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Preface
The best laid plans o’ Mice an’ Men, Gang oft agley ...
—Robert Burns, To a Mouse

The initial concept for this book arose some 3 to 4 years ago. However, it 
was quite different from how the book turned out. I had spent much of the 
previous decade working on application security, particularly software assur-
ance. Several years ago, I had the good fortune of being the technical lead on 
a software assurance initiative for the banking and finance sector, supported 
by the Financial Services Technology Consortium. The first phase of the proj-
ect provided insights from thought leaders from independent software vendors 
(ISVs), information security tools and services vendors, industry and profes-
sional associations, academia, and a number of leading financial institutions. A 
collection of state-of-the-art practices was assembled, with the intention of us-
ing the “best” approaches for assuring the quality of software through industry-
sponsored testing. This work provided a substantial amount of the research that 
was behind the BITS publication Software Assurance Framework [1].

The ultimate goal of the software assurance initiative was to establish a 
state-of-the-art testing facility for the financial services industry using methods, 
tools, and services chosen from the initial research. Unfortunately, the financial 
meltdown of 2008 interceded. Various mergers and restructurings took place, 
so that attention was turned to other more pressing matters.

The financial services industry and other critical infrastructure sectors 
continue to be in dire need of such testing laboratories to ensure that com-
monly used software meets agreed-upon security standards. Others, such as Joel 
Brenner [2], also espouse such a concept as some form of Consumers-Union-
like autonomous testing service. But who would support and fund such an 
effort?
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Perhaps an interesting indicator as to how such testing laboratories might 
be created is the example of Huawei, the Chinese telecommunications giant, 
which built the Cyber Security Evaluation Centre in England. The Centre’s 
purpose is to assure potential British customers of Huawei products and services 
that the company‘s technology can be trusted not only to do what customers 
want them to do (and nothing more) but also that Huawei’s products cannot be 
successfully attacked by cyber criminals, terrorists or foreign spies, as reported 
in The Economist [3].

My initial book concept was to cover software assurance with particular 
emphasis on requirements, context, and the like, with some, but relatively little 
mention of the differences between developing security-critical and safety-criti-
cal software systems, and how to bring these diverse fields together. Then what 
caused me to put so much more emphasis on the engineering of the security 
and safety of software systems? It was a realization that professionals in the 
software security and safety fields have minimal interaction and are generally 
not familiar with the other engineers’ knowledge base and standard procedures. 
This argument is supported from personal experience as well as from the ob-
servation that the majority of books and articles covering one area have little if 
any mention of the other field. I first became aware of the difference in culture 
and approach when I did some work with a small government contractor that 
builds safety-critical software systems. Their approach was so different from 
what I had been used to throughout an IT career in financial services. The ratio 
of programming to testing appeared to be reversed for each type of system, with 
security-critical information systems receiving much less testing relative to the 
extensive verification and validation processes to which safety-critical control 
systems are subjected.

A number of other factors began pointing to the need for developing a 
book that would help security software engineers understand safety and vice 
versa. However, the most influential event was a serendipitous conversation 
at the 2010 IEEE International Conference on Homeland Security Technology 
in Waltham, Massachusetts with Peter Gutgarts. He and Aaron Termin were 
presenting on their topic “Security-Critical versus Safety-Critical Software.” 
Peter Gutgarts and I discussed the subject at length and what I gained from 
the conversation was the realization that so little attention was being paid to 
combined safety and security aspects of critical software systems. These systems, 
which include so-called cyber-physical systems, are rapidly becoming crucial to 
the future of modern economies. Before our eyes, software systems are being 
developed that merge sophisticated modern web applications with traditional 
industrial control systems. Such cyber-physical systems offer the best—and the 
worst—of both worlds. For example, the ability to monitor and control elec-
tricity meters remotely creates many new features, such as determining and 
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reporting unusual activities or cessation of service, but they also expose the elec-
tricity grid to hackers with malevolent and destructive intentions.

Today, the security of the smart grid and analogous systems for water and 
natural gas distribution and the like are being discussed and are a clear concern 
of both government and the private sector. Yet, beyond the talk, what is actu-
ally being done is woefully inadequate. Is this a case of the road to hell being 
paved with good intentions? It seems that there is agreement in principle as to 
the need, yet the lack of subject-matter expertise and processes for coordination 
and collaboration are thwarting attempts to make it all happen. We have not yet 
built the necessary bridges between security professionals and safety engineers 
to enable fully coordinated efforts. The cultural differences and the goals of the 
security and safety silos are such that they do not interact and do not under-
stand the needs of the other group.

Seeing the lack of interaction, in the field and in the literature, I deter-
mined that the software engineering field needs to initiate conversations that 
will reduce and eliminate the lack of communication between information se-
curity professionals and software safety engineers.

Brenner [2] describes how, to their credit, the U.S. military found a way 
to ensure that the efforts of diverse experts would be coordinated and consistent 
across Defense Departments by creating the Joints Chiefs of Staff. As Brenner 
puts it:

“Joint organization has paid extraordinary operational dividends but it 
was a struggle to make it work. Overcoming intense service-level loyalties took 
time... The [1986 Goldwater-Nichols Act] is one of the most important organi-
zational reforms in the history of the United State government...”

If the military can do it, so perhaps could the rest of government and the 
private sector when it comes to coordinating the efforts to ensure that critical 
software systems are both secure and safe. The need is there for solutions that 
will overcome the security, safety, and other deficiencies in the software devel-
opment processes and the software systems that they produce.

The original direction of improving the software assurance processes and 
building testing facilities continues to be extremely important and needs to 
be addressed vigorously in short order. However, I chose to focus this book 
on reducing the huge gap that exists between the software safety and security 
engineering fields. No doubt others will revisit my original software-assurance 
topics at a later date. For now, I will focus on what I see to be one of the most 
pressing needs of today’s software engineering world—the collaboration be-
tween software security and safety engineers in the creation of complex systems 
of systems, particularly cyber-physical systems.

While I have covered many concepts in the software systems safety-se-
curity space, this work should not be considered an end in itself. It provides a 
starting point from which you can examine further the many complex topics 
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that have been discussed in this book. Efforts on your part to expand upon that 
which you read here may be challenging—but they will also be exciting. You 
will be rewarded with the knowledge that you are learning more about what is 
surely one of the most critical areas of software engineering. Good luck with 
your endeavors.

Endnotes

[1] BITS Division of the Financial Services Roundtable, Software Assurance Framework, Janu-
ary 2012. Available at http://www.bits.org/publications/security/BITSSoftwareAssur-
ance0112.pdf. Accessed August 26, 2012.

[2] Brenner, J., America the Vulnerable: Inside the New Threat Matrix of Digital Espionage, 
Crime, and Warfare, New York: Penguin Press, 2011. 

[3] “Briefing Huawei: The Company that Spooked the World,” The Economist, August 4–10, 
2012, pp.19–23.
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Foreword
Computer security was once a casual, even polite, discipline that was practiced 
in business and government via little tips: “Don’t use your name as a password,” 
published policy rules: “Please inform the security team of any Internet-facing 
servers,” and off-the-shelf products: “Based on our scan, your system is free of 
malware!”

This era of casualness has unfortunately long since passed, and technol-
ogy practitioners, ranging from system administrators, to software engineers, 
to casual users, all understand that malicious threats to organizational assets are 
real. Just about every major organization on the planet has been hit with ad-
vanced persistent threats (APTs), distributed denial of service (DDOS) threats, 
or both—and the effects are often lethal. Safety-critical issues have been simi-
larly intense with often serious consequences for the organization.

Warren Axelrod’s new book is an important contribution to the disci-
plines of security and safety—offering information that will be vital to anyone 
connected in any way to the protection of information and assets. While his 
book targets the software engineering life cycle, many of its security and safety 
points can be expanded and extrapolated to more general contexts. The discus-
sions and examples are practical and provide considerable insights for profes-
sionals interested in immediate-term benefit.

The material on safeguarding public data and intellectual property is par-
ticularly useful, given so many recent public issues. Its emphasis on risk, and 
how it relates to security and safety-critical systems is also particularly relevant 
in the current global environment.

Newly published works on this topic of computer security and the related 
topic of system safety seem to appear on a regular basis, perhaps even daily. But 
few are produced by someone with the experience and knowledge of this capa-
ble author, a longtime friend of mine. His background and expertise are unique 
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and I am pleased that he’s taken the time to share a portion of his knowledge 
on protecting assets.

If you have already purchased this book, then by all means, please turn 
the page and begin reading. If, however, you are flipping through these pages 
online (or at your bookstore), then I strongly suggest that you add this book to 
your cart. It’s worth the read.

Edward G. Amoroso1

AT&T Chief Security Officer and Senior Vice President

1. Dr. Edward G. Amoroso is responsible for all areas of information security including plan-
ning, design, development, implementation, and operations support for AT&T’s extensive 
global network and communications. Ed Amoroso is an adjunct professor of computer sci-
ence at Stevens Institute of Technology and holds a Ph.D. and masters degree in computer 
science. He is a frequent expert speaker before Senate subcommittees on the topic of cyber 
security.
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1
Introduction

A paradigm shift is underway, and a number of recent threads point 
towards a fusion of security with software engineering, or at the very 
least to an influx of software engineering ideas.
—Ross J. Anderson, Cambridge University, Why Cryptosystems Fail,   

1993 [1]

While the general concept of safety and reliability is understood by most 
parties, the specialty of software safety and reliability is not.
—Debra S. Hermann, Software Safety and Reliability [2]

Preamble

Despite heroic efforts by security and safety software engineers, information 
and physical security professionals, and those involved with creating and de-
ploying safe and secure software, software systems still succumb to willful and 
accidental attacks and are unable to avoid completely malicious or unintended 
damage to human life and the environment.

One reason might be the shortage of subject-matter experts with in-depth 
knowledge and broad experience in application security, software system safety, 
software assurance, and related subjects. Even so, we must question why we 
aren’t doing a better job of building, operating, and maintaining safe and secure 
software-intensive systems. After all, there is a considerable body of knowledge, 
much of which will be discussed in this book, about building, deploying, op-
erating, and maintaining safety-critical and security-critical software-intensive 
systems.

These problems do not lie with lack of knowledge or ability on the part of 
experts; rather, they have to do with the omission of critical elements—not the 
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least of which is communication among diverse stakeholders—which is needed 
for securing software systems and making them safe. Recommendations by re-
searchers, particularly as they relate to information security and system safety, 
are often tentative and normative in nature and seldom usable in the real world. 
In some cases, this is due to the lack of authority and power of those asserting 
the need for action to improve the safety and security of software systems. In 
other instances, researchers are unrealistic about the application of certain tech-
niques, recommending activities that may be too difficult or expensive for the 
average development shop to implement.

There is also a mind-numbing, imprecise, and often misleading vocabu-
lary that results from the art of creating safe and secure software systems sitting 
at the intersection of so many different fields with stakeholders who do not 
communicate properly with one another. As a result, conversations and interac-
tions among safety and security experts are frequently obscure and misguided, 
and mutual agreement about the relative importance of security and safety for 
specific critical systems is seldom reached. This can produce systems where 
weaknesses of one segment are detrimental to otherwise high-integrity, high-
assurance systems. This failure to communicate leads to critical systems that are 
vulnerable to attack and where successful attacks can result in considerable loss 
of assets or harm to life and the environment.

In this book, we shall look beyond the standard texts, although they will 
be referenced and studied extensively. Rather, we shall base our inquiries on the 
simple question: “What will it take to ensure that the software systems, upon 
which our economic and physical lives depend, are trustworthy, dependable, 
and sustainable?”

Part of the answer will come from a rigorous examination of the terms 
and definitions that we use. For example, the words “security” and “safety” 
are commonly used interchangeably, but if examined more closely, their differ-
ences are the key to understanding how to create secure, safe, and dependable 
software-intensive systems. Then we have the lack of rigorous testing, needed 
to ensure that systems will not misbehave or allow manipulation that could lead 
to disastrous outcomes.

It should be noted that even today there is little communication between 
security and safety silos involved in building complex security-critical and safe-
ty-critical software intensive systems. This isolation leads to application software 
without reference to the platforms and infrastructures upon which it operates.

Context is a key aspect of achieving security, safety, reliability, availability, 
integrity, resiliency, and the like. A system has a very different set of demands 
if it is exposed to public communications networks such as the Internet, than 
if it is isolated from external networks; however, there are ways to bridge such 
an “air gap,” as was demonstrated by the Stuxnet attack on the Iranian uranium 
processing plants.
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Furthermore, the meaningfulness of application security metrics must be 
examined. Measurements that we have and use are often not up to the job, as 
witnessed by the frequent injection of malware, submission to denial of service 
attacks, and common system failures. To what extent is it a question of not 
using the right metrics versus not collecting the data upon which to base the 
metrics in the first place? The gathering and analysis of appropriate metrics is 
the basis of risk analysis. If we don’t know what is going on inside of our soft-
ware systems, then we cannot determine the level of risk being incurred, and 
consequently, we are then unable to mitigate those risks effectively.

Additionally, we have supply chain issues. Can we trust commercial soft-
ware generally and software developed offshore in particular? Do we know 
whose fingers touched the software (and the hardware on which it runs) during 
the development life cycle, deployment, and maintenance? Is there reason to 
suspect that those with evil intentions have inserted back doors and malware 
into the software systems? How can we ensure not only the security and integ-
rity of applications in general but also the specific copy that we are using?

This book addresses what the author considers to be real issues and im-
pediments to the development and operation of safe and secure mission-critical, 
software-intensive systems. It does not ignore the common vulnerabilities and 
errors found in applications, such as those listed in The Open Web Application 
Security Project (OWASP) top ten or The System Administration, Network-
ing, and Security Institute (SANS)/Common Weakness Enumeration (CWE) 
top twenty and described in Appendix A. Rather, it takes the view that these 
specific risks are important and must necessarily be dealt with, but they alone 
will not solve the problem of deficient software systems. As we will discover, 
merely solving these problems is not sufficient to achieve a level of assurance 
that critical software systems meet high standards of security and safety. What 
is needed is a pragmatic view of what it takes to achieve the optimal levels of 
security and safety, however optimality is defined. It is the mission of this book 
to focus on the neglected aspects of software systems engineering that stand the 
chance of our making a material improvement in the state of software, a state 
that currently is deteriorating rapidly.

Scope and Structure of the Book

As mentioned previously in this book, it was to be a treatise on software assur-
ance. However, it rapidly became apparent that, in order to come up with an 
approach that would cover both the security and safety of software systems, it 
was necessary to go back in time to see how software engineering has evolved 
over recent decades. We also sought to learn why there is so little overlap be-
tween the areas of interest of software security engineers and software safety en-
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gineers. Books on software security seldom include references to software safety, 
and vice versa; it is as if each party were totally oblivious as to what goes on with 
their software engineering counterparts in the other area. This book attempts 
to bridge that gap between cyber security and physical safety professionals. This 
approach recognizes that these so-called cyber-physical systems evolve over time 
and, as they do, there will be an increasing need for those who understand both 
security and safety to interrelate.

The first half of this book, Chapters 2 through 5, examines the history 
and evolution of systems engineering, covering software systems and the se-
curity and safety attributes of those systems. The next section, Chapter 6 and 
7, addresses risk issues and metrics, which are fundamental to the assessment 
and management of systems in general and secure and safe software systems in 
particular. In the next sections, Chapters 8, 9, and 10, we describe the processes 
available for developing software systems, with particular emphasis on secure 
and safe software systems. Chapter 11 discusses how economic and behavioral 
factors influence the degree to which stakeholders participate in and support 
security and safety features and attributes. 

Appendix A provides lists and explanations of programming weakness 
and errors as presented by OWASP, SANS, and others. Appendix B compares 
the ISO/IEC 12207 and CMMI®-DEV process areas. Appendix C provides 
checklists in support of security-critical systems, and Appendix D does the same 
for safety-critical systems. These latter two sets of checklists serve two purposes. 
The first is to help software engineers ensure that they have considered a full, 
though not complete, set of issues relating to their area of specialty (namely 
security or safety). The second purpose is to enable software security engineers 
to learn what factors make for safe systems, and to help software safety engi-
neers determine which issues are important for building and operating security-
critical systems.

Acknowledgments

While I have been around computer systems throughout my career, my interest 
in application security in particular came from discussions in the mid-1990s 
with Tom Whitman at Pershing LLC, where I was the chief information secu-
rity officer. Tom was a keen advocate of including security signoffs through-
out the software development life cycle and strongly supported my efforts to 
introduce a role for security in the life cycle process. Around that time, very 
few security professionals were giving much attention to building-in security 
as software development passed through its sequence of phases. As well, there 
were few experts in the area. However, I was fortunate enough to have Ken van 
Wyk train some of Pershing’s software development staff in how to design and 



4	 Engineering	Safe	and	Secure	Software	Systems		 	 Introduction	 5

code programs using secure methods. We also held discussions with Dr. Gary 
McGraw of Cigital, who is recognized as a one of the top thought leaders in 
the field.

In 2009–2010, I led a Software Assurance Initiative (SAI) project for Fi-
nancial Services Technology Consortium (FSTC), which is now part of BITS/
FS Roundtable. This gave me an opportunity to work with Dr. Daniel Schutzer 
and Roger Lang. Project team members included representatives from finan-
cial institutions, professional associations, software vendors, software security 
service providers, and academia. The purpose of the SAI project was to pull 
together state-of-the-art practices in application security for use by financial 
firms. Team members included pioneers in their respective specialties, and ev-
eryone benefited from the outstanding presentations that they gave. I wish to 
thank team participants for greatly enhancing my personal knowledge of the 
subject. The ultimate goal was to set up an industry software test center in 
which commonly used software products could be evaluated. The industry was 
not ready for the test lab at the time, although the concept behind it (namely 
testing and certifying software products for a group rather than by individual 
firm to save on the cost of testing) is still valid, and was mentioned in Joel 
Brenner’s recent book [3]. 

Dr. Jennifer L. Bayuk, who is the program director for cyber security at 
the  Stevens Institute of Technology, and was formerly an eminent information 
security executive for a large financial services firm, introduced me to leading-
edge software engineering as taught at Stevens.

Thanks are also due to the staff at Decilog Inc., particularly Neal and 
Scott Marchesano, Bruce Hennessy, and Jeff Valino, who enabled me to learn 
so much more about how safety-critical, software-intensive control systems are 
developed and tested. In addition, I owe a great deal to Artech House editors 
Deidre Byrne, Samantha Ronan, and Judi Stone, who kept the pressure on 
until I finally delivered the manuscript. I really don’t think I could have done it 
without their support and urging. Also, my anonymous reviewer was extremely 
helpful in pointing out omissions and errors, and in making some very helpful 
suggestions.

Finally, I want to thank my family, especially my wife, Judy, for putting 
up with so much during the writing of this book. It really did interfere with so 
many other things that we wanted to do together. Unfortunately, that seems to 
be the price that most authors and their families are required to pay.

Endnotes

[1] See http://web.cs.wpi.edu/~guttman/cs559_website/wcf.pdf, last accessed on July 23, 
2012. 



6	 Engineering	Safe	and	Secure	Software	Systems		

[2] Herrmann, D. S., Software Safety and Reliability, Los Alamitos, CA: IEEE Computer So-
ciety, 1999.

[3] Brenner, J., America the Vulnerable: Inside the New Threat Matrix of Digital Espionage, 
Crime, and Warfare, New York: Penguin Press, 2011.



7

2
Engineering Systems

There is nothing more difficult to carry out, nor more doubtful of suc-
cess, nor more dangerous to handle, than to initiate a new order of 
things [or create a new system].  For the reformer has enemies in all 
those who profit by the old order, and only lukewarm defenders in all 
those who would profit by the new order, this lukewarmness arising 
partly from fear of their adversaries, who have the laws in their favor; 
and partly from the incredulity of mankind, who do not truly believe in 
anything new until they have had the actual experience of it.
—Niccolo Machiavelli, The Prince, 1513

You have to be run by ideas, not hierarchy. The best ideas have to win.
—Steve Jobs, Cofounder, Apple Computer

Author’s note: Steve Jobs’s remark raises questions as to the place of creativity and 
innovation in the systems engineering process, particularly the engineering of 
safe and secure software systems. One might presume that there can be little op-
portunity for creativity and flexibility in the clearly-defined, highly-structured 
world of making software systems both safe and secure. However, it can be 
argued that the essence of the problems that we face in software engineering is 
exactly this; that is, not enough imagination and innovation are being brought 
to bear on the traditional systematic engineering processes that produce today’s 
software systems. Perhaps we lack the out-of-box thinking that is needed to 
anticipate the range of threats to which our systems are subjected and to come 
up with innovative approaches to avoidance, deterrence, and remediation. In 
this book, we attempt to bring some measure of insight into the somewhat 
moribund approaches that, to date, may have lacked sufficient innovative and 
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effective ideas. First we will look at what exists today and what is missing. We 
will then suggest how we might alter the balance between good and evil so that 
the good guys have the better ideas…and win.

Introduction

Before embarking on our journey through the maze that is software systems en-
gineering and into the land of safety and security engineering (as these apply to 
software systems), we will dabble in the more general field of systems engineer-
ing, which is by far better established and has higher credibility than software 
systems security and safety engineering.

It is quite remarkable that, with a foundation as sound and effective as 
systems engineering has become over the past 70 or so years, the building and 
deployment of safe, secure, dependable, resilient, and reliable software systems 
remains so inadequate. It is not that the fundamental principles underlying the 
engineering of software systems are particularly lacking, but clearly software 
systems engineering has not yet received the attention and support that are 
needed to establish the pursuit of safe and secure systems as a respected field in 
its own right.

Before diving into the engineering of software systems, we will first ex-
amine the broader field of systems engineering—its approaches, practices, stan-
dards, and so on. The intent is to provide a foundation upon which to build 
lower-level approaches relating to software safety and security, as well as to help 
identify and resolve the gaps between systems engineering and software engi-
neering. By carrying over some of the structure and processes of the longer-
established discipline of systems engineering, we can apply the experience and 
proven practices of systems engineering to the less mature art of engineering 
safe and secure software systems.

Some Initial Observations

Later in this chapter, we will work with a specific hierarchy of terms in order 
to facilitate more meaningful definitions that we will use throughout the book. 
The hierarchy trickles down from general systems to software-oriented and 
hardware-oriented systems, and then to the security and safety of those systems. 
While the focus of this book is on software systems, there is increasing interest 
in the need for codesigning applications and related systems, particularly for 
high-performance computing. We will, therefore, consider the implications of 
the need to design applications in conjunction with the contexts within which 
they operate.
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We shall also see that the more one drills down into specific character-
istics, the less we seem to have a good knowledge base, sound practices, and 
effective support and understanding. This is indicated by the opposing arrows 
of Figure 2.1.

General systems engineering is a long-established, well-regarded field with 
many researchers and practitioners having developed an abundance of stan-
dards, processes, and procedures. However, as we descend down the hierarchy 
to software and hardware systems engineering, we begin to hear complaints 
about whether or not the essence of systems engineering has been transferred 
to software systems engineering in particular. Quite a number of outspoken 
individuals decry the current state of the software systems engineering field as 
lacking the credibility, discipline, and effectiveness that would be expected of 
such a technical field.

Top class software development shops display high levels of sophistica-
tion, structure, and control throughout their software development life cycle 
processes, some accomplishing the highest levels of capability maturity. Perhaps 
the best-known example of a process improvement approach is the Capabil-
ity Maturity Model Integration (CMMI) process introduced by the Software 
Engineering Institute of Carnegie Mellon University. A considerable amount 
of resources are available on their website [1]. It is interesting to note that, even 
though the Software Engineering Institute has developed and supported the 
CMMI process for over two decades, the approach is not limited to software 
development processes, but has expanded into such areas as system design, ac-
quisition, security, risk, and process management. The International Systems 
Security Engineering Association (ISSEA) [2], in fact developed a Systems Se-
curity Engineering Capability Maturity Model (SSE-CMM–ISO/IEC 21827) 
[3]. However, judging from the ISSEA website, the organization appears to no 
longer be active. This is perhaps indicative of the low level of interest and sup-
port for the development of secure software systems.

Figure 2.1	 The	relationship	of	management	effectiveness	to	scope.
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Yet, while those processes may meet the high capability standards that 
certification requires, the quality of software produced can still be deficient. 
For example, the software might not function properly (i.e., it does not meet 
all stated functional requirements) and may not satisfy nonfunctional require-
ments for security, resiliency, scalability, and so on.

What happens if we drill down one more level to the security and safety 
aspects of software systems?  Safety-critical software systems are generally more 
solidly built; that is, they are more reliable and resilient than security-critical 
software systems. This is understandable because human life is often at stake. 
However, even safety-critical systems do not always achieve the highest stan-
dards, particularly with respect to their security attributes. Quite a large body of 
work has been developed over the past 15 years or so relating to building secu-
rity into software, yet the acceptance of security requirements as part and parcel 
of a software system is low in comparison to the acceptance of safety require-
ments. That is not to say that there aren’t any forward-thinking organizations 
that excel with respect to their security practices. There are. Some of them have 
had their achievements broadly publicized, such as in the Building Security In 
Maturity Model (BSIMM) report, which documents the security posture of 
firms that participated in the survey based upon a series of attributes [4].

As illustrated in Figure 2.1, we see that in general, certain aspects of the 
engineering of secure and safe software systems such as interoperability and 
portability diminish in the amount of attention paid to them as we enter into 
these areas of more limited scope. 

What we are seeing is essentially a top-down process, with the message 
becoming more garbled and less intelligible as we approach more specialized 
and detailed areas. From reading a broad range of publications and attending 
a number of conferences and seminars on systems engineering, software engi-
neering, and related fields, we see that, in general, systems engineers pay rela-
tively little attention to software systems engineering; software engineers appear 
to ignore both the guidance that can be gleaned from systems engineering on 
the one hand, and the nonfunctional aspects of software systems, such as secu-
rity, safety, and resiliency on the other hand. With such a top-down hierarchy, 
there is little chance of significant improvement in the overall security, safety, 
and resiliency of software systems. Indeed, it appears that we might be heading 
in the opposite direction.

Despite some excellent software engineering programs being offered by 
major universities, such as Carnegie Mellon University’s Software Engineering 
Institute and the Stevens Institute of Technology, the field is still grossly under-
served. For example, a Master of Software Assurance Curriculum [5] illustrates 
some significant advances that are being made in the academic arena. Unfortu-
nately, the size and scope of these academic initiatives only begins to address the 
huge deficiencies in knowledge and training in this field.
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The answer to the question of what needs to be done is fairly obvious: 
we need to ensure that the supporters of nonfunctional capabilities, such as 
security professionals, are involved at the beginning of the decision process and 
throughout the development life cycle of software-intensive systems. The chal-
lenge is not to determine what should be done—that has already been estab-
lished—but how to get it done. With all the forces of time to market, cost 
savings, competitive advantage, budget constraints, complex functionality, and 
the like, working against the goal of safer and more secure software systems, it is 
unlikely that needed changes will happen of their own accord. There need to be 
incentives for those making such a radical change in approach, or disincentives 
for those not adhering to a mandate to change the approach to engineering safe 
and secure software-intensive systems. 

Deficient Definitions

A significant detraction to solving the problem of attaining the needed level of 
proficiency in systems engineering, particularly with regard to software systems 
engineering, lies in the ambiguity of language used and the relative looseness of 
definitions of terms like systems engineering and software engineering, security 
engineering, and safety engineering. In [6], Allman describes, with considerable 
insight, the reasons for such ambiguity, as follows:

Our normal human language is often ambiguous; in real life we handle 
these ambiguities without difficulty ... but in the technical world they can 
cause problems. Extremely precise language, however, is so unnatural to us 
that it can be hard to appreciate the subtleties. Standards often use formal 
grammar, mathematical equations, and finite-state machines in order to 
convey precise information concisely ... but these do not stand on their 
own ...

In its definitive guide, the International Council on Systems Engineering 
(INCOSE) [7] expresses this same concept with a specific focus on systems 
engineering (SE), as follows:

One of the Systems Engineer’s first jobs on a project is to establish 
nomenclature and terminology that support clear, unambiguous 
communication and definition of the system and its functions, elements, 
operations, and associated processes ... It is essential to the advancement of 
the field of SE that common definitions and understandings be established 
regarding general methods and terminology that in turn support 
common processes. As more Systems Engineers accept and use a common 
terminology, we will experience improvements in communications, 
understanding, and ultimately, productivity.
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The INCOSE guide [7] then provides a list of definitions for frequently 
used terms, some of which will be repeated below.

A major contributing factor to deficiencies in software systems engineer-
ing appears to be the unwillingness or inability of specialists in one specific area 
(such as system engineers, software engineers, and hardware engineers) to com-
municate adequately. There is a particular need to improve communications 
between security and safety software systems engineers, as discussed in [8].

This lack of communication causes subject-matter experts and decision-
makers in each narrow area of specialization to be at serious risk of missing 
important information regarding system requirements and other factors from 
those with the necessary expertise. This is particularly apparent during the criti-
cal requirements, validation and verification stages of the software, and hard-
ware development life cycles. Such omissions can—and have—led to many 
inferior decisions.

Systems engineers dealing with entire systems seem to pay little attention 
to software considerations, as shown by the short shrift treatment of software 
topics in many systems engineering books, publications, and presentations. 
Conversely, with their concentration on the development, operation, and main-
tenance of applications and system software, software engineers tend to pay 
insufficient attention to many of the broader systems considerations, including 
platforms and infrastructures upon which applications and systems software 
operate as well as the human-system interactions. As a result, software products 
often do not exhibit the levels of confidentiality, integrity, availability, safety, 
interoperability, portability, scalability, resiliency, and recovery that should be 
incorporated into any critical system. This is mainly due to these nonfunctional 
characteristics of applications, systems software, firmware, and hardware not 
having been adequately accounted for in the design and development, and par-
ticularly, the integration of these systems. 

Rationale 

Clearly, the way in which one refers to various topics, subjects, and items can 
greatly affect how one deals with them. Therefore, we will now examine some 
definitions of systems engineering, as well as its components and subcompo-
nents.  We will look into definitions of applications, system software, software 
systems, and software engineering (or, more precisely in the last case, software 
systems engineering). It will be shown why the broad range of common usage 
of these definitions produces large gaps in understanding between what exists 
and what is needed.

We will then go through a similar exercise for security and safety engi-
neering: first defining our terms and then describing why the philosophies and 
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means of addressing issues differ so much between the two disciplines of soft-
ware security engineering and software safety engineering.

We will investigate these gaps further and suggest some specific approach-
es and activities to address and close them. We will provide guidance for adher-
ing to more structured systems-engineering processes for designing, building, 
testing, deploying, operating, and decommissioning safe and secure software-
intensive systems. Furthermore, we will suggest how the numerous separate and 
independent silos can be brought together into a more collaborative environ-
ment so that each party can learn from the others and consequently arrive at 
much more productive and effective modes of operation and more acceptable 
results, as described in [8].

What Are Systems? 

In order to come up with a viable definition for systems engineering, we must 
first develop and describe a structure that relates systems engineering to all the 
various components and subcomponents that arguably fall within its scope. We 
will select components that have particular relevance to this book from those 
shown in Figure 2.2. However, we need to always keep the remaining compo-

Figure 2.2	 Structure	and	hierarchies	of	systems	engineering.
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nents and subcomponents in mind because they provide appropriate context 
for further discussions.

The hierarchy and relationships of components and subcomponents (as 
shown in Figure 2.2) provide a host of terms, and consequent definitions. At 
the top of the diagram, there is a box labeled “systems,” and near the bottom is 
another box labeled “engineering.”

First, let us examine the definitions for a system and for engineering sepa-
rately, and then combined. 

The IEEE Standard 610.12-1990, which has been replaced with IEEE/
ISO/IEC 24765-2010 [9], defines a system as:

… a collection of components organized to accomplish a specific function 
or set of functions.

Christensen and Thayer [10] rework the above definition somewhat to 
come up with the following:

A system is a collection of related or associated entities that together 
accomplish ... one or more specific objectives.

In the U.S. Department of Defense (DoD) text [11], the definition 
becomes:

A system is an integrated composite of people, products, and processes that 
provide a capability to satisfy a stated need or objective.

When each of the above definitions are compared, the main difference 
is whether the goal is to satisfy a single need, function, or objective, or more 
than one of them. The IEEE definition takes care of both. However, the DoD 
definition also has merit because it lists the components as people, products 
and processes. 

In Figure 2.2, the second row of boxes represents six elements that can 
make up a system, the first three of which correspond to the DoD definition. 
The elements include the following areas: people; technology (or products)—
such as hardware and software; processes—development, operations; facilities; 
data; and documents.

As we proceed down Figure 2.2, the next two rows itemize the character-
istics of the elements. For clarity, we only show those items that are of specific 
interest. However, it should be noted that each of the elements can be broken 
down, and that the breakdowns are also relevant to other areas of interest; this 
is not shown here in order to simplify the presentation. As a simple example, 
the category “data” can be broken down into structured and unstructured data. 
Our particular focus is on technology systems, and within that category we 
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are focusing on software, although we shall touch upon other elements such as 
people (or human factors) and processes such as development and operations.

Software is further split into its functional and nonfunctional character-
istics. This is a common way to divide software characteristics. However, as we 
will show subsequently, such a characterization has led to major gaps in how 
software systems are tested. In any event, the usual set of nonfunctional soft-
ware characteristics is as follows: 

• Security;

• Safety;

• Performance;

• Reliability;

• Compliance.

As the title of this book suggests, our main focus will be on the first two 
categories, namely, the safety and security of software systems.

The distinction between safety-critical and security-critical software sys-
tems will be examined in greater detail in Chapter 4. At this point, we present 
the definitions introduced by Boehm [12], as follows:

• Safety-critical software: the software must not harm the world.

• Security-critical software: the world must not harm the software.

That is to say, software systems that are judged to be safety-critical must 
not present a hazard to human life or the environment. This is an outward-
looking perspective.

On the other hand, security-critical software systems are inward-looking 
to the extent that it is necessary to protect the software and any sensitive data 
such as nonpublic personal information and intellectual property from misuse, 
damage, or destruction from attacks by external or internal persons or com-
puter applications.

As we shall see throughout this book, it is this divergence of viewpoint 
between software safety engineers and software security engineers that leads to 
major software systems engineering issues, particularly when there is a require-
ment to combine both safety-critical and security-critical software-intensive 
systems into what are increasingly termed cyber-physical systems, particularly by 
United States government agencies.

Near to the bottom of Figure 2.2, we show a box for “engineering.” Engi-
neering can be defined as follows:
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… the creative application of scientific principles to design or develop 
structures, machines, apparatus, or manufacturing processes, or works 
utilizing them singly or in combination; or to construct or operate the 
same with full cognizance of their design; or to forecast their behavior 
under specific operating conditions; all as respects an intended function, 
economics of operation and safety to life and property [13].

At the bottom of Figure 2.2, we include activities relating to engineering, 
namely assurance and management. Assurance comprises testing and repairing. 
Management activities related to engineering include monitoring, analyzing, 
reporting, and responding.

As the reader can see, some of the boxes in Figure 2.2 are made up of 
solid lines, whereas other boxes are bounded by dashed lines. We will bypass 
the dash-framed boxes when using the hierarchy to designate a particular com-
bination. Thus, we arrive at the term software security engineering rather than 
technology software nonfunctional security engineering.

Deconstructing Systems Engineering

The field of engineering has clearly had, and continues to enjoy, a very long and 
auspicious history that goes back over millennia. There is no question that the 
building of the Egyptian pyramids, the English Stonehenge, the Easter Island 
statues, the Mayan pyramids at Chichen Itza, Mexico, and other marvelous 
ancient constructions were amazing feats of engineering. Did those projects 
follow what we now would consider to be a systems engineering approach? The 
builders of these monuments clearly must have adopted some organizational 
structure and management processes in order to accomplish what they did. 
Archeologists have discovered highly sophisticated mathematical, architectural, 
and construction methods in documents used by engineers of these ancient 
monuments. However, the processes would not have followed the specific pre-
cepts of what we now call systems engineering in as formal a manner, although 
many of the components must have been utilized in order to accomplish these 
great works.

In modern times, the specific terminology for the discipline of systems 
engineering has only been in common use for a relatively short 70 years or 
so, although various documents attribute the creation of the term to different 
parties and at different times. Christensen and Thayer [10] quote Alberts [14], 
who asserted that the term was originated by a certain H. C. Hitch at Penn 
State University in 1956 [15].

The INCOSE website claims that the term systems engineering was coined 
by researchers at Bell Telephone Laboratories in the 1940s [16]. The INCOSE 
document [7] provides a timeline going back to the development of the Rocket 
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locomotive by Robert Stephenson and Company in the 1820s, and includes a 
British team that analyzed the United Kingdom’s air defense system in 1937. 
The INCOSE timeline also includes Bell Labs during 1939–1945, which agrees 
with the above claim. INCOSE attributes the invention of systems analysis to 
the RAND Corporation in 1956, which appears to differ from the Christensen 
and Thayer claim (with respect to who originated which terms). However, both 
agree that the term was originated in 1956. It is sufficiently accurate for our 
purposes—given the discrepancies in the literature—to state that systems en-
gineering and systems analysis as we know now them originated in the mid-
twentieth century and evolved through the latter half of that century.

A somewhat broad consensus has it that the discipline of systems en-
gineering was driven in the 1940s and 1950s by the need to manage large, 
complex projects involving systems of systems, in which the properties of the 
sum of the parts of a system were often greater than the sum of the properties 
of the individual parts [17]. Much of the motivation for developing the art of 
systems engineering came from the requirements of the U.S. Department of 
Defense [11] and the National Aeronautics and Space Administration (NASA) 
[9].  We will, therefore, lean heavily on the works of these and other U.S. gov-
ernment agencies, as well as the publications of professional associations, such 
as the IEEE (Institute of Electrical and Electronics Engineers) [9] and INCOSE 
(International Council on Systems Engineering) [7], in our discussion of the 
attributes of systems engineering.

Today, there are many researchers and practitioners who are proud to 
number themselves among the ranks of systems engineers. Professional orga-
nizations, such as INCOSE and IEEE, which are a highly regarded and which 
produce impressive lists of publications and other valuable resources, have 
sprung up and prospered in response to the evolution of the field.

However, as discussed above, there appears to be a substantial gap between 
how software engineers view themselves with respect to systems engineering and 
how software systems engineers should integrate systems engineering into their 
own practices more extensively. This will be discussed in the following chapters. 
It is not that software developers do not follow structured practices equivalent 
to systems engineering guidelines—for the most part they do—particularly in 
the U.S. Department of Defense, where precise and detailed software develop-
ment practices have evolved, as described in [11]. It is more that adoption of 
the formal processes of systems engineering is not generally accepted in what 
are considered related, but distinct, fields relating to software, safety, and secu-
rity. For example, the system development life cycle (SDLC) has indeed been 
enthusiastically adopted by many modern software development shops, but is 
not usually embraced by smaller, less mature organizations because doing so 
introduces considerable overhead.
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It is quite confusing to see so many combinations of the words systems, 
software, and engineering. What are the precise differences between systems en-
gineering, software engineering, software systems engineering, and systems soft-
ware engineering? Some of the differences may appear to be obvious, but others 
are not so obvious. When systems are aggregated into systems of systems, what 
terms should be used to describe the characteristics of the much more complex 
combinations of systems, which frequently exhibit behaviors beyond those of 
their individual component systems? The combination of safety-critical systems 
and security-critical systems, such as is occurring with the so-called smart grid, 
produces issues well beyond the reach of the individual systems.

In order to get a handle on these issues, we use the elements of the table in 
Figure 2.3 to assist with explaining the definitions and the relationships among 
components. For example, we see “systems engineering” in the first line of the 
table, “software engineering” in the second line, and “software systems engineer-
ing” in the third line. If we were to reverse Columns 2 and 4 in the third line, 
we would get “systems software engineering,” which has a completely different 
meaning from “software systems engineering.” Systems software engineering 
relates to the engineering of systems software. Software systems engineering 
refers to the application of systems engineering practices to all types of software-
intensive products. Systems software is a category of software that lies below the 
applications software layer and performs many of the administrative functions 

Figure 2.3	 Terminology	and	combinations	of	terms.
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that support the applications. It includes operating systems and utilities, such 
as sort algorithms.

Some might consider such differentiations as those mentioned above and 
illustrated in Figure 2.3 to be splitting hairs, but terminology that is confusing 
and ambiguous will almost invariably lead to misunderstandings or worse, as 
was suggested above. Such a situation arises when researchers and practitioners 
miss whole bodies of applicable work because calling the same item by partially 
or completely different names results in their searches for relevant information 
being incomplete or, worse yet, inaccurate and misleading. We have already 
discussed how software engineers often do not see themselves as systems en-
gineers and vice versa, but this is merely on the surface. As we dig deeper, we 
will find that such high-level perceptions lead to problems with the omission 
of important requirements for complex systems that are commonly developed 
and implemented today.

What Is Systems Engineering?

At this point, we will tackle the seemingly simple task of defining systems en-
gineering. There are many definitions of this term, each of which differs some-
what from the other, sometimes minimally; in other cases, the differences are 
substantial.

 One widely-quoted definition of systems engineering is the one in the 
DoD text [11], namely:

… an interdisciplinary engineering management process that evolves and 
verifies an integrated, life-cycle balanced set of systems that satisfy customer 
needs.

An important aspect of this definition is that systems engineering is a 
process involving a variety of professional disciplines. The sole objective of this 
process is to create systems that meet users’ needs. The author does not argue 
with this definition, but will raise questions with respect to the real-world im-
plementation of the process. For example, are all necessary disciplines included 
at appropriate stages of the process? It will be asserted that they are not. Have 
the needs of customers or nonhuman users been adequately identified? It will 
be claimed that users likely only express the functional requirements of which 
they are personally aware or that directly affect them, and that they omit a host 
of requirements that they either don’t know about or don’t care about.

Another definition of systems engineering is:
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… an interdisciplinary field of engineering that focuses on how complex 
engineering projects should be designed and managed over the life cycle of 
the project. [19]

And yet another definition [10, p. 8] is:

… the practical application of the scientific, engineering, and management 
skills required to transform a user’s need into a description of a system 
configuration that best satisfies the need in an effective and efficient way.

Clearly these definitions suggest a life cycle process that begins with the 
identification of user needs and should end up with one or more systems that 
meet those needs. The success of systems engineering in general depends on ef-
forts to organize system design and development processes that function effec-
tively within and between organizational units because the right level of man-
agement and control functions exists. In the following section, we examine the 
various stages in the process and describe some effective controls for the systems 
creation environment.

Systems Engineering  and the Systems Engineering Management 
Process

As mentioned above, the pioneers of systems engineering were involved in large 
government (or public sector) programs relating to space exploration and mili-
tary systems. We will, therefore, place emphasis on those sources initially, and 
then look at how the systems engineering (SE) approach has been adopted by 
others, particularly in the nongovernment or private sector.

The definitions of public and private sectors can vary with country. In the 
United States, “public” is generally equivalent to “government” and “private” 
means “nongovernment,” although nonprofit, academic, and religious organi-
zations are often recognized to be different. In Great Britain and many other 
European countries, a third sector is defined. This refers to nongovernment, 
nonprofit organizations. In other countries, such as Japan and India, they de-
fine a “joint sector,” which refers to industries or companies owned and/or run 
by both the public and private sectors [20]. For the purposes of this book, we 
differentiate between government and nongovernment sectors.

Christensen and Thayer [10] list the following systems engineering 
functions: 

• Problem definition is the determination of customer requirements with 
respect to product expectations, needs, and constraints.
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• Solution analysis is the analysis of options satisfying requirements and 
constraints and selection of the optimal solution.

• Process planning is the prioritization of major technical tasks and the 
effort required for each task and the determination of potential project 
risks

• Process control is the establishment of control methods for technical ac-
tivities including the measurement of progress, review of intermediate 
products, and initiation of corrective action when necessary.

• Product evaluation is the determination of quality and quantity through 
testing, demonstration, analysis, examination, and inspection.

These life cycle functions are common throughout software systems engi-
neering projects and their subcomponents. The latter deal with such attributes 
as security and performance. It is, however, quite confusing because different 
types of projects result in varying emphasis on specific activity phases and the 
terms used, particularly when comparing DoD terminology with others, which 
often results in even more confusion.

In simple terms, requirements are obtained and converted into some form 
of system or other by means of a series of activities making up a project. Due 
diligence suggests that, prior to release, a system needs to be thoroughly tested 
to ensure that it meets original requirements. This sounds simple, but, as we 
shall see, if it were that simple then there would be universal standards, which, 
if adhered to, would presumably result in systems that meet their requirements 
perfectly every time. Clearly, we do not see such a result and this is because 
there are always tradeoffs that have been made due to constraints on resources 
and funding, time until delivery, and the ability to do as good a job as possible. 
A project is always a tradeoff among timeliness, quality, and cost; you can try to 
optimize two out of three, but it is not feasible to optimize all three for the same 
project. With respect to the project management triangle, practitioners will sum-
marize this as: fast, good, cheap—pick any two [21]! A major exception to this 
restriction appears to be well-funded government contracts, where cost over-
runs and time delays are common and seemingly acceptable, although much of 
the reason for this may lie in the governance model in which politicians with 
little technical knowledge—but a clear political agenda—have responsibility for 
oversight of the management of the project.

It is ironic that the origins of systems engineering and by far its most rig-
orous methodologies have emanated from military and space programs, both 
of which are government sponsored, and yet these projects appear to frequently 
suffer huge overruns in time and money and often lack critical features that 
were specified in the requirements documentation. The same appears to be 
quite common in academia, where the product itself is often subservient to the 
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potential accolades and kudos to be gained from well-accepted research papers 
and publications in quality journals. That is not to say that the private sector is 
doing any better a job in general, but where there is effective management and 
governance, large complex projects do get done on time, fall within budget, and 
exhibit high quality.

Nevertheless, the private sector can learn a great deal from the methodolo-
gies created by research organizations for government, as long as effective gov-
ernance and strong project management are implemented. We will, therefore, 
proceed with further descriptions of systems engineering management derived 
from publications by engineering groups, such as the Institute of Electrical and 
Electronic Engineers (IEEE) Computer Society, and the U.S. Department of 
Defense (DoD) initiatives.

The DoD Text

Perhaps one of the most detailed and complete descriptions of the systems engi-
neering process is that utilized by the DoD. The document, Systems Engineering 
Fundamentals, was prepared and published in 2001 by the DoD Systems Man-
agement College [6], and is available online for everyone to read.

For those, such as this author, whose information technology and infor-
mation security career have been in the private sector, the terminology and em-
phasis of the DoD approach can appear quite foreign. The management process 
is seen as being highly regimented, with little opportunity for variations. This 
likely stifles innovation, as the quotation by Steve Jobs at the beginning of this 
chapter would suggest. Of course, given the types of systems developed for the 
military, perhaps the last thing that one wants to see is unbridled creativity, 
which is nonetheless often the hallmark of leading-edge commercial systems 
ventures.

As will be discussed later in this book, this dichotomy of approaches be-
tween military and commercial systems engineering carries through to many 
other aspects of the systems. In particular, military systems have (up until re-
cently) emphasized safety, reliability, and predictable operation above all else, 
whereas commercial systems generally look to beef up security (although ve-
hicle control systems do focus on safety). Going forward, however, the impor-
tance of security, especially for network-centric systems, is being recognized and 
accounted for in all areas of endeavor.

Another Observation

In researching for this book, the author became fascinated with the singular 
lack of reference to the DoD standards and practices in books and articles about 
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nongovernment, especially nonmilitary, systems and software engineering. It is 
as if a whole body of knowledge relating to military and other government sys-
tems and software engineering has been excluded from consideration in those 
publications aimed at a general audience. This is a shame, to say the least, as 
such knowledge transfer would help all involved parties.

More on Systems Engineering

Remaining on this topic of the differences in approaches between various pub-
lic-sector and private-sector entities, we will briefly look at how the emphasis of 
systems engineering management approaches differs between groups and how 
the difference in emphasis is at once considered appropriate for the types of sys-
tem that have traditionally been within their purview, but, on the other hand, 
hampers each group from benefiting from the knowledge and skills of other 
groups. Some professional organizations, such as INCOSE, make creditable at-
tempts to be all-inclusive and try to encourage broader participation, yet many 
other groups remain quite insular. 

It is suggested, therefore, that the reader delve into a broader range of 
bodies of knowledge to gain from the wisdom developed within the various 
silos, which unfortunately do not communicate adequately. Some of the differ-
ences that you are likely to discover have to do with the more highly developed 
governance models that government entities have created and their somewhat 
obsessive concentration on requirements going in and on verification and vali-
dation coming out of the process. Not to take anything away from focusing on 
these important areas, but much of the private sector seems unable to afford the 
luxury of such time and money consuming efforts. Despite this drawback, it 
should serve us well to take a brief tour of the DoD approach and compare and 
contrast various components.

The Systems Engineering Process (SEP)

The DoD document [11] describes the SEP as “... a comprehensive, iterative 
and recursive problem-solving process, applied sequentially top-down by in-
tegrated teams.” A significant point here is the use of the term “top-down,” 
clearly pointing to the existence of a well-defined hierarchical structure. While 
the corporate world also has, for the most part, clearly laid-out organizational 
structures, there is generally more room for collaborative teamwork within the 
corporate structure. In fact, in many highly creative systems and software devel-
opment shops, particularly with start-ups and fast-moving companies, design-
ers and developers are given considerable freedom and latitude when it comes to 
problem-solving and putting together systems requirements. Of course, this lat-
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ter environment has both positive and negative characteristics, and these would 
not likely work for weapons systems, for example. Larger, more mature private 
institutions typically have many formal processes and management controls in 
place, and may be more readily compared with the military, which starts out 
being large and formal.

When it comes to developing system requirements, government—par-
ticularly the military—have well-defined user populations that may have little 
direct input into defining initial requirements, although they will probably be 
involved in testing systems in the final stages and providing feedback for tweak-
ing the systems. While the DoD document talks about customers, these recipi-
ents of the end product do not necessarily have much choice about whether or 
not they are comfortable with using the resulting systems, despite any deficien-
cies in their design or manufacture.

That is to say, the usual competitive marketplace—while existing among 
bidders for the military contracts—is not necessarily in force with respect to end 
users when it comes to choosing system features and functionality, for example.

The difference between customers who have free choice and those who 
don’t affects their influence on the design of a system and its use. Here is a real-
world example. The information technology department of a highly-structured 
financial institution (for which both Asian and American traders worked) de-
signed and developed trading systems based on some minimal set of require-
ments obtained from some of the traders. After the trading system has been 
installed, the financial institution insisted that traders use the system as deliv-
ered, whether or not it fully met the traders’ needs. When the same system was 
presented to traders in the United States (who typically consider themselves 
independent entrepreneurs as opposed to subservient employees), they refused 
to use the system. It was very apparent that cultural differences between traders 
in each country had a lot to do with how systems were designed and developed 
and whether or not they were accepted. To some extent, the same observation 
holds true with government agencies and internal corporate systems. However, 
when it comes to commercial systems, the marketplace determines what gets 
used and what languishes.

The formal requirements process in the DoD SEF document [11] in-
dicates that the system operator is the key customer, and that customers are 
required to provide the basic needs for the system. According to the DoD SEF 
[11], operational requirements should answer the following questions, some of 
which have been slightly modified from the original:

• Where will the system be used?

• How will the system accomplish the mission objective? 

• What are the critical system parameters to accomplish the mission?
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• How should the various system components be used?

• How effective and efficient must the system be in performing its mis-
sion?

• How long will the system be in use?

• In which environments will the system be expected to operate effec-
tively?

The DoD SEF [11] lists the following system requirements:

• Customer requirements are the expectations of systems in terms of mis-
sion objectives, environment, constraints, and measures of effectiveness 
and suitability.

• Functional requirements are the necessary tasks, actions, or activities that 
must be completed.

• Performance requirements are the extent to which mission or function 
must be executed with respect to quantity, quality, coverage, timeliness, 
and readiness.

• Design requirements are the “build to” requirements for products (e.g., 
hardware, software) and “how to execute” requirements for processes.

• Derived requirements are the implied or transformed from higher-level 
requirements.

• Allocated requirements are established from division of high-level require-
ments into a number of lower-level requirements. 

It is noteworthy that the above requirements list makes no explicit men-
tion of either security or safety. These latter factors—along with others relat-
ing to such characteristics as resiliency and interoperability—would likely be 
subsumed within the performance requirements, were they to be considered at 
all. Nevertheless, the lack of appearance of these nonfunctional requirements 
is not surprising because broader publications in systems engineering also tend 
to omit them. It is usually only when, for example, there are special issues of 
magazines and journals related to such fields are systems engineering, electrical 
engineering, or other branches of engineering focused on software, security, 
and safety (as well as books that specifically cover software, security and safety 
engineering, and related subjects), that the reader of the broader engineering 
publications gets to learn more about these topics.
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Summary and Conclusions

In this chapter, we have addressed some of the confusion in regard to the defi-
nitions of systems and systems engineering, and we have discussed some of the 
issues that arise in the systems engineering process. The reader can access some 
excellent guides and handbooks on systems engineering, some of which (such as 
the DoD and NASA documents referenced in this chapter) are available in the 
public domain at no charge, to learn more about specific aspects of the subject.

The main take-away from this chapter should be recognition that there 
is inadequate sharing among various government and nongovernment players 
and among different subcategories, such as those relating to security and safety.

A goal of subsequent chapters is to encourage the engagement of diverse 
groups, who today do not communicate sufficiently, and also to achieve some 
measure of consistency across fields.
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3
Engineering Software Systems

Software engineering is still an oxymoron [1]
—John Pescatore, Gartner Inc.

... software engineering, as originally envisaged, does not yet exist [2]
—David Lorge Parnas, Middle Road Software

Introduction

Software is different from most other products and services acquired by con-
sumers, customers, and organizations. It is arguably more like a fuel than it 
is a product because all systems that include software as a component require 
an infusion of software in order to operate. Yet, unlike a fuel, software doesn’t 
get depleted with use. Application software also differs from a fuel in that it 
is the product that you, the so-called user, usually interact with, rather than 
something that is somehow activated in the background, as is a fuel. However, 
as with a fuel, software is not self-sufficient. It needs a context within which to 
perform. Out of context, it is useless. If you obtain a disk containing software 
or you download software over a communications link, the software has to 
be used on a system comprising particular equipment (or hardware), such as 
computer processors, storage devices, and communications networks, and (for 
applications) system software and utilities, all of which support software prod-
ucts but themselves do not have any end-user functions without the requisite 
application software.

Other characteristics of software products and the data that they handle 
have a profound impact on security, safety, resiliency, and similar nonfunctional 
software system attributes. One is that software can be duplicated for extreme-
ly low incremental cost and can be modified or exploited at will (although 
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doing so will usually negate any license terms and warranties), often without 
the changes or attacks being detected and without the perpetrators having to 
be in the same physical location as the original software, as long as they have a 
means of connecting to or accessing the software and data. Another characteris-
tic of software is that customers generally license rather than own commercial-
off-the-shelf (COTS) software (as opposed to home-grown software, which is 
owned by the manufacturer or its designees), so that one is limited as to what 
one can do with COTS software in terms of alteration of the program code 
and reselling the resultant product. One exception to this rule is open-source 
software, which is owned by no one and maintained by a community. How-
ever, open-source license agreements have their own idiosyncrasies that must be 
considered, as in [3]. 

It might seem reasonable, therefore, to explain the reticence of some sys-
tems engineers, comfortable in fields such as mechanical, civil and electrical 
engineering, and architecture, to becoming involved with and dealing with 
software and its related issues due to the unique characteristics of software as 
described above. As mentioned in [4], such traditionalists are likely to be more 
comfortable in the physical world (as opposed to the virtual world), even though 
they will likely use personal computers for various purposes such as emailing, 
social networking, spreadsheet calculations, and word processing. However, this 
latter involvement is not the same as that of incorporating industrial-strength 
software into the actual systems that they are engineering. By giving short shrift 
to software and its implications, such systems engineers will likely omit serious 
software considerations when designing and building systems and when inter-
facing their traditional physical systems with the increasingly pervasive virtual 
world.

On the other hand, today’s so-called software engineers often do not have 
a formal grounding in software engineering but enter the software systems en-
gineering field directly through basic training, in college or commercial train-
ing programs in software programming skills, and on-the-job experience in a 
development shop, with occasional certifications in specific vendors’ products 
for the use of specific platforms and infrastructures.

That is not to say that formal project management methods are not fairly 
common in software development projects. They are particularly prevalent in 
large software manufacturing entities. In this chapter, we present a number 
of well-formulated examples of such approaches that are described in the lit-
erature. In reality, the methods and practices of systems engineering project 
management have existed in the software development space for decades.  How-
ever, endorsing and practicing project management alone is not the same as 
following the philosophy and practices of the systems engineering approach. 
The structure and rigor to be found in systems engineering is more prevalent 
in the development of software for military systems, avionics, space programs, 
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and the like, than it is with noncritical commercial systems. However, certain 
critical sectors, such as financial services, do use formal techniques to ensure 
the correct functionality of their operational computer-based systems through 
which trillions of dollars are processed every day.

The Great Debate

There are a number of individuals, such as John Pescatore and David Lorge Par-
nas (quoted above), who believe that the field of software systems engineering 
has generally failed to absorb the rigorous practices and disciplined processes 
and procedures of systems engineering.  This view is reinforced by frequent re-
ports in the press of successful attacks against software systems and the seeming 
inability of many defenders to protect systems against such attacks effectively. It 
is not so much a matter of not trying to systematize software systems engineer-
ing. To the contrary, a huge amount of research and practical effort has been 
expended in this attempt. As will be shown in this book, it is in large part due 
to differences in knowledge, background, experience, capabilities, and goals of 
those individuals who are doing the work. Software remains as much art as 
science, and few practitioners developing today’s huge, complex software sys-
tems have the personal breadth or the interest in reaching beyond the particular 
needs of their jobs. On the other hand, the majority of those with security, 
safety, privacy, dependability, performance, and resiliency backgrounds do not 
have a good grasp of applications software and the software development pro-
cess; they often seem incapable of explaining their requirements to developers 
and especially to the users, managers, and customers for whom the software 
systems are meant. 

Nevertheless, despite the apparent flagrant disregard among many cre-
ators of software systems of formal approaches of systems engineering and other 
engineering disciplines, there appears to be increasing recognition of the need 
to build into software systems such attributes as security (i.e., confidentiality, 
integrity, and availability), safety, survivability, interoperability, portability, sus-
tainability, and resiliency. The rationale for this growing appreciation for non-
functional requirements is readily apparent; the earlier in the development life 
cycle that such factors are considered (and errors or omissions found), the less 
expensive it will be to include their requirements. Yet attempts to ensure that 
the desired levels of these nonfunctional factors are incorporated into software 
systems seem not to have gained sufficient traction to overcome the recent rapid 
surge in reported attacks, particularly if one believes that there is a relationship 
between more formal methods and improvements in the quality of software, 
which is the fundamental assertion of this book. This growth in exploitable 
and exploited vulnerabilities continues despite the efforts of many researchers 
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and practitioners to include security, safety, and resiliency  into the software 
system development life cycle processes, suggesting that we need both new and 
improved approaches to engineering such systems.

The raging debate of the moment revolves around whether software en-
gineering is, or ever will be, accepted as an engineering discipline. However, 
there remains a question as to whether or not it really matters whether one can 
pigeon-hole or label software engineering as engineering. We must ask what 
differences in approach are suggested by particular definitions and whether or 
not those differences are, in fact, material.

Some Observations

As in the previous chapter, we will use the hierarchy of terms presented in 
Figure 2.2 in order to assist in our defining software engineering, and to justify 
using the preferred term software systems engineering.

As we descend one level from systems to software (as well as hardware) 
systems engineering as depicted in Figure 2.2, we are confronted with com-
plaints about whether or not the essence of systems engineering has indeed been 
handed down to software systems engineering. Many outspoken individuals 
decry the current state of the software engineering field as lacking the discipline 
and effectiveness that is common for systems engineering. Best-of-class soft-
ware development shops display high levels of structure and control throughout 
their software systems development life cycle processes, some accomplishing 
very high levels of capability maturity. Yet, while the processes may meet high 
standards, the quality of the software that is developed may occasionally be defi-
cient because the software often does not function properly (i.e., does not meet 
all stated requirements) and/or lacks the security, resiliency, scalability, and so 
on, that holistically designed software should have. A particular concern is that 
software designed for one platform and then transported to another platform 
may not be fully compatible with the second environment, due in part to the 
main testing effort having been focused on software running on the primary 
platform.

In general, certain attributes of the engineering of secure and safe software 
systems diminish as we drill down into areas of more limited scope. It is essen-
tially a top-down process, with the message becoming more garbled and fuzzy 
as we descend into the more specialized areas. Thus, we observe that systems 
engineers may pay relatively little attention to software engineering. Software 
engineers, in turn, may well ignore (or more likely, pay minimal attention to) 
the so-called nonfunctional aspects of software systems. Ironically, the nonfunc-
tional requirements are often of more significant concern to systems engineers 
than to software engineers, as the former will likely take a broader, more holistic 
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view of the systems that the software is a part of. With a top-down hierarchy, 
there is very little chance of much improvement in the overall security, safety, 
resiliency, and performance of software systems. Indeed, it often appears that 
we are charging in the opposite direction until some limiting factor or costly 
incident makes the engineering community focus on a particular attribute that 
dramatically comes to the fore.

The answer to the question of what needs to be done is apparent—we 
need to have the guardians and sponsors of nonfunctional capabilities involved 
from the beginning of the decision process and active throughout the life cycle 
of designing, developing, implementing and operating software systems. Such 
advocates of nonfunctional soundness need to be fully and visibly supported 
and empowered by senior management in order for them to be effective in their 
missions. If management only pays lip service to aspects like security, then the 
appropriate level of attention will never be given to a particular attribute until 
its high-impact failure draws questions regarding management’s effectiveness 
and their ability to control the environment. By then, of course, much of the 
damage will have already been done.

The challenge is not so much a matter of what should be done, but how 
to get it done. In reality, we are pressured by factors such as time-to-market, 
cost reductions, competitive advantage, budget constraints, complex function-
ality, and other compelling features, which work against goals of safer and more 
secure software systems. In such an environment, it is unlikely that needed 
changes and improvements will just happen. There need to be specific and di-
rect incentives for making such major changes in approach and investment in 
nonfunctional attributes. Alternatively, there should be disincentives for those 
not adhering to management mandates to change the approach and include 
nonfunctional attributes into the software system development life cycle.

Rationale 

As stated previously, one’s approach to various subjects is often greatly affected 
by how  one’s terms are defined. Therefore, in this chapter, we examine defini-
tions of software and software engineering—or, more precisely, software sys-
tems engineering. It will be shown that the broad range of usage of these defini-
tions has itself produced large gaps between what is really needed to achieve an 
optimal balance among all contending attributes and what exists today.

Subsequently, we will go through a similar exercise as we did previously 
for other terms, but this time specifically for security engineering and safety 
engineering: first defining our terms, and then describing why the philosophies 
and means of tackling issues, which often differ so much between the two dis-
ciplines addressing security and safety, create so many problems. 
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We will further investigate these differences and suggest some specific ap-
proaches and activities that will help address the gaps and, it is hoped, narrow or 
close them. We will provide guidance for adhering to more structured systems-
engineering processes in the design, building, testing, deploying, operating, and 
decommissioning of safe and secure software systems. Furthermore, we will 
suggest how currently-independent silos can be brought together in a more col-
laborative atmosphere so that each can learn from the other and consequently 
arrive at a much more productive and effective cooperative mode of operation. 
It is not sufficient to merely suggest what will be good for an organization, 
industry, country, or the global economy. Such normative appeals are seldom 
convincing, and few (if any) provide the practical guidance needed to make the 
desired actions happen. Here, we will demonstrate the benefits of including 
the nonfunctional attributes early in the life cycle using arguments that will 
appeal to nontechnical senior management, policy and law makers, auditors, 
and enforcers. What it comes down to is that suggestions offered in this book 
not only make technical and engineering sense, but also offer a sizable return 
on investment.

Understanding Software Systems Engineering

One reason why some might claim that software engineering is deficient is 
that the term itself is too general and not well understood by researchers and 
practitioners alike. One might readily presume that the term software engineer-
ing simply means applying engineering principals and methods to the software 
development life cycle (SDLC). However, software engineering can mean much 
more than merely the software manufacturing process. It also involves installing 
the software on a variety of platforms and infrastructures, and integrating soft-
ware products into existing environments and into systems of systems.

If one accepts a simplistic definition of software engineering, one might 
reasonably presume that the inadequacies in the practice of software engineer-
ing have been fully addressed already by many who manufacture software for 
internal use or sale. However, all the issues clearly haven’t been resolved, as 
witnessed by the increasing number and magnitude of computer system failures 
and the rapid escalation in the number and impact of successful compromises 
of today’s systems.

Deconstructing Software Systems Engineering

We will now spend some time and space trying to tease out workable meanings 
from the multitude of misunderstandings and misinterpretations that haunt 
software engineering and its related areas.
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In the first place, when we refer to software engineering, we likely mean 
the design, development, manufacture, and operation of products that are more 
extensive than mere standalone computer programs. We should use the term 
software systems engineering, because software programs, whether end-user ap-
plications, utilities, or systems software, do not and cannot operate in isolation. 
Software programs exist within broader systems and are frequently only able 
to run on specific platforms and within particular infrastructures. Software is 
only one component of an overall system comprising hardware, communica-
tions networks, people, and processes; but even the apparently straightforward 
term software systems engineering remains somewhat ambiguous. When using 
the term software systems engineering, do we mean the engineering of software 
systems or systems engineering methods applied to software development, or 
should we be even more explicit by expanding the expression to systems engi-
neering methods applied to software-intensive systems?

While the reader might consider such a distinction to be overly specific 
and too exacting, it will be shown that many of today’s software issues, as they 
relate to ensuring that software systems are safe, secure, resilient, interoperable, 
and the like, actually emanate from lack of rigor in defining terms. Defining 
all of the many characteristics of software is not an easy process, nor is going 
through the exercise guarantee that all outstanding issues will be resolved. How-
ever, we will demonstrate that some definitions in this area are often in conflict, 
and that such conflicts result in researchers and practitioners frequently missing 
the point. We will, therefore, try to shed some light on the murkiest areas by 
defining our terms as explicitly as possible.

What Is Software?

Before we discuss the meaning of software engineering, we need to work on 
defining “software.” In simple terms, software consists of computer program 
code, usually written in high-level computer languages, such as C, C++, and 
Java. The resulting source code, of which much software is comprised, is then 
converted into code that is understood by computers by interpretation or com-
pilation. Interpreters convert the source code into machine-readable code each 
time the software is run, whereas compilers produce machine-readable object 
code that is installed only once and is only recompiled if there is a change in 
the source code. Compiled programs tend to be more efficient, especially when 
there are few changes being made to the software relative to the frequency of 
operation. Where efficiency is paramount, developers might write code directly 
in machine language and optimize the software’s run-time demands on system 
resources.
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What Are Software Systems?

There are many flavors of software, such as end-user applications, systems soft-
ware, embedded software, and firmware. Here again, definitions abound and 
their use is often quite sloppy, which leads to confusion, errors, and omissions. 
In Figure 3.1, we see a typical traditional software structure where applications 
run on systems software, which in turn, runs on hardware. The diagram shows 
layers of different types of software. In the minds of the general public, software 
is synonymous with end-user applications or “apps.” Such software is often cre-
ated by applications developers who may have minimal knowledge of underly-
ing platforms and infrastructures, and may relate to the latter through standard 
application programming interfaces (APIs), which allow developers to create 
application functionality without having to worry about the systems’ internals. 
This has the advantage of directing the development of highly technical systems 
software to those with particular expertise in such areas.

However, before going further, let us define software in its various forms 
and relate it to software architecture, as illustrated in Figure 3.2. 

Figure 3.1	 Typical	IT	system	architecture.
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The terms software and computer program are generally considered to be 
synonymous, and most people do not agonize over the specific definitions used. 
However, as software is increasingly embedded into computerized equipment 
(or hardware), it is becoming much more difficult to differentiate among the 
various realizations of software. In some sense, it can be detrimental to one’s 
understanding of systems if definitions are overly specific. This is especially true 
when we consider that software is essential for the creation of computer hard-
ware consisting of transistors, other electronic components and the circuitry 
that are combined to form integrated circuits. Physical units are carved out 
of metals, plastic, ceramics, and increasingly sophisticated composite materials 
using computer-controlled software-driven machine tools. With the advent of 
three-dimensional printing, physical components are now being created (albeit 
mostly in laboratory environments) directly from software systems, jumping 
ahead technically beyond software-controlled machine tools used for carving 
out physical components, although limited in the types of component that can 
be created. Consequently, with software infiltrating into practically every aspect 
of our physical and informational lives, it is no longer suitable to distinguish 
software for independent consideration. Some software actually generates other 
software and is able to create physical objects (as with three-dimensional print-
ing). Software is a rapidly growing part of an increasing number of systems used 
in our everyday lives.

It is interesting to note that references to software in software engineering 
books and articles are often cursory, with authors presuming that we all know 
what software is. For example, Braude and Bernstein [5] point out that “the 
goal of software engineering ... is the creation of software systems ...” without 
saying exactly what they mean by “software.” Of course, one can usually infer 
the meaning that they assign to the term from its use throughout the book, 
but that is not the same as providing a specific definition. Similarly, according 

Figure 3.2	 Typical	applications	software	environment.
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to Christensen and Thayer [6], “[t]he dominant technology in many modern 
products is software ... [which] often provides the cohesiveness, control, and 
functionality that enable products to deliver solutions to customers.”

It might be true, at one level, that we have an intuitive sense of what 
software is. However, in this book we take a different viewpoint and go as far as 
to say that by omitting the definition of software, researchers are creating am-
biguity and encouraging misinterpretation, as Allman points out in [7]. Soft-
ware is complex and dynamic and—in order to deal with issues confronting the 
creation, implementation, operation, and disposal of safe and secure software 
systems—we need to come up with precise, yet somewhat flexible, definitions.

First, let us repeat some of the common definitions of applications and 
system(s) software. The following definitions, except as otherwise noted, are 
from the Open Projects website [8]. The definition of software is as follows:

Software is a generic term for organized collections of computer data and 
instructions, often broken into two major categories: system software 
that provides the basic non-task-specific functions of the computer, and 
application software which is used by users to accomplish specific tasks.

The above definition raises an issue as to whether data should be incorpo-
rated into software or treated separately. It is held here that software and data 
are separate entities, which have different roles within software systems, even 
though one can hard code data into an application—a practice that is better 
avoided if possible because a change in data might then require software modifi-
cation, unit and integration testing, and recompilation, which is time-consum-
ing and somewhat risky. If an entry in a data table can be changed instead, it is 
often much simpler to implement, even though it may still be necessary to test 
the system with the change in data.

Software has both functional and nonfunctional attributes, as will be dis-
cussed when we examine security and safety engineering. Data, on the other 
hand, can relate to or be independent of software and often does not need 
modifications to software when the data changes, although reformatting the 
same data or converting the data to a different file or database system will un-
doubtedly require changes to software. In Figure 3.2, we specifically show data 
as being separate from software. We also illustrate that—while virtually all end-
user software programs are generally considered to be applications—because 
they perform tasks as opposed to controlling hardware or equipment, systems 
software and firmware can also perform end-user tasks such as utility programs 
that sort data. Hence, some subset of systems software and firmware can be 
considered applications according to our definitions. This differentiation be-
comes particularly important when comparing and contrasting application-
related and system-related software.
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According to the Open Projects Web site [9], we have the following defi-
nition of systems software:

System software is responsible for controlling, integrating, and managing 
the individual hardware components of a computer system so that other 
software and the users of the system see it as a functional unit without 
having to be concerned with the low-level details such as transferring data 
from memory to disk, or rendering text onto a display. Generally, system 
software consists of an operating system and some fundamental utilities 
such as disk formatters, file managers, display managers, text editors, user 
authentication (login) and management tools, and networking and device 
control software.

First we should note that, in some cases, writers refer to either system 
engineering or systems engineering. While systems engineering appears to be 
the preferred term, the other version, namely, system engineering, is used here 
whenever a quoted source uses that term. Also, we shall refer to authentication 
as a security service later in this book. While software realizations of authenti-
cation systems are common, authentication can include hardware that is inde-
pendent of the hardware platform used by the applications. Biometrics readers 
and card scanners are examples of such equipment and are a good reason for 
precision in our definitions.

We have the following definition of application software per the Open 
Projects Web site [10]:

Application software ... is used to accomplish specific tasks other than ... 
running the computer system. Application software may consist of a single 
program, such as an image viewer; a small collection of programs (often 
called a software package) that work closely together to accomplish a task, 
such as a spreadsheet or text processing system; a larger collection (often 
called a software suite) of related but independent programs and packages 
that have a common user interface or shared data format, such as Microsoft 
Office, which consists of closely integrated word processor, spreadsheet, 
database, etc.; or a software system, such as a database management system, 
which is a collection of fundamental programs that may provide some 
service to a variety of other independent applications.”

And one more comment on software from Open Projects:

Software is created with programming languages and related utilities, 
which may come in several forms: single programs like script interpreters, 
packages containing a compiler, linker, and other tools; and large suites 
(often called integrated development environments) that include editors, 
debuggers, and other tools for multiple languages.
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What this says, in so many words, is that software tools are often used to 
create applications and systems software. Software is also increasingly used to 
design and create hardware, especially integrated circuits. Therefore it is nec-
essary to examine the security and integrity of hardware-creating software, as 
described by Villasenor [11].

However, before we take a more in-depth look at hardware, we need to 
understand the meaning of the term firmware (as shown in Figure 3.2). One 
definition is as follows [12]:

... firmware is ... often used to denote the fixed, usually rather small, 
programs and/or data structures that internally control various electronic 
devices. Typical examples of devices containing firmware range from 
end-user products such as remote controls ..., through computer parts 
and devices [such as] hard disks, keyboards ..., all the way to scientific 
instrumentation and industrial robots. Also more complex consumer 
devices, such as mobile phones, digital cameras ..., contain firmware to 
enable the device’s basic operation as well as implementing higher-level 
functions.

It is interesting that both computer programs and data are included in 
the above definition of firmware. Some restrict firmware to program code and 
data that cannot be changed once burned into a chip. For example, some define 
firmware as unalterable software burned into read-only memory chips; this is 
the definition provided by the IEEE Standard Glossary of Software Engineering 
Terminology [13] defines firmware as follows:

... [t]he combination of a hardware device and computer instructions and 
data that reside as read-only software on that device.

However, today much firmware can be easily updated due to the ready 
availability of inexpensive nonvolatile memory devices. For example, many 
digital camera manufacturers provide updates to their firmware, which can be 
downloaded from the manufacturers’ websites and installed on the appropri-
ate cameras (as applied to medical equipment, scientific instrumentation, in-
dustrial control systems, and robots) opens up dangerous new possibilities for 
compromise. We note again that the category “data” is included in the IEEE 
definition. This is a more reasonable definition in the case of firmware, in con-
trast to application software because firmware updates will likely modify both 
functionality and data at the same time.

Wikipedia goes on to affirm that there “... are no strict boundaries be-
tween firmware and software, as both are quite loose descriptive terms. How-
ever, the term firmware was originally coined in order to contrast to higher level 
software which could be changed without replacing a hardware component, 
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and firmware is typically involved with very basic low-level operations without 
which a device would be completely nonfunctional. Firmware is also a relative 
term, as most embedded devices contain firmware at more than one level.” 

The statement is also made that “while high-level firmware (or software) 
typically is stored as a configuration of charges, low-level firmware may instead 
often be regarded as actual hardware.” 

This presents a dilemma because developers of application-level software 
(as opposed to system-level software) tend to know little or nothing about the 
underlying hardware platform—they don’t need to in order to fulfill their re-
sponsibilities. However, the November 2011 issue of the IEEE Computer maga-
zine highlights the need for designers of software to work with hardware engi-
neers [14]. This is because (particularly for exascale systems, such as computers 
with the capacity to handle 10 to the 18th power operations per second and 
other large-scale systems), the hardware is hitting against restrictions in cool-
ing. Greater applications and systems software efficiency are needed in order to 
continue to expand the size of such systems. This calls for a heretofore unprec-
edented level of cooperation and collaboration. While the pressure on smaller-
capacity systems is not as great, cloud computing has required a major increase 
in processing power and storage capacity to the extent that the availability of 
cheap electrical energy (often only available from hydro-electric powered gen-
erators) has become a major factor in determining the locations of cloud-com-
puting data centers. There is clearly an increasing need for a holistic view with 
subject-matter experts from a number of different specialties being required to 
design and develop software-based systems in concert with one another.

Now let us take the Open Projects definition of hardware [15]:

Harware is a comprehensive term for all of the physical parts of a computer, 
as distinguished from the data it contains or operates on, and the software 
that provides instructions for the hardware to accomplish tasks. The 
boundary between hardware and software is slightly blurry - firmware is 
software that is “built-in” to the hardware, but such firmware is usually the 
province of computer programmers and computer engineers in any case 
and not an issue that computer users need to concern themselves with.

The assertion that end users should not be concerned about the software-
firmware-hardware mix is questionable because the specifics of such a mix not 
only affect computer and network performance, but also systems availability, 
security, resilience, and the like. If end users are confronted with choices with 
respect to the software-firmware-hardware mix, they may well opt for different 
configurations from those that hardware and software engineers would favor. 
These issues are generally worked out during the requirements phase, which 
is the phase of the development life cycle in which user needs are presented, 
matched against technical capabilities, and negotiated to arrive at the optimal 
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balance between features and technology. The requirements phase is by far the 
most critical step in software systems engineering.

All of this is very confusing and can, to a large extent, be blamed for 
the lack of confidence in software engineering expressed by some researchers. 
The problems of understanding about software systems engineering often stems 
from the lack of accurate definitions. Software is not an amorphous generic 
blob, but rather a spectrum of capabilities covering software, firmware, and 
hardware. Increasingly, these specialties will need to talk to one another. It is 
hoped that the relatively disciplined structure of hardware systems engineer-
ing will be carried across to the software systems arena to the benefit of all 
stakeholders.

Are Control Software Systems Different?

We will now take a slight detour to ask the question as to whether software 
managing information systems and industrial control systems are different with 
respect to how we should approach them.

As we will discuss later, developers and users of many information systems 
have (until recently) had a much greater concern about security than those 
designing and developing control systems. High-integrity industrial control 
systems are needed to manage power plants, oil refineries, airplanes, weapons, 
and the like. Historically, these control systems have been isolated from other 
systems and public networks, and have been independent of one another and 
from business information systems. They also have tended to reside more on 
the hardware-firmware end of the spectrum that do information systems. How-
ever, controls systems are increasingly being networked and linked to informa-
tion systems and networks that expose the said control systems to greater cyber 
security risks. The relatively new term for such systems is cyber-physical systems.

In earlier times, automated control systems could be considered as sepa-
rate from information systems, with control-system emphasis solely on safety 
and with little or no attention paid to security. However, this distinction is 
becoming less and less appropriate as both types are combined into systems 
of systems [16], creating many new areas of vulnerability. Table 3.1 illustrates 
some of these areas of focus as they relate to information systems, control sys-
tems, and combined systems, respectively.

What is Software Systems Engineering?

Having negated the very existence of software systems engineering as a dis-
tinct field, we now look to define software engineering and software systems 
engineering as if they can be legitimized—which they can be. As shown in the 
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hierarchical diagram in Figure 2.2, software is considered a subcomponent of 
technology, with other subcomponents being made up of firmware, hardware, 
and networks. One might also say that software is involved with and (in some 
cases) committed to the creation and operation of firmware and equipment, 
where equipment might be systems, networks, and so on.

We now return to Braude and Bernstein [5], who define the purpose of 
software engineering as follows:

The goal of software engineering ... is the creation of software systems that 
meet the needs of customers and are reliable, efficient, and maintainable. 
In addition the system should be produced in an economical fashion, 
meeting project schedules and budgets.

However, this raises the question as to why the field is not commonly 
called software systems engineering rather than software engineering. Is there a 
significant difference between the two terms? Yes, there is a big difference, and 
it is likely that this difference has contributed greatly to the largest problem in 
the creation of secure software. It has arguably led to incomplete requirements, 
inaccurate specifications, poor design, insecure code, inadequate testing, lack 
of metrics, and a whole litany of complaints about the vulnerabilities found in 
software.

The fundamental issue here is that software does not run in isolation. Any 
piece of software operates only in one particular context or in a limited num-
ber of environments. The context includes hardware, people, and processes. 

Table 3.1 
Information Systems and Control Systems  Versus Security and Safety

Focus Information Systems Control Systems Combined Systems
Security Loss of confidentiality, 

integrity or availability, 
leading to financial 
losses, fraud, etc.

Unauthorized access by 
persons or malware to 
applications that control 
critical systems, such as 
the compromise of isolated 
software managing centrifuges 
processing nuclear materials 
leading to their destruction.

Unauthorized access to 
networks and takeover of 
management of control 
systems, such as electricity 
generation plants and 
distribution grids, natural 
gas lines, refineries, waste 
treatment plants, weapons 
manufacturing, etc.

Safety Potential physical 
damage to external 
subjects due to loss of 
confidentiality, integrity 
and availability (e.g., 
failure or compromise 
of a GPS system that 
might lead to capture 
of a military drone and 
top secret information).

Malfunctioning and/or 
faulty processes leading to 
inappropriate failure of control 
systems and subsequent risk 
to human wellbeing, such as 
for space vehicles, airplanes, 
automobiles, and the like.

Unexpected or planned 
destruction of facilities 
and/or injury to or death of 
humans from misbehaving 
control systems leading to 
compromise or failure of 
communications networks 
and systems
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End-user applications depend on software platforms, as well as the other ap-
plications and system components. Applications are designed to run on specific 
combinations of platforms and infrastructures (hardware, networks, etc.), and 
their security posture is highly dependent on the security of the environment in 
which they operate. For example, an application built for the iPhone may also 
run on an Android phone, but the application’s security depends largely on how 
secure a specific phone might be at any given time.

We should do away with sloppy nomenclature such as software assurance, 
software engineering, and secure software engineering. We need to use terms 
such as software systems assurance, software systems engineering, and secure 
software systems engineering, which are much more specific and meaningful.

The Software Systems Engineering Process

The process for engineering software and related systems has been well-estab-
lished for at least four or five decades. It is really surprising how so little has 
actually changed in the ensuing decades insofar as the software development 
life cycle is concerned.

Braude and Bernstein [5] and Lewallen [17] both give interesting histories 
of the software process, indicating the advantages and disadvantages of each 
method. The approaches and their positives and negatives are summarized in 
Table 3.2.

We also show the approximate year of origin of the various approaches. 
These dates are provided by the various sources referenced; they are only pro-
vided as a guide. Nevertheless, the chronology explains why certain authors 
omitted some approaches because, even if they had already been developed, 
they may not yet have been made public.

Steps in the Software Development Process

To some degree, all approaches contain the fundamental steps of the Waterfall 
approach, which contain the steps indicated in Table 3.3. 

Royce is known as the person who first formalized the Waterfall approach 
in an article [18]. While Royce presented a linear model, it was only for il-
lustration purposes. He propounded an iterative model later in his paper [18], 
but many people nevertheless inappropriately adopted the linear model. That 
Royce himself did not advocate the linear model and supported the iterative 
model is discussed in more detail in [19].

The phases of the SSDLC, as listed in the first column of Table 3.3, 
were common in the era of mainframe computers when computer systems, 
along with developers and operators, were isolated with a few (if any) remote 
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users connected via networks. The software development and implementations 
processes adhered to fairly consistent, structural lines and followed standard 
systems engineering practices and procedures. Systems analysts obtained user 
requirements, analyzed the inputs, and produced software system designs or 
specifications. These designs and specifications were then developed and tested 
by programmers, tested in the quality assurance area, and were then turned over 
to production. There were only a few platforms available, namely, IBM, Digital 
Equipment Corporation (DEC), Data General (DG), and a few other special-
ized systems, such as Control Data. IBM had a few operating systems, and vari-
ations of the UNIX operating system were commonly used on minicomputers. 
Maintenance was usually performed by the developers/programmers, and en-
hancements required that systems analysts update requirements and go through 
the same steps as for the original development process. Documentation relating 
to systems requirements and design was generally provided by systems analysts, 
and programmers were given the responsibility of generating documentation 
about the code that they had written, so that they could more readily maintain 
and upgrade the system. Operational and user manuals were also written by 
systems analysts closest to each aspect.

Because the data processing departments of that earlier era were both 
limited and isolated, security was generally implemented by physical meth-
ods; this is because users were often bound by the need for physical proximity. 
Consequently, it was much more feasible than it is today to secure central and 
remote physical locations and then implement an access management system 
on the mainframe computers. Smaller departmental computers, often in the 
form of minicomputers running the Unix operating system, could be physically 
secured. However, software-based access controls were much less common for 
microcomputers than for mainframes.

In some of the approaches listed in Table 3.2, processes address each step 
sequentially, in others there is feedback from one step to another, and in still 
others there are iterations of the entire process. Also, individual approaches tend 
to stress particular steps and play down others. Preferences among approaches 
often depend on the roles and duties of a particular stakeholder. Thus, a devel-
oper will likely prefer the Agile approach which deemphasizes documentation, 
whereas a support person would favor an approach that yields specific and ex-
tensive documentation.

The texts referenced go into much greater detail with respect to the vari-
ous methods, and guidance is provided as to which method might be the most 
appropriate for a given situation. For example, if the project is relatively small 
and contained, one might favor the Waterfall approach and shy away from the 
Spiral approach.
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Omissions or Lack of Attention

Research into the various sources relating the software systems engineering sug-
gested that there might be several highly important omissions in all of the ap-
proaches. These omissions might account for many of the continuing problems 
emanating from software. We mention these deficiencies below and expand 
upon them in subsequent chapters.

Nonfunctional Requirements

It is particularly interesting how certain so-called nonfunctional attributes of 
software systems are systematically neglected in publications on software engi-
neering. These requirements, which include performance, security, safety, de-
pendability, resiliency and the like, are termed “nonfunctional” because they are 
not usually included in the functional requirements of software as specified by 
users. They are considered to be the responsibility of other areas of expertise, 
such as system and network capacity planners, information security profession-
als, software safety engineers, disaster recovery and business continuity plan-
ners, and so on. Unfortunately, this attitude of nonfunctional requirements 
being in the realms of others leads to situations where nobody takes on the 
responsibility.

While these nonfunctional requirements are always key attributes of any 
substantial software system, the average application developer is not particu-
larly knowledgeable in these nonfunctional areas and therefore tends to ignore 
them. In order to have nonfunctional requirements included, project manag-
ers must account for these characteristics explicitly in the various stages of the 
software system development life cycle. Otherwise, nonfunctional requirements 
will tend to be ignored—sometimes until it is too late to save the project [20].

Table 3.3 
Phases of the SSDLC

Royce [18] 
(1970)

Christensen [6] 
(2001)

Braude [5] 
(2011)

System requirements Requirements Requirements
Software requirements — —
Analysis — —
Program design Design Design
Coding Code and unit test Implementation
Testing Test and integration Testing
Operations Operation and maintenance Maintenance

SSDLC = software system development life cycle.
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Testing Nonfunctional Attributes

Braude and Bernstein [5] state that a major limitation of the Waterfall process 
is that the testing phase sits at the end of the cycle; therefore, errors that might 
have been determined with interim testing are only discovered when the soft-
ware has been completed.  They also affirm that it is only at the point when the 
project is complete that “[m]ajor issues such as timing, performance, storage, 
and so on can be discovered ...” Interestingly, neither security nor safety are 
mentioned in their list of  issues.

Braude and Bernstein [5] seem to imply that the original model, as pro-
posed by Royce [18], was unidirectional, when in fact Royce specifically stated 
that the process should be iterative between immediately adjacent steps. Braude 
and Bernstein [5] state that, practically speaking, “… an iterative model be-
tween successive phases is inevitable.” As mentioned previously, there is an on-
going debate about whether the simple Waterfall model, as adopted by the 
United States and European military and others, was due to a lack of under-
standing of these adopters. Clearly, Royce did not advocate the simple model, 
but insisted on the necessity of including interactive and iterative aspects into 
the process model. 

Verification and Validation

It is not clear when the term verification and validation was first introduced, al-
though there is some indication that Barry Boehm was an early user of the term 
around 1981. The so-called “testing” of software usually involves the following 
series of activities: 

• Unit testing;

• Integration testing;

• Regression testing;

• User acceptance testing.

These activities are all basically related to functional testing and are meant 
to ensure that a piece of software operates successfully in isolation, when com-
bined with and connected to other components of the system, and when oper-
ated in its most likely overall production environment, and that the function-
ality as developed is acceptable to the user community. Other areas, such as 
technical support, user support, and operations, are usually included to some 
relatively small degree in such testing activities to determine that the system 
also satisfies their particular requirements. Those responsible for nonfunctional 
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areas, such as performance, resiliency, safety (to a lesser extent), and security, 
may well be excluded from the system development life cycle process until the 
final stages, when the software is essentially completed and ready to go into pro-
duction. At this point, it is either too late or extremely expensive to make requi-
site changes. It is commonly held that it is orders of magnitude more expensive 
to implement security, say, after the system has been completed compared to 
building in security from the earliest stages of the life cycle.

On the other hand, verification and validation takes a more holistic view 
of the testing and quality assurance functions.

The IEEE definitions of these terms, along with clarifying comments are  
included in [5] as follows:

• Verification: “The process of evaluating a system or component to deter-
mine whether the products of a given development phase satisfy the con-
ditions imposed at the start of that phase.” (For example, is the software 
design sufficient to implement the previously specified requirements? 
Does the code correctly implement the design?)

• Validation: “The process of evaluating a system or component during or 
at the end of the development process to determine whether it satisfies 
specified requirements.” (In other words, does the implemented system 
meet the specified user requirements?)

These definitions are summarized in [5] as follows:

• Verification: Ensuring that each artifact is built in accordance with its 
specifications. (Mostly inspections and reviews: “Are we building the 
product right?”). 

• Validation: Checking that each completed artifact satisfies its specifica-
tions (Mostly testing: “Are we building the right product?”). 

These definitions are somewhat reminiscent of the definitions of efficien-
cy and effectiveness, respectively; where efficiency is defined as doing things the 
right or correct way (comparable to verification), and effectiveness is defined as 
doing the right or correct things (comparable to validation).

In effect, what is being said here is that verification determines that the 
resulting system or component represents requirements (as specified by the 
software engineers who designed the system or component), whether or not 
those requirements accurately reflect what the user population is looking to get 
from the system. Validation, on other hand, determines whether in fact user 
requirements are being met. If either of these tests show that the system does 
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not represent either system specifications or users’ expectations, one has then to 
determine whether the gap is due to improperly translating user requirements 
into system specifications and into the design and development of the system 
or component, or whether the difference is the result of misinterpreting users’ 
expectations of the system or component. This difference is illustrated in Figure 
3.3.

The V-model, which is shown in Figure 3.4, captures all the phases of the 
waterfall model and includes reviews and testing consistent with the verification 
and validation processes. However, it still has the same issues as the waterfall 
model with respect to rigidity and inflexibility.

This difference between efficiency and effectiveness (verification and val-
idation, respectively) is also illustrated by such approaches as the Capability 
Maturity Model Integration (CMMI) process. While CMMI can demonstrate 
whether or not an organization has effective software system development pro-
cesses, procedures, and practices in place, it does not ensure that the appropriate 
software is developed, despite the fact that the software was developed accord-
ing to a highly structured process that is being monitored and measured at 
every step. One might presume that—if a software product was manufactured 

Figure 3.3	 Comparison	between	verification	and	validation.
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using agreed-upon good practices—it is likely that such software will also meet 
user requirements. However, that is not necessarily the case. In fact, even the 
most sophisticated of processes tends to omit whole categories of testing, and 
applications are frequently designed without having the ability to generate key 
security data. 

Creating Requisite Functional and Nonfunctional Data

There is a common tendency towards working with readily-available data to 
create metrics by which to manage and control what gets built into software 
and what does not, as well as how the software is created. This assertion may be 
less true when measuring software functionality than it is for measuring secu-
rity and other nonfunctional requirements. In [21], Axelrod takes a relatively 
extreme position, stating that:

… measurability and usefulness are in contention when it comes to security 
metrics.

Figure 3.4	 The	V-model	of	the	development	life	cycle	process.
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This relationship is illustrated in Table 3.4, in which we show the rela-
tionship between the value or usefulness of measured information and the dif-
ficulty and cost of creating such data. 

Sometimes very useful information can be gathered very cheaply, but that 
is not the general rule. More often than not, easily-obtainable data and readily-
calculated metrics are of relatively little value to decision-makers. Such easy-to-
get metrics may point out gross deficiencies or vulnerabilities, but are often of 
little use in finding the root cause of a problem. Occasionally, readily-available 
data leads right to the problem, but even then it may have to be supplemented 
with secondary information before a full forensic analysis can be done. Thus, 
if you lose a network connection, it might be easily explained by, for example, 
a router having become unplugged. However, if the loss of network connec-
tion is due to malware, for example, unless you have effective monitoring and 
reporting systems in place, you may not be able to detect the real reason for the 
outage.

At the other extreme, you might invest in a sophisticated detection sys-
tem either built into the system or an add-on, in order to obtain information 
on exactly what is causing a particular set of problems. Intrusion detection and 
prevention systems come to mind in this case, particularly if they have the ca-
pability to detect nefarious behavior. From a software perspective, much can be 
achieved by incorporating data creation, logging, and reporting requirements 
into applications and system software during development.

Table 3.4 presents the idea that it is more likely that easily and cheaply 
obtained information is of relatively little use for decision-making, as compared 
to data that are prescribed ahead of time but which might require more effort 
and overhead to produce and analyze. Also, there is a danger of investing large 
amounts of money and effort into creating data that are not very useful; it is im-
portant to think through data requirements carefully and have them reviewed 
by experts in order to avoid wasting money on an approach that yields little in 
the way of useful information.

Generating as much information, even useful information, as possible is 
not always cost-effective, as it will be subject to diminishing returns on invest-
ment. There is usually a point up to which such investments in security and 

Table 3.4 
Measurability Versus Usefulness of Data

Easy/Cheap to Measure Difficult/Expensive to Measure
Highly Useful Preferred situation, but relatively 

rare occurrence
Often the case, but results likely to 
yield substantial benefits

Not Useful Unproductive, but more likely 
occurrence

Wasteful metrics gathering programs 
with little to show for significant 
expenditures and effort
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safety tools are warranted and beyond which they are not. Because the cost of 
incorporating data generators and collectors is considerably less expensive if 
introduced early in the software system development life cycle (SSDLC) than if 
added as an afterthought when the software has already been manufactured and 
tested, the cost-benefit analysis of generating and collecting relevant data will 
produce very different results when the data generators and collectors are built 
in than if they are added after the system has been completed. We show this 
relationship in Figure 3.5, namely, full incorporation of data generation, col-
lection, analysis, and reporting at all stages of the development life cycle versus 
bolting on whatever is possible once the system has been essentially completed.

In Figure 3.5, we show a range of costs and values of incorporating data 
generating and collection functions as we progress through the life cycle. The 
graphs indicate that the range of potential costs and values widens with later 
steps in the life cycle because there is greater uncertainty as to what the costs 
might be and what benefits might be derived from the added capabilities. In 
this example, an average net value is shown to turn from positive to negative in 
the later stages of the SSDLC. This means that, at some point, it no longer pays 
to include such data creation capabilities because they would cost more that 
might be derived from them, with the implication that you would just have to 
bear the risk and costs of not being able to monitor certain activities. However, 
the graph also shows that, if the data creation and monitoring are considered 
and included at the requirements stage or soon thereafter, the costs will be 

Figure 3.5	 Costs	of	measurability	and	value	of	metrics	for	phases	of	the	SSDLC.
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relatively low, and the benefits of being able to include considerable data gen-
erating, logging, and reporting capabilities significantly exceed the costs. While 
this particular example shows that at some point it is not worthwhile to retrofit 
the data creation capabilities, in some cases, the value of being able to monitor 
behavior may be so high that it might still be beneficial to bolt the capabilities 
on after the system is already in production. The same is true for security, safety, 
and many other nonfunctional attributes. That is, there might be a stage where 
it is no longer cost-effective to incorporate security features, say, in which case 
the risk has to be assumed.

The obvious conclusion here is that, by incorporating data generation, 
collection, and analysis early in the process, lower relative costs are incurred 
and, as a consequence, more data generation and collection can be justified 
leading to greater net value. However, if one waits too long, then it is no longer 
cost-effective to build the capabilities in and the previously available benefits of 
doing so are lost.

Resiliency and Availability

A feature of software that frequently does not receive the attention that it re-
quires is that of resiliency. There are likely many reasons for this lack of atten-
tion, but one reason is surely because there are many different ways in which 
to provide resiliency and many are outside the usual purview of the average 
software engineer. Cross-discipline and cross-cultural factors play a large part in 
many aspects of engineering safe and secure software systems, but perhaps none 
more so than in the resiliency area. There is a need to optimize across software, 
platforms, infrastructure, and facilities, and few individuals have the knowledge 
and experience to deal with every aspect. Therefore, it becomes necessary to 
establish collaborative teams made up of a range of disciplines in order to get 
the level of coverage needed.

The main issue with respect to software resiliency is that it is multifac-
eted. Some ways in which resiliency can be achieved are inherent in the design 
of software, others relate to the platforms on which the software runs and the 
infrastructures that support the platforms. Others have to do with physical re-
dundancy both on-site and off-site.

Again, the issues revolve around whether resiliency was included as a re-
quirement and incorporated into the software system specifications. If not, it is 
likely that the costs of providing redundancy will be significantly greater than 
they would have been if the issue is ignored until after the system has been 
developed, tested, and deployed. This can also be represented by the graphs 
in Figure 3.5, although the underlying justification is considerably different. 
In the case of resiliency, there are many choices (software, firmware, hardware, 
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platform, infrastructure) to achieve adequate resiliency, only some of which 
relate to the application software, but many of which can be handled externally 
to the software. This is not the case with respect to data creation.

Decommissioning

Few approaches to the software system development life cycle process address 
the discontinuation and decommissioning of the software. Despite the avail-
ability of regular updates for commercial software, at some point the software 
becomes obsolete and is no longer supported by the software maker. At that 
point, a number of issues arise. One is the concern that new functionality will 
not be available for this particular software product. Another is that newly dis-
covered errors will not be corrected. And yet another is the concern that patches 
will no longer be issued for newly discovered vulnerabilities [22].

However, at some point it is inevitable that obsolete software products 
will have to be replaced for such reasons as lack of functionality, lack of support, 
need to interface with newer software and services, and so on. The question 
then arises as to what to do with the obsolete software and its attendant data. 
The issue seems to have been given more attention lately because of privacy and 
piracy issues, for which concern arose as to how sensitive data were being dis-
posed of. In some cases, the data became integrated with applications and it was 
not feasible to separate them out for destruction and disposal. The decommis-
sioning and disposal of software systems needs to be accounted for early in the 
life cycle in order to ensure that these important activities are considered at all.

Summary and Conclusions

In this chapter, we considered what constitutes software systems engineering, 
which is considered by some to be a major source of deficiencies in modern 
information-technology and automated control systems. This proved to be a 
nontrivial exercise. As was demonstrated, much of the criticism surrounding 
software engineering is justified and can be attributed to deficiencies in the 
definition of terms and the confusion surrounding scope and completeness. By 
offering more specific definitions and formal structures, we have attempted to 
clarify the meaning and scope of the field of software systems engineering.

Another major area to be considered relates to gaps in the traditional soft-
ware development life cycle, particularly as they relate to scope, testing, resil-
iency, decommissioning, disposal, and the like. These gaps can be blamed, to a 
significant degree, for vulnerabilities and other weaknesses in software. Many 
of the ideas developed in this chapter will be expanded in subsequent chapters.
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4
Engineering Secure and Safe Systems, 
Part I

Security engineering is about building systems to remain dependable in 
the face of malice, error, or mischance.
—Ross J. Anderson, Cambridge University

Introduction

When it comes to building, operating, and decommissioning safe and secure 
systems—particularly computer-based software-intensive systems—practitio-
ners often borrow methods and practices derived from the discipline of systems 
engineering, as well as from safety and security engineering. In this chapter, 
we take the more general systems view of engineering secure and safe systems. 
This is somewhat more difficult than one might think because so much of 
what has been published recently, while having a software orientation, it does 
not adequately treat specific security and safety attributes of the systems under 
discussion.

This assertion about the predominance of software considerations is rea-
sonable because practically all modern systems of any complexity whatsoever 
incorporate software components to some degree. However, for the sake of 
clarity, we defer consideration of the engineering of safe and secure software-
intensive systems until later. In this chapter, we will focus on safety and security 
considerations for general systems before making everything that much more 
specific and complicated by adding the software dimension.
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The Approach

Just as it was recommended in Chapter 3 that the term software engineering 
be expanded to software systems engineering in order to account for the fact 
that software products only run in specific contexts, so security engineering 
and safety engineering need to be more clearly identified and defined so that 
it is clear as to what is meant by security and safety as they apply to systems 
engineering, where systems may or may not include computers. In this chapter, 
we delve into the specific areas of security engineering and safety engineering. 
In subsequent chapters, we will relate security and safety to software-intensive 
systems. 

We now go through a similar defining process as the one followed in 
Chapters 2 and 3 for clarifying what is meant by security engineering and safety 
engineering. We thereby set the stage for determining what it takes to apply 
these concepts to software systems, as we will do in Chapter 5. It is again as-
serted here, as it was in earlier chapters, that being more precise in defining 
such terms is the key to better understanding and should be helpful in shedding 
light on much of the fuzzy thinking that we find in this area. Many prominent 
researchers and authors do not take the trouble to differentiate between security 
and safety engineering, or perhaps they do not recognize that there might be 
a difference. They also appear not to care to make any particular distinction 
among security, safety and other descriptors, such as dependability. This makes 
it considerably more difficult to make comparisons across disciplines. Here, we 
try to overcome much of this confusion and lack of precision by separating out 
the terms and examining each one separately and then in combination with 
themselves and also with other terms.

Security Versus Safety

In his book on the subject of security engineering, Anderson [1] certainly cov-
ers practically every conceivable topic that one might associate with security 
engineering as it relates to software systems. However, his distinction between 
the concepts of security and safety is not particularly clear. This is not uncom-
mon. Many writers use the words security and safety interchangeably. Here, we 
will differentiate carefully between the two terms. There is a considerable gap in 
knowledge and communications between those who focus on security and those 
specializing in safety, whether referring to general systems or software-intensive 
systems, so that it is still appropriate to treat the disciplines independently. It is 
hoped that the separation between the safety and security engineering research-
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ers, writers, and practitioners will lessen over time as participants will be called 
upon to address both safety and security issues [2].

As discussed in Axelrod [3], there is an increasing need to identify the 
frequently-separated silos of security and safety. It is also important to bring 
security and safety professionals together to collaborate at each stage of the sys-
tem development, testing, operation, and decommissioning life cycle per Carter 
[4]. This is particularly urgent, as we are increasingly seeing safety-critical and 
security-critical systems linked together to form systems of systems. The so-
called smart grid, in which electricity power grids’ management systems are 
increasingly being linked to public networks, particularly the Internet, is a cur-
rent case in point [5]. The apparent confusion and lack of understanding by 
management and technologists underline the importance of differentiating be-
tween expertise relating to safety and security, and attaining a greatly increased 
measure of cross-cultural cooperation, as recommended by Carter [4].

A simple, yet meaningful, distinction between safety-critical and security-
critical software systems, which is generally applicable to system was provided 
in Chapter 2 (p. 15) for software. Boehm’s original definition was repeated in 
Barnes [6]. We generalize the definitions as follows:

Safety – the [system] must not harm the world, 
Security – the world must not harm the system.

This difference in viewpoint is illustrated graphically in Figure 4.1 for 
safety-critical, security-critical, and combined safety/security-critical systems, 
respectively.

Briefly, the goal of safety-critical systems is containment, whereas the cor-
responding emphasis of security-critical systems is protection. Such a difference 
in objectives leads to varying and sometimes conflicting criteria for ensuring 
that systems are safe when compared with those criteria used to ensure security. 

Figure 4.1	 Safety	versus	security.
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There is overlap to some extent between security and safety, as, for example, 
in the need for system integrity, but it is the difference in viewpoint that leads 
to divergent system designs and implementations. This divergence makes for 
much higher risk relating to combined systems of systems which must be both 
secure and safe.

Another perspective derives from the differences among safety, security 
and survivability, as described by Firesmith in [7]. Firesmith claims that there 
are many similarities among these three aspects, which he defines as follows:

• Safety: The degree to which accidental harm is prevented, detected, and 
reacted to.

• Security: The degree to which malicious harm is prevented, detected, and 
reacted to.

• Survivability: The degree to which both accidental and malicious harm is 
prevented, detected, and reacted to.

Firesmith goes on to say that “[s]afety is largely about protecting valuable 
assets (especially people) from harm due to accidents,” whereas “[s]ecurity is 
largely about protecting valuable assets (especially sensitive data) from harm 
due to attacks,” and “[s]urvivability is largely about protecting valuable assets 
(essential services) from both accidents and attacks.”

This author prefers the Barnes approach [6] to differentiating between 
safety and security, because from the perspective of those tasked with protecting 
the data assets contained within, or accessible through, information systems or 
preventing control systems from harming the outside world, it often doesn’t 
make much difference, with respect to actions taken, whether the source of 
an incident is accidental or intentional and malicious. In both situations, in-
vestigators need to determine the root cause of an incident and take action to 
prevent the same or similar future events from doing damage, either internally 
or externally. However, if an incident is the result of intentional activities, the 
response to it will likely be different in that law enforcement might be brought 
in to pursue the perpetrators. If the cause is accidental, action against the per-
son or persons who “allowed” the incident to happen may result, even if such 
persons had no intent or control over the situation. However, in the latter case, 
it is less likely that formal proceedings will be invoked.

There is often a question as to the culpability of individuals and the fair-
ness of pointing fingers at suspects. Frequently, even if the cause of a security 
breach or a safety failure is found to be unintentional, action is taken against 
those currently responsible for the safe and/or secure operation of the affected 
system, despite the fact that they may not be in a position to prevent the inci-
dent. The root cause might have been deficiencies in requirements, design or 
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implementation of systems or the procedures for operating them. However, it 
seems to be human nature to seek a scapegoat on whom to pile responsibility 
and punishment.

It can be argued that survivability has more to do with resiliency and re-
covery following damage or destruction, and long-term survivability relates to 
the ability of an organization to reconstitute the damaged or destroyed opera-
tions in order to enable the entity to function at or near the level prior to the 
incident.

Yet another view on differentiating between safe and secure software sys-
tems comes from Barbacci [8], who represented the same institution as Fire-
smith, namely the renowned Software Engineering Institute of Carnegie Mel-
lon University. Both researchers were writing in 2003. 

Barbacci quotes Rushby [9] in defining secure systems as “... those that 
can be trusted to keep secrets and safeguard privacy,” and, paraphrasing Laprie’s 
definition of dependability, defines safety as “... that property of a computer 
system such that reliance can justifiably be placed in the absence of accidents.”

Barbacci differentiates between safety and dependability as follows:

... dependability is concerned with the occurrence of failures, defined in 
terms of internal consequences (services are not provided) ... safety is 
concerned with the occurrence of accidents or mishaps, defined in 
terms of external consequences (accidents happen).

Barbacci concentrates on the outcomes of incidents and not on the causes. 
He differentiates between internal and external consequences; external conse-
quences align with Barnes’ definition of safe systems. Barbacci’s definition of 
internal consequences actually focuses on the impact of a failure on the outside 
world, not in terms of damaging the outside world actively, but inconvenienc-
ing either internal or external users of the system or both, passively. That is to 
say, dependability is about the absence of regular, expected, trustworthy services 
and does not appear to relate to the compromise of data assets within informa-
tion systems or the interference with normal operation of control systems. 

If we reexamine the quote from Ross Anderson at the beginning of this 
chapter, it appears that security and dependability have more commonality 
than do safety and dependability. However, this view might be attributed to 
Anderson not having dealt much with safety issues in his book.

Four Approaches to Developing Critical Systems

Rushby [9] presents four traditional approaches to developing critical systems, 
namely:



64	 Engineering	Safe	and	Secure	Software	Systems	 	 Engineering Secure and Safe Systems, Part I	 65

1. The Dependability Approach

2. The Safety Engineering Approach

3. The Secure Systems Approach

4. The Real-Time Systems Approach 

It is worth examining these four approaches to developing critical systems 
in greater detail because they introduce some of the key aspects of the subse-
quent treatment of software systems engineering later in this book.

The Dependability Approach

Rushby [9] asserts that the use of the term dependability is an attempt to free 
researchers from having to use other terms, such as reliability, which have ac-
quired particular technical meaning. He claims that the term dependability can 
be used to include fault tolerance, reliability, correctness, safety, survivability, 
and security. Rushby appears to consider security and safety to be particularly 
significant factors in system dependability because they are the focus of two of 
his four approaches to critical system development.

Quoting Laprie [10], Rushby asserts that a dependable system is one upon 
which certain aspects of quality of service, such as correctness and continuity 
of delivery, can be relied. The dependability approach itself tends to emphasize 
reliability and fault tolerance, rather than safety or security.

In this book, we pay particular attention to the security and safety of 
systems, especially software-intensive systems, and we do not consider reliabil-
ity and fault tolerance much. However, that is not to say that reliability and 
resiliency are not crucial in the development and running of safe and secure 
software systems. They are.

 In Table 4.1, we show which dependability components are addressed by 
various researchers.

Referring back to the description of the dependability approach, it should 
be noted that Rushby states that a “departure from the service required of a 
system is [considered to be] a failure” [9], and that the implication is that de-
pendable systems do not fail. However, there is a range of failures ranging from 
benign to catastrophic, where the consequences are hugely greater than benefits 
derivable from the system. Failure is considered a “property of the external be-
havior of a system” [9].

The causes of failures are called faults and include the following: 

• Mistakes in design and implementation;

• Component failures;
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• Improper operation;

• Environmental anomalies.

According to Rushby, a system is fault-tolerant if it can detect and correct 
latent errors, which occur when a system is damaged by a fault.

The Safety Engineering Approach 

Rushby [9] states that safety engineers distinguish between reliability and safety, 
noting that reliability relates to “the incidence of failures,” whereas safety has 
to do with “the occurrence of … mishaps.” Mishaps are defined as unplanned 
events that might lead to “death, injury, illness, damage to or loss of property, 
or environmental harm.” Again, this raises the question as to whether a failure 
brought about by a planned event should not also be included among failures. 
It should.

Leveson [11] proposes that those working on software safety adopt and 
follow some of the practices and techniques of system safety engineering, with 
a focus on consequences rather than requirements because omissions or incor-
rectness in requirements may well lead to negative consequences. In a subse-
quent chapter, we will critically examine the role of requirements in defining 
safety and security needs. This is because many failures and successful attacks 
that do occur could well be the result of correctly representing inadequate re-
quirements.  Rushby asserts that the dependability approach works best in situ-
ations where there “is no safe alternative to normal service,” giving the example 
of aircraft flight control systems, whereas the safety engineering approach ap-
plies to situations in which hugely undesirable events, such as the inadvertent 
release of weapons, can happen. 

Rushby defines hazards, damage, danger, severity and risk as follows:

Table 4.1 
Components of Dependability by Various Researchers

Component Anderson [1] Barbacci [8] Rushby [9] Laprie [10]
Security Yes — Yes —
Safety Yes — Yes —
Correctness — — Yes Yes
Continuity of delivery — Yes — Yes
Reliability Yes Yes —
Fault tolerance Yes Yes Yes —
Survivability — — Yes —
Quality of service — — — Yes
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• Hazard: conditions that can lead to a mishap;

• Damage: a measure of the loss in a mishap;

• Danger: probability of a hazard leading to a mishap;

• Severity of a hazard: the worst possible damage that could result;

• Risk: combination of hazard severity and danger.

Rushby goes on to describe hazard analysis, which, he asserts, is a major 
tool used in system safety engineering. This and the above terms appear to be 
specific to safety engineering, but they have their equivalence in the more gen-
eral area of security risk analysis, as shown in Table 4.2.

According to Rushby, hazard analysis comprises the following steps:

1. Identification of potential hazards (ranging from negligible to 
catastrophic).

2. Systematic exploration, which is the determination of how or whether 
conditions leading to a mishap might arise (backwards reasoning and 
what-if analysis).

3. Dealing with unacceptable risks by means of modification of systems 
and operating procedures, incorporation of safety features and/or 
training.

Rushby contends that the use of hazard analysis should be required at 
each phase of the design life cycle, and he gives examples such as preliminary 
subsystems, systems and operations.  The following methods are commonly 
used for hazard analysis: 

• Hazard and operability studies (HAZOPS);

Table 4.2 
Safety-Engineering Terms Compared to Security-Risk Terms

Safety-Engineering 
Term (Rushby [9]) Equivalent Security-Risk Term
Hazard Threat, exploit, vulnerability
Damage Magnitude of loss
Danger Probability of loss
Severity of a hazard Highest potential loss from threats and 

vulnerabilities combined
Risk Risk, expected loss

(magnitude × probability of loss)
Hazard analysis Risk analysis
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• Fault-tree analysis (FTA);

• Failure modes and effects analysis (FMEA).

These techniques were recommended for use with software by Leveson 
and Harvey [11] in 1983, specifically using software fault tree analysis (SFTA); 
the SFTA technique was developed in the late 1960s to avoid accidental launch-
ing of missiles.

Rushby states that the entire system context in which the software oper-
ates has to be considered when using the safety-engineering approach because 
software by itself might not reveal system-level mishaps. Rushby asserts that not 
only can a software error cause failure in the overall system, but that activities in 
the rest of the system can also cause the software to fail.

Rushby’s article further describes thes afety system engineering imple-
mentation mechanisms, which involve lockins, lockouts, and interlocks that 
lock systems into safe states, lock them out of hazardous states, and require 
specific event sequencing, respectively. The determination of lockins and lock-
outs will vary with the criteria being used to select the appropriate failure mode. 
Missteps in this analysis can lead to horrific consequences, as when workers 
were locked into radioactive rooms at the Fukushima Daichi nuclear plant fol-
lowing the March 11, 2011 earthquake and tsunami hitting the northeast coast 
of Japan [12].

Rushby also mentions that safety approaches can be applied to security if 
mishaps are interpreted as unauthorized disclosure of information and threats, 
vulnerabilities, safeguards, and it countermeasures are considered. 

The Secure Systems Approach

Rushby [9] claims that the main concern regarding system security has tradi-
tionally been the disclosure of sensitive information, with the protection of 
information integrity and the prevention of denial of service being secondary 
concerns. He describes security models as comprising both a system compo-
nent and security component. The list of security models, which includes the 
Bell-La Padula access-control model, differs among system components, such 
as sequential systems, distributed systems, databases or expert systems, and for 
security components. 

Rushby notes that the disclosure of sensitive information usually receives 
more attention than information integrity, even though integrity may be con-
sidered to be more important in some cases because its loss might have greater 
impact on the overall system than would compromise of confidentiality. He 
refers to Clark and Wilson [13], who focus on two aspects of integrity, namely, 
well-formed transactions and separation of duties. They describe well-formed 
transactions as those that require that “important data cannot be modified by 
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arbitrary actions,” and separation of duties as requiring that “different individu-
als authorize the different procedures that constitute a larger action.” Sepa-
ration of duties should be across departmental lines, because if, for example, 
authorization is by one person and his or her boss, there is greater opportunity 
for collusion, whereas if signoff from the internal audit staff is required, the pos-
sibility of collusion can be mostly, though not entirely, eliminated.

Rushby claims that “[i]ntegrity has received rather less attention than 
disclosure, although [disclosure] is arguably more important in some applica-
tions.” While integrity is clearly a key aspect of both systems and the data that 
they handle, considerably more attention has been given over the past decade to 
disclosure in the form of unauthorized access to, and misuse of, sensitive data 
such as nonpublic personal information and intellectual property, as well as 
secret data of all types.

In the mid-1990s, when Rushby wrote his paper [9], distributed denial-
of-service attacks were receiving less attention than integrity by researchers. A 
decade or so later, denial of service became a high-visibility, high impact form 
of attack, as in the 2007 attack on Estonia that took down government and 
banking websites, bringing their activities to a screeching halt [14]. The tech-
nology for such attacks, including the takeover of zombies and the expansion of 
botnets, have made denial of service more effective and have given the method 
greater coverage.

The Real-Time Systems Approach

Rushby [9] defines a real-time system as “one whose correctness depends not 
only on values of its outputs, but also on the times at which they are produced.”

This approach concentrates on priority preferences of system tasks. These 
are important to detailed system design but are not specific to safety or security, 
as were the two prior approaches. In this regard, if a low-priority task is given 
preference over a higher-priority task, then the effect is similar to a denial-of-
service attack.

Security-Critical and Safety-Critical Systems

The above definitions of security and safety originally from Boehm, represent a 
more useful and consistent view of the differences between security-critical and 
safety-critical systems than do the definitions of both Firesmith [7] and Bar-
bacci [8] described above. This is because the latter definitions are somewhat 
restrictive. In general, safety-critical software systems can be compromised by 
intentional acts (not just random accidents) and security-critical systems can 
be compromised unintentionally (with no malice involved). The Firesmith and 
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Barbacci definitions of safety do not capture the essential concept that safety-
critical systems should preferably prevent the harmful impact of both accidental 
and intended hazardous events rather than protect individuals from harm.

To illustrate this point, let us consider the analogy of some of the safety 
features in a modern automobile, where the antilock braking system (ABS) is 
designed to prevent or avoid potential accidents that might occur because of icy 
road conditions, whereas air bags are designed to protect drivers and passengers 
immediately after a collision has occurred. These two automobile systems are 
generally implemented separately, each using its own sensors to detect a danger-
ous condition and subsequently responding to hazardous situations indepen-
dently. ABSs are intended to prevent accidents, whereas air bags are designed to 
protect driver and passengers when an accident does occur. In general, security 
measures are designed to prevent or avoid the consequences of an attack on a 
system, or its misuse, whereas safety is all about protecting assets (particularly, 
but not limited to, human beings) in the event that a breach or failure occurs.

Furthermore, Firesmith [7] considers survivability to be the combination 
of safety and security. It can be argued, however, that survivability has to do 
with effective responses following the inability of systems to withstand attacks 
or prevent dangerous situations resulting from system failure. Therefore, one 
can usually make a tradeoff between the costs of prevention (or protection) 
and recovery (or survivability) costs. As shown in Figure 4.2, the determination 
of these costs can provide the analyst with an optimal point at which the total 
costs are minimized.

In many situations, a greater investment in prevention may allow less to 
be spent on response and recovery as a means of attaining a desired level of 
dependability and integrity.

Figure 4.2	 Protection	versus	survivability	costs.	(Source:	“The	Dynamics	of	Privacy	Risk,” 
ISACA Journal,	Vol.	3,	2004	ISACA.	All	rights	reserved.	Used	by	permission.)
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Summary and Conclusions

The goal of this chapter is to create a model of safety-critical and security-critical 
systems in the mind of the reader. While many researchers use the terms safety 
and security interchangeably, we choose to make a clear distinction between the 
two, with security measures being used to protect sensitive data and intellectual 
property within applications and databases, and safety measures being used to 
ensure that malfunctioning or failure of the system does not harm humans or 
the environment. While there are many parallels between the two in terms of 
concepts relating to attacks, defenses, and the like, there are major cultural and 
technical rifts among the engineers who design and operate each type of system.

The intention of presenting such clear-cut differences is to emphasize to 
those involved in each type of system that, especially, when security-critical and 
safety-critical systems are combined into systems of systems or cyber-physical 
systems, there is a need to share information and approaches and to collaborate 
across the whole security-safety spectrum. If this is not done, then the resulting 
systems will be deficient in their security and safety attributes—or even, in the 
worst cases, both sets of attributes.
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5
Engineering Secure and Safe Systems, 
Part 2

I find it very frustrating when we are still talking about the same de-
bugging techniques that were ‘old’ when I started teaching in 1971 [1]
—Marvin V. Zelkowitz, Fraunhofer Center for Experimental Soft-

ware Engineering

Introduction

We have discussed previously how the practice of software engineering appears 
to be inadequate in the face of increasing security, safety, and other so-called 
nonfunctional requirements, such as dependability, performance, and resilien-
cy. It is indeed disconcerting to read frequent articles by Zelkowitz [1] and Par-
nas [2, 3], who have been working in the field of software engineering for four 
or five decades, in which these pioneers in the field complain about the lack of 
progress that has been made in the software engineering space. The shortfall is 
particularly noticeable as it relates to safe and secure software systems. It is these 
latter systems that are the focus of this chapter.

The situation is even more disturbing when one considers that software-
intensive systems are becoming more complicated and difficult to manage, espe-
cially with diverse systems increasingly being combined into systems of systems 
and cyber-physical systems. This software-system revolution is making much 
greater demands than before on engineers, as they are required to broaden the 
scope of their knowledge and professional efforts if they are to stand a chance of 
addressing the complexity and diversity of new systems. Furthermore, society is 
becoming so much more dependent on software systems, and as a result, system 
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failures have a much greater impact than previously on our personal lives and 
the health of the economy.

The gap certainly appears to be growing between the complexity of and 
dependency on software-intensive systems, and our ability to ensure that such 
systems are safe and secure enough to prevent humans from being harmed and  
to protect information assets from unauthorized access and from misuse. This 
situation does not bode well for a future where the gap continues to widen, per-
haps exponentially. Until and unless software systems professionals in particular 
and society in general make enormous progress towards narrowing that gap and 
eventually eliminating it, we will not see sufficient improvements to stave off 
catastrophic failures.

One of the most dramatic examples to date of the failure of a computer-
ized information system occurred on June 19, 2012, when the Ulster Bank’s 
automated processing system, which usually handles some 20 million transac-
tions per day, suffered a catastrophic failure. The outage prevented access to and 
destroyed the integrity of the bank accounts of more than 100,000 customers. 
A month later, many of the problems that resulted from the initial system fail-
ure remained unresolved. The ultimate direct cost of this incident will likely be 
in the tens of millions of Euros (if not greater), if the consequential costs of loss 
of trust in the dependability of the computer systems and the impact on the 
banks reputation are included [4].

The main goal of this book is to raise awareness of the dangers that we 
are currently experiencing and that lie ahead. These dangers may result from 
inadequate software systems engineering, particularly as it relates to safety and 
security. Such threats will have much greater impact if we are not both will-
ing and able to make rapid and significant improvements in the processes and 
procedures used for building security, safety, and other nonfunctional attributes 
(such as resiliency) into software-intensive systems. For the effort to be effective, 
we need to see major increases in the number of subject-matter experts who 
can take over the responsibility of ensuring the safety and security of critical 
software-intensive systems. 

Another goal of this book is to guide those who recognize the vastness 
and importance of the problem towards meaningful ways of achieving greater 
assurance that systems will not cause physical harm (safety) and will protect the 
information that we most value (security).

In this chapter, we trace the history of various branches of engineering; 
this history puts today’s software crisis in perspective, serves to explain why 
we find ourselves in the dilemma of recognizing what it will take to establish 
acceptable levels of security, and having to accept, albeit very reluctantly, the 
limits of safety and our ability to get decision-makers to make available the 
required resources to achieve such levels. 
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Approach

If we use the analogy of a victim of a medical emergency, it is first necessary 
to stabilize the patient before administering curative treatments. So it is with 
security-critical and safety-critical software-intensive systems. Before we can 
expect to prevail over the attackers, we must first prevent the gap between at-
tackers and defenders from widening further; we can then work on reducing 
and eventually eliminating the gap. Perhaps we might even get ahead of the 
attackers. Continuing to do as we are now doing will not allow us to escape or 
reduce the impact of attacks.

Figure 5.1, which is not to scale, illustrates the exponential rise in security 
and safety requirements and system complexity as systems are combined, par-
ticularly cyber and physical systems. The figure also shows the relatively slow 
increase in software assurance efforts and capabilities, indicating that the gap is 
widening at an accelerating pace. As some assert with global warming, even if 
there were an immediate resolution, the problem will continue to grow rapidly 
due to the enormous momentum that is already in place. The best one can hope 
for under such circumstances is to slow the growth in the divergence between 
the increases in adverse effects and the ability to prevent them in the hope that 
new solutions will appear that are effective in reducing, and then eliminating, 
the gap.

Figure 5.1	 Security,	safety,	and	complexity	requirements	versus	software	assurance	capa-
bilities.	(From	Axelrod,	C.	W.,	“The	Dynamics	of	Privacy	Risk,” ISACA Journal,	Vol.	3,	©	2004	
ISACA.	All	rights	reserved.	Used	by	permission.)
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The approaches recommended here are less about protection and more 
concerned with prevention. Our main focus is on avoiding safety and security 
issues in the first place rather than trying to protect against them. After all, if 
software-system engineers were able to and were allowed to design, develop, 
and implement high-assurance software-intensive systems from the outset, 
many—if not virtually all—subsequent mitigation efforts could be avoided, as 
could the need to respond reactively. It is indicative of the extent of the prob-
lem to see requests for proposal from the Defense Advanced Research Projects 
Agency (DARPA) for new approaches for ensuring that software-intensive sys-
tems exhibit appropriate safety and security properties. For example, DARPA-
BAA-12-21 on the subject “High-Assurance Cyber Military Systems (HAC-
MS),” is looking for “clean-slate approaches” to assuring the safety and security 
of embedded systems control vehicular operations [5].

While we have the technical ability to build safe software-intensive sys-
tems, as has been demonstrated in the avionics and military field, there are 
many other situations in which the heavy-duty methods that are used to ensure 
that systems will not fail and are invulnerable to cyber attacks cannot be justi-
fied. However, it is likely that cost-benefit analyses will not show a positive 
return on investment for expenditures on such intense risk mitigation activi-
ties. Whereas such results might be due to an underassessing the full impact of 
losses, which might be incurred were the system to be attacked, malfunction, 
or fail, it is tough to convince decision-makers of the risks of something really 
bad happening until it actually happens, as described above in the case of the 
malfunctioning of the Ulster Bank’s automated processing systems.

Despite the high frequency of system failures and the consequent costs, 
we might be on the wrong track if we expect material changes to be made for all 
but the most critical of software systems. Often what is merely “good enough” 
is considered acceptable to decision-makers. If that is the case, then attempts to 
achieve improvement beyond a mediocre level of assurance will not win them 
over. 

Reducing the Safety-Security Deficit

The unrelenting increase in the demand for more functional capabilities from 
software products and software-intensive systems, together with the aggregation 
and combining of systems, are leading to systems of systems and cyber-physical 
systems of ever greater complexity and with higher safety and security needs. Yet 
we continue to fall behind in our ability to withstand attacks and restrict dam-
aging side effects, as evidenced by the growth in reports of attacks and software 
system failures. Experience has shown that the juggernaut of systems develop-
ment and implementation will not stand by and wait for software engineers, 
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in particular, to get their act together. It hasn’t happened before—it is unlikely 
that it will happen in the future unless tremendous pressure is brought to bear.

In many ways, the states of software system security, and to a lesser extent 
software system safety, are analogous to the national debt situations that we see 
in many developed countries. The spending on security and safety might be 
considered “deficit spending” as the demands for security and safety increase, 
and yet the total security and safety debt inevitably increases as the impact of 
attacks and software failures increases over time. The security and safety debt 
continues to grow as security and safety deficits are incurred on a regular basis. 
Not until we see ongoing annual safety-security surpluses (meaning that the net 
effect of expenditures on security and safety exceeds the losses to individuals, 
organizations, and societies), can we hope to see the total safety-security debt 
reduced. As much as politicians and society favor deferring the need to reduce 
the financial debt until some distant future time (when somebody else will have 
to foot the bill), it would seem that security and safety engineers and those 
responsible for making security and safety decisions are willing to defer ad-
dressing existing security and safety deficits at the present time. Of course, this 
will only lead to much greater costs in the future as we pay “interest” at a very 
high rate on the security-safety debt each time that an attack is successful or a 
malfunction or failure occurs. This suggests that even the exponential increases 
illustrated in Figure 5.1 might actually be conservative.

Game-Changing and Clean-Slate Approaches

In many situations, there is a need to develop software assurance methods to 
enable the state of the art to accelerate at a rate that is much faster than the 
speed of functional innovation. That is to say, the rise in software complexity 
and criticality currently far exceeds our ability to test the software effectively, 
especially when diverse components are bound together to form systems of 
systems or cyber-physical systems.

The common response to this problem is to look for opportunities to 
build security and safety measures into systems throughout their development 
life cycles, especially during the earlier phases. While such an approach has a 
good chance of improving the quality of future systems in terms of security and 
safety, it does little or nothing to enhance existing systems. This is because of 
the much greater effort required for testing so-called legacy software and the 
orders of magnitude higher costs of retrofitting fixes (or patches) and repro-
gramming and retesting in-place production systems.

Consequently, many practitioners are looking to researchers to come up 
with game-changing, clean-slate approaches to produce high-assurance systems 
that are not only functionally correct, but are also both safe and secure. Many 
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of the suggested game-changers, such as rapidly changing the security environ-
ment in order to get a step ahead of attackers, providing economic incentives to 
engender good security, and creating a flexible distributed trust environment, 
are worthy goals. These approaches or themes were suggested at a May 19, 2010 
conference hosted by the Networking and Information Technology Research 
and Development (NITRD) Program and are summarized in a presentation 
with the title “Toward a Federal Cybersecurity Research Agenda: Three Game-
changing Themes,” which was given at the conference [6].

Despite the appeal of creating such “silver bullets,” realistic, operable, and 
cost-effective approaches for meeting these and similar goals do not appear to 
have been developed, at least in the public domain, and it is highly unlikely that 
such all-encompassing solutions will be created in the near future, given the 
current state of software systems development and implementation. However, 
were such a miracle to happen, the creation of innovative technologies, which 
are also cost-effective across a broad range of public-sector and private-sector 
systems, would certainly revolutionize the way in which software safety and 
security attributes are handled and could quell many of the concerns that are 
now being voiced.

Appeals to researchers to increase the safety and security of cyber systems 
and to improve the verification process are not limited to the NITRD case 
mentioned above. Requests for proposals have also come from the Informa-
tion Innovation Office (IIO) of DARPA and others. For example, in the first 
quarter of 2012, DARPA issued two Broad Agency Announcements (BAAs) of 
particular interest. One is DARPA-BAA-12-21 [7], which has a goal of receiv-
ing proposals for creating “technology for the construction of high-assurance, 
cyber-physical systems, where high assurance is defined to mean functionally 
correct and satisfying appropriate safety and security properties.” The request-
ors are looking for original, innovative technologies, not ones that have been 
previously developed or are merely extensions of prior work.

Another BAA of interest is DARPA-BAA-12-17 [8], which is about 
crowd-sourcing the software verification process. In this case, DARPA is look-
ing for “innovative approaches that enable revolutionary advances in science, 
devices, or systems.” Here again, evolutionary improvements are excluded.

It would appear that DARPA is attempting to circumvent current soft-
ware assurance technologies and practices, which they seem to question with 
respect to the methods’ ability to ensure that software is safe and secure. While 
it is disconcerting to realize that the motivation behind such DARPA requests 
is that current approaches are inadequate, it is reassuring that the inadequacies 
have been recognized and that there is a willingness to fund reesearch into new 
technologies. It seems that we will have little choice but to rely upon the re-
sulting technologies to get ahead of the security and safety deficiencies in past, 
present, and future mission-critical, software-intensive systems.
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If researchers do not produce ground-breaking, cost-effective solutions—
and there is no guarantee that they will—then it will be necessary to revert back 
to older safety and security methods and try to enhance them. If that becomes 
the case, then we will have to put forth a huge effort and devote enormous 
amounts of resources into building security, safety, dependability, integrity, 
resiliency, and other attributes into future software-intensive systems, starting 
from the earliest phases of the software systems development life cycle. This ap-
proach will certainly involve enormous expense and effort. There is also a need 
to develop a cadre of subject-matter experts able to accomplish the enhanced 
requirements. Retrofitting security, safety, and the like into existing systems 
would incur an even greater effort and expense because of the need for soft-
ware engineers to be familiar with obsolete computer languages and operating 
systems, in addition to the capabilities required for up-to-date methods and 
technologies.

The combination of retrofitting older systems and building security, safe-
ty, resiliency, and the like into new systems would cost so much that such an 
effort is extremely unlikely to be justified and subsequently funded. Rather, a 
more acceptable approach would be to replace existing systems over time with 
new systems of greatly improved quality with respect to security, safety, and the 
like, assuming that there is the time and determination to even get this done. 
Even a lesser initiative would have huge difficulties in finding sources willing 
to fund the effort.

Only some overriding threat—such as existed for the Year 2000 or Y2K 
mitigation effort, when there was major concern about the risk of system mal-
functions and failures due to systems misrepresenting the date over the cen-
tury rollover—would motivate public and private sectors to fund remediating 
currently-operating and in-development software-intensive systems. Y2K reme-
diation was estimated to have cost in the $200 to $300 billion range, although 
much of those expenditures consisted of accelerating the replacement of exist-
ing systems with new systems. Because the Y2K fixes could be made compara-
tively easily without having to understand much about the functionality of the 
software being corrected, that effort can be expected to have been orders-of-
magnitude less costly than the effort required for implementing a broad array 
of security and safety requirements to existing and new systems. It is likely 
that bolting security and safety on to all existing mission-critical systems could 
cost in the trillions of dollars. Doing so for future systems could add billions 
of dollars to projects, although such costs could be offset against reduced vul-
nerability and fewer successful attacks. It is difficult to envisage any potential 
catastrophe that could precipitate such expenditures—until it actually happens.

Furthermore, it is unlikely that even building security, safety, and resilien-
cy into new systems will be universally accepted, particularly by private industry. 
Some companies, such as the Microsoft Corporation, have notably embraced 
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the concept of trustworthy computing, effectively replacing prior products with 
more secure new products. However, only a few software manufacturers appear 
to have followed Microsoft’s lead. Some 19 of 51 companies that are participat-
ed in the fourth iteration of the Build Security in Maturity Model (BSIMMH) 
initiative were independent software vendors (ISVs). Such firms as Adobe, In-
tuit, Microsoft, SAP, and VMware are included in the BSIMM community of 
companies. Participation in the BSIMM projects is considered indicative that 
these firms are at the forefront of security practices [9]. However, the goal of 
universal trustworthy computing is unlikely to be realized unless there is a push 
from government in the form of financial incentives, threats of legal and regula-
tory action, or both.

On February 14, 2012, a cyber security bill, S.2105, was introduced into 
the U.S. Senate by Senators Lieberman, Collins, Rockefeller, and Feinstein. 
The bill was titled “Cybersecurity Act of 2012,” and it attempted to address 
concerns about cyber attacks on industrial control systems, particularly those 
affecting the electrical energy industry and other utilities [10]. Such safety-
critical systems are increasingly being connected to public telecommunications 
networks, such as the Internet. The Cybersecurity Act of 2012 aimed to ad-
dress issues arising from cyber threats and common vulnerabilities in software 
systems. As would have been expected, especially in the then-current hostile 
political environment, the bill almost immediately ran up against opposition 
because of the restrictions that it would impose and the costs that would be in-
curred. If the history of the recent attempts to introduce Federal cyber security 
legislation is any guide, it is unlikely that this bill will find its way into law in 
its current form, and any compromise bill is likely to be dragged out over time 
and considerably watered down.

An earnest push for action on national cybersecurity legislation will likely 
not occur until the situation has become bad enough to cause public outcry 
and political response. Vice Admiral Michael McConnell (USN, Ret.) testified 
on this at a hearing of the U.S. Senate Committee on Commerce, Science, and 
Transportation on February 23, 2010, saying that he believes that no serious 
action will be taken on behalf of cyber security until and unless a catastrophic 
cyber event were to occur. The Committee was chaired by Senator John D. 
(Jay) Rockefeller IV, and was on the topic “Cybersecurity: Next Steps to Protect 
Our Critical Infrastructure” [11].

Meanwhile, apparently all we can do is just try to prepare for the day 
when such an effort will be endorsed out of necessity, as it will when a cata-
strophic event or series of events takes place. This is by no means a desirable way 
of addressing the issue, but as of now, there seems to be little choice. By way of 
preparation, we need to sort out the details of how, in an ideal world, safe and 
secure software-intensive systems should be designed, developed, implemented, 
run, and discarded. In that way, there will be some basis for quickly invoking 
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the better methods needed to deal with the problem at the time. Such an ap-
proach is far from ideal but, because there is little chance of establishing appro-
priate standards and funding the implementation of those standards without a 
major driver, it will have to serve the purpose, even though it will cost many 
times what it would cost if the mitigation efforts had been done in advance.

A Note on Protection

The general approach to security is to defend systems against attacks, thereby 
protecting information assets. With respect to safety, not only do we want sys-
tems not to harm humans, other life forms, and the environment, but we also 
look to protect potential victims directly through secondary means, such as 
manual overrides in the event that systems malfunction or fail due to inten-
tional or accidental incidents.

Most current efforts are geared to prevention. Typically, we install intru-
sion detection and prevention systems to protect software systems against mali-
cious attacks. Antivirus software is used to detect and intercept malware before 
it can insert itself into legitimate computer systems. Safety-oriented systems 
are prevented from doing damage by using a specific set of failsafe methods to 
protect individuals, groups, and the environment.

Not nearly enough money and effort is being applied to deterrence and 
avoidance, relative to funds allocated to protective measures. However, avoid-
ance and deterrence are usually far cheaper to implement than preventative ap-
proaches. For example, if the British royal crown jewels were to be secreted away 
in an unknown location, far less effort and expense would be needed to guard 
and protect them than if the real crown jewels were on display. However, it 
can be argued that displaying them is worth more than what it costs to protect 
them, which is why they are put on view in all their glory. The main argument 
in this case against avoidance by not exhibiting the jewels is that the public has a 
right to see them and is willing to pay to do so. Nevertheless, facsimiles could be 
substituted, thereby avoiding much of the security issue, although the experi-
ence of viewers would be diminished (if they were, in fact, aware that they were 
looking at fakes), except if the viewing public believed them to be real because 
of the extraordinary security precautions being taken.

Deterrence and avoidance, in particular, are the keys to attaining levels of 
security and safety that professionals in the field would like to see. However, 
since protection is seen as a responsibility of safety and security professionals, 
and deterrence and avoidance relates more to business decisions, the latter are 
seldom included in the systems engineers’ toolbox. Often software-intensive 
systems are breached, or fail in a harmful way, not because they were not pro-
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tected against unwanted actions, but because they are being used for purposes 
not originally envisaged, approved, or allowed for.

A prime example of this latter condition is the Internet itself. Originally 
called ARPAnet, the Internet was developed by DARPA as a highly resilient 
network that could be relied upon to continue to operate even if substantial 
segments of the network were disabled or destroyed. The Internet was not de-
signed with security in mind, nor safety for that matter, because the original us-
ers, mostly academics, knew and trusted one another and because if users failed 
to honor appropriate security requirements, they were banned from using the 
network. Ironically, many software system compromises usually occur because 
of unauthorized or unexpected access, use, and operations that were not envis-
aged by the creators of the software.

Deterrence and avoidance must be included as means of reducing soft-
ware system risk if we are to have any hope of meeting the challenge. Such mea-
sures are often unpopular because they frequently mean restricting or removing 
prior privileges and uses. Also, those enforcing the restrictions will likely be 
accused of stymieing innovation. Yet deterrence and avoidance, if thoughtfully, 
carefully, and properly applied, can be much more cost-effective than protective 
measures. At some point, when it is clear that protection is insufficient and that 
critical infrastructure systems are on the verge of collapse, society might be will-
ing to take the difficult steps of restricting functionality and use of such critical 
systems and eliminating ready access to sensitive information. Until then, we 
are left with trying to improve the quality of current protective measures and 
work on encouraging them to be used and enforced.

Despite the expected lack of enforcement and adherence, we include 
deterrence and avoidance measures when considering a holistic approach to 
achieving safety and security goals. It is expected that, at some future time, so-
ciety may well begin to focus on deterrence and, in particular, on avoidance as 
disappointment with protective measures increases.

It should be noted that deterrence and avoidance of inappropriate ac-
cess to, misuse of, and damage to software functionality and data can often 
be built into software design and development. In particular, the design of a 
software-intensive system needs to incorporate the ability to restrict access to 
specific functions and data. For example, while a third-party identity and access 
management system might front-end a particular application, the application 
software itself needs to interpret user access restrictions properly and have the 
ability to block inappropriate functionality and data access. In other cases, de-
terrence might be introduced, for example, through warning messages letting 
users know that their aberrant behavior has been identified and recorded, and 
that action will be taken in the event that users exhibit such behavior again. 
These techniques are often less difficult and expensive to implement than are 
methods for protecting data, such as encryption.



82	 Engineering	Safe	and	Secure	Software	Systems	 	 Engineering Secure and Safe Systems, Part 2	 83

Safety-Security Governance Structure and Risk Management

We also address the importance of having an effective governance structure for 
the design, development, and implementation of software systems. In addition 
to the usual recommended project management processes, which are common 
in the literature, it is critical to ensure that all the necessary subject-matter 
experts are brought in at the appropriate stages of the software systems develop-
ment life cycle (SSDLC). 

We also emphasize the need to establish a risk management individual or 
group that will ensure as much as possible that both functional and nonfunc-
tional requirements are given their appropriate weight when making tradeoffs 
among project cost, quality, and timeliness.

Not only are software-intensive systems becoming more complex and in-
terconnected, but many software systems are transitioning into “the cloud.” 
These trends increase the need for both coordination and collaboration among 
systems engineers, software engineers, safety engineers, and security profession-
als throughout the entire development life cycle. Unfortunately, many of these 
groups do not currently communicate with one another; as a result, software-
intensive systems often lack the quality that a collaborative effort might well 
have produced.

The governance and risk management structures and practices described 
in this book are designed to foster such communication and collaboration. The 
proposed approach will also ensure that all significant factors for optimizing so-
called nonfunctional requirements of software systems such as security, safety, 
resiliency, survivability, and sustainability are at least considered. In the best of 
circumstances, these attributes will be incorporated into the processes used to 
create software systems, and will thereby protect internal assets, prevent the sys-
tem from damaging others, remain operational during destabilizing and dam-
aging incidents, and ensure the integrity of sensitive information and systems. 
The approach followed here is first to consider life cycle structure, then pro-
cesses and finally the roles and responsibilities of those who need to be involved.

An Illustration

In mid-January, 2012, passengers in a British Airways flight from Miami to 
London heard an announcement that the airplane was about to crash into the 
ocean. According to a July 1, 1999 article “BA False Alarm Strikes Again,” the 
issuance of the prerecorded alarm about a British Airways aircraft ditching into 
the sea is not new. In fact, such incidents were reported to have occurred three 
times within four months in 1999, according to the article [12]. The same 
thing happened again on a flight from London to Hong Kong, as mentioned 
in the January 17, 2012 article “Oops: Plane Mistakenly Warns Passengers of 
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Crash” about the January 2012 incident [13]. In another January 17, 2012 
article “British Scareways” by Robert McAuley in The Sun newspaper, the prior 
incident occurred in August 2010 [14]. In some cases, the malfunction was 
attributed to a computer glitch; in others cases, human error was given as the 
cause. One would have thought that, had a proper root-cause analysis been 
conducted, the reasons for such occurrences would have been determined and 
the systems modified to prevent subsequent repetition of the false alarm.

Fortunately, the announcement system had not been triggered by an ac-
tual physical emergency or a failure of the aircraft’s control systems. However, 
it does point to a failure in the coordination among the aircraft’s information 
systems, control systems, and their human operators, particularly since similar 
incidents have occurred at least four times previously on British Airways flights.

The General Development Life Cycle

We shall be focusing here on software-intensive systems rather than just ap-
plication software. That is to say, we are including system software, firmware, 
hardware, facilities, and human elements in the mix.

However, before we get into the details of safe and secure software system 
engineering, we will look at the origins of various engineering disciplines and 
how these disciplines evolved; the purpose being to illustrate how certain gaps 
might have developed over time.

Even today, traditional systems engineering is more commonly applied 
to the construction of facilities (office buildings, data centers, etc.) and the 
manufacturing of equipment than it is to software development. Nevertheless, 
the use of project management tools for software development has a fairly long 
history, stretching back to the 1940s, with wider adoption in the business world 
(as opposed to the military) beginning in the 1960s as those with military and 
government backgrounds entered the private sector. 

The earlier and more extensive use of project management in construction 
and manufacturing may be because these fields are more closely aligned with 
longer-standing engineering practices, such as civil, mechanical, and electrical 
engineering, which have all been established as professional disciplines for more 
than a century, as indicated in Table 5.1. In his book, Gawande [15] provides an 
interesting description of the sophisticated project management tools used by 
construction companies to coordinate the many activities and capture resource 
use for complex projects, such as the construction of a skyscraper. 

Software engineering is a relatively new discipline with a history spanning 
only six decades. Software safety engineering has a somewhat longer history of 
perhaps 40 to 50 years as compared to software security engineering, which has 
only been active for some 20 years or so. This latter difference is likely because 
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software developed for aircraft and spacecraft required that the negative im-
pact of system failure on human beings be considered, whereas interest in the 
security of software only began to receive significant attention with the advent 
of distributed systems and the Internet. There was some interest in security 
prior to the arrival of distributed systems and the Internet, but it was mostly 
limited to restricting logical access to data stored on mainframes using off-the-
shelf software packages such as RACF, ACF2, and TopSecret. There were also 
a limited number of such access management systems for minicomputers. At 
that time, logical access to computer systems was through “dumb terminals,” 
which were connected via dedicated cables to computer systems. Physical se-
curity methods were used to restrict access to rooms containing terminals and 
computer systems.

Structure of the Software Systems Development Life Cycle

The Department of Defense document on systems engineering [16], though 
more than two decades old, may still be considered to be the definitive text on 
the topic, because the Defense Acquisition University (DAU) website currently 
lists the document and it does not appear to have been superseded. However, 
more recent texts on the subject have been issued by NASA [17] and Haskins 
[18]. 

Haskins [18] provides useful comparisons among a half-dozen different 
life-cycle models. The comparisons are summarized at a higher level in Table 
5.2.

As Table 5.2 shows, the various systems engineering life cycles follow rough-
ly the same pattern. However, some life cycles emphasize particular phases over 
others. For example, the DoE cycle, as described in [19] does not include an 
explicit deactivation phase, but has more extensive planning phases than do 
other life cycles.

We now look briefly at the structure and phasing of software engineering 
life cycles. They tend to follow the phases shown in the second column of Table 
5.2. However, most researchers emphasize life cycles of internally developed 
software because there is much less ability to control third parties that pro-
duce and sell software. On the other hand, system integrators, as referenced by 
Haskins in Table 5.2, also go through similar life cycles as do organizations that 
develop software systems from scratch. In Table 5.3, we show structures for the 
software engineering life cycle, much as systems-engineering life cycle structures 
were shown in Table 5.2.

An immediately apparent difference between the systems and software 
engineering life cycles (comparing Tables 5.2 and 5.3) is that the latter does not 
show a retirement or decommissioning phase. While some may consider this 
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unimportant, it illustrates a difference in philosophy and represents a major gap 
in the creation and disposal of software. It might be explainable from the physi-
cal difference between systems in general, and software in particular, where the 
physical realization of software consists of data bits on some storage medium 
that can often be deleted with a single software command, whereas equipment 
disposal is often much more involved.

Another difference that is not as well illustrated by comparing the struc-
ture tables (but which will become more apparent when comparing processes) is 
the application of verification and validation (V&V) rather than testing. V&V 
is usually a much more intensive process than general software testing and gen-
erally a requirement for military, avionics, and similar systems. In fact, inde-
pendent V&V (or IV&V), which is performed by an independent third party, 
is frequently mandated for such systems. As mentioned previously, Braude and 
Bernstein [21] define the terms as follows:

• Verification: Ensuring that each artifact is built in accordance with its 
specifications.

• Validation: Checking that each completed artifact satisfies its specifica-
tions

That is to say, we verify that we are building the product correctly, mostly 
by means of inspections and reviews; we validate that we are building the right 
product, mostly by testing [27].

Life Cycle Processes

Importantly, in Christensen and Thayer [24], the authors distinguish between 
systems engineering and project management as follows:

• Systems engineering: a capability within an organization that might be 
identifiable as a separate entity performed by a combination of indi-
viduals, such as system architects, process architects, or lead designers. 
It is applied to technical activities as they relate to the development and 
sustainment of systems.

• Project management: the function (or role) of project manager exists for 
any project. The individual is responsible for managing the activities 
such as process planning and control.

A basic attribute, or function, of systems engineering is the formal manage-
ment of specifically-structured systems development projects. Such discipline 
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provides a substantial measure of assurance that customers and end users (if 
they are different from customers) will ultimately receive completed systems 
that meet their specific requirements and that have been tested to ensure that 
they work as required and specified.

One might reasonably assume that customers and/or end users are able 
to determine whether or not a particular system satisfies their functional re-
quirements (e.g., a bridge spans from point A to point B and has the capacity 
to handle given traffic volumes). However, typical customers (in the case of a 
bridge, the customer might be a municipality representing those looking to use 
the bridge) cannot be expected to have the expertise needed to ensure that the 
system meets nonfunctional requirements (e.g., for a bridge, such requirements 
might include the maximum weight of traffic and the stability of the bridge in 
response to crosswinds of different velocities). For software-intensive systems, 
it is similarly not to be expected that customers or end users can be relied upon 
to have specified appropriate safety and security requirements with acceptable 
completeness. When someone purchases an automobile, for example, he or she 
will look at factors such as space, comfort, fuel consumption, braking distance, 
and the like, in making a purchase decision; however, safety features are as-
sumed to be given, although consumer rating organizations will report safety 
issues, including results of  the National Highway Traffic Safety Administration 
(NHTSA) impact tests. Similarly, customers and end users of software-inten-
sive systems cannot be expected to define safety requirements. Furthermore, 
when it comes to the security of on-board vehicle control systems, there are not 
yet standards against which to measure the security level, official tests are not 
conducted, and the purchaser is left to his or her own devices when it comes 
to determining and assuming the risk that the systems will be compromised by 
attackers.

For software-intensive systems, in general, the functional needs of cus-
tomers and end-users do not usually include safety and security functional and 
nonfunctional requirements, and customers and end-users are not usually qual-
ified to test systems for safety and security deficiencies. Some, such as Brenner 
[28], have suggested setting up an independent testing organization (equivalent 
to Consumers Union) to test and rate commercially available software. In other 
cases, specific industries, such as the U.S. financial services sector, have looked 
into setting up an industry software assurance laboratory. Among many issues 
with establishing such a testing capability are agreeing to who would fund the 
effort, which software systems would be selected for testing, which set of criteria 
would be used for testing, and how the results would be distributed.

 It is therefore important to include subject-matter experts who are knowl-
edgeable in both functional and nonfunctional areas on the systems develop-
ment project team. However, in many cases, particularly for secure software 
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manufacture, the appropriate experts are often not called in during the life 
cycle and are forced to try to bolt security and safety measures after the software 
system has already gone through development and testing. At this point there 
has to be considerable compromise, particularly as the costs of such belated ef-
forts are many times what they would have been if the same security and safety 
features had been built in during earlier phases. In general, the problem is less 
for safe software systems than for secure software systems because the former 
are more often governed by specific standards and certification requirements.

At this point, we will take a more detailed look at systems engineering 
processes and related responsibilities of those managing and working on the 
systems. We draw heavily on guidelines developed by the space and military 
agencies as they were prominent in developing the field.

In Christensen and Thayer [24], the functions of systems engineering are 
defined to include the following: 

• Problem definition;

• Solution analysis;

• Process planning;

• Process control;

• Product evaluation.

According to Parnas [3], the systems engineering process comprises the 
following functions: 

• Requirements analysis;

• Functional analysis and allocation;

• Design synthesis;

• Verification;

• Systems engineering process outputs.

From the definitions of verification and validation by Braude and Bern-
stein [21], mentioned earlier, we see in the above process by Parnas that there 
is a phase in which systems are checked to see that they were built correctly 
(i.e., verification), but not that the systems necessarily address their specifica-
tions. This can result in very well-built systems that do not do what they were 
intended to do, and what is even more problematic, they might do what they 
are not supposed to do.
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As indicated above, very similar structures and phasing have been applied 
to software engineering, as well as to software safety and security engineering. 
The main differences relate to the processes within each phase and the degree 
of emphasis placed on each. Just because a phase is recognized as part of the life 
cycle, it does not mean that it will be addressed adequately unless the require-
ments and the processes are clearly and completely specified from the start.

There are generally substantial differences in the application of particular 
effort and expertise as we move from general systems engineering to more spe-
cialized software engineering and then on to the engineering of safe and secure 
software. Deficiencies in the specific areas of software security and safety result 
more from processes that are inadequately adhered to, rather than inappropriate 
life cycle structures. Key quality areas are often given insufficient attention and 
resources, or are ignored completely, suggesting that additional subject-matter 
experts, skilled in areas such as application security and system safety may have 
been excluded from critical stages in the life cycle. Their skills and experience 
need to be brought to bear during critical phases of the life cycle if deficiencies 
in these areas are to be addressed and resolved.

Governance Structure for Systems Engineering Projects

Researchers are usually quite specific about what should be done, but often pay 
insufficient attention to how success in each phase might be achieved. Here the 
devil is in the details, and many of the shortcomings that we see in the safety 
and security of systems are due to researchers either not including or not even 
being aware of the range of skills and backgrounds needed to create a successful 
safety-critical or security-critical software system. Again, this disparity is be-
coming particularly common as complex systems of systems and cyber-physical 
systems comprising both safety-critical and security-critical components are 
evolving.

In Table 5.4, we show the differences among the disciplines of general 
software engineering, software safety engineering, and software security engi-
neering. As can be seen from the table, it took several decades from when soft-
ware engineering was created as a separate, independent area to formalize the 
inclusion of software safety, and several more decades for software security engi-
neering to become recognized as its own domain. The relative maturity of each 
of these disciplines is reflected in the status of formal standards, establishment 
of professional associations, availability of expertise, and so on. The maturity is 
also reflected in the respective quality of software systems being produced, with 
software security engineering being somewhat weak in certain areas, such as 
the establishment of generally-accepted stringent standards, relative to software 
safety engineering.
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Risks of Security-Oriented Versus Safety-Oriented Software 
Systems

The distinction between security-oriented systems and safety-oriented systems 
has to do with which risks are emphasized in each. For the most part, as dis-
cussed previously, security is about protecting valuable and sensitive informa-
tion assets from outside, and possibly inside, attacks, whereas safety relates to 
preventing the system from doing damage or causing injury to those using the 
system or otherwise affected by the system. The degree to which the software 
running within the system is responsible for either secure or safe operation of 
the overall system depends upon the specific functions that the software sup-
ports. Sometimes system security and safety are not dependent on software, but 
on physical isolation and the like.

It is also possible for a safety-oriented system to depend only on hardware 
to protect customers or other users from harm. Such physical interlocks are 
common for electromechanical devices. However, it is also feasible to design 
a system where software is given the responsibility for avoiding injury and the 
equipment is totally controlled by software.

Similarly, a security-oriented system can depend on physical methods for 
protecting assets, or, alternatively, the protection can be via software only. For 
example, electromagnetic media can have a physical switch or similar mecha-
nism that prevents anyone from writing over existing content. On the oth-
er hand, the prevention of overwriting might be solely a matter of software 
controls.

For assuring some level of software security, information security profes-
sionals use methods such as threat modeling, penetration testing, and the like, 
to try to establish that outsiders or, to some extent, internal users cannot dam-
age the system, misuse or steal data, and so on. While those responsible for 
software security pay attention to secure coding, functional testing and non-
functional security testing, functional security testing (testing that the software 
system does not do that which it is not supposed to do) is mostly ignored as it 
is considered too difficult and costly. Unit testing, integration testing, and ac-
ceptance testing are done from the user perspective and focus on meeting func-
tional requirements. The amount of nonfunctional testing performed is often 
affected by whether the basic system functionality works as specified, resources 
available for testing and time to market.

For software safety, emphasis is more on validation and verification, as 
described above, to ensure that a system does not malfunction or fail in a man-
ner that will endanger human life or harm the environment. Those tasked with 
software safety pay much more attention to unit testing and integration testing 
than is done for software systems not having safety requirements. Generally, 
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much more time and effort are allotted to ensure a high level of system safety 
than is expended on other forms of testing, such as security-related testing.

In many ways, the role of the security professional is a far more difficult 
one than that of the safety engineer. The former has to defend against all poten-
tial attacks, whereas the safety engineer has to ensure that a finite population of 
malfunctions and failures of critial safety systems does not cause harm or loss of 
life to persons or other beings. That is to say, software security engineers often 
have an infinite number of possible attacks and vulnerabilities to deal with, 
whereas software safety engineers have a relatively limited number of possible 
scenarios, although that number could be very large.

Expertise Needed at Various Stages

Security expertise should be front-end weighted in the life cycle to ensure that 
security requirements are included and reviewed. The system design and cod-
ing practices need to be instilled from the beginning. They require expertise on 
secure application architecture and development practices. Security and func-
tional expertise is needed in the testing and implementation phases. Details of 
levels of involvement for security-critical systems are included in Appendix C.

Safety expertise is also needed early to ensure safe design, and to ensure 
that safety requirements have been considered and included as appropriate. 
However, safe coding practices may not play as great a part if safety-oriented 
languages are used. Additional expert input is needed in the verification and 
validation stages. Details of levels of involvement for safety-critical systems are 
included in Appendix D. 

Summary and Conclusions

It would appear that software safety engineers are better equipped to ensure 
that safety-critical systems meet stated industry and government requirements 
and standards in order to minimize the risk to human and other life, and the 
environment, of a failure of the systems.

Software security engineers have neither as stringent requirements nor 
the luxury of allocated time and resources to test for security, as do their safety 
software engineering counterparts.

As a consequence, while the development life cycles are similar in form 
for both security-critical and safety-critical systems, the emphasis at different 
phases is can be very different, as described in Appendix C and D, respectively.

Software security engineers generally appear to have a difficult time 
convincing their management that security risks are real and should be mini-
mized. Another aspect is that protecting security-critical systems often requires 
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considerable effort, resources and funding and, given the perceived risks and 
responsibilities for breaches, even minimal funding is often not forthcoming. 
Because of this huge gap, those interested in achieving high degrees of security 
for critical software are either presenting normative approaches that are unlikely 
to gain much traction, or hoping for magical clean-slate breakthroughs that will 
somehow change the game. The greater the problem becomes, the more it is 
apparent that the huge amount of effort—potentially costing in the trillions of 
dollars—is needed to produce secure systems going forward, replacing deficient 
systems where possible, and retrospectively fixing legacy systems that are un-
likely to be replaced within years or decades.

It is possible that, as safety-critical and security-critical systems are in-
tegrated into systems of systems and cyber-physical systems, stringent safety 
requirements will impact security requirements because security breaches can 
readily lead to intentional or accidental malfunction or failure of safety-critical 
systems. The hope is that the impetus from safety requirements and standards 
will elevate security requirements and standards, rather than software securi-
ty practices dragging down the safety-critical requirements and standards. It 
would seem to be a fair guess and a fervent hope that safety will become a major 
driver for improved software security.
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6
Software Systems Security and Safety 
Risk

If you don’t attack the risks, they will actively attack you. The real pro-
fessional is one who knows the risks, their degree, their causes, and the 
action necessary to counter them, and shares this knowledge with his 
colleagues and clients.”
—Thomas Gilb, Principles of Software Engineering Management [1]

Introduction

The word “risk” likely means something different to each and every one of us, 
judging from the many debates that arise whenever the topic is raised. Some 
well-respected researchers look to adopt simplified methods for assessing and 
managing risks, some think that the determination of risk is complex and re-
quires advanced probability theory, and yet others believe that the whole effort 
should be disbanded because it is impossible to come up with accurate estimates 
of losses and of probabilities of those losses occurring.

What many researchers and writers on the topic of risk appear to miss 
is that the assessment of risk can be a very personal process. Risk mitigation 
may be done largely to reduce negative outcomes that affect individuals di-
rectly, even if someone is supposedly assessing risks that may be assignable to 
someone else or to other groups or organizations. There is a question as to the 
degree to which someone can be objective enough to assess another person’s 
(or another entity’s) risks. Clearly, actuaries are tasked with doing that job for 
their insurance company employers, but even then, they might be motivated, 
likely subconsciously, to bias estimates to favor their own careers. For example, 
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if actuaries are conservative, payouts for losses will be less relative to premiums, 
but relatively high premiums will deter customers; if they are overly optimistic 
about catastrophic events not happening, the company could see large reduc-
tions in profits. 

In this chapter, we examine the risk assessment and management process-
es, taking into account the many definitions and models that are offered. We 
also look at the motivations of risk assessors and how those motivations might 
affect the resulting analysis, and further how they may influence risk manage-
ment more broadly. It will be shown that many assertions about risk miss the 
point entirely, which serves to explain the increasing number of inappropriate 
risk assessments and poor decisions which we have seen play out in recent years.

Understanding Risk

One might think from the seemingly knowledgeable manner in which self-
anointed authorities discuss risk, that they thoroughly understand the con-
cept and how to apply it. The results suggest otherwise, particularly when you 
consider the recent man-made catastrophes in the financial and nuclear-power 
worlds.

Risk determination and analysis have taken a number of major negative 
hits of late, particularly with respect to forecasting the global financial melt-
down beginning in 2008, or predicting that a tsunami hitting northeastern 
Japan would not exceed a certain height, as it did on March 11, 2011, or an-
ticipate that the Arab Spring would take place and spread in the manner that 
it has. The common thread of these events, and many other similar incidents, 
is that forecasts with respect to the likelihood that specific events, particularly 
catastrophic events, are often wildly off the mark. That is not meant so much 
as a criticism of our ability to  predict the unpredictable as it is of recogniz-
ing that estimating infrequent catastrophic events is virtually impossible. For 
catastrophes, the best approach might well be to implement some broad-based 
monitoring, protective, and response measures that cover an extensive range 
of potential events, in the hope that the preparation will somewhat soften the 
blow and provide timelier and more effective responses.

Risks of Determining Risk

Risk is associated with taking chances; we take chances when outcomes of deci-
sions or actions are not known in advance with certainty. This is the situation 
in which we find ourselves most of the time. Often the downside of decisions, 
which prove to be wrong or less than satisfactory, is not particularly damaging. 
For example, you may select a menu item in a restaurant and then notice that 
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someone else has ordered a dish that you would have preferred. In this case, you 
can usually return to the restaurant at a later date and order the coveted dish 
for yourself. However, on other occasions, a bad decision can be disastrous and 
there may be no opportunity to recoup losses, unless the risk was transferred 
through insurance or other means. An example of this might be an explicit de-
cision to build a house in a flood plain and take out flood insurance (assuming 
that insurance coverage is available for the contemplated location).

While there are opportunities to insure against attacks in cyberspace, such 
insurance can be difficult to come by because the applicant must demonstrate 
a strong security posture in advance for the underwriter to be comfortable 
enough with the level of risks to issue a policy and determine a reasonable 
premium to charge. One consideration when evaluating a company for cyber-
security insurance is how the company builds and/or acquires safety-critical and 
security-critical software systems. It should be noted, however, that purveyors 
of software products generally assume no liability for vulnerabilities that might 
reside within the software or for the consequential damages that might be sus-
tained. Mostly, acquirers of third-party software are contractually responsible 
for installing and operating the software correctly and assuming any losses that 
might occur through the use or misuse of the particular software product. Inde-
pendent software vendors (ISVs) will typically only offer to refund the cost of 
the software product and will not assume any other liabilities.

Software-Related Risks

The quest to manage certain software-related risks was actively pursued in the 
1980s. Dr. Barry W. Boehm, who is well-known for his definitive work on 
the software engineering process and famous for the spiral model [2], edited a 
pioneering collection of papers on software risk management [3]. At that time, 
researchers such as those who wrote chapters in Boehm [3] did not agonize over 
the precise definition of risk—their risk-related focus was on the software sys-
tem design and development processes and their associated uncertainties. The 
challenge back then was to minimize uncertainties related to software develop-
ment processes, rather than to protect against potential attacks on, or damage 
from, software systems after they have been developed and deployed. Nor did 
researchers examine, at that time, the risk of malicious developers, who might 
introduce destructive code into the software. Interestingly, even today the pros-
pect of such threats is generally not considered, despite there being very signifi-
cant risks associated with such activities.

During the computer program remediation effort to correct the Year 2000 
problem of misinterpreting the year in date fields, large quantities of program 
source code were shipped to outsourcers, many of them offshore and many in 
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Asia, Eastern Europe, and Ireland. There was considerable apprehension among 
information security professionals that such third-party contractors would in-
troduce “back doors” that is, computer-program code that would allow them to 
get into the software system at a later date and compromise the system in some 
manner or other for personal gain. There is little published evidence that this 
type of crime has in fact been perpetrated, although the likelihood of such an 
approach was thought to be high enough to voice concern publicly [4].

In the ensuing three decades, the role of software-intensive systems has 
become increasingly critical as such systems are being deployed into practically 
every area of human endeavor. Furthermore, the orientation of software-based 
systems has also changed, fueled by rapidly falling costs of electronics, leading 
to much cheaper systems and networks. There is also a burgeoning population 
of geographically dispersed developers, particularly in Asian, Eastern European, 
and South American countries, as well as in Russia. 

The ubiquity of  applications software products (apps), which are being 
created by hundreds of thousands of developers for Apple, Google, Facebook, 
and other platforms, has dispersed security, privacy, and safety issues through-
out cyberspace. In previous chapters, we made a clear distinction between safety 
and security as the terms might be applied to software systems. To make matters 
even more complicated, the term privacy is also frequently subject to varying 
interpretations. Privacy involves the legal and social rights of individuals, with 
the implementation of security measures being one of the ways to implement 
privacy directives. Major security and privacy issues arise from applications soft-
ware that is built by subcontractors for mobile devices, such as smartphones 
[5]. As smartphones and similar mobile devices are increasingly used to control 
physical systems, such as monitoring one’s home, we are seeing safety issues 
coming to the fore [6].

These changes in the way in which commonly-used applications are de-
veloped, distributed, and used has meant that oversight and management con-
trols regarding such development activities have become much more difficult to 
enforce, if even it is possible. Software-intensive systems produced in this open 
environment are much more likely to contain vulnerabilities and hence are 
easier to compromise. Consequently, while the pioneering work of the 1980s 
provides a good basis for mitigating risks stemming from the software system 
design and development processes themselves, they do not account for the large 
number of exploits that the Internet, mobile computing, and other techno-
logical innovations have produced. Nor did the early researchers anticipate the 
immense proliferation across the world of the development of software appli-
cations by individuals or small groups not subject to the discipline, oversight, 
and controls that can be expected from large software manufacturers. While 
some platform providers, such as Apple Inc., have in place some level of screen-
ing apps before they are made available to the public; such screening is mostly 
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done to ensure that apps function correctly and do not contain malicious code 
or malware. This form of screening is less thorough when it comes to consid-
eration of security, privacy, and safety consequences that might result from the 
large-scale deployment of these apps, which are typically used (and abused) by 
huge online populations that generate millions of uses per day.

Motivations for Risk Mitigation

A strong motivator for incorporating safety and security requirements into soft-
ware systems is the identification, assessment, and mitigation of risks. In virtu-
ally all situations, a trade-off must be made between the quality of software 
(where quality comprises security, safety, integrity, resiliency and the like) and 
the time and effort that might be needed to get the software systems out the 
door within acceptable timeframes. The trade-off is more apparent for security-
critical systems than it is for safety-critical systems; this is in large part due to 
the far greater consequences of a failure in safety-critical systems (such as con-
trol systems for avionics, transportation, electricity grids, oil rigs, space shuttles, 
and nuclear power plants), and a failure of information systems operated by 
banks, stock exchanges, payment card processors, and the like. It is perhaps due 
to this conflict in risks and goals that there seem to be so many deficient and 
defective software systems created, delivered, and operated, and many software 
development projects that are abandoned even before going into production. 
Of course, the press tends to report mostly data breaches and project and sys-
tem failures. Understandably, the media do not report that software systems 
have been operating well and without incident and that they have met their 
expected performance requirements since this is not considered newsworthy, 
although given the complexities and challenges involved, it is a major achieve-
ment. Similarly, bringing in software development projects on time, on budget, 
and meeting all requirements where those requirements include the needs for 
security, safety, dependability, performance, availability, integrity, and resiliency 
are not commonly reported, although they do appear in industry publications 
from time to time.

Even though they are considered newsworthy, only a very small percent-
age of data breaches and software system failures are actually reported to the 
public. Major data breaches have indeed occurred, but have not been reported 
in the press or included in chronologies of data breaches. Affected organiza-
tions made no attempt to hide or cover up these breaches; these breaches were 
not reported on because only a relative few such events, compared to the total 
population of known and unknown breaches, are noticed by the press.

Some lack of reporting of privacy breaches, in particular, is also due to 
there not being notification requirements for such breaches in many countries, 
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such as those in the European Union. In the United States, if data are encrypted, 
then unauthorized access to the data by hackers does not need to be reported; 
it is not required. This encryption criterion is somewhat misleading because 
the majority of attacks, estimated to be some 70 percent, are achieved through 
the application layer, in which case the attacker will be able to access the data 
since applications have to decrypt data in order to process them. Consequently, 
encryption has limited value with respect to protecting data if the applications 
processing the data are compromised.

Many U.S. state laws require notification to authorities, to the public 
at large, and to affected individuals in the event of data-security breaches that 
potentially affect nonpublic personal consumer and employee information. In 
Europe, although the original 1995 E.U. Data Protection Directive, which at 
the time of writing is likely to be superseded in 2012, was more stringent about 
protecting personal information than U.S. laws. The requirement for notifica-
tion has been virtually nonexistent in Europe, for example, although that situ-
ation is in the process of changing.

Furthermore, many instances of data compromise are not detected by the 
specific organizations that are under attack by insiders or external forces. Often 
organizations are unaware that they have been successfully attacked until or un-
less some third party determines that an attack has in fact taken place because 
of consequences such as fraudulent activity, and the third party traces fraud 
back to the original breach. Because of the manner in which many breaches 
are in fact detected, it is fair to presume that the vast majority of breaches are 
never detected. In part, this is due to woefully inadequate data creation, moni-
toring, reporting, and response. In contrast, malfunctions and failures of sys-
tems controlling power-generation facilities, electricity grids, water treatment 
plants, airplanes, ground vehicles, and the like are usually very obvious because 
of highly visible consequences, such as train and airplane crashes or explosions 
at refineries, oil rigs, power stations, telecommunications hubs, chemical plants, 
and the like. Of course, even with control system failures, many near misses (for 
example, when the damage was avoided by human intervention, actual failures 
that did not not produce visible physical consequences, or failures that went 
unobserved) do not find their way into the press.

Defining Risk

The analysis of risk depends first and foremost upon one’s definition of the 
term risk, which is not as obvious as it may seem. In this chapter, we shall 
examine a number of ways in which risk is defined and calculated. Once the 
approach to risk management has been determined, the implementation of the 
agreed-upon risk measurement methods then depends upon having certain in-
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formation, often in the form of security-related and safety-related metrics, avail-
able to the analyst who is making the risk determinations. The results are then 
typically presented to decision-makers who are supposed to be in a position to 
make requisite trade-offs.

Furthermore, this chapter expands upon standard methods of calculating 
the return on security and safety investments in several ways. First, we take into 
account the dynamic nature of threats, vulnerabilities, and defenses. Next, we 
take a more holistic view of security and safety investments.

The protection of information assets can be viewed in two ways. One is 
the hierarchical view of security and safety measures, such as avoidance, deter-
rence, and prevention. The other is defense in depth, wherein various secu-
rity tools and processes such as firewalls, identity and access management, and 
intrusion detection and prevention products are combined for greater overall 
protection and many levels of fail-safe procedures are introduced to prevent 
harm from coming to people or environments. The reader will gain a deeper 
understanding of the factors that affect risks and returns from investments in 
security and safety measures, tools, and processes, and will find that using a 
portfolio approach can lead to more cost-effective security and safety.

Assessing and Calculating Risk

There is an ongoing, frequently vituperative, and particularly confusing debate 
about what risk is, how it is calculated, who the appropriate decision-makers 
might be, how they should make decisions, and how those decisions should 
be implemented [7] Two thought-leaders in this area, namely, Donn Parker 
[8] and Scott Borg [9], have voiced very different opinions on risk assessment 
and the use of risk measures for use in determining one’s information security 
program, in particular. While both Parker and Borg have concerns with cur-
rent risk assessment and management practices, their issues differ. Parker has 
criticized the common approach to risk assessment, which uses estimates of 
damaging events and their likelihood; Parker claims that neither factor can be 
measured or estimated with any degree of accuracy, and so the entire approach 
should be jettisoned. He suggests that, in its place, the best of the practices used 
by peer organizations need to be established and adopted

Borg, on the other hand, supports the use of traditional risk assessment 
methods, but emphasizes that “[e]conomics drives security,” and that the focus 
should be on “loss of value.” He contends that the common fixation on assets is 
a mistake because the consequences of compromising a low-value asset, such as 
a cheap pressure gauge that gives false readings due to a cyber attack, can have 
huge consequences, such as the release of a toxic gas.  This example emphasizes 
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the need to determine the impact of consequences of failure rather than the 
intrinsic value of the protected asset.

In a couple of articles, Jeff Lowder questions a traditional approach [10] 
that is commonly based on the equation:

 Risk = Threats × Vulnerabilities × Impact 

where the term consequences (or loss) is often substituted for the term impact.  
Lowder claims that such a formula is mathematically nonsensical and 

should be discarded. He believes that the formula should be expressed as:

 Risk (Expected Loss) = Function (Threats, Vulnerabilities, Consequences) 

That is to say, the expected loss from an adverse security or safety event is 
a function of exploits, rather than specific mathematical relationship with the 
attacks. Threats, in Lowder’s presentation, are actual instances in which a threat 
has been realized as opposed to the possibility of an attack. The expected loss is 
further related to vulnerabilities that have not been mitigated and consequen-
tial losses in the event that an attack is successful. As Lowder correctly claims, 
the mathematical relationship is not multiplication, nor is it simple addition. 
However, giving those who support this formula the benefit of the doubt , one 
might assume that the use of addition and multiplication of the independent 
variables are not meant to be interpreted literally, but that they should only 
be used to show risk being dependent, in some fashion or other, on a series 
of specific independent variables. However, granting this assumption does not 
avoid the problem of the units of measure being inconsistent. Be that as it may, 
it makes much more sense and is also less confusing to be specific and rigorous 
in the use of terms, the expressing of relationships among variables, and the use 
of mathematical symbols.

As a further example of the imprecise multiplicative approach to the risk 
calculation, Borg [9] defines risk as follows: 

 Risk = Threat × Consequence × Vulnerability 

where the independent variables are defined as follows (emphasis added):

• Threat: an estimate of the likelihood of a given type of security event in 
a given time period.

• Consequence: an estimate of the losses that could arise from the above 
security event.
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• Vulnerability: an estimate of the extent to which the event will cause the 
above losses, given existing security measures.

The above equation and definitions of the independent variables some-
what reflect the common view of risk as a function of the probability of a 
loss (Borg’s threat) and magnitude of the loss (Borg’s consequence), which when 
multiplied together yields the expected loss. It would appear that vulnerability, 
as defined by Borg, might be considered to be a modifier of the probability of 
loss and can be expressed as a conditional probability (i.e., the probability of 
loss given some level of security in place). This allows for considering only those 
security measures that might reduce or eliminate the chances of a particular 
exploit actually doing damage. However, as suggested above, one could com-
bine these definitions of threat and vulnerability into one factor, namely, the 
conditional probability that an attack is successful, given that a particular set 
of security measures have been put in place and are being maintained. In any 
event, given the appropriate units of measure, Borg’s equation has some mean-
ing reflective of the standard expected loss formulation.

A range of formulations for risk is shown in Table 6.1. One additional 
point to note is the difference between the negativistic view of outcomes lead-
ing to losses versus a neutral view that outcomes can be both losses and gains. 
From the insurance underwriter’s perspective, only losses from negative events 
have a significant detrimental impact on costs incurred by insurers. If nothing 
bad happens, the insurers just continue collecting premiums with no payout.

A more detailed multistep process and somewhat different set of specific 
definitions and metrics is illustrated in Figure 6.1, which separates out the vari-
ous individual influences of factors on risk.

Figure 6.1 shows the progression of threats to exploits, where only a sub-
set of the full range of threats are actually realized in the form of exploits, and 
only a fraction of exploits have effective means of delivery and deployment. 
Of those threats that have been converted into exploits and have a means for 
launching, usually only a small percentage are able to penetrate defenses and get 
into systems. Once inside, there is always a question as to the real value of the 
assets at risk. It should be pointed out, however, that few assets obtained from 
random exploits have much value unless the attacker knows to target a specific 
set of data about which he or she is already aware and is able to transform into 
some type of benefit, usually financial fraud. 

Threats Versus Exploits

There are many definitions of the term threat other than the one that Borg 
mentions in [9], in which threats represent the probability of adverse events. In 
their book on Microsoft’s Security Development Lifecycle (SDL), Howard and 
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Lipner [11] define a threat as an attacker’s objective, while noting that some view 
a threat as the actual attacker or adversary. 

These definitions agree broadly with the model illustrated in Figure 6.1, 
in which a threat is thought to embody the potential for, or likelihood of, devel-
oping a working exploit, but is not considered to be the exploit itself. It should 
be noted that, in this model, a threat is really a prerequisite for an exploit and 
is not something that might lead directly to a security or safety incident. The 
exploit has still to overcome several hurdles before it can be credited with having 
triggered an attack.

In Figure 6.1, an exploit is shown as the functioning realization of the 
threat’s intent, as it were—typically a piece of malicious computer code (com-
monly termed malware) that acts upon a target system for the purposes of en-
gaging in some form of illegal, fraudulent, or otherwise damaging activity. That 
is to say, a threat, as so defined, is not in and of itself a danger—it is the pre-
cursor of an activity that could lead to a dangerous product in the form of an 
exploit. 

A threat can also be construed as the initial step towards a potential inci-
dent, which could be intentional or not, but which will likely damage or com-
promise a system nonetheless. For example, there is always a threat that software 
contains errors or bugs that could result in malfunction or failure, or that op-
erational errors might cause damage. There are unplanned and unintended ex-
ploits leading to incidents, such as when a circuit component burns out, which 
might cause the system to fail. This means that there are only a (likely) small 
percentage of threats that are ever converted into exploits, and fewer still when 
one considers the small fraction of all exploits that are released by their creators 
and are also successful in their attacks of their targets. Also, the impact on the 

Figure 6.1	 Threats,	exploits,	events,	vulnerabilities,	and	incidents.
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software system of an error by a developer, operator, or some other individual 
may be reduced by designing resiliency into the system using technologies that 
are self-healing, fail-safe, and/or redundant, as described in Axelrod [12].

Whereas one might say that this approach validates Borg’s threat defini-
tion, in that we should end up with the aggregated likelihood that a particular 
security event or incident occurs, we get far more insight into the process, and 
likely more accurate estimates of the probability of successful attacks, by using 
the more multistep model illustrated in Figure 6.1, particularly if we extend the 
approach to include consideration of time-dependency (or dynamics) and the 
human behavior of stakeholders, as we do later in this chapter. Also, the com-
bination or aggregation of different types of risk (or of the same risk assessed 
by different individuals or groups) is not straightforward, particularly when one 
includes probability distributions that are usually more appropriate, though 
more difficult to collect, than are single point values.

Many approaches to risk assessment require only point estimates of the 
loss due to an incident and of the probability of that loss. However, such fac-
tors are more accurately expressed as probability distributions. For example, the 
loss might follow a normal or lognormal probability distribution with mean µ 
and standard deviation σ. While it is difficult enough to get assessors to come 
up with point values, it is considerably more demanding for those doing the 
estimating to come up with probability distributions for particular variables. 
Furthermore, while estimates of point values for variables will vary among 
individuals, requests for probability distributions of these values will add sig-
nificantly to the data-collection process, and the results from such requests are 
much more difficult to reconcile, analyze, and aggregate.

Typically, we have to consider trade-offs among more realistic models, the 
cost of collecting and analyzing the more complex data, and the impact that 
more detailed models will have on decisions. If decisions are not improved by 
adding this layer of complexity, then requiring the probability distributions may 
not be worthwhile. However, if there is expected to be a significant improve-
ment in decision-making, and if it is likely that the more complex approach will 
lead to better decisions, where better means reducing risk significantly, then it 
might make sense to put in the extra effort.

Threat Risk Modeling

There is some disagreement, and possibly considerable misunderstanding, 
when it comes to the definition of threat modeling or threat risk modeling. In 
terms of the model shown in Figure 6.1, what is being modeled in most cases 
are exploits rather than threats because writers have provided specific instances 
of threats that have been realized as an attack or exploit, yet still refer to them 
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as threats. This confusion of terms carries through to threat modeling. Perhaps 
a more meaningful term would be exploit risk modeling.

Threat risk modeling is basically the development of models that can be 
used to try to anticipate  the range of exploits that might be directed against a 
software system’s vulnerabilities, the likely impact that would have been felt if 
no preventative  actions had been taken, and the anticipated impact if various 
protective and avoidance actions are taken. The processes described below pro-
vide a good background in how to go about performing threat risk analyses, but 
they do not guarantee that all potential exploits and existing vulnerabilities will 
be accounted for, especially in the intensely dynamic world of attacks against, 
and defenses of, mission-critical software systems. Performing such risk analyses 
requires both knowledge of the changing and intensifying threat environment 
and a detailed understanding of the components of the software systems (ap-
plications, system software, firmware, hardware, interoperations, etc.). Because 
few individuals have such a broad knowledge, except perhaps for the smallest of 
software systems, it is necessary to bring together subject-matter experts, usually 
including specialists from third-party service providers and vendors, to address 
the threats, vulnerabilities, and mitigation strategies for the typical large, com-
plex software systems found in today’s organizations.

McGraw [13] claims that Microsoft employees use the term threat model-
ing when they really mean risk analysis, McGraw quotes Swiderski [14]: “Dur-
ing threat modeling, the application is dissected into its functional compo-
nents. The development team analyzes the components at every entry point 
and traces data flow through all functionality to identify security weaknesses.”

Despite McGraw’s contention, Microsoft employees Howard and Lipner 
include their discussion of threat modeling [11]. They negate the claim that the 
term threat modeling is misused at Microsoft. Just to confuse matters further, 
the Open Web Application Security Project (OWASP) straddles the issue by 
using the term threat risk modeling in its description of this activity [15]. In-
cidentally, OWASP endorses Microsoft’s approach to the threat risk modeling 
process, which, according to OWASP, consists of the following five steps:

1. Identification of security objectives;

2. Review of the application;

3. Decomposition of the application;

4. Identification of threats;

5. Identification of vulnerabilities.

Howard and Lipner [11] list nine steps in the process, namely: 

1. Definition of use scenarios;
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2. Constructing a list of external dependencies;

3. Definition of security assumptions;

4. Creation of external security notes;

5. Creation of one or more data flow diagrams (DFDs) of the applica-
tions being modeled;

6. Determination of threat types;

7. Identification of threats to the system;

8. Determination of risk;

9. Planning of mitigations.

Clearly there are parallels between the two processes, although Microsoft’s 
list is more comprehensive than the OWASP list.

Perhaps the most interesting aspect of the threat modeling process, as it 
relates to our discussion, is the classification of threat types by Howard and 
Lipner [11], using the acronym STRIDE to identify types of threat. STRIDE 
stands for the following categories of security risk:

• Spoofing identity: One user must not be able to assume the attributes of 
another user.

• Tampering: Users must not be able to modify data or program code in 
unauthorized ways.

• Repudiation: Users must not be able to deny having done something 
that they actually did.

• Information disclosure: Users must be prevented from disclosing sensitive 
information.

• Denial of service: The system must protect against attacks that cause the 
system not to be available to authorized users.

• Elevation of privilege: Users must not be allowed to gain increased capa-
bility beyond what they are authorized to perform.

In the above definitions, users might be considered to be valid (i.e., they 
might have been authenticated and duly authorized) with specific rights with 
respect to particular software systems, or they could be malevolent outsiders or 
insiders with the intention of doing harm. However, it should be recognized 
that both valid and malicious users often exhibit similar usage patterns because 
the hackers frequently masquerade as authentic users, as in identity spoofing. 
Furthermore, access rights and privileges are very often beyond what legiti-
mate users need to know because identity and access management for many 
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large-scale systems might be poorly managed. Assigning application access 
rights to users is complex and is further complicated by user populations that 
are constantly changing through internal reassignments and external events, 
such as natural disasters, takeovers, or mergers.

Threats from Safety-Critical Systems

When it comes to safety-critical software systems, which are frequently indus-
trial or military control systems, threats are from, rather than to, software sys-
tems, as we have discussed. Now that control systems are increasingly being 
attached to networks, particularly public networks like the Internet, control 
systems are becoming subject to many of the same security threats that plague 
security-critical information systems.

Safety-critical software-intensive systems also have to tackle their own set 
of threats and exploits. Even if the networks supporting control systems are 
physically and logically isolated, it is still possible to enter the network via other 
vectors, such as USB drives, as was used for the Stuxnet worm. Had the victim 
of Stuxnet, a uranium-processing system in Iran, been completely closed, the 
particular method used to infiltrate the system would not have been viable. 
Futhermore, if the Stuxnet virus had not “escaped” it would not have replicated 
over the Internet; it may have remained a secret. It is claimed that the virus got 
out into the world because of a programming error [16].

The consequences of malfunctions or failure are used to determine the 
level of safety that must be achieved for particular certification. In Tables 6.2 
and 6.3, we show the various levels attributable to control systems and informa-
tion systems in aircraft (i.e., avionics) and in automotive vehicles, respectively 
[17].

It should be noted that, for the most part, control system malfunctions 
and failures are considered to be much more damaging than failures of informa-
tion systems because the former could result in physical injury or loss of life, 
whereas the latter usually cause inconvenience, annoyance, and possibly loss 
of money and other assets (i.e., intellectual property). Nevertheless, secondary 
and tertiary effects of an information-system failure could impact the physi-
cal world. For example, the compromise of a financial system might result in 
major financial losses, which could lead to damage to one’s lifestyle or worse. 
For example, the month-long computer system outage  of the main processing 
systems of Ulster Bank in Northern Ireland, which lasted from mid-June to 
mid-July 2012, caused a great deal of hardship to customers, even though all of 
the customers will be compensated for any resulting monetary losses.

Of course, malfunctions and failures can be internal to safety-critical con-
trol systems, as would result from programming errors, or they can be induced 
by unauthorized access to those systems and consequent attacks upon them. 
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Table 6.2 
RTCA/DO-178B Standard Applied to Aircraft Certification

System
Type of 
System

Level A 
(Catastrophic)

Level B 
(Hazardous)

Level C 
(Major)

Level D 
(Minor)

Level E 
(None)

Flight control 
system

Control X — — — —

Cockpit display 
and controls

Control X — — — —

Flight 
management 
system

Control X — — — —

Brakes and 
ground guidance 
system

Control  — X — — —

Centralized 
alarms 
management

Information — — X — —

Cabin 
management 
system 

Information — — — X —

Onboard 
communications 
system

Information — — — X —

Centralized 
maintenance 
system

Information — — — X —

Entertainment 
system

Information — — — — X

Table 6.3 
IEC 61508 Applied to Automotive Vehicles

System
Type of 
System SIL 3 SIL 2 SIL 1

Not 
Applicable

Steer-by-wire Control X — — —
Brake-by-wire Control X — — —
Engine management system Control — X — —
Dashboard Information — — X —
Body controller Information — — X —
Navigation Information — — — X
Diagnostic Information — — — X
Entertainment system Information — — — X

Note: SIL = Safety Integrity Level [18].
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The damage caused by the malfunctioning or failure of security-critical infor-
mation systems is usually less dramatic than for safety-critical systems because 
compromises usually involve financial losses rather than physical harm as men-
tioned above. Nevertheless, there are many parallels with safety-critical systems. 
It is just that, to date, no one has categorized the severity of the damage caused 
by malfunction and failure for information systems in a comparable way to 
those categories used for certifying safety-critical systems because there are no 
established standards against which such information systems might be certi-
fied. The losses for both security-critical information systems and safety-critical 
control systems can be expressed in monetary terms, although the estimates for 
the latter will tend to be less accurate because it might involve putting a value 
on loss of life or injury or damage to the environment; both valuations are 
highly subjective.

In the financial services industry, there have been some attempts by regu-
lators and industry bodies, such as the Payment Cards Industry (PCI) Security 
Standards Council, to establish criteria and standards to be applied to critical 
systems, such as those handling sensitive personal information or those running 
core processes vital to the continued operation of financial systems. The failure 
of Ulster Bank’s automated processing systems on June 16, 2012, underlines 
this need.

There is a pressing and urgent need for such categorization and certifica-
tions in the security-critical information systems arena along the same lines as is 
currently done for safety-critical systems.

In Figure 6.2, we illustrate the types of attacks (such as external/internal, 
intentional/accidental) that might occur on security-critical and safety-critical 
software systems and what the consequences of successful attacks and malfunc-
tions might be.

Creating Exploits and Suffering Events

There are many existing and potential threats that cannot be, or will not be, 
converted into exploits that can be used to attack software systems. Conversely, 
there are many events that occur spontaneously or are the result of human error 
or ineptitude.

Many exploits are unintentional (due to software errors, operational mis-
takes, etc.) or due to natural disasters, although the latter occur mostly in the 
physical domain. There is always the threat of human error, and it needs to be 
accounted for in ensuring that software systems are safe and secure. On the 
other hand, there are many occasions when human action averts the impact 
of attacks. This can occur before these threats are realized, at which point they 
actually become dangerous exploits, or when they are meting out their damag-
ing payloads. For example, manual overrides are frequently built into industrial 
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control systems. If the system goes haywire due to an error or attack, or if there 
is a natural disaster (such as a hurricane, earthquake, tsunami, etc.), operators 
can shut down systems, switch over to backups, and perform other mitigating 
actions.

With respect to the creation of real-world exploits, one reason for not de-
veloping fully-fledged exploits based on known vulnerabilities might be that the 
technology to implement the exploits does not exist, is not feasible, or is in the 
process of being developed but is not yet available. Another reason that threats 
are not turned into exploits might be that an exploit may be too complex or 
too expensive to develop and launch. In other cases, a hacker may not think 
that potential gains from a successful exploit are worth the effort, expense, or 
personal risk. In yet other cases, an exploit might indeed be feasible, but the 
developer of the exploit may decide not to release it, but to sell it to buyers who 
want to keep it “under wraps” and use it when and where they wish. Examples 
of such buyers might be makers of the software against which the exploit could 
be targeted, competitors of vulnerable software who are interested in ensur-
ing that their own software is protected, nation states and terrorists wanting 
to keep a particular exploit against a specific vulnerability in hand for use in 
cyber warfare, organized criminals who are looking to attack specific public and 
private-sector organizations for financial gain, and the like. Here, vulnerability 
is thought of as a weakness that can be exploited by attackers in their quest to 
obtain financial or other gain, or perform acts of damage and destruction.

Figure 6.2	 Threats	and	exploits	and	the	consequences	of	system	compromise	and	failure.
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Unanticipated and unauthorized events happen frequently. They may re-
sult from errors in programs or from the manner in which the software systems 
are installed and used. Errors may be introduced at any point in the devel-
opment life cycle, including during distribution, installation, and operation. 
Howard and Lipner [11] present the estimates of the costs of fixing such errors 
based on when the defect is introduced and when it is found, as shown in Table 
6.4, which is derived from a book by Steve McConnell [19]. McConnell de-
rived the table from eight other sources.

Some of these relative costs appear to be inconsistent. For example, one 
would expect that the cost of fixing defects introduced in the requirements 
phase and found during the test phase would be greater than those introduced 
in the architecture phase and found in the test phase, and even greater still than 
those introduced in the construction phase and found in the test phase. Simi-
larly, it would be expected that the cost of fixing defects found once the software 
is in production would be greater with respect to the range of values for those 
defects introduced in the requirements phase than those introduced in the ar-
chitecture phase. Despite these apparent anomalies, the statistics clearly show 
that, in general, the earlier a defect is introduced and the later it is discovered, 
the more expensive it is to fix.

The remediation cost matrix has significant impact on whether or not 
an organization decides to take the hit from known exploits or make the effort 
to fix the defect or vulnerability that would allow the attack to be successful. 
Clearly, as the cost of remediation is so much larger for defects introduced early 
in the life cycle but not identified until much later, it is less likely that the fix 
will be done late in the life cycle unless the losses are expected to be very large. 
In other cases, companies appear to be willing to sustain losses that are consid-
ered manageable and a cost of doing business [20]. Sometimes, if feasible, it 
pays to replace a software-intensive system altogether rather than trying to fix 
it, although only too often organizations choose to throw good money after 
bad and keep the old systems running for as long as possible. At some point in 
the lifespan of IBM’s OS/360 operating system, it was found that trying to fix 

Table 6.4  
Relative Costs of Fixing Defects at Various Stages of the SSDLC

Phase where 
Defect was 
Introduced

Phase Where Defect was Found

Requirements Architecture Construction Test Production
Requirements 1 3 5–10 10* 10–100*
Architecture N/A 1 10 15 25–100
Construction N/A N/A 1 10 10 –25

*Inconsistent values based on expectations with respect to the form of the relationships.
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defects actually resulted in introducing more bugs than were fixed, suggesting 
that it was no longer worthwhile to put in fixes and that a complete rewrite was 
justified [21].

 When an exploit, say in the form of a computer virus or worm, has been 
developed but not released it is considered to be “in the zoo,” whereas malware 
that has been activated and released is characterized as being “in the wild.” As 
long as an exploit remains in the zoo, it does not endanger potential victims, 
but its very existence does present a risk because the exploit could well be re-
leased accidentally. A recent example of this concern was the attempt to prevent 
publication of a paper describing a mutation of the avian-flu virus that was 
developed in the laboratory. There was great concern that the virus could be ac-
cidentally released or that terrorists or other evildoers might use the technology 
to develop the virus for their own use [22].

Of course, an in-the-zoo exploit may or may not actually work. Often, 
hackers will run tests on early versions of malware to determine their potential 
effectiveness without actually releasing them. An astute security professional 
who also has access to a wealth of network traffic data at the transaction level 
might be able to spot the prototyping of exploits, as has Dr. Ed Amoroso, the 
chief information security officer at AT&T. In other cases, such as the notori-
ous Morris worm, the exploit got out of hand and did far more damage than its 
creator, Robert Tappan Morris, had intended [23].

Vulnerabilities

Figure 6.1 shows that some percentage of exploits is released into the wild or 
directed against specific targets or set of targets. However, successful attacks 
depend on vulnerabilities existing and being accessible or exploitable by the 
attacker. McGraw [13] defines a vulnerability as “an error that an attacker can 
exploit.” McGraw goes on to state that vulnerabilities arise from defects, which 
are called bugs at the implementation level and flaws at the design level. How-
ever, it should be noted that software might contain few, if any, discernible 
defects, yet still be subject to compromise. For example, Professor Ed Felton 
and his team discovered that by cooling down memory chips, data was retained 
beyond when the power to the chip was cut off, enabling researchers to pull 
information off the chip before it disappeared [24]. This example underlines 
the importance of context. It is not sufficient to build application software 
products that are demonstrably free from defects; the software system needs to 
be immune from attacks against operating systems, and against the logical and 
physical platforms upon which it might reside.

Of course, known vulnerabilities can be fixed in many cases, usually by 
installing patches issued by the maker of the software. There are, however, many 
vulnerabilities for which patches are not available or are not known, possibly 
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because information about them is restricted or has been sold to the highest 
bidder. Nevertheless, given the existence of an exploit that can be directed 
against a vulnerability, there is a good chance that a hacker will attempt to use 
the exploit against an unprotected software system and be successful in gaining 
unauthorized access, inserting malware into the system, copying sensitive data, 
modifying programs, and the like. However, there is one last defense, namely, 
that the intruder—be it a person, an application, or a transaction—does not 
find anything of value to steal or otherwise compromise. This is an example of 
avoidance.

Responses to attacks can be active or passive. They can be achieved not 
only by protecting assets against attacks, but also by avoidance and deterrence, 
as shown by one of the curved arrows in Figure 6.1. Deterrence requires that 
victims of attacks or their representatives, such as law enforcement, announce 
that they will take effective legal action against perpetrators who are found and 
apprehended, and are seen to do so. However, because of the ability of hackers 
to attack from practically anywhere in the world with relatively little fear of be-
ing apprehended and punished, deterrence is often not very effective, particu-
larly in a global context. Avoidance has a lot more going for it; if critical systems 
are not readily accessed by outsiders and restricted to insiders on a need-to-
know basis, then chances are that unauthorized access will be minimized. Ad-
ditionally, if care is taken to avoid putting sensitive data within easy reach, the 
effectiveness of attacks will be further diminished or eliminated.

Application Risk Management Considerations

The OCC Bulletin 2008-16 states that national banks should ensure that the 
manner in which applications are developed and tested addresses risks to the 
confidentiality, availability, and integrity of data, particularly customer infor-
mation [25].

While the OCC Bulletin 2008-16 states that scope may vary with the size 
and complexity of a bank, it asserts that the following key factors impacting risk 
should be considered:

• Accessibility of the application via the Internet;

• Processing or provision of access to sensitive data;

• Source of development;

• Extent of secure practices in application development;

• Effective, recurring process for monitoring, identifying, and fixing vul-
nerabilities;
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• Periodic independent assurance of security of applications;

• Management responsibility for ensuring applications are secure at ac-
quisition (i.e., in RFIs and RFPs) and thereafter;

• Evidence of vendor adherence to sound practices and validation through 
third-party testing and/or audits for higher-risk applications;

• Support of purchased applications via vulnerability identification and 
remediation processes;

• Assurance that purchased and contracted applications are subject to the 
banks’ ongoing testing process.

For in-house developed applications, OCC Bulletin 2008-16 suggests 
that banks need to include the following in their enterprise-wide efforts:

• Incorporation of appropriate attack models;

• Analysis of applications’ environments;

• Ensuring that open source applications are subject to appropriate devel-
opment and assurance processes;

• Assurance that personnel are trained in and aware of risk in the IT en-
vironment;

• Ensuring the appropriate protection of transactions and customer data 
by engaging in periodic application testing or validation.

While directed primarily at U.S. banks, these considerations should be 
applied generally.

Subjective vs. Objective vs. Personal Risk

A column “Risk Mismanagement—Scoring vs. Monte Carlo vs. Scoring” trig-
gered a discussion as to the difference between subjective and personal risk 
postures [26]. Comments by Douglas Hubbard in response to the column 
prompted thought about the difference between subjective risk assessments and 
personal risk assessments. It is argued that the term subjective means a person’s 
individualistic view of a risk relating to someone or something else, which may 
or may not cause the person assessing the risk to change actions and activities. 
On the other hand, personal risk assessment is about the direct impact of the 
decision on the person making the risk assessment and subsequent decisions.
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Personalization of Risk

The value assigned by someone to a particular risk is usually very personal. 
As Jones [27] points out: “… risk tolerance is unique to every individual.” 
That is, individuals generally assess risk in large part with respect to how they 
might be personally affected by a particular adverse or beneficial event and its 
outcome. Jones and others recognize that risks are personal or individual, but 
they do not suggest how to address this most significant, least understood, and 
least accounted-for factor in the whole of risk management. Risk-assessment 
values should be adjusted to allow for the personal and subjective biases that 
are commonly introduced. This is an area of research unto itself and cannot 
be dismissed with a simple acknowledgment that it exists. It may well be that 
a method, similar to the interview approach propounded by Hubbard in [28] 
for obtaining estimates of impact and their likelihood of occurrence, might 
be applied to the issue of the personalization and subjectivity of risk factor 
estimation.

That is not to say that decision-makers do not account for the adverse or 
positive impact of incidents on others. As mentioned previously, an actuary at 
an insurance company will likely determine the probability of loss events and 
the potential losses incurred in as objective a way as possible to provide his or 
her employer with the basis for underwriting specific risks of loss and determin-
ing the amount charged in premiums. On the other hand, that same person will 
decide whether or not to buy an insurance policy based on his or her personal 
view as to the likelihood of incurring such a loss and the degree to which the 
actuary might be personally affected; the actuary’s risk assessment is not likely 
to be absolutely objective. The actuary may well exhibit some bias related to the 
need to be conservative so as to not subject the insurance company to exces-
sive risks, as well as the desire to advance one’s career by being recognized for 
thorough analysis and accurate forecasts. Further, there will also be some level 
of subjectivity based on the actuary’s prior successes and failures.

The Fallacies of Data Ownership, Risk Appetite, and Risk Tolerance

In much of business and government, it appears that if you know the buzzwords 
and what the acronyms stand for, you are considered a bona fide expert in a 
particular field. This seems to be the case in the risk area, where, if you know 
what the acronym GRC stands for (yes, it’s governance, risk [management] and 
compliance), then you are clearly one of the cognoscenti. You are then able 
to talk convincingly about “data owners,” “risk appetite,” and a host of other 
equally meaningless terms. At the risk of having riled up many of my readers, I 
will try to support these wild claims.
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I have sat through too many meetings where “the team” has worked its 
way through a long list of data items and assigned “owners” to each one. An 
example is “Social Security number” or SSN, which might logically “belong to” 
the head of the New Accounts Department, but it is unlikely that the person 
in question really tracks the use of the SSN. Typically, the SSN weaves through 
many systems within an organization, and so it is questionable as to whether 
the owner really understands what underlies the formal requests for approval 
for using SSNs in other applications. In addition, it is unlikely that the data 
owner is fully aware of the legal and regulatory requirements for protecting such 
information and the ramifications if the data should fall into the wrong hands.

This leads us to ask, what does “ownership” entail? Well, it means that the 
owner (whoever “owns” the data item, like a Social Security number or a pass-
word) is responsible for ensuring the security and integrity of that data item, 
that it is only made available on a need-to-know basis, that it is suitably pro-
tected (e.g., encrypted) whether in transit or at rest, and that when it no longer 
serves any useful purpose, it and all of its instances are appropriately  deleted 
and destroyed. That is all well and good, but are the processes in place to supply 
the data owner with all of the information required to make decisions? Do com-
puter software developers meet with the data owner and carefully describe how 
the data will be used, who will see it, who can change it, and who ensures that 
there are no stray instances of the data when the data files are destroyed? Fre-
quently, many of these decisions are made by the information security staff in 
collaboration with an administrator. They act as surrogates for the true owner 
of the data who may be the only person that truly understands the importance 
and sensitivity of the data, if in fact he or she does so. Is it any wonder that so 
much highly sensitive information is inadvertently leaked?

We then have risk appetite (also called risk tolerance). It is incumbent upon 
managers to express their feelings about the risks surrounding a particular deci-
sion. But whose risks are being presented? The decision-maker will likely mix 

Table 6.5 
Comparison of Influences on Risk Assessors Based on Level of Objectivity

Objective Subjective Personal
Influences Ability to demonstrate 

that correct risk approach 
was taken 

Depends on expertise and 
experience and concerns 
about acquiring and 
retaining customers

Depends on self image 
and concerns about 
personal damage

Examples Actuary using historical 
statistics and predictions 
of weather patterns, 
global warming, etc., to 
derive estimates of flood-
related risks over a broad 
geographical area

Insurance broker expressing 
to potential customers 
the need for insurance to 
cover the risk of flood in a 
particular area

Insurance broker 
concerned that his or 
her own home might be 
flooded
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together a whole range of risks from those that are highly personal to those 
about which they do not really care, since those risks might not be seen to affect 
the decision-maker. Part of this characteristic is determined by whether the risks 
involve the decision-maker’s own funds versus those of the institution, whether 
the risks are seen as personal versus corporate, and the chance of something 
negative or positive occurring “on their watch.” Jones [27] points out that “[r]
isk analysis only identifies how much risk exists” and not what level of risk is 
acceptable or unacceptable. 

Then there is a whole range of risks for which nobody appears to have 
responsibility, although the consequences of negative events might well affect a 
broad range of stakeholders. This is referred to as the tragedy of the commons, as 
described in Hardin [29]. Generally, when there is no owner  of a risk, such as 
the security of the Internet, the outcomes of failure of those resources for which 
no one takes responsibility are much worse than would have occurred if there 
was specific responsibility for those resources.

The Dynamics of Risk

Risks related to software-intensive systems are not static and they do not change 
according to any prescribed schedule. Different risk characteristics change in 
response to both external and internal factors. It is important, therefore, to 
account for such changes, often as quickly as they occur or are discovered, or 
preferably in anticipation of new exploits, the introduction of new features and 
new releases of software products, or changes in business volumes and mix.

With respect to the introduction of new features, there is always a risk that 
a new feature will itself have unintended consequences or that, in combination 
with other applications and software-intensive  and data-intensive systems, a 
feature or group of features will provide unexpected capabilities that may con-
tain undesirable aspects. A current example of this is the proliferation of apps 
that facilitate many activities but that also collect substantial amounts of per-
sonal data. This data, especially when combined with data from other sources, 
can reveal much more information about individuals than they would have 
agreed to if they had understood the potential for compromising their privacy. 
A good analysis of the risks of big data is provided in Angwin [30]. Axelrod [31] 
predicts that there will be a major shift in emphasis from issues relating to the 
security of data and software systems to privacy issues, and it appears from the 
increased press and rising concerns expressed in professional publications that 
this is happening. However, it is also common to see new, as well as longstand-
ing features, being exploited by hackers to gain access to systems and data.

Regarding new releases of software, it was well-recognized as far back 
as the 1970s that, as software became more complex over time, the upgrade 
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process reached a point of diminishing returns. In their definitive article, Belady 
and Lehman [32], who were directly involved in the maintenance and enhance-
ment of the IBM OS/360 operating system, present three “laws” relating to the 
dynamics of systems and their need for continual effort and attention.

The demand for continuous repair and improvement is expressed in Be-
lady[11] as the “First Law of Evolution Dynamics” as follows:

“I. Law of continuing change. A system that is used undergoes continuing 
change until it is judged more effective to freeze and recreate it.”

A system will degenerate over time and become less manageable and more 
complex as it is changed, as expressed in the “Second Law of Program Evolution 
Dynamics,” as follows:

“II. Law of increasing entropy. The entropy of a system (its unstructured-
ness) increases with time, unless specific work is executed to maintain or reduce 
it.”

The “Third Law of Program Evolution Dynamics” reflects how a system 
and the process for developing and maintaining it, is “constrained by conserva-
tion laws,” and is expressed as follows:

“III. Law of statistically smooth growth. Growth trend measures of global 
system attributes may appear to be stochastic locally in time and space, but, 
statistically, they are cyclically self-regulating, with well-defined long-range 
trends.”

These laws describe how the structure of a system inevitably degener-
ates over time and requires substantial effort to maintain a desirable level of 
operability. At some point, it might not be worth the effort to try to keep on 
improving existing software systems, at which time the software maker has to 
decide whether to continue supporting the existing system or to replace it with 
a new system.

However, creating a replacement system also involves risk. The reliability 
of new software systems is lower at the point of introduction of the system and 
improves over time until a new version or an upgrade is released, when the reli-
ability drops again. In contrast, when large complex software systems undergo 
major revisions, the malfunctions and failures may in fact increase over time 
and may not drop back to meet the prior failure-rate trend as would be expected 
if the system were replaced.

A Holistic View of Risk

Information security and control-system safety professionals tend to take some-
what narrow views of their fields and their responsibilities. The challenge of 
determining risk is to engage all the various stakeholders and somehow account 
for their personal and subjective views about the risks relating to a particular 
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software system. The vast majority of publications about software security and 
safety are written by those who have a strong tendency to emphasize broad-
based technical approaches rather than the specific functionality of particular 
software-intensive systems.

The willingness to invest in security and safety is highly dependent upon 
whose point of view is being taken. These viewpoints will vary significantly 
among stakeholders, with the emphasis on one or the other often depending 
on the relative authority of each group of stakeholders as well as the degree to 
which losses might be incurred by each of the various groups. While it is much 
more difficult to take this approach, the value produced and the reduction in 
friction will often overwhelm the costs. 

Summary and Conclusions

We have considered a broad range of approaches to risk assessment and risk 
management, pointing out the deficiencies of some and expressing support for 
others. In general, the more simplistic approaches, which are based on point 
estimates, ordinal (e.g., high, medium, low), or cardinal (e.g., 1 through10) 
measures, tend to be generally representative rather than precise measures; yet, 
followers of these approaches are often encouraged to take the results as more 
accurate than the approach warrants. Risks should be determined using prob-
ability distributions of estimates of the likelihood of occurrence and the mag-
nitude of losses. If this is done, then the calculation of risk is not simplistic, 
but requires the use of simulation techniques to obtain random samples from 
probability distributions of the independent variables (such as the likelihood 
of occurrence and magnitude of outcome) in order to arrive at the probability 
distribution of the dependent variable (i.e., risk). It should be noted, however, 
that the use of such techniques, the quality of the inputs, and the interpretation 
of the results all require a level of sophistication higher than that needed for the 
more simple methods.

Not only must the analyst take a mathematical approach that is more 
complicated, but he or she must also account for the dynamics of the situation. 
When it comes to security and safety, the threats, exploits, and vulnerabilities 
are in a continual state of flux. Some factors are the result of changing technolo-
gies and technical environments that facilitate access to software systems over 
public networks, and enable those with a technical bent, who are not trained 
in security and safety and are not answerable to any corporate policies and 
standards, to develop heavily-used apps. Technology advances also allow sys-
tems with different security and safety criteria to be combined into systems of 
systems and cyber-physical systems. Other influences include changing laws 
and regulations, particularly as they apply to personal data protection and the 



126	 Engineering	Safe	and	Secure	Software	Systems		 	 Software Systems Security and Safety Risk	 127

safety of products. Still other factors are inward looking, where organizations 
incorporate secure and safe systems development techniques to varying degrees 
and respond differently to the build-security-in movement. 

The dynamics introduced by these factors must be accounted for in the 
risk calculations. Current and anticipated changes need to be included in risk 
models, and calculations need to be rerun whenever there are material changes 
in any of the variables contained in the risk model, or if the decision-makers 
believe that there will be major new developments that will affect the outcomes. 
The changes might also suggest that the model itself needs to be revised, as 
it may be discovered that it no longer accurately represents the environment 
being considered. Preferably, risk models will be run for a variety or range of 
scenarios, considering different probabilities of events, different losses or gains, 
and the like, resulting from new assumptions about known advances in tech-
nologies, changes in marketplaces including greater competition, and cheaper 
sources of product. In summary, it is not adequate to run one risk model or set 
of models and then sit back and operate based on the results of those models. 
Technical innovations, changes in markets, social changes, competing products, 
staff defections, and the like, all call into question the original results, and so 
the models need to be rerun to account for these changes. The result might be 
retrenchment, expansion, changes to the business model, new alliances, and the 
like. However, it is far better to be aware of these changes and respond to them 
than to be the victim of obsolete technology and miss business opportunities.

Furthermore, the inputs to the risk models and the interpretation of re-
sults are often influenced by personal views. Even when risk assessors are trying 
to be as objective as possible, personal bias will creep in. For instance, if a pro-
fessional safety engineer is estimating the risks relating to a control system for 
which he or she has no direct responsibility, the engineer will want to protect 
his or her reputation; this is because one’s reputation affects one’s opinion of 
one’s self, and will also affect future work opportunities. Consequently, there is 
a need to adjust estimates for personal bias, which is a task that few want to take 
on because that would mean assuming some of the responsibility and liability 
in the event that something bad were to occur. The extreme example of this is 
the tragedy of the commons, wherein no one is responsible or accountable for 
the risks, although ultimately someone or some group will pay the price if a 
disaster occurs.

Finally, the view of risk needs to be holistic. The points of view of a broad 
range of stakeholders need to be considered. It is often the case that different 
stakeholders, such as vendors, law enforcement officers, regulators, auditors, 
customers, and users, all have different interests in the security and safety of 
software-intensive systems. While it is a daunting task to try to elicit such views, 
it is even harder to incorporate them into risk calculations. This is because one 
must determine the relative weights to apply to the opinions of each group and 
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come up with a way in which to aggregate those views, which are always chang-
ing based upon events and experiences.

In conclusion, if one agrees that improved risk assessment and manage-
ment is needed, it is necessary to consider and incorporate all the approaches, 
biases, and responsibilities into one’s analysis of risks as they relate to security-
critical and safety-critical software systems. If any one of the above factors is ig-
nored, then the risk analyses and the actions they suggest will be flawed, which 
only serves to increase the risk further. However, it is better to identify risks and 
perform as good an analysis as one can, even if it is deficient, than to throw up 
one’s hands and abandon risk analysis altogether.
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7
Software System Security and Safety 
Metrics

Not everything that can be counted counts, and not everything that 
counts can be counted.
—Attributed to Albert Einstein (Originated by William Bruce 

Cameron [1])

If you cannot measure it, you cannot improve it.
—Lord Kelvin [2]

What you measure affects what you do … if you don’t measure the right 
thing, you don’t do the right thing.”
—Joseph E. Stiglitz, Nobel Laureate (as quoted in [3])

There is no accepted agreement on software safety measures and metrics.
—Andrew J. Kornecki, Embry Riddle Aeronautical University, [4]

Introduction

The above quotations are clearly contradictory. Lord Kelvin and modern day 
thought-leaders such as Gary McGraw, Dan Geer, and Andrew Jaquith (to 
name a few), believe that one cannot improve that which one is not able to 
measure. However, Albert Einstein and William Bruce Cameron, together with 
Gary Hinson and others, support the view that there are system attributes, 
which may not be measurable in numeric terms but which nevertheless can be 
used to significant advantage in assessing risks. Joseph Stiglitz, quoted above, 
extends the argument beyond how one might measure to what one should in-
deed measure.
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Hinson [5], Hubbard [6], and Axelrod [7] believe one can use charac-
teristics that are not simple to measure or that may not in fact be considered 
measurable in the traditional sense for decision-making purposes.

If one can come up with a preferred method for risk identification, assess-
ment, and management (which is no easy task), further questions arise about 
being reasonably confident that the resulting risk analyses are based on realistic 
and meaningful metrics. Here is a list of some of those questions:

• What information must be obtained in order to calculate risk using a 
specific selected method?

• To what extent is historical and real-time data useful, relatively speak-
ing?

• How quickly must data collection, analysis, and reporting be done in 
order to ensure that decisions can lead to timely actions?

• How accurate does the data have to be for one to be reasonably sure of 
making the right decisions?

• Is required data readily available for effective decision-making—if not, 
what has to done to obtain it?

• What level of effort is needed to generate, collect, analyze, report, and 
respond to specific data?

• Is the additional effort required to obtain the data worth the incremen-
tal value of such data?

• To what extent are risk metrics constrained by the availability and suit-
ability of data?

The most valuable security-related and safety-related data about software-
intensive systems may well be more difficult and expensive to collect, maintain, 
and analyze than run-of-the-mill, readily-available data. Furthermore, easily-
available data may be less useful for calculating software security and safety risks 
and for making useful decisions than data that is more difficult and costly to 
come by. Of course, it is difficult to prove these assertions other than from rec-
ognizing that there are deficiencies in current metrics. One would expect that 
the state of software-system security and safety would be much better if security 
and safety metrics were more accurate and complete.

It is important to define careful measurements and metrics and note the 
differences between them. This includes pointing out the differences between 
data and metrics, measurements and metrics, and so on.
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Obtaining Meaningful Data

In the 1970s, IBM used the phrase “Not just data, reality” in their advertising. 

This slogan is especially insightful when it comes to gathering and analyzing 
software security and safety data. It is not useful to collect extraneous or irrel-
evant data, even if collecting such data costs virtually nothing (there will likely 
still be substantial data management and storage costs to absorb, however), nor 
is it beneficial to collect particularly pertinent data if there is no way to imple-
ment any decisions that might result from it. There is usually a trade-off to 
consider when determining what to spend on obtaining specific data because 
there may well be diminishing returns of such data collection, particularly over 
time. For example, it is much less useful to learn that your systems are vulner-
able to a particular exploit after they have been successfully attacked than to 
obtain such information sufficiently in advance to be able to apply a patch to 
negate the impact of an attack. Furthermore, one must allow for the cost and 
time required to convert data into the “reality” of metrics; it is often not enough 
to collect information quickly—it must be converted into useful actionable 
information on a timely basis.

Defining Metrics

There are many definitions of the word metrics. Here are a few of them:

• “Metrics are tools designed to facilitate decision making and improve 
performance and accountability through collection, analysis and report-
ing of relevant ... data” [8].

• “Metrics report how well policies, processes and controls are func-
tioning, and whether or not desired performance outcomes are being 
achieved …” [9]

• “A metric is a quantitative measure of the degree to which a system, 
component or process possesses a given attribute” [10].

A common theme throughout these definitions is that the purpose of met-
rics is to lead to decisions about how to enforce policies and manage processes 
and procedures. It is not sufficient that a metric be intellectually interesting. 
Nor should metrics and analytical results be taken at face value without giving 
some thought as to their meaning, particularly with respect to cause and effect. 

There appears to have been a recent proliferation of analyses, particularly in the 
health and nutrition fields, that discover relationships that do not necessarily 
have the underpinning of cause and effect. In many of these cases, researchers 
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commonly include a disclaimer that the results do not imply a causal relation-
ship. This raises the question as to what the value of the analysis really is in the 
first place, as the researchers seem to be suggesting that the public should not 
respond to the results. This begs the question as to why researchers published 
the findings at all. Furthermore, it is quite possible in such circumstances that 
the analytical results will lead to wrong and possibly damaging decisions and 
actions on the part of decision-makers. A similar situation exists in the system 
security and safety space in that many metrics are published but they cannot 
be used to protect against attacks, prevent a system from doing damage, and 
the like.

Unfortunately many reported metrics relating to information security are 
not very useful. For example, it is interesting to learn how viruses and other 
malware are growing exponentially in volume and effectiveness. However, a 
decision-maker needs to know whether these same viruses, say, will have any 
impact over the domain for which he or she is responsible. If there is no impact, 
then those metrics are not actionable and therefore not useful. In fact, they may 
be detrimental because of the cost of gathering, reporting, and discussing them.

Andrew Jaquith [11] defines a metric as “a consistent standard for mea-
surement.” He states that a good metric should be:

• Consistently measured;

• Cheap to gather;

• Expressed as a cardinal number or percentage;

• Expressed using at least one unit of measure.

It was argued earlier that “cheap to gather” is not necessarily a good cri-
terion for metrics, so this requirement is questionable. Also, the use of cardinal 
and percentage metrics is often misleading because they often contain too little 
information for useful decision-making. In particular, a numeric metric out of 
context, such as: “We applied 200 patches last month,” provides no sense as to 
what level of patching is adequate. A percentage metric, such as: “We patched 
90 percent of our servers last month,” does not indicate how critical the servers, 
particularly those that were not patched, might be. Frequently, some explana-
tory wording is needed to make these metrics more meaningful, such as “The 
10 percent of servers that were not patched are considered the least critical to 
secure operations.”

As a real-world example of misleading metrics, consider an actual case 
in which full-disk encryption had been applied to 95 percent of a company’s 
laptop computers, with a goal of encrypting the remaining machines when 
employees brought them in for service. However, one of the remaining 5 per-
cent, on which the disks were not encrypted, was stolen. This particular laptop 
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computer held personal information of hundreds of thousands of customers. 
The out-of-pocket costs to the company of this loss exceeded one million dol-
lars, with indirect and less tangible costs possibly doubling that amount. The 
metric of 95 percent completion might have been considered good in many 
situations—but not in this one.

Differentiating Between Metrics and Measures

The difference between a measure and a metric is expressed and illustrated in 
a number of places. For instance, in “Risk Measure and Risk Metric,” we read 
the following [12]:

• A measure is an operation for assigning a number to something.

• A metric is our interpretation of the assigned number.

As an example, if someone stands on a scale, the process of noting the 
number of pounds (or kilograms) on the dial is a measure, whereas the inter-
pretation of that number to determine that a person is overweight turns it into 
a metric that can be used for decision-making, such as deciding to go on a diet.

This is somewhat in line with the differentiation proposed above; the 
mere obtaining of a number is not a metric—only when a number is interpret-
ed can it be used for decision-making and then decisions can lead to actions.  
This concept is illustrated in Figure 7.1.

The diagram shows, by means of narrowing arrows, that there are losses 
as the process progresses. That is to say, not all measurements can be converted 
into metrics; decision-makers are likely only to use a subset of metrics to make 
their decisions; and action-takers might only respond to certain decisions and 
not to others. For example, one might have access to weather forecasts for vir-
tually any location on Earth. However, temperature alone is not useful until it 
can be attributed to a particular geographic area in which the decision-maker 
happens to be or to which he or she is planning to travel (although, of course, 
others will be interested in forecasts for other regions). Based on the tempera-
ture forecast, the decision-maker might determine that it is appropriate to wear 
and/or pack particular sets of clothing and take the actions necessary to find 
and don that clothing and/or include suitable clothing in his or her luggage. 
The decision-maker and action-taker may be the same person, as in the weather 
example. However, in many organizations, those making decisions and taking 
action are often different individuals or groups, with managers making the deci-
sions and workers implementing those decisions.

Another source that differentiates between measures and metrics is the 
National Institute of Standards and Technology Software Assurance Metrics 
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and Tool Evaluation (NIST SAMATE) Project [13], which presents the follow-
ing definitions:

• The term measure is used for more concrete or objective attributes.

• The term metric is used for more abstract, higher-level, or somewhat 
subjective attributes.

An example of this, provided on the NIST website, is that the number of 
lines of program code in a computer program is a measure, whereas the robust-
ness, quality, and effectiveness of the code are considered to be metrics. This is 
somewhat consistent with the Risk Glossary definitions [14] if one were to con-
sider the number of pounds shown on a scale as being concrete and objective, 
and the concept of weight as being more abstract. In fact, the term weight is 
often misapplied; the difference between weight and mass should be taken into 
account; where “[m]ass is a measurement of the amount of matter something 
contains” and weight is “the measurement of the pull of gravity on an object.” 
Therefore, weight needs to be defined in a specific context, since someone of the 
same mass will weigh one sixth as much on the moon as they do on Earth due to 
the moon’s lower gravity. This is a significant aspect of software systems, where 
metrics generally only apply in a particular context, such as operating system, 
platform, network configuration, and the like.

Another definition of measurement in Munson [15] is:

Figure 7.1	 From	measurement	to	action.
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... the mapping of numbers to attributes of objects in accordance with 
some prescribed rule ... The mapping must preserve intuitive and 
empirical observations about the attributes and entities.

Munson is not as specific as NIST in assigning descriptors like concrete 
and objective to a measure. However, one might argue that his definition of 
measurement is more general and can apply to both measures and metrics in-
sofar as both objective and subjective attributes (measures and metrics, respec-
tively) are subject to some form of measurement.

The question then arises as to whether qualitative measurement applies to 
both measures and metrics. After all, according to NIST, the difference is in the 
objectivity or subjectivity of the attributes, not the means of obtaining them. 
For an answer to this question, we refer to Cruickshank [16], who states that:

Empirical observation requires experimentation. Therefore ... for a 
software metric to be valid, it must be based on empirical observation 
through experimentation, whether qualitative or quantitative.

Consequently, we should understand that measures and metrics can be ei-
ther quantitative or qualitative and, in either case, they provide a better picture 
as to what is going on within a software system than not having the measures 
or metrics. In Table 7.1, we show examples of the relationships among these 

Table 7.1  
Examples of Metrics and Measurement Attributes for an Automobile

Attribute Quantitative Measurement Qualitative Measurement
Measure
(Objective)

The speed of an automobile in 
miles per hour (mph) as shown on 
the speedometer.

The relative time that a vehicle takes to 
reach 60 mph from a standing start (e.g., 
slow, average, fast).

Measure-related 
Decision

Is the vehicle traveling within a 
numeric speed limit, say 55 miles 
per hour? 

Does the car accelerate quickly enough 
for my needs (and wants)? For example, 
can I beat my colleague’s car from a 
standing start.

Measure-related 
Action

If yes, no action required.
If not, slow the vehicle down until 
it is traveling at or below the speed 
limit.

Select that vehicle based on relative 
acceleration if that is primary or a highly 
significant factor.

Metric
(Subjective)

The revolutions per minute (rpm) as 
shown on the tachometer.

The sound of the vehicle’s exhaust 
system.

Metric-related 
Decision

When should I change gear? Does the sound produce the desired 
emotional feelings?

Metric-related 
Action

Change gear up or down when at 
a particular revolutions-per-minute 
limit (say, 2,000 rpm)

Choose a vehicle that provides a desirable 
feeling with respect to the sound of 
the exhaust system, or replace existing 
exhaust system with one that produces 
the desired sound.
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factors with respect to an automobile. The example illustrates the differences 
between objective and subjective attributes, and whether the numeric value of 
the attribute needs to be accurate or can be relative.

The same categorization can be used for safety-critical and security-critical 
software systems, and we will go through a similar exercise for them. Software 
is less tangible (or more abstract) in many ways than an automobile; it is not as 
easy to come up with examples within each category. As Cruikshank [16] puts 
it: “... the abstract nature of software can often preclude quantitative measures 
of certain quality attributes.” Because safety and security are essentially quality 
attributes, the challenge is therefore to come up with quantitative, but mean-
ingful, measures so that very specific decisions can be made. This is the chal-
lenge that we attempt to address in this book from both the demand side (i.e., 
determining which measures are needed) and the supply side (i.e., creation of 
requisite measures and metrics).

In Table 7.2, we look at the uses of measurements and metrics to deter-
mine how useful they are for the purposes of deciding what actions to take. 
In general, measurements that have not been processed into metrics are not 
particularly useful for decision-making. However, some metrics also lack ap-
propriateness for decision-making, which is the main criterion against which 
they should be judged. 

Software Metrics

One definition of software metric is “… a measure of some property of a piece 
of software or its specifications” [17]. This definition differs in a fundamental 

Table 7.2 
Comparing Measurements and Metrics with Respect to Use and Usefulness

Use Measurements Metrics Comments
General 
usefulness

Measurements lack 
context and do not 
have the attributes 
necessary to foster 
decision-making and 
action.

Some metrics are 
insufficient for appropriate 
decision-making – need to 
include context and other 
factors such as value and 
uncertainly.

Concern about the overly 
subjective interpretation of 
metrics.

Use for 
decision-
making

Measurements are 
often not particularly 
useful for decision-
making.

Some metrics do support 
effective decision-making, 
but others can be very 
misleading.

Often metrics that are the most 
useful for decision-making are 
those that are more costly and 
difficult to collect.

Actionable Usually, actions 
cannot be derived 
directly from 
measurements.

In many cases, metrics can 
be the basis for decisions 
and actions; sometimes not.

The ability to take effective 
action depends on many factors, 
some of which may not be under 
the control of either those taking 
the measurements or decision-
makers.
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way from the metrics above. In fact, this definition does not require that met-
rics are input for decision-making and that the decisions should be actionable. 
If not actionable, then such a “property becomes a measure, not a metric. On 
the other hand, all metrics are not actionable according to the common view, 
although it would be preferable if they did lead to positive action.

Cruickshank [16] draws the following conclusions, which includes sup-
port for nonnumeric metrics with respect to software metrics:

Software metrics are ... quantitative measurements of ... product (system 
or component), process, or even project ... indicating the quality of a 
desired attribute. However, software metrics can be concerned with more 
than just quantitative measurements. Since we are measuring quality 
of product, process or project, qualitative aspects must be considered. 
Metrics can also be qualitative in nature [emphasis added].

On the other hand, McGraw [18] favors numerical representations of 
measures and metrics, where “... [m]easures are numeric values assigned to a 
given artifact, software product, or process” and “... [a] metric is a combination 
of two or more measures that together provide some business relevant mean-
ing.” McGraw provides an example of a metric, namely, “the number of breach-
es per lines of code,” which represents a “security defect density,” as opposed to 
“the number of breaches,” which he defines as a measure. McGraw [18] echoes 
Cruikshank’s assertion [16] that metrics can be obtained for project, process, 
and product, and adds a fourth area—namely, organization. He also points out 
that processes and controls must be put in place early in the development life 
cycle in order to provide the requisite metrics, which is a concept that is applied 
in subsequent chapters, although we will be address the approach more in terms 
of the application (or product) generating metrics rather than looking to the 
processes and controls. 

It is worth noting the tendency of security and safety professionals to take 
a very specific view of their areas of responsibility, combined with an underlying 
need to quantify metrics. These characteristics make for a strong bias towards 
quantitative measures, that is, the numeric values of concrete, objective mea-
sures. The problem is that software-intensive systems are much less amenable 
to the application of precise measures. This means that the exercise to convert 
software measures to metrics for decision-making and action is often lacking. 
As a result, the wrong decisions are often made and inappropriate actions taken 
based on insufficient and misleading metrics. Because this focus on quantitative 
measurement and very specific decisions is part of the culture of an engineering 
background, it will likely take considerable time before researchers and prac-
titioners evolve a broader view of software systems and define a full range of 
requirement to be met.
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Measuring and Reporting Metrics

When it comes to measuring security-related and safety-related metrics, there 
are a number of approaches with varying degrees of merit. A specific taxonomy, 
as suggested in Axelrod [7], is shown in Table 7.3.

The advantages and disadvantages of the above categories of metric are 
shown in Table 7.4. The weighting of such metrics is highly dependent upon 
the nature of the organization from which the data is being collected, as well as 
who is collecting and analyzing the data. Often, an outside consultant will have 
more success in obtaining useful data and performing objective analyses.

In Figure 7.2, we show the behavior of cost and value estimates as the 
complexity of the metrics approaches increases. In general, as the data collec-
tion and analysis becomes more complex, the costs will increase and it is ex-
pected that the value, as it relates to decision-making, will increase even more. 
Although the diagram shows value growth increasing relative to the costs of 
increasingly complex metrics and risk approaches, value might not necessarily 
keep up with costs as the data collection and risk models become more sophis-
ticated. In part, this can be due to the benefits being less tangible when value 
and uncertainty are taken into account.

Figure 7.2 indicates a range of values and costs with upper and lower 
bounds. Because of the ranges shown, the curves suggest that, at any level of 
complexity, the net value of the exercise, namely the usefulness of the metrics 
category for decision-making less the cost of data collection and analysis, can in 
fact be negative. As costs increase along with the complexity of the approach, so 
the value of the results also increases. It is up to the risk manager and/or analyst 
to arrive at an optimal approach with respect to net value. The optimal ap-
proach might lie in the range of the holistic, value, and uncertainty approaches 
because they produce the most meaningful representations of risk.

Table 7.3 
Taxonomy of Categories of Metrics

Category of 
Metric Description of Responses
Existence  “Yes,” “No,” or “Not Applicable (N/A)”
Ordinal Typically “High,” “Moderate,” or “Low”
Score On a scale, such as “one to ten”
Cardinal A number in response to the question: “How many…?”
Percentage A number in response to the question: “What percentage of…?”
Holistic More complete view from authoritative source
Value Typically, total net loss in value for different approaches
Uncertainty Stochastic or probabilistic approach
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In Figure 7.2, the ranges of the cost and value curves are shown to increase 
generally with complexity, denoting the higher level of uncertainty that accom-
panies the more complex methods. There is also considerable uncertainty when 
it comes to the quality of the data gathering and analysis processes as approaches 
become more sophisticated. Clearly, it does not take the same level of expertise 
to collect and analyze ordinal data as it does to collect and analyze stochastic or 
probability-related data. As Hubbard [6] correctly points out, respondents need 
to be trained in how to assess probabilistic situations and analysts must have a 
background in the pragmatic use of statistics. 

Metrics for Meeting Requirements

Requirements can be classified as functional or nonfunctional; those terms are 
defined as follows, per Braude [19]:

Figure 7.2	 Cost	versus	value	of	various	metrics	approaches.
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• Functional requirements (or behavioral requirements) specify services that 
the application must provide.

• Nonfunctional requirements include all requirements not considered to 
be in the class of functional requirements.

Of course, many have pointed out that the latter term could be inter-
preted to mean “requirements that do not function,” but that is not how it 
is commonly meant in systems engineering. The usual categorization of attri-
butes, such as safety and security, as nonfunctional requirements results in the 
lack of attention that is usually accorded these requirements in any but the most 
mission-critical of systems.

A major point of this book, which is often given short shrift in other 
texts,  is that many so-called nonfunctional requirements also have their func-
tional counterparts. The separation of knowledge and duties is such that those 
with expertise and responsibility in the functionality of software systems are 
generally not knowledgeable about, or even interested in, the nonfunctional 
attributes of those same systems. Many experts in the nonfunctional aspects of 
software systems, many of whom do not know or care about the detailed func-
tionality of the systems. This state of affairs might be acceptable were it not for 
the fact that functional aspects of software systems have considerable impact on 
nonfunctional requirements and vice versa.

Table 7.5 describes the nonfunctional attributes, as mentioned in Braude 
[19], and some that are in MISRA [20]. In particular, the omission of safety 
and interoperability as significant attributes is typical of books, papers, and pre-
sentations that focus on general software engineering, such as Braude [19] and 
security engineering, such as Anderson [21]. Safety, in particular, is usually only 
included in those publications specializing in that attribute, and these publica-
tions are likely to omit consideration of security, as in Herrmann [22].

Similarly, there is usually little reference to relationships between software 
functionality and nonfunctional requirements in security-oriented publications, 
whereas safety attributes are considered to be tightly interrelated with software 
functionality. In Table 7.6, we show some of the more significant nonfunctional 
requirements that impact the security and safety of various software functions.

Sometimes certain nonfunctional attributes, such as security-related au-
thorization or encryption, are written into the functionality of the applications. 
While commonly done, such a practice is suboptimal and can lead to errors and 
inappropriate use, as opposed to when such nonfunctional services are isolated 
from functional applications.

There are usually serious issues regarding organizational structure and 
the expertise and biases of those with responsibility for determining require-
ments and ensuring that they are included and enforced throughout the secure 
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Table 7.5  
Descriptions and Uses of Nonfunctional Attributes

Nonfunctional 
Attributes Description/Use
Reliability* Determines availability and integrity of systems and data
Availability* Determines whether or not systems can be used for their intended purposes 

when they are needed
Performance* Includes speed, throughput, storage capacity.

Describes responsiveness of system and timeliness of its functional 
services—lack of performance leads to lower productivity, loss of users, higher 
operational costs, etc.

Security* Protection of information assets from incidents resulting in data breaches, loss 
of service, fraud, etc.
Components stated as CIA: confidentiality, integrity, availability, plus others as 
listed below.

Confidentiality* Data not accessible by unauthorized subjects—included in security 
requirement

Integrity* Included in security requirement
Also a safety requirement (malfunction)

Availability and 
reliability*

Affects average uptime—availability included in security requirement
Also a safety requirement (failure)

Nonrepudiation* Proof of existence of agreements—included in security requirement
Authentication* Ability to validate users’ identities—included in security requirement
Authorization* Permission to deal with subject—included in security requirement
Maintainability* Increases availability and reduces malfunctioning and failure rates
Portability* Ability to run software on different platforms and infrastructures with minimal 

or no modification
Error handling* Speed and correctness of error resolution, error routines, self-healing systems, 

fail safe—affects availability
Interoperability Ability to access data across applications running on different platforms—

affects availability
Resiliency Combination of error handling, redundant systems, responsiveness—affects 

availability, and affected by portability and interoperability of applications
Safety† Affects damage to external parties or environment from software system 

malfunctions or failure
Complexity† Increased complexity affects likelihood that system will contain errors
Maintainability† See above
Modularity† Higher use of modules implies less complexity ahd therefore lower likelihood 

of errors
Structure† Good structure with respect to control, data and information flow improves 

likelihood of reduced errors
Testability† Ease with which software systems can be tested with a high level of 

confidence that errors will be detected
Reliability† See above

* From: Braude [19].
† From: MISRA [20].



146	 Engineering	Safe	and	Secure	Software	Systems	 	 Software System Security and Safety Metrics	 147

software development life cycle (SSDLC). This will be further addressed later 
when we discuss the development process. Here, we merely draw attention to 
many of the nonfunctional attributes that exist and to the unrealistic hope that 
the same individuals who are fluent in the functionality of software might also 
understand the full implications of all the nonfunctional attributes listed in 
Table 7.5. It may even be optimistic to believe that applications developers 
understand and care about even a couple of the nonfunctional attributes. It is 
little wonder that nonfunctional requirements do not appear in software system 
specifications.

Risk Metrics

There is surprisingly little agreement as to which metrics should be used. That 
is particularly true of risk-related metrics for security-critical and safety-critical 
systems. It should be noted here that there does not seem to be anywhere near 
the same level of confusion and debate when it comes to metrics relating to 
the operation of safety-critical systems, probably because the latter are more 
ingrained into the physical world, where metrics are often easier to come by 
and to interpret than for the more abstract world of software. Nevertheless, 
Cruickshank [16] points out that metrics relating to the development process 
for safety-critical software systems are also lacking, particularly with respect to 
the validation process. These differences are shown in Table 7.7.

Consideration of Individual Metrics

We first look into individual metrics, which are particularly relevant to the se-
curity and safety of software systems, and then consider the superset of metrics 

Table 7.6  
Typical Nonfunctional Requirements for Various Software Functions

Software 
Function Nonfunctional Requirements Affecting Software Function
Read Authentication, authorization, integrity, confidentiality
Write Authentication, authorization, integrity, confidentiality, nonrepudiation
Modify Authentication, authorization, integrity, confidentiality, nonrepudiation
Delete Authentication, authorization, nonrepudiation
Save Authentication, authorization, integrity, confidentiality, nonrepudiation
Transfer Authentication, authorization, integrity, performance, confidentiality, availability
Calculate Authentication, authorization, integrity, performance, availability
Display Authentication, authorization, integrity, confidentiality, availability
Print Authentication, authorization, integrity, availability, performance
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applicable to software-intensive systems of systems or cyber-physical systems, 
which must meet both security and safety requirements.

Historically, these two areas have not been related to one another. For 
example, if you read Merkow [23] on the development of secure and resilient 
software, and Hermann’s book [22] on the safety and reliability of software, you 
will see that there is no mention of safety in [23], and no mention of security 
in [20]. It is also interesting to note that books specializing in security metrics 
usually pay little attention to application or software system security metrics. 
For example, Jaquith [11] devotes a mere dozen pages to the topic.

We can further support this lack of focus on application software security 
metrics by looking at popular works on the development of secure software and 
see the extent to which the authors discuss metrics. For example, McGraw [18] 
covers the topic of establishing a metrics program in a single page, and Howard  
and Lipner [24] omit measures or metrics completely.

Generating requisite metrics is crucial in order  to monitor and report 
questionable activities within applications, and hence be assured of the effec-
tiveness of their security and safety methods. Knowing what is going on within 
an application is crucial to ensuring the secure and safe operation of mission-
critical software-intensive systems. The apparent lack of interest in the topic 
by thought leaders in the software security area is disconcerting. In fact, the 
disconnect between software development teams and those requiring additional 
instrumentation could well be a significant contributor to our seeming inability 
to build highly secure software-intensive systems.

Safety-critical software systems, on the other hand, are not usually subject 
to the same levels of attack as security-critical systems because their failure rates 
appear to be very low. Also, looking at press coverage, safety-related software 
malfunctions and failures appear to be infrequent relative to breaches and fail-
ures of security-critical software systems. Safety metrics, as they relate to soft-
ware systems, are very different from security metrics. This is likely due to the 

Table 7.7 
Understanding of Risk Metrics for Security-Critical and Safety-Critical Software Systems

Characteristics
Security-Critical Software 
Systems Safety-Critical Software Systems

Attributes considered Risks are mostly considered for 
nonfunctional attributes and 
likelihood that the systems will be 
compromised by an attacker

Risks are mostly related to the 
dangers of malfunctioning and failure

Risk evaluation and 
testing

Security risk evaluation and 
testing relates mostly to platforms 
and networks, with relatively little 
attention given to the functional 
security aspects of software

Verification of safety standards 
conformance is rigorous for critical 
systems and involves the functional 
aspects of systems and the level of 
hazard that they would represent if 
they were to malfunction or fail
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different perspective of those responsible for safety and the restrictions placed 
upon them in obtaining certifications for their systems.

Table 7.8 provides examples of functional and nonfunctional metrics as 
they apply to security-critical and safety-critical software systems.

Over the past couple of years, researchers have begun to see the impor-
tance of looking at software systems from both the perspective of safety and 
security at the same time, as in Gutgarts [25]. However, there is relatively little 
published about the confluence of security and safety from a requirements and 
metrics perspective. We shall first look at the security and safety requirements 
of software systems separately, as illustrated in Table 7.9, and then take a com-
bined view.

Table 7.8  
Examples of Metrics Relating to Security and Safety 

Metrics Category
Security-Critical Software 
Systems

Safety-Critical Software 
Systems

Functional Determination of secure coding 
deficiencies
Monitoring of user activities within 
applications

Requirement for resistance to 
malfunction and failure
Determination of limits on 
potential damage incurred

Nonfunctional Security
Dependability
Performance
Resiliency
Availability
Quality

Safety
Performance
Resiliency
Availability
Quality

Table 7.9 
Primary Focus of Software Security and Safety Engineers

Security-Critical Software Systems
Safety-Critical Software 
Systems

Software 
security 
engineers

Most of the focus is on nonfunctional system 
attributes
Relatively little attention paid to functional 
security attributes as shown by the minimal 
discussion in the literature, see Axelrod [26]
Relatively little attention paid to context

Limited knowledge or experience 
in the safety area
Generally a lack of attention to 
safety aspects

Software 
safety 
engineers

Limited knowledge or experience in the 
security area
Generally a lack of attention to security 
aspects

Strong focus on safety attributes 
as required by various certifying 
bodies
Both functional and 
nonfunctional attributes are 
usually considered
Some degree of attention paid 
to context
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Table 7.10 
Ordinal Metrics for Information and Control Systems

Metrics Application 1 Application 2 Application 3 Application N
Predominant system type Information system Information system Control system Control system
Authentication method Strong Weak Strong Weak
Authentication process 
controls

Effective Somewhat 
effective

Somewhat 
effective

Ineffective

Authorization method Formal Informal Formal Ad hoc
Authorization process 
controls

Somewhat 
effective

Ineffective Effective Nonexistent

Identity and Access 
Management (IAM) system

COTS product None Home-grown 
system

None

Classification of data Formal None Informal None
Restrictions on data flows Highly restrictive None None Highly restrictive
Value of data Extremely high High Moderate Low
Degree of encryption
(in motion, at rest, in 
storage)

In motion only In motion and at 
rest

In motion only None

Knowledge of secure coding 
(training)

Moderate Moderate Moderate None

Implementation of secure 
coding

Moderate Minimal High None

Testing of secure design and 
coding

Moderate Minimal Minimal None

Completeness of security/
safety data generation and 
collection

Fairly complete Minimal Minimal Minimal to none

Effectiveness of analysis 
and reporting of security/
safety data

Moderate Minimal High Minimal

Responsiveness to breaches 
and malfunctions/failures

Highly responsive Minimally 
responsive

Somewhat 
responsive

Unresponsive

Software complexity Very complex Fairly complex Relatively simple Fairly complex
Complexity of software-
intensive systems

Very complex Simple Moderately 
complex

Highly complex

Context/environment Integrated system 
of systems 

Public facing Isolated, internal Public facing

Accessibility of system by 
unauthorized persons or 
systems

Highly restricted Somewhat 
restricted

Unrestricted Unrestricted

Security/safety aspects of 
platform

High security
Low safety

Low security
Moderate safety

Low security
Low safety

Minimal security
Moderate  safety

Security/safety aspects of 
infrastructure

High security
Low safety

Low security
High safety

Moderate 
security
High safety

Low security
Low safety

Current phase of SDLC Production Production Testing Coding
Overall security posture High Moderate Moderate Low
Overall safety posture Low Moderate High Moderate
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Security Metrics for Software Systems

There has been a great deal published on security metrics and the processes, 
tools and measurements for increasing application security. However, most of 
the focus has been on nonfunctional attributes, which may or may not be inde-
pendent of the functionality of the application software.

To the extent that application software security metrics do exist, they usu-
ally fall into the cardinal or percentage metrics categories described above. In-
formation security professionals appear to be very fond of numbers, such as the 
number of unsuccessful attacks per week, the percentage of systems that have 
had the latest patches applied to them, and the like. This is all well and good, 
except that these numbers frequently require a footnote to explain them. For ex-
ample, as discussed previously in regard to the encryption of laptop computers, 
the percentage of servers that have had patches applied often refers to all servers 
equally. However, the most important aspect of such a metric is whether or not 
patches have been applied to all critical servers, where “critical” generally means 
that the servers support mission-critical applications that are essential because 
they are needed for business continuance, are required for legal and regulatory 
compliance, and the like. Application security metrics seldom consider value 
and uncertainty and are consequently of limited value in their effectiveness.

Another deficiency in application security metrics is that they often do 
not consider the context in which the software is running. This is a serious 
omission because applications will display different sets of vulnerabilities de-
pending upon the operating systems on which they are based, for example. It 
also matters very much, from a security perspective, whether an application is 
Web facing, and from security and safety perspectives, whether the application 
runs on an isolated internal network with limited access.

We illustrate this issue in Table 7.10 by showing the levels (i.e., ordinal 
values) for a given set of characteristics of several security-critical information 
systems and safety-critical control systems. It should be noted that this table 
is for illustrative purposes and that, in order to actually use the approach in 
practice, the analyst needs to obtain much more detail about each element in 
the matrix, preferably expressing them in value and uncertainty (probability 
distribution) terms, rather than the ordinal metrics shown here.

It is an interesting and useful exercise to consider the implications of each 
metrics attribute separately and then in combination. For example, applications 
1 and 2 are already in production so that any changes at this stage would be 
extremely costly. However, because the value of the information is classified as 
very high and high for applications 1 and 2, respectively, it might still be cost-
effective to go back and correct certain security and safety deficiencies.  It is 
doubtful that a major rework could be justified.
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Application 3 is not yet in production so that the results from the testing 
can still be incorporated into the system at a relatively moderate cost. Applica-
tion N is only at the coding stage so that it is comparatively inexpensive, and 
not likely to delay implementation much, to modify the programs, although, if 
a major design change were recommended, it could cause much more signifi-
cant increases in cost and effort and could delay implementation. On the other 
hand, the value of the information processed by application N is comparatively 
low, so that it would likely not make sense to invest much in making the system 
more secure. However, it should be noted that even if a control system does not 
contain valuable information as such, malfunctioning and failures could have 
a huge impact. That is to say, unauthorized access to the application could lead 
to an outside force taking over control of the system and forcing the system to 
perform inappropriate and dangerous tasks. In this case, protection has more 
to do with bad consequences than it does to exposure of sensitive personal data 
and intellectual property. Application 3 is shown as a control system running on 
a low-safety platform, yet running on an infrastructure rated high for security. 
Whether this is acceptable or not will depend on a combination of factors.

The above indicators bring up issues regarding how to weight each at-
tribute and how to aggregate them. Clearly, the interaction of the various at-
tributes is complex and one’s ability to come up with precise metrics is very 
limited. Nevertheless, the exercise itself has considerable value because it will 
highlight those important characteristics that may be lacking and help focus on 
which defects and deficiencies should be fixed first, or at all.

Incorporating numeric values into the above evaluation might appear to 
add precision to the exercise, but in most cases it will not. In fact, there is a 
considerable danger that using numeric values will be counterproductive. We 
might ask, therefore, how one might incorporate value measures and uncer-
tainty into a situation that is already fraught with issues with respect to the true 
representation of subjective ordinal measures of the attributes. The answer is 
that, if one were able to develop, as an example, a probability distribution of 
the losses that might be incurred as a result of an inadequate infrastructure or 
of poor security coding, then one would get a more useful picture of the risk 
involved in not remediating certain deficiencies.

Safety Metrics for Software Systems

Metrics related to safety-critical software-intensive systems are most concerned 
with the impact of a malfunction or failure of the system. The hardware compo-
nents of such systems are always subject to failure, but there are well-established 
approaches to dealing with them, usually by swapping out components or the 
like. That is to say, the impact of a hardware failure is usually relatively easy to 
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identify and evaluate, and the response is generally quite straightforward. The 
exception to this is if it is suspected or shown that the equipment has a weak-
ness or has been compromised in some way; it then serves no purpose to replace 
the hardware component with a new one that is also defective. The same goes 
for software.

The root causes of software malfunctions and failures are often less easily 
identified than are hardware failures. Sometimes a hardware failure is caused 
by a software error, or vice versa, which can confuse the determination of the 
reason for the failure or malfunction. For example, if a telecommunications 
network goes down, the halt in traffic may be because of an equipment failure, 
because of software errors, or due to human error.

Consider, for example, the actual case where a particular trading desk 
telephone system would fail and reboot repeatedly. It took engineers weeks to 
determine the problem. Apparently, in the pristine laboratory environment, 
there was no noise from the cables, which had short runs and were carefully in-
stalled. In the field, with less-than-perfect cabling, the software control system 
kept invoking a recovery routine that had never been tested in the lab because 
the carefully-installed cables never malfunctioned. It was determined that there 
was a coding error in the recovery routine that was activated by signal losses and 
noise on the cables, and caused the entire system to fail.

As another example, there has generally been a fair amount written re-
cently about securing industrial control systems that are increasingly being ex-
posed to public networks. Numerous articles, congressional hearings, and the 
like, about securing the smart grid fall into this category. However, there is still 
relatively little published on trying to reconcile the major conceptual differ-
ences that exist between safety and security software engineers’ views on system 
requirements, which is the basic deficiency in the development processes for 
these systems of systems and cyber-physical systems.

Summary and Conclusions

The development and use of security and safety metrics, as they apply to soft-
ware systems, are definitely works in progress. Current approaches do not gen-
erate all of the requisite measures and metrics, and those that are produced are 
often insufficient to make appropriate decisions and take necessary actions. As a 
result, organizations are frequently unaware that successful attacks and breaches 
have taken place and, when they are notified that such an attack or breach has 
occurred, they are usually at a loss in determining what happened, who did it, 
and what to do about it.

The first recommendation for getting a handle on this problem is to un-
derstand the range of metrics categories that are available and used, and then to 
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arrange to create, collect, and analyze the data needed to produce meaningful 
metrics. The resulting risk analyses can be used to determine what actions need 
to be taken in preparation for and in the wake of an attack or data breach.

This is not a trivial effort, as the most useful metrics for risk identifica-
tion, assessment, and management are often more difficult to collect and inter-
pret than metrics of lesser value. Post-processing the metrics in order to arrive 
at aggregated values is also a challenge. Often, respondents need to be trained 
on how to answer surveys, and analysts need to understand the consequences of 
threats, exploits, and vulnerabilities and be able to produce results and recom-
mendations in sufficient time to take mitigation actions.

It also seems that metrics appropriate for security-critical software systems 
are not particularly useful for safety-critical software systems, and vice versa. Yet 
there is a need to exchange methods and procedures between security and safety 
silos, particularly as the trend is to combine security-critical and safety-critical 
systems into complex systems of systems and cyber-physical systems, which 
must demonstrate the ability to maintain a strong security posture and, at the 
same time, exhibit safety characteristics.

The basic recommendation here is to understand the strengths and weak-
nesses of various types of measurements and metrics so that one can determine 
the best data to collect in order to perform risk analyses that will lead to ap-
propriate mitigation.
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8
Software System Development 
Processes

For some decades, many development models, standards, laws, meth-
ods, assessments ... have been created to improve product quality ... The 
resulting quagmire becomes increasingly difficult to understand and al-
most inscrutable.
——Dr. Winfried Russwurm, Siemens AG, The Multi-Model and 

Multi-Appraisal Quagmire:An Approach to Organize by a Classifi-
cation Scheme [1]

Introduction

One aspect that is common to the majority of published approaches to software 
system development is the lack of attention to security and safety processes, 
which need to be incorporated into the basic set of process areas common to 
software development frameworks. This deficiency appears to be virtually uni-
versal and is made very apparent by those creating safety and security extensions 
to the basic processes.

Originally, there was no intention to spend much time on processes and 
process frameworks, with most of the focus to be on projects and project man-
agement. However, two events changed that view, resulting in more attention 
being given to processes. In fact, this entire chapter is devoted to processes. 
Projects and their management will be examined subsequently.

One motivator behind paying more attention  to processes was the arrival 
of a prepublication draft of a report [2] that describes the +SECURE extensions 
to CMMI®-DEV [3]. These +SECURE extensions, together with the +SAFE 
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V1.2 extensions in [4], which are already available online, provide substantial 
guidance with respect to processes. These guidelines serve to encourage the de-
velopment of safer and more secure software-intensive systems. While some 
documentation about safety and security extensions to the integrated CMM® 
already existed in Ibrahim [5] prior to the publication of the +SAFE and +SE-
CURE extensions, focus on software safety and security will undoubtedly in-
crease considerably with the advent of the +SECURE extensions [3] to comple-
ment the +SAFE document [4], which has been available since 2007.

At this point, it is worth noting the unusual chronology of the +SECURE 
draft document [2] and +SAFE V1.2 report [4]. In 2004, Ibrahim [5] referred 
to a +SAFE V1.0 document [6], which had been published in 2001. While it 
is true that the +SAFE V1.2 document [4] refers to the earlier +SAFE V1.0 
document [6], it does so in the context that the latter “... was released to a 
limited audience for trial and evaluation.” A point of interest is that neither the 
+SECURE draft [2] or the +SAFE V 1.2 report [4] mention this predecessor 
document [5].

Russwurm [1] has affirmed what many have suspected all along, namely 
that the whole area of process improvement is complex, convoluted, and dif-
ficult to navigate. While trying to cut through the maze of frameworks and 
models is too large a task for this book, this chapter should help explain the 
problem, even if it does not fully solve it. The hope is that there is value in 
examining the diversity of processes and process issues and the existence of in-
consistencies across the various approaches and, by such means, improving the 
way in which safe and secure software systems are built and operated. However, 
excellent processes do not guarantee high-quality products and services, even 
though effective processes are more likely to generate products of better quality.

Processes and Their Optimization

It often seems, especially in the field of software development, that much time 
and effort is spent trying to improve processes. Similarly, the management of 
projects receives a great deal of attention. However, the amount of attention has 
not been enough to avoid many projects being late and over-budget. Further-
more, the resulting products and services often do not meet the requirements 
and expectations of stakeholders.

Much of the benefit from invoking world-class processes is lost if the 
resulting products and services are poor because the projects are badly man-
aged. Furthermore, if even the best products do not go through an effective 
quality-assurance phase, the result is almost guaranteed to be poor quality 
products, services, and systems. That is not to say optimized processes are not 
important—they are. Mature, continuously-improving processes are generally 
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considered to be necessary, though not sufficient, particularly for large multi-
player projects. Nevertheless, using world-class processes does not necessarily 
ensure that end-products or services will satisfy stakeholders’ requirements. Nor 
does it guarantee that products and services will be of sufficiently high quality, 
where quality includes attributes like security and safety. In fact, it seems that 
some researchers appear to be deluded into thinking that invoking a mature 
process will automatically produce quality products and services. However, it is 
entirely possible to build an inferior product using a superior process and good 
project management, particularly if safety and security requirements do not 
receive adequate attention or are completely omitted.

Notwithstanding the above disclaimers, there can be significant value gen-
erated from a complete set of well-organized processes. Unfortunately, as point-
ed out in [1], process models and frameworks are proliferating at breakneck 
speed, and it is a particularly difficult task to navigate through what Russwurm 
terms a quagmire. Furthermore, safety and security extensions to well-respected 
maturity models are relatively recent and, even within this subset of processes, 
we see the problems introducing these processes into entities that heretofore 
have not included specialty processes in their development life cycles.

In this chapter, we discuss some of the most commonly referenced pro-
cess models, such as the CMMI® and various offshoots, particularly as they 
might relate to safety and security. We compare the processes for developing 
safety-critical and security-critical software systems. We also discuss how two 
seemingly-divergent philosophies might be brought closer together to address 
today’s safety and security issues with systems of systems and cyber-physical sys-
tems, which must satisfy the requirements of many constituencies. This is not 
an easy task because the history of process models is complex and convoluted.

Processes in Relation to Projects and Products/Services

Even though organizations may achieve high levels of process maturity in some 
areas, not all projects necessarily fall under this umbrella. As stated in Chrissis 
[7] with regard to differentiating the CMMI®-DEV approach from others:

... most available improvement approaches focus on a specific part of the 
business and do not take a systemic approach ...

It is quite possible that some, or many, projects conducted in other parts of 
an organization may not reflect the quality and maturity of processes achieved 
by a particular area that, for example, obtains a high-level CMMI® certification. 
This is simply illustrated in Figure 8.1, where some projects are shown to fall 
within an established mature process whereas others do not. The process for 
obtaining certification requires significant time, effort, and cost, with the result 
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that only a few organizations could justify having all of their businesses and op-
erational areas so certified. The problem resulting from this is that a customer 
might presume that all products and services emanating from an organization 
equally meet the maturity level asserted by a vendor, say, whereas not all prod-
ucts and services necessarily conform to this claim. This is a typical “buyer 
beware” situation, in which it pays to perform appropriate due diligence.

A common theme running through this chapter is the differentiation be-
tween effectiveness and efficiency, where effectiveness is “doing the right things” 
and efficiency is “doing things right or correctly.” Thus, one can aim for effective 
processes to provide greater assurance that projects falling under such processes 
result in products and services that are wanted and expected by stakeholders. 
A project that comprises a specific set of activities suggested by the process 
must also be managed in an efficient manner. However, efficient projects do 
not ensure that resulting products and services meet stakeholder requirements, 
whether functional or nonfunctional. The only claim that can be made is that 
the projects have been managed to make the best use of available resources. 
Consequently, one should recognize that adhering to a well-defined process 
may not be as useful as hoped for; this is so when projects that are governed by 
the process, do not create products and services that meet all important stake-
holder requirements (that is, the validation process) and fall within budget.

Effectiveness and efficiency are considered differently depending on 
whether one is looking at these criteria from the process or project viewpoints. 
For example, from a process-effectiveness perspective, it is important to have in 
place appropriate specifications for the full range of process areas, whereas for 
projects, effectiveness is achieved by obtaining complete and accurate specifica-
tions and validating that end-products and services satisfy those requirements.

Note that “process area” has a particular definition in the context of 
CMMI®, as follows, per Chrissis [7]:

Figure 8.1	 Projects	within	and	outside	mature	process.
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A cluster of related practices in an area that, when implemented 
collectively, satisfy a set of goals considered important from making 
improvement in that area ...

The key to efficient processes is in their appropriateness and acceptance 
within particular organizational cultures, whereas the efficiency of projects has 
to do with how they are planned and managed. As mentioned, assurance that 
the outputs of projects operating under a particular set of processes effectively 
meet stakeholder requirements is via validation, which mostly involves testing. 
The determination that, for each step of the development life cycle, the arti-
facts generated or components built in the prior phase do not contain defects is 
through verification, which generally consists of inspections, reviews and some 
testing. Whereas effectiveness and efficiency criteria affect both processes and 
projects, the emphasis is usually on the effectiveness of the former and the ef-
ficiency of the latter. Here, we will focus on the effectiveness of processes inso-
far as they are complete and appropriately directed. We will consider attaining 
project efficiency by means of good management.

In Table 8.1, we show how effectiveness and efficiency differ in terms of 
processes, projects and assurance.

Some Definitions

As usual, we will start out by examining the meanings of the words process, 
project, product, and organization, and not take them for granted or use one 
term where another one is more appropriate. 

Sufficient distinction between process and project is often not made in 
the literature or in practice. This often leads to misinterpretations as to the 
meaning of certifications and reviews, such as CMMI® Level certification and 
SAS 70 Type I and Type II (now SSAE 16) audits [8].

It needs to be reemphasized that CMMI® and SSAE 16 examinations are 
usually restricted in scope to specific projects and operational areas respective-
ly. However, as mentioned above, it is common for individuals who are not 
sufficiently aware of these limitations and restrictions to assume, albeit incor-
rectly, that the certifications apply across an entire organization. That is to say, 
a CMMI® Level 5 certification, which represents the highest and most mature 

Table 8.1 
Doing the Right Things and Doing Them Right

Criterion Realization Processes Projects Assurance
Doing the right thing Effectiveness Specifications Requirements Validation
Doing it right Efficiency Implementation Management Verification
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level attainable, may have been obtained for a small subsidiary isolated from 
the main business, and yet one might be given to believe that it applies to the 
entire organization.

Similarly, SAS 70 (now SSAE 16) reviews are usually limited to a single 
operational unit. The reality is that it is not usually reasonable to jump from the 
particular to the general. Such leaps of faith inevitably lead to confusion, misin-
terpretations and inappropriate decisions and to the expectation that a level of 
excellence achieved by a subsidiary, say, applies across the board.

The following definitions come from the glossary in CMMI® for Develop-
ment [3].

• A process is a “set of interrelated activities, which transform[s] inputs 
into outputs, to achieve a given purpose.”

• A project is a “managed set of interrelated activities and resources, in-
cluding people, [which] delivers one or more products or services to a 
customer or end user.”

• A product is a “work product that is intended for delivery to a customer 
or end user.”

It should be noted that the definition of a product according to the ISO/
IEC 12207-2008 [9] is “the result of a process” [emphasis added]. This differs 
from the above definitions of process and project. In terms of the above defini-
tions, a software product should be considered the result of a project, because 
a process is a description of what should be done in order to achieve a purpose, 
whereas products are created by a series of steps that makes up a project. This is 
another example where inconsistency across different sources results in confu-
sion. The following definitions come from the glossary in CMMI® for Develop-
ment [3]:

• A service is a “product that is intangible and non-storable.”

• An organization is an “administrative structure in which people collec-
tively manage one or more projects or work groups as a whole, share a 
senior manager, and operate under the same policies.”

According to the above definitions, both processes and projects are sets 
of interrelated activities, except that a project is an instance of a process that 
is managed and which consumes specific resources used to create products or 
services.

The difference between a product and service has, according to the above 
definitions, to do with a service being intangible and nonstorable. Axelrod [10] 
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describes services as being “perishable,” in that services, which are not used, are 
no longer available for future use whether or not they were used in a prior pe-
riod; this is the typical “use it or lose it” syndrome. It leads to the need to have 
excess service capacity to meet peak load conditions. This characteristic of per-
ishability is also somewhat applicable to many products—typically those that 
flow, such as water, gas, oil, and electricity. These products do not disappear if 
not used—only the opportunity to use them during a particular time is often 
unable to be deferred, although some can be stored for future use. An example 
is a system by which excess hydro-electricity is used to pump water up to a lake, 
which is then used to produce electricity at some future time. If this is not done, 
then peak demand might exceed the capacity to generate. Many products, such 
as processed drinking water (as opposed to regular water supplies), are physi-
cally tangible, whereas others, such as electricity, are less tangible, especially if 
they are not visible in their native state. Nevertheless, all these products (where 
their delivery is in the form of services) can be measured and charged for based 
on the amount of product used or supplied within a given period of time.

However, even though services are not considered to be physical items per 
se, they often stem from the use of, or support for, physical items. It is really not 
so clear that services are intangible because they can result in measurable added 
value, as described above. In fact, services are the major component of modern 
developed countries’ economies, where manufacturing and farm sectors have 
been relatively reduced as a percentage of total economic activity. Services usu-
ally accompany products, such as a meal (product) produced by a chef (project) 
and delivered by the wait staff (service), but they don’t have to link to a product, 
as for example when one hires a babysitter. The value of a service can usually be 
inferred from the price someone is willing to pay for that service.

In the context of this book, we claim that a process consists of a series 
of steps, or set of interrelated activities, along with related policy, procedures, 
practices, and controls that are required to produce safe and secure software-
intensive systems meeting appropriate and predetermined levels of quality. The 
achieved quality can be verified through formal inspection. In such a context, 
processes themselves don’t actually produce anything; they define and govern 
projects that comprise activities that build a product or create a service. Process-
es can, and should, evolve and improve over time as experience is gained from 
projects, and flaws and inadequacies are identified and eliminated. Such im-
provement is the basis of the Capability Maturity Model Integration (CMMI®), 
originated in its current form and fostered by the Software Engineering Insti-
tute (SEI) at Carnegie Mellon University (CMU) in Pittsburgh, PA, with as-
sistance from The MITRE Corporation, in 1986. It should be noted that SEI 
and The MITRE Corporation did not originate the concept of a step-by-step 
maturity model. More than a decade before the SEI/MITRE effort, Richard 
Nolan introduced the concept of stages in an organization’s evolution [11].
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According to Paulk [12], the purpose of the CMMI® framework is to “... 
help organizations improve their software process” [emphasis added]. In an over-
view, cited on the SEI website [13], the approach is defined as follows:

CMMI® (Capability Maturity Model Integration) is a process 
improvement approach that provides organizations with the essential 
elements of effective processes, which will improve their performance.

Since 1986, there have been a number of major advances in maturity 
models with more recent releases extending the original concepts to the safety 
and security aspects of software system engineering processes.

Chronology of Maturity Models

The CMMI® process maturity framework was originally developed in the 
1980s and formalized in 1993 in Paulk [12]. The CMMI® approach is specifi-
cally oriented towards software development and was used originally to assess 
“the ability of government contractors’ processes to perform a contracted soft-
ware project” [emphasis added] [14].

A number of additions to and variations from the original concentration 
on software development of CMMI® have occurred since the original version 
was created. CMU SEI has expanded the approach to cover many other or-
ganizational processes besides software development, such as those relating to 
acquisition, services, and people. A chronology of CMMs, specifically relating 
to safety and security, is shown in Table 8.2. It is derived from “Figure 1.2 The 
History of CMMs” in [3], but with some important additions, particularly 
regarding recent or pending publications; specifically, the +SECURE [2] and 
+SAFE [4] extensions to CMMI®-DEV [3]. 

Table 8.2 
Chronology of Capability Maturity Models Related to Safety and Security

Document Year Derived from Input to/Superseded by
+SAFE V1,0 2001 — +SAFE v1.2
CMMI for Development 
V1.2

2006 CMMI for Development V1.1 CMMI for Acquisition V1.2
CMMI for Services V1.2
CMMI for Development V1.3
+SAFE V1.2

+SAFE V1.2 2007 +SAFE V1.0
CMMI for Development V.1.2

—

CMMI for Development 
V.1.3

2010 CMMI for Development V1.2 +SECURE V1.3

+SECURE V1.3 (Draft) 2012 CMMI for Development V1.3 —
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The International Systems Security Association (ISSEA) used the CMMSM 
approach to develop the Systems Security Engineering Capability Maturity 
Model (SSE-CMMI). The ISSEA published the SSE-CMM model in a guide 
in 2003, which five years later became ISO/IEC 21827:2008 [15,16].

Security and Safety in Maturity Models

We will now examine several maturity models that have been created over the 
years.

FAA Model

In September 2004, the United States Federal Aviation Administration (FAA) 
published a report [5] on safety and security extensions for integrated capability 
maturity models. Almost half of the report is devoted to mapping the “safety 
and security application practices” against sources, and separately to safety and 
security sources. The application practices (APs) by goal are shown in Table 8.3.

It is interesting to note that neither safety nor security are specifically de-
fined in Ibrahim [5], as is the case for many other similar reports—presumably 

Table 8.3 
Goals and Application Practices

Goals AP Number AP (Application Practices) Description
An infrastructure for safety 
and security is established and 
maintained

AP 01.01 Ensure safety and security competency
AP 01.02 Establish qualified work environment
AP 01.03 Ensure integrity of safety and security information
AP 01.04. Monitor operations and report incidents
AP 01.05 Ensure business continuity

Safety and security risks are 
identified and managed

AP 01.06 Identify safety and security risks
AP 01.07 Analyze and prioritize risks
AP 01.08 Determine, implement and monitor risk mitigation 

plan
Safety and security 
requirements are satisfied

AP 01.09 Determine regulatory requirements, laws and 
standards

AP 01.10 Develop and deploy safe and secure products and 
services

AP 01.11 Objectively evaluate products
AP 01.12 Establish safety and security assurance arguments

Activities and products are 
managed to achieve safety 
and security requirements and 
objectives

AP 01.13 Establish independent safety and security reporting
AP 01.14 Establish a safety and security plan
AP 01.15 Select and manage suppliers, products, and 

services
AP 01.16 Monitor and control activities and products
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one is supposed to gather the meaning of these terms from their use through-
out the text. It is clear from [5] that safety and security are considered to be 
very separate areas, which is confirmed by such differences as, say, the sources 
used. Most of the safety-related sources are in the form of United States and 
United Kingdom military requirements and standards, whereas the security-
related sources tend to be from global standards organizations. While such a 
separation of sources is to be expected, it nevertheless points to an obvious 
bias. This bias may partially explain why the military, up until quite recently, 
appeared to focus more on safety and less on security, and why fewer interna-
tional standards (to date) have evolved for safety. This situation appears to be 
changing as the military pays greater attention to security as it applies to their 
information systems and networks, as well as to weapons systems and the like. 
Businesses are becoming more concerned about safety as applied to industrial 
control systems, which are increasingly being integrated into systems of systems 
and cyber-physical systems.

Ibrahim [5] states that the purpose of a so-called safety and security ap-
plication area is to:

1. Establish and maintain a safety and security capability.

2. Define and manage requirements based on risks attributable to threats, 
hazards and vulnerabilities.

3. Assure that products and services are safe and secure throughout their 
life cycles.

As mentioned above, there are a number of comparisons made between 
the application area practices from [5] and various sources. Relevant safety 
sources, which are mainly military in origin, include the following:

• DEF STAN 0056: Safety Management Requirements for Defence Sys-
tems, U.K. Ministry of Defence, December 1996.

• MIL-STD-882C: System Safety Program Requirements, Military Stan-
dard, U.S. Department of Defense, January 1993.

• MIL-STD-882D: Standard Practice for System Safety, U.S. Depart-
ment of Defense, February 2000.

• IEC 61508: Functional Safety of Electrical/Electronic/Programmable 
Electronic Systems, International Electrotechnical Commission, 1997.

Some relevant security sources, which tend to be international standards, 
are listed as follows:
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• ISO/IEC 17799: Information Technology—Code of Practice for Infor-
mation Security Management, International Organization for Standard-
ization, 2000.

• ISO/IEC 15408: Common Criteria for Information Security Evalua-
tion, Part 3: Security assurance requirements, Vol. 2.1, Common Crite-
ria Project Sponsoring Organization, 1999.

• ISO/IEC 21827: System Security Engineering Capability Security 
Model (SSE-CMM), v3.0, SSE-CMM Project, 2003.

• NIST 800-30: Risk Management Guide for Information Technology 
Systems, Special Publication 800-30, National Institute of Standards 
and Technology, 2001.

The +SAFE V1.2 Extension

In 2007, the Defence Materiel Organisation of the Australian Department of 
Defence sponsored research by Carnegie Mellon University’s Software Engi-
neering Institute (CMU SEI). The result of this research was the +SAFE docu-
ment, which is a safety extension to CMMI® for Development V1.2, (CMMI® 
-DEV), described in [7]. In 2010, Version 1.2 of the CMMI®-DEV was re-
placed with Version 1.3 [4].

The +SECURE V1.3 Extension

A group from Siemens AG developed a +SECURE extension [2] to the CMMI® 
for Development Version 1.3, a draft of which was made available to this author 
in March 2012. The final version of the report had not been released when this 
book was being written. However, much of the content of the forthcoming 
report is revealed in an article by Fichtinger [17].

We now examine CMMI® -DEV and its safety and security extensions in 
more detail in order to better understand how processes that incorporate safety 
and security process areas should be developed.

The CMMI® Approach

General CMMI®

According to CMMI® documentation, an organization evolves its processes 
through five stages or levels:
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1. Initial: no structure or documentation to speak of.

2. Repeatable: the steps of the process are documented and may be re-
peated.

3. Defined: the process is considered to be a standard business process.

4. Managed: the process is managed against quantitative measures.

5. Optimizing: the process is continuously improved and optimized.

The range of processes included in the CMMI® portfolio is large and in-
creasing as areas of engagement grow rapidly. There is a vast array of documents 
and training describing the CMMI® approach and how to obtain certification 
in various areas and at increasingly demanding levels. A good place to start to 
get a good understanding of the CMMI® approach is the CMU SEI website 
[18].

CMMI® for Development

CMMI®-DEV came out of the fundamental CMMI® process and more specifi-
cally addresses software development, even though the original intent of CMM 
was to improve software development efforts. Table 8.4 lists process areas with-
in each CMMI®-DEV module or category, as provided in CMMI® for Develop-
ment, Version 1.3 [3].

ISO/IEC 12207-2008 [9] process groups are shown in Table 8.5. It 
should be noted that the processes cover both systems and software; there is 
another standard, ISO/IEC 15288, IEEE Std 15288-2008 [19], which only 
covers system life cycle processes, whereas both systems and software are covered 
in ISO/IEC 12207-2008.

We compare the entries in Tables 8.4 and 8.5 to one another in Table B.1 
in Appendix B.

If you find the above confusing, you are not alone, as Russwurm so aptly 
stated in [1]. It is often difficult for someone with responsibility for the entire 
range of software development processes to determine which might be the best 
taxonomy to adopt. The more conservative approach is to take the superset of 
processes, which, in the above case, would be to take the process categories of 
ISO/IEC 12207-2008 and fill in any areas where CMMI®-DEV is more de-
scriptive. The CMMI® approach is, as one would expect from the size of the 
documents alone (some 482 pages), much more comprehensive and provides 
guidance and support, including training. These types of support are not as 
readily available for the ISO/IEC standard.
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Incorporating Safety and Security Processes

A high-level comparison is given in Table 8.6 for those process areas with 
equivalent process (or application) areas as CMMI®-DEV in +SAFE V1.2 [4] 
+SECURE [2] and with the application areas in Ibrahim [5]. It is interesting to 
note that not every process area (PA) has an equivalent in the other documents. 
For example, there is no specific extension of the Process Management PA in 
the +SAFE document. The application practices (APs) in +SECURE [2] have 
equivalents, for the most part, in CMMI®-DEV and mapping that serve to il-
lustrate the complexity of the quagmire of definitions and terms. Nevertheless, 
one can draw parallels, add, or join the dots in order to complete the picture. 
For example, there is clearly a need for organizational preparedness for safe de-
velopment, which incorporates establishing an appropriate work environment 
and training individuals in particular skill sets, even though it may not be stated 
explicitly in the same terms across approaches. 

We now look into +SAFE V1.2 [4] and +SECURE [2] in more detail.

+SAFE V1.2 Comparisons

Table 8.6 clearly shows that the safety extensions are in the CMMI®-DEV pro-
cess areas of Project Management and Engineering, but that the process areas 

Table 8.4 
Specific Process Areas by Category per CMMI®

Process Area Category Specific Process Areas
Process management Organizational process focus

Organizational process definition
Organizational training
Organizational process performance
Organizational performance management

Project management Project planning
Project monitoring and control
Supplier agreement management
Integrated project management
Risk management
Quantitative project management

Engineering Requirements development
Requirements management
Technical solution
Product integration
Product verification
Validation

Support Configuration management
Process and product quality assurance
Measurement and analysis
Decision analysis and resolution
Causal analysis and resolution
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of Process Management and Support do not appear to have equivalent safety-
related processes. The +SAFE document [4] addresses these differences. The 
relationships among the process areas of safety management, safety engineering, 
and support are considered to be the same for +SAFE as for CMMI®-DEV. 
The +SAFE document does not appear to address the process management 

Table 8.5 
Life Cycle Process Groups per ISO/IEC 12207

Category Subcategory Individual Processes
System Context 
Processes

Agreement processes Acquisition process
Supply process

Organizational project-
enabling processes

Life cycle model management process
Infrastructure management process
Project portfolio management process
Human resources management process
Quality management process

Project processes Project planning process
Project assessment and control process
Decision management process
Risk management process
Configuration management process
Information management process
Measurement process

Technical processes Stakeholders requirements definition process
System requirements analysis process
System architectural design process
Implementation process
System integration process
System qualification testing process
Software installation process [distribution?]
Software acceptance support process
Software operation process
Software maintenance process
Software disposal process

Software Specific 
Processes

Software 
implementation 
processes

Software implementation process
Software requirements analysis process
Software architectural design process
Software detailed design process
Software construction process
Software integration process
Software qualification process

Software support 
processes

Software documentation management process
Software configuration management process
Software quality assurance process
Software verification process
Software validation process
Software review process
Software audit process
Software problem resolution process

Software reuse 
processes

Domain engineering process
Reuse asset management process
Reuse program management process
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process area, particularly the need for preparedness, including training of per-
sonnel. Presumably, this area reverts back to the parent document. However, it 
is something that should be made explicit for safety, especially as there is a lack 
of knowledge and expertise of safety engineering among developers of security-
critical software and, as described in previous chapters, there is little interchange 
among the various silos of expertise. Training and knowledge transfer relating to 
safety are areas in need of particular explicit attention and the failure to call out 
these areas could well be a significant contributor to the current gap.

From +SAFE V1.2, it would appear that the CMMI®-DEV process for 
training is addressed in what is termed Specific Goal 1 (SG 1), although train-
ing is not mentioned in the description of SG 1.

Of particular interest is Table 4 in the +SAFE report which cross refer-
ences +SAFE SGs with nine of the twenty-two CMMI®-DEV PAs. Table 8.7 
summarizes the comparison at a higher level (i.e., not drilling down to indi-
vidual SGs).

While this analysis may be comforting to some, there are questions as to 
how well the SGs match the CMMI®-DEV PAs and whether comparing in 
nine categories is adequate. Perhaps incorporating the +SAFE extensions di-
rectly into the parent document would have been a better approach, as it would 
clarify which process areas are addressed and which are not. Nevertheless, the 
+SAFE document [4] is a major step in the right direction despite its taking a 
safety perspective that is geared to safety engineers and may not be particularly 
helpful for others.

+SECURE V1.2 Comparisons

While the authors of the +SECURE document [2] assert that the +SECURE 
extension was “developed using the similar methods [to] the +SAFE extension 

Table 8.7 
Cross References of CMMI®-DEV vs. +SAFE Process Areas

CMMI®-DEV Process Areas

Safety 
Management 
Process Area

Safety 
Engineering 
Process Area

Causal analysis and resolution Yes —
Configuration management — Yes
Decision analysis and resolution Yes Yes
Measurement and analysis Yes —
Organizational training Yes —
Process and product quality assurance — Yes
Project monitoring and control Yes —
Project planning Yes —
Requirements development Yes Yes
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...,” the documents differ in many respects. We have already established that the 
+SAFE extension does not specifically address the process management process 
area, and that neither +SAFE nor +SECURE includes any support process ar-
eas. However, there are many other differences that show up as one digs down 
into the specific goal and practice levels, as illustrated in Table 8.8. 

Table 8.8 is very revealing. First of all, it shows that the +SECURE spe-
cific goals and practices cover many more areas than do the specific goals of the 
+SAFE extension and the +SECURE specific goals appear to be much more 
oriented to the software development process than are the safety goals and prac-
tices. The safety approach appears to be less formal than the security approach. 
For example, in the design category, the +SAFE requirement is to apply safety 
principles, whereas +SECURE calls for using security standards.

Summary and Conclusions

In many ways, this venture into the world of processes was highly informa-
tive for the author, and, it is hoped, for the reader, too. The overall impression 
matches Russwurm’s representation of software development process models 
as a quagmire [1], which was unfortunately shown to be accurate. One who is 
interested in implementing one of the many process frameworks is sure to be 
confronted with a myriad of approaches. These approaches are difficult to com-
pare and each requires substantial effort to understand and implement.

Attempts to extend process models from the general software develop-
ment framework to safety and security are highly variable in their rigor and use-
fulness. There also appears to be a tendency to reinvent the wheel to the extent 
that references to prior work and to parent documents are often incomplete.

Nevertheless, for all their problems, process improvement methods are 
much needed, as are those that relate specifically to safety and security. It is 
crucial to include safety and security in process models because, if they are 
not included, there is little hope for advancing the art of secure and safe soft-
ware systems engineering. That being said, the process models are not yet good 
enough to assure IT professionals that the complex systems that they build and 
operate will meet the security and safety requirements of diverse stakeholders.

Whereas world-class processes do not guarantee top-quality products and 
services, the lack of adequate processes practically ensures that many critical 
considerations relating to safety and security will not be included in the overall 
processes and projects that underlie the creation of all software-intensive prod-
ucts and software-based services.
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9
Secure SSDLC Projects in Greater Detail

A comprehensive, systematic approach to implementing security from the 
very start of applications development is essential.
—Patrick McBride and Edward P. Moser, [1]

In an era riddled with asymmetric cyber attacks, claims about system 
reliability, integrity and safety must also include provisions for built-in 
security of the enabling software [emphasis added].
—The Data and Analysis Center for Software (DACS), Depart-

ment of Defense [2]

Dependability specifications are analogous to safety and security require-
ments ...
—Praxis High Integrity Systems, [3]

Introduction

As we have already discussed, there are numerous acronyms for security-critical 
and safety-critical software-intensive system-development life cycles. Many of 
these acronyms, though seemingly different, apply to very much the same types 
of systems and processes, whereas others are clearly or subtly different, often 
ambiguous. All such attempts to define the development process and life cycle 
components are intended to bring structure, formality, completeness, and re-
peatability to processes and procedures, which are often ad hoc in practice. 
Many processes address only the creation of standalone software products; oth-
ers take into account broader aspects of software-intensive systems by including 
platforms, infrastructures, and possibly hardware. Yet other approaches special-
ize in one attribute of software such as security, safety, reliability, integrity, avail-
ability, performance, resiliency, and the like, but pay little attention to the other 
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characteristics of software systems. Thus books about software security seldom 
mention safety and those covering the topic of software safety pay little or no 
attention to security.

The purpose of this chapter is to examine the phases and detailed tasks 
and subtasks that are most crucial to developing, operating and decommis-
sioning secure software systems. In Chapter 10, we shall look into the same 
processes as they apply to safety-critical software systems. We shall then look 
at the particular issues that relate to creating software systems that are both 
security-critical and safety critical.

Different Terms, Same or Different Meanings

The simple acronym SDLC is itself ambiguous. In some instances, SDLC refers 
to the system development life cycle, or system design life cycle, whereas in other 
cases it has the meaning software development life cycle. Going back some years, 
the IBM Corporation came up with the abbreviation SDLC for Synchronous 
Data Link Control, referring to a network communications protocol. To fur-
ther complicate matters, Microsoft Corporation has adopted the acronym SDL 
to stand for the “security development life cycle” [4], when the authors really 
meant “secure software development life cycle.”

In this book, we will use the acronym SSDLC to mean software system 
development lifecycle. It should be noted that this abbreviation is neither origi-
nal nor unique; it has been used to mean secure software development life cycle 
in a number of cases [5]. Others used SSDLC to mean “security system devel-
opment life cycle,” which has the same problem of confusing secure systems 
with security systems, as discussed previously [6]

We shall depict particular flavors of the SSDLC using the terms secure 
SSDLC, safe SSDLC, resilient SSDLC, and the like. This is because the term 
software system emphasizes the fact that software is not developed in isolation, 
nor can it run without other software, firmware, and hardware components. 
Software is always part of a broader system that includes platforms (i.e., op-
erating systems, system utilities) and infrastructures (i.e., equipment and net-
works), and must generally be designed and developed with specific platforms 
and infrastructures in mind.

In order to accommodate security and safety, we use terms such as secure 
software system development lifecycle (secure SSDLC) and safe software system 
development lifecycle (safe SSDLC). When we consider building systems that 
have both explicit security and safety requirements, we use the cumbersome 
term safe and secure software system development life cycle (S4DLC), favoring 
precision over brevity.
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At this point, we will again differentiate among secure software systems, 
security software systems, and secure security software systems. With respect to 
secure software systems, security is a quality attribute of the software systems, 
whereas for security software systems, security is the predominant function of 
the software systems. Odd as it may seem, the term secure security software 
system is not redundant because it refers to software systems, the main function 
of which is to provide security services. The attack against RSA’s SecureID tech-
nology, detailed below, is an example of the security of a security system being 
compromised. Therefore, these same security software systems need be built so 
that the security software systems themselves exhibit strong security attributes 
and are resistant to attack. The reported attacks against RSA and Symantec 
demonstrate that these security product vendors are perhaps more vulnerable 
than generally understood [7].

The terms and meanings are similar for safety-critical systems and com-
bined security-critical and safety-critical systems. As with secure software sys-
tems, safe software systems are those for which safety is an attribute. For safety 
software systems, safety is the main function of the software systems. Therefore, 
safe safety software systems provide safety services and themselves meet speci-
fied safety standards. Secure safety systems are those for which the main func-
tion is safety, but which are also secure because they are protected from adverse 
attacks or events. Safe security systems are those that provide physical or logical 
security functions and do not threaten harm to people, other creatures, or the 
environment. An example of the latter would be a building entry system that 
fails in an open state so that, in the event of a fire, say, persons within the facility 
can escape and firefighters, emergency service personnel, and other responders 
can enter the facility freely.

Even more confusing are safe and secure software systems that reflect 
safety and security requirements, but have functions other than the provision of 
safety and security services.

When we talk about safe and secure safety and security software systems, 
we mean software systems that function to preserve both safety and security, 
and also meet specified safety and security requirements. Thus, one might have 
(as with systems of systems and cyber-physical systems, such as the smart grid 
[8]) safety-critical systems that satisfy safety standards and have been secured 
against outside attacks and internal mishandling. Conversely, such systems may 
be those that provide security services but have also been specified as not doing 
damage to living beings or the environment were they to fail or malfunction. 
The above is summarized in Table 9.1.

Table 9.1 illustrates how the attribute of security (which previously was 
not considered a high priority for safety-critical systems) is now considered to 
be important, particularly for systems that have both security and safety require-
ments. Security-critical systems clearly must exhibit high degrees of intrinsic 
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security due in part to the negative reputational fallout when compromised, as 
in the case of the security-firm RSA, which was the victim of a successful attack 
that brought into serious question the security of their two-factor authentica-
tion technology [9].

RSA sells one of the most popular two-factor authentication technologies 
in the form of their SecurID tag, which is usually in the form of a key fob or 
as credit-card size unit with a small screen on it. The screen displays a numeric 
code which changes every minute and is synchronized with a number generator 
on the system to which access is to be granted. The use of the SecurID card, in 
conjunction with some other code, such as a password or personal identifica-
tion number (PIN) provides two-factor authentication, which is considered to 
be highly secure. As a result, SecurID technology is used to protect some of 
the most security-critical software systems, such as those operated by defense 
contractors. When RSA was compromised by a cyber attack, the underlying 
SecurID technology was stolen. The technology was then used to attempt to 
infiltrate the systems of such entities as large defense contractor Lockheed Mar-
tin. From the perspective of cybersecurity professionals, this compromise was 
particularly disconcerting because it showed weaknesses in what was considered 
to have been one of the most effective ways to prevent unauthorized access to 
critical systems.

With respect to safety, a system controlling something like entry to a high-
security facility needs to have very good safety features. If the safety software 
were to fail, the reputation of the company supplying the control software and 
its ability to perform would be brought into question. When systems of systems 
and cyber-physical systems have both safety and security requirements, the con-
trolling software must have particularly stringent safety and security attributes.

Creating and Using Software Systems

There are many published approaches to building software systems. Most of 
them follow the traditional basic systems engineering approach to projects. 
Some expand beyond the basic scope and add specific security and safety com-

Table 9.1 
Safety and Security Attributes vs. Safety and Security Functions

Attributes

Functions

Safety Security
Combined Safety 
& Security

Security Currently high
Traditionally low

Very high Very high

Safety High Currently medium
Traditionally low

Very high
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ponents. Others are less complete than the basic systems approach. For exam-
ple, many software system lifecycles omit consideration of disposal or decom-
missioning of obsolete systems and planning for their replacements with new 
systems. Furthermore, typical development life cycles frequently do not fol-
low the commonly-held of birth-life-death-rebirth cycles, restricting consider-
ation to a single pass. The inevitable end-of-life of software systems is often not 
planned, particularly for security-related lifecycle processes in the private sector. 
To their credit, many government approaches do consider the decommission-
ing and disposal of secure software systems, although the decommissioning and 
disposal phases appear more often in safety-related control systems than they do 
for information systems. It is emphasized here that  the activities that take place 
when a software-intensive software system is discontinued must be carefully 
planned if one is not to be exposed to a litany of risks, including loss of valu-
able intellectual property. Many researchers and practitioners appear to assume 
that once the useful life of a software system is at an end, then the software has 
no value. Often this is not the case because older versions of software products, 
while not necessarily supported by the vendor, can usually still operate usefully, 
if so desired and may well contain valuable intellectual property.

In some cases, even when a software system is decommissioned, the data 
handled by the system may have to be retained over a longer term so as to meet 
the requirements of the taxing authorities or regulatory agencies. Sometimes, 
data records must be retained for a given number of years; in other cases, they 
may have to be retained forever. This raises a key issue regarding the ability 
to retrieve electronic records that are compatible with the decommissioned 
software systems. If replacement systems are not backward-compatible, then 
some means to reconstitute the replaced software and hardware systems may 
be required in order to retrieve required data. This can become a particularly 
onerous requirement, especially if the systems and those familiar with the ap-
plications and those who are needed to support the systems operationally are 
long since gone.

In addition, there are seldom preliminary plans for the creation of a re-
placement system put in place at the time the original system is created. Indi-
viduals developing software systems usually take no responsibility for consid-
eration of replacement systems because it only takes more time and resources 
to include features that will facilitate replacing the original system; expending 
those resources can only be detrimental to the timely completion of the project 
at hand, unless consideration of replacement is a specific requirement.

This omission of replacement considerations can lead to panic and con-
fusion when, for example, a vendor announces that it will no longer support 
a specific software product beyond a given date, or if the business conditions 
change drastically, calling for a different system, be it needing greater scalability, 
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increased functionality, and the like, which may well be beyond the capabilities 
of the current software system.

Between 2004 and 2005, the Microsoft Corporation announced that it 
would no longer support Windows NT 4.0 beyond a specific date [10]. This 
created a huge uproar among customers who were not able to upgrade to a new 
system within the remaining time. Microsoft then agreed to provide security 
patches; however, they wanted a substantial additional maintenance fee in ex-
change for these patches. This further angered customers who felt that Micro-
soft was forcing them into changes and support terms and conditions that they 
felt were onerous.

Phases and Steps of the SSDLC

We will now examine each phase, and the steps within each phase, of a typical 
SSDLC, with particular initial focus on the security attributes of those systems, 
and consideration of the safety attributes in Chapter 10.

In Figure 9.1, we show three aspects of the life cycle inside the ovals. The 
center stream, labeled “Manufacture,” is the typical sequence of development 
activities. In parallel with the development of the system is an “Oversight,” or 
managerial cycle, which involves the initial risk analysis and continuing audit 
reviews and testing by auditors and examiners. The bottom third of the dia-
gram shows the “Assurance” cycle, which comprises developing test cases and 
test plans and performing the various forms of testing. The shaded boxes in the 
diagram are those functions that are often not given the amount of attention 
commensurate with their importance. Two areas stand out as much-needed 
enhancements to the typical SSDLC. One is the specification of nonfunctional 
requirements and their testing to ensure that they are correctly incorporated 
into the system. The other is the decommissioning and disposal phases that 
need to be planned for, tested, and performed, but are often neglected in the 
private sector in particular.

A somewhat different view of the same set of concepts is shown in Figure 
9.2, which derives largely from McGraw [11]. Here, the security aspects are 
related specifically to phases of the SSDLC.

It is interesting to review how the SSDLC has evolved. We now examine 
what particular steps were considered to be part of the system development life 
cycle around 1980. Historically, researchers did not usually make explicit dis-
tinctions between systems processes in general and software systems, processes, 
and projects in particular. In Biggs [12], there is a very detailed description of 
what we might term software-intensive systems project management rather than 
the process management of systems, as implied by the title of the book, which 
is Managing the Systems Development Process.
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Table 9.2 provides an overview of the various phases and steps of the 
development life cycle as described in [12]. It is noteworthy that there is no 
mention of security or safety and that there is no decommissioning phase. The 
approach does, however, require reviews by senior management and approval 
of the prior phase before the subsequent phase is initiated. Also, in Phase III: 
Systems Development, we see the term specifications relating to the techni-
cal aspects of the system and with respect to the application (Steps 1 and 3, 
respectively). While the term was used commonly in the 1980s, it appears to 
have somewhat gone out of favor in texts relating to the secure development of 
software systems. The content relative to specifications is generally subsumed 
under the requirements analysis or the architecture and design phases.

As an example, in the U.S. Federal Aviation Administration’s report on 
the SDLC [13], under the heading “Software requirements analysis,” we read 
the following:

Figure 9.2	 Security	aspects	related	to	the	SSDLC.
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• Safety specifications: includes those relating to methods of operation and 
maintenance, environmental influences, and personal injury

• Security specifications: includes those relating to the compromise of sensi-
tive information.

These descriptions differentiate between safety and security specifications 
in much the same way as we have done earlier.

Within each step, Biggs [12] provides an overview and lists of standard 
activities and key considerations. For example, in Phase III, Step 4, Application 
Programming and Testing, we have the following standard activities:

• Verify the availability of all necessary resources;

Table 9.2 
Traditional Systems Development Process per Biggs [6]

Phases Steps
Phase I Systems planning Step 1: Initial investigation

Step 2: Feasibility study
Top management review 
and decision

Phase II Systems requirements Step 1: Operations and systems analysis
Step 2: User requirements
Step 3: Technical support approach
Step 4: Conceptual design and package review
Step 5: Alternatives evaluation and development 
planning

Top management review 
and decision

Phase III Systems development Step 1: Systems technical specifications
Step 2: Technical support development
Step 3: Application specifications
Step 4: Application programming and testing
Step 5: User procedures and controls
Step 6: User training
Step 7: Implementation planning
Step 8: Conversion planning
Step 9: Systems test

Top management review 
and decision

Phase IV Systems implementation Step 1: Conversion and phased implementation
Step 2: Refinement and tuning
Step 3: Post-implementation review

Systems maintenance Step 1: Ongoing maintenance
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• Assign applications to programmer(s) and monitor progress;

• Develop program;

• Code;
• Compile;
• Unit test (module or subroutine);
• Integrate and test;
• Document;

• Review and approve test results and documentation;

Also in Phase III, Step 4, Application Programming and Testing, we have 
the following key considerations: 

• Know the software;

• Control of creativity;

• The 90% complete program;

• “Impossible” conditions;

• Resource utilization.

These activities and considerations are what one would expect for this 
step of a typical software system development project. However, an item of 
particular interest to considerations of security and safety (although not men-
tioned specifically), is the one labeled as “impossible conditions.” As described 
by Biggs, this condition “happens because a situation is encountered that users, 
systems analysts, and programmers thought ‘impossible’” [12]. According to 
Biggs, such conditions are not preventable, but they can be avoided or mini-
mized to the extent that they can be predicted or anticipated or, if they do oc-
cur, then somewhat more timely corrective action can be taken [12].

Biggs proposes the use of structured walkthroughs and reviews to attempt 
to anticipate these conditions and from there develop mitigating procedures 
[12]. This is somewhat analogous to the concept of functional security testing, 
as described in Axelrod [14], or functional safety testing, which is the analo-
gous method with respect to safety-critical software systems. In retrospect, it 
is strange that safety and, in particular,  security considerations were not even 
mentioned in earlier work. In a sense, this lack of attention to such matters in 
prior decades might well have contributed to the failure to anticipate the need 
to build safety, and particularly security, into software systems.

The initial point of entry for the development of safe and secure systems 
is indeed the requirements phase. In fact, many writers believe that deficiencies 
in requirements are the main contributors to omissions and errors in software 
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systems, many software systems development efforts fail to fully satisfy stake-
holders’ needs and often fall far short of stakeholders’ expectations because of 
inadequate requirements.

Undoubtedly, a key critical success factor is obtaining a complete, com-
prehensive, unambiguous, and doable set of requirements, in which safety and 
security issues have been addressed early in the development lifecycle and con-
tinue to be addressed throughout the lifecycle, up to and including the de-
commissioning and disposal of the system. A more detailed description of the 
essential attributes of requirements is as follows:

• Complete and comprehensive requirements: these include material from all 
stakeholders (including requirements for security, safety, business conti-
nuity, performance, etc). One way to improve the chances of getting all 
relevant requirements is to think of all the various groups that may have 
a vested interest in the system development effort succeeding—and also 
of the groups that may be looking for the project to fail. This is often em-
bodied in the “nobody asked me” syndrome, wherein information is not 
properly conveyed because it was not asked for. There is often a need to 
motivate stakeholders to respond and to be forthright in their responses. 
This can often be achieved by encouraging stakeholders to participate 
through various incentives, such as positive periodic personal reviews, 
special mention in company newsletters, and other forms of recognition. 
The effectiveness of the methods chosen will depend upon the culture of 
the organization. Suggested involvements for each phase of the life cycle 
are shown in Appendix C for security-critical software systems.

• Unambiguous requirements: it is important for stakeholders to under-
stand the terminology being used and to be able to translate their per-
sonal needs into highly specific requirements. Those requirements, both 
functional and nonfunctional, are then converted into specifications, 
which are used as the basis for system design and architecture, coding, 
testing, and the like. At each stage, there needs to be confirmation that 
the program code accurately implements requirements, whether or not 
the requirements truly represent the needs of the user. This is the verifi-
cation process. In addition, the originator of the requirements (usually 
the customer or user) should make sure that what has been produced byt 
the project team is the right product (that is, it is what the user expected 
to see). This is the validation process.

• Doable requirements: in all cases, requirements need to be reasonable 
and achievable with existing technology (or allowance has to be made 
if technology is new or very different from the norm). Sometimes it 
might not be known until well into the development effort whether 
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or not required capabilities are achievable within reasonable time and 
money constraints. The ability to determine feasibility without major 
expenditures and effort is the value of techniques such as prototyping, 
agile development,  and the like. Many stakeholders, particularly among 
end users, often do not understand the terms used by technologists and 
their implications unless they actually see a model or prototype of the 
system. Not wanting to appear ignorant, some stakeholders may allow 
the process to continue, whether or not there are definite warning signs 
that the project might be going off the rails.

Given the above, we see that today safety and security requirements tend 
to be different animals. Safety requirements are usually based on specific stan-
dards, such as DO-178B, which will be discussed in more detail in Chapter 10. 
Security requirements, on the other hand, frequently do not have an equivalent 
set of standards and certifications to turn to. They are often based on de facto 
standards, such as the Payment Card Industry Data Security Standards (PCI 
DSS), which specifically addresses credit cards, debit cards, and other forms of 
payment systems, such as smart phones, which are increasingly being used in 
place of plastic cards.

There are also high-level management standards for security, such as 
ISO/IEC 27001/27002, which provide guidance for implementing security 
measures.

Calder [15] provides a good guide to certification under the ISO/IEC 
27001/27002 standards. The areas covered by the standards are extensive, but 
adherence to these standards is usually voluntary, so that their value is dimin-
ished. However, it is helpful to be aware of the range of subject areas that are 
covered, which are as follows: 

• Organizing information security; 

• Information security policy and scope; risk assessment; 

• External parties; 

• Asset management; 

• Human resources security; 

• Physical and environmental security; 

• Equipment security; 

• Communications and operations management; 

• Controls against malicious software; 

• Network security management and media handling; 

• Exchanges of information; 
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• E-mail and internet use; 

• Access control (networks, operating systems, applications); 

• Systems acquisition, development and maintenance; 

• Cryptographic controls; 

• Security in development and support services; 

• Monitoring and information security incident management; 

• Business continuity management; 

• Compliance.

The above areas in italicized print have particular relevance to software 
engineering for security-critical applications. The other areas are important for 
a comprehensive information security program.

There was also an effort to develop a set of Generally-Accepted Informa-
tion Security Principles (GAISP). An initial effort, begun in 1992, was called 
Generally-Accepted System Security Principles (GASSP). A description of the 
GASSP was issued for public comment purposes in 1999 [16]. The GASSP 
project was originally sponsored by the International Information Security 
Foundation (I2SF). The Information Systems Security Association (ISSA) took 
over the effort with a project involving more than a hundred volunteers and 
renamed it the Generally-Accepted Information Security Principles (GAISP) 
project [17]. Unfortunately, the GAISP effort collapsed under its own weight, 
with the net result that there is still no set of universal security principles and 
standards. In contrast, the American Institute of Certified Public Accountants 
(AICPA) and the Canadian Institute of Chartered Accountants (CICA), with 
assistance from the Information Security and Control Association (ISACA) and 
the Institute of Internal Auditors (IIA)), developed the Generally-Accepted Pri-
vacy Principles (GAPP) with a relatively small team of volunteers and published 
the results in two editions, the Business Edition [18] and the Practitioner Edi-
tion [19].

There are very specific software security recommendations, such as the 
Open Web Application Security Project (OWASP) top ten vulnerabilities and 
the SANS top 25 errors made by programmers described in Appendix A, as well 
as work done by The MITRE Group on a Common Vulnerability Scoring Sys-
tem (CVSS) [20] and a Common Weaknesses Evaluation (CWE) [21]. How-
ever, the guidelines for security do not even approach the rigorous certification 
requirements of safety-critical systems.

The net result of all this complex tapestry of security standards is a quan-
dary which many designers, developers, and testers of security-critical software 
systems face, regarding what they need to do to ensure that the security attri-
butes of a software system meets generally accepted standards. Because no such 
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security standards exist, the approach recommended here is to examine each 
security-related task and subtask within the development life cycle and deter-
mine what makes sense to do at each stage and for what purpose.

The tables in Appendix C show security-related task areas, subtasks, and 
purposes of those subtasks for the following software systems development life 
cycle phases: 

• Requirements analysis;

• Architecture and design;

• Development (building/configuration/integration);

• Testing;

• Deployment;

• Operations/maintenance.

It should be noted that specifications and decommissioning phases are 
not included explicitly in the above list; they should be added either as specific 
task areas or incorporated into existing tasks. It seems that including explicit 
specification tasks or subtasks has fallen out of favor in references covering the 
secure SSDLC. A specification is a detailed description of the design and ma-
terials used to make something. In Table 9.2, above, there are two types of 
specification—technical and application. On the other hand a requirement is 
a “singular documented physical and functional need that a particular product 
or service must be or perform”[22]. That is to say, a requirement is an expres-
sion as to what is wanted, whereas a specification describes how the product 
should be manufactured or the service developed. It is reasonable, therefore, 
to include specifications as an extension to the design and architecture phases, 
although Biggs [12] puts application and technical specifications in the devel-
opment phase.

On the other hand, the decommissioning phase can be considered sepa-
rately even though it might be considered to be an extreme example of a system 
modification. With respect to omitting the decommissioning phase, it is unfor-
tunate that this phase is so often neglected or omitted completely, particularly 
as it is arguably a period of very high risk with respect to changing procedures 
and operations with a relatively high risk of unauthorized access to data and the 
misuse of sensitive information.

Detailed security requirements and specifications provide much more 
useful information for the builders of security-critical systems than do the high-
level requirements. However, the high-level requirements are more easily under-
stood by nontechnical participants (i.e., customers, clients, etc). Drilling down 
deeper, we see that detailed tasks and subtasks provide very specific guidelines 
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for secure coding, for example. These latter guidelines are for shirtsleeve de-
velopers, testers, and implementers, but also need to be understood by project 
managers. The need to utilize secure methods has to also appeal to business-unit 
managers as a means of improving their products and services. Microsoft is a 
good example of this, as evidenced by their development life cycle described by 
Howard [4].

In Appendix C, we examine each identified phase of the development life 
cycle, and show a full range of security-related task areas, specific subtasks, and 
the reasons for performing each subtask. Much of the information contained in 
these tables comes from MacBride [1], which is not readily available [23]. How-
ever, the decommissioning/disposal phase has been added as have a number of 
the individual task areas and subtasks. Also, the format of the tables and how 
the information is distributed throughout the tables is new.

Table 9.3 shows the overall involvement of the various participating 
groups and teams in the security aspects of the lifecycle. The table is taken 
from Table C.17 in Appendix C. As expected, the major overall participants are 
the security and audit team members, but the application development team 
and the infrastructure team follow close behind. For the effort to be success-
ful, participants must be fully engaged and perform the tasks assigned to them 
diligently.

What conclusions might one draw from Table 9.3? It would appear that 
the security team and the internal and external auditors should be heavily en-
gaged throughout the lifecycle and that most of the other players hover around 
the moderate value, which is what one might expect. However, in a typical 
organization, we do not see this level of involvement. Most areas would be as-
sessed at least one level lower in terms of their involvement. This is even true of 
security teams and auditors, whom you would expect to be very much in tune 
with the Secure SSDLC. The level of involvement is to some extent represented 
in the Building Security in Maturity Model (BSIMM) described at the BSIMM 
website [24].

Summary and Conclusions

In order to ensure that appropriate security attributes are included in software 
systems, especially those that are considered to be security-critical, it is neces-
sary to include tasks and subtasks within the development lifecycle that are spe-
cifically geared to meet security requirements. Unfortunately, there is a dearth 
of information security principles, and detailed standards available to software 
safety engineers. Some guidance is available from various government and in-
dustry sources, and there are international standards that provide high-level rec-
ommendations for those wanting to be certified under those standards. How-
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ever, many entities are not required to follow any particular standards, resulting 
in an abundance of weaknesses.  Even if there were a set of generally-accepted 
standards, there would still be a need to engage internal and external subject-
matter experts in the broad range of information security areas.

One cannot hope to achieve the required level of security if those who are 
responsible do not engage in the process and ensure that all necessary steps are 
taken. The involvement of auditors is also required to ensure that these steps 
have been completed at a satisfactory level.

Unfortunately, as is apparent from the number and intensity of success-
ful attacks, many organizations still have a long way to go before they satisfy 
even the lowest level of acceptable compliance. In this chapter, we looked at 
the life cycle for secure system development and indicated which areas need 
to be addressed. An extensive list of suggested tasks and levels of involvement 
is provided in Appendix C for those looking for guidance on what to do to 
improve the security of their mission-critical systems in the face of increasingly 
sophisticated attacks.
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10
Safe SSDLC Projects in Greater Detail

[System safety is] the application of engineering and management prin-
ciples, criteria, and techniques to optimize all aspects of safety within 
the constraints of operational effectiveness, time and cost throughout all 
phases of the system life cycle.
—Joint Software System Safety Committee, Software System

Safety Handbook [1]

A secured system ensures that there is no security bug so that security 
threats are eliminated, whereas for a safety-critical system, any bug 
could be devastating.
—Asoke K. Talukder and Manish Chaitanya, Architecting Secure 

Software Systems [2]

Introduction

One might assume that all that needs be done to generate the tasks, subtasks, 
purposes, and levels of involvement for safety-critical software systems is to du-
plicate the many tables in Appendix C and substitute the words safe and safety 
for the words secure and security. One wishes that it were that simple. While, 
in many instances, it does make sense to perform such a substitution, there are 
many cases where such parallels fall short.

Both the secure and safe software system development life cycle models 
have similar, if not the same, heritages. They both derive from systems and 
software engineering which are described in Chapters 2 and 3. However, as de-
scribed in Chapters 5, there are significant differences between the approaches 
of those involved in developing secure software systems and those focused on 
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safe software systems—namely, software security engineers and software safety 
engineers, respectively.

The main differences are ones of emphasis on specific phases and tasks 
rather than structural differences. In particular, development life cycles pro-
posed for safety-critical systems pay significantly more attention to the require-
ments, testing, and certification phases, than do the development life cycles for 
security-critical systems. This is not to support or encourage this difference—in 
fact, developers of security-critical systems can learn a great deal from their 
software safety engineering counterparts, as described in [3].

Definitions and Terms

As we did in Chapter 9 for security-intensive software systems, we must clarify 
the differences among safe software systems, safety software systems, and safe safety 
software systems. With respect to safe software systems, safety is a quality attri-
bute of the software systems, whereas for safety software systems, safety is the 
predominant function of the software systems. As with the term secure security 
software system the term safe safety is not redundant, as it might seem to be. 
This is because the latter term refers to software systems for which the main 
function is to provide safety services. However, these software systems need to 
be built so that the safety software systems themselves exhibit strong safety at-
tributes. While difficult to come up with specific examples, one suggestion is 
to consider a system that locks a door in order to prevent radiation from leak-
ing from a nuclear plant in distress. It is important that a door control system 
does not fail in a closed default status, since that would result in workers be-
ing trapped in the radioactive space. This actually happened at the Fukushima 
nuclear power station, which was knocked out by an earthquake followed by a 
tsunami on March 11, 2011. Workers were unable to escape from a highly ra-
dioactive space because the doors locked automatically and an operator was un-
willing to manually override the system because of fear that the trapped workers 
would contaminate others [4].

Somewhat more difficult is trying to come up with examples of safe and 
secure software systems that exhibit both safety and security attributes but have 
functions other than the provision of safety and security services. Likewise, 
safety and security software systems are systems with predominant functions 
in the safety and security spaces. However, we must ask, are the latter both safe 
and secure? Not necessarily. According to our earlier definitions, such systems 
are both protective of internally-processed information assets and are designed 
not to harm humans and the environment. Examples of such software sys-
tems are increasing quite rapidly as engineers are combining safety-critical and 
security-critical software systems (as with the smart grid [5] and a host of other 



196	 Engineering	Safe	and	Secure	Software	Systems	 	 Safe SSDLC Projects in Greater Detail	 197

industrial control systems, such as water treatment plants, nuclear power plants, 
etc). The danger to these control systems was considered to be minimal because 
they were not connected to any public networks. However, other means of 
injecting malware, such as via portable USB thumb drives, further negates that 
argument. The approach to making these systems of systems or cyber-physical 
systems are both safe and secure is usually based on securing the control systems 
by ensuring that means of access, of introducing malware, and of effecting deni-
al-of-service attacks, which might be opened up in creating these combined sys-
tems, meet high security standards. These standards will often be greater than 
those that would apply to information systems in isolation because the range 
and magnitude of the risks faced by systems of systems and cyber-physical sys-
tems are raised to much higher levels. This is because the information systems 
not only must protect data but also ensure that access to the control systems 
is restricted so as to prevent those with evil intent from gaining control of the 
authorized access to safety-critical control systems.

Finally, if we talk about safety and security software systems, which are 
both safe and secure, we mean software systems that function to preserve the 
safety of humans and security of assets and that also meet safety and security re-
quirements. There are likely not that many examples of such systems, although 
some of those that do exist have shown particularly bad judgment on the part 
of decision makers when it came to the inevitable trade-off between safety and 
security considerations.

Perhaps the primary examples are those software systems that control in-
gress into and egress from a physical plant. The previously mentioned Fuku-
shima incident is a prime case. Here, the system was designed so that, in the 
event of radiation being leaked into a room, no one would be able to open 
the door from the outside without using an interlock system. From one point 
of view, this is a safety requirement, but it can also be thought of as a security 
requirement, where the asset (in a negative sense) being secured is radiation. 
The trade-off, if it was ever considered as such, was between allowing radiation 
to escape versus risking having workers trapped in the room. In general, safety 
trumps security because when safety-critical systems malfunction or fail, there is 
the potential for injury, loss of life, and damage to the environment. However, 
it often depends on who is making the decisions. Based on the outcome, one 
might presume that the senior management at TEPCO (the company respon-
sible for operating the Fukushima plant) appears to have put financial returns 
above the safety of their employees and contractors in their decisions about 
the level of physical protection. This was somewhat reflected in the heights of 
walls protecting against tsunamis, although the risk of a tsunami of the size and 
strength of that which knocked out the plant on March 11, 2011 could have 
fairly been assumed to be extremely low. Only after the fact did it appear as if 
TEPCO management had been remiss.
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A similar, though not as devastating, situation, which was not reported 
but came from a reliable source, arose in a building during a Y2K test of the 
building entry system. A high-security building had an extremely effective sys-
tem that locked down crash-proof doors and windows. During the test, the 
system failed and doors and windows closed, preventing anyone from entering 
or exiting the facility. Engineers were unable to reset the system and open the 
doors and windows, which were so hardened that rescuers had to bulldoze a 
hole in a wall in order to gain entry and help the trapped workers to get out of 
the building. The trade-off here was between protecting the building against in-
truders and allowing those within the building to escape. It might have been the 
case that, under normal operating conditions, the system would have allowed 
the workers to get out of the building, as in the case of a fire for example, but 
that in its failed state it was not able to release the doors and windows. Clearly, 
the failure that occurred during Y2K testing had not been anticipated.

The above is summarized in Table 10.1, which is similar to Table 9.1, ex-
cept that the entries of the table are from the subjective perspective of a system 
safety engineer rather than a system security engineer.

Table 10.1 shows some awareness by software safety engineers of the need 
for security, but not as great a commitment to secure attributes as might a 
software security engineer might have. When it comes to combined security-
criticality and safety-criticality, software safety engineers will undoubtedly show 
a bias in favor of safety aspects. 

Hazard Analysis

The fundamental characteristic of safe software systems, as we have discussed, is 
that such systems should not do harm to humans or the environment as a result 
of their specified functioning, malfunctioning, or failure. As a result, it is wise 
to perform a risk analysis of the impact of various hazards to which a safety-
critical system might be vulnerable.

An excellent overview of the common approaches to hazard analysis is 
given in the report from the Joint Software System Safety Committee [6].

Table 10.1 
Safety and Security Attributes vs. Safety and Security Functions

Attributes Functions

Safety Security
Combined Safety 
and Security

Secure Medium Medium to high Medium
Safe Very high Medium to low Very high
Safe and 
Secure

Very high Medium to high Very high
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According to Military Standard 882D [6], the purpose of which is to 
establish a System Safety Program (SSP), there are a number of tasks as follows: 

• Software requirements hazard analysis;

• Top-level design hazard analysis;

• Detailed design hazard analysis;

• Code-level software hazard analysis;

• Software safety testing;

• Software/user interface analysis;

• Software change hazard analysis. 

To this list, we might add: software system decommissioning and disposal 
hazard analysis.

The Standard [6] is directed at contractors and applies to both system 
and software requirements, so that it might be more accurate to replace software 
with the words software system, based on previous discussions.

The relationship between the various types of hazard analysis and the 
development lifecycle is illustrated in Figure 10.1.

Software Requirements Hazard Analysis

Examples of software system safety requirements include unsafe modes, such as:

• Out-of-sequence;

• Inappropriate magnitude;

• Inadvertent command;

• Adverse environment;

• Wrong deadlocking;

• Failure to command.

Some of these modes, such as out-of-sequence and wrong deadlocking, 
are inherently within the software systems themselves; others relate to out-of-
range data or calculation results that might arise from a combination of soft-
ware and data entry errors; others relate to the environment or context within 
which the software system operates. Some of the above situations can be con-
trolled directly by the system designers and programmers, and others may be 
out of their control but should be anticipated and accounted for in the design. 
Operators or support personnel can work around poor design decisions and 
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faulty program code, which is quite common but not at all a desirable means of 
dealing with such situations.

Top-Level Design Hazard Analysis

This level of risk analysis covers safety-critical software components and in-
cludes the following: 

• Definition of safety-critical risk;

• Determination of the degree of risk involved;

• Design to be followed ;

• Creation of a test plan for verifying that the design meets safety require-
ments.

Figure 10.1	 Hazard	analysis	throughout	the	SSDLC.
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The results of this analysis should be submitted as input to preliminary 
design reviews. This type of risk analysis can, and should, be applied to hard-
ware also, particularly since many safety-critical software systems include hard-
ware modules and also control physical systems.

Detailed Design Hazard Analysis

This analysis of the detailed design of the software system should be completed 
prior to the start of coding software programs. The detailed design takes the 
results of the hazard analyses for software requirements and top-level design and 
must ensure that these results are accounted for in the safety-critical software 
components. The results of this analysis provide input to the final design review.

Code-Level Software Hazard Analysis

This analysis is based on the results of the Detailed Design Hazard Analysis and 
requires the analysis of program code and system interfaces to determine if there 
are any errors, faults, or conditions in the code or interfaces that might result in 
undesirable safety-related events. This analysis should be ongoing throughout 
the remainder of the life cycle.

Unfortunately, the so-called static analysis of programming code is often 
an art rather than a science, despite numerous attempts at automating the code 
review process. The ability of the coding practices to avoid programming haz-
ardous states is also a function of the programming language selected. Some 
languages, such as Ada, MISRA C, and SPARK, have built-in restrictions that 
serve to avoid certain unsafe or risky conditions. However, more prevalent lan-
guages, such as C, C++, C#, Java, and SQL, are less restrictive and, it can be 
argued, allow more safety issues, as described in [7].

The consideration of interfaces with other systems is key, as is the need to 
verify that no new issues are introduced when the systems to which the subject 
software system is linked and the interfaces between them are changed in any 
way. Sometimes changes external to the system being analyzed can have major 
negative impact on the operation of such a system. In addition, the context in 
which a system operates can change, both within the overall system with respect 
to platforms and infrastructure, and also with respect to the environment in 
which the system operates, which could change so as to no longer meet safety 
requirements.

Software Safety Testing

The purpose of this task is to generate documentation showing that all known 
hazards have been addressed and that they have been eliminated or reduced to 
an acceptable level of risk.



202	 Engineering	Safe	and	Secure	Software	Systems	 	 Safe SSDLC Projects in Greater Detail	 203

There are several issues here that affect all security-critical and safety-crit-
ical software systems; namely, that the completeness and quality of the testing 
depends on how complete the safety requirements are and how extensive the 
testing is. Safety testing should go beyond checking against the list of known 
potential safety hazards and investigate the impact of malfunctioning and fail-
ure beyond the usual scope. In addition to this nonfunctional safety testing that 
examines the general safety aspects of the software system, it is important to 
perform functional safety testing, which looks at hazard conditions that might 
arise from the software not doing what it is not supposed to be doing.

Another issue relates to who must decide what level of risk is acceptable. 
An engineer might have a different view of risk from management, for example. 
In some cases, management overrules the concerns and warnings of engineers 
because of budgetary and timeliness issues, sometimes with dire consequences.

While many of the methods for reviewing software design, analyzing 
source code, and testing functionality are common to both security-critical and 
safety-critical software systems, safety-critical control systems use methods spe-
cific to control software systems, such as model checking, abstract interpreta-
tion, and theorem proving as described in Feron [8].

Software/User Interface Analysis

The objective of this task is to ensure that software user procedures are fully 
developed and documented.

Human error remains one of the main reasons for software system mal-
functioning and failure, and such errors can be greatly reduced by proper train-
ing in the use of the system, as well as by responding to feedback from users 
with respect to observed ambiguities, incorrect functioning, unexpected sys-
tem responses, unintelligible error codes, and the like. While human beings 
can compensate for many system deficiencies, their ability to work around and 
compensate for incorrect or hazardous system operation is limited by their 
understanding of how the system is supposed to work. Also, many modern 
technologies respond in much quicker and more complex ways than human 
operators, meaning that compensation for system misbehaviors is not always 
possible, and is particularly lacking if the software system is under a cyber at-
tack or is functioning in inexplicable ways because of errors in the software or 
unanticipated user actions.

An example of errors causing wrong responses is the crash of Air France 
Flight 447, which is documented in a report that describes how the Air France 
Airbus 330 crashed into the ocean due to a “slow speed stall” that likely resulted 
from the pilots not being able to properly take over manual controls when the 
fully-automated aircraft-control system failed [9]. The failure of the automated 
system aborted because all the primary and backup airspeed sensors failed due 
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to icing. A possible contributing factor was that the Airbus 330 uses a fly-by 
-wire system, which takes over virtually all pilot functions. As a result, the pilots 
were thought not to have had enough experience with manually controlling the 
aircraft.

When software-based control systems are particularly safety-critical, it 
may not be adequate to run the software through a series of tests and then rely 
on users to point out discrepancies between what was required and what was 
manufactured. In such cases, it is helpful, if not mandatory, to prototype the 
user interface and build simulation models on which users can be trained to 
handle many abnormal situations without them being exposed to the conse-
quences of actual crashes.

Software Change Hazard Analysis

When software systems, their platforms and infrastructures, or their operational 
contexts are changed, there can be considerable impact on potential safety haz-
ards. Not only must all prospective changes, modifications, patches, and the 
like be analyzed prior to making the change to the greatest extent possible, but 
there needs to be a tracking and monitoring program in place to ensure that 
important changes affecting safety have been made and continue to be in force.

Sometimes a fix can make the situation worse, or a problem can occur in 
a seemingly unrelated part of the system. It is no wonder that making security 
and software changes once a system is operational can be orders of magnitude 
more costly than if the problem had been resolved in the early stages of the 
development life cycle.

In a certain respect, the decommissioning and disposal of a safety-critical 
system can be considered to be in the major change category. Not only do the 
hazards resulting from changes need to be considered—here in terms of replac-
ing the existing system with a new system, but the decommissioning process 
itself also heightens risk from users and operation/support staff having to main-
tain both the former and replacement systems in parallel, having to learn new 
systems and procedures, and the like.

In addition, there are potential hazards in the disposal of software-based 
systems. For example, the system might be taken up inadvertently or purposely 
by an unauthorized party and misused because of lack of training and sup-
port, causing risk to the new users. Or the system might be used against those 
who originally developed the system, as might be the case for a weapons sys-
tem that has been discarded. This suggests that oversight of the decommission-
ing and disposal processes is very important from both the safety and security 
perspectives.

It should be noted that the decommissioning and disposal phases are often 
not given the attention that they deserve and need. This is further exacerbated 
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by auditors and others with oversight responsibility wash their hands of a 
system once it has become obsolete and not monitoring how the systems are 
discontinued.

The Safe Software System Development Lifecycle

As with the details of the secure SSDLC, shown in the tables of Appendix C, 
another set of tables, this time addressing the safe SSDLC, is given in Appendix 
D. Noteworthy differences between the entries in the tables of Appendix C 
and Appendix D include the additional focus on hazard analysis, verification, 
and validation in the latter appendix. While these functions also play a part in 
the design, development, and testing of security-critical software systems, they 
are not given nearly the attention that they get with safety-critical software 
systems. Furthermore, there is usually more attention paid to the choice of pro-
gramming languages, platforms, and infrastructure when the safety of software 
systems is at stake.

In Figure 10.2 (which is similar to Figure 9.2 except that it refers to safety 
instead of security), we can see how various safety aspects affect the individual 
phases of the SSDLC. Noteworthy differences include a greater emphasis in the 
safety case on risk analyses in the early stages of the development life cycle, as 
well as a lack of penetration testing during the implementation, deployment, 
and operational phases. This is in keeping with the cultural and technical per-
spectives of software safety engineers.

In Figure 10.3, we show the hazard risk management process used in the 
design of safety-critical systems mapped against equivalent security risk factors. 
It is immediately apparent that the hazard risk analysis is a much more refined 
and extensive system that the comparable security risk analysis.

We will now briefly elaborate on the steps in the hazard risk management 
process as follows:

• Identify potential hazards: if this were readily achievable at reasonable 
cost, then one would not be surprised as frequently by unusual events. 
However, it is clear that even some high impact hazards are missed in 
part because identifying hazards is bounded by the ability of analysts to 
anticipate highly unlikely events, especially if they have not occurred 
previously (see item on identifying new hazards). This effort is also lim-
ited by time and resources available.

• Estimate severity: for safety-critical systems, as previously discussed, haz-
ards are categorized by their consequences which can be catastrophic, 
critical, marginal, or negligible. Security systems’ consequences are often 
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critical but seldom seen as catastrophic, even when they are, because 
there may be little visible impact.

• Identify causes: for some safety-related incidents, the causes are easily 
identified, but in many cases, such as plane crashes, accurate causes are  
often not determined until data from the flight recorders, are analyzed. 
Consequently, anticipated relationships between causes and effects are 
difficult to develop.

• Estimate likelihoods: as we discussed in Chapter 6, it is very difficult 
to estimate the probability that a particular adverse event will happen, 
especially for low-probability, high-impact events. Nevertheless, it is a 
worthwhile exercise to attempt to derive some probability estimates be-
cause, even if they are off the mark, they might still help analysts and 
decision-makers to put certain risks in perspective.

Figure 10.2	 Safety	aspects	related	to	the	SSDLC.
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• Calculate risks: as we also discussed in Chapter 5, there are many differ-
ent ways in which to calculate risk, many of which are erroneous or do 
not contribute to decision-making. With safety-critical systems, such as 
avionic and nuclear plant control systems, it is worth investing a con-
siderable amount in order to generate useful results on the likelihood of 
system malfunctions and failures.

• Mitigate risks: while the common view of risk mitigation for security-
critical, software systems is to make sure that coding is correct and that 
there are protective tools in place, this is not sufficient for safety-critical 
systems that are required to give sufficient warnings of imminent fail-

Figure 10.3	 Hazard	risk	management	process	and	the	equivalent	security	risk	factors.
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ures. It may be necessary to redesign and rewrite the software to avoid 
such risks. There is usually, but not always, more of an interest in mitiga-
tion for safety-critical systems than for security-critical systems.

• Determine if residual risk is acceptable: the main issue here is whether the 
risk that remains after various mitigation strategies have been applied is 
acceptable to decision-makers. The problem here, as has been discussed, 
is that risk acceptance is highly dependent on personal subjective feel-
ings. Also, the degree to which a risk can be transferred to someone or 
some entity has a lot to do with the decisions.

• Determine new hazards: the hazard environment is changing rapidly, and 
so even a recent risk analysis could be out-of-date because of situational 
changes of many different kinds. It is important to continually update 
the risk analysis, even when the system has already been deployed.

• Determine whether safety is adequate: here we have the same problem as 
for risk assessment; whether the safety is enough is somewhat subjective 
and varies significantly with who is making the decisions and what their 
agenda might be.

This is clearly a process from which those designing security-critical soft-
ware systems could benefit and one that becomes mandatory when one com-
bines separate systems into complex cyber-physical systems.

Combined Safety and Security Requirements

The main thesis of this book is that safety and security engineering for software 
systems, while deriving from the same evolutionary tree, have become separate 
branches, even though the trend is for safety-critical and security-critical soft-
ware systems to be functionally combined into systems of systems with both 
safety and security attributes.

One of the few references to address combined safety-critical and securi-
ty-critical software systems certification is SafSec. In this regard, Lautieri [10] 
makes the following statement:

Many systems, particularly in the military domain, must be certified or 
accredited by both safety and security authorities. Current practice argues 
safety and security accreditations separately. A research project called 
SafSec has been investigating a combined approach to safety and security 
argumentation, and has shown that there can be practical benefits in 
performing a combined analysis and documenting a combined argument 
for both safety and security.
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SafSec Methodology: Standard [11] and the SafSec Methodology: Guidance 
Material [12] are available for download from the Altran Praxis website. SafSec 
Methodology: Standard [11] includes a good set of definitions of terms used. It 
is apparent from the SafSec documents that security and safety are considered 
to be contributors to a system’s dependability.

This same definition of dependability as having security and safety com-
ponents is used by Firesmith [13]. While such a definition is reasonable, the 
concept of dependability is considered to be too broad for detailed examina-
tion, which is why we treated safety and security as separate, specific attributes 
of software systems. Indeed, dependability includes other important attributes 
relating to reliability, resiliency and survivability, but these represent areas of 
study that require dedicated research and exposition. Consequently, we shall 
leave these latter issues for others to follow up on.

Summary and Conclusions

We have seen in this chapter that those who design and develop safety-critical 
software systems have a very different perspective in regard to the various phases 
of the SSDLC. 

Software safety engineers focus on the risks of their systems doing harm 
if they were to fail or malfunction and are less concerned about someone get-
ting into their systems and stealing sensitive information or gaining control of 
the system. However, as we see increasing numbers of complex cyber-physical 
systems, it is clear that these same software safety engineers need to be aware of 
the dangers of attacks from outside or from within, since it is not just a matter 
of protecting information, but also covers concerns about an attacker gaining 
control of safety-critical systems and forcing it to malfunction, fail, or behave 
in undesirable and dangerous ways.

The viewpoints of software security engineers and software safety engi-
neers towards the design and development of software systems are so diver-
gent that one might question whether these individuals, upon whom our lives 
and livelihoods so much depend,  will ever collaborate to the degree necessary 
to ensure that modern systems of systems meet prudent security and safety 
requirements. Even those who are promoting collaboration between software 
safety and security engineers, such as the proponents of SafSec, are not hopeful 
that such partnerships will ever come together. However, such commonality of 
purpose is inevitable, except that it is likely to take many more years to come 
to fruition.

It is only through continuously driving home the point that safety and 
security are different animals but that will have to learn to live together in 
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harmony if there is to be any hope of reaching an acceptable level of safety and 
security in future software systems.
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11
The Economics of Software Systems’ 
Safety and Security

Security is an area where taking shortcuts can lead to disaster.
—Eric Allman [1] Multifaceted software engineer

Introduction

The question asked in this final chapter is if safety and security will ever be 
adequately incorporated into software systems and whether such safety and se-
curity improvements can be economically justified now and in the future. The 
purpose of this analysis is to determine how one might create safer and more se-
cure software systems using justifications based on behavioral economics rather 
than on some general sense that it is a good thing to do.

In prior chapters, we examined the origins of systems and software engi-
neering, enumerating specific requirements that need to be met in order to try 
to ensure that safety and security will be built into software-intensive systems. 
We also looked at the extent to which those requirements are, and are not, be-
ing met in practice. Having gone through this entire process, there remains a 
sense that perhaps we will never completely master these needs and produce 
completely protective and protected software systems. The reasons for such 
shortfalls are many, including lack of knowledge and training of those given 
responsibility for safety and/or security aspects of software-intensive systems 
and their having neither the skills nor inclination to accept that responsibility. 
Another possible reason is the increasing cost burden demanded by complex in-
tegrated software systems and cyber-physical systems that operate in ever-higher 
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risk environments, and yet for which sufficient monies are not made available 
to create essential security and safety.

Modern software systems are victims of rapidly increasing numbers of at-
tacks and of attackers acquiring greater sophistication and effectiveness. Also, 
a proliferation of unintentional errors and uncontrollable external and inter-
nal events often lead to even greater adverse financial consequences. There are 
clear indications that the gap is rapidly widening between the exposure of these 
systems to malware, malfunctions, and failures in comparison to the amount 
and effectiveness of the efforts to bring existing and new software systems to a 
reasonable level of security and safety.

Put another way, there is clearly a growing divergence between the “sup-
ply” of threats to the safety and security of software systems along with success-
ful exploits than result from those threats, and the “demand” for huge invest-
ments in safety and especially security, which are not keeping up with the risks.

Closing the Gap

What can be done to change these odds in favor of those trying so hard to infuse 
software systems with appropriate levels of safety and security? How important 
is it to correct the huge number of severe weaknesses still inherent in legacy 
systems? What is needed to ensure that future software systems can be trusted 
to be secure and safe in the face of countermanding trends? These are questions 
that are frequently asked, and to which the answers are mostly disappointing. 
Perhaps we are asking the wrong questions or those hearing the questions do 
not fully understand them. After all, where the pressure for improving safety 
and security is most intense, software engineers have responded with respect-
able attempts to shore up those systems, so we know that it can be done, albeit 
at high cost.

Or perhaps there are underlying psychological reasons. Beth Gardiner [2] 
presented the results of studies by psychologist Robert Gifford of the University 
of Victoria, British Columbia, who determined “behavioral barriers to combat-
ing climate change.” Gifford presented the following four behavioral character-
istics, which could just as easily be applied to cybersecurity:

• We have trouble imagining a future drastically different from the present;

• We block out complex problems that lack simple solutions;

• We dislike delayed benefits and are therefore reluctant to sacrifice today 
for future gains;

• We find it harder to confront problems that creep up on us than emer-
gencies that hit quickly.
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In the 1960s, typical business-oriented computer systems would fail on 
a daily basis. A common remark at that time was that if airplanes were as un-
reliable as computers, nobody would be willing to fly. Since then, reliability of 
hardware components of computers has improved by orders of magnitude. It 
might therefore be construed that software components are also much more 
reliable. However, the complexity and diversity of software systems and their 
aggregation into so much more complicated systems of systems have worked 
against software developers in their attempts to eliminate security vulnerabili-
ties and to keep occurrences of malfunction and failure as low as possible. This 
is why system architects have heretofore pushed to isolate safety-critical sys-
tems from public communications networks since avoidance is pretty much the 
only approach to use when protection and prevention are not viable. However, 
requirements for increased functionality on the one hand, and reduced costs 
on the other hand, have pushed engineers into realms that are uncomfortable, 
unsafe, and not secure.

The fundamental question is whether there is any real motivation to make 
software systems safer and more secure or whether the diminishing returns of 
increasing safety and security mean that, as time progresses, stakeholders are less 
inclined to embark on the necessary activities to improve the safety and secu-
rity attributes of software-intensive systems. As supported by the Gifford study 
mentioned above, human nature may be such that people will only respond to 
disasters, particularly with respect to cybersecurity, and that it will take the oc-
currence of a major cyber or cyber-physical attack before government and the 
private sector will respond to previously ignored warnings. For example, Vice 
Admiral Michael McConnell (USN, Ret.), in his February 23, 2010 testimony 
before the U.S. Senate Committee on Commerce, Science, and Transportation, 
said that risks from cyber attacks will not be mitigated until there is more active 
government involvement and that such involvement will not be forthcoming 
until a “catastrophic event” actually happens [3].

Just as the public’s unwillingness to accept frequent airplane crashes has 
led to much more stringent standards and certifications in the airline industry, 
such as DO-178B, disastrous or catastrophic cyber events may be the only real 
impetus for improving security.

However, there is another view; namely, that a greater understanding of 
the forces behind motivations of various participants might result in actions 
that, by assigning safety and security as personal risks to various players, actions 
will result that will mitigate those risks. But in order to accomplish this, it is 
first necessary to identify, understand, and quantify how particular risks affect 
individuals and the degree to which various players can indeed effect change.

In this chapter we will look at the following:

• Technical debt in regard to the development of software systems;
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• The impact of security and safety on individuals and groups according 
to their value functions;

• The means of persuading or forcing such individuals and groups to take 
actions to minimize their personal exposure and by so doing, optimizing 
globally;

• An agenda for optimizing the objectives of all those involved in the cre-
ation, operation, and use of safety-critical and security-critical software 
systems.

The goal is to design a program that over time will reduce exposure of 
security-critical and safety-critical software systems to an acceptable level, de-
spite the fact that the bar is continually being raised.

We will discuss ways to detect, protect against, and fight tampering as 
a means of responding to increased threats in the cyber and physical worlds. 
Finally, we will take a look at the use of “security and safety patterns.”

Technical Debt

The concept behind technical debt is that, as software systems are designed, 
developed, implemented, operated, and replaced, those involved in the devel-
opment life cycle and the subsequent operational environment are taking on, 
knowingly or not, technical debt that can be either borne or reduced, con-
sciously or otherwise.

Allman [1] states that “... technical debt is acquired when engineers take 
shortcuts that fall short of best practices.” Of course, so-called “best practices” 
might also fall short of ideal practices, which implies that there are in fact two 
or more layers of technical debt in that common practices often exclude essen-
tial elements, depending upon the authority and vision of the sources of these 
practices.

Allman gives a number of examples where technical debt might be taken 
on due to competition between best practices and other factors. The following 
are some of his examples:

• Setting too-tight deadlines;

• Not anticipating the costs of tools and using them inappropriately;

• Assigning engineers with inadequate or inappropriate skills to projects;

• Skipping documentation requirements or writing inadequate documen-
tation;

• Skimping on good security practices;
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• Using obscure and incomplete error messages;

• Using slow, simple algorithms rather than better algorithms that are 
complex and run more efficiently.

There are clearly a host of other factors to be considered such as under-
budgeting projects, using inexperienced project managers, and the like.

All of these deficiencies lead to the amassing of technical debt. As pointed 
out by Allman, various constituencies assume technical debt according to their 
roles and their power to limit that debt. Also, they can accrue and transfer 
technical debt to others knowingly or inadvertently, much as we described in 
Chapter 6. This is a form of moral hazard where those who create the debt 
manage to avoid blame or responsibility for controlling and repaying the debt.

Allman provides a good exposition of how technical debt impinges on 
various areas within and outside organizations. His lists of characteristics and 
shortfalls are supplemented with items inferred from those lists. Augmented 
lists are provided in Table 11.1.

While the lists in Table 11.1 are not exhaustive, they do contain helpful 
indicators as to what is important to various participants in the development 
life cycle from their particular viewpoints. Desired characteristics and typical 
shortfalls clearly vary greatly between and among participants depending on 
their personal agendas, organizational roles, and vulnerability with respect to 
having technical debt assigned to them. Suggesting how participants might re-
act to factors that affect them personally goes a long way towards helping to 
determine how they might be influenced to act in a manner that optimizes the 
overall system rather than just the specific individual components for which the 
individuals are responsible. Such methods as pricing, taxing, and other discour-
aging activities, and incentives, such as bonus payments for good performance 
in the areas of security and safety, can be used to encourage individuals to work 
in the interests of all stakeholders rather than in his or her personal interest.

Application of Technical Debt Concept to Security and Safety

Allman [1] does reference security as an issue with respect to technical debt. 
However, his treatment of security is somewhat marginal and there is no men-
tion at all of safety in the article. This is not unusual since most researchers in 
software development have backgrounds in information or cyber systems rather 
than industrial control systems. However, the amassing of technical debt is very 
pertinent to security and, to a somewhat lesser extent, to safety, because of 
the permeating of risk analysis throughout the SafeSSDLC. Of particular note 
is the previously mentioned aspect that as software development progresses it 
becomes increasingly costly to “bolt on” security and safety functionality. At 
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Table 11.1 
Augmented Requirements and Shortfalls from Various Perspectives

Perspectives Desired Characteristics Typical Shortfalls
Customers Software systems that:

· Work (operate as expected)
· Are understandable
· Can be [readily] maintained over 
  the long term
· Are reliable [and resilient]
· Incorporate industry-standard 
  security [and safety] practices
· Can be extended (i.e., are scalable)
· Can be enhanced (i.e., modified in
  response to new requirements)
· Are easy and enjoyable to use

Inadequate user documentation
Unstable software
Frequent malfunctions and failures
Unexpected and inaccurate results from 
specific user actions
Inaccurate processing and results
Inability for customers to initiate 
corrections, changes, and enhancements
Unavailable, unresponsive technical and 
operational support staff
Lack of knowledge of technical and 
operational support staff

Help Desk Well-designed interfaces for the user 
support function
Extensive documentation of features 
and functions of the software systems
Frequently asked questions (FAQs) that 
users might view prior to requesting to 
speak to help desk staff
Direct and immediate access to 
knowledgeable technical support

Poorly designed interfaces
Bad or nonexistent documentation
Indirect effect of code obscurity
Long time to respond to customer 
questions
No direct access to those able to solve 
problems

Operations Software products that are:
· Reliable
· Maintainable
· Understood
DevOps approach whereby operations 
staff work with development staff at 
early stages of the life cycle
Ready access to the code
Availability of up-to-date, accurate, 
and complete documentation

Poorly designed interfaces
Bad or nonexistent documentation
Limited access to those able to solve 
problems
Limited access to other resources, such 
as code, procedures, etc.

Engineers Developers:
Detailed, accurate, unambiguous, 
complete specifications
Agile methods allowing for user sign-
off on design at early stages

Maintainers:
Well-documented code and operational 
procedures
Easy-to-maintain code
Easy-to-change procedures without 
jeopardizing functionality or ease-of-
use

Developers:
Ambiguous and incomplete 
specifications
Absence of suitable test cases
Inadequate knowledge and training, 
especially relating to security, safety, 
performance, resiliency, etc.

Maintainers:
Undocumented or minimally documented 
code
Inadequate, inaccurate, and out-of-date 
operational procedures

Management Understands risk management and 
balances out demands of internal 
departments, business partners, and 
customers
Understands technical debt and how to 
minimize it across the lifetime of the 
product

Favors one area over another to the 
detriment of the organization
Does not understand concept of 
technical debt
Incurs considerable amounts of technical 
debt without knowing that such debt has 
been amassed

Specific additions to some of the items in Allman’s existing list of characteristics are shown in square brackets.
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some point, it becomes impossible to justify even minor corrections, patches, 
or additions. The result is that software systems frequently remain vulnerable to 
attack, malfunction, and failure because no one could present a reasonable and 
convincing case in favor of assuring that certain security and safety features are 
implemented.

The transfer or avoidance of technical debt is particularly prevalent in cy-
bersecurity as there are huge swaths of systems and networks for which no one 
is willing or able to take on the requisite responsibility and liability. Nor would 
they be able to assume the technical debt even if they were willing to do so. The 
“tragedy of the commons,” in which the securing of common resources is not 
assigned to anyone, and “moral hazard,” whereby liability is avoided by those 
directly involved and consequently transferred to others, such as the general 
public. Both the tragedy of the commons and moral hazard work against the 
assignment of technical debt to its rightful owners.

Conversely, when it comes to safety, there appear to be relatively clear 
lines of responsibility, except when the event is so large, as in the March 11, 
2011 tsunami that hit the northeastern coastline of Japan and destroyed the 
Fukushima nuclear power plant, that no single entity, in this case Tokyo Electric 
Power Company (TEPCO), which owns and operates the Fukushima facility, 
is able to afford to assume full liability. Therefore it becames a partial govern-
ment responsibility to deal with the consequences. Interestingly, when TEPCO 
issued its final report on June 19, 2012, they agreed that they had not been suf-
ficiently anticipated the catastrophe and that they were not adequately prepared 
for a tsunami of the magnitude experienced [4].

System Obsolescence and Replacement

Allman [1] seems to suggest that when one system is expected to be replaced by 
another, the technical debt, which has been accrued by the original system, is 
somehow forgiven and disappears. This is not necessarily the case, especially for 
systems that are not retired within the anticipated time frame. A prime example 
of this was Y2K. Billions of lines of code were written decades prior to the year 
2000 with the expectation that they would be replaced by the time the end 
of the century rolled around. That assumes that the problem emanating from 
representing years with two digits, rather than four, had even occurred to the 
programmers, which it likely did not. The technical debt on this oversight ran 
into several hundreds of billions of dollars. Similarly, when Microsoft decided 
that it would replace an obsolete operating system NT 4.0, it had to deal with 
stragglers, who were not ready to upgrade their systems. Customer pressure can 
mean that vendors have to provide support for software products well beyond 
the date on which they are originally intended to abandon the product.
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The Responsibility for Safety and Security by Individuals and Groups

We now consider how the safety and security of software systems, in particu-
lar, are viewed by a wider-ranging constituency and the extent to which safety 
and security attributes are really considered to be the responsibility of various 
groups. In a sense, this approach is similar to technical debt in that the cost of 
neglecting security and safety is accrued throughout the software system devel-
opment life cycle. Here we look at the economic consequences of security lapses 
and safety failures on a boarder population comprising those directly and indi-
rectly involved in the creation, deployment, and operation of software systems.

Basic Idea

The fundamental concept behind the proposed risk-based value approach is 
that stakeholders have a personal view of how including or excluding particular 
safety and security software features will directly affect them as individuals. 
While there may be other motivations, an individual will still view the impact 
of safety and security features and capabilities from his or her personal perspec-
tive. Individual motivations will likely only coincide with organizational goals if 
personal benefits result from a healthy and prosperous organization. This might 
appear somewhat cynical, but it is not meant as a criticism and does not deny 
that people will often act altruistically for the benefit of a group, organization, 
or country. The point is that one’s assessment and response to risk is generally 
highly subjective and intensely personal.

As an example, if a group of developers is responsible for completing 
an application by a certain deadline and within a predetermined budget, and 
achieving these goals is the basis for team members being rewarded, then any 
time delays and additional costs or resource requirements that might threaten 
the official deadline will be avoided as much as possible. It is only if criteria 
for rewards and benefits are included in safe and secure software design, archi-
tecture, development, and testing that the proper amount of attention will be 
given to these areas. However, the decision to tailor compensation and other 
rewards to how well particular safety and security requirements are met has to 
come from high-level management within an organization.

By recognizing the motivators for security-related decisions and incorpo-
rating them into an economic model of how individuals respond to motivators, 
one understands why certain decisions are made for incorporating security and 
safety into software development, operation, and decommissioning of software-
intensive systems. To quote from Axelrod [5]:

One cannot develop effective economic models for information security 
and privacy without having a good understanding of the motivations, 
disincentives, and other influencing factors affecting the behavior of 
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criminals, victims, defenders, product and service providers, lawmakers, law 
enforcement, and other interested parties Predicting stakeholders’ actions 
and reactions will be more effective if one  has a realistic representation of 
how each of the various parties will  respond to internal motivators and 
external stimuli.

As we have seen, safety engineering is very formal in certain critical indus-
tries, such as aerospace, avionics, and vehicular and power plant safety, requir-
ing that systems be evaluated based on their potential for doing harm, which 
then points to a level of certification needed by the industry.

Extending the Model

The model in [5] discusses the motivations by various stakeholders to attack 
and defend security-critical software systems. Here, we extend the model to 
cover safety-critical software systems and focus the impact of stakeholder moti-
vations on the SSDLC.

We now examine each of the phases of the life cycle and see how stake-
holders are currently involved with or influence each stage. We then recom-
mend how we might change the list of players involved at each stage and their 
roles and responsibilities in order to achieve a more acceptable level of safety 
and security. We also suggest mechanisms, both motivators and deterrents, 
which might be used to influence the outcomes of each step so that the final 
product or service meets an organization’s safety and security requirements. The 
intent is to come up with a list of actions that will move decision makers and 
stakeholders towards security and safety postures that best meet the needs of 
society as a whole. While many of the suggestions will be normative, and will 
be unlikely to be put into effect because of factors such as high costs, limited 
resources, and lack of authority, the model at very least points to areas that need 
attention, and to some extent suggests new and different ways to improve the 
situation as it stands today.

Concept and Requirements Phase

When requirements for a system are being determined, those making decisions 
as to what the functional and nonfunctional requirements of the proposed sys-
tem might be are unlikely to consider a full range of security and privacy is-
sues. The likelihood that safety issues will be included is usually much higher, 
in large part because safety-related software-system malfunctions and failures 
might result in injury or loss of life. Insurance companies have formulae for de-
termining the value of an injury or death in monetary terms for their purposes, 
but often the indirect impact is much greater in terms of loss of confidence in 
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the manufacturer of a defective system, additional burdensome regulatory and 
audit requirements, and loss of business.

One needs to include a full range of representatives of key areas after a 
concept is originated and when in the requirements development phase. Con-
cept origination may be a result of ideas from internal business and technical 
staff, or senior management and/or marketing may become aware of new tech-
nologies and competitors’ systems, legal and regulatory requirements, obsoles-
cence of current systems, and so on. The concept then needs to be described 
in terms of the requirements of sponsors, users, and technical, and operational 
staff, where each participant provides inputs to what then becomes a set of 
functional, and hopefully nonfunctional, requirements.

In Table 11.2, we see a breakdown of the SSDLC into its component 
phases and indications as to which stakeholders are involved in each phase and 
what their roles should be. For the origination and requirements phase, there is 
usually a mix of business, technical, and operational participants, each of whom 
brings his or her own perspective to the formulation of the needs of the system. 
Thus, senior business management and marketing will be most interested in 
ensuring that the software system provides needed functionality. They also want 
to be assured that developing the system will take a specific amount of resources 
and money within a time frame that may be determined by external factors 
such as time to market (or time to value). The technical staff will want to ensure 
that currently available technologies can deliver the desired functionality at a 
reasonable cost within the time parameters. The value profiles of clients, such 
as management, marketing as a customer surrogate, and end users, will push to 
maximize functionality and minimize cost and time to market, whereas the per-
sonal risks of technology and operational teams will cause them to move in the 
opposite direction of reduced functionality, increased resources, and more time. 
A balance between the two groups needs to be agreed upon and is often deter-
mined by the relative power and authority of those involved in the negotiations. 
The client side, consisting of senior corporate and business unit management, 
often prevails, and the technical and operational development teams are forced 
to concede. This may be much of the reason behind so many deficient and 
defective software systems.

The list of areas that are often excluded from this phase of the SSDLC is 
disconcertingly long, particularly as deficiencies in requirements, particularly 
the nonfunctional requirements, could likely be avoided if the listed areas had 
been included in the discussions and had a vote in the decision-making process. 
Occasionally a senior executive will make a pronouncement about one of these 
neglected areas having to be included in the process and having his or her direct 
support, as was the case when Bill Gates of Microsoft mandated building trust-
worthy secure software. However, much of the time, it appears that many such 
areas are excluded to the detriment of the project and with the result that these 
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areas, which are usually called in during the later stages of development and 
testing, if at all, are forced into the predicament of either accepting substandard 

Table 11.2 
Participants and Decision-Makers for Each SSDLC Case

SSDLC Phase Typical Participants
Usual Decision 
Makers

Suggested Additional Participants 
(Often Excluded)

Origination and 
requirements

Senior management (if 
strategic system)
Business unit 
management
Business unit 
operations
Marketing (if 
appropriate)
Internal-user 
representatives
Information technology
Safety engineering (if 
safety-critical system)

Senior management (if 
strategic system)
Business unit 
management
Information technology 
management
Safety engineering (if 
safety-critical system)

Information security
Security administration
Internal auditors
Risk management
Software assurance
Application security analysts
Application safety analysts 
Internal user representatives
Customer user representatives
Computer operations
Technical support
Help desk
Software certification liaison
Identity and access management
Legal department (representing 
lawmakers and law enforcement)
Compliance department (representing 
regulators and external auditors)
System administration
Business continuity planning 
Disaster recovery planning

Design, 
architecture, and 
specifications

Systems analysts
Software architects

Systems analysis 
management
Software architect 
management

Information security
Internal auditors
Application security analysts
Application safety analysts 
Computer operations
Technical support
System administration
Business continuity planning 
Disaster recovery planning

Development Developers
Technical support

Development 
management

Information security
Application security analysts
Application safety analysts 
Business continuity planning 
Disaster recovery planning

Verification 
(reviews, code 
inspections)

Business unit sponsors
Systems analysts

Systems analysts Application security analysts
Application safety analysts

Validation (testing) Business unit sponsors
Developers
Testers

Testers Application security analysts
Application safety analysts

Deployment, 
operations, 
maintenance, and 
technical support

Customer relations
Marketing
Operations
Network engineers
Technical support
Field service engineers

Marketing
Operations

Information security
System safety
Systems analysts
Business continuity planning 
Disaster recovery planning

Decommissioning 
and disposal

Business unit sponsors
Computer operations

Marketing
Computer operations

Information security
System safety
Internal and/or external auditors
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systems or trying to bolt on security and safety, achieving better performance 
by adding processing capacity, writing contracts that protect against inevitable 
malfunctioning, and so on. As was discussed previously, the costs of these after-
the-fact fixes can be orders of magnitude greater than if the need for security, 
safety, resiliency, and the like had been incorporated at the requirements phase. 
Since there are usually little or no additional available funds during the later 
stages of the life cycle, the compromise is often to do some minimal touch-up 
and force people to work around the issues. Perhaps the one exception to this 
general situation is when the software systems are safety-critical and need to 
be certified according to very specific safety requirements, in which case safety 
engineering participants are included. However, this does not necessarily mean 
that appropriate software safety engineers get involved at this stage.

By not including the additional participants list in the right-hand col-
umn of Table 11.2, the cost to the project will inevitably be greater. If these 
participants are heeded later in the project, the some of their requirements will 
be addressed. If not, then the costs will be in the form of opportunity costs or 
indirect costs that may not be linked back to the root cause of the deficiencies. 
For example, if security is not built into the software system, then expensive 
tools and personnel will need to be added when the system is deployed in order 
to provide some higher level of security. However, application firewalls, intru-
sion detection and prevention, and similar technologies do not make up for 
vulnerabilities inherent in the software system and are a continuing cost drain 
for their deployment, maintenance, and management.

From a value perspective, we see that staff with power and authority push-
es to minimize what they believe to be costs attributable directly to them. They 
will try to maximize the benefits (other cost savings, competitive edge, etc.), 
and ignore the remonstrations of those who are essentially tasked with control-
ling the risks related to the software systems. Unfortunately, over time, as the 
costs of early-stage neglect mount up, it is often those who were not consulted 
or heeded in the initial phases of the SSDLC who shoulder the blame and bear 
the brunt of the negative consequences. Ultimately, someone has to pay for the 
inadequacies of the requirements phase—and often as not it is those who were 
excluded from the process. The overall aggregated costs are easily as high, if not 
a great deal higher, than they would have been had the right type and level of 
resources been brought to bear earlier in the life cycle.

Design and Architecture Phase

For the most part, the design of software systems and their architecture (plat-
forms, networks, etc.) is left to technicians. This is because this phase usu-
ally consists of taking a set of requirements, as developed in the prior phase, 
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and translating those requirements into specific designs comprising application 
modules, system software, physical systems, and networks.

There are many problems related to this phase of the process. First, it 
relies on the quality and completeness of the requirements and also on the 
knowledge and experience of the software-system designers and architects, any 
of which could be lacking. Second, designers and architects are motivated to 
come up with designs that will meet requirements, whether or not requirements 
are adequate. Thus, for example, nonfunctional attributes, such as security and 
performance, may not be adequately covered in the requirements and hence 
will likely not be accounted for in the design. In many cases performance, par-
ticularly for systems using innovative technologies, cannot be predicted unless 
a prototype is developed or a simulation is built. Therefore, in order to moti-
vate designers and architects to develop designs that will perform satisfactorily, 
or prevent them from suggesting architectures that will not meet performance 
goals, one needs to appreciate the importance of the attributes to those for 
whom the value of performance, security, resiliency, data integrity, and so on is 
high. Then one has to ensure that appropriate measures are taken to encourage 
full consideration of these attributes.

One aspect that is often neglected is the need to incorporate the necessary 
monitoring, data collection, and analysis, particularly so that users of the sys-
tem can be tracked. This type of information is critical for computer forensics 
following a data breach, for example, and yet the need for it to be included as 
requirements is seldom recognized. However, when the need is expressed, it is 
usually received negatively as it will lead to immediate increases in costs and 
resources, along with some operating overhead, and the benefits will not show 
up for months or years, if at all.

For these reasons, there needs to be oversight from security and safety 
software engineers, auditors, support staff, and so on in the design stage to 
make sure that their interests are covered and to verify that the design correctly 
interprets requirements . This is shown in Table 11.2 in the last column of the 
design/architecture row.

Development

During the development phase, programmers and other technical staff are gen-
erally focused on writing code that is functionally correct and error-free and 
completed within the assigned timeframe. As with design teams, developers are 
not required to be particularly creative, except in writing efficient and effective 
programs. They are usually rewarded for following requirements to the letter 
rather than trying to second-guess them. This is generally positive, but can be 
detrimental if developers find questionable requirements and are reluctant to 
report them. That is one reason that it is desirable to have other participants, 
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such as software security engineers, in advisory roles throughout this phase. 
Such participants also need to have enough influence to effect their demands. 
While there might be contention between developers and these other groups 
attempting to have their requirements included, the result will likely be an in-
crease in the overall value of the system to the various group members.

Verification

The goal of those verifying the system is to ensure that it is being constructed 
according to detailed customer and user specifications both in terms of ac-
curately depicting those requirements and ensuring that all requirements have 
been included. This means that individuals not directly involved in creating 
the programs must go through each and every requirement and be shown how 
each one has been implemented. They also must determine that the proposed 
methods of testing the programs against requirements and specifications meet 
the needs. The tests themselves are done in the validation phase.

Part of this phase should also be the determination that the set of require-
ments are complete and correct. If not, there needs to be a process whereby the 
results of the verification are fed back to the appropriate groups involved in the 
requirements phase. If any requirements are changed as a result of this review, 
then specifications must be updated and changes made to the program to in-
corporate the corrected set of requirements. It can easily be seen how change 
emanating from later phases in the life cycle are so much more costly in money 
and time to implement, and how it is so much less burdensome to get it right 
early in the life cycle.

Thus developers are participants, but not the decision-makers with re-
spect to verification, as shown in Table 11.2. In some sense, the reviewers are 
encouraged to find errors and omissions and to ensure that the errors are cor-
rected. Again, there is some contention involved because of having to rework 
the programs. This can delay completion and increase resource use. However, 
overall there is enormous benefit from the verification phase since errors and 
omissions caught at this phase are orders of magnitude easier and less expensive 
to fix than if the errors are caught later in the life cycle. Any costs or delays 
caused by verification should be set against the much greater costs and delays 
that would be incurred as a result of missing the errors.

Validation

In this phase, the correct working of the software system is proven by running a 
series of prespecified tests and observing the results. If errors are detected, they 
are fed back to the developers for reworking of the computer programs. In turn 
the revised programs need to be retested until the errors are resolved.
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At issue here is whether so-called security and safety functional testing, 
in which the testers check that the software system is not doing that which it is 
not supposed to, and nonfunctional testing, in which security services, safety, 
performance, reliability, resiliency, and the like, are sufficiently represented in 
the testing program. Often they are omitted, which is why it is important to 
bring in those with vested interests in these other characteristics, as shown in 
the validation phase in Table 11.2.

Deployment, Operations, Maintenance, and Technical Support 

There is quite a range of ways in which software can be deployed ranging from 
downloading from a Web site to custom installation. The former method usu-
ally involves some form of online or telephone support, typically from a call 
center or help desk, with more difficult situations being referred to technical 
support. Depending on the nature, size, cost, and complexity of the software 
system, the vendor might have their field service organization manage the in-
stallation, or the customer’s technical support engineers might have the ability 
to do the installation in the field, particularly if it is an upgrade rather than a 
new installation. Ongoing operations will usually be managed by the organiza-
tion running the software system using their internal staff or a third party, and 
scheduled maintenance and repair services will generally be done by the ven-
dor’s field service engineers or a third-party original equipment manufacturer 
(OEM).

Generally, information security and safety software engineers, either from 
the vendor or customer organization, will not be involved in the operational 
phase unless there is a security breach or a safety-related incident. However, 
there are strong indications that there should be security and safety oversight 
of the maintenance and repair functions since, for example, there are a number 
of recorded cases of counterfeit parts being substituted, some of which contain 
malware. In Table 11.2, we show these participant requirements along with 
others that might be called in to perform forensics and track down and arrest 
the perpetrators in the event of a breach or the discovery of malicious software 
or hardware.

The operations phase is probably the one that receives the least relative 
attention from security and safety proponents. The operations and technical 
support staff generally do not have the expertise to deal with security incidents, 
yet the vast majority of security-related attacks are on software systems that are 
in production. For safety-critical control systems, operational staffs are gener-
ally trained in how to handle day-to-day hardware malfunctions and failures, 
but are generally much less well equipped to detect and deal with software 
and data breaches, as the Stuxnet attack in Iranian uranium-processing facilities 
demonstrated.
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Decommissioning and Disposal

The area that generally receives the least attention in the private sector is the 
decommissioning and disposal of security-critical and, to a lesser extent, safety-
critical software systems and the data that they might contain. Very few texts 
on software security even discuss the disposal phase and the consequent risk of 
leakage of intellectual property and other sensitive data. On the other hand, 
government agencies in particular, such as the U.S. Department of Defense, 
often address the disposal of safety-critical systems—especially if the decommis-
sioned system contains dangerous components that could kill or injure—and  
classified security-critical data.

If the responsibilities for decommissioning and disposal are clearly defined 
and assigned, those doing the job have some incentive to perform correctly and 
completely, since failure to perform might be readily discerned were an incident 
with, or data leakage from, a discarded system to occur. The greatest risk here, 
especially for security-critical systems, is that there may well not be anyone held 
accountable for the proper disposal of systems and media, so that there are few, 
if any controls in place. It is therefore important that security and safety experts, 
as well as internal and external auditors, be involved in the decommissioning 
and disposal phase, as shown in Table 11.2.

Overall Impression

The above analysis serves to point out that the exclusion or delayed participa-
tion of those who have specific interests, particularly in nonfunctional areas, 
leads to software system deficiencies in the early stages that result in subsequent 
excessive costs to revise requirements and solutions at later stages—the bolt-on 
versus built-in syndrome. The challenge is a matter of inducing those in author-
ity to include all the necessary players early enough and sufficiently intensely to 
ensure that the overall value of the software system is maximized. Clearly it is 
not adequate to appeal to those in authority to do “the right thing.” There have 
to be mechanisms for encouraging behavior that will push the system towards 
higher value. This can be done by mandate, threats, cajoling, economic plays, 
laws, regulations, and so forth. However, unless the impact is measured against 
the personal values of those who can influence the situation, it is not clear how 
effective these measures are. In the following section, we look at motivators and 
deterrents and what their impact might be.

Methods for Encouraging Optimal Behavior

There are a number of ways in which the behavior of individuals with respect 
to their roles and responsibilities throughout the SSDLC can be influenced 
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in order to encourage the inclusion of certain attributes, such as security and 
safety. Such motivators and deterrents act upon individual decision-makers and 
project participants in order to encourage them to respond in ways that are 
globally desirable to the software-system manufacturing organization and other 
stakeholders, such as customers, business partners, regulators, and auditors.

Of course, decisions relating to the global optimization of the critical at-
tributes are also highly subjective, but for our purposes, we will assume that it is 
possible to define some global value function that includes tangible and intan-
gible costs and benefits from the perspective of an overall authority. While far 
from ideal, this approach at least enables one to determine which attributes are 
key, what their optimal levels might be, the contribution to global value of each 
phase of the SSDLC, and the specific participants and decision-makers who 
need to be persuaded, either directly or indirectly, to act in ways that promote 
the common good.

Pricing

If it can be applied, the pricing of resources can be one of the more efficient 
ways in which one can influence behavior. The typical mechanism for most 
organizations and their projects is some form of budgeting combined with 
chargeback. A critical component of this approach is to be able to fund certain 
desired attributes from a separate pool of money, the use of which does not im-
pinge upon a particular project budget. This is important because, as described 
above, including security considerations and capabilities in the development 
life cycle is often against the personal interests of designers, developers, and 
testers who are generally motivated to complete a project on time and within 
budget. Security attributes usually fall into this category and will generally be 
underserved unless they are “paid for” from an organization-level.

Chargeback

The rules for charging overhead costs such as general administrative expenses 
can greatly influence the cost of a project and sometimes whether a project 
will actually go forward. Chargeback also influences the behavior of users. The 
chargeback rules affect how participants respond to various requirements. It is 
often desirable to have a central pool of funds for such factors as information 
security. In this way, senior management can enforce security requirements, say, 
without penalizing the development team for any delays or cost overruns due 
to incorporating security attributes into the software system. 
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Costs and Risk Mitigation

One can invoke incentives, such as the linking of a person’s compensation to 
how well they implement corporate goals in areas such as security, safety, and 
resiliency. The latter goals might not normally be success factors for participants 
such as developers and testers.

The behavior of some can be influenced by opportunity costs and costs 
of opportunity. The former, which are those costs incurred in doing one thing 
rather than another, imply that a decision-maker might be in a position to 
choose one means of risk mitigation over another. An example would be the 
incorporating of security during the SSDLC or installing application firewalls 
and other tools once the software system has been deployed. In another exam-
ple, a company might choose to invest in ruggedizing a data center by provid-
ing onsite backup for their systems, redundant equipment, emergency power 
supplies (e.g., battery backup, diesel generators), several telecommunications 
vendors, and so on, rather than spend the money on a fully functional backup 
data center. With some of the money saved, the company might contract with 
a third party to provide disaster recovery services on demand. The latter in-
fluence—namely, the cost of opportunity—refers to the willingness of some 
to make decisions that reduce current costs but which might have an adverse 
impact at some future time. This is termed risk acceptance, where for example 
the decision-maker is willing to take a chance as to whether a cyber attack will 
happen.

Management Mandate

An effective means of encouraging the desired behavior is to make it company 
policy and put in place credible enforcement procedures. If senior management 
is convincing and has a track record indicating that they mean what they say, 
then this approach can be extremely effective. A very good example of this is 
the previously mentioned case of Bill Gates, founder of Microsoft Corporation, 
who made a pronouncement that trustworthiness would be a key ingredient in 
their products going forward. In the decade since that policy statement, Micro-
soft has greatly increased its reputation for building secure software.

By establishing a goal and publishing a related policy, senior management 
is directing lower-level managers to meet or beat the goal but is leaving the 
details of implementation to the judgment of the managers. Usually this means 
that reasonable budget requests for introducing security, safety, and other capa-
bilities will be met with approval.
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Legislation

Lawmakers have become highly sensitized to the threat of data breaches lead-
ing to identity theft because of the alarming number of breaches reported and 
the fact that many of their constituents have been victims of identity theft and 
account takeover. In the United States, most of the states have enacted data 
privacy laws but as of this writing, several Federal bills have been crafted in the 
U.S. Congress but none have actually passed into law.

Laws can be a very effective means of motivation or deterrence in many 
slower-moving areas. However, the challenges of cybersecurity and system safe-
ty are so dynamic that it is difficult for even tech-savvy individuals to keep up 
with such rapid change, let alone members of Congress, many of whom do 
not have a good understanding of information technology and especially the 
security-related and safety-related consequences

Regulation

Regulators translate laws into actionable directives and then ensure that the 
resulting regulations are being followed through various oversight, monitoring, 
and auditing methods. In the U.S. financial services industry, banks are regulat-
ed by a number of agencies, including the Federal Reserve Board and the Office 
of the Comptroller of the Currency (OCC), and securities firms and all public 
companies in the United States are regulated by the Securities and Exchange 
Commission. Some agencies have issued very detailed guidance in regard to 
application security, such as OCC Bulletin 2008-16, which includes many sug-
gestions as to how to achieve acceptable levels of application security [6].

Many other industries, of which some are involved with developing and 
using both security-critical and safety-critical software systems, are regulated, 
such as the telecommunication industry that is regulated by the Federal Tele-
communications Commission and the airline industry by the Federal Aviation 
Administration. These regulators often provide standards that must be met 
by aircraft manufacturers, ground vehicle manufacturers, nuclear power plant 
builders, and so on.

Standards and Certifications

Not only must many industry members comply with laws and regulations, they 
might need to achieve a predefined certification level in order to operate within 
that industry. Certifications are common when it comes to safety-critical soft-
ware systems, which are usually in the form of industrial control systems that 
could cause loss of life or injury if they malfunction or fail. Obtaining certifica-
tions are a very strong motivator.
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While common in industries operating safety-critical systems, certifica-
tions are few and far between when it comes to security-critical systems. The 
Payment Card Industry-Data Security Standard (PCI-DSS) provides applica-
tion security guidance, but its jurisdiction is limited to issuers and processors 
of payment card information, such as data relating to credit, debit, and cash 
cards [7].

It is to the detriment of many security-critical software systems that stan-
dards and certifications, equivalent to those that apply to safety-critical systems, 
are not available to those developing, operating, and maintaining such security-
critical systems.

Going Forward

In order to deal with the shortfall in safety and security in software systems, it is 
necessary not only to implement the recommendations contained in this book 
but also to look to promising developments, some of which are in the research 
phase and others that have been implemented commercially. This is not to en-
dorse any of these approaches but to claim that, in addition to the synergies of 
transferring good practices between the software safety and security engineer-
ing disciplines, we need to look beyond what is currently being done as there 
is clearly room for improvement given the many breaches, malfunctions, and 
failures that occur with regularity.

Confirmation that there is a need for breakthrough approaches and tech-
nologies is readily apparent from the previously mentioned Broad Agency An-
nouncement (BAA) [8] issued in February 2012 by Defense Advanced Research 
Projects Agency (DARPA) with the title “High-Assurance Cyber Military Sys-
tems (HACMS).” It is noteworthy from the quotation below, which was taken 
directly from the BAA, that the definition of high-assurance cyber-physical sys-
tems includes requirements to satisfy specifically “... safety and security proper-
ties” in addition to their being “functionally correct.”

The goal of the High-Assurance Cyber Military Systems (HACMS) program 
is to create technology for the construction of high-assurance, cyber-physical 
systems, where high assurance is defined to mean functionally correct 
and satisfying appropriate safety and security properties. Achieving this 
goal requires a fundamentally different approach from what the software 
community has taken to date. Consequently, HACMS will adopt a clean-
slate, formal methods-based approach that enables semi-automated code 
synthesis from executable, formal specifications. In addition to generating 
code, such a synthesizer will produce a machine-checkable proof that the 
generated code satisfies the functional specification as well as security and 
safety policies.
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Perhaps the most telling assertion in the introduction section of the re-
port is that in order to construct high-assurance cyber-physical systems, there 
is a need to develop and apply a different approach from what has existed until 
now. DARPA insists that “... research should investigate innovative approaches 
that enable revolutionary advances in science or systems.”

While there is clearly a need for innovation in this area, it is not obvious 
as to what forms such development technologies should take. It is worth the 
effort to try to follow the particular research that will emanate from this BAA 
and that will be funded by DARPA in order to get some guidance as to future 
directions in creating safe and secure systems.

However, in the meantime, there are a number of interesting approaches 
to improving the safety and security of software systems, two of which will be 
discussed here. These are relatively new methods and processes but hold prom-
ise for improving the safety and security of critical systems and systems of sys-
tems. One relates to tampering; the other to so-called “patterns.” The former is 
in the category of avoiding the impact of attacks by shielding (or immunizing) 
software systems from attacks, whereas the second is a process for information 
sharing and learning from experience, which has already been applied in the 
security areas and holds promise with respect to safety attributes. 

Tampering

It is clear from the frequency and descriptions of attacks, both successful and 
not, on software-intensive systems, and from the manner in which they are 
discovered, that much of the time victims don’t even know about most cyber 
attacks and are also ignorant about quite a few physical attacks. It is not always 
clear whether victims’ lack of knowledge about attacks having taken place stems 
from not having detected them or because the criminals are expert enough to 
cover up their tracks—or both.

Experience in information security and attempts to prevent loss of valu-
able data—commonly called data leak prevention (DLP), makes one aware 
of the differences among tamper-evident, tamper-resistant, and tamperproof 
methods and how they might apply to security-critical and safety-critical soft-
ware systems and the data they contain and handle.

Tamper Evidence

In simple terms, tamper-evident means that attempts to gain access to software 
or hardware systems or media is apparent from some change in the protec-
tive logical or physical “tape,” which the thief is not able to reverse to remove 
evidence of tampering. Often, the individuals doing the tampering do not par-
ticularly care whether the recipient of a package or the software knows that 
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someone has broken in. The recipient may have some claim on the sender or 
issuer of the product, but that is about the limit.

In other cases, the owner of a package or a piece of luggage, say, may have 
to allow some known authority, such as the Transportation Security Adminis-
tration (TSA), but only that authority, to access the contents. Special padlocks 
have been designed to permit access by TSA representatives and show whether 
the package has been opened by someone with a TSA standard key.

Tamper Resistance

Tamper resistance is a different concept. Here access to the product may be dif-
ficult but not impossible. In the physical world, those funny little screw heads, 
come to mind. They allow someone to turn the screw in a clockwise direction 
with a regular screwdriver but won’t allow counterclockwise unscrewing come 
to mind. There are quite a few approaches in the physical world. Comparable 
systems for software might also exist, although if they do, they are not well-
known. In any event, with some effort that is likely to be destructive, such as 
drilling out the screws, the protective method can be bypassed. This is good 
for someone interested in getting at the innards of the device and not worried 
about whether such intrusion can be detected by intended users.

Tamper resistance works well to deter or discourage the amateur thief but 
can be broken by professionals with the appropriate skills and tools. Depending 
on the value of the assets being protected, such tamper resistance might well be 
adequate, but many not meet requirements for protecting highly sensitive data 
or classified equipment.

Tamperproofing

Tamperproofing is different from the other methods. Here, attackers are usu-
ally not only hampered in their attempts to gain access to a working version 
of the hardware or software being protected but the hardware or software may 
self-destruct. There are two flavors of tamperproofing. In the physical world in 
particular, attempts to break into the item will result in the immediate destruc-
tion of whatever is contained within the tamperproof container. The destruc-
tion might be through shorting and burning out of circuitry and wiping out of 
any software and firmware contained therein, or the destruction can be more 
aggressive, and the unit can be made to explode—but in such a situation the 
risk of collateral damage and injury to bystanders needs to be considered.

From a software perspective, there are methods and products that can 
prevent anyone from accessing and modifying software. Since it is readily ap-
parent that few, if any, software systems can be fully protected from attack and 
that deterrence is seldom effective, we’re left with avoidance. Avoidance is not 
about making the assets available to a potential attacker. This is acceptable in 
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some situations, but not all. Obviously, if you need to run a program or process 
certain sensitive data, then one has no choice but to make the program and 
data available, knowing that attack is virtually impossible to prevent. Much as 
in the physical world, the answer lies in building up the immune system rather 
than trying to destroy the attacks and attackers. Tamperproofing is a very ef-
fective way to do so. Of course, a decision has to be made as to whether the 
self-destruction of specific software and hardware is justifiable. The decision 
for software is usually much simpler in that it is easy to restore copies of soft-
ware. There may be a reluctance to destroy extremely valuable equipment and 
a preference for disabling and presevering it so that it can be brought back to 
operational status at some future time. For example, one would not want such 
systems as those involving warfare (artillery, planes, ships, submarines, etc.) to 
fall into enemy hands, so self-destruction is a viable approach. In other cases, 
it might be adequate to get assurance that someone who has captured such 
equipment is not able to use it or reverse-engineer it. The latter aspects are very 
difficult to prove.

In Table 11.3 we show advantages and disadvantages for the different levels 
of tamper-related characteristics. Essentially, the cheaper, easier-to-implement 
methods, such as those that provide evidence of tampering, offer little protec-
tion of the contents but may act as a deterrence since the tape protecting the 
box, say, will show that someone tried to or succeeded in getting unauthorized 
access to the contents. Furthermore, it behooves the recipient to check that the 

Table 11.3 
Advantages and Disadvantages of Various Tamper-Related Methods

Characteristic Advantages Disadvantages
Tamper-evident Inexpensive and easy to implement

Provides evidence of attempted and/
or successful break-in

Easy to access system, but may be 
subject to penalties, etc., such as 
invalidating warranty
Does not prevent intrusion and access
Assets become available in usable form

Tamper-resistant Usually inexpensive and easy to 
implement
Usually provides evidence of 
tampering
Provides some measure of 
protection, much like a physical 
roadway speed bump

Moderately easy to access system if 
some level of destruction is tolerable by 
tamperers
Does not prevent intrusion and access
Assets become available in usable form

Tamperproof Ensures that attacker does not 
get access to working versions of 
hardware or software in usable form
Intellectual property and secrets 
may be assured if self-destruction is 
effective
Usually provides evidence of 
tampering

Protected hardware is destroyed so that 
it cannot be reused by originator
Need tailored software that might 
be costly and difficult to create and 
implement
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contents are complete and intact when there is an indication that someone has 
opened the container. More protective methods are generally more expensive 
and difficult to implement but offer a higher level of assurance that the sensitive 
and valuable resources will be safe from unauthorized access. The self-destruc-
tion mode is the most effective, but makes units useless, as intended, so that if a 
unit is recovered it has no reclamation value to the rightful owner either.

In Table 11.4 we show which tamper-related methods are available for 
security-critical and safety critical software, hardware, and media.

A Brief Note on Patterns

The predominant issue, which comes from examining what is needed to build 
software systems that are both safe and secure, is the need to communicate 
among the various stakeholders and interested parties across silos in order to 
have the desired attributes and characteristics added to systems during the early 
stages of the SSDLC. While it might be helpful at some level to pronounce a 
normative approach, such as including all relevant stakeholders in meetings to 
discuss all the required safety and security attributes, that really does not address 
the question of which mechanisms are available and should be used to facilitate 
the transfer of information.

In an attempt to address this issue researchers have developed the con-
cept of “patterns” that can be used to convey to designers and developers the 
experience of those who have addressed the same particular issues in the past. 
According to Schumacher [9], the interest in the use of patterns was created by 
Gamma [10] in 1995. The Schumacher book specifically addresses “security 
patterns,” which are highly relevant to this book, and it is easy to see how this 
approach can be readily extended to cover other nonfunctional features such as 
safety, resilience, and the like.

According to Schumacher, patterns have the following properties:

• A pattern describes both a process and a thing—where the “thing” is a 
high-level design outline or detail of programming code, and the “pro-
cess” is a set of instructions for creating the defined configuration ef-
fectively.

• A pattern is a solution that is both proven and of high quality and re-
solves a given problem optimally.

• A pattern supports both the understanding of a problem and its solu-
tion.

• A pattern is generic—it does not describe a specific solution or arrange-
ment of components.
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• A pattern tells “a successful engineering story” and initiates a dialog 
about how to best resolve a particular problem.

• Patterns frequently tackle problems in indirect, unusual, and counter-
intuitive ways.

The concept of patterns and their use is somewhat analogous to the use 
of objects in object-oriented programming in that concepts are encapsulated in 
reusable form so that software system engineers do not have to start from the 
beginning each time that they need to address a particular requirement. In this 
way, they can benefit from the experience of their predecessors who addressed 
the same problem previously and came up with an effective solution.

Such an approach could potentially provide a very effective mechanism 
for software security engineers and software safety engineers to communicate 
with one another and with other members of the various SSDLC teams. And, 
as discussed throughout this book, it is communication among subject-matter 
experts that is a critical success factor in building and operating safe and secure 
software systems.

Conclusions

Having journeyed through the evolution and requirements for security-criti-
cal and safety-critical software systems, one is impressed with the tremendous 
amount of good material that is already available in this space, whether it is in 
the form research papers, commercial tools, scholarly and practically oriented 
books, and government and industry standards and certifications. Yet, for a 
variety of organizational, cultural, and technical reasons, the strengths in vari-
ous aspects and zones of software systems engineering never seem to find their 
way to other areas. There will be considerable potential benefits to the high-
assurance software world through just the transference of existing knowledge 
about software security and safety processes, methods, tools, and the like across 
the entire field. Today’s gaps between software security and safety engineering 
are exacerbated by the fissures between government and the private sector, and 
the private sector and academia and research institutions. Bridging those gaps 
will be no easy task. Prior attempts at public-private information-sharing and 
collaboration have met with limited success, and there is no indication that the 
present situation will improve in the foreseeable future unless effective legisla-
tion and regulation were to come into being, which itself is not particularly 
likely. There is still a need to express the risks of attack, malfunction, and system 
failure in a way that is understood by lawmakers, regulators, law enforcement, 
the military, and the public.  Also these groups need to internalize and personal-
ize those risks and understand what it will take to mitigate them. Such educa-
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tion and awareness is critical to the formulation, implementation, and enforce-
ment of effective laws, regulations, policies, and certification requirements.

Yet, even if everyone “spoke the same language” and struck an appro-
priate balance between protection and protectiveness, between the relatively 
casual testing of information systems compared to the rigorous verification and 
validation of safety-critical control systems, and between the strict certification 
standards in avionics, for example, and the lack of standards for most business 
software-intensive systems, there would still be big holes in the approaches. Not 
enough effort has been applied to date or appears likely to be made in the near 
future. The research, development, and implementation effort, which has been 
and is being made, appears to many to be grossly inadequate as witnessed by 
the large and escalating numbers of successful attacks and the many complaints 
by those experts who should know about the deficiencies in the software system 
development life cycle processes and content.

This latter dangerous situation draws others to the conclusion that the 
only way to succeed in this arena will be through breakthrough innovation. 
That may indeed be what is needed, but there is no guarantee that currently 
proposed and existing research projects, whether in the public or private sectors, 
will yield results that will be strong enough, cost-effective, and timely enough to 
get ahead of the attackers. Meanwhile, there are today’s security and safety issues 
to address, and they cannot wait for some hoped-for white knight approach to 
save us from what appear to be some inevitable disasters.

This conclusion brings us back to the need to form a solid body of knowl-
edge across the software safety and security engineering disciplines and to im-
plement the most effective methods and procedures across the entire software 
security and safety space. In addition, effective enforcement, measurement, 
management, and response capabilities need to be developed—they alone will 
lead to significant improvements, but are by no means the whole answer.

In a nutshell, the goal, with respect to engineering safe and secure soft-
ware systems, should be to learn from the past, bring together team members 
with the appropriate state-of-the-art technical and business knowledge, and 
push for innovative and practical research into approaches and solutions for the 
future. The problems surrounding the making and operating of safe and secure 
software-intensive systems will only increase over time. Therefore it is necessary 
to develop the means of resolving these problems at an accelerating rate if there 
is to be any hope of catching up with and eventually surpassing the rate of in-
crease of threats, exploits, and vulnerabilities. We are talking here of a veritable 
Manhattan Project for the engineering of safe and secure software systems [11].

How quickly that crossover point, where the defense against cyber attacks 
and the malfunctioning or failure of safety-critical software systems overtakes 
the dynamics of attacks and deficiencies, will be reached depends on the level of 
effort and resources committed to the task. It is unreasonable to expect that this 



238	 Engineering	Safe	and	Secure	Software	Systems			

point at which attackers and defenders are on equal footing will occur in any-
thing less than 5 years, assuming major commitments by those who understand 
the risks and have the funds, power, and authority to make it happen. If such 
support is not forthcoming, then defenders may never catch up and we will 
be forever condemned to suffering increasing damaging attacks, breaches, and 
failures. And if there is support, but it is not sufficient to overtake the abilities 
of attackers and their attacks as well as unintentional and uncontrollable events, 
then there is the risk that catastrophic events, man-made or natural, will occur 
before adequate security and safety measures are in place, which could in effect 
negate the entire effort. It is never too soon to get high-level commitments to go 
forward with the necessary efforts, but might it already be too late?
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Appendix A  
Software Vulnerabilities, Errors, and 
Attacks
In this appendix, we discuss commonly available lists of attacks, vulnerabili-
ties, and risks relating to software, predominantly web applications. Web ap-
plications generally have a strong security bias, as they are information systems 
rather than control systems and, being web-facing, they are prone to attacks by 
external agents. However, we will see that the lists contain recommendations 
that are also applicable to information systems that do not face the web and to 
safety-critical control systems, even though they were not necessarily created 
with such systems in mind.

As shown in Figure A.1, there are two main approaches to making devel-
opers and testers, in particular, aware of the security and safety risks relating to 
software systems engineering. One is to bring top vulnerabilities and risks to 
their attention. These lists are best represented by the popular OWASP [1] top 
ten vulnerabilities and security risks, shown on the left side of Figure A.1, and 
by the CWE/SANS [2] top 25 most dangerous programming errors, also on 
the left of the diagram. Furthermore, we show a fair amount of overlap in the 
diagram between the two lists, about which we will be more specific later.

It is interesting to note that lists equivalent to the OWASP and CWE/
SANS lists do not appear to exist for software safety. A list claiming to be “The 
Top Ten Internet Safety Tips from Net Nanny is really a set of security sug-
gestions and recommendations on the use and blocking of various resources 
available on the Internet [3]. This is not a matter of the web applications being 
unsafe, but of their potential danger to misuse by children, which could lead 
to harm.
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There are some safety-related rankings, such as the “Top Ten Safety Tips,” 
from Emergency Management Magazine [4].  However, these tend to be high-
level guidelines rather than specific technical suggestions, such as contained in 
the OWASP and CWE/SANS security-related rankings mentioned above.

On the right side of Figure A.1 we show some approaches to the enu-
meration and classification of weaknesses, vulnerabilities, attack patterns and 
malware attributes. These approaches tend to list all existing attributes rather 
than trying to rank them in order of impact. For example, the CWE/SANS Top 
25 are taken from more than 900 CWE cases.

Ranking Errors, Vulnerabilities, and Risks

There are two schools of thought when it comes to publicizing the riskiest vio-
lations and the most dangerous programming errors relating to information se-
curity. One group claims that, by knowing where the greatest vulnerabilities lie, 
software-system designers and architects will account for them in their designs, 
and developers will avoid writing program code that will expose their computer 
applications to these weaknesses. In addition, testers and auditors have check-
lists against which they can use to ascertain that the programs do not violate the 
most egregious risk attributes.

Figure A.1	 Various	approaches	to	addressing	weaknesses,	vulnerabilities	and	risks.
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The other viewpoint is that developers will only attend to those vulner-
abilities and errors on the lists, and will not attend to other important errors 
that did not quite make it to the list of top items; that is to say, the lists should 
certainly be viewed as necessary to follow, but they are not sufficient for ensuring 
a high-level of security or safety. Who is to say that the eleventh and twelfth 
ranking vulnerabilities are not extremely important even though they didn’t 
make the top 10 or 25? To their credit, the CWE/SANS publication (wherein 
their lists are described in detail) guides readers to an “On the Cusp” page, 
which gives an additional sixteen weaknesses that did not fall into the top 25. 
On the other hand OWASP continues to limit its list to 10 items, although they 
do warn developers not to limit themselves to the 10 risks listed but to read 
various OWASP online documents to learn about the hundreds of issues that 
affect overall security.

The OWASP Top Security Risks

OWASP began publishing its “top 10” lists in 2003. In the early versions, the 
list consisted of attacks, vulnerabilities, and countermeasures. In 2007, the fo-
cus was entirely on vulnerabilities, and in 2010, the list contained security risks. 
Figure A.2 shows how the 10 examples in the list changed from 2003 to 2010. 
Five items, representing half of the total, were dropped during the 2003-to-
2010 period. For many of the remaining items, their rankings changed between 
one version and the next. Sometimes these changes were quite significant; 
for example, the category “broken authentication and session manag-ement” 
jumped from seventh position in 2007 to third position in 2010.

Judging from past trends, a new version of the OWASP Top Ten might be 
expected to appear in the 2013 timeframe, although such timing has not been 
announced by OWASP.

The OWASP Top 10 has received a great deal of attention from infor-
mation security professionals, even to the extent that regulators and oversight 
entities have suggested that the OWASP Top 10 should be a requirement for 
compliance [5].

In Table A.1, we list the 2010 Top 10 web application security risks. In 
the table, the occurrence of the item is explained and the potential impact is 
given for each of the security risks. OWASP published a report with the title 
OWASP Top Ten—2010: The Ten Most Critical Web Application Security Risks, 
which is available online [6]. The report describes each of the top ten security 
risks in detail. 

For each item, the OWASP report lists the following:

• Threat agents;
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• Attack vectors and their exploitability;

• Security weaknesses and their prevalence and detectability;

• Technical and business impacts.

Table A.1 
OWASP 2010 Top 10 Web Application Security Risks

Rank Name Occurs when ... Potential Impact
1 Injection ... untrusted data is sent as part of a command 

or query.
Tricks the interpreter into 
executing unintended commands 
or accessing unauthorized data.

2 Cross-site 
scripting (XSS)

... an application takes untrusted data and sends 
them to a web browser without proper validation 
and escaping .

Allows attackers to hijack user 
sessions, deface websites, or 
redirect the web browser user to 
malicious sites.

3 Broken 
authentication 
and session 
management

... application functions related to authentication 
and session management are not implemented 
correctly. 

Allows attackers to compromise 
passwords, keys, session tokens, 
or exploit other implementation 
flaws to assume other users’ 
identities.

4 Insecure direct 
object references

... a developer exposes a reference to an internal 
implementation object, such as a file, directory, 
or database key.

Allows attacker to manipulate 
access control checks and 
other protection in order to gain 
unauthorized access to data.

5 Cross-site request 
forgery (CSRF)

... the browser of a logged-on victim  is forced to 
send a forged HTTP request, which includes the 
victim’s session cookie and other authentication 
information, to a vulnerable web application. 

Allows attacker to force the 
victim’s browser to generate 
requests that the vulnerable 
application believes are 
legitimate.

6 Security 
misconfiguration

... the configuration, which is defined and 
deployed for applications, frameworks, 
application servers, web servers, database 
servers, and platforms, is secure, with all 
settings defined, implemented and maintained, 
and all software and code libraries kept up-to-
date.

Allows a broad variety of attacks 
to be successful.

7 Insecure 
cryptographic 
 storage

... web applications do not protect sensitive 
data, such as social security numbers, credit-
card information, authentication credentials, and 
intellectual property, with appropriate encryption 
or hashing.

Facilitates the theft and/or 
modification by attackers of 
weakly-protected data to conduct 
identity theft, fraud, industrial 
espionage, and other crimes.

8 Failure to restrict 
URL (uniform 
resource locator) 
access

... web applications do not perform access 
control checks each time pages are accessed.

Enables attackers to forge  URLs 
to access hidden pages.

9 Insufficient 
transport layer 
protection

... web applications fail to authenticate, encrypt 
and protect the confidentiality and integrity of 
sensitive network traffic.

Allows attackers to “sniff” the 
data flowing over networks and 
obtain sensitive information such 
as usernames, passwords, social 
security numbers, and the like.

10 Unvalidated 
redirects and 
forwards

... web applications redirect or forward users to 
other pages and websites, using untrusted data 
to determine the destination pages.

Allows attackers to redirect users 
to phishing (sending messages 
from criminals masquerading as 
legitimate senders) or malware 
(malicious software) websites, or 
access unauthorized pages.
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The OWASP report helps readers determine whether specific applications 
are vulnerable to each of the various threat agents, and how to prevent the 
threat from exposing the particular application to compromise. Examples of 
attack scenarios are also given. Merkow [7] provides very good explanations of 
the 2010 OWASP Top 10.

The CWE/SANS Most Dangerous Software Errors

The CWE effort is described as a “community-developed dictionary of software 
weakness types,” [2]. The CWE effort is also in the category of approaches that 
enumerate exhaustive lists of weaknesses, vulnerabilities, threats, errors, and so 
on, and is included on the right side of Figure A.1. The top 25 most dangerous 
software errors for 2011 are available on the CWE website [8].

As of Version 2.2, there are 909 CWE errors. Included among these CWE 
errors are the OWASP Top 10, as well as the CWE/SANS Top Twenty-Five. By 
following the links provided to each of the OWASP Top Ten, one can see which 
CWE errors relate to each item. Those for the top 25 CWE errors are shown in 
the right-most column of Table A.2. Note that some of the CWE/SANS Top 
25 do not have OWASP equivalents, and some have two.

Table A.2 shows the ranking not only of the highest-ranking 25 software 
errors but also of the next-ranked 16 errors. The CWE website [9] also splits 
the top 25 items into three categories, depicted in the table as columns A, B, 
and C, as follows:

• Column A: Insecure interaction between components (insecure way in 
which data are sent and received between components, modules, pro-
grams, processes, threads, or systems).

• Column B: Risky resource management (software does not manage 
properly the creation, use, transfer or destruction of important system 
resources).

• Column C: Porous defenses (defensive techniques that are often mis-
used, abused or ignored).

Top-Ranking Safety Issues

There do not appear to be any safety equivalents to the lists of leading risks, 
threats, errors, and the like that exist for software security. This is probably due 
to there not being the same need for such lists in the safety arena because there 
are many highly-detailed safety standards against which software systems must 
be certified, many of which are described by Herrmann [10].
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Table A.2 
CWE/SANS Top 25 Most Dangerous Software Errors

Rank Name A B C
OWASP 
 Top Ten

1 Improper neutralization of special elements in SQL command X 1
2 Improper neutralization of special elements in OS command X 1
3 Buffer copy without checking size of input X
4 Improper neutralization of input during web page generation (cross-site 

scripting—XSS)
X 2

5 Missing authentication for critical function X 3
6 Missing authorization X 4, 8
7 Use of hard-coded credentials X
8 Missing encryption of sensitive data X 7, 9
9 Unrestricted upload of file with dangerous type X 4
10 Reliance on untrusted inputs in a security decision X
11 Execution with unnecessary privileges X
12 Cross-site request forgery (CSRF) X 5
13 Improper limitation of a pathname to a restricted directory (path traversal) X 4
14 Download of code without integrity X
15 Incorrect authorization X 4, 8
16 Inclusion of functionality from untrusted control sphere X 4
17 Incorrect permission assignment for critical resource X
18 Use of potentially dangerous function X
19 Use of a broken or risky cryptographic algorithm X
20 Incorrect calculation of buffer size X
21 Improper restriction of excessive authentication attempts X 3
22 URL redirection to untrusted site (open redirect) X 10
23 Uncontrolled format string X
24 Integer overflow or wraparound X
25 Use of a one-way hash without a salt X 7
26 Allocation of resources without limits
27 Improper validation of array index
28 Improper check for unusual or exceptional conditions
29 Buffer access with incorrect length value
30 Inappropriate encoding for output context
31 Use of insufficiently random values
32 Untrusted pointer dereference
33 Concurrent execution using shared resource with improper synchronization 

(race condition)
34 Improper cross-boundary removal of sensitive data
35 Incorrect conversion between numeric types
36 NULL pointer dereference
37 Improper enforcement of behavioral workflow
38 Missing release of resource after effective lifetime
39 Information exposure through an error message
40 Expired pointer dereference
41 Missing initialization
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However, it is clear from the OWASP and CWE/SANS lists that, while 
many of the items clearly apply exclusively to web applications, others can be 
readily related to safety software. Examples of those risks and errors that can be 
applied to safety-intensive software systems include those relating to authenti-
cation, authorization, and encryption, for example. Strong safety-critical soft-
ware systems will have such attributes as encryption and authentication even if 
they are only intended to operate in physical and logical isolation. Besides being 
a good practice in and of itself, this approach puts such safety-critical systems 
in good stead for when they might be incorporated into cyber-physical systems.

Examples of the guidelines that are relevant to safety software (but not 
safety-intensive software systems) can be found in the blog, Emergency Manage-
ment Magazine [4]. According to the blog article, the top five mistakes made in 
the selection of “public safety software” are:

1. Poorly defined goals and operational outcomes;

2. Trying to solve the wrong problem;

3. Poor requirements and request-for-proposal documents;

4. Lack of coordination, cooperation, and communication;

5. Not getting peer reviews.

This list is interesting in that it essentially focuses on the need for high-
quality risk analyses and requirements definitions, and highlights the impor-
tance of collaboration and communication. These are all factors that are em-
phasized throughout this book.

Enumeration and Classification

We now turn our attention to the various classification and evaluation methods, 
some of which are shown in Figure A.1, on the right side of the diagram. We 
will add several other related approaches.

Different from the “top so many” lists, these approaches (shown in Table 
A.3) are usually exhaustive lists of vulnerabilities and weaknesses for legitimate 
and malicious software. They are mostly published online by The MITRE 
Group in the form of dedicated websites for each enumeration category. In 
Table A.3, we also include the focus of each method and the purpose of each 
approach.

The difference between a vulnerability and a weakness is given in the 
definitions below, where a vulnerability is the occurrence of a weakness, much 
as an exploit or attack is the occurrence of a threat.
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Table A.3 
Various Enumeration, Scoring, and Classification Methods

Acronym Full Name Focus Purposes
CAPEC Common 

Attack Pattern 
Enumeration and 
Classification

Attacks To describe attack patterns associated with high-level malware 
taxonomy, such as those dealing with network reconnaissance, 
propagation insertion and command and control. To ensure that 
the attacker’s perspective with respect to implementing these 
behaviors is properly represented. See http://capec.mitre.org/ 

CC Common Criteria Software 
security

To facilitate the comparison of the results of independent 
evaluations of security properties of information-technology 
products and systems using a common set of requirements for 
security functions. See http://www.commoncriteriaportal.org/ 

CCE Common 
Configuration 
Enumeration

Configuration Facilitates fast and accurate correlation of configuration data 
across a number of information sources and tools using unique 
identifiers for system configuration issues. See http://cce.mitre.
org/ 

CEE Common Event 
Expression

Malware To describe logged events associated with malware activity in 
order to determine the presence of malware. See http://cee.
mitre,org 

CME Common Malware 
Enumeration

Malware To provide single, common identifiers for new and prevalent 
virus threats in order to reduce confusion during malware 
incidents.*

CPE Common Platform 
Enumeration

Platform To allow for assessing threats that a malware instance poses 
to organizational computing resources (applications, operating 
systems, and hardware devices) based on the targeted 
platforms. See http://cpe.mitre.org/ 

CVE Common 
Vulnerabilities and 
Exposures

Vulnerabilities To enable data exchange between security products and provide 
a baseline index point for evaluating coverage of tools and 
services. See http://cve.mitre.org/ 

CVSS Common 
Vulnerability 
Scoring System

Vulnerabilities To assess the severity of computer system security 
vulnerabilities by establishing a measure of how much concern a 
vulnerability warrants, compared to other vulnerabilities, so that 
efforts can be prioritized. See http://www.first.org/cvss 

CWE Common 
Weaknesses 
Enumeration

Weaknesses To enable, from the CWE’s unified, measurable set of software 
weaknesses, more effective discussion, selection, and use 
of software security tools and services, which can find these 
weaknesses in source code and operational systems, and 
better understand and manage software weaknesses related to 
architecture and design. See http://cwe.mitre.org

MAEC Malware Attribute 
Enumeration and 
Characterization

Malware To close the gap in malware-oriented communication using a 
language for characterizing malware based on its behaviors, 
artifacts, and attack patterns. See http://maec.mitre.org/ 

OVAL Open Vulnerability 
Assessment 
Language

Vulnerabilities To standardize how to asses sand report upon the machine state 
of computer systems.
To provide enterprises with accurate, consistent, and actionable 
information so that they might improve their security. See http://
oval.mitre.org 

WASC TC Web Application 
Security 
Consortium Threat 
Classification

Attacks To develop and promote industry standards for classifying 
the weaknesses and attacks that can lead to compromise of 
websites, data and/or users. See http://www.webappsec.org/ 

The http://cme.mitre.org website has been replaced with the http://maec.mitre.org website (last accessed July 29, 2012) 
The obsolete CME website contains the statement: “In late 2006 the malware threat changed away from the pandemic, 
widespread threats CME was developed to address to more localized, targeted threats, which significantly reduced the need for 
common malware identifiers to mitigate user confusion in the general public. Therefore, all CME-related efforts transitioned into 
support to MITRE’s Malware Attribute Enumeration and Characterization (MAECTM) effort.”
The websites in the table were all accessed on July 29, 2012.
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WASC Threat Classification

The Web Application Security Consortium (WASC) is described [11] as being 
“made up of an international group of experts, industry practitioners, and organi-
zational representatives who produce open source and widely agreed-upon best-
practice security standards for the World Wide Web.”

The WASC attacks and weaknesses listed in Table A.4 are linked to excel-
lent descriptions of each attack and weakness [12]. Also available via the WASC 
website is the report, WASC Threat Classification Version 2.0 (last updated as of 
January 1, 2010). The report is very extensive and examines each of the threats, 
attacks and weaknesses, which the report defines as follows:

• Threat: a potential violation of security (per ISO 7498-2).

• Attack: a well-defined set of actions that, if successful, would result in 
either damage to an asset or undesirable operation.

• Weakness: a type of mistake in software that, under proper conditions, 
could contribute to the introduction of vulnerabilities within that soft-
ware ... [the term] applies to mistakes regardless of whether they occur 
in implementation, design or other phases of the SDLC. (From the MI-
TRE Group’s CWE website at http://cwe.mitre.org).

• Vulnerability: an occurrence of a weakness (or multiple weaknesses) 
within software, in which the weaknesses can be used by a party to cause 
the software to modify or access unintended data, interrupt proper ex-
ecution, or perform incorrect actions that were not specifically granted 
to the party who uses the weakness. (From the MITRE Group’s CWE 
website at http://cwe.mitre.org). 

It is readily apparent that many of the WASC attacks and weakness are 
the same as in the OWASP Top 10 and the CWE/SANS Top 25. This raises the 
question as to whether the WASC threats can replace the CWE and CAPEC 
lists. In the frequently asked questions section in the WASC Threat Classification 
Report [11, 12] the response to that question is as follows:

... The work done by ... MITRE ... is far more comprehensive than anything 
online. The TC (threat classification) serves as a usable document for the 
masses (developers, security professionals, quality assurance) whereas 
CWE/CAPEC is more focused for academia ...

This is frequently the case. Research organizations and academic institu-
tions tend to publish long and complex reports on this subject, but there is still 
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a need for the academic work to be translated into a form that is more useful for 
the practitioner. This is accomplished to some degree by publishing an abbrevi-
ated list of leading cases as OWASP and CWE/SANS have done.

Table A.4  
WASC Attacks and Weaknesses

Attacks Weaknesses
Abuse of functionality Application misconfiguration
Brute force Directory indexing
Buffer overflow Improper file system permissions
Content spoofing Improper input handling
Credential/session prediction Improper output handling
Cross-site scripting Information leakage
Cross-site request forgery Insecure indexing
Denial of service Insufficient anti-automation
Fingerprinting Insufficient authentication
Format string Insufficient authorization
HTTP response smuggling Insufficient password recovery
HTTP response splitting Insufficient process validation
HTTP request smuggling Insufficient session expiration
HTTP request splitting Insufficient transport layer protection
Integer overflows Server misconfiguration
LDAP injection
Mail command injection
Null byte injection
It is readily apparent from the 
above OS commanding
Path traversal
Predictable resource location
Remote file inclusion
Routing detour
Session fixation
SOAP array abuse
SSI injection
SQL injection
URL redirector abuse
XPath injection
XML attribute blowup
XML external entities
XML entity expansion
XML injection
XQuery injection
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Summary and Conclusions

It is apparent from the above descriptions that there is a divide between the 
security and safety approaches to making practitioners more aware of common 
risks, threats, attacks, weaknesses, and vulnerabilities. In the security domain, 
we see the use of lists of leading issues and exhaustive lists of weaknesses, vul-
nerabilities, attacks, and so on. And yet these lists are guidelines with which 
software security engineers may or may not comply. There is little compulsion 
and even less enforcement, even when regulators support such lists.

On the other hand, software safety engineers have to adhere to strict stan-
dards if they are to have their systems certified at a particular level. This obvi-
ates the real need for lists of leading issues, and so we do not see them. This 
is all well and good, except for the fact that many of the security-related lists 
contain very good advice for those developing safety-critical software systems, 
especially when such systems are combined with information systems to form 
cyber-physical systems.

It serves both communities well if those responsible for security-critical 
software systems and those creating safety-critical software systems are aware of 
the tools available to the other group.
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Appendix B  
Comparison of ISO/IEC 12207 and 
CMMI®-DEV Process Areas
As can be seen from the Table B.1, there are many similarities among the ma-
jority of process areas of both ISO/IEC 12207 and CMMI®-DEV, although 
some comparisons are closer matches than others. Also, there are specific dif-
ferences in categories—for example, verification and validation are included in 
the CMMI®-DEV category engineering, whereas ISO/IEC 12207 shows them 
as belonging to the software support category.

The main difference between these two sources is that ISO/IEC 12207 
includes processes for individual phases of the development life cycle, whereas 
CMMI®-DEV does not. It appears that the reason for this is that CMMI®-DEV 
has a Specific Process (SP 1.2) to establish life cycle model sescriptions, whereas 
ISO/IEC 12207 does not, but rather presents a life cycle model directly.



254	 Engineering	Safe	and	Secure	Software	Systems	 	 Appendix B	 255

Ta
bl

e 
B

.1
 

IS
O/

IE
C 

12
20

7 
vs

. C
M

M
I®

-D
EV

 P
ro

ce
ss

 A
re

as
IS

O
/IE

C 
12

20
7 

Li
fe

 C
yc

le
 

Pr
oc

es
s 

G
ro

up
s

IS
O

/IE
C 

12
20

7 
Pr

oc
es

s 
A

re
as

*
Eq

ui
va

le
nt

CM
M

I®
-D

EV
 P

ro
ce

ss
 A

re
as

CM
M

I®
-D

EV
 P

ro
ce

ss
 

M
od

ul
es

Ag
re

em
en

t 
Ac

qu
is

iti
on

 p
ro

ce
ss




Su
pp

lie
r a

gr
ee

m
en

t m
an

ag
em

en
t

Pr
oj

ec
t m

an
ag

em
en

t
Su

pp
ly

 p
ro

ce
ss




Su
pp

lie
r a

gr
ee

m
en

t m
an

ag
em

en
t

Pr
oj

ec
t m

an
ag

em
en

t
Or

ga
ni

za
tio

na
l P

ro
je

ct
-

En
ab

lin
g 

Li
fe

 c
yc

le
 m

od
el

 m
an

ag
em

en
t p

ro
ce

ss



Or
ga

ni
za

tio
na

l p
ro

ce
ss

 d
efi

ni
tio

n
Pr

oc
es

s 
m

an
ag

em
en

t
In

fra
st

ru
ct

ur
e 

m
an

ag
em

en
t p

ro
ce

ss



Or
ga

ni
za

tio
na

l p
ro

ce
ss

 d
efi

ni
tio

n
Pr

oc
es

s 
m

an
ag

em
en

t
Pr

oj
ec

t p
or

tfo
lio

 m
an

ag
em

en
t p

ro
ce

ss



Or
ga

ni
za

tio
na

l p
er

fo
rm

an
ce

 m
an

ag
em

en
t

Pr
oc

es
s 

m
an

ag
em

en
t

Hu
m

an
 re

so
ur

ce
s 

m
an

ag
em

en
t p

ro
ce

ss



Or
ga

ni
za

tio
na

l t
ra

in
in

g
Pr

oc
es

s 
m

an
ag

em
en

t
Qu

al
ity

 m
an

ag
em

en
t p

ro
ce

ss



Or
ga

ni
za

tio
na

l p
ro

ce
ss

 p
er

fo
rm

an
ce

Pr
oc

es
s 

m
an

ag
em

en
t

Pr
oj

ec
t

Pr
oj

ec
t p

la
nn

in
g 

pr
oc

es
s




Pr
oj

ec
t p

la
nn

in
g

Pr
oj

ec
t m

an
ag

em
en

t
Pr

oj
ec

t a
ss

es
sm

en
t a

nd
 c

on
tro

l p
ro

ce
ss




Pr
oj

ec
t m

on
ito

rin
g 

an
d 

co
nt

ro
l

Pr
oj

ec
t m

an
ag

em
en

t
De

ci
si

on
 m

an
ag

em
en

t p
ro

ce
ss




De
ci

si
on

 a
na

ly
si

s 
an

d 
re

so
lu

tio
n

Su
pp

or
t

Ri
sk

 m
an

ag
em

en
t p

ro
ce

ss



Ri
sk

 m
an

ag
em

en
t

Pr
oj

ec
t m

an
ag

em
en

t
Co

nfi
gu

ra
tio

n 
m

an
ag

em
en

t p
ro

ce
ss




Co
nfi

gu
ra

tio
n 

m
an

ag
em

en
t

Su
pp

or
t

In
fo

rm
at

io
n 

m
an

ag
em

en
t p

ro
ce

ss



Qu
an

tit
at

iv
e 

pr
oj

ec
t m

an
ag

em
en

t
Pr

oj
ec

t m
an

ag
em

en
t

M
ea

su
re

m
en

t p
ro

ce
ss




M
ea

su
re

m
en

t a
nd

 a
na

ly
si

s
Pr

oj
ec

t m
an

ag
em

en
t

Te
ch

ni
ca

l
St

ak
eh

ol
de

rs
 re

qu
ire

m
en

ts
 d

efi
ni

tio
n 

pr
oc

es
s




Re
qu

ire
m

en
ts

 d
ev

el
op

m
en

t
En

gi
ne

er
in

g
Sy

st
em

 re
qu

ire
m

en
ts

 a
na

ly
si

s 
pr

oc
es

s



Re
qu

ire
m

en
ts

 d
ev

el
op

m
en

t
En

gi
ne

er
in

g
Sy

st
em

 a
rc

hi
te

ct
ur

al
 d

es
ig

n 
pr

oc
es

s



Te
ch

ni
ca

l s
ol

ut
io

n
En

gi
ne

er
in

g
Im

pl
em

en
ta

tio
n 

pr
oc

es
s




Te
ch

ni
ca

l s
ol

ut
io

n
En

gi
ne

er
in

g
Sy

st
em

 in
te

gr
at

io
n 

pr
oc

es
s




Pr
od

uc
t i

nt
eg

ra
tio

n
En

gi
ne

er
in

g
Sy

st
em

 q
ua

lifi
ca

tio
n 

te
st

in
g 

pr
oc

es
s




Va
lid

at
io

n
En

gi
ne

er
in

g
So

ftw
ar

e 
in

st
al

la
tio

n 
pr

oc
es

s
So

ftw
ar

e 
ac

ce
pt

an
ce

 s
up

po
rt 

pr
oc

es
s



254	 Engineering	Safe	and	Secure	Software	Systems	 	 Appendix B	 255

Ta
bl

e 
B

.1
	(c

on
tin

ue
d)

IS
O

/IE
C 

12
20

7 
Li

fe
 C

yc
le

 
Pr

oc
es

s 
G

ro
up

s
IS

O
/IE

C 
12

20
7 

Pr
oc

es
s 

A
re

as
*

Eq
ui

va
le

nt
CM

M
I®

-D
EV

 P
ro

ce
ss

 A
re

as
CM

M
I®

-D
EV

 P
ro

ce
ss

 
M

od
ul

es
Te

ch
ni

ca
l (

co
nt

in
ue

d)
So

ftw
ar

e 
op

er
at

io
n 

pr
oc

es
s

So
ftw

ar
e 

m
ai

nt
en

an
ce

 p
ro

ce
ss

So
ftw

ar
e 

di
sp

os
al

 p
ro

ce
ss

So
ftw

ar
e 

Im
pl

em
en

ta
tio

n
So

ftw
ar

e 
im

pl
em

en
ta

tio
n 

pr
oc

es
s




Te
ch

ni
ca

l s
ol

ut
io

n
En

gi
ne

er
in

g
So

ftw
ar

e 
re

qu
ire

m
en

ts
 a

na
ly

si
s 

pr
oc

es
s




Re
qu

ire
m

en
ts

 d
ev

el
op

m
en

t
En

gi
ne

er
in

g
So

ftw
ar

e 
ar

ch
ite

ct
ur

al
 d

es
ig

n 
pr

oc
es

s



Te
ch

ni
ca

l s
ol

ut
io

n
En

gi
ne

er
in

g
So

ftw
ar

e 
de

ta
ile

d 
de

si
gn

 p
ro

ce
ss




Te
ch

ni
ca

l s
ol

ut
io

n
En

gi
ne

er
in

g
So

ftw
ar

e 
co

ns
tru

ct
io

n 
pr

oc
es

s



Te
ch

ni
ca

l s
ol

ut
io

n
En

gi
ne

er
in

g
So

ftw
ar

e 
in

te
gr

at
io

n 
pr

oc
es

s



Pr
od

uc
t i

nt
eg

ra
tio

n
En

gi
ne

er
in

g
So

ftw
ar

e 
qu

al
ifi

ca
tio

n 
pr

oc
es

s



Va
lid

at
io

n
En

gi
ne

er
in

g
So

ftw
ar

e 
Su

pp
or

t
So

ftw
ar

e 
do

cu
m

en
ta

tio
n 

m
an

ag
em

en
t p

ro
ce

ss



Pr
oj

ec
t m

on
ito

rin
g 

an
d 

co
nt

ro
l

Pr
oj

ec
t m

an
ag

em
en

t
So

ftw
ar

e 
co

nfi
gu

ra
tio

n 
m

an
ag

em
en

t p
ro

ce
ss




Co
nfi

gu
ra

tio
n 

m
an

ag
em

en
t

Su
pp

or
t

So
ftw

ar
e 

qu
al

ity
 a

ss
ur

an
ce

 p
ro

ce
ss




Pr
oc

es
s 

&
 p

ro
du

ct
 q

ua
lit

y 
as

su
ra

nc
e

Su
pp

or
t

So
ftw

ar
e 

ve
rifi

ca
tio

n 
pr

oc
es

s



Ve
rifi

ca
tio

n
En

gi
ne

er
in

g
So

ftw
ar

e 
va

lid
at

io
n 

pr
oc

es
s




Va
lid

at
io

n
En

gi
ne

er
in

g
So

ftw
ar

e 
re

vi
ew

 p
ro

ce
ss




Ve
rifi

ca
tio

n
En

gi
ne

er
in

g
So

ftw
ar

e 
au

di
t p

ro
ce

ss



Pr
oc

es
s 

an
d 

pr
od

uc
t q

ua
lit

y 
as

su
ra

nc
e

Su
pp

or
t

So
ftw

ar
e 

pr
ob

le
m

 re
so

lu
tio

n 
pr

oc
es

s



Ca
us

al
 a

na
ly

si
s 

an
d 

re
so

lu
tio

n
Su

pp
or

t
So

ftw
ar

e 
Re

us
e

Do
m

ai
n 

en
gi

ne
er

in
g 

pr
oc

es
s

Re
us

e 
as

se
t m

an
ag

em
en

t p
ro

ce
ss

Re
us

e 
pr

og
ra

m
 m

an
ag

em
en

t p
ro

ce
ss

 *
Un

m
at

ch
ed

 p
ro

ce
ss

 a
re

as
 a

re
 s

ho
w

n 
in

 it
al

ic
 ty

pe
.





257

Appendix C 
Security-Related Tasks in the Secure 
SSDLC
In this appendix, we list task areas for each of eight phases of the secure soft-
ware system development life cycle (Secure SSDLC) in Tables C.1 through C.8, 
respectively. In Tables C.9 through C.16, we identify those who should be re-
sponsible for each task within each of the eight phases, and to what degree or 
level each area within an organization should be involved. Table C.17 provides 
a summary of responsibility levels for all eight phases and an aggregated level 
for the entire lifecycle.

While these tables contain substantial detail, they should still be used for 
guidance purposes only. Organizations can have very different organizational 
structures and risk profiles. Therefore the emphasis on which task areas to focus 
is likely to vary significantly from one organization to the next. That being said, 
there are usually more commonalities than differences when building security 
into software systems. Consequently, it should be helpful for those involved 
in creating and supporting security-critical software systems to have at hand 
what is essentially a checklist. This checklist should prove even more valuable to 
those who are less involved with security and are more focused on safety-critical 
systems; such individuals are less likely to be familiar with what is commonly 
required to make critical software-intensive systems secure.

It should be noted that we do not include any roles for software safety 
engineers in the secure SSDLC. This is fairly typical for information systems 
that are not directly subject to safety hazards. However, going forward, it is like-
ly that more information systems will have safety-critical components or will 
be interfacing with safety-critical systems. Particularly when security-critical 
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information systems are combined with safety-critical control systems to form 
cyber-physical systems do the creators, maintainers, and operators of the infor-
mation systems have to account for safety issues. Of course, a physical event, 
such as a power blackout or a telecommunications network failure, can drasti-
cally impact information systems, but usually from performance, resiliency, and 
availability perspectives and not so much with respect to security.

As will be argued in Appendix D, the reverse is not necessarily true. Those 
designing, developing, operating, and supporting safety-critical software-inten-
sive control systems often need to consider some security aspects of their soft-
ware systems, even if the systems themselves are designed to be physically and 
logically isolated. There is always the possibility of intentional insider attacks 
by authorized employees or contractors, or unintended insider assistance to an 
attacker, as in the case of the Stuxnet worm that attacked the industrial control 
systems operating the centrifuges in uranium-processing facilities in Iran.

Task Areas for SSDLC Phases

In Tables C.1 to C.8, we provide descriptions and suggest purposes for each of 
the tasks throughout the following eight phases of the Secure SSDLC:

1. Risk analysis;

2. Security requirements;

3. Security architecture and design;

4. Development (building/configuration/integration);

5. Functional and nonfunctional security testing;

6. Deployment;

7. Operations, maintenance and support;

8. Decommissioning and secure disposal.

Tables C.1 through C.8 below will give those tasked with ensuring that 
security is built into software systems a fuller understanding of what is involved 
within each step (or task area) and why individual steps are needed.

The initial phase comprises the analysis of risk and its management. As 
shown in Table C.1, it is first necessary to determine potential risk factors, such 
as threats and weaknesses that evolve into exploits and vulnerabilities that have 
some probability of allowing successful attacks. These latter attacks cause losses, 
which can be reduced or mitigated to some extent using prevention, avoidance 
and/or deterrence methods.

The results of the risk analyses not only point towards the need to miti-
gate the identified risks, but also provide input to the requirements phase, as 
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detailed in Table C.2. This table describes and explains the tasks to produce 
complete sets of security requirements for software systems.

Once the security requirements have been decided upon and agreed to, by 
authorized persons, and adequate funding has been approved, the project team 
can embark on defining the security architecture and design of the software 
system, as described in Table C.3.

The design phase produces specifications from which developers build 
secure software systems. Table C.4 describes the various tasks that will produce 
sufficiently secure software systems based upon these specifications.

While it is expected that developers, their supervisors, and their project 
managers will check programs to ensure that they operate successfully (though 
not necessarily correctly), the testing of functionality is usually left to the Qual-
ity Assurance department. If addressed at all, testing of nonfunctional attributes 
such as security and performance is usually handed over to subject-matter ex-
perts, either internal to the organization or outside consultants. Nonfunctional 
security testing comprises the task areas shown in Table C.5.

Once the software system has been thoroughly tested to assure a high 
level of security, it is ready to be deployed into the production environment. 
However, even though a software system might be intrinsically secure, its secure 
operation is highly dependent on it being securely distributed and installed, as 
well as running in an environment that is secure, with security-oriented operat-
ing, support, and maintenance processes. The transition from development to 
production is a very sensitive step in the overall SSDLC and should follow the 
task areas that are described in Table C.6.

After a software system has been deployed, it is critical to its ongoing se-
curity that qualified staff has specific roles in order to maintain ongoing security 
throughout the operational life of the system. Table C.7 includes the task areas 
necessary for continued security in the operation, maintenance and support of 
the system.

Many publications on the Secure SSDLC stop at the operations phase. 
However, it is important that the end-of-life tasks are performed in a manner 
that will ensure that there are no security issues when the software systems are 
decommissioned and disposed of. These important tasks are described in Table 
C.8, along with reasons why it is so important to pay sufficient attention to this 
critical phase.

Involvement by Teams and Groups for Secure SSDLC Phases

We now look at each of the tasks within the various phases and indicate the lev-
els of involvement in those tasks by various teams or groups within a typical or-
ganization. The entries in these tables (Tables C.9 to C.16) and in the summary 
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(Table C.17) are normative. That is to say, many of the teams or groups might 
not exist in typical small and medium-sized businesses or in some large entities. 
Also, it is the exception, rather than the rule, for groups so designated to have 
the level of involvement shown. While some surveys, such as those conducted 
and reported as part of the Building Security in Maturity Model (BSIMM) 
effort [1], show relatively high levels of involvement by team members, the 
companies participating in the BSIMM exercise are largely self-selecting. The 
general picture in both public and private sectors is not nearly as encouraging.

In Table C.9, we show the degree of involvement of various areas in the 
risk analysis and control phase. For the most part, risk analysis focuses on the 
business perspective, preferably with considerable support from the informa-
tion security department and risk area and oversight by internal and external 
auditors. The results from the risk analysis become a major source for the subse-
quent requirements development phase. This approach is far from ideal because 
if the software development and operations teams were to be more involved 
than usual, they would better understand the concerns of the business areas and 
account for such concerns in the design, development, and implementation of 
software-intensive systems. This disconnect leads to developers not assuming 
responsibility for ensuring that their software addresses business management 
risk concerns—this transfer of responsibility is described in greater detail in the 
section on technical debt in Chapter 11. In Table C.9, and in the subsequent 
tables, we indicate the ideal levels of involvement. It should also be noted that 
the entries in the following tables are highly subjective based on personal expe-
rience and judgment, and that other situations may call for different levels of 
involvement.

It is usual for the development team and the infrastructure team to be 
heavily involved in the requirements phase, as shown in Table C.10 preferably 
with a high level of involvement by the business units for which the software 
system is being created. Often, the security requirements are given short shrift, 
as evidenced by the readily apparent lack of security and privacy capabilities 
of many web applications, in particular, but also of production systems. There 
should be heavy involvement of the security team and auditors to ensure that 
the requirements are adequate with respect to security. 

The security-related tasks in the design and architecture phase, shown in 
Table C.11, should depend heavily on the security team, as well as on the ap-
plication development and infrastructure teams and, to the extent possible, on 
the auditors. Business units, where the end-users generally reside, are somewhat 
less involved because most of the work in this phase is technical.

As Table C.12 indicates, the development or coding phase is mostly de-
pendent on the technical teams, with strong oversight by auditors. The business 
side is less involved. Similar involvement carries through to the testing phase, 
depicted in Table C.13, for the same reasons.
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The weighting of effort for the deployment phase, as shown in Table 
C.14, shifts to the operational areas, although there is still significant support 
required from the security team and technical teams. As shown in Table C.15, 
the same applies when the system moves into production or operation.

Decommissioning involves the operational areas with oversight by secu-
rity and audit, as shown in Table C.14.

The summaries of Tables C.9 to C.16, which provide levels of involve-
ment for tasks within phases, are combined into Table C.17, which shows the 
overall involvement of the various groups and teams in the security aspects of  
each phase of the life cycle. As expected, the main overall participants are the 
security and audit team members, but the application development team and 
the infrastructure team follow close behind. For the effort to be successful, par-
ticipants must be fully engaged and perform their tasks diligently.

A Note on Sources

The entries in the above tables cannot all be attributed to specific references be-
cause they represent an amalgamation of concepts drawn from various sources, 
many of which are given in the End Notes section of Chapter 9. Most of the 
tables in this appendix are derived from McBride [2], although their form and 
content varies considerably from those in [2]. For example, the risk analysis and 
control phase as well as decommissioning and disposal phase are not included 
in [2].

Endnotes

[1] See www.bsimm.com, accessed August 15, 2012. 

[2] McBride, P., and E. P. Moser, Secure System Development Life Cycle (SDLC) Building Securi-
ty Into Your System—Not Bolting It On After the Damage is Done, Atlanta, GA: METASeS, 
2000. Available at http://lazarusalliance.com/horsewiki/images/3/38/Secure-System-De-
velopment-Life-Cycle.pdf. Accessed August 5, 2012. 
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Appendix D 
Safety-Related Tasks in the Safe SSDLC
As in Appendix C, which focused on the Secure SSDLC, Tables D.1 through 
D8, show tasks for each phase of the safe software system development life cycle 
(SSDLC), describe them, give their purposes. Table D.9 shows the levels of 
involvement of various players for each phase.

The following tables should to be used for guidance purposes only. These 
tables should be helpful for those responsible for the safety of mission-critical 
software systems and they offer a checklist to assist in the process of ensur-
ing that adequate attention has been applied to safety considerations through-
out the life cycle. The checklist should have even more value to those who 
concentrate on security-critical systems, as these individuals will likely not be 
very familiar with safety-critical software system requirements and methods for 
building them.

Task Areas for Safe SSDLC Phases

We now show the tasks, descriptions, and purposes for each of the following 
phases of the Safe SSDLC:

• Hazard risk analysis and control;

• Safety software requirements;

• Safety architecture and design;

• Development (building/configuration/integration);

• Verification, validation and certification;
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• Deployment;

• Operations, maintenance and support;

• Decommissioning and safe disposal.

Tables D.1 through D.8 provide guidance for those tasked with ensuring 
that safety is built into software systems and that those systems meet particular 
standards necessary for certification. The main differences between the phases 
presented here and those phases described in Appendix C are (1) replacement 
of risk analysis and control relating to protecting information assets with hazard 
risk analysis and control relating to damage that a malfunction or failure might 
do to humans, other creatures, or the environment; and (2) the substitution of 
verification, validation, and certification phase for the testing phase. The other 
phases of the Safe SSDLC appear to be similar in name to the phases in the 
Secure SSDLC, but significant differences will be highlighted as we go through 
the phases one at a time. For example, the disposal of a safety-critical software 
systems and data can take a very different form in comparison with the disposal 
of security-critical software systems and data.

As mentioned in Appendix C, there is some degree of asymmetry be-
tween the Secure and Safe SSDLCs, particularly with respect to a strong recom-
mendation to have software-security subject-matter expertise available to the 
software-safety project team. This is in contrast to not usually needing to have 
safe-software experts involved in the Secure SSDLC.

As with the Secure SSDLC, the first phase of the Safe SSDLC is also a risk 
analysis and control phase. However, in the latter case, it is the risk that a mal-
function or failure will cause physical harm to humans and/or the environment. 
In the former case, it is generally a matter of determining the likelihood that a 
security-critical software system will be penetrated and sensitive data compro-
mised. While it is true that the result of a breach or failure of a security-critical 
software system can result in harm, the damage is usually in the form of fraud 
against financial assets, theft of intellectual property, and the release of nonpub-
lic personal information. These latter consequences can be extremely distressing 
and might lead indirectly to physical harm. However, financial losses are gener-
ally considered not to be as serious as physical harm, even though the former 
can usually be estimated fairly accurately and the latter are generally rough 
estimates because of the difficulty in assessing the value of a life, the cost of an 
injury, and the financial impact of an environmental disaster.

In Table D.1 we show the task areas related to hazard risks. As with fi-
nancial risks, the impact of a malfunction or failure of a safety-critical software-
intensive system is on both the owner of the system and those affected by the 
system, such as internal end users, customers, or the public in general. The 
main difference in approach between security risk and safety risk evaluations is 
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that when safety is the main criterion, the emphasis is on the harm that could 
be inflicted on others rather than the financial, reputation, and other losses of 
the entity running the system, even though the latter could be very substantial. 
However, we do include in Table D.1 the determination and assessment of 
threats, exploits, weaknesses, and vulnerabilities, as were incorporated into the 
Secure SSDLC in Appendix C. Here, we distinguish between hazards, which are 
those activities than could potentially be done by the system, and threats, which 
are those actions that could be done to the system. Up until recently, the lat-
ter threat scenarios were largely ignored by software safety engineers, although 
that is changing with the advent of more cyber-physical systems. Ironically, 
even isolated safety-critical systems have always been open to compromise by 
malevolent insiders and by unwitting accomplices, as in the case of the Stuxnet 
worm. Often, physical controls have been implemented for highly-dangerous 
control systems (as with the need for two separate and independent operators 
to activate a nuclear missile launch) but such methods are increasingly being 
replaced by computer systems.

When considering risks relating to safety-critical software systems, it is 
important to include both safety and security factors, especially as a security 
breach can lead to unsafe functioning of safety-critical systems. As mentioned 
in the main text, safety and security software attributes are frequently dealt with 
separately in the literature, with little crossover between silos. Only a relatively 
small number of publications address both safety and security together. Task 
areas for security-critical software systems for the remainder of the SSDLC were 
addressed in Appendix C. Many of the task areas for the Safe SSDLC described 
below are in similar categories to those of the Secure SSDLC, except for the 
safety orientation of each task area. Certain terms, such as verification and vali-
dation, are more common for safety-critical systems, with testing being the term 
most often used for security-critical systems; the overall concepts are similar. 
Many of the concepts used are from the JSSSC report [2], which in turn leans 
heavily on United States military standards. The JSSSC report presents an ex-
cellent example of a Plan of Action and Milestones (PAO&M) schedule for de-
veloping safe software systems, which also includes consideration of hardware.

In Table D.2, we describe the task areas needed for coming up with ge-
neric safety requirements for the software system. As stated in [2]:

Generic SSRs [software safety requirements] are those design features, 
design constraints, development processes, “best practices,” coding 
standards and techniques, and other general requirements that are levied on 
a system containing safety-critical software, regardless of the functionality 
of the application. The requirements themselves are not ... tied to a specific 
system hazard ...
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According to the JSSSC report [2], the requirements are based up experi-
ence of errors or omissions that resulted in mishaps or potential mishaps.

When the above tasks have been completed, the project team should have 
a complete set of approved safety requirements for the proposed software sys-
tem, along with formal approvals of the requirements, funding, and resource-
levels for the implementation of those requirements. The requirements are then 
used in the subsequent software system safety architecture and design phase, 
which is described in Table D.3.

Once the safety architecture and design tasks have been accomplished, 
the results need to be incorporated into the application development process 
as indicated in Table D.4. As noted in Table D.3, it is important to secure the 
phases of the development life cycle for safety-critical software systems and to 
ensure that appropriate security services, such as strong authentication, restric-
tive authorization, and strong encryption, are incorporated into safety-critical 
systems and that the monitoring, reporting of events, and incident response are 
built into safety-critical software systems even though they are not expected to 
be exposed to external attacks.

Verification tasks are generally performed at each phase throughout the 
Safe SSDLC, with validation conducted when the software has been developed, 
and certification applied for when the fully-integrated software system is final-
ized. These tasks are shown in Table D.5.

It would appear that too little attention is being paid to the deployment 
phase in many projects, yet this phase subjects the organization to huge poten-
tial risks, particularly if the deployment involves integration with other software 
systems that are not under the direct control of the deploying entity. A case in 
point is the faulty deployment of a mission-critical trading system on August 
1, 2012 by the Knight Capital Group. The launch of the updated system re-
sulted in a catastrophic malfunctioning and an immediate financial loss of $440 
million [4]. While this example does not have direct safety implications, it is 
indicative of the type of disaster that can occur during the deployment phase, 
and it provides strong evidence that supports paying full attention during this 
critical phase.

There are two types of safety risk during deployment. One is that the 
deployment process might be deficient in that it does not adequately check that 
all the modules needed are being installed and that no superfluous modules 
remain in the software system. The other relates to intrinsic problems within 
the software itself due to such causes as inadequate requirements, specifications, 
and testing in the context into which the software is being released.

The task areas relating to the deployment of safety-critical software sys-
tems are described in Table D.6.



304	 Engineering	Safe	and	Secure	Software	Systems	 	 Appendix D	 305

Ta
bl

e 
D

.4
 

Sa
fe

ty
-R

el
at

ed
 Ta

sk
s 

fo
r t

he
 D

ev
el

op
m

en
t P

ha
se

Ta
sk

 A
re

as
D

es
cr

ip
tio

ns
Pu

rp
os

es
Se

t u
p 

se
cu

re
 d

ev
el

op
m

en
t 

en
vi

ro
nm

en
t

Im
pl

em
en

ta
tio

n 
of

 p
ro

ce
ss

es
, p

ro
ce

du
re

s 
an

d 
te

ch
no

lo
gy

 n
ee

de
d 

to
 

cr
ea

te
 a

 s
ec

ur
e 

de
ve

lo
pm

en
t e

nv
iro

nm
en

t.
To

 e
ns

ur
e 

th
at

 a
cc

es
s 

an
d 

us
e 

of
 s

ou
rc

e 
co

de
, 

co
m

po
ne

nt
 c

on
fig

ur
at

io
ns

, d
oc

um
en

ta
tio

n,
 a

nd
 th

e 
lik

e 
ar

e 
co

nt
ro

lle
d 

an
d 

m
on

ito
re

d,
 th

at
 d

ev
ia

tio
ns

 
ar

e 
re

po
rte

d,
 a

nd
 th

at
 re

sp
on

se
s 

to
 in

ci
de

nt
s 

ar
e 

pr
ep

la
nn

ed
.

Se
cu

rit
y-

re
la

te
d 

tra
in

in
g 

fo
r t

ea
m

s 
de

ve
lo

pi
ng

 s
af

et
y-

cr
iti

ca
l s

ys
te

m
s

Pr
ov

is
io

n 
of

 tr
ai

ni
ng

 w
ith

 re
sp

ec
t t

o 
sa

fe
 a

nd
 s

ec
ur

e 
co

di
ng

 
pr

ac
tic

es
, i

nc
lu

di
ng

 c
ho

ic
e 

of
 p

ro
gr

am
m

in
g 

la
ng

ua
ge

s,
 p

la
tfo

rm
s,

 
an

d 
in

fra
st

ru
ct

ur
es

 m
os

t a
pp

ro
pr

ia
te

 fo
r s

af
et

y-
cr

iti
ca

l s
ys

te
m

s.
 

Al
so

 m
ak

in
g 

de
ve

lo
pe

rs
 a

w
ar

e 
of

 g
en

er
al

 s
af

et
y 

an
d 

se
cu

rit
y 

is
su

es
, 

ot
he

r d
ev

el
op

m
en

t-r
el

at
ed

 s
ec

ur
ity

 is
su

es
 (e

.g
., 

se
cu

re
 d

ev
el

op
m

en
t 

en
vi

ro
nm

en
t, 

se
e 

ab
ov

e)
, a

nd
 s

af
et

y-
re

la
te

d 
an

d 
se

cu
rit

y-
re

la
te

d 
de

ve
lo

pm
en

t a
nd

 te
st

in
g 

to
ol

s.

To
 e

ns
ur

e 
th

at
 d

ev
el

op
er

s 
ar

e 
ad

eq
ua

te
ly

 tr
ai

ne
d 

in
 s

ec
ur

e 
co

di
ng

 p
ra

ct
ic

es
, a

s 
w

el
l a

s 
be

in
g 

m
ad

e 
aw

ar
e 

of
 o

th
er

 re
le

va
nt

 s
ec

ur
ity

-re
la

te
d 

m
at

te
rs

, a
nd

 
ar

e 
fa

m
ili

ar
 w

ith
 p

ar
tic

ul
ar

 te
ch

no
lo

gi
es

 th
at

 s
up

po
rt 

sa
fe

ty
-c

rit
ic

al
 s

of
tw

ar
e 

de
ve

lo
pm

en
t.

Se
cu

rit
y-

re
la

te
d 

an
d 

sa
fe

ty
-re

la
te

d 
tra

in
in

g 
fo

r i
nf

ra
st

ru
ct

ur
e 

te
am

s
Pr

ov
is

io
n 

of
 tr

ai
ni

ng
 w

ith
 re

sp
ec

t t
o 

th
e 

co
nfi

gu
ra

tio
n 

an
d 

in
st

al
la

tio
n 

of
 m

id
dl

ew
ar

e 
an

d 
ot

he
r s

ys
te

m
 s

of
tw

ar
e 

an
d 

se
rv

ic
es

, a
s 

th
ey

 
re

la
te

 to
 s

af
et

y 
an

d 
se

cu
rit

y.

To
 e

ns
ur

e 
th

at
 in

fra
st

ru
ct

ur
e 

te
am

s 
ar

e 
ad

eq
ua

te
ly

 
tra

in
ed

 in
 th

e 
sa

fe
ty

 a
nd

 s
ec

ur
ity

 a
sp

ec
ts

 o
f 

co
nfi

gu
rin

g 
an

d 
op

er
at

in
g 

pl
at

fo
rm

s 
an

d 
in

fra
st

ru
ct

ur
e 

up
on

 w
hi

ch
 th

e 
de

ve
lo

pe
d 

so
ftw

ar
e 

w
ill

 ru
n.

De
ve

lo
p 

ap
pl

ic
at

io
n-

le
ve

l s
af

et
y 

co
m

po
ne

nt
s

Cr
ea

tio
n 

an
d/

or
 a

cq
ui

si
tio

n 
of

 s
af

et
y-

re
la

te
d 

co
m

po
ne

nt
s 

an
d 

se
rv

ic
es

, w
hi

ch
 a

ls
o 

sa
tis

fy
 s

ec
ur

ity
 re

qu
ire

m
en

ts
 fo

r s
af

et
y-

cr
iti

ca
l 

so
ftw

ar
e 

sy
st

em
s.

To
 d

ev
el

op
 a

nd
/o

r a
cq

ui
re

 c
om

po
ne

nt
s 

th
at

 m
ee

t 
sa

fe
ty

-re
la

te
d 

an
d 

se
cu

rit
y-

re
la

te
d 

re
qu

ire
m

en
ts

 a
nd

 
sp

ec
ifi

ca
tio

ns
.

Im
pl

em
en

t s
af

e 
an

d 
se

cu
re

 
in

fra
st

ru
ct

ur
e 

in
 s

up
po

rt 
of

 
ap

pl
ic

at
io

n 
so

ftw
ar

e

Es
ta

bl
is

hm
en

t o
f a

 s
af

e 
an

d 
se

cu
re

 in
fra

st
ru

ct
ur

e 
an

d 
en

vi
ro

nm
en

t i
n 

su
pp

or
t o

f a
pp

lic
at

io
n 

de
ve

lo
pm

en
t a

nd
 te

st
in

g 
ac

tiv
iti

es
.

To
 p

ro
vi

de
 a

 s
af

e 
an

d 
se

cu
re

 e
nv

iro
nm

en
t f

or
 

de
ve

lo
pe

rs
 a

nd
 te

st
er

s 
ac

tiv
iti

es
.

Se
t u

p 
ha

za
rd

, v
ul

ne
ra

bi
lit

y, 
an

d 
m

iti
ga

tio
n 

tra
ck

in
g 

pr
oc

es
s

Cr
ea

tio
n 

of
 a

 h
az

ar
d,

 v
ul

ne
ra

bi
lit

y, 
an

d 
m

iti
ga

tio
n 

tra
ck

in
g 

da
ta

ba
se

, 
po

ss
ib

ly
 in

te
gr

at
ed

 w
ith

 a
 q

ua
lit

y 
as

su
ra

nc
e 

or
 e

rro
r t

ra
ck

in
g 

sy
st

em
, 

w
ith

 th
e 

ab
ili

ty
 to

 re
co

rd
, p

rio
rit

ize
, s

or
t, 

m
on

ito
r, 

re
po

rt,
 a

nd
 in

di
ca

te
 

ac
tio

n 
ta

ke
n 

to
 re

du
ce

 th
e 

ris
k 

po
se

d 
by

 h
az

ar
ds

 a
nd

 v
ul

ne
ra

bi
lit

ie
s.

To
 e

ns
ur

e 
th

at
 h

az
ar

ds
, v

ul
ne

ra
bi

lit
ie

s,
 a

nd
 m

iti
ga

tio
n 

ef
fo

rts
 a

re
 id

en
tifi

ed
, r

ec
or

de
d,

 p
rio

rit
ize

d,
 re

so
lv

ed
, 

an
d 

m
ar

ke
d 

as
 c

om
pl

et
ed

.



304	 Engineering	Safe	and	Secure	Software	Systems	 	 Appendix D	 305

Ta
bl

e 
D

.4
 

(c
on

tin
ue

d)
Ta

sk
 A

re
as

D
es

cr
ip

tio
ns

Pu
rp

os
es

Pl
an

 s
af

et
y 

te
st

in
g 

(J
SS

C 
[2

, p
p.

 
4-

63
 to

 4
-6

5]
)*

De
ve

lo
pm

en
t o

f s
af

et
y 

te
st

 p
la

ns
 fo

r p
ro

sp
ec

tiv
e,

 c
ur

re
nt

 a
nd

 
sc

he
du

le
d 

fu
tu

re
 v

er
si

on
s 

of
 th

e 
so

ftw
ar

e 
sy

st
em

. T
he

 p
la

ns
 s

ho
ul

d 
in

cl
ud

e 
te

st
in

g 
of

 s
of

tw
ar

e 
re

qu
ire

m
en

ts
 a

nd
 p

er
fo

rm
an

ce
-re

la
te

d 
re

qu
ire

m
en

ts
.

To
 e

ns
ur

e 
th

at
 a

de
qu

at
e 

sa
fe

ty
-re

la
te

d 
te

st
in

g 
is

 
pe

rfo
rm

ed
.

Un
it,

 in
te

gr
at

io
n 

an
d 

re
gr

es
si

on
 

te
st

in
g 

of
 s

af
et

y 
co

m
po

ne
nt

s
De

ve
lo

pm
en

t o
f p

la
ns

 fo
r t

es
tin

g 
th

at
 s

af
et

y 
co

m
po

ne
nt

s 
ha

ve
 b

ee
n 

co
rre

ct
ly

 in
te

gr
at

ed
 in

to
 th

e 
ov

er
al

l s
af

et
y-

cr
iti

ca
l s

ys
te

m
.

To
 e

ns
ur

e 
th

at
 s

af
et

y-
re

la
te

d 
co

m
po

ne
nt

s,
 c

re
at

ed
 

an
d/

or
 u

se
d 

by
 d

ev
el

op
er

s,
 a

re
 w

or
ki

ng
 p

ro
pe

rly
.

In
de

pe
nd

en
t r

ev
ie

w
 o

f 
de

ve
lo

pm
en

t p
ro

ce
ss

es
 a

nd
 

pr
od

uc
ts

En
ga

ge
m

en
t o

f t
hi

rd
 p

ar
tie

s 
to

 p
er

fo
rm

 a
n 

in
de

pe
nd

en
t a

ss
es

sm
en

t 
of

 th
e 

de
ve

lo
pm

en
t p

ro
ce

ss
es

 a
nd

 p
ro

ce
du

re
s 

an
d 

th
ei

r 
co

nd
uc

iv
en

es
s 

to
 d

ev
el

op
in

g 
sa

fe
 s

of
tw

ar
e.

To
 d

et
er

m
in

e 
if 

th
er

e 
ar

e 
an

y 
sa

fe
ty

 is
su

es
, r

el
at

in
g 

to
 

th
e 

de
ve

lo
pm

en
t o

f t
he

 s
of

tw
ar

e 
sy

st
em

, w
hi

ch
 n

ee
d 

to
 b

e 
ad

de
d,

 d
el

et
ed

, o
r o

th
er

w
is

e 
m

od
ifi

ed
.

*I
t s

ho
ul

d 
be

 n
ot

ed
 th

at
, i

n 
th

e 
JS

SS
C 

re
po

rt 
[3

], 
th

e 
te

rm
s t

es
tin

g 
an

d 
ve

rifi
ca

tio
n 

an
d 

va
lid

at
io

n 
ap

pe
ar

 to
 b

e 
us

ed
 in

te
rc

ha
ng

ea
bl

y. 
In

 th
is

 b
oo

k,
 te

st
in

g 
is

 co
ns

id
er

ed
 to

 b
e 

on
e 

co
m

po
ne

nt
 

of
 b

ot
h 

ve
rifi

ca
tio

n 
an

d 
va

lid
at

io
n.

 T
he

 la
tte

r a
ct

iv
iti

es
 in

cl
ud

e 
su

ch
 ta

sk
s a

s t
he

 in
sp

ec
tio

n 
of

 re
qu

ire
m

en
ts

 a
nd

 sp
ec

ifi
ca

tio
ns

 a
nd

 h
ow

 th
ey

 h
av

e 
be

en
 im

pl
em

en
te

d,
 d

et
er

m
in

in
g 

w
he

th
er

 
re

qu
ire

m
en

ts
 h

av
e 

be
en

 s
at

is
fie

d,
 a

nd
 o

bt
ai

ni
ng

 m
an

ag
em

en
t s

ig
no

ffs
 a

nd
 c

us
to

m
er

 a
pp

ro
va

ls
.



306	 Engineering	Safe	and	Secure	Software	Systems	 	 Appendix D	 307

Ta
bl

e 
D

.5
 

Sa
fe

ty
-R

el
at

ed
 Ta

sk
s 

fo
r t

he
 V

er
ifi

ca
tio

n,
 V

al
id

at
io

n,
 a

nd
 C

er
tifi

ca
tio

n 
Ph

as
e

Ta
sk

s
Su

bt
as

ks
Pu

rp
os

e
Co

de
 re

vi
ew

Re
vi

ew
 o

f a
pp

lic
at

io
n 

co
de

 to
 v

er
ify

 th
at

 it
 m

ee
ts

 s
af

et
y 

re
qu

ire
m

en
ts

 a
nd

 s
pe

ci
fic

at
io

ns
.

To
 d

et
er

m
in

e 
if 

th
er

e 
ar

e 
an

y 
co

de
-le

ve
l s

af
et

y 
is

su
es

 
an

d,
 if

 s
o,

 to
 a

dd
re

ss
 th

em
.

Te
st

in
g 

of
 c

on
fig

ur
at

io
n 

pr
oc

ed
ur

es
Re

vi
ew

 o
f c

on
fig

ur
at

io
n 

pr
oc

ed
ur

es
 a

nd
 v

er
ifi

ca
tio

n 
th

at
 th

ey
 

ar
e 

us
ab

le
 b

y 
ad

m
in

is
tra

to
rs

 fo
r s

et
tin

g 
up

 n
et

w
or

ks
 a

nd
 s

ys
te

m
 

co
m

po
ne

nt
s 

to
 m

ee
t s

af
et

y 
st

an
da

rd
s.

To
 d

et
er

m
in

e 
if 

th
er

e 
ar

e 
an

y 
pr

oc
ed

ur
al

 is
su

es
 in

 n
ee

d 
of

 re
so

lu
tio

n.

Sy
st

em
 te

st
in

g
Te

st
in

g 
to

 d
et

er
m

in
e 

w
he

th
er

 th
e 

te
ch

ni
ca

l s
af

et
y 

co
m

po
ne

nt
s 

of
 th

e 
so

ftw
ar

e 
sy

st
em

 a
re

 fu
nc

tio
ni

ng
 to

ge
th

er
 a

nd
 c

on
fo

rm
 to

 
ar

ch
ite

ct
ur

e 
an

d 
de

si
gn

 s
pe

ci
fic

at
io

ns
.

To
 d

et
er

m
in

e 
if 

th
er

e 
ar

e 
an

y 
sy

st
em

-le
ve

l a
nd

 s
ys

te
m

-
in

te
gr

at
io

n 
is

su
es

 in
 n

ee
d 

of
 re

so
lu

tio
n.

Pe
rfo

rm
an

ce
 a

nd
 lo

ad
 te

st
in

g
Te

st
in

g 
to

 d
et

er
m

in
e 

w
he

th
er

 s
ys

te
m

 p
er

fo
rm

an
ce

 a
nd

 p
ro

du
ct

io
n 

lo
ad

 re
qu

ire
m

en
ts

 m
ee

t p
re

sp
ec

ifi
ed

 le
ve

ls
 w

ith
 s

af
et

y 
co

m
po

ne
nt

s 
an

d 
fe

at
ur

es
 o

pe
ra

tin
g.

To
 d

et
er

m
in

e 
if 

th
er

e 
ar

e 
an

y 
sa

fe
ty

-re
la

te
d 

is
su

es
 

re
la

tin
g 

to
 p

er
fo

rm
an

ce
 th

at
 n

ee
d 

to
 b

e 
re

so
lv

ed
.

Us
ab

ili
ty

 te
st

in
g

Pe
rfo

rm
 te

st
s 

to
 d

et
er

m
in

e 
w

he
th

er
 s

ys
te

m
 m

ee
ts

 e
nd

-u
se

r 
us

ab
ili

ty
 a

nd
 e

rg
on

om
ic

 n
ee

ds
. 

To
 d

et
er

m
in

e 
if 

th
er

e 
ar

e 
an

y 
us

ab
ili

ty
 is

su
es

, w
hi

ch
 

co
ul

d 
af

fe
ct

 s
af

et
y, 

 in
 n

ee
d 

of
 re

so
lu

tio
n.

IV
&

V 
(in

de
pe

nd
en

t v
er

ifi
ca

tio
n 

an
d 

va
lid

at
io

n)
 a

ss
es

sm
en

ts
En

ga
ge

m
en

t o
f t

hi
rd

 p
ar

tie
s 

to
 p

er
fo

rm
 v

er
ifi

ca
tio

n 
an

d 
va

lid
at

io
n 

as
se

ss
m

en
ts

 in
 o

rd
er

 to
 d

et
er

m
in

e 
w

he
th

er
 th

er
e 

ar
e 

an
y 

ap
pl

ic
at

io
n,

 p
la

tfo
rm

, a
nd

/o
r i

nf
ra

st
ru

ct
ur

e 
sa

fe
ty

 is
su

es
. 

To
 d

et
er

m
in

e 
if 

th
er

e 
ar

e 
an

y 
sa

fe
ty

 is
su

es
 th

at
 n

ee
d 

to
 

be
 a

dd
re

ss
ed

.

Ce
rti

fic
at

io
n

Ob
ta

in
in

g 
sa

fe
ty

 c
er

tifi
ca

tio
n 

at
 a

 p
ar

tic
ul

ar
 le

ve
l i

n 
or

de
r t

ha
t t

he
 

so
ftw

ar
e 

sy
st

em
 c

an
 b

e 
us

ed
 fo

r i
ts

 in
te

nd
ed

 p
ur

po
se

.
To

 o
bt

ai
n 

ce
rti

fic
at

io
n 

so
 th

at
 th

e 
so

ftw
ar

e 
sy

st
em

 c
an

 b
e 

de
pl

oy
ed

 a
s 

re
qu

ire
d.



306	 Engineering	Safe	and	Secure	Software	Systems	 	 Appendix D	 307

Ta
bl

e 
D

.6
 

Sa
fe

ty
-R

el
at

ed
 Ta

sk
s 

fo
r t

he
 D

ep
lo

ym
en

t P
ha

se
Ta

sk
 A

re
as

D
es

cr
ip

tio
ns

Pu
rp

os
es

Pi
lo

t d
ep

lo
ym

en
t

Id
en

tifi
ca

tio
n 

of
 a

ny
 re

m
ai

ni
ng

 is
su

es
 re

la
te

d 
to

 a
ll 

ar
ea

s 
of

 s
of

tw
ar

e 
sy

st
em

 p
la

nn
in

g,
 d

es
ig

n,
 a

rc
hi

te
ct

ur
e,

 d
ev

el
op

m
en

t, 
te

st
in

g,
 

im
pl

em
en

ta
tio

n,
 a

nd
 d

ec
om

m
is

si
on

in
g.

To
 a

llo
w

 d
ev

el
op

m
en

t a
nd

 a
rc

hi
te

ct
ur

e 
te

am
s 

to
 

m
ak

e 
ad

ju
st

m
en

ts
 to

 o
pe

ra
tio

na
l p

ro
ce

ss
es

, s
ys

te
m

s 
ar

ch
ite

ct
ur

e,
 d

es
ig

n,
 a

nd
 p

ro
gr

am
s 

pr
io

r t
o 

re
le

as
e.

Tr
an

si
tio

n 
fro

m
 fi

na
l t

es
tin

g 
to

 o
pe

ra
tio

ns
En

su
rin

g 
th

at
 th

e 
fin

al
 s

ys
te

m
, j

us
t p

rio
r t

o 
de

pl
oy

m
en

t, 
ad

dr
es

se
s 

ad
eq

ua
te

 le
ve

ls
 o

f i
nt

eg
rit

y 
an

d 
th

at
 a

pp
ro

pr
ia

te
 c

ha
ng

e 
m

an
ag

em
en

t 
pr

oc
ed

ur
es

, e
nc

ry
pt

io
n 

of
 tr

an
sm

is
si

on
s,

 in
te

rim
 a

cc
es

s 
au

th
or

iza
tio

ns
, 

an
d 

so
 o

n 
ar

e 
in

 p
la

ce
. A

ls
o 

as
su

rin
g 

th
at

 a
ll 

re
qu

ire
d 

pr
oc

es
se

s 
ha

ve
 b

ee
n 

re
vi

ew
ed

 a
nd

 te
st

ed
.

To
 e

ns
ur

e 
th

at
 th

e 
tra

ns
iti

on
 p

ro
ce

ss
 c

on
fo

rm
s 

to
 g

oo
d 

sa
fe

ty
 a

nd
 s

ec
ur

ity
 p

ra
ct

ic
es

.

Co
m

pa
ris

on
 o

f s
ys

te
m

 fi
le

s
In

 th
e 

ca
se

 o
f a

 re
pl

ac
em

en
t s

ys
te

m
, m

ak
in

g 
su

re
 th

at
 s

ys
te

m
 fi

le
s 

of
 th

e 
sy

st
em

 th
at

 is
 a

bo
ut

 to
 b

e 
la

un
ch

ed
 a

re
 c

om
pa

tib
le

 to
 th

e 
or

ig
in

al
 s

ys
te

m
 

fil
es

 a
nd

 th
at

 th
ey

 m
at

ch
, t

he
re

by
 a

ss
ur

in
g 

th
e 

au
th

en
tic

ity
 o

f t
he

 fi
le

s.

To
 e

ns
ur

e 
th

e 
au

th
en

tic
ity

 o
f s

ys
te

m
 fi

le
s 

to
 b

e 
m

ov
ed

 
in

to
 th

e 
op

er
at

io
na

l e
nv

iro
nm

en
t. 

Co
m

pa
ris

on
 o

f d
at

a 
fil

es
In

 th
e 

ca
se

 o
f a

 re
pl

ac
em

en
t s

ys
te

m
, m

ak
in

g 
su

re
 th

at
 d

at
a 

fil
es

 o
f t

he
 

sy
st

em
 th

at
 is

 a
bo

ut
 to

 b
e 

la
un

ch
ed

 a
re

 c
om

pa
tib

le
 w

ith
 th

e 
or

ig
in

al
 d

at
a 

fil
es

 a
nd

 th
at

 th
ey

 m
at

ch
, t

he
re

by
 a

ss
ur

in
g 

th
e 

au
th

en
tic

ity
 o

f t
he

 d
at

a.

To
 e

ns
ur

e 
th

e 
au

th
en

tic
ity

 o
f d

at
a 

fil
es

 to
 b

e 
m

ov
ed

 
in

to
 th

e 
op

er
at

io
ns

 e
nv

iro
nm

en
t.

Tr
ai

ni
ng

 a
nd

 a
w

ar
en

es
s

En
su

rin
g 

th
at

 a
ll 

ap
pr

op
ria

te
 s

ta
ke

ho
ld

er
s 

(e
.g

., 
en

d 
us

er
s,

 a
dm

in
is

tra
tiv

e 
pe

rs
on

ne
l, 

te
ch

ni
ca

l s
up

po
rt,

 a
nd

 o
pe

ra
tio

ns
 s

ta
ff)

 a
re

 tr
ai

ne
d 

an
d 

ar
e 

aw
ar

e 
of

 th
e 

sa
fe

ty
 fu

nc
tio

ns
 a

nd
 a

ttr
ib

ut
es

 o
f t

he
 s

ys
te

m
.

To
 e

ns
ur

e 
th

at
 th

os
e 

w
ho

 w
ill

 u
se

 a
nd

 s
up

po
rt 

th
e 

ne
w

 s
ys

te
m

 a
re

 s
uf

fic
ie

nt
ly

 fa
m

ili
ar

 w
ith

 th
e 

sa
fe

ty
 

re
qu

ire
m

en
ts

 o
f t

he
 s

ys
te

m
 in

 o
rd

er
 to

 p
er

fo
rm

 th
ei

r 
re

sp
ec

tiv
e 

fu
nc

tio
ns

.
Fu

ll-
sc

al
e 

de
pl

oy
m

en
t

M
ak

in
g 

su
re

 th
at

 th
e 

ex
is

tin
g 

in
fra

st
ru

ct
ur

e 
m

ee
ts

 s
af

et
y 

re
qu

ire
m

en
ts

 
pr

io
r t

o 
in

st
al

la
tio

n 
of

 th
e 

ne
w

 s
ys

te
m

.
Ch

ec
ki

ng
 th

at
 a

ll 
sa

fe
ty

-re
la

te
d 

pr
oc

ed
ur

es
 h

av
e 

be
en

 e
st

ab
lis

he
d 

an
d 

th
en

 fo
llo

w
ed

 th
ro

ug
ho

ut
 th

e 
de

pl
oy

m
en

t p
ha

se
.

To
 a

vo
id

 d
ep

lo
yi

ng
 th

e 
sy

st
em

 in
to

 a
 h

az
ar

do
us

 
en

vi
ro

nm
en

t.

In
de

pe
nd

en
t s

af
et

y-
or

ie
nt

ed
 

re
vi

ew
 o

f d
ep

lo
ym

en
t

En
ga

gi
ng

 th
ird

 p
ar

tie
s 

to
 p

er
fo

rm
 s

af
et

y 
as

se
ss

m
en

ts
 d

ur
in

g 
th

e 
de

pl
oy

m
en

t, 
pr

ed
ep

lo
ym

en
t, 

an
d 

po
st

-d
ep

lo
ym

en
t.

To
 d

et
er

m
in

e 
w

he
th

er
 th

er
e 

ar
e 

an
y 

sa
fe

ty
-re

la
te

d 
de

pl
oy

m
en

t i
ss

ue
s,

 a
nd

 w
hi

ch
 w

er
e 

m
is

se
d 

or
ig

in
al

ly
 

bu
t t

ha
t n

ee
d 

to
 b

e 
re

so
lv

ed
.



308	 Engineering	Safe	and	Secure	Software	Systems	 	 Appendix D	 309

Ta
bl

e 
D

.7
 

Sa
fe

ty
-R

el
at

ed
 Ta

sk
s 

fo
r t

he
 O

pe
ra

tio
ns

/M
ai

nt
en

an
ce

/S
up

po
rt 

Ph
as

e
Ta

sk
 A

re
as

D
es

cr
ip

tio
ns

Pu
rp

os
es

Te
st

in
g 

an
d 

m
ig

ra
tin

g 
to

 n
ew

 
so

ftw
ar

e 
ve

rs
io

n
An

al
ys

is
 o

f n
ew

 v
er

si
on

s 
of

 s
of

tw
ar

e 
to

 d
et

er
m

in
e 

w
hi

ch
 h

az
ar

do
us

 
co

nd
iti

on
s 

m
ay

 h
av

e 
be

en
 re

so
lv

ed
 a

nd
 w

hi
ch

 h
az

ar
do

us
 c

on
di

tio
ns

 
st

ill
 e

xi
st

.

To
 d

et
er

m
in

e 
th

e 
ha

za
rd

s 
of

 c
ur

re
nt

 a
nd

 re
pl

ac
em

en
t 

so
ftw

ar
e 

ve
rs

io
ns

 in
 o

rd
er

 to
 a

rri
ve

 a
t a

 re
vi

se
d 

lis
t o

f 
ha

za
rd

s 
to

 b
e 

re
so

lv
ed

.
Ri

sk
 re

vi
ew

s
Pe

rfo
rm

in
g 

a 
ne

w
 ri

sk
 a

ss
es

sm
en

t i
f c

us
to

m
er

 ri
sk

 c
on

di
tio

ns
 h

av
e 

m
at

er
ia

lly
 c

ha
ng

ed
 d

ue
 to

 th
e 

in
st

al
la

tio
n 

of
 th

e 
ne

w
 s

ys
te

m
.

To
 d

et
er

m
in

e 
w

he
th

er
 s

af
et

y 
ris

ks
 h

av
e 

in
cr

ea
se

d 
w

ith
 th

e 
ne

w
 v

er
si

on
 a

nd
 th

er
ef

or
e 

ne
ed

 to
 b

e 
m

iti
ga

te
d.

Sa
fe

ty
 a

w
ar

en
es

s 
pr

og
ra

m
M

ai
nt

ai
n 

a 
sa

fe
ty

 a
w

ar
en

es
s 

pr
og

ra
m

 to
 ta

ke
 in

to
 a

cc
ou

nt
 c

ha
ng

es
 in

 
th

re
at

 a
nd

 v
ul

ne
ra

bi
lit

y 
en

vi
ro

nm
en

ts
, t

he
 a

dd
iti

on
 o

f n
ew

 c
us

to
m

er
s,

 
em

pl
oy

ee
s,

 a
nd

 c
on

su
lta

nt
s,

 a
nd

 c
ha

ng
es

 in
 th

e 
la

w
s,

 re
gu

la
tio

ns
, 

an
d 

ce
rti

fic
at

io
n 

re
qu

ire
m

en
ts

.

To
 k

ee
p 

se
cu

rit
y 

aw
ar

en
es

s 
an

d 
tra

in
in

g 
pr

og
ra

m
s 

up
-

to
-d

at
e 

w
ith

 re
sp

ec
t t

o 
co

nt
en

t a
nd

 th
e 

po
pu

la
tio

n 
to

 b
e 

tra
in

ed
.

Ha
za

rd
 a

nd
 v

ul
ne

ra
bi

lit
y 

ris
k 

as
se

ss
m

en
ts

Pe
rfo

rm
 p

er
io

di
c 

ha
za

rd
 a

nd
 v

ul
ne

ra
bi

lit
y 

ris
k 

as
se

ss
m

en
ts

 to
 a

cc
ou

nt
 

fo
r c

ha
ng

es
 in

 s
ys

te
m

s,
 te

ch
no

lo
gi

es
, a

nd
 p

er
so

nn
el

.
To

 e
ns

ur
e 

th
at

 n
ew

 a
nd

 c
ha

ng
in

g 
vu

ln
er

ab
ili

tie
s 

ar
e 

re
co

gn
ize

d 
an

d 
th

at
 a

 p
ro

gr
am

 fo
r t

he
ir 

re
so

lu
tio

n 
is

 
en

ac
te

d.
Au

di
tin

g,
 lo

gg
in

g,
 m

on
ito

rin
g,

 
ar

ch
iv

in
g

Im
pl

em
en

t a
pp

ro
pr

ia
te

 lo
gg

in
g,

 a
rc

hi
ve

 p
ro

ce
du

re
s,

 a
nd

 re
vi

ew
 th

e 
lo

gs
 p

er
io

di
ca

lly
 in

 o
rd

er
 to

 d
et

ec
t a

ny
 q

ue
st

io
na

bl
e 

sa
fe

ty
-re

la
te

d 
ac

tiv
iti

es
.

To
 d

et
er

m
in

e 
w

he
th

er
 a

ny
 a

no
m

al
ou

s 
ac

tiv
iti

es
 a

re
 ta

ki
ng

 
pl

ac
e 

an
d,

 if
 s

o,
 to

 ta
ke

 a
ct

io
n 

to
 h

al
t s

uc
h 

ac
tiv

iti
es

, 
pr

ev
en

t f
ut

ur
e 

ac
tiv

iti
es

, a
nd

 ta
ke

 a
pp

ro
pr

ia
te

 s
te

ps
 

ag
ai

ns
t p

er
pe

tra
to

rs
.



308	 Engineering	Safe	and	Secure	Software	Systems	 	 Appendix D	 309

Once the software system has been deployed, there are ongoing opera-
tional, maintenance, and support functions that are required in order to keep 
the system running in a safe manner, as described in Table D.7.

As long as there are few changes to the system and its environment, it can 
be expected that the system will remain relatively stable over long periods of 
time. Any changes can adversely affect safety, and so it is appropriate to conduct 
periodic safety reviews that will consider the safety impact of any such changes. 
However, in many cases, the next significant period begins when there is an 
impetus to close down the system, whether such pressure to change systems 
is internally or externally initiated. For example, at some point, safety-critical 
systems will become obsolete and will need to be replaced within the relatively 
near future, say 18 months to two years. This will result in the need to dis-
continue the current system and dispose of any traces of the applications. For 
safety-critical systems, it is very important that the disposal of the system being 
replaced is done in a safe and secure way. The tasks relating to this decommis-
sioning and disposal phase are described in Table D.8.

Levels of Involvement

In Table D.9, we show the overall involvement of the various groups and teams 
in the safety aspects of the life cycle. The entries in this table are normative. As 
expected, the main participants are the safety, security and audit team mem-
bers, with the other areas generally moderately involved. This differs from Table 
C.17 in Appendix C, mainly with respect to Table D.9 showing relatively lower 
involvement of the application development and infrastructure teams and busi-
ness managers for safety-critical systems. This is attributable to safety being 
more oriented towards the physical world, resulting in somewhat less involve-
ment by the more technical teams.

A Note on Sources

The tables in this appendix  were developed in large part from the JSSC report 
[2]. The structure and many of the entries in the tables were derived from 
McBride [5], as was the case for Appendix C. However, as in Appendix C, the 
phases relating to risk analysis and control, decommissioning, and disposal were 
added.
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Endnotes
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[3] Braude, E. J., and M. E. Bernstein, Software Engineering: Modern Approaches, Second Edi-
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