris, 2001).

6. Actually, Maxwell (2000) describes a specific correlation structure. That correlation structure
implicitly defines the values used in the chapter for illustrative purposes via definitional formulas.

7. Note that this result differs slightly from that reported in Maxwell (2000), which is 113. The
discrepancy is because of rounding error in the calculations necessary to obtain the squared multiple
correlation coefficients and because of the rounding error implicit in Cohen’s (1988) tables, which
were used to obtain the noncentrality parameter. Given the specified correlation matrix, number of
predictors, and desired power, 111 is the exact value of necessary sample size.

8. Interestingly, 69 other students were asked to do the same task, except that the students
estimated the length of the room in feet. The results were shown not to be significant, t = .4624(68), p
= .65 (with 95% confidence limits of 40.69, 46.70; the actual length was 43 feet).

9. Preece (1982) criticized the way Gosset used the Cushny and Peebles (1905) data to illustrate a
paired-samples t test. Although we tend to agree with Preece, we used the data because of their
historical importance. Also, it should be noted that the data reported in Gosset’s work contain a
typographical error, in that there was a miscoded datum (but correct summary statistics). We used the
correct data as reported in Cushny and Peebles (1905).

10. Note that the result is slightly different from that in Thompson’s example (see Chapter 17, this
volume), which is –0.064. This discrepancy comes from rounding error. If we use the means and the
standard deviations reported in Thompson explicitly in smd(), the result will be the same:

R> smd(Mean.1=6.98, Mean.2=6.89, s.1=1.322, s.2=1.472, n.1=33,
n.2=33)

[1] 0.06433112

http://r-project.org/


11. Thompson (Chapter 17, this volume) denotes the effect sizes for one-way ANOVA as η2

(multiple R-squared) and ω2 (adjusted R-squared).
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