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Preface

The best laid plans o’ Mice an’ Men, Gang oft agley ...
—Robert Burns, 70 a Mouse

The initial concept for this book arose some 3 to 4 years ago. However, it
was quite different from how the book turned out. I had spent much of the
previous decade working on application security, particularly software assur-
ance. Several years ago, I had the good fortune of being the technical lead on
a software assurance initiative for the banking and finance sector, supported
by the Financial Services Technology Consortium. The first phase of the proj-
ect provided insights from thought leaders from independent software vendors
(ISVs), information security tools and services vendors, industry and profes-
sional associations, academia, and a number of leading financial institutions. A
collection of state-of-the-art practices was assembled, with the intention of us-
ing the “best” approaches for assuring the quality of software through industry-
sponsored testing. This work provided a substantial amount of the research that
was behind the BITS publication Software Assurance Framework [1].

The ultimate goal of the software assurance initiative was to establish a
state-of-the-art testing facility for the financial services industry using methods,
tools, and services chosen from the initial research. Unfortunately, the financial
meltdown of 2008 interceded. Various mergers and restructurings took place,
so that attention was turned to other more pressing matters.

The financial services industry and other critical infrastructure sectors
continue to be in dire need of such testing laboratories to ensure that com-
monly used software meets agreed-upon security standards. Others, such as Joel
Brenner [2], also espouse such a concept as some form of Consumers-Union-
like autonomous testing service. But who would support and fund such an
effort?

XVii
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Perhaps an interesting indicator as to how such testing laboratories might
be created is the example of Huawei, the Chinese telecommunications giant,
which built the Cyber Security Evaluation Centre in England. The Centre’s
purpose is to assure potential British customers of Huawei products and services
that the company’s technology can be trusted not only to do what customers
want them to do (and nothing more) but also that Huawei’s products cannot be
successfully attacked by cyber criminals, terrorists or foreign spies, as reported
in The Economist [3].

My initial book concept was to cover software assurance with particular
emphasis on requirements, context, and the like, with some, but relatively little
mention of the differences between developing security-critical and safety-criti-
cal software systems, and how to bring these diverse fields together. Then what
caused me to put so much more emphasis on the engineering of the security
and safety of software systems? It was a realization that professionals in the
software security and safety fields have minimal interaction and are generally
not familiar with the other engineers’ knowledge base and standard procedures.
This argument is supported from personal experience as well as from the ob-
servation that the majority of books and articles covering one area have little if
any mention of the other field. I first became aware of the difference in culture
and approach when I did some work with a small government contractor that
builds safety-critical software systems. Their approach was so different from
what I had been used to throughout an IT career in financial services. The ratio
of programming to testing appeared to be reversed for each type of system, with
security-critical information systems receiving much less testing relative to the
extensive verification and validation processes to which safety-critical control
systems are subjected.

A number of other factors began pointing to the need for developing a
book that would help security software engineers understand safety and vice
versa. However, the most influential event was a serendipitous conversation
at the 2010 IEEE International Conference on Homeland Security Technology
in Waltham, Massachusetts with Peter Gutgarts. He and Aaron Termin were
presenting on their topic “Security-Critical versus Safety-Critical Software.”
Peter Gutgarts and I discussed the subject at length and what I gained from
the conversation was the realization that so little attention was being paid to
combined safety and security aspects of critical software systems. These systems,
which include so-called cyber-physical systems, are rapidly becoming crucial to
the future of modern economies. Before our eyes, software systems are being
developed that merge sophisticated modern web applications with traditional
industrial control systems. Such cyber-physical systems offer the best—and the
worst—of both worlds. For example, the ability to monitor and control elec-
tricity meters remotely creates many new features, such as determining and
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reporting unusual activities or cessation of service, but they also expose the elec-
tricity grid to hackers with malevolent and destructive intentions.

Today, the security of the smart grid and analogous systems for water and
natural gas distribution and the like are being discussed and are a clear concern
of both government and the private sector. Yet, beyond the talk, what is actu-
ally being done is woefully inadequate. Is this a case of the road to hell being
paved with good intentions? It seems that there is agreement in principle as to
the need, yet the lack of subject-matter expertise and processes for coordination
and collaboration are thwarting attempts to make it all happen. We have not yet
built the necessary bridges between security professionals and safety engineers
to enable fully coordinated efforts. The cultural differences and the goals of the
security and safety silos are such that they do not interact and do not under-
stand the needs of the other group.

Seeing the lack of interaction, in the field and in the literature, I deter-
mined that the software engineering field needs to initiate conversations that
will reduce and eliminate the lack of communication between information se-
curity professionals and software safety engineers.

Brenner [2] describes how, to their credit, the U.S. military found a way
to ensure that the efforts of diverse experts would be coordinated and consistent
across Defense Departments by creating the Joints Chiefs of Staff. As Brenner
puts it:

“Joint organization has paid extraordinary operational dividends but it
was a struggle to make it work. Overcoming intense service-level loyalties took
time... The [1986 Goldwater-Nichols Act] is one of the most important organi-
zational reforms in the history of the United State government...”

If the military can do it, so perhaps could the rest of government and the
private sector when it comes to coordinating the efforts to ensure that critical
software systems are both secure and safe. The need is there for solutions that
will overcome the security, safety, and other deficiencies in the software devel-
opment processes and the software systems that they produce.

The original direction of improving the software assurance processes and
building testing facilities continues to be extremely important and needs to
be addressed vigorously in short order. However, I chose to focus this book
on reducing the huge gap that exists between the software safety and security
engineering fields. No doubt others will revisit my original software-assurance
topics at a later date. For now, I will focus on what I see to be one of the most
pressing needs of today’s software engineering world—the collaboration be-
tween software security and safety engineers in the creation of complex systems
of systems, particularly cyber-physical systems.

While I have covered many concepts in the software systems safety-se-
curity space, this work should not be considered an end in itself. It provides a
starting point from which you can examine further the many complex topics
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that have been discussed in this book. Efforts on your part to expand upon that
which you read here may be challenging—but they will also be exciting. You
will be rewarded with the knowledge that you are learning more about what is
surely one of the most critical areas of software engineering. Good luck with
your endeavors.

Endnotes

[1] BITS Division of the Financial Services Roundtable, Software Assurance Framework, Janu-
ary 2012. Available at http://www.bits.org/publications/security/BITSSoftwareAssur-
ance0112.pdf. Accessed August 26, 2012.

[2] Brenner, J., America the Vulnerable: Inside the New Threat Matrix of Digital Espionage,
Crime, and Warfare, New York: Penguin Press, 2011.

(3] “Briefing Huawei: The Company that Spooked the World,” The Economist, August 4-10,
2012, pp.19-23.



Foreword

Computer security was once a casual, even polite, discipline that was practiced
in business and government via little tips: “Don’t use your name as a password,”
published policy rules: “Please inform the security team of any Internet-facing
servers,” and off-the-shelf products: “Based on our scan, your system is free of
malware!”

This era of casualness has unfortunately long since passed, and technol-
ogy practitioners, ranging from system administrators, to software engineers,
to casual users, all understand that malicious threats to organizational assets are
real. Just about every major organization on the planet has been hit with ad-
vanced persistent threats (APTs), distributed denial of service (DDOS) threats,
or both—and the effects are often lethal. Safety-critical issues have been simi-
larly intense with often serious consequences for the organization.

Warren Axelrod’s new book is an important contribution to the disci-
plines of security and safety—offering information that will be vital to anyone
connected in any way to the protection of information and assets. While his
book targets the software engineering life cycle, many of its security and safety
points can be expanded and extrapolated to more general contexts. The discus-
sions and examples are practical and provide considerable insights for profes-
sionals interested in immediate-term benefit.

The material on safeguarding public data and intellectual property is par-
ticularly useful, given so many recent public issues. Its emphasis on risk, and
how it relates to security and safety-critical systems is also particularly relevant
in the current global environment.

Newly published works on this topic of computer security and the related
topic of system safety seem to appear on a regular basis, perhaps even daily. But
few are produced by someone with the experience and knowledge of this capa-
ble author, a longtime friend of mine. His background and expertise are unique
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and I am pleased that he’s taken the time to share a portion of his knowledge
on protecting assets.

If you have already purchased this book, then by all means, please turn
the page and begin reading. If, however, you are flipping through these pages
online (or at your bookstore), then I strongly suggest that you add this book to

your cart. It’s worth the read.
Edward G. Amoroso'
ATST Chief Security Officer and Senior Vice President

1. Dr. Edward G. Amoroso is responsible for all areas of information security including plan-
ning, design, development, implementation, and operations support for AT&T’s extensive
global network and communications. Ed Amoroso is an adjunct professor of computer sci-
ence at Stevens Institute of Technology and holds a Ph.D. and masters degree in computer
science. He is a frequent expert speaker before Senate subcommittees on the topic of cyber
security.



Introduction

A paradigm shift is underway, and a number of recent threads point

towards a fusion of security with software engineering, or at the very

least to an influx of software engineering ideas.

—Ross J. Anderson, Cambridge University, Why Cryptosystems Fail,
1993 [1]

While the general concept of safety and reliability is understood by most
parties, the specialty of software safety and reliability is not.
—Debra S. Hermann, Software Safety and Reliability [2]

Preamble

Despite heroic efforts by security and safety software engineers, information
and physical security professionals, and those involved with creating and de-
ploying safe and secure software, software systems still succumb to willful and
accidental attacks and are unable to avoid completely malicious or unintended
damage to human life and the environment.

One reason might be the shortage of subject-matter experts with in-depth
knowledge and broad experience in application security, software system safety,
software assurance, and related subjects. Even so, we must question why we
aren’t doing a better job of building, operating, and maintaining safe and secure
software-intensive systems. After all, there is a considerable body of knowledge,
much of which will be discussed in this book, about building, deploying, op-
erating, and maintaining safety-critical and security-critical software-intensive
systems.

These problems do not lie with lack of knowledge or ability on the part of

experts; rather, they have to do with the omission of critical elements—not the

1
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least of which is communication among diverse stakeholders—which is needed
for securing software systems and making them safe. Recommendations by re-
searchers, particularly as they relate to information security and system safety,
are often tentative and normative in nature and seldom usable in the real world.
In some cases, this is due to the lack of authority and power of those asserting
the need for action to improve the safety and security of software systems. In
other instances, researchers are unrealistic about the application of certain tech-
niques, recommending activities that may be too difficult or expensive for the
average development shop to implement.

There is also a mind-numbing, imprecise, and often misleading vocabu-
lary that results from the art of creating safe and secure software systems sitting
at the intersection of so many different fields with stakeholders who do not
communicate properly with one another. As a result, conversations and interac-
tions among safety and security experts are frequently obscure and misguided,
and mutual agreement about the relative importance of security and safety for
specific critical systems is seldom reached. This can produce systems where
weaknesses of one segment are detrimental to otherwise high-integrity, high-
assurance systems. This failure to communicate leads to critical systems that are
vulnerable to attack and where successful attacks can result in considerable loss
of assets or harm to life and the environment.

In this book, we shall look beyond the standard texts, although they will
be referenced and studied extensively. Rather, we shall base our inquiries on the
simple question: “What will it take to ensure that the software systems, upon
which our economic and physical lives depend, are trustworthy, dependable,
and sustainable?”

Part of the answer will come from a rigorous examination of the terms
and definitions that we use. For example, the words “security” and “safety”
are commonly used interchangeably, but if examined more closely, their differ-
ences are the key to understanding how to create secure, safe, and dependable
software-intensive systems. Then we have the lack of rigorous testing, needed
to ensure that systems will not misbehave or allow manipulation that could lead
to disastrous outcomes.

It should be noted that even today there is little communication between
security and safety silos involved in building complex security-critical and safe-
ty-critical software intensive systems. This isolation leads to application software
without reference to the platforms and infrastructures upon which it operates.

Context is a key aspect of achieving security, safety, reliability, availability,
integrity, resiliency, and the like. A system has a very different set of demands
if it is exposed to public communications networks such as the Internet, than
if it is isolated from external networks; however, there are ways to bridge such
an “air gap,” as was demonstrated by the Stuxnet attack on the Iranian uranium
processing plants.
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Furthermore, the meaningfulness of application security metrics must be
examined. Measurements that we have and use are often not up to the job, as
witnessed by the frequent injection of malware, submission to denial of service
attacks, and common system failures. To what extent is it a question of not
using the right metrics versus not collecting the data upon which to base the
metrics in the first place? The gathering and analysis of appropriate metrics is
the basis of risk analysis. If we don’t know what is going on inside of our soft-
ware systems, then we cannot determine the level of risk being incurred, and
consequently, we are then unable to mitigate those risks effectively.

Additionally, we have supply chain issues. Can we trust commercial soft-
ware generally and software developed offshore in particular? Do we know
whose fingers touched the software (and the hardware on which it runs) during
the development life cycle, deployment, and maintenance? Is there reason to
suspect that those with evil intentions have inserted back doors and malware
into the software systems? How can we ensure not only the security and integ-
rity of applications in general but also the specific copy that we are using?

This book addresses what the author considers to be real issues and im-
pediments to the development and operation of safe and secure mission-critical,
software-intensive systems. It does not ignore the common vulnerabilities and
errors found in applications, such as those listed in The Open Web Application
Security Project (OWASP) top ten or The System Administration, Network-
ing, and Security Institute (SANS)/Common Weakness Enumeration (CWE)
top twenty and described in Appendix A. Rather, it takes the view that these
specific risks are important and must necessarily be dealt with, but they alone
will not solve the problem of deficient software systems. As we will discover,
merely solving these problems is not sufficient to achieve a level of assurance
that critical software systems meet high standards of security and safety. What
is needed is a pragmatic view of what it takes to achieve the optimal levels of
security and safety, however optimality is defined. It is the mission of this book
to focus on the neglected aspects of software systems engineering that stand the
chance of our making a material improvement in the state of software, a state
that currently is deteriorating rapidly.

Scope and Structure of the Book

As mentioned previously in this book, it was to be a treatise on software assur-
ance. However, it rapidly became apparent that, in order to come up with an
approach that would cover both the security and safety of software systems, it
was necessary to go back in time to see how software engineering has evolved
over recent decades. We also sought to learn why there is so little overlap be-
tween the areas of interest of software security engineers and software safety en-
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gineers. Books on software security seldom include references to software safety,
and vice versa; it is as if each party were totally oblivious as to what goes on with
their software engineering counterparts in the other area. This book attempts
to bridge that gap between cyber security and physical safety professionals. This
approach recognizes that these so-called cyber-physical systems evolve over time
and, as they do, there will be an increasing need for those who understand both
security and safety to interrelate.

The first half of this book, Chapters 2 through 5, examines the history
and evolution of systems engineering, covering software systems and the se-
curity and safety attributes of those systems. The next section, Chapter 6 and
7, addresses risk issues and metrics, which are fundamental to the assessment
and management of systems in general and secure and safe software systems in
particular. In the next sections, Chapters 8, 9, and 10, we describe the processes
available for developing software systems, with particular emphasis on secure
and safe software systems. Chapter 11 discusses how economic and behavioral
factors influence the degree to which stakeholders participate in and support
security and safety features and attributes.

Appendix A provides lists and explanations of programming weakness
and errors as presented by OWASP, SANS, and others. Appendix B compares
the ISO/IEC 12207 and CMMI®-DEV process areas. Appendix C provides
checklists in support of security-critical systems, and Appendix D does the same
for safety-critical systems. These latter two sets of checklists serve two purposes.
The first is to help software engineers ensure that they have considered a full,
though not complete, set of issues relating to their area of specialty (namely
security or safety). The second purpose is to enable software security engineers
to learn what factors make for safe systems, and to help software safety engi-
neers determine which issues are important for building and operating security-
critical systems.
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Engineering Systems

There is nothing more difficult to carry out, nor more doubtful of suc-
cess, nor more dangerous to handle, than to initiate a new order of
things [or create a new system]. For the reformer has enemies in all
those who profit by the old order, and only lukewarm defenders in all
those who would profit by the new order, this lukewarmness arising
partly from fear of their adversaries, who have the laws in their favor;
and partly from the incredulity of mankind, who do not truly believe in
anything new until they have had the actual experience of it.
—Niccolo Machiavelli, 7he Prince, 1513

You have to be run by ideas, not hierarchy. The best ideas have to win.
—Steve Jobs, Cofounder, Apple Computer

Author’s note: Steve Jobs’s remark raises questions as to the place of creativity and
innovation in the systems engineering process, particularly the engineering of
safe and secure software systems. One might presume that there can be little op-
portunity for creativity and flexibility in the clearly-defined, highly-structured
world of making software systems both safe and secure. However, it can be
argued that the essence of the problems that we face in software engineering is
exactly this; that is, not enough imagination and innovation are being brought
to bear on the traditional systematic engineering processes that produce today’s
software systems. Perhaps we lack the out-of-box thinking that is needed to
anticipate the range of threats to which our systems are subjected and to come
up with innovative approaches to avoidance, deterrence, and remediation. In
this book, we attempt to bring some measure of insight into the somewhat
moribund approaches that, to date, may have lacked sufficient innovative and
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effective ideas. First we will look at what exists today and what is missing. We
will then suggest how we might alter the balance between good and evil so that
the good guys have the better ideas...and win.

Introduction

Before embarking on our journey through the maze that is software systems en-
gineering and into the land of safety and security engineering (as these apply to
software systems), we will dabble in the more general field of systems engineer-
ing, which is by far better established and has higher credibility than software
systems security and safety engineering.

It is quite remarkable that, with a foundation as sound and effective as
systems engineering has become over the past 70 or so years, the building and
deployment of safe, secure, dependable, resilient, and reliable software systems
remains so inadequate. It is not that the fundamental principles underlying the
engineering of software systems are particularly lacking, but clearly software
systems engineering has not yet received the attention and support that are
needed to establish the pursuit of safe and secure systems as a respected field in
its own right.

Before diving into the engineering of software systems, we will first ex-
amine the broader field of systems engineering—its approaches, practices, stan-
dards, and so on. The intent is to provide a foundation upon which to build
lower-level approaches relating to software safety and security, as well as to help
identify and resolve the gaps between systems engineering and software engi-
neering. By carrying over some of the structure and processes of the longer-
established discipline of systems engineering, we can apply the experience and
proven practices of systems engineering to the less mature art of engineering
safe and secure software systems.

Some Initial Observations

Later in this chapter, we will work with a specific hierarchy of terms in order
to facilitate more meaningful definitions that we will use throughout the book.
The hierarchy trickles down from general systems to software-oriented and
hardware-oriented systems, and then to the security and safety of those systems.
While the focus of this book is on software systems, there is increasing interest
in the need for codesigning applications and related systems, particularly for
high-performance computing. We will, therefore, consider the implications of
the need to design applications in conjunction with the contexts within which
they operate.
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We shall also see that the more one drills down into specific character-
istics, the less we seem to have a good knowledge base, sound practices, and
effective support and understanding. This is indicated by the opposing arrows
of Figure 2.1.

General systems engineering is a long-established, well-regarded field with
many researchers and practitioners having developed an abundance of stan-
dards, processes, and procedures. However, as we descend down the hierarchy
to software and hardware systems engineering, we begin to hear complaints
about whether or not the essence of systems engineering has been transferred
to software systems engineering in particular. Quite a number of outspoken
individuals decry the current state of the software systems engineering field as
lacking the credibility, discipline, and effectiveness that would be expected of
such a technical field.

Top class software development shops display high levels of sophistica-
tion, structure, and control throughout their software development life cycle
processes, some accomplishing the highest levels of capability maturity. Perhaps
the best-known example of a process improvement approach is the Capabil-
ity Maturity Model Integration (CMMI) process introduced by the Software
Engineering Institute of Carnegie Mellon University. A considerable amount
of resources are available on their website [1]. It is interesting to note that, even
though the Software Engineering Institute has developed and supported the
CMMI process for over two decades, the approach is not limited to software
development processes, but has expanded into such areas as system design, ac-
quisition, security, risk, and process management. The International Systems
Security Engineering Association (ISSEA) [2], in fact developed a Systems Se-
curity Engineering Capability Maturity Model (SSE-CMM-ISO/IEC 21827)
[3]. However, judging from the ISSEA website, the organization appears to no
longer be active. This is perhaps indicative of the low level of interest and sup-
port for the development of secure software systems.

Management
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Software w E as Security, Safety,
@ = Resiliency.,
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Figure 2.1 The relationship of management effectiveness to scope.
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Yet, while those processes may meet the high capability standards that
certification requires, the quality of software produced can still be deficient.
For example, the software might not function properly (i.e., it does not meet
all stated functional requirements) and may not satisfy nonfunctional require-
ments for security, resiliency, scalability, and so on.

What happens if we drill down one more level to the security and safety
aspects of software systems? Safety-critical software systems are generally more
solidly built; that is, they are more reliable and resilient than security-critical
software systems. This is understandable because human life is often at stake.
However, even safety-critical systems do not always achieve the highest stan-
dards, particularly with respect to their security attributes. Quite a large body of
work has been developed over the past 15 years or so relating to building secu-
rity into software, yet the acceptance of security requirements as part and parcel
of a software system is low in comparison to the acceptance of safety require-
ments. That is not to say that there aren’t any forward-thinking organizations
that excel with respect to their security practices. There are. Some of them have
had their achievements broadly publicized, such as in the Building Security In
Maturity Model (BSIMM) report, which documents the security posture of
firms that participated in the survey based upon a series of attributes [4].

As illustrated in Figure 2.1, we see that in general, certain aspects of the
engineering of secure and safe software systems such as interoperability and
portability diminish in the amount of attention paid to them as we enter into
these areas of more limited scope.

What we are seeing is essentially a top-down process, with the message
becoming more garbled and less intelligible as we approach more specialized
and detailed areas. From reading a broad range of publications and attending
a number of conferences and seminars on systems engineering, software engi-
neering, and related fields, we see that, in general, systems engineers pay rela-
tively little attention to software systems engineering; software engineers appear
to ignore both the guidance that can be gleaned from systems engineering on
the one hand, and the nonfunctional aspects of software systems, such as secu-
rity, safety, and resiliency on the other hand. With such a top-down hierarchy,
there is little chance of significant improvement in the overall security, safety,
and resiliency of software systems. Indeed, it appears that we might be heading
in the opposite direction.

Despite some excellent software engineering programs being offered by
major universities, such as Carnegie Mellon University’s Software Engineering
Institute and the Stevens Institute of Technology, the field is still grossly under-
served. For example, a Master of Software Assurance Curriculum [5] illustrates
some significant advances that are being made in the academic arena. Unfortu-
nately, the size and scope of these academic initiatives only begins to address the
huge deficiencies in knowledge and training in this field.
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The answer to the question of what needs to be done is fairly obvious:
we need to ensure that the supporters of nonfunctional capabilities, such as
security professionals, are involved at the beginning of the decision process and
throughout the development life cycle of software-intensive systems. The chal-
lenge is not to determine what should be done—that has already been estab-
lished—but how to get it done. With all the forces of time to market, cost
savings, competitive advantage, budget constraints, complex functionality, and
the like, working against the goal of safer and more secure software systems, it is
unlikely that needed changes will happen of their own accord. There need to be
incentives for those making such a radical change in approach, or disincentives
for those not adhering to a mandate to change the approach to engineering safe
and secure software-intensive systems.

Deficient Definitions

A significant detraction to solving the problem of attaining the needed level of
proficiency in systems engineering, particularly with regard to software systems
engineering, lies in the ambiguity of language used and the relative looseness of
definitions of terms like systems engineering and software engineering, security
engineering, and safety engineering. In [6], Allman describes, with considerable
insight, the reasons for such ambiguity, as follows:

Our normal human language is often ambiguous; in real life we handle
these ambiguities without difficulty ... but in the technical world they can
cause problems. Extremely precise language, however, is so unnatural to us
that it can be hard to appreciate the subtleties. Standards often use formal
grammar, mathematical equations, and finite-state machines in order to
convey precise information concisely ... but these do not stand on their
own ...

In its definitive guide, the International Council on Systems Engineering
(INCOSE) [7] expresses this same concept with a specific focus on systems
engineering (SE), as follows:

One of the Systems Engineer’s first jobs on a project is to establish
nomenclature and terminology that support clear, unambiguous
communication and definition of the system and its functions, elements,
operations, and associated processes ... It is essential to the advancement of
the field of SE that common definitions and understandings be established
regarding general methods and terminology that in turn support
common processes. As more Systems Engineers accept and use a common
terminology, we will experience improvements in communications,
understanding, and ultimately, productivity.
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The INCOSE guide [7] then provides a list of definitions for frequently
used terms, some of which will be repeated below.

A major contributing factor to deficiencies in software systems engineer-
ing appears to be the unwillingness or inability of specialists in one specific area
(such as system engineers, software engineers, and hardware engineers) to com-
municate adequately. There is a particular need to improve communications
between security and safety software systems engineers, as discussed in [8].

This lack of communication causes subject-matter experts and decision-
makers in each narrow area of specialization to be at serious risk of missing
important information regarding system requirements and other factors from
those with the necessary expertise. This is particularly apparent during the criti-
cal requirements, validation and verification stages of the software, and hard-
ware development life cycles. Such omissions can—and have—led to many
inferior decisions.

Systems engineers dealing with entire systems seem to pay little attention
to software considerations, as shown by the short shrift treatment of software
topics in many systems engineering books, publications, and presentations.
Conversely, with their concentration on the development, operation, and main-
tenance of applications and system software, software engineers tend to pay
insufficient attention to many of the broader systems considerations, including
platforms and infrastructures upon which applications and systems software
operate as well as the human-system interactions. As a result, software products
often do not exhibit the levels of confidentiality, integrity, availability, safety,
interoperability, portability, scalability, resiliency, and recovery that should be
incorporated into any critical system. This is mainly due to these nonfunctional
characteristics of applications, systems software, firmware, and hardware not
having been adequately accounted for in the design and development, and par-
ticularly, the integration of these systems.

Rationale

Clearly, the way in which one refers to various topics, subjects, and items can
greatly affect how one deals with them. Therefore, we will now examine some
definitions of systems engineering, as well as its components and subcompo-
nents. We will look into definitions of applications, system software, software
systems, and software engineering (or, more precisely in the last case, software
systems engineering). It will be shown why the broad range of common usage
of these definitions produces large gaps in understanding between what exists
and what is needed.

We will then go through a similar exercise for security and safety engi-
neering: first defining our terms and then describing why the philosophies and
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means of addressing issues differ so much between the two disciplines of soft-
ware security engineering and software safety engineering.

We will investigate these gaps further and suggest some specific approach-
es and activities to address and close them. We will provide guidance for adher-
ing to more structured systems-engineering processes for designing, building,
testing, deploying, operating, and decommissioning safe and secure software-
intensive systems. Furthermore, we will suggest how the numerous separate and
independent silos can be brought together into a more collaborative environ-
ment so that each party can learn from the others and consequently arrive at
much more productive and effective modes of operation and more acceptable
results, as described in [8].

What Are Systems?

In order to come up with a viable definition for systems engineering, we must
first develop and describe a structure that relates systems engineering to all the
various components and subcomponents that arguably fall within its scope. We
will select components that have particular relevance to this book from those
shown in Figure 2.2. However, we need to always keep the remaining compo-

______ o= _ _ .
People Facilities Data :. Technology 1 Documents : Processes |
M“_ - /__—l_ -
Development Operations
Hardware Software (Projects) (Support)
Functional I Nonfunctional
4—/—‘;—‘“\)
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Assurance Engineering » Management
Testing Repairing Monitoring Responding Reporting

Figure 2.2 Structure and hierarchies of systems engineering.
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nents and subcomponents in mind because they provide appropriate context
for further discussions.

The hierarchy and relationships of components and subcomponents (as
shown in Figure 2.2) provide a host of terms, and consequent definitions. At
the top of the diagram, there is a box labeled “systems,” and near the bottom is
another box labeled “engineering.”

First, let us examine the definitions for a system and for engineering sepa-
rately, and then combined.

The IEEE Standard 610.12-1990, which has been replaced with IEEE/
ISO/IEC 24765-2010 [9], defines a system as:

... a collection of components organized to accomplish a specific function
or set of functions.

Christensen and Thayer [10] rework the above definition somewhat to
come up with the following:

A system is a collection of related or associated entities that together
accomplish ... one or more specific objectives.

In the U.S. Department of Defense (DoD) text [11], the definition

becomes:

A system is an integrated composite of people, products, and processes that
provide a capability to satisfy a stated need or objective.

When each of the above definitions are compared, the main difference
is whether the goal is to satisfy a single need, function, or objective, or more
than one of them. The IEEE definition takes care of both. However, the DoD
definition also has merit because it lists the components as people, products
and processes.

In Figure 2.2, the second row of boxes represents six elements that can
make up a system, the first three of which correspond to the DoD definition.
The elements include the following areas: people; technology (or products)—
such as hardware and software; processes—development, operations; facilities;
data; and documents.

As we proceed down Figure 2.2, the next two rows itemize the character-
istics of the elements. For clarity, we only show those items that are of specific
interest. However, it should be noted that each of the elements can be broken
down, and that the breakdowns are also relevant to other areas of interest; this
is not shown here in order to simplify the presentation. As a simple example,
the category “data” can be broken down into structured and unstructured data.
Our particular focus is on technology systems, and within that category we
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are focusing on software, although we shall touch upon other elements such as
people (or human factors) and processes such as development and operations.

Software is further split into its functional and nonfunctional character-
istics. This is a common way to divide software characteristics. However, as we
will show subsequently, such a characterization has led to major gaps in how
software systems are tested. In any event, the usual set of nonfunctional soft-
ware characteristics is as follows:

* Security;

* Safety;

¢ Performance;
* Reliability;

* Compliance.

As the title of this book suggests, our main focus will be on the first two
categories, namely, the safety and security of software systems.

The distinction between safety-critical and security-critical software sys-
tems will be examined in greater detail in Chapter 4. At this point, we present
the definitions introduced by Boehm [12], as follows:

* Safety-critical software: the software must not harm the world.

* Security-critical software: the world must not harm the software.

That is to say, software systems that are judged to be safety-critical must
not present a hazard to human life or the environment. This is an outward-
looking perspective.

On the other hand, security-critical software systems are inward-looking
to the extent that it is necessary to protect the software and any sensitive data
such as nonpublic personal information and intellectual property from misuse,
damage, or destruction from attacks by external or internal persons or com-
puter applications.

As we shall see throughout this book, it is this divergence of viewpoint
between software safety engineers and software security engineers that leads to
major software systems engineering issues, particularly when there is a require-
ment to combine both safety-critical and security-critical software-intensive
systems into what are increasingly termed cyber-physical systems, particularly by
United States government agencies.

Near to the bottom of Figure 2.2, we show a box for “engineering.” Engi-
neering can be defined as follows:
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. the creative application of scientific principles to design or develop
structures, machines, apparatus, or manufacturing processes, or works
utilizing them singly or in combination; or to construct or operate the
same with full cognizance of their design; or to forecast their behavior
under specific operating conditions; all as respects an intended function,
economics of operation and safety to life and property [13].

At the bottom of Figure 2.2, we include activities relating to engineering,
namely assurance and management. Assurance comprises testing and repairing,.
Management activities related to engineering include monitoring, analyzing,
reporting, and responding.

As the reader can see, some of the boxes in Figure 2.2 are made up of
solid lines, whereas other boxes are bounded by dashed lines. We will bypass
the dash-framed boxes when using the hierarchy to designate a particular com-
bination. Thus, we arrive at the term soffware security engineering rather than
technology software nonfunctional security engineering.

Deconstructing Systems Engineering

The field of engineering has clearly had, and continues to enjoy, a very long and
auspicious history that goes back over millennia. There is no question that the
building of the Egyptian pyramids, the English Stonehenge, the Easter Island
statues, the Mayan pyramids at Chichen Itza, Mexico, and other marvelous
ancient constructions were amazing feats of engineering. Did those projects
follow what we now would consider to be a systems engineering approach? The
builders of these monuments clearly must have adopted some organizational
structure and management processes in order to accomplish what they did.
Archeologists have discovered highly sophisticated mathematical, architectural,
and construction methods in documents used by engineers of these ancient
monuments. However, the processes would not have followed the specific pre-
cepts of what we now call systems engineering in as formal a manner, although
many of the components must have been utilized in order to accomplish these
great works.

In modern times, the specific terminology for the discipline of systems
engineering has only been in common use for a relatively short 70 years or
so, although various documents attribute the creation of the term to different
parties and at different times. Christensen and Thayer [10] quote Alberts [14],
who asserted that the term was originated by a certain H. C. Hitch at Penn
State University in 1956 [15].

The INCOSE website claims that the term systems engineering was coined
by researchers at Bell Telephone Laboratories in the 1940s [16]. The INCOSE

document [7] provides a timeline going back to the development of the Rocket
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locomotive by Robert Stephenson and Company in the 1820s, and includes a
British team that analyzed the United Kingdom’s air defense system in 1937.
The INCOSE timeline also includes Bell Labs during 1939-1945, which agrees
with the above claim. INCOSE attributes the invention of systems analysis to
the RAND Corporation in 1956, which appears to differ from the Christensen
and Thayer claim (with respect to who originated which terms). However, both
agree that the term was originated in 1956. It is sufficiently accurate for our
purposes—given the discrepancies in the literature—to state that systems en-
gineering and systems analysis as we know now them originated in the mid-
twentieth century and evolved through the latter half of that century.

A somewhat broad consensus has it that the discipline of systems en-
gineering was driven in the 1940s and 1950s by the need to manage large,
complex projects involving systems of systems, in which the properties of the
sum of the parts of a system were often greater than the sum of the properties
of the individual parts [17]. Much of the motivation for developing the art of
systems engineering came from the requirements of the U.S. Department of
Defense [11] and the National Aeronautics and Space Administration (NASA)
[9]. We will, therefore, lean heavily on the works of these and other U.S. gov-
ernment agencies, as well as the publications of professional associations, such
as the IEEE (Institute of Electrical and Electronics Engineers) [9] and INCOSE
(International Council on Systems Engineering) [7], in our discussion of the
attributes of systems engineering,.

Today, there are many researchers and practitioners who are proud to
number themselves among the ranks of systems engineers. Professional orga-
nizations, such as INCOSE and IEEE, which are a highly regarded and which
produce impressive lists of publications and other valuable resources, have
sprung up and prospered in response to the evolution of the field.

However, as discussed above, there appears to be a substantial gap between
how software engineers view themselves with respect to systems engineering and
how software systems engineers should integrate systems engineering into their
own practices more extensively. This will be discussed in the following chapters.
It is not that software developers do not follow structured practices equivalent
to systems engineering guidelines—for the most part they do—particularly in
the U.S. Department of Defense, where precise and detailed software develop-
ment practices have evolved, as described in [11]. It is more that adoption of
the formal processes of systems engineering is not generally accepted in what
are considered related, but distinct, fields relating to software, safety, and secu-
rity. For example, the system development life cycle (SDLC) has indeed been
enthusiastically adopted by many modern software development shops, but is
not usually embraced by smaller, less mature organizations because doing so
introduces considerable overhead.
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It is quite confusing to see so many combinations of the words syszems,
software, and engineering. What are the precise differences between systems en-
gineering, software engineering, software systems engineering, and systems soft-
ware engineering? Some of the differences may appear to be obvious, but others
are not so obvious. When systems are aggregated into systems of systems, what
terms should be used to describe the characteristics of the much more complex
combinations of systems, which frequently exhibit behaviors beyond those of
their individual component systems? The combination of safety-critical systems
and security-critical systems, such as is occurring with the so-called smart grid,
produces issues well beyond the reach of the individual systems.

In order to get a handle on these issues, we use the elements of the table in
Figure 2.3 to assist with explaining the definitions and the relationships among
components. For example, we see “systems engineering” in the first line of the
table, “software engineering” in the second line, and “software systems engineer-
ing” in the third line. If we were to reverse Columns 2 and 4 in the third line,
we would get “systems software engineering,” which has a completely different
meaning from “software systems engineering.” Systems software engineering
relates to the engineering of systems software. Software systems engineering
refers to the application of systems engineering practices to all types of software-
intensive products. Systems software is a category of software that lies below the
applications software layer and performs many of the administrative functions

Secure/Safe Security/Safety Systems Engineering

Systems Engineering

Software Engineering

Software Systems Engineering

Security/Safety Engineering

Secure/Safe Systems Engineering
Software Security/Safety Systems Engineering

Secure/Safe Software Engineering
Secure/Safe Software Systems Engineering
Software Security/Safety Engineering

Software Security/Safety Systems Engineering

Secure/Safe Software Security/Safety Systems Engineering

AL 4

Figure 23 Terminology and combinations of terms.




Engineering Systems 19

that support the applications. It includes operating systems and utilities, such
as sort algorithms.

Some might consider such differentiations as those mentioned above and
illustrated in Figure 2.3 to be splitting hairs, but terminology that is confusing
and ambiguous will almost invariably lead to misunderstandings or worse, as
was suggested above. Such a situation arises when researchers and practitioners
miss whole bodies of applicable work because calling the same item by partially
or completely different names results in their searches for relevant information
being incomplete or, worse yet, inaccurate and misleading. We have already
discussed how software engineers often do not see themselves as systems en-
gineers and vice versa, but this is merely on the surface. As we dig deeper, we
will find that such high-level perceptions lead to problems with the omission
of important requirements for complex systems that are commonly developed
and implemented today.

What Is Systems Engineering?

At this point, we will tackle the seemingly simple task of defining systems en-
gineering. There are many definitions of this term, each of which differs some-
what from the other, sometimes minimally; in other cases, the differences are
substantial.

One widely-quoted definition of systems engineering is the one in the
DoD text [11], namely:

. an interdisciplinary engineering management process that evolves and
verifies an integrated, life-cycle balanced set of systems that satisfy customer
needs.

An important aspect of this definition is that systems engineering is a
process involving a variety of professional disciplines. The sole objective of this
process is to create systems that meet users’ needs. The author does not argue
with this definition, but will raise questions with respect to the real-world im-
plementation of the process. For example, are all necessary disciplines included
at appropriate stages of the process? It will be asserted that they are not. Have
the needs of customers or nonhuman users been adequately identified? It will
be claimed that users likely only express the functional requirements of which
they are personally aware or that directly affect them, and that they omit a host
of requirements that they either don’t know about or don’t care about.

Another definition of systems engineering is:
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. an interdisciplinary field of engineering that focuses on how complex
engineering projects should be designed and managed over the life cycle of
the project. [19]

And yet another definition [10, p. 8] is:

... the practical application of the scientific, engineering, and management
skills required to transform a user’s need into a description of a system
configuration that best satisfies the need in an effective and efficient way.

Clearly these definitions suggest a life cycle process that begins with the
identification of user needs and should end up with one or more systems that
meet those needs. The success of systems engineering in general depends on ef-
forts to organize system design and development processes that function effec-
tively within and between organizational units because the right level of man-
agement and control functions exists. In the following section, we examine the
various stages in the process and describe some effective controls for the systems
creation environment.

Systems Engineering and the Systems Engineering Management
Process

As mentioned above, the pioneers of systems engineering were involved in large
government (or public sector) programs relating to space exploration and mili-
tary systems. We will, therefore, place emphasis on those sources initially, and
then look at how the systems engineering (SE) approach has been adopted by
others, particularly in the nongovernment or private sector.

The definitions of public and private sectors can vary with country. In the
United States, “public” is generally equivalent to “government” and “private”
means “nongovernment,” although nonprofit, academic, and religious organi-
zations are often recognized to be different. In Great Britain and many other
European countries, a third sector is defined. This refers to nongovernment,
nonprofit organizations. In other countries, such as Japan and India, they de-
fine a “joint sector,” which refers to industries or companies owned and/or run
by both the public and private sectors [20]. For the purposes of this book, we
differentiate between government and nongovernment sectors.

Christensen and Thayer [10] list the following systems engineering
functions:

* Problem definition is the determination of customer requirements with
respect to product expectations, needs, and constraints.
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* Solution analysis is the analysis of options satisfying requirements and
constraints and selection of the optimal solution.

* Process planning is the prioritization of major technical tasks and the
effort required for each task and the determination of potential project
risks

* Process control is the establishment of control methods for technical ac-
tivities including the measurement of progress, review of intermediate
products, and initiation of corrective action when necessary.

* Product evaluation is the determination of quality and quantity through
testing, demonstration, analysis, examination, and inspection.

These life cycle functions are common throughout software systems engi-
neering projects and their subcomponents. The latter deal with such attributes
as security and performance. It is, however, quite confusing because different
types of projects result in varying emphasis on specific activity phases and the
terms used, particularly when comparing DoD terminology with others, which
often results in even more confusion.

In simple terms, requirements are obtained and converted into some form
of system or other by means of a series of activities making up a project. Due
diligence suggests that, prior to release, a system needs to be thoroughly tested
to ensure that it meets original requirements. This sounds simple, but, as we
shall see, if it were that simple then there would be universal standards, which,
if adhered to, would presumably result in systems that meet their requirements
perfectly every time. Clearly, we do not see such a result and this is because
there are always tradeoffs that have been made due to constraints on resources
and funding, time until delivery, and the ability to do as good a job as possible.
A project is always a tradeoff among timeliness, quality, and cost; you can try to
optimize two out of three, but it is not feasible to optimize all three for the same
project. With respect to the project management triangle, practitioners will sum-
marize this as: fast, good, cheap—pick any two [21]! A major exception to this
restriction appears to be well-funded government contracts, where cost over-
runs and time delays are common and seemingly acceptable, although much of
the reason for this may lie in the governance model in which politicians with
little technical knowledge—but a clear political agenda—have responsibility for
oversight of the management of the project.

It is ironic that the origins of systems engineering and by far its most rig-
orous methodologies have emanated from military and space programs, both
of which are government sponsored, and yet these projects appear to frequently
suffer huge overruns in time and money and often lack critical features that
were specified in the requirements documentation. The same appears to be
quite common in academia, where the product itself is often subservient to the



22 Engineering Safe and Secure Software Systems

potential accolades and kudos to be gained from well-accepted research papers
and publications in quality journals. That is not to say that the private sector is
doing any better a job in general, but where there is effective management and
governance, large complex projects do get done on time, fall within budget, and
exhibit high quality.

Nevertheless, the private sector can learn a great deal from the methodolo-
gies created by research organizations for government, as long as effective gov-
ernance and strong project management are implemented. We will, therefore,
proceed with further descriptions of systems engineering management derived
from publications by engineering groups, such as the Institute of Electrical and
Electronic Engineers (IEEE) Computer Society, and the U.S. Department of
Defense (DoD) initiatives.

The DoD Text

Perhaps one of the most detailed and complete descriptions of the systems engi-
neering process is that utilized by the DoD. The document, Systems Engineering
Fundamentals, was prepared and published in 2001 by the DoD Systems Man-
agement College [6], and is available online for everyone to read.

For those, such as this author, whose information technology and infor-
mation security career have been in the private sector, the terminology and em-
phasis of the DoD approach can appear quite foreign. The management process
is seen as being highly regimented, with little opportunity for variations. This
likely stifles innovation, as the quotation by Steve Jobs at the beginning of this
chapter would suggest. Of course, given the types of systems developed for the
military, perhaps the last thing that one wants to see is unbridled creativity,
which is nonetheless often the hallmark of leading-edge commercial systems
ventures.

As will be discussed later in this book, this dichotomy of approaches be-
tween military and commercial systems engineering carries through to many
other aspects of the systems. In particular, military systems have (up until re-
cently) emphasized safety, reliability, and predictable operation above all else,
whereas commercial systems generally look to beef up security (although ve-
hicle control systems do focus on safety). Going forward, however, the impor-
tance of security, especially for network-centric systems, is being recognized and
accounted for in all areas of endeavor.

Another Observation

In researching for this book, the author became fascinated with the singular
lack of reference to the DoD standards and practices in books and articles about



Engineering Systems 23

nongovernment, especially nonmilitary, systems and software engineering. It is
as if a whole body of knowledge relating to military and other government sys-
tems and software engineering has been excluded from consideration in those
publications aimed at a general audience. This is a shame, to say the least, as
such knowledge transfer would help all involved parties.

More on Systems Engineering

Remaining on this topic of the differences in approaches between various pub-
lic-sector and private-sector entities, we will briefly look at how the emphasis of
systems engineering management approaches differs between groups and how
the difference in emphasis is at once considered appropriate for the types of sys-
tem that have traditionally been within their purview, but, on the other hand,
hampers each group from benefiting from the knowledge and skills of other
groups. Some professional organizations, such as INCOSE, make creditable at-
tempts to be all-inclusive and try to encourage broader participation, yet many
other groups remain quite insular.

It is suggested, therefore, that the reader delve into a broader range of
bodies of knowledge to gain from the wisdom developed within the various
silos, which unfortunately do not communicate adequately. Some of the differ-
ences that you are likely to discover have to do with the more highly developed
governance models that government entities have created and their somewhat
obsessive concentration on requirements going in and on verification and vali-
dation coming out of the process. Not to take anything away from focusing on
these important areas, but much of the private sector seems unable to afford the
luxury of such time and money consuming efforts. Despite this drawback, it
should serve us well to take a brief tour of the DoD approach and compare and
contrast various components.

The Systems Engineering Process (SEP)

The DoD document [11] describes the SEP as “... a comprehensive, iterative
and recursive problem-solving process, applied sequentially top-down by in-
tegrated teams.” A significant point here is the use of the term “top-down,”
clearly pointing to the existence of a well-defined hierarchical structure. While
the corporate world also has, for the most part, clearly laid-out organizational
structures, there is generally more room for collaborative teamwork within the
corporate structure. In fact, in many highly creative systems and software devel-
opment shops, particularly with start-ups and fast-moving companies, design-
ers and developers are given considerable freedom and latitude when it comes to
problem-solving and putting together systems requirements. Of course, this lat-



24 Engineering Safe and Secure Software Systems

ter environment has both positive and negative characteristics, and these would
not likely work for weapons systems, for example. Larger, more mature private
institutions typically have many formal processes and management controls in
place, and may be more readily compared with the military, which starts out
being large and formal.

When it comes to developing system requirements, government—par-
ticularly the military—have well-defined user populations that may have little
direct input into defining initial requirements, although they will probably be
involved in testing systems in the final stages and providing feedback for tweak-
ing the systems. While the DoD document talks about customers, these recipi-
ents of the end product do not necessarily have much choice about whether or
not they are comfortable with using the resulting systems, despite any deficien-
cies in their design or manufacture.

That is to say, the usual competitive marketplace—while existing among
bidders for the military contracts—is not necessarily in force with respect to end
users when it comes to choosing system features and functionality, for example.

The difference between customers who have free choice and those who
don’t affects their influence on the design of a system and its use. Here is a real-
world example. The information technology department of a highly-structured
financial institution (for which both Asian and American traders worked) de-
signed and developed trading systems based on some minimal set of require-
ments obtained from some of the traders. After the trading system has been
installed, the financial institution insisted that traders use the system as deliv-
ered, whether or not it fully met the traders’ needs. When the same system was
presented to traders in the United States (who typically consider themselves
independent entrepreneurs as opposed to subservient employees), they refused
to use the system. It was very apparent that cultural differences between traders
in each country had a lot to do with how systems were designed and developed
and whether or not they were accepted. To some extent, the same observation
holds true with government agencies and internal corporate systems. However,
when it comes to commercial systems, the marketplace determines what gets
used and what languishes.

The formal requirements process in the DoD SEF document [11] in-
dicates that the system operator is the key customer, and that customers are
required to provide the basic needs for the system. According to the DoD SEF
[11], operational requirements should answer the following questions, some of
which have been slightly modified from the original:

* Where will the system be used?
* How will the system accomplish the mission objective?

* What are the critical system parameters to accomplish the mission?
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* How should the various system components be used?

* How effective and efficient must the system be in performing its mis-
sion?

* How long will the system be in use?

* In which environments will the system be expected to operate effec-
tively?

The DoD SEF [11] lists the following system requirements:

* Customer requirements are the expectations of systems in terms of mis-
sion objectives, environment, constraints, and measures of effectiveness

and suitability.

* Functional requirements are the necessary tasks, actions, or activities that
must be completed.

* Performance requirements are the extent to which mission or function
must be executed with respect to quantity, quality, coverage, timeliness,
and readiness.

* Design requirements are the “build to” requirements for products (e.g.,
hardware, software) and “how to execute” requirements for processes.

* Derived requirements are the implied or transformed from higher-level
requirements.

* Allocated requirements are established from division of high-level require-
ments into a number of lower-level requirements.

It is noteworthy that the above requirements list makes no explicit men-
tion of either security or safety. These latter factors—along with others relat-
ing to such characteristics as resiliency and interoperability—would likely be
subsumed within the performance requirements, were they to be considered at
all. Nevertheless, the lack of appearance of these nonfunctional requirements
is not surprising because broader publications in systems engineering also tend
to omit them. It is usually only when, for example, there are special issues of
magazines and journals related to such fields are systems engineering, electrical
engineering, or other branches of engineering focused on software, security,
and safety (as well as books that specifically cover software, security and safety
engineering, and related subjects), that the reader of the broader engineering
publications gets to learn more about these topics.
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Summary and Conclusions

In this chapter, we have addressed some of the confusion in regard to the defi-
nitions of systems and systems engineering, and we have discussed some of the
issues that arise in the systems engineering process. The reader can access some
excellent guides and handbooks on systems engineering, some of which (such as
the DoD and NASA documents referenced in this chapter) are available in the
public domain at no charge, to learn more about specific aspects of the subject.

The main take-away from this chapter should be recognition that there
is inadequate sharing among various government and nongovernment players
and among different subcategories, such as those relating to security and safety.

A goal of subsequent chapters is to encourage the engagement of diverse
groups, who today do not communicate sufficiently, and also to achieve some
measure of consistency across fields.
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Software engineering is still an oxymoron [1]
—John Pescatore, Gartner Inc.

... software engineering, as originally envisaged, does not yet exist [2]
—David Lorge Parnas, Middle Road Software

Introduction

Software is different from most other products and services acquired by con-
sumers, customers, and organizations. It is arguably more like a fuel than it
is a product because all systems that include software as a component require
an infusion of software in order to operate. Yet, unlike a fuel, software doesnt
get depleted with use. Application software also differs from a fuel in that it
is the product that you, the so-called user, usually interact with, rather than
something that is somehow activated in the background, as is a fuel. However,
as with a fuel, software is not self-sufficient. It needs a context within which to
perform. Out of context, it is useless. If you obtain a disk containing software
or you download software over a communications link, the software has to
be used on a system comprising particular equipment (or hardware), such as
computer processors, storage devices, and communications networks, and (for
applications) system software and utilities, all of which support software prod-
ucts but themselves do not have any end-user functions without the requisite
application software.

Other characteristics of software products and the data that they handle
have a profound impact on security, safety, resiliency, and similar nonfunctional
software system attributes. One is that software can be duplicated for extreme-
ly low incremental cost and can be modified or exploited at will (although
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doing so will usually negate any license terms and warranties), often without
the changes or attacks being detected and without the perpetrators having to
be in the same physical location as the original software, as long as they have a
means of connecting to or accessing the software and data. Another characteris-
tic of software is that customers generally license rather than own commercial-
off-the-shelf (COTS) software (as opposed to home-grown software, which is
owned by the manufacturer or its designees), so that one is limited as to what
one can do with COTS software in terms of alteration of the program code
and reselling the resultant product. One exception to this rule is open-source
software, which is owned by no one and maintained by a community. How-
ever, open-source license agreements have their own idiosyncrasies that must be
considered, as in [3].

It might seem reasonable, therefore, to explain the reticence of some sys-
tems engineers, comfortable in fields such as mechanical, civil and electrical
engineering, and architecture, to becoming involved with and dealing with
software and its related issues due to the unique characteristics of software as
described above. As mentioned in [4], such traditionalists are likely to be more
comfortable in the physical world (as opposed to the virtual world), even though
they will likely use personal computers for various purposes such as emailing,
social networking, spreadsheet calculations, and word processing. However, this
latter involvement is not the same as that of incorporating industrial-strength
software into the actual systems that they are engineering. By giving short shrift
to software and its implications, such systems engineers will likely omit serious
software considerations when designing and building systems and when inter-
facing their traditional physical systems with the increasingly pervasive virtual
world.

On the other hand, today’s so-called software engineers often do not have
a formal grounding in software engineering but enter the software systems en-
gineering field directly through basic training, in college or commercial train-
ing programs in software programming skills, and on-the-job experience in a
development shop, with occasional certifications in specific vendors’ products
for the use of specific platforms and infrastructures.

That is not to say that formal project management methods are not fairly
common in software development projects. They are particularly prevalent in
large software manufacturing entities. In this chapter, we present a number
of well-formulated examples of such approaches that are described in the lit-
erature. In reality, the methods and practices of systems engineering project
management have existed in the software development space for decades. How-
ever, endorsing and practicing project management alone is not the same as
following the philosophy and practices of the systems engineering approach.
The structure and rigor to be found in systems engineering is more prevalent
in the development of software for military systems, avionics, space programs,
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and the like, than it is with noncritical commercial systems. However, certain
critical sectors, such as financial services, do use formal techniques to ensure
the correct functionality of their operational computer-based systems through
which trillions of dollars are processed every day.

The Great Debate

There are a number of individuals, such as John Pescatore and David Lorge Par-
nas (quoted above), who believe that the field of software systems engineering
has generally failed to absorb the rigorous practices and disciplined processes
and procedures of systems engineering. This view is reinforced by frequent re-
ports in the press of successful attacks against software systems and the seeming
inability of many defenders to protect systems against such attacks effectively. It
is not so much a matter of not trying to systematize software systems engineer-
ing. To the contrary, a huge amount of research and practical effort has been
expended in this attempt. As will be shown in this book, it is in large part due
to differences in knowledge, background, experience, capabilities, and goals of
those individuals who are doing the work. Software remains as much art as
science, and few practitioners developing today’s huge, complex software sys-
tems have the personal breadth or the interest in reaching beyond the particular
needs of their jobs. On the other hand, the majority of those with security,
safety, privacy, dependability, performance, and resiliency backgrounds do not
have a good grasp of applications software and the software development pro-
cess; they often seem incapable of explaining their requirements to developers
and especially to the users, managers, and customers for whom the software
systems are meant.

Nevertheless, despite the apparent flagrant disregard among many cre-
ators of software systems of formal approaches of systems engineering and other
engineering disciplines, there appears to be increasing recognition of the need
to build into software systems such attributes as security (i.e., confidentiality,
integrity, and availability), safety, survivability, interoperability, portability, sus-
tainability, and resiliency. The rationale for this growing appreciation for non-
functional requirements is readily apparent; the earlier in the development life
cycle that such factors are considered (and errors or omissions found), the less
expensive it will be to include their requirements. Yet attempts to ensure that
the desired levels of these nonfunctional factors are incorporated into software
systems seem not to have gained sufficient traction to overcome the recent rapid
surge in reported attacks, particularly if one believes that there is a relationship
between more formal methods and improvements in the quality of software,
which is the fundamental assertion of this book. This growth in exploitable
and exploited vulnerabilities continues despite the efforts of many researchers
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and practitioners to include security, safety, and resiliency into the software
system development life cycle processes, suggesting that we need both new and
improved approaches to engineering such systems.

The raging debate of the moment revolves around whether software en-
gineering is, or ever will be, accepted as an engineering discipline. However,
there remains a question as to whether or not it really matters whether one can
pigeon-hole or label software engineering as engineering. We must ask what
differences in approach are suggested by particular definitions and whether or
not those differences are, in fact, material.

Some Observations

As in the previous chapter, we will use the hierarchy of terms presented in
Figure 2.2 in order to assist in our defining software engineering, and to justify
using the preferred term software systems engineering.

As we descend one level from systems to software (as well as hardware)
systems engineering as depicted in Figure 2.2, we are confronted with com-
plaints about whether or not the essence of systems engineering has indeed been
handed down to software systems engineering. Many outspoken individuals
decry the current state of the software engineering field as lacking the discipline
and effectiveness that is common for systems engineering. Best-of-class soft-
ware development shops display high levels of structure and control throughout
their software systems development life cycle processes, some accomplishing
very high levels of capability maturity. Yet, while the processes may meet high
standards, the quality of the software that is developed may occasionally be defi-
cient because the software often does not function properly (i.e., does not meet
all stated requirements) and/or lacks the security, resiliency, scalability, and so
on, that holistically designed software should have. A particular concern is that
software designed for one platform and then transported to another platform
may not be fully compatible with the second environment, due in part to the
main testing effort having been focused on software running on the primary
platform.

In general, certain attributes of the engineering of secure and safe software
systems diminish as we drill down into areas of more limited scope. It is essen-
tially a top-down process, with the message becoming more garbled and fuzzy
as we descend into the more specialized areas. Thus, we observe that systems
engineers may pay relatively little attention to software engineering. Software
engineers, in turn, may well ignore (or more likely, pay minimal attention to)
the so-called nonfunctional aspects of software systems. Ironically, the nonfunc-
tional requirements are often of more significant concern to systems engineers
than to software engineers, as the former will likely take a broader, more holistic
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view of the systems that the software is a part of. With a top-down hierarchy,
there is very little chance of much improvement in the overall security, safety,
resiliency, and performance of software systems. Indeed, it often appears that
we are charging in the opposite direction until some limiting factor or costly
incident makes the engineering community focus on a particular attribute that
dramatically comes to the fore.

The answer to the question of what needs to be done is apparent—we
need to have the guardians and sponsors of nonfunctional capabilities involved
from the beginning of the decision process and active throughout the life cycle
of designing, developing, implementing and operating software systems. Such
advocates of nonfunctional soundness need to be fully and visibly supported
and empowered by senior management in order for them to be effective in their
missions. If management only pays lip service to aspects like security, then the
appropriate level of attention will never be given to a particular attribute until
its high-impact failure draws questions regarding management’s effectiveness
and their ability to control the environment. By then, of course, much of the
damage will have already been done.

The challenge is not so much a matter of what should be done, but how
to get it done. In reality, we are pressured by factors such as time-to-market,
cost reductions, competitive advantage, budget constraints, complex function-
ality, and other compelling features, which work against goals of safer and more
secure software systems. In such an environment, it is unlikely that needed
changes and improvements will just happen. There need to be specific and di-
rect incentives for making such major changes in approach and investment in
nonfunctional attributes. Alternatively, there should be disincentives for those
not adhering to management mandates to change the approach and include
nonfunctional attributes into the software system development life cycle.

Rationale

As stated previously, one’s approach to various subjects is often greatly affected
by how one’s terms are defined. Therefore, in this chapter, we examine defini-
tions of software and software engineering—or, more precisely, software sys-
tems engineering. It will be shown that the broad range of usage of these defini-
tions has itself produced large gaps between what is really needed to achieve an
optimal balance among all contending attributes and what exists today.

Subsequently, we will go through a similar exercise as we did previously
for other terms, but this time specifically for security engineering and safety
engineering;: first defining our terms, and then describing why the philosophies
and means of tackling issues, which often differ so much between the two dis-
ciplines addressing security and safety, create so many problems.
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We will further investigate these differences and suggest some specific ap-
proaches and activities that will help address the gaps and, it is hoped, narrow or
close them. We will provide guidance for adhering to more structured systems-
engineering processes in the design, building, testing, deploying, operating, and
decommissioning of safe and secure software systems. Furthermore, we will
suggest how currently-independent silos can be brought together in a more col-
laborative atmosphere so that each can learn from the other and consequently
arrive at a much more productive and effective cooperative mode of operation.
It is not sufficient to merely suggest what will be good for an organization,
industry, country, or the global economy. Such normative appeals are seldom
convincing, and few (if any) provide the practical guidance needed to make the
desired actions happen. Here, we will demonstrate the benefits of including
the nonfunctional attributes early in the life cycle using arguments that will
appeal to nontechnical senior management, policy and law makers, auditors,
and enforcers. What it comes down to is that suggestions offered in this book
not only make technical and engineering sense, but also offer a sizable return
on investment.

Understanding Software Systems Engineering

One reason why some might claim that software engineering is deficient is
that the term itself is too general and not well understood by researchers and
practitioners alike. One might readily presume that the term software engineer-
ing simply means applying engineering principals and methods to the software
development life cycle (SDLC). However, software engineering can mean much
more than merely the software manufacturing process. It also involves installing
the software on a variety of platforms and infrastructures, and integrating soft-
ware products into existing environments and into systems of systems.

If one accepts a simplistic definition of software engineering, one might
reasonably presume that the inadequacies in the practice of software engineer-
ing have been fully addressed already by many who manufacture software for
internal use or sale. However, all the issues clearly havent been resolved, as
witnessed by the increasing number and magnitude of computer system failures
and the rapid escalation in the number and impact of successful compromises
of today’s systems.

Deconstructing Software Systems Engineering

We will now spend some time and space trying to tease out workable meanings
from the multitude of misunderstandings and misinterpretations that haunt
software engineering and its related areas.
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In the first place, when we refer to software engineering, we likely mean
the design, development, manufacture, and operation of products that are more
extensive than mere standalone computer programs. We should use the term
software systems engineering, because software programs, whether end-user ap-
plications, utilities, or systems software, do not and cannot operate in isolation.
Software programs exist within broader systems and are frequently only able
to run on specific platforms and within particular infrastructures. Software is
only one component of an overall system comprising hardware, communica-
tions networks, people, and processes; but even the apparently straightforward
term soffware systems engineering remains somewhat ambiguous. When using
the term software systems engineering, do we mean the engineering of software
systems or systems engineering methods applied to software development, or
should we be even more explicit by expanding the expression to systems engi-
neering methods applied to software-intensive systems?

While the reader might consider such a distinction to be overly specific
and too exacting, it will be shown that many of today’s software issues, as they
relate to ensuring that software systems are safe, secure, resilient, interoperable,
and the like, actually emanate from lack of rigor in defining terms. Defining
all of the many characteristics of software is not an easy process, nor is going
through the exercise guarantee that all outstanding issues will be resolved. How-
ever, we will demonstrate that some definitions in this area are often in conflict,
and that such conflicts result in researchers and practitioners frequently missing
the point. We will, therefore, try to shed some light on the murkiest areas by
defining our terms as explicitly as possible.

What Is Software?

Before we discuss the meaning of software engineering, we need to work on
defining “software.” In simple terms, software consists of computer program
code, usually written in high-level computer languages, such as C, C++, and
Java. The resulting source code, of which much software is comprised, is then
converted into code that is understood by computers by interpretation or com-
pilation. Interpreters convert the source code into machine-readable code each
time the software is run, whereas compilers produce machine-readable object
code that is installed only once and is only recompiled if there is a change in
the source code. Compiled programs tend to be more efficient, especially when
there are few changes being made to the software relative to the frequency of
operation. Where efficiency is paramount, developers might write code directly
in machine language and optimize the software’s run-time demands on system
resources.
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What Are Software Systems?

There are many flavors of software, such as end-user applications, systems soft-
ware, embedded software, and firmware. Here again, definitions abound and
their use is often quite sloppy, which leads to confusion, errors, and omissions.
In Figure 3.1, we see a typical traditional software structure where applications
run on systems software, which in turn, runs on hardware. The diagram shows
layers of different types of software. In the minds of the general public, software
is synonymous with end-user applications or “apps.” Such software is often cre-
ated by applications developers who may have minimal knowledge of underly-
ing platforms and infrastructures, and may relate to the latter through standard
application programming interfaces (APIs), which allow developers to create
application functionality without having to worry about the systems’ internals.
This has the advantage of directing the development of highly technical systems
software to those with particular expertise in such areas.

However, before going further, let us define software in its various forms
and relate it to software architecture, as illustrated in Figure 3.2.

Word Graphics and
. . Spreadsheets
processing presentations
Web apps Email
Databases . Pps .
(social networking) messaging
Applications software
Interpreters Sort routines Compilers
File Operating Other
management systems utilities
System software
Computer hardware and firmware

Figure 3.1 Typical IT system architecture.
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Figure 3.2 Typical applications software environment.

The terms software and computer program are generally considered to be
synonymous, and most people do not agonize over the specific definitions used.
However, as software is increasingly embedded into computerized equipment
(or hardware), it is becoming much more difficult to differentiate among the
various realizations of software. In some sense, it can be detrimental to one’s
understanding of systems if definitions are overly specific. This is especially true
when we consider that software is essential for the creation of computer hard-
ware consisting of transistors, other electronic components and the circuitry
that are combined to form integrated circuits. Physical units are carved out
of metals, plastic, ceramics, and increasingly sophisticated composite materials
using computer-controlled software-driven machine tools. With the advent of
three-dimensional printing, physical components are now being created (albeit
mostly in laboratory environments) directly from software systems, jumping
ahead technically beyond software-controlled machine tools used for carving
out physical components, although limited in the types of component that can
be created. Consequently, with software infiltrating into practically every aspect
of our physical and informational lives, it is no longer suitable to distinguish
software for independent consideration. Some software actually generates other
software and is able to create physical objects (as with three-dimensional print-
ing). Software is a rapidly growing part of an increasing number of systems used
in our everyday lives.

It is interesting to note that references to software in software engineering
books and articles are often cursory, with authors presuming that we all know
what software is. For example, Braude and Bernstein [5] point out that “the
goal of software engineering ... is the creation of software systems ...” without
saying exactly what they mean by “software.” Of course, one can usually infer
the meaning that they assign to the term from its use throughout the book,
but that is not the same as providing a specific definition. Similarly, according
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to Christensen and Thayer [6], “[t]he dominant technology in many modern
products is software ... [which] often provides the cohesiveness, control, and
functionality that enable products to deliver solutions to customers.”

It might be true, at one level, that we have an intuitive sense of what
software is. However, in this book we take a different viewpoint and go as far as
to say that by omitting the definition of software, researchers are creating am-
biguity and encouraging misinterpretation, as Allman points out in [7]. Soft-
ware is complex and dynamic and—in order to deal with issues confronting the
creation, implementation, operation, and disposal of safe and secure software
systems—we need to come up with precise, yet somewhat flexible, definitions.

First, let us repeat some of the common definitions of applications and
system(s) software. The following definitions, except as otherwise noted, are
from the Open Projects website [8]. The definition of software is as follows:

Software is a generic term for organized collections of computer data and
instructions, often broken into two major categories: system software
that provides the basic non-task-specific functions of the computer, and
application software which is used by users to accomplish specific tasks.

The above definition raises an issue as to whether data should be incorpo-
rated into software or treated separately. It is held here that software and data
are separate entities, which have different roles within software systems, even
though one can hard code data into an application—a practice that is better
avoided if possible because a change in data might then require software modifi-
cation, unit and integration testing, and recompilation, which is time-consum-
ing and somewhat risky. If an entry in a data table can be changed instead, it is
often much simpler to implement, even though it may still be necessary to test
the system with the change in data.

Software has both functional and nonfunctional attributes, as will be dis-
cussed when we examine security and safety engineering. Data, on the other
hand, can relate to or be independent of software and often does not need
modifications to software when the data changes, although reformatting the
same data or converting the data to a different file or database system will un-
doubtedly require changes to software. In Figure 3.2, we specifically show data
as being separate from software. We also illustrate that—while virtually all end-
user software programs are generally considered to be applications—because
they perform tasks as opposed to controlling hardware or equipment, systems
software and firmware can also perform end-user tasks such as utility programs
that sort data. Hence, some subset of systems software and firmware can be
considered applications according to our definitions. This differentiation be-
comes particularly important when comparing and contrasting application-
related and system-related software.
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According to the Open Projects Web site [9], we have the following defi-
nition of systems software:

System software is responsible for controlling, integrating, and managing
the individual hardware components of a computer system so that other
software and the users of the system see it as a functional unit without
having to be concerned with the low-level details such as transferring data
from memory to disk, or rendering text onto a display. Generally, system
software consists of an operating system and some fundamental utilities
such as disk formatters, file managers, display managers, text editors, user
authentication (login) and management tools, and networking and device
control software.

First we should note that, in some cases, writers refer to either system
engineering or systems engineering. While systems engineering appears to be
the preferred term, the other version, namely, system engineering, is used here
whenever a quoted source uses that term. Also, we shall refer to authentication
as a security service later in this book. While software realizations of authenti-
cation systems are common, authentication can include hardware that is inde-
pendent of the hardware platform used by the applications. Biometrics readers
and card scanners are examples of such equipment and are a good reason for
precision in our definitions.

We have the following definition of application software per the Open
Projects Web site [10]:

Application software ... is used to accomplish specific tasks other than ...
running the computer system. Application software may consist of a single
program, such as an image viewer; a small collection of programs (often
called a software package) that work closely together to accomplish a task,
such as a spreadsheet or text processing system; a larger collection (often
called a software suite) of related but independent programs and packages
that have a common user interface or shared data format, such as Microsoft
Office, which consists of closely integrated word processor, spreadsheet,
database, etc.; or a software system, such as a database management system,
which is a collection of fundamental programs that may provide some
service to a variety of other independent applications.”

And one more comment on software from Open Projects:

Software is created with programming languages and related udilities,
which may come in several forms: single programs like script interpreters,
packages containing a compiler, linker, and other tools; and large suites
(often called integrated development environments) that include editors,
debuggers, and other tools for multiple languages.
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What this says, in so many words, is that software tools are often used to
create applications and systems software. Software is also increasingly used to
design and create hardware, especially integrated circuits. Therefore it is nec-
essary to examine the security and integrity of hardware-creating software, as
described by Villasenor [11].

However, before we take a more in-depth look at hardware, we need to
understand the meaning of the term firmware (as shown in Figure 3.2). One
definition is as follows [12]:

... firmware is ... often used to denote the fixed, usually rather small,
programs and/or data structures that internally control various electronic
devices. Typical examples of devices containing firmware range from
end-user products such as remote controls ..., through computer parts
and devices [such as] hard disks, keyboards ..., all the way to scientific
instrumentation and industrial robots. Also more complex consumer
devices, such as mobile phones, digital cameras ..., contain firmware to
enable the device’s basic operation as well as implementing higher-level
functions.

It is interesting that both computer programs and data are included in
the above definition of firmware. Some restrict firmware to program code and
data that cannot be changed once burned into a chip. For example, some define
firmware as unalterable software burned into read-only memory chips; this is
the definition provided by the /EEE Standard Glossary of Software Engineering
Terminology [13] defines firmware as follows:

... [t]he combination of a hardware device and computer instructions and
data that reside as read-only software on that device.

However, today much firmware can be easily updated due to the ready
availability of inexpensive nonvolatile memory devices. For example, many
digital camera manufacturers provide updates to their firmware, which can be
downloaded from the manufacturers’ websites and installed on the appropri-
ate cameras (as applied to medical equipment, scientific instrumentation, in-
dustrial control systems, and robots) opens up dangerous new possibilities for
compromise. We note again that the category “data” is included in the IEEE
definition. This is a more reasonable definition in the case of firmware, in con-
trast to application software because firmware updates will likely modify both
functionality and data at the same time.

Wikipedia goes on to affirm that there “... are no strict boundaries be-
tween firmware and software, as both are quite loose descriptive terms. How-
ever, the term firmware was originally coined in order to contrast to higher level
software which could be changed without replacing a hardware component,
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and firmware is typically involved with very basic low-level operations without
which a device would be completely nonfunctional. Firmware is also a relative
term, as most embedded devices contain firmware at more than one level.”

The statement is also made that “while high-level firmware (or software)
typically is stored as a configuration of charges, low-level firmware may instead
often be regarded as actual hardware.”

This presents a dilemma because developers of application-level software
(as opposed to system-level software) tend to know little or nothing about the
underlying hardware platform—they don’t need to in order to fulfill their re-
sponsibilities. However, the November 2011 issue of the IEEE Computer maga-
zine highlights the need for designers of software to work with hardware engi-
neers [14]. This is because (particularly for exascale systems, such as computers
with the capacity to handle 10 to the 18th power operations per second and
other large-scale systems), the hardware is hitting against restrictions in cool-
ing. Greater applications and systems software efficiency are needed in order to
continue to expand the size of such systems. This calls for a heretofore unprec-
edented level of cooperation and collaboration. While the pressure on smaller-
capacity systems is not as great, cloud computing has required a major increase
in processing power and storage capacity to the extent that the availability of
cheap electrical energy (often only available from hydro-electric powered gen-
erators) has become a major factor in determining the locations of cloud-com-
puting data centers. There is clearly an increasing need for a holistic view with
subject-matter experts from a number of different specialties being required to
design and develop software-based systems in concert with one another.

Now let us take the Open Projects definition of hardware [15]:

Harware is a comprehensive term for all of the physical parts of a computer,
as distinguished from the data it contains or operates on, and the software
that provides instructions for the hardware to accomplish tasks. The
boundary between hardware and software is slightly blurry - firmware is
software that is “built-in” to the hardware, but such firmware is usually the
province of computer programmers and computer engineers in any case
and not an issue that computer users need to concern themselves with.

The assertion that end users should not be concerned about the software-
firmware-hardware mix is questionable because the specifics of such a mix not
only affect computer and network performance, but also systems availability,
security, resilience, and the like. If end users are confronted with choices with
respect to the software-firmware-hardware mix, they may well opt for different
configurations from those that hardware and software engineers would favor.
These issues are generally worked out during the requirements phase, which
is the phase of the development life cycle in which user needs are presented,
matched against technical capabilities, and negotiated to arrive at the optimal
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balance between features and technology. The requirements phase is by far the
most critical step in software systems engineering.

All of this is very confusing and can, to a large extent, be blamed for
the lack of confidence in software engineering expressed by some researchers.
The problems of understanding about software systems engineering often stems
from the lack of accurate definitions. Software is not an amorphous generic
blob, but rather a spectrum of capabilities covering software, firmware, and
hardware. Increasingly, these specialties will need to talk to one another. It is
hoped that the relatively disciplined structure of hardware systems engineer-
ing will be carried across to the software systems arena to the benefit of all

stakeholders.

Are Control Software Systems Different?

We will now take a slight detour to ask the question as to whether software
managing information systems and industrial control systems are different with
respect to how we should approach them.

As we will discuss later, developers and users of many information systems
have (until recently) had a much greater concern about security than those
designing and developing control systems. High-integrity industrial control
systems are needed to manage power plants, oil refineries, airplanes, weapons,
and the like. Historically, these control systems have been isolated from other
systems and public networks, and have been independent of one another and
from business information systems. They also have tended to reside more on
the hardware-firmware end of the spectrum that do information systems. How-
ever, controls systems are increasingly being networked and linked to informa-
tion systems and networks that expose the said control systems to greater cyber
security risks. The relatively new term for such systems is cyber-physical systems.

In earlier times, automated control systems could be considered as sepa-
rate from information systems, with control-system emphasis solely on safety
and with little or no attention paid to security. However, this distinction is
becoming less and less appropriate as both types are combined into systems
of systems [106], creating many new areas of vulnerability. Table 3.1 illustrates
some of these areas of focus as they relate to information systems, control sys-
tems, and combined systems, respectively.

What is Software Systems Engineering?

Having negated the very existence of software systems engineering as a dis-
tinct field, we now look to define software engineering and software systems
engineering as if they can be legitimized—which they can be. As shown in the
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Table 3.1

Information Systems and Control Systems Versus Security and Safety

damage to external
subjects due to loss of
confidentiality, integrity
and availability (e.g.,
failure or compromise

faulty processes leading to

inappropriate failure of control

systems and subsequent risk
to human wellbeing, such as
for space vehicles, airplanes,

Focus Information Systems Control Systems Combined Systems
Security  Loss of confidentiality, ~ Unauthorized access by Unauthorized access to
integrity or availability,  persons or malware to networks and takeover of
leading to financial applications that control management of control
losses, fraud, etc. critical systems, such as systems, such as electricity
the compromise of isolated generation plants and
software managing centrifuges distribution grids, natural
processing nuclear materials  gas lines, refineries, waste
leading to their destruction. treatment plants, weapons
manufacturing, etc.
Safety Potential physical Malfunctioning and/or Unexpected or planned

destruction of facilities
and/or injury to or death of
humans from misbehaving
control systems leading to
compromise or failure of

communications networks
and systems

of a GPS system that
might lead to capture
of a military drone and
top secret information).

automobiles, and the like.

hierarchical diagram in Figure 2.2, software is considered a subcomponent of
technology, with other subcomponents being made up of firmware, hardware,
and networks. One might also say that software is involved with and (in some
cases) committed to the creation and operation of firmware and equipment,
where equipment might be systems, networks, and so on.

We now return to Braude and Bernstein [5], who define the purpose of
software engineering as follows:

The goal of software engineering ... is the creation of software systems that
meet the needs of customers and are reliable, efficient, and maintainable.
In addition the system should be produced in an economical fashion,
meeting project schedules and budgets.

However, this raises the question as to why the field is not commonly
called software systems engineering rather than software engineering. Is there a
significant difference between the two terms? Yes, there is a big difference, and
it is likely that this difference has contributed greatly to the largest problem in
the creation of secure software. It has arguably led to incomplete requirements,
inaccurate specifications, poor design, insecure code, inadequate testing, lack
of metrics, and a whole litany of complaints about the vulnerabilities found in
software.

The fundamental issue here is that software does not run in isolation. Any
piece of software operates only in one particular context or in a limited num-
ber of environments. The context includes hardware, people, and processes.
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End-user applications depend on software platforms, as well as the other ap-
plications and system components. Applications are designed to run on specific
combinations of platforms and infrastructures (hardware, networks, etc.), and
their security posture is highly dependent on the security of the environment in
which they operate. For example, an application built for the iPhone may also
run on an Android phone, but the application’s security depends largely on how
secure a specific phone might be at any given time.

We should do away with sloppy nomenclature such as software assurance,
software engineering, and secure software engineering. We need to use terms
such as software systems assurance, software systems engineering, and secure
software systems engineering, which are much more specific and meaningful.

The Software Systems Engineering Process

The process for engineering software and related systems has been well-estab-
lished for at least four or five decades. It is really surprising how so little has
actually changed in the ensuing decades insofar as the software development
life cycle is concerned.

Braude and Bernstein [5] and Lewallen [17] both give interesting histories
of the software process, indicating the advantages and disadvantages of each
method. The approaches and their positives and negatives are summarized in
Table 3.2.

We also show the approximate year of origin of the various approaches.
These dates are provided by the various sources referenced; they are only pro-
vided as a guide. Nevertheless, the chronology explains why certain authors
omitted some approaches because, even if they had already been developed,
they may not yet have been made public.

Steps in the Software Development Process

To some degree, all approaches contain the fundamental steps of the Waterfall
approach, which contain the steps indicated in Table 3.3.

Royce is known as the person who first formalized the Waterfall approach
in an article [18]. While Royce presented a linear model, it was only for il-
lustration purposes. He propounded an iterative model later in his paper [18],
but many people nevertheless inappropriately adopted the linear model. That
Royce himself did not advocate the linear model and supported the iterative
model is discussed in more detail in [19].

The phases of the SSDLC, as listed in the first column of Table 3.3,
were common in the era of mainframe computers when computer systems,
along with developers and operators, were isolated with a few (if any) remote
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users connected via networks. The software development and implementations
processes adhered to fairly consistent, structural lines and followed standard
systems engineering practices and procedures. Systems analysts obtained user
requirements, analyzed the inputs, and produced software system designs or
specifications. These designs and specifications were then developed and tested
by programmers, tested in the quality assurance area, and were then turned over
to production. There were only a few platforms available, namely, IBM, Digital
Equipment Corporation (DEC), Data General (DG), and a few other special-
ized systems, such as Control Data. IBM had a few operating systems, and vari-
ations of the UNIX operating system were commonly used on minicomputers.
Maintenance was usually performed by the developers/programmers, and en-
hancements required that systems analysts update requirements and go through
the same steps as for the original development process. Documentation relating
to systems requirements and design was generally provided by systems analysts,
and programmers were given the responsibility of generating documentation
about the code that they had written, so that they could more readily maintain
and upgrade the system. Operational and user manuals were also written by
systems analysts closest to each aspect.

Because the data processing departments of that earlier era were both
limited and isolated, security was generally implemented by physical meth-
ods; this is because users were often bound by the need for physical proximity.
Consequently, it was much more feasible than it is today to secure central and
remote physical locations and then implement an access management system
on the mainframe computers. Smaller departmental computers, often in the
form of minicomputers running the Unix operating system, could be physically
secured. However, software-based access controls were much less common for
microcomputers than for mainframes.

In some of the approaches listed in Table 3.2, processes address each step
sequentially, in others there is feedback from one step to another, and in still
others there are iterations of the entire process. Also, individual approaches tend
to stress particular steps and play down others. Preferences among approaches
often depend on the roles and duties of a particular stakeholder. Thus, a devel-
oper will likely prefer the Agile approach which deemphasizes documentation,
whereas a support person would favor an approach that yields specific and ex-
tensive documentation.

The texts referenced go into much greater detail with respect to the vari-
ous methods, and guidance is provided as to which method might be the most
appropriate for a given situation. For example, if the project is relatively small
and contained, one might favor the Waterfall approach and shy away from the
Spiral approach.
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Table 3.3

Phases of the SSDLC
Royce [18] Christensen [6] Braude [5]
(1970) (2001) (2011)
System requirements Requirements Requirements
Software requirements ~ — —
Analysis — —
Program design Design Design
Coding Code and unit test Implementation
Testing Test and integration Testing
Operations Operation and maintenance  Maintenance

SSDLC = software system development life cycle.

Omissions or Lack of Attention

Research into the various sources relating the software systems engineering sug-
gested that there might be several highly important omissions in all of the ap-
proaches. These omissions might account for many of the continuing problems
emanating from software. We mention these deficiencies below and expand
upon them in subsequent chapters.

Nonfunctional Requirements

It is particularly interesting how certain so-called nonfunctional attributes of
software systems are systematically neglected in publications on software engi-
neering. These requirements, which include performance, security, safety, de-
pendability, resiliency and the like, are termed “nonfunctional” because they are
not usually included in the functional requirements of software as specified by
users. They are considered to be the responsibility of other areas of expertise,
such as system and network capacity planners, information security profession-
als, software safety engineers, disaster recovery and business continuity plan-
ners, and so on. Unfortunately, this attitude of nonfunctional requirements
being in the realms of others leads to situations where nobody takes on the
responsibility.

While these nonfunctional requirements are always key attributes of any
substantial software system, the average application developer is not particu-
larly knowledgeable in these nonfunctional areas and therefore tends to ignore
them. In order to have nonfunctional requirements included, project manag-
ers must account for these characteristics explicitly in the various stages of the
software system development life cycle. Otherwise, nonfunctional requirements
will tend to be ignored—sometimes until it is too late to save the project [20].
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Testing Nonfunctional Attributes

Braude and Bernstein [5] state that a major limitation of the Waterfall process
is that the testing phase sits at the end of the cycle; therefore, errors that might
have been determined with interim testing are only discovered when the soft-
ware has been completed. They also affirm that it is only at the point when the
project is complete that “[m]ajor issues such as timing, performance, storage,
and so on can be discovered ...” Interestingly, neither security nor safety are
mentioned in their list of issues.

Braude and Bernstein [5] seem to imply that the original model, as pro-
posed by Royce [18], was unidirectional, when in fact Royce specifically stated
that the process should be iterative between immediately adjacent steps. Braude
and Bernstein [5] state that, practically speaking, “... an iterative model be-
tween successive phases is inevitable.” As mentioned previously, there is an on-
going debate about whether the simple Waterfall model, as adopted by the
United States and European military and others, was due to a lack of under-
standing of these adopters. Clearly, Royce did not advocate the simple model,
but insisted on the necessity of including interactive and iterative aspects into
the process model.

Verification and Validation

It is not clear when the term verification and validation was first introduced, al-
though there is some indication that Barry Boehm was an early user of the term
around 1981. The so-called “testing” of software usually involves the following
series of activities:

¢ Unit testing;
* Integration testing;
* Regression testing;

* User acceptance testing.

These activities are all basically related to functional testing and are meant
to ensure that a piece of software operates successfully in isolation, when com-
bined with and connected to other components of the system, and when oper-
ated in its most likely overall production environment, and that the function-
ality as developed is acceptable to the user community. Other areas, such as
technical support, user support, and operations, are usually included to some
relatively small degree in such testing activities to determine that the system
also satisfies their particular requirements. Those responsible for nonfunctional
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areas, such as performance, resiliency, safety (to a lesser extent), and security,
may well be excluded from the system development life cycle process until the
final stages, when the software is essentially completed and ready to go into pro-
duction. At this point, it is either too late or extremely expensive to make requi-
site changes. It is commonly held that it is orders of magnitude more expensive
to implement security, say, after the system has been completed compared to
building in security from the earliest stages of the life cycle.

On the other hand, verification and validation takes a more holistic view
of the testing and quality assurance functions.

The IEEE definitions of these terms, along with clarifying comments are
included in [5] as follows:

* Verification: “The process of evaluating a system or component to deter-
mine whether the products of a given development phase satisfy the con-
ditions imposed at the start of that phase.” (For example, is the software
design sufficient to implement the previously specified requirements?
Does the code correctly implement the design?)

* Validation: “The process of evaluating a system or component during or
at the end of the development process to determine whether it satisfies
specified requirements.” (In other words, does the implemented system
meet the specified user requirements?)

These definitions are summarized in [5] as follows:

* Verification: Ensuring that each artifact is built in accordance with its
specifications. (Mostly inspections and reviews: “Are we building the
product right?”).

* Validation: Checking that each completed artifact satisfies its specifica-
tions (Mostly testing: “Are we building the right produce?”).

These definitions are somewhat reminiscent of the definitions of efficien-
cy and effectiveness, respectively; where efficiency is defined as doing things the
right or correct way (comparable to verification), and effectiveness is defined as
doing the right or correct things (comparable to validation).

In effect, what is being said here is that verification determines that the
resulting system or component represents requirements (as specified by the
software engineers who designed the system or component), whether or not
those requirements accurately reflect what the user population is looking to get
from the system. Validation, on other hand, determines whether in fact user
requirements are being met. If either of these tests show that the system does
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not represent either system specifications or users’ expectations, one has then to
determine whether the gap is due to improperly translating user requirements
into system specifications and into the design and development of the system
or component, or whether the difference is the result of misinterpreting users’
expectations of the system or component. This difference is illustrated in Figure
3.3.

The V-model, which is shown in Figure 3.4, captures all the phases of the
waterfall model and includes reviews and testing consistent with the verification
and validation processes. However, it still has the same issues as the waterfall
model with respect to rigidity and inflexibility.

This difference between efficiency and effectiveness (verification and val-
idation, respectively) is also illustrated by such approaches as the Capability
Maturity Model Integration (CMMI) process. While CMMI can demonstrate
whether or not an organization has effective software system development pro-
cesses, procedures, and practices in place, it does not ensure that the appropriate
software is developed, despite the fact that the software was developed accord-
ing to a highly structured process that is being monitored and measured at
every step. One might presume that—if a software product was manufactured
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Figure 3.3 Comparison between verification and validation.
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using agreed-upon good practices—it is likely that such software will also meet
user requirements. However, that is not necessarily the case. In fact, even the
most sophisticated of processes tends to omit whole categories of testing, and
applications are frequently designed without having the ability to generate key
security data.

Creating Requisite Functional and Nonfunctional Data

There is a common tendency towards working with readily-available data to
create metrics by which to manage and control what gets built into software
and what does not, as well as how the software is created. This assertion may be
less true when measuring software functionality than it is for measuring secu-
rity and other nonfunctional requirements. In [21], Axelrod takes a relatively
extreme position, stating that:

... measurability and usefulness are in contention when it comes to security
metrics.
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This relationship is illustrated in Table 3.4, in which we show the rela-
tionship between the value or usefulness of measured information and the dif-
ficulty and cost of creating such data.

Sometimes very useful information can be gathered very cheaply, but that
is not the general rule. More often than not, easily-obtainable data and readily-
calculated metrics are of relatively little value to decision-makers. Such easy-to-
get metrics may point out gross deficiencies or vulnerabilities, but are often of
little use in finding the root cause of a problem. Occasionally, readily-available
data leads right to the problem, but even then it may have to be supplemented
with secondary information before a full forensic analysis can be done. Thus,
if you lose a network connection, it might be easily explained by, for example,
a router having become unplugged. However, if the loss of network connec-
tion is due to malware, for example, unless you have effective monitoring and
reporting systems in place, you may not be able to detect the real reason for the
outage.

At the other extreme, you might invest in a sophisticated detection sys-
tem either built into the system or an add-on, in order to obtain information
on exactly what is causing a particular set of problems. Intrusion detection and
prevention systems come to mind in this case, particularly if they have the ca-
pability to detect nefarious behavior. From a software perspective, much can be
achieved by incorporating data creation, logging, and reporting requirements
into applications and system software during development.

Table 3.4 presents the idea that it is more likely that easily and cheaply
obtained information is of relatively little use for decision-making, as compared
to data that are prescribed ahead of time but which might require more effort
and overhead to produce and analyze. Also, there is a danger of investing large
amounts of money and effort into creating data that are not very useful; it is im-
portant to think through data requirements carefully and have them reviewed
by experts in order to avoid wasting money on an approach that yields little in
the way of useful information.

Generating as much information, even useful information, as possible is
not always cost-effective, as it will be subject to diminishing returns on invest-
ment. There is usually a point up to which such investments in security and

Table 3.4
Measurability Versus Usefulness of Data

Easy/Cheap to Measure Difficult/Expensive to Measure
Highly Useful | Preferred situation, but relatively ~ Often the case, but results likely to

rare occurrence yield substantial benefits
Not Useful Unproductive, but more likely Wasteful metrics gathering programs

occurrence with little to show for significant

expenditures and effort
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safety tools are warranted and beyond which they are not. Because the cost of
incorporating data generators and collectors is considerably less expensive if
introduced early in the software system development life cycle (SSDLC) than if
added as an afterthought when the software has already been manufactured and
tested, the cost-benefit analysis of generating and collecting relevant data will
produce very different results when the data generators and collectors are built
in than if they are added after the system has been completed. We show this
relationship in Figure 3.5, namely, full incorporation of data generation, col-
lection, analysis, and reporting at all stages of the development life cycle versus
bolting on whatever is possible once the system has been essentially completed.

In Figure 3.5, we show a range of costs and values of incorporating data
generating and collection functions as we progress through the life cycle. The
graphs indicate that the range of potential costs and values widens with later
steps in the life cycle because there is greater uncertainty as to what the costs
might be and what benefits might be derived from the added capabilities. In
this example, an average net value is shown to turn from positive to negative in
the later stages of the SSDLC. This means that, at some point, it no longer pays
to include such data creation capabilities because they would cost more that
might be derived from them, with the implication that you would just have to
bear the risk and costs of not being able to monitor certain activities. However,
the graph also shows that, if the data creation and monitoring are considered
and included at the requirements stage or soon thereafter, the costs will be
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Figure 3.5 Costs of measurability and value of metrics for phases of the SSDLC.
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relatively low, and the benefits of being able to include considerable data gen-
erating, logging, and reporting capabilities significantly exceed the costs. While
this particular example shows that at some point it is not worthwhile to retrofit
the data creation capabilities, in some cases, the value of being able to monitor
behavior may be so high that it might still be beneficial to bolt the capabilities
on after the system is already in production. The same is true for security, safety,
and many other nonfunctional attributes. That is, there might be a stage where
it is no longer cost-effective to incorporate security features, say, in which case
the risk has to be assumed.

The obvious conclusion here is that, by incorporating data generation,
collection, and analysis early in the process, lower relative costs are incurred
and, as a consequence, more data generation and collection can be justified
leading to greater net value. However, if one waits too long, then it is no longer
cost-effective to build the capabilities in and the previously available benefits of
doing so are lost.

Resiliency and Availability

A feature of software that frequently does not receive the attention that it re-
quires is that of resiliency. There are likely many reasons for this lack of atten-
tion, but one reason is surely because there are many different ways in which
to provide resiliency and many are outside the usual purview of the average
software engineer. Cross-discipline and cross-cultural factors play a large part in
many aspects of engineering safe and secure software systems, but perhaps none
more so than in the resiliency area. There is a need to optimize across software,
platforms, infrastructure, and facilities, and few individuals have the knowledge
and experience to deal with every aspect. Therefore, it becomes necessary to
establish collaborative teams made up of a range of disciplines in order to get
the level of coverage needed.

The main issue with respect to software resiliency is that it is multifac-
eted. Some ways in which resiliency can be achieved are inherent in the design
of software, others relate to the platforms on which the software runs and the
infrastructures that support the platforms. Others have to do with physical re-
dundancy both on-site and off-site.

Again, the issues revolve around whether resiliency was included as a re-
quirement and incorporated into the software system specifications. If not, it is
likely that the costs of providing redundancy will be significantly greater than
they would have been if the issue is ignored until after the system has been
developed, tested, and deployed. This can also be represented by the graphs
in Figure 3.5, although the underlying justification is considerably different.
In the case of resiliency, there are many choices (software, firmware, hardware,
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platform, infrastructure) to achieve adequate resiliency, only some of which
relate to the application software, but many of which can be handled externally
to the software. This is not the case with respect to data creation.

Decommissioning

Few approaches to the software system development life cycle process address
the discontinuation and decommissioning of the software. Despite the avail-
ability of regular updates for commercial software, at some point the software
becomes obsolete and is no longer supported by the software maker. At that
point, a number of issues arise. One is the concern that new functionality will
not be available for this particular software product. Another is that newly dis-
covered errors will not be corrected. And yet another is the concern that patches
will no longer be issued for newly discovered vulnerabilities [22].

However, at some point it is inevitable that obsolete software products
will have to be replaced for such reasons as lack of functionality, lack of support,
need to interface with newer software and services, and so on. The question
then arises as to what to do with the obsolete software and its attendant data.
The issue seems to have been given more attention lately because of privacy and
piracy issues, for which concern arose as to how sensitive data were being dis-
posed of. In some cases, the data became integrated with applications and it was
not feasible to separate them out for destruction and disposal. The decommis-
sioning and disposal of software systems needs to be accounted for early in the
life cycle in order to ensure that these important activities are considered at all.

Summary and Conclusions

In this chapter, we considered what constitutes software systems engineering,
which is considered by some to be a major source of deficiencies in modern
information-technology and automated control systems. This proved to be a
nontrivial exercise. As was demonstrated, much of the criticism surrounding
software engineering is justified and can be attributed to deficiencies in the
definition of terms and the confusion surrounding scope and completeness. By
offering more specific definitions and formal structures, we have attempted to
clarify the meaning and scope of the field of software systems engineering.
Another major area to be considered relates to gaps in the traditional soft-
ware development life cycle, particularly as they relate to scope, testing, resil-
iency, decommissioning, disposal, and the like. These gaps can be blamed, to a
significant degree, for vulnerabilities and other weaknesses in software. Many
of the ideas developed in this chapter will be expanded in subsequent chapters.



Engineering Software Systems 57

Endnotes

Pesactore, J., “No Insurance Policy Ever Protected a Customer, and Lots of them Don’t
Even Limit Business Risk,” Garner Blog, July 22, 2011, at http://blogs.gartner.com/john_
pescatore/2011/07/22/no-insurance-policy-ever-protected-a-customer-and-lots-of-them-
dont-even-limit-business-risk/.

Parnas, D. L. “Software Engineering—Missing in Action: A Personal Perspective,” Com-
puter, Vol. 44, No.10, October 2011, pp. 54-58.

Axelrod, C. W., “Does FOSS Pay? Weighing the Security Risks and Benefits of Open
Source Software,” ISSA Journal, July 2006, pp. 6-12.

Davis, M., “Will Software Engineering Ever Be Engineering,” Communications of the
ACM, Vol. 54, No. 11, 2011, pp. 32-34.

Braude, E. J. and M. E. Bernstein. Soffware Engineering: Modern Approaches, Second Edi-
tion, Hoboken, NJ: John Wiley & Sons, 2011.

Christensen, M. J. and R. H. Thayer. The Project Managers Guide to Software Engineering’s
Best Practices, Los Alamitos, CA: IEEE Computer Society, 2001.

Allman, E., “The Robustness Principle Reconsidered,” Communications of the ACM, Vol.
54, No. 8, 2011, pp. 40-45.

Definition of soffware, accessed at http://www.openprojects.org/software-definition.htm
on July 11, 2012.

Definition of systems software, accessed at http://www.openprojects.org/software-defini-
tion.htm on July 11, 2012.

Definition of application software, accessed at http://www.openprojects.org/software-
definition.htm on July 11, 2012.

Villasenor, J. “The Hacker in Your Hardware: The Next Security Threat,” Scientific
American, Vol. 303, No. 2, August 2010.

Definition of firmware, accessed at http://en.wikipedia.org/wiki/Firmware on July 11,
2012.

IEEE Standard Glossary of Software Engineering Terminology, STD 610.12-1990.

Shalf, J., D. Quinlan, and C. Janssen, “Rethinking Hardware-Software Codesign for
Exascale Systems,” Computer, Vol. 44, No 11, November 2011, pp. 22-30.

Definition of hardware, accessed at http://www.openprojects.org/hardware-definition.
htm on July 11, 2012.

In recent times, researchers have been using the term systems of systems, which is defined
in many different ways. According to M. W. Maier, in his article, “Architecting Principles
for Systems-of-Systems,” accessed at http://www.infoed.com/Open/PAPERS/systems.
htm , on December 18, 2011, “Systems-of-systems should be distinguished from large
but monolithic systems by the independence of their components, their evolutionary
nature, emergent behaviors, and a geographic extent that limits the interaction of their
components to information exchange. Within these properties are further subdivisions.
For example a distinction between systems which are organized and managed to express



58

Engineering Safe and Secure Software Systems

particular functions, and those in which desired behaviors must emerge through voluntary
and collaborative interaction.”

Lewallen, R., “Software Development Life Cycle Models,” July 2005. Accessed on July 11,
2012 at hetp://codebetter.com/raymondlewallen/2005/07/13/software-development-life-
cycle-models/

Royce, W. W., “Managing the Development of Large Software Systems,” Proceedings of
the IEEE WESCON, 1970. Reprinted article, http://www.cs.umd.edu/class/spring2003/
cmsc838p/Process/waterfall. pdf.

htt://tarmo.fi/blog/2005/09/don’t-draw-diagram-of-wrong-practices-or-why-people-still-
believe-in-the-waterfall-model/.

The author is familiar with a system that was designed and developed by bright, but
somewhat inexperienced, software engineers who concentrated on the graphical user
interface (GUI) to the exclusion of other system characteristics. After an effort of many
years and costs of perhaps $80 million (the exact amount was never publicized), the new
system was placed side-by-side with the “green screen” legacy system in order to compare
petformance. The older system responded to an inquiry within 3 seconds. The new system
took about 30 seconds to respond to the same inquiry. After unsuccessful attempts to
improve the performance, the new system was abandoned, eventually to be replaced by an
entirely different system.

Axelrod, C. W. “Accounting for Value and Uncertainty in Security Metrics,” ISACA
Journal, Vol. 6, 2008.

As an example, when Microsoft decided to stop supporting Windows NT 4.0, there was
uproar among customers who had not upgraded their software within the warning period.
There was particular concern about the possibility of security-related vulnerabilities
appearing and not being addressed. Microsoft agreed to have customers sign up for a
special extended support service dedicated to security patches. Initially, a steep fee was
attached to this service; it is possible that Microsoft ended up not charging for the service.



Engineering Secure and Safe Systems,
Part |

Security engineering is about building systems to remain dependable in
the face of malice, error, or mischance.

—Ross J. Anderson, Cambridge University

Introduction

When it comes to building, operating, and decommissioning safe and secure
systems—particularly computer-based software-intensive systems—practitio-
ners often borrow methods and practices derived from the discipline of systems
engineering, as well as from safety and security engineering. In this chapter,
we take the more general systems view of engineering secure and safe systems.
This is somewhat more difficult than one might think because so much of
what has been published recently, while having a software orientation, it does
not adequately treat specific security and safety attributes of the systems under
discussion.

This assertion about the predominance of software considerations is rea-
sonable because practically all modern systems of any complexity whatsoever
incorporate software components to some degree. However, for the sake of
clarity, we defer consideration of the engineering of safe and secure software-
intensive systems until later. In this chapter, we will focus on safety and security
considerations for general systems before making everything that much more
specific and complicated by adding the software dimension.

59
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The Approach

Just as it was recommended in Chapter 3 that the term software engineering
be expanded to software systems engineering in order to account for the fact
that software products only run in specific contexts, so security engineering
and safety engineering need to be more clearly identified and defined so that
it is clear as to what is meant by security and safety as they apply to systems
engineering, where systems may or may not include computers. In this chapter,
we delve into the specific areas of security engineering and safety engineering.
In subsequent chapters, we will relate security and safety to software-intensive
systems.

We now go through a similar defining process as the one followed in
Chapters 2 and 3 for clarifying what is meant by security engineering and safety
engineering. We thereby set the stage for determining what it takes to apply
these concepts to software systems, as we will do in Chapter 5. It is again as-
serted here, as it was in earlier chapters, that being more precise in defining
such terms is the key to better understanding and should be helpful in shedding
light on much of the fuzzy thinking that we find in this area. Many prominent
researchers and authors do not take the trouble to differentiate between security
and safety engineering, or perhaps they do not recognize that there might be
a difference. They also appear not to care to make any particular distinction
among security, safety and other descriptors, such as dependability. This makes
it considerably more difficult to make comparisons across disciplines. Here, we
try to overcome much of this confusion and lack of precision by separating out
the terms and examining each one separately and then in combination with
themselves and also with other terms.

Security Versus Safety

In his book on the subject of security engineering, Anderson [1] certainly cov-
ers practically every conceivable topic that one might associate with security
engineering as it relates to software systems. However, his distinction between
the concepts of security and safety is not particularly clear. This is not uncom-
mon. Many writers use the words security and safety interchangeably. Here, we
will differentiate carefully between the two terms. There is a considerable gap in
knowledge and communications between those who focus on security and those
specializing in safety, whether referring to general systems or software-intensive
systems, so that it is still appropriate to treat the disciplines independently. It is
hoped that the separation between the safety and security engineering research-
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ers, writers, and practitioners will lessen over time as participants will be called
upon to address both safety and security issues [2].

As discussed in Axelrod [3], there is an increasing need to identify the
frequently-separated silos of security and safety. It is also important to bring
security and safety professionals together to collaborate at each stage of the sys-
tem development, testing, operation, and decommissioning life cycle per Carter
[4]. This is particularly urgent, as we are increasingly seeing safety-critical and
security-critical systems linked together to form systems of systems. The so-
called smart grid, in which electricity power grids management systems are
increasingly being linked to public networks, particularly the Internet, is a cur-
rent case in point [5]. The apparent confusion and lack of understanding by
management and technologists underline the importance of differentiating be-
tween expertise relating to safety and security, and attaining a greatly increased
measure of cross-cultural cooperation, as recommended by Carter [4].

A simple, yet meaningful, distinction between safety-critical and security-
critical software systems, which is generally applicable to system was provided
in Chapter 2 (p. 15) for software. Boechm’s original definition was repeated in
Barnes [6]. We generalize the definitions as follows:

Safety — the [system] must not harm the world,
Security — the world must not harm the system.

This difference in viewpoint is illustrated graphically in Figure 4.1 for
safety-critical, security-critical, and combined safety/security-critical systems,
respectively.

Briefly, the goal of safety-critical systems is containment, whereas the cor-
responding emphasis of security-critical systems is protection. Such a difference
in objectives leads to varying and sometimes conflicting criteria for ensuring
that systems are safe when compared with those criteria used to ensure security.

The World

Attacks
Damage

Attacks

Damage

Safe and
secure
system

Figure 4.1 Safety versus security.
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There is overlap to some extent between security and safety, as, for example,
in the need for system integrity, but it is the difference in viewpoint that leads
to divergent system designs and implementations. This divergence makes for
much higher risk relating to combined systems of systems which must be both
secure and safe.

Another perspective derives from the differences among safety, security
and survivability, as described by Firesmith in [7]. Firesmith claims that there
are many similarities among these three aspects, which he defines as follows:

* Safety: The degree to which accidental harm is prevented, detected, and
reacted to.

* Security. The degree to which malicious harm is prevented, detected, and
reacted to.

* Survivability. The degree to which both accidental and malicious harm is
prevented, detected, and reacted to.

Firesmith goes on to say that “[s]afety is largely about protecting valuable
assets (especially people) from harm due to accidents,” whereas “[s]ecurity is
largely about protecting valuable assets (especially sensitive data) from harm
due to attacks,” and “[s]urvivability is largely about protecting valuable assets
(essential services) from both accidents and attacks.”

This author prefers the Barnes approach [6] to differentiating between
safety and security, because from the perspective of those tasked with protecting
the data assets contained within, or accessible through, information systems or
preventing control systems from harming the outside world, it often doesn’t
make much difference, with respect to actions taken, whether the source of
an incident is accidental or intentional and malicious. In both situations, in-
vestigators need to determine the root cause of an incident and take action to
prevent the same or similar future events from doing damage, cither internally
or externally. However, if an incident is the result of intentional activities, the
response to it will likely be different in that law enforcement might be brought
in to pursue the perpetrators. If the cause is accidental, action against the per-
son or persons who “allowed” the incident to happen may result, even if such
persons had no intent or control over the situation. However, in the latter case,
it is less likely that formal proceedings will be invoked.

There is often a question as to the culpability of individuals and the fair-
ness of pointing fingers at suspects. Frequently, even if the cause of a security
breach or a safety failure is found to be unintentional, action is taken against
those currently responsible for the safe and/or secure operation of the affected
system, despite the fact that they may not be in a position to prevent the inci-
dent. The root cause might have been deficiencies in requirements, design or
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implementation of systems or the procedures for operating them. However, it
seems to be human nature to seek a scapegoat on whom to pile responsibility
and punishment.

It can be argued that survivability has more to do with resiliency and re-
covery following damage or destruction, and long-term survivability relates to
the ability of an organization to reconstitute the damaged or destroyed opera-
tions in order to enable the entity to function at or near the level prior to the
incident.

Yet another view on differentiating between safe and secure software sys-
tems comes from Barbacci [8], who represented the same institution as Fire-
smith, namely the renowned Software Engineering Institute of Carnegie Mel-
lon University. Both researchers were writing in 2003.

Barbacci quotes Rushby [9] in defining secure systems as “... those that
can be trusted to keep secrets and safeguard privacy,” and, paraphrasing Laprie’s
definition of dependability, defines safety as “... that property of a computer
system such that reliance can justifiably be placed in the absence of accidents.”

Barbacci differentiates between safety and dependability as follows:

... dependability is concerned with the occurrence of failures, defined in
terms of internal consequences (services are not provided) ... safety is
concerned with the occurrence of accidents or mishaps, defined in
terms of external consequences (accidents happen).

Barbacci concentrates on the outcomes of incidents and not on the causes.
He differentiates between internal and external consequences; external conse-
quences align with Barnes™ definition of safe systems. Barbacci’s definition of
internal consequences actually focuses on the impact of a failure on the outside
world, not in terms of damaging the outside world actively, but inconvenienc-
ing either internal or external users of the system or both, passively. That is to
say, dependability is about the absence of regular, expected, trustworthy services
and does not appear to relate to the compromise of data assets within informa-
tion systems or the interference with normal operation of control systems.

If we reexamine the quote from Ross Anderson at the beginning of this
chapter, it appears that security and dependability have more commonality
than do safety and dependability. However, this view might be attributed to
Anderson not having dealt much with safety issues in his book.

Four Approaches to Developing Critical Systems

Rushby [9] presents four traditional approaches to developing critical systems,
namely:
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The Dependability Approach
The Safety Engineering Approach
The Secure Systems Approach

Ll S

The Real-Time Systems Approach

It is worth examining these four approaches to developing critical systems
in greater detail because they introduce some of the key aspects of the subse-
quent treatment of software systems engineering later in this book.

The Dependability Approach

Rushby [9] asserts that the use of the term dependability is an attempt to free
researchers from having to use other terms, such as reliability, which have ac-
quired particular technical meaning. He claims that the term dependability can
be used to include fault tolerance, reliability, correctness, safety, survivability,
and security. Rushby appears to consider security and safety to be particularly
significant factors in system dependability because they are the focus of two of
his four approaches to critical system development.

Quoting Laprie [10], Rushby asserts that a dependable system is one upon
which certain aspects of quality of service, such as correctness and continuity
of delivery, can be relied. The dependability approach itself tends to emphasize
reliability and fault tolerance, rather than safety or security.

In this book, we pay particular attention to the security and safety of
systems, especially software-intensive systems, and we do not consider reliabil-
ity and fault tolerance much. However, that is not to say that reliability and
resiliency are not crucial in the development and running of safe and secure
software systems. They are.

In Table 4.1, we show which dependability components are addressed by
various researchers.

Referring back to the description of the dependability approach, it should
be noted that Rushby states that a “departure from the service required of a
system is [considered to be] a failure” [9], and that the implication is that de-
pendable systems do not fail. However, there is a range of failures ranging from
benign to catastrophic, where the consequences are hugely greater than benefits
derivable from the system. Failure is considered a “property of the external be-
havior of a system” [9].

The causes of failures are called faults and include the following:

* Mistakes in design and implementation;

* Component failures;
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Table 4.1
Components of Dependability by Various Researchers
Component Anderson [1] Barbacci[8] Rushby[9] Laprie [10]
Security Yes — Yes —
Safety Yes — Yes —
Correctness — — Yes Yes
Continuity of delivery — — Yes — Yes
Reliability Yes Yes —
Fault tolerance Yes Yes Yes —
Survivability — — Yes —
Quality of service — — — Yes

* Improper operation;

e Environmental anomalies.

According to Rushby, a system is fault-tolerant if it can detect and correct
latent errors, which occur when a system is damaged by a fault.

The Safety Engineering Approach

Rushby [9] states that safety engineers distinguish between reliability and safety,
noting that reliability relates to “the incidence of failures,” whereas safety has
to do with “the occurrence of ... mishaps.” Mishaps are defined as unplanned
events that might lead to “death, injury, illness, damage to or loss of property,
or environmental harm.” Again, this raises the question as to whether a failure
brought about by a planned event should not also be included among failures.
It should.

Leveson [11] proposes that those working on software safety adopt and
follow some of the practices and techniques of system safety engineering, with
a focus on consequences rather than requirements because omissions or incor-
rectness in requirements may well lead to negative consequences. In a subse-
quent chapter, we will critically examine the role of requirements in defining
safety and security needs. This is because many failures and successful attacks
that do occur could well be the result of correctly representing inadequate re-
quirements. Rushby asserts that the dependability approach works best in situ-
ations where there “is no safe alternative to normal service,” giving the example
of aircraft flight control systems, whereas the safety engineering approach ap-
plies to situations in which hugely undesirable events, such as the inadvertent
release of weapons, can happen.

Rushby defines hazards, damage, danger, severity and risk as follows:
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* Hazard: conditions that can lead to a mishap;

* Damage. a measure of the loss in a mishap;

* Danger: probability of a hazard leading to a mishap;

* Severity of a hazard: the worst possible damage that could result;

* Risk: combination of hazard severity and danger.

Rushby goes on to describe hazard analysis, which, he asserts, is a major
tool used in system safety engineering. This and the above terms appear to be
specific to safety engineering, but they have their equivalence in the more gen-
eral area of security risk analysis, as shown in Table 4.2.

According to Rushby, hazard analysis comprises the following steps:

1. Identification of potential hazards (ranging from negligible to
catastrophic).

2. Systematic exploration, which is the determination of how or whether
conditions leading to a mishap might arise (backwards reasoning and
what-if analysis).

3. Dealing with unacceptable risks by means of modification of systems
and operating procedures, incorporation of safety features and/or
training.

Rushby contends that the use of hazard analysis should be required at
each phase of the design life cycle, and he gives examples such as preliminary
subsystems, systems and operations. The following methods are commonly
used for hazard analysis:

* Hazard and operability studies (HAZOPS);

Table 4.2
Safety-Engineering Terms Compared to Security-Risk Terms
Safety-Engineering
Term (Rushby [9]) Equivalent Security-Risk Term

Hazard Threat, exploit, vulnerability

Damage Magnitude of loss

Danger Probability of loss

Severity of a hazard Highest potential loss from threats and
vulnerabilities combined

Risk Risk, expected loss

(magnitude x probability of loss)
Hazard analysis Risk analysis
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* Fault-tree analysis (FTA);
* Failure modes and effects analysis (FMEA).

These techniques were recommended for use with software by Leveson
and Harvey [11] in 1983, specifically using software fault tree analysis (SFTA);
the SFTA technique was developed in the late 1960s to avoid accidental launch-
ing of missiles.

Rushby states that the entire system context in which the software oper-
ates has to be considered when using the safety-engineering approach because
software by itself might not reveal system-level mishaps. Rushby asserts that not
only can a software error cause failure in the overall system, but that activities in
the rest of the system can also cause the software to fail.

Rushby’s article further describes thes afety system engineering imple-
mentation mechanisms, which involve lockins, lockouts, and interlocks that
lock systems into safe states, lock them out of hazardous states, and require
specific event sequencing, respectively. The determination of lockins and lock-
outs will vary with the criteria being used to select the appropriate failure mode.
Missteps in this analysis can lead to horrific consequences, as when workers
were locked into radioactive rooms at the Fukushima Daichi nuclear plant fol-
lowing the March 11, 2011 earthquake and tsunami hitting the northeast coast
of Japan [12].

Rushby also mentions that safety approaches can be applied to security if
mishaps are interpreted as unauthorized disclosure of information and threats,
vulnerabilities, safeguards, and it countermeasures are considered.

The Secure Systems Approach

Rushby [9] claims that the main concern regarding system security has tradi-
tionally been the disclosure of sensitive information, with the protection of
information integrity and the prevention of denial of service being secondary
concerns. He describes security models as comprising both a system compo-
nent and security component. The list of security models, which includes the
Bell-La Padula access-control model, differs among system components, such
as sequential systems, distributed systems, databases or expert systems, and for
security components.

Rushby notes that the disclosure of sensitive information usually receives
more attention than information integrity, even though integrity may be con-
sidered to be more important in some cases because its loss might have greater
impact on the overall system than would compromise of confidentiality. He
refers to Clark and Wilson [13], who focus on two aspects of integrity, namely,
well-formed transactions and separation of duties. They describe well-formed
transactions as those that require that “important data cannot be modified by
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arbitrary actions,” and separation of duties as requiring that “different individu-
als authorize the different procedures that constitute a larger action.” Sepa-
ration of duties should be across departmental lines, because if, for example,
authorization is by one person and his or her boss, there is greater opportunity
for collusion, whereas if signoff from the internal audit staff is required, the pos-
sibility of collusion can be mostly, though not entirely, eliminated.

Rushby claims that “[i]ntegrity has received rather less attention than
disclosure, although [disclosure] is arguably more important in some applica-
tions.” While integrity is clearly a key aspect of both systems and the data that
they handle, considerably more attention has been given over the past decade to
disclosure in the form of unauthorized access to, and misuse of, sensitive data
such as nonpublic personal information and intellectual property, as well as
secret data of all types.

In the mid-1990s, when Rushby wrote his paper [9], distributed denial-
of-service attacks were receiving less attention than integrity by researchers. A
decade or so later, denial of service became a high-visibility, high impact form
of attack, as in the 2007 attack on Estonia that took down government and
banking websites, bringing their activities to a screeching halt [14]. The tech-
nology for such attacks, including the takeover of zombies and the expansion of
botnets, have made denial of service more effective and have given the method
greater coverage.

The Real-Time Systems Approach

Rushby [9] defines a real-time system as “one whose correctness depends not
only on values of its outputs, but also on the times at which they are produced.”

This approach concentrates on priority preferences of system tasks. These
are important to detailed system design but are not specific to safety or security,
as were the two prior approaches. In this regard, if a low-priority task is given
preference over a higher-priority task, then the effect is similar to a denial-of-
service attack.

Security-Critical and Safety-Critical Systems

The above definitions of security and safety originally from Boehm, represent a
more useful and consistent view of the differences between security-critical and
safety-critical systems than do the definitions of both Firesmith [7] and Bar-
bacci [8] described above. This is because the latter definitions are somewhat
restrictive. In general, safety-critical software systems can be compromised by
intentional acts (not just random accidents) and security-critical systems can
be compromised unintentionally (with no malice involved). The Firesmith and
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Barbacci definitions of safety do not capture the essential concept that safety-
critical systems should preferably prevent the harmful impact of both accidental
and intended hazardous events rather than protect individuals from harm.

To illustrate this point, let us consider the analogy of some of the safety
features in a modern automobile, where the antilock braking system (ABS) is
designed to prevent or avoid potential accidents that might occur because of icy
road conditions, whereas air bags are designed to protect drivers and passengers
immediately after a collision has occurred. These two automobile systems are
generally implemented separately, each using its own sensors to detect a danger-
ous condition and subsequently responding to hazardous situations indepen-
dently. ABSs are intended to prevent accidents, whereas air bags are designed to
protect driver and passengers when an accident does occur. In general, security
measures are designed to prevent or avoid the consequences of an attack on a
system, or its misuse, whereas safety is all about protecting assets (particularly,
but not limited to, human beings) in the event that a breach or failure occurs.

Furthermore, Firesmith [7] considers survivability to be the combination
of safety and security. It can be argued, however, that survivability has to do
with effective responses following the inability of systems to withstand attacks
or prevent dangerous situations resulting from system failure. Therefore, one
can usually make a tradeoff between the costs of prevention (or protection)
and recovery (or survivability) costs. As shown in Figure 4.2, the determination
of these costs can provide the analyst with an optimal point at which the total
costs are minimized.

In many situations, a greater investment in prevention may allow less to
be spent on response and recovery as a means of attaining a desired level of

dependability and integrity.
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Figure 4.2 Protection versus survivability costs. (Source: “The Dynamics of Privacy Risk,”
ISACA Journal, Vol. 3, 2004 ISACA. All rights reserved. Used by permission.)
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Summary and Conclusions

The goal of this chapter is to create a model of safety-critical and security-critical
systems in the mind of the reader. While many researchers use the terms safety
and security interchangeably, we choose to make a clear distinction between the
two, with security measures being used to protect sensitive data and intellectual
property within applications and databases, and safety measures being used to
ensure that malfunctioning or failure of the system does not harm humans or
the environment. While there are many parallels between the two in terms of
concepts relating to attacks, defenses, and the like, there are major cultural and
technical rifts among the engineers who design and operate each type of system.

The intention of presenting such clear-cut differences is to emphasize to
those involved in each type of system that, especially, when security-critical and
safety-critical systems are combined into systems of systems or cyber-physical
systems, there is a need to share information and approaches and to collaborate
across the whole security-safety spectrum. If this is not done, then the resulting
systems will be deficient in their security and safety attributes—or even, in the
worst cases, both sets of attributes.
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Engineering Secure and Safe Systems,
Part 2

1 find it very frustrating when we are still talking about the same de-

bugging techniques that were ‘old’ when I started teaching in 1971 [1]

—Marvin V. Zelkowitz, Fraunhofer Center for Experimental Soft-
ware Engineering

Introduction

We have discussed previously how the practice of software engineering appears
to be inadequate in the face of increasing security, safety, and other so-called
nonfunctional requirements, such as dependability, performance, and resilien-
cy. It is indeed disconcerting to read frequent articles by Zelkowitz [1] and Par-
nas [2, 3], who have been working in the field of software engineering for four
or five decades, in which these pioneers in the field complain about the lack of
progress that has been made in the software engineering space. The shortfall is
particularly noticeable as it relates to safe and secure software systems. It is these
latter systems that are the focus of this chapter.

The situation is even more disturbing when one considers that software-
intensive systems are becoming more complicated and difficult to manage, espe-
cially with diverse systems increasingly being combined into systems of systems
and cyber-physical systems. This software-system revolution is making much
greater demands than before on engineers, as they are required to broaden the
scope of their knowledge and professional efforts if they are to stand a chance of
addressing the complexity and diversity of new systems. Furthermore, society is
becoming so much more dependent on software systems, and as a result, system
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failures have a much greater impact than previously on our personal lives and
the health of the economy.

The gap certainly appears to be growing between the complexity of and
dependency on software-intensive systems, and our ability to ensure that such
systems are safe and secure enough to prevent humans from being harmed and
to protect information assets from unauthorized access and from misuse. This
situation does not bode well for a future where the gap continues to widen, per-
haps exponentially. Until and unless software systems professionals in particular
and society in general make enormous progress towards narrowing that gap and
eventually eliminating it, we will not see sufficient improvements to stave off
catastrophic failures.

One of the most dramatic examples to date of the failure of a computer-
ized information system occurred on June 19, 2012, when the Ulster Bank’s
automated processing system, which usually handles some 20 million transac-
tions per day, suffered a catastrophic failure. The outage prevented access to and
destroyed the integrity of the bank accounts of more than 100,000 customers.
A month later, many of the problems that resulted from the initial system fail-
ure remained unresolved. The ultimate direct cost of this incident will likely be
in the tens of millions of Euros (if not greater), if the consequential costs of loss
of trust in the dependability of the computer systems and the impact on the
banks reputation are included [4].

The main goal of this book is to raise awareness of the dangers that we
are currently experiencing and that lie ahead. These dangers may result from
inadequate software systems engineering, particularly as it relates to safety and
security. Such threats will have much greater impact if we are not both will-
ing and able to make rapid and significant improvements in the processes and
procedures used for building security, safety, and other nonfunctional attributes
(such as resiliency) into software-intensive systems. For the effort to be effective,
we need to see major increases in the number of subject-matter experts who
can take over the responsibility of ensuring the safety and security of critical
software-intensive systems.

Another goal of this book is to guide those who recognize the vastness
and importance of the problem towards meaningful ways of achieving greater
assurance that systems will not cause physical harm (safety) and will protect the
information that we most value (security).

In this chapter, we trace the history of various branches of engineering;
this history puts today’s software crisis in perspective, serves to explain why
we find ourselves in the dilemma of recognizing what it will take to establish
acceptable levels of security, and having to accept, albeit very reluctantly, the
limits of safety and our ability to get decision-makers to make available the
required resources to achieve such levels.
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Approach

If we use the analogy of a victim of a medical emergency, it is first necessary
to stabilize the patient before administering curative treatments. So it is with
security-critical and safety-critical software-intensive systems. Before we can
expect to prevail over the attackers, we must first prevent the gap between at-
tackers and defenders from widening further; we can then work on reducing
and eventually eliminating the gap. Perhaps we might even get ahead of the
attackers. Continuing to do as we are now doing will not allow us to escape or
reduce the impact of attacks.

Figure 5.1, which is not to scale, illustrates the exponential rise in security
and safety requirements and system complexity as systems are combined, par-
ticularly cyber and physical systems. The figure also shows the relatively slow
increase in software assurance efforts and capabilities, indicating that the gap is
widening at an accelerating pace. As some assert with global warming, even if
there were an immediate resolution, the problem will continue to grow rapidly
due to the enormous momentum that is already in place. The best one can hope
for under such circumstances is to slow the growth in the divergence between
the increases in adverse effects and the ability to prevent them in the hope that
new solutions will appear that are effective in reducing, and then eliminating,
the gap.
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Figure 5.1 Security, safety, and complexity requirements versus software assurance capa-
hilities. (From Axelrod, C. W., “The Dynamics of Privacy Risk,” ISACA Journal, Vol. 3, © 2004
ISACA. All rights reserved. Used by permission.)
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The approaches recommended here are less about protection and more
concerned with prevention. Our main focus is on avoiding safety and security
issues in the first place rather than trying to protect against them. After all, if
software-system engineers were able to and were allowed to design, develop,
and implement high-assurance software-intensive systems from the outset,
many—if not virtually all—subsequent mitigation efforts could be avoided, as
could the need to respond reactively. It is indicative of the extent of the prob-
lem to see requests for proposal from the Defense Advanced Research Projects
Agency (DARPA) for new approaches for ensuring that software-intensive sys-
tems exhibit appropriate safety and security properties. For example, DARPA-
BAA-12-21 on the subject “High-Assurance Cyber Military Systems (HAC-
MS),” is looking for “clean-slate approaches” to assuring the safety and security
of embedded systems control vehicular operations [5].

While we have the technical ability to build safe software-intensive sys-
tems, as has been demonstrated in the avionics and military field, there are
many other situations in which the heavy-duty methods that are used to ensure
that systems will not fail and are invulnerable to cyber attacks cannot be justi-
fied. However, it is likely that cost-benefit analyses will not show a positive
return on investment for expenditures on such intense risk mitigation activi-
ties. Whereas such results might be due to an underassessing the full impact of
losses, which might be incurred were the system to be attacked, malfunction,
or fail, it is tough to convince decision-makers of the risks of something really
bad happening until it actually happens, as described above in the case of the
malfunctioning of the Ulster Bank’s automated processing systems.

Despite the high frequency of system failures and the consequent costs,
we might be on the wrong track if we expect material changes to be made for all
but the most critical of software systems. Often what is merely “good enough”
is considered acceptable to decision-makers. If that is the case, then attempts to
achieve improvement beyond a mediocre level of assurance will not win them
over.

Reducing the Safety-Security Deficit

The unrelenting increase in the demand for more functional capabilities from
software products and software-intensive systems, together with the aggregation
and combining of systems, are leading to systems of systems and cyber-physical
systems of ever greater complexity and with higher safety and security needs. Yet
we continue to fall behind in our ability to withstand attacks and restrict dam-
aging side effects, as evidenced by the growth in reports of attacks and software
system failures. Experience has shown that the juggernaut of systems develop-
ment and implementation will not stand by and wait for software engineers,
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in particular, to get their act together. It hasnt happened before—it is unlikely
that it will happen in the future unless tremendous pressure is brought to bear.

In many ways, the states of software system security, and to a lesser extent
software system safety, are analogous to the national debt situations that we see
in many developed countries. The spending on security and safety might be
considered “deficit spending” as the demands for security and safety increase,
and yet the total security and safety debt inevitably increases as the impact of
attacks and software failures increases over time. The security and safety debt
continues to grow as security and safety deficits are incurred on a regular basis.
Not until we see ongoing annual safety-security surpluses (meaning that the net
effect of expenditures on security and safety exceeds the losses to individuals,
organizations, and societies), can we hope to see the total safety-security debt
reduced. As much as politicians and society favor deferring the need to reduce
the financial debt until some distant future time (when somebody else will have
to foot the bill), it would seem that security and safety engineers and those
responsible for making security and safety decisions are willing to defer ad-
dressing existing security and safety deficits at the present time. Of course, this
will only lead to much greater costs in the future as we pay “interest” at a very
high rate on the security-safety debt each time that an attack is successful or a
malfunction or failure occurs. This suggests that even the exponential increases
illustrated in Figure 5.1 might actually be conservative.

Game-Changing and Clean-Slate Approaches

In many situations, there is a need to develop software assurance methods to
enable the state of the art to accelerate at a rate that is much faster than the
speed of functional innovation. That is to say, the rise in software complexity
and criticality currently far exceeds our ability to test the software effectively,
especially when diverse components are bound together to form systems of
systems or cyber-physical systems.

The common response to this problem is to look for opportunities to
build security and safety measures into systems throughout their development
life cycles, especially during the earlier phases. While such an approach has a
good chance of improving the quality of future systems in terms of security and
safety, it does little or nothing to enhance existing systems. This is because of
the much greater effort required for testing so-called legacy software and the
orders of magnitude higher costs of retrofitting fixes (or patches) and repro-
gramming and retesting in-place production systems.

Consequently, many practitioners are looking to researchers to come up
with game-changing, clean-slate approaches to produce high-assurance systems
that are not only functionally correct, but are also both safe and secure. Many
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of the suggested game-changers, such as rapidly changing the security environ-
ment in order to get a step ahead of attackers, providing economic incentives to
engender good security, and creating a flexible distributed trust environment,
are worthy goals. These approaches or themes were suggested ata May 19, 2010
conference hosted by the Networking and Information Technology Research
and Development (NITRD) Program and are summarized in a presentation
with the title “Toward a Federal Cybersecurity Research Agenda: Three Game-
changing Themes,” which was given at the conference [6].

Despite the appeal of creating such “silver bullets,” realistic, operable, and
cost-effective approaches for meeting these and similar goals do not appear to
have been developed, at least in the public domain, and it is highly unlikely that
such all-encompassing solutions will be created in the near future, given the
current state of software systems development and implementation. However,
were such a miracle to happen, the creation of innovative technologies, which
are also cost-effective across a broad range of public-sector and private-sector
systems, would certainly revolutionize the way in which software safety and
security attributes are handled and could quell many of the concerns that are
now being voiced.

Appeals to researchers to increase the safety and security of cyber systems
and to improve the verification process are not limited to the NITRD case
mentioned above. Requests for proposals have also come from the Informa-
tion Innovation Office (IIO) of DARPA and others. For example, in the first
quarter of 2012, DARPA issued two Broad Agency Announcements (BAAs) of
particular interest. One is DARPA-BAA-12-21 [7], which has a goal of receiv-
ing proposals for creating “technology for the construction of high-assurance,
cyber-physical systems, where high assurance is defined to mean functionally
correct and satisfying appropriate safety and security properties.” The request-
ors are looking for original, innovative technologies, not ones that have been
previously developed or are merely extensions of prior work.

Another BAA of interest is DARPA-BAA-12-17 [8], which is about
crowd-sourcing the software verification process. In this case, DARPA is look-
ing for “innovative approaches that enable revolutionary advances in science,
devices, or systems.” Here again, evolutionary improvements are excluded.

It would appear that DARPA is attempting to circumvent current soft-
ware assurance technologies and practices, which they seem to question with
respect to the methods’ ability to ensure that software is safe and secure. While
it is disconcerting to realize that the motivation behind such DARPA requests
is that current approaches are inadequate, it is reassuring that the inadequacies
have been recognized and that there is a willingness to fund reesearch into new
technologies. It seems that we will have little choice but to rely upon the re-
sulting technologies to get ahead of the security and safety deficiencies in past,
present, and future mission-critical, software-intensive systems.
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If researchers do not produce ground-breaking, cost-effective solutions—
and there is no guarantee that they will—then it will be necessary to revert back
to older safety and security methods and try to enhance them. If that becomes
the case, then we will have to put forth a huge effort and devote enormous
amounts of resources into building security, safety, dependability, integrity,
resiliency, and other attributes into future software-intensive systems, starting
from the earliest phases of the software systems development life cycle. This ap-
proach will certainly involve enormous expense and effort. There is also a need
to develop a cadre of subject-matter experts able to accomplish the enhanced
requirements. Retrofitting security, safety, and the like into existing systems
would incur an even greater effort and expense because of the need for soft-
ware engineers to be familiar with obsolete computer languages and operating
systems, in addition to the capabilities required for up-to-date methods and
technologies.

The combination of retrofitting older systems and building security, safe-
ty, resiliency, and the like into new systems would cost so much that such an
effort is extremely unlikely to be justified and subsequently funded. Rather, a
more acceptable approach would be to replace existing systems over time with
new systems of greatly improved quality with respect to security, safety, and the
like, assuming that there is the time and determination to even get this done.
Even a lesser initiative would have huge difficulties in finding sources willing
to fund the effort.

Only some overriding threat—such as existed for the Year 2000 or Y2K
mitigation effort, when there was major concern about the risk of system mal-
functions and failures due to systems misrepresenting the date over the cen-
tury rollover—would motivate public and private sectors to fund remediating
currently-operating and in-development software-intensive systems. Y2K reme-
diation was estimated to have cost in the $200 to $300 billion range, although
much of those expenditures consisted of accelerating the replacement of exist-
ing systems with new systems. Because the Y2K fixes could be made compara-
tively easily without having to understand much about the functionality of the
software being corrected, that effort can be expected to have been orders-of-
magnitude less costly than the effort required for implementing a broad array
of security and safety requirements to existing and new systems. It is likely
that bolting security and safety on to all existing mission-critical systems could
cost in the #rillions of dollars. Doing so for future systems could add billions
of dollars to projects, although such costs could be offset against reduced vul-
nerability and fewer successful attacks. It is difficult to envisage any potential
catastrophe that could precipitate such expenditures—until it actually happens.

Furthermore, it is unlikely that even building security, safety, and resilien-
cy into new systems will be universally accepted, particularly by private industry.
Some companies, such as the Microsoft Corporation, have notably embraced
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the concept of trustworthy computing, effectively replacing prior products with
more secure new products. However, only a few software manufacturers appear
to have followed Microsoft’s lead. Some 19 of 51 companies that are participat-
ed in the fourth iteration of the Build Security in Maturity Model (BSIMMH)
initiative were independent software vendors (ISVs). Such firms as Adobe, In-
tuit, Microsoft, SAP, and VMware are included in the BSIMM community of
companies. Participation in the BSIMM projects is considered indicative that
these firms are at the forefront of security practices [9]. However, the goal of
universal trustworthy computing is unlikely to be realized unless there is a push
from government in the form of financial incentives, threats of legal and regula-
tory action, or both.

On February 14, 2012, a cyber security bill, S.2105, was introduced into
the U.S. Senate by Senators Lieberman, Collins, Rockefeller, and Feinstein.
The bill was titled “Cybersecurity Act of 2012,” and it attempted to address
concerns about cyber attacks on industrial control systems, particularly those
affecting the electrical energy industry and other utilities [10]. Such safety-
critical systems are increasingly being connected to public telecommunications
networks, such as the Internet. The Cybersecurity Act of 2012 aimed to ad-
dress issues arising from cyber threats and common vulnerabilities in software
systems. As would have been expected, especially in the then-current hostile
political environment, the bill almost immediately ran up against opposition
because of the restrictions that it would impose and the costs that would be in-
curred. If the history of the recent attempts to introduce Federal cyber security
legislation is any guide, it is unlikely that this bill will find its way into law in
its current form, and any compromise bill is likely to be dragged out over time
and considerably watered down.

An earnest push for action on national cybersecurity legislation will likely
not occur until the situation has become bad enough to cause public outcry
and political response. Vice Admiral Michael McConnell (USN, Ret.) testified
on this at a hearing of the U.S. Senate Committee on Commerce, Science, and
Transportation on February 23, 2010, saying that he believes that no serious
action will be taken on behalf of cyber security until and unless a catastrophic
cyber event were to occur. The Committee was chaired by Senator John D.
(Jay) Rockefeller IV, and was on the topic “Cybersecurity: Next Steps to Protect
Our Ceritical Infrastructure” [11].

Meanwhile, apparently all we can do is just try to prepare for the day
when such an effort will be endorsed out of necessity, as it will when a cata-
strophic event or series of events takes place. This is by no means a desirable way
of addressing the issue, but as of now, there seems to be little choice. By way of
preparation, we need to sort out the details of how, in an ideal world, safe and
secure software-intensive systems should be designed, developed, implemented,
run, and discarded. In that way, there will be some basis for quickly invoking



Engineering Secure and Safe Systems, Part 2 81

the better methods needed to deal with the problem at the time. Such an ap-
proach is far from ideal but, because there is little chance of establishing appro-
priate standards and funding the implementation of those standards without a
major driver, it will have to serve the purpose, even though it will cost many
times what it would cost if the mitigation efforts had been done in advance.

A Note on Protection

The general approach to security is to defend systems against attacks, thereby
protecting information assets. With respect to safety, not only do we want sys-
tems not to harm humans, other life forms, and the environment, but we also
look to protect potential victims directly through secondary means, such as
manual overrides in the event that systems malfunction or fail due to inten-
tional or accidental incidents.

Most current efforts are geared to prevention. Typically, we install intru-
sion detection and prevention systems to protect software systems against mali-
cious attacks. Antivirus software is used to detect and intercept malware before
it can insert itself into legitimate computer systems. Safety-oriented systems
are prevented from doing damage by using a specific set of failsafe methods to
protect individuals, groups, and the environment.

Not nearly enough money and effort is being applied to deterrence and
avoidance, relative to funds allocated to protective measures. However, avoid-
ance and deterrence are usually far cheaper to implement than preventative ap-
proaches. For example, if the British royal crown jewels were to be secreted away
in an unknown location, far less effort and expense would be needed to guard
and protect them than if the real crown jewels were on display. However, it
can be argued that displaying them is worth more than what it costs to protect
them, which is why they are put on view in all their glory. The main argument
in this case against avoidance by not exhibiting the jewels is that the public has a
right to see them and is willing to pay to do so. Nevertheless, facsimiles could be
substituted, thereby avoiding much of the security issue, although the experi-
ence of viewers would be diminished (if they were, in fact, aware that they were
looking at fakes), except if the viewing public believed them to be real because
of the extraordinary security precautions being taken.

Deterrence and avoidance, in particular, are the keys to attaining levels of
security and safety that professionals in the field would like to see. However,
since protection is seen as a responsibility of safety and security professionals,
and deterrence and avoidance relates more to business decisions, the latter are
seldom included in the systems engineers’ toolbox. Often software-intensive
systems are breached, or fail in a harmful way, not because they were not pro-
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tected against unwanted actions, but because they are being used for purposes
not originally envisaged, approved, or allowed for.

A prime example of this latter condition is the Internet itself. Originally
called ARPAnet, the Internet was developed by DARPA as a highly resilient
network that could be relied upon to continue to operate even if substantial
segments of the network were disabled or destroyed. The Internet was not de-
signed with security in mind, nor safety for that matter, because the original us-
ers, mostly academics, knew and trusted one another and because if users failed
to honor appropriate security requirements, they were banned from using the
network. Ironically, many software system compromises usually occur because
of unauthorized or unexpected access, use, and operations that were not envis-
aged by the creators of the software.

Deterrence and avoidance must be included as means of reducing soft-
ware system risk if we are to have any hope of meeting the challenge. Such mea-
sures are often unpopular because they frequently mean restricting or removing
prior privileges and uses. Also, those enforcing the restrictions will likely be
accused of stymieing innovation. Yet deterrence and avoidance, if thoughtfully,
carefully, and properly applied, can be much more cost-effective than protective
measures. At some point, when it is clear that protection is insufficient and that
critical infrastructure systems are on the verge of collapse, society might be will-
ing to take the difficult steps of restricting functionality and use of such critical
systems and eliminating ready access to sensitive information. Until then, we
are left with trying to improve the quality of current protective measures and
work on encouraging them to be used and enforced.

Despite the expected lack of enforcement and adherence, we include
deterrence and avoidance measures when considering a holistic approach to
achieving safety and security goals. It is expected that, at some future time, so-
ciety may well begin to focus on deterrence and, in particular, on avoidance as
disappointment with protective measures increases.

It should be noted that deterrence and avoidance of inappropriate ac-
cess to, misuse of, and damage to software functionality and data can often
be built into software design and development. In particular, the design of a
software-intensive system needs to incorporate the ability to restrict access to
specific functions and data. For example, while a third-party identity and access
management system might front-end a particular application, the application
software itself needs to interpret user access restrictions properly and have the
ability to block inappropriate functionality and data access. In other cases, de-
terrence might be introduced, for example, through warning messages letting
users know that their aberrant behavior has been identified and recorded, and
that action will be taken in the event that users exhibit such behavior again.
These techniques are often less difficult and expensive to implement than are
methods for protecting data, such as encryption.
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Safety-Security Governance Structure and Risk Management

We also address the importance of having an effective governance structure for
the design, development, and implementation of software systems. In addition
to the usual recommended project management processes, which are common
in the literature, it is critical to ensure that all the necessary subject-matter
experts are brought in at the appropriate stages of the software systems develop-
ment life cycle (SSDLC).

We also emphasize the need to establish a risk management individual or
group that will ensure as much as possible that both functional and nonfunc-
tional requirements are given their appropriate weight when making tradeoffs
among project cost, quality, and timeliness.

Not only are software-intensive systems becoming more complex and in-
terconnected, but many software systems are transitioning into “the cloud.”
These trends increase the need for both coordination and collaboration among
systems engineers, software engineers, safety engineers, and security profession-
als throughout the entire development life cycle. Unfortunately, many of these
groups do not currently communicate with one another; as a result, software-
intensive systems often lack the quality that a collaborative effort might well
have produced.

The governance and risk management structures and practices described
in this book are designed to foster such communication and collaboration. The
proposed approach will also ensure that all significant factors for optimizing so-
called nonfunctional requirements of software systems such as security, safety,
resiliency, survivability, and sustainability are at least considered. In the best of
circumstances, these attributes will be incorporated into the processes used to
create software systems, and will thereby protect internal assets, prevent the sys-
tem from damaging others, remain operational during destabilizing and dam-
aging incidents, and ensure the integrity of sensitive information and systems.
The approach followed here is first to consider life cycle structure, then pro-
cesses and finally the roles and responsibilities of those who need to be involved.

An lllustration

In mid-January, 2012, passengers in a British Airways flight from Miami to
London heard an announcement that the airplane was about to crash into the
ocean. According to a July 1, 1999 article “BA False Alarm Strikes Again,” the
issuance of the prerecorded alarm about a British Airways aircraft ditching into
the sea is not new. In fact, such incidents were reported to have occurred three
times within four months in 1999, according to the article [12]. The same
thing happened again on a flight from London to Hong Kong, as mentioned
in the January 17, 2012 article “Oops: Plane Mistakenly Warns Passengers of
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Crash” about the January 2012 incident [13]. In another January 17, 2012
article “British Scareways” by Robert McAuley in The Sun newspaper, the prior
incident occurred in August 2010 [14]. In some cases, the malfunction was
attributed to a computer glitch; in others cases, human error was given as the
cause. One would have thought that, had a proper root-cause analysis been
conducted, the reasons for such occurrences would have been determined and
the systems modified to prevent subsequent repetition of the false alarm.
Fortunately, the announcement system had not been triggered by an ac-
tual physical emergency or a failure of the aircraft’s control systems. However,
it does point to a failure in the coordination among the aircraft’s information
systems, control systems, and their human operators, particularly since similar
incidents have occurred at least four times previously on British Airways flights.

The General Development Life Cycle

We shall be focusing here on software-intensive systems rather than just ap-
plication software. That is to say, we are including system software, firmware,
hardware, facilities, and human elements in the mix.

However, before we get into the details of safe and secure software system
engineering, we will look at the origins of various engineering disciplines and
how these disciplines evolved; the purpose being to illustrate how certain gaps
might have developed over time.

Even today, traditional systems engineering is more commonly applied
to the construction of facilities (office buildings, data centers, etc.) and the
manufacturing of equipment than it is to software development. Nevertheless,
the use of project management tools for software development has a fairly long
history, stretching back to the 1940s, with wider adoption in the business world
(as opposed to the military) beginning in the 1960s as those with military and
government backgrounds entered the private sector.

The earlier and more extensive use of project management in construction
and manufacturing may be because these fields are more closely aligned with
longer-standing engineering practices, such as civil, mechanical, and electrical
engineering, which have all been established as professional disciplines for more
than a century, as indicated in Table 5.1. In his book, Gawande [15] provides an
interesting description of the sophisticated project management tools used by
construction companies to coordinate the many activities and capture resource
use for complex projects, such as the construction of a skyscraper.

Software engineering is a relatively new discipline with a history spanning
only six decades. Software safety engineering has a somewhat longer history of
perhaps 40 to 50 years as compared to software security engineering, which has
only been active for some 20 years or so. This latter difference is likely because
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software developed for aircraft and spacecraft required that the negative im-
pact of system failure on human beings be considered, whereas interest in the
security of software only began to receive significant attention with the advent
of distributed systems and the Internet. There was some interest in security
prior to the arrival of distributed systems and the Internet, but it was mostly
limited to restricting logical access to data stored on mainframes using off-the-
shelf software packages such as RACE, ACF2, and TopSecret. There were also
a limited number of such access management systems for minicomputers. At
that time, logical access to computer systems was through “dumb terminals,”
which were connected via dedicated cables to computer systems. Physical se-
curity methods were used to restrict access to rooms containing terminals and
computer systems.

Structure of the Software Systems Development Life Cycle

The Department of Defense document on systems engineering [16], though
more than two decades old, may still be considered to be the definitive text on
the topic, because the Defense Acquisition University (DAU) website currently
lists the document and it does not appear to have been superseded. However,
more recent texts on the subject have been issued by NASA [17] and Haskins
[18].

Haskins [18] provides useful comparisons among a half-dozen different
life-cycle models. The comparisons are summarized at a higher level in Table
5.2.

AsTable 5.2 shows, the various systems engineeringlife cycles follow rough-
ly the same pattern. However, some life cycles emphasize particular phases over
others. For example, the DoE cycle, as described in [19] does not include an
explicit deactivation phase, but has more extensive planning phases than do
other life cycles.

We now look briefly at the structure and phasing of software engineering
life cycles. They tend to follow the phases shown in the second column of Table
5.2. However, most researchers emphasize life cycles of internally developed
software because there is much less ability to control third parties that pro-
duce and sell software. On the other hand, system integrators, as referenced by
Haskins in Table 5.2, also go through similar life cycles as do organizations that
develop software systems from scratch. In Table 5.3, we show structures for the
software engineering life cycle, much as systems-engineering life cycle structures
were shown in Table 5.2.

An immediately apparent difference between the systems and software
engineering life cycles (comparing Tables 5.2 and 5.3) is that the latter does not
show a retirement or decommissioning phase. While some may consider this
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unimportant, it illustrates a difference in philosophy and represents a major gap
in the creation and disposal of software. It might be explainable from the physi-
cal difference between systems in general, and software in particular, where the
physical realization of software consists of data bits on some storage medium
that can often be deleted with a single software command, whereas equipment
disposal is often much more involved.

Another difference that is not as well illustrated by comparing the struc-
ture tables (but which will become more apparent when comparing processes) is
the application of verification and validation (V&V) rather than testing. V&V
is usually a much more intensive process than general software testing and gen-
erally a requirement for military, avionics, and similar systems. In fact, inde-
pendent V&V (or IV&YV), which is performed by an independent third party,
is frequently mandated for such systems. As mentioned previously, Braude and
Bernstein [21] define the terms as follows:

* Verification: Ensuring that each artifact is built in accordance with its
specifications.

* Validation: Checking that each completed artifact satisfies its specifica-
tions

That is to say, we verify that we are building the product correctly, mostly
by means of inspections and reviews; we validate that we are building the right
product, mostly by testing [27].

Life Cycle Processes

Importantly, in Christensen and Thayer [24], the authors distinguish between
systems engineering and project management as follows:

* Systems engineering: a capability within an organization that might be
identifiable as a separate entity performed by a combination of indi-
viduals, such as system architects, process architects, or lead designers.
It is applied to technical activities as they relate to the development and
sustainment of systems.

* Project management. the function (or role) of project manager exists for

any project. The individual is responsible for managing the activities
such as process planning and control.

A basicattribute, or function, of systems engineering is the formal manage-
ment of specifically-structured systems development projects. Such discipline
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provides a substantial measure of assurance that customers and end users (if
they are different from customers) will ultimately receive completed systems
that meet their specific requirements and that have been tested to ensure that
they work as required and specified.

One might reasonably assume that customers and/or end users are able
to determine whether or not a particular system satisfies their functional re-
quirements (e.g., a bridge spans from point A to point B and has the capacity
to handle given traffic volumes). However, typical customers (in the case of a
bridge, the customer might be a municipality representing those looking to use
the bridge) cannot be expected to have the expertise needed to ensure that the
system meets nonfunctional requirements (e.g., for a bridge, such requirements
might include the maximum weight of traffic and the stability of the bridge in
response to crosswinds of different velocities). For software-intensive systems,
it is similarly not to be expected that customers or end users can be relied upon
to have specified appropriate safety and security requirements with acceptable
completeness. When someone purchases an automobile, for example, he or she
will look at factors such as space, comfort, fuel consumption, braking distance,
and the like, in making a purchase decision; however, safety features are as-
sumed to be given, although consumer rating organizations will report safety
issues, including results of the National Highway Traffic Safety Administration
(NHTSA) impact tests. Similarly, customers and end users of software-inten-
sive systems cannot be expected to define safety requirements. Furthermore,
when it comes to the security of on-board vehicle control systems, there are not
yet standards against which to measure the security level, official tests are not
conducted, and the purchaser is left to his or her own devices when it comes
to determining and assuming the risk that the systems will be compromised by
attackers.

For software-intensive systems, in general, the functional needs of cus-
tomers and end-users do not usually include safety and security functional and
nonfunctional requirements, and customers and end-users are not usually qual-
ified to test systems for safety and security deficiencies. Some, such as Brenner
[28], have suggested setting up an independent testing organization (equivalent
to Consumers Union) to test and rate commercially available software. In other
cases, specific industries, such as the U.S. financial services sector, have looked
into setting up an industry software assurance laboratory. Among many issues
with establishing such a testing capability are agreeing to who would fund the
effort, which software systems would be selected for testing, which set of criteria
would be used for testing, and how the results would be distributed.

It is therefore important to include subject-matter experts who are knowl-
edgeable in both functional and nonfunctional areas on the systems develop-
ment project team. However, in many cases, particularly for secure software
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manufacture, the appropriate experts are often not called in during the life
cycle and are forced to try to bolt security and safety measures after the software
system has already gone through development and testing. At this point there
has to be considerable compromise, particularly as the costs of such belated ef-
forts are many times what they would have been if the same security and safety
features had been built in during earlier phases. In general, the problem is less
for safe software systems than for secure software systems because the former
are more often governed by specific standards and certification requirements.

At this point, we will take a more detailed look at systems engineering
processes and related responsibilities of those managing and working on the
systems. We draw heavily on guidelines developed by the space and military
agencies as they were prominent in developing the field.

In Christensen and Thayer [24], the functions of systems engineering are
defined to include the following:

* Problem definition;
* Solution analysis;

* Process planning;

* Process control;

* Product evaluation.

According to Parnas [3], the systems engineering process comprises the
following functions:

* Requirements analysis;

* Functional analysis and allocation;
* Design synthesis;

* Verification;

* Systems engineering process outputs.

From the definitions of verification and validation by Braude and Bern-
stein [21], mentioned earlier, we see in the above process by Parnas that there
is a phase in which systems are checked to see that they were built correctly
(i.e., verification), but not that the systems necessarily address their specifica-
tions. This can result in very well-built systems that do not do what they were
intended to do, and what is even more problematic, they might do what they
are not supposed to do.
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As indicated above, very similar structures and phasing have been applied
to software engineering, as well as to software safety and security engineering.
The main differences relate to the processes within each phase and the degree
of emphasis placed on each. Just because a phase is recognized as part of the life
cycle, it does not mean that it will be addressed adequately unless the require-
ments and the processes are clearly and completely specified from the start.

There are generally substantial differences in the application of particular
effort and expertise as we move from general systems engineering to more spe-
cialized software engineering and then on to the engineering of safe and secure
software. Deficiencies in the specific areas of software security and safety result
more from processes that are inadequately adhered to, rather than inappropriate
life cycle structures. Key quality areas are often given insufficient attention and
resources, or are ignored completely, suggesting that additional subject-matter
experts, skilled in areas such as application security and system safety may have
been excluded from critical stages in the life cycle. Their skills and experience
need to be brought to bear during critical phases of the life cycle if deficiencies
in these areas are to be addressed and resolved.

Governance Structure for Systems Engineering Projects

Researchers are usually quite specific about what should be done, but often pay
insufficient attention to how success in each phase might be achieved. Here the
devil is in the details, and many of the shortcomings that we see in the safety
and security of systems are due to researchers either not including or not even
being aware of the range of skills and backgrounds needed to create a successful
safety-critical or security-critical software system. Again, this disparity is be-
coming particularly common as complex systems of systems and cyber-physical
systems comprising both safety-critical and security-critical components are
evolving.

In Table 5.4, we show the differences among the disciplines of general
software engineering, software safety engineering, and software security engi-
neering. As can be seen from the table, it took several decades from when soft-
ware engineering was created as a separate, independent area to formalize the
inclusion of software safety, and several more decades for software security engi-
neering to become recognized as its own domain. The relative maturity of each
of these disciplines is reflected in the status of formal standards, establishment
of professional associations, availability of expertise, and so on. The maturity is
also reflected in the respective quality of software systems being produced, with
software security engineering being somewhat weak in certain areas, such as
the establishment of generally-accepted stringent standards, relative to software
safety engineering.



93

Engineering Secure and Safe Systems, Part 2

"pareaIpul se 1dedXe ‘710z ‘Gl AP U Passaade |[e alam 8|qel SIY3 Ul PaUIBILOD SYUI| B1SaM 8y |

Buinjong
Auinaas aiemyos
ur suadxa paulesl maj Alaa Ajaaie|ay

Ainaas apnjaul 0y Buluuibaq
aJe Bullasuibua alemyjos u sweiboud
ab8|]00 may \/ “Bululel a0y pe Ajjesauag

Bio-1suealoisgam//:dny
w0y 8|qejieAe 8le z0o/z Pue 1004z 331/0S|

(SSQ 1d)
plepueis A1indag eieq Ainsnpuj pieq luswhey

saLisnpul Jejnaied 1e pawie Ajjsouw ‘ma4
MO

B10° SUBS MMM ‘(86| PBPUNOY) BINHISU| SNY'S
wo'1S906//:d1y ‘(v/61

papunoy ‘|S9) 81niisul Ainasg Jsindwo)
Biozasrmman ‘(8gg1 Ul pawloy) Z3S|
Bioessrmmm’ (ySS|)

U011e120SSY A11INJ8S SWalSAS uonewloju|
SwolsAs

uolewlojul 10338s s1eaud pue aijgnd |eanLY

S0L61

aImey

$198U1BUS 81BM1OS |0J3U0D
Ajjelauab ‘suadxa J0 Jaquinu 81eJspojA

Bulurel} 81emios Ul Uey} Jayel
sweiBoud BurisauiBbua ul papnjoul Ajjensn
(210z ' 1890300 passadde ‘jpdz|0zidas
-$90(18|qe|IBAV}01SIT/SPROjuMOp/Bi0 B0l

"MWAW//:dny ‘77 8Bed 88s) uonealiia)
Juawidinby pue swaisAS auloquiy ui
suornelapisuoy) a1emyos g8/ 1-0a
$10198s 81eAud pue aignd

S$S0J0E JUBISISUOJ 10U INQ ‘SpIepuels Auely|

ybIH

B10°A18)es-waisAs//:dny ‘(€961 Ul papunoy)
A181208 A1ajeS WAISAS |eUOIIRUIBIU| BY |
SWa1SAS |0J3U0I |eLISNpUl

pue 3J21yaA ‘uoneiAe ‘Aexijiw Ajjensn

S0961

almeyy

SEENIE]
81eM1J0S paulel} Jo Jaquinu [erueIsgng

"palayjo ale Buuiasuibus a1emijos
Ul SUOIJBALIHAD pue $3sIn0d 8ba||0d snoJawny

Jpd-y0z3siu/sqnd/nobisiucessiy

//:01y 1e ‘spiepueis pue aiemyos Aiibajuy
YBIH ¥07-005dS 1SIN '8|dwiexa o} ‘8ag
101985 a1eAld

Ay} U1 Ajlenanied pesldsapim 1ou Ing ‘awos

91IBPOIN

610" WIR MMM ‘(/76] Ul PapUNO}

‘DY) Aauiyoe| Buiindwo? 1o uoiela0ssy
B10181ndwod

MMM (96| Ul pawioy) A1a1a0s Jendwos 333

alemuuly snid ‘a1em1os ||y
SOv6l

eale jo hunepy

asipadxa ajqejiene
jo Aaenbapy

sweiboid Buiuien
pue uoneanp3

splepue)s
jo sajdwexy

spiepue)s
|ewo} jo aaua)sixy

uoneaijdde jo janaq

suonelaosse
|euoissajoid

adoag
wbug

Bunaauibug Ayunoag asemyog

buniaauibug Aajeg atemyog

Buniaauibug asemyjog

sonsuajoRIey?)

Buliaauibug A1Indag pue A1ajeS a1emijos 40 Sa1SII8ldeIRY) JO UoSIedwo?)

v’ alqel




94 Engineering Safe and Secure Software Systems

Risks of Security-Oriented Versus Safety-Oriented Software
Systems

The distinction between security-oriented systems and safety-oriented systems
has to do with which risks are emphasized in each. For the most part, as dis-
cussed previously, security is about protecting valuable and sensitive informa-
tion assets from outside, and possibly inside, attacks, whereas safety relates to
preventing the system from doing damage or causing injury to those using the
system or otherwise affected by the system. The degree to which the software
running within the system is responsible for either secure or safe operation of
the overall system depends upon the specific functions that the software sup-
ports. Sometimes system security and safety are not dependent on software, but
on physical isolation and the like.

It is also possible for a safety-oriented system to depend only on hardware
to protect customers or other users from harm. Such physical interlocks are
common for electromechanical devices. However, it is also feasible to design
a system where software is given the responsibility for avoiding injury and the
equipment is totally controlled by software.

Similarly, a security-oriented system can depend on physical methods for
protecting assets, or, alternatively, the protection can be via software only. For
example, electromagnetic media can have a physical switch or similar mecha-
nism that prevents anyone from writing over existing content. On the oth-
er hand, the prevention of overwriting might be solely a matter of software
controls.

For assuring some level of software security, information security profes-
sionals use methods such as threat modeling, penetration testing, and the like,
to try to establish that outsiders or, to some extent, internal users cannot dam-
age the system, misuse or steal data, and so on. While those responsible for
software security pay attention to secure coding, functional testing and non-
functional security testing, functional security testing (testing that the software
system does not do that which it is not supposed to do) is mostly ignored as it
is considered too difficult and costly. Unit testing, integration testing, and ac-
ceptance testing are done from the user perspective and focus on meeting func-
tional requirements. The amount of nonfunctional testing performed is often
affected by whether the basic system functionality works as specified, resources
available for testing and time to market.

For software safety, emphasis is more on validation and verification, as
described above, to ensure that a system does not malfunction or fail in a man-
ner that will endanger human life or harm the environment. Those tasked with
software safety pay much more attention to unit testing and integration testing
than is done for software systems not having safety requirements. Generally,
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much more time and effort are allotted to ensure a high level of system safety
than is expended on other forms of testing, such as security-related testing.

In many ways, the role of the security professional is a far more difficult
one than that of the safety engineer. The former has to defend against all poten-
tial attacks, whereas the safety engineer has to ensure that a finite population of
malfunctions and failures of critial safety systems does not cause harm or loss of
life to persons or other beings. That is to say, software security engineers often
have an infinite number of possible attacks and vulnerabilities to deal with,
whereas software safety engineers have a relatively limited number of possible
scenarios, although that number could be very large.

Expertise Needed at Various Stages

Security expertise should be front-end weighted in the life cycle to ensure that
security requirements are included and reviewed. The system design and cod-
ing practices need to be instilled from the beginning. They require expertise on
secure application architecture and development practices. Security and func-
tional expertise is needed in the testing and implementation phases. Details of
levels of involvement for security-critical systems are included in Appendix C.
Safety expertise is also needed early to ensure safe design, and to ensure
that safety requirements have been considered and included as appropriate.
However, safe coding practices may not play as great a part if safety-oriented
languages are used. Additional expert input is needed in the verification and
validation stages. Details of levels of involvement for safety-critical systems are

included in Appendix D.

Summary and Conclusions

It would appear that software safety engineers are better equipped to ensure
that safety-critical systems meet stated industry and government requirements
and standards in order to minimize the risk to human and other life, and the
environment, of a failure of the systems.

Software security engineers have neither as stringent requirements nor
the luxury of allocated time and resources to test for security, as do their safety
software engineering counterparts.

As a consequence, while the development life cycles are similar in form
for both security-critical and safety-critical systems, the emphasis at different
phases is can be very different, as described in Appendix C and D, respectively.

Software security engineers generally appear to have a difficult time
convincing their management that security risks are real and should be mini-
mized. Another aspect is that protecting security-critical systems often requires
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considerable effort, resources and funding and, given the perceived risks and
responsibilities for breaches, even minimal funding is often not forthcoming,
Because of this huge gap, those interested in achieving high degrees of security
for critical software are either presenting normative approaches that are unlikely
to gain much traction, or hoping for magical clean-slate breakthroughs that will
somehow change the game. The greater the problem becomes, the more it is
apparent that the huge amount of effort—potentially costing in the trillions of
dollars—is needed to produce secure systems going forward, replacing deficient
systems where possible, and retrospectively fixing legacy systems that are un-
likely to be replaced within years or decades.

It is possible that, as safety-critical and security-critical systems are in-
tegrated into systems of systems and cyber-physical systems, stringent safety
requirements will impact security requirements because security breaches can
readily lead to intentional or accidental malfunction or failure of safety-critical
systems. The hope is that the impetus from safety requirements and standards
will elevate security requirements and standards, rather than software securi-
ty practices dragging down the safety-critical requirements and standards. It
would seem to be a fair guess and a fervent hope that safety will become a major
driver for improved software security.
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Software Systems Security and Safety
Risk

If you don’t attack the risks, they will actively attack you. The real pro-
fessional is one who knows the risks, their degree, their causes, and the
action necessary to counter them, and shares this knowledge with his
colleagues and clients.”

—Thomas Gilb, Principles of Software Engineering Management [1]

Introduction

The word “risk” likely means something different to each and every one of us,
judging from the many debates that arise whenever the topic is raised. Some
well-respected researchers look to adopt simplified methods for assessing and
managing risks, some think that the determination of risk is complex and re-
quires advanced probability theory, and yet others believe that the whole effort
should be disbanded because it is impossible to come up with accurate estimates
of losses and of probabilities of those losses occurring.

What many researchers and writers on the topic of risk appear to miss
is that the assessment of risk can be a very personal process. Risk mitigation
may be done largely to reduce negative outcomes that affect individuals di-
rectly, even if someone is supposedly assessing risks that may be assignable to
someone else or to other groups or organizations. There is a question as to the
degree to which someone can be objective enough to assess another person’s
(or another entity’s) risks. Clearly, actuaries are tasked with doing that job for
their insurance company employers, but even then, they might be motivated,
likely subconsciously, to bias estimates to favor their own careers. For example,
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if actuaries are conservative, payouts for losses will be less relative to premiums,
but relatively high premiums will deter customers; if they are overly optimistic
about catastrophic events not happening, the company could see large reduc-
tions in profits.

In this chapter, we examine the risk assessment and management process-
es, taking into account the many definitions and models that are offered. We
also look at the motivations of risk assessors and how those motivations might
affect the resulting analysis, and further how they may influence risk manage-
ment more broadly. It will be shown that many assertions about risk miss the
point entirely, which serves to explain the increasing number of inappropriate
risk assessments and poor decisions which we have seen play out in recent years.

Understanding Risk

One might think from the seemingly knowledgeable manner in which self-
anointed authorities discuss risk, that they thoroughly understand the con-
cept and how to apply it. The results suggest otherwise, particularly when you
consider the recent man-made catastrophes in the financial and nuclear-power
worlds.

Risk determination and analysis have taken a number of major negative
hits of late, particularly with respect to forecasting the global financial melt-
down beginning in 2008, or predicting that a tsunami hitting northeastern
Japan would not exceed a certain height, as it did on March 11, 2011, or an-
ticipate that the Arab Spring would take place and spread in the manner that
it has. The common thread of these events, and many other similar incidents,
is that forecasts with respect to the likelihood that specific events, particularly
catastrophic events, are often wildly off the mark. That is not meant so much
as a criticism of our ability to predict the unpredictable as it is of recogniz-
ing that estimating infrequent catastrophic events is virtually impossible. For
catastrophes, the best approach might well be to implement some broad-based
monitoring, protective, and response measures that cover an extensive range
of potential events, in the hope that the preparation will somewhat soften the
blow and provide timelier and more effective responses.

Risks of Determining Risk

Risk is associated with taking chances; we take chances when outcomes of deci-
sions or actions are not known in advance with certainty. This is the situation
in which we find ourselves most of the time. Often the downside of decisions,
which prove to be wrong or less than satisfactory, is not particularly damaging.
For example, you may select a menu item in a restaurant and then notice that
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someone else has ordered a dish that you would have preferred. In this case, you
can usually return to the restaurant at a later date and order the coveted dish
for yourself. However, on other occasions, a bad decision can be disastrous and
there may be no opportunity to recoup losses, unless the risk was transferred
through insurance or other means. An example of this might be an explicit de-
cision to build a house in a flood plain and take out flood insurance (assuming
that insurance coverage is available for the contemplated location).

While there are opportunities to insure against attacks in cyberspace, such
insurance can be difficult to come by because the applicant must demonstrate
a strong security posture in advance for the underwriter to be comfortable
enough with the level of risks to issue a policy and determine a reasonable
premium to charge. One consideration when evaluating a company for cyber-
security insurance is how the company builds and/or acquires safety-critical and
security-critical software systems. It should be noted, however, that purveyors
of software products generally assume no liability for vulnerabilities that might
reside within the software or for the consequential damages that might be sus-
tained. Mostly, acquirers of third-party software are contractually responsible
for installing and operating the software correctly and assuming any losses that
might occur through the use or misuse of the particular software product. Inde-
pendent software vendors (ISVs) will typically only offer to refund the cost of
the software product and will not assume any other liabilities.

Software-Related Risks

The quest to manage certain software-related risks was actively pursued in the
1980s. Dr. Barry W. Boehm, who is well-known for his definitive work on
the software engineering process and famous for the spiral model [2], edited a
pioneering collection of papers on software risk management [3]. At that time,
researchers such as those who wrote chapters in Boehm [3] did not agonize over
the precise definition of risk—their risk-related focus was on the software sys-
tem design and development processes and their associated uncertainties. The
challenge back then was to minimize uncertainties related to software develop-
ment processes, rather than to protect against potential attacks on, or damage
from, software systems after they have been developed and deployed. Nor did
researchers examine, at that time, the risk of malicious developers, who might
introduce destructive code into the software. Interestingly, even today the pros-
pect of such threats is generally not considered, despite there being very signifi-
cant risks associated with such activities.

During the computer program remediation effort to correct the Year 2000
problem of misinterpreting the year in date fields, large quantities of program
source code were shipped to outsourcers, many of them offshore and many in
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Asia, Eastern Europe, and Ireland. There was considerable apprehension among
information security professionals that such third-party contractors would in-
troduce “back doors” that is, computer-program code that would allow them to
get into the software system at a later date and compromise the system in some
manner or other for personal gain. There is little published evidence that this
type of crime has in fact been perpetrated, although the likelihood of such an
approach was thought to be high enough to voice concern publicly [4].

In the ensuing three decades, the role of software-intensive systems has
become increasingly critical as such systems are being deployed into practically
every area of human endeavor. Furthermore, the orientation of software-based
systems has also changed, fueled by rapidly falling costs of electronics, leading
to much cheaper systems and networks. There is also a burgeoning population
of geographically dispersed developers, particularly in Asian, Eastern European,
and South American countries, as well as in Russia.

The ubiquity of applications software products (apps), which are being
created by hundreds of thousands of developers for Apple, Google, Facebook,
and other platforms, has dispersed security, privacy, and safety issues through-
out cyberspace. In previous chapters, we made a clear distinction between safety
and security as the terms might be applied to software systems. To make matters
even more complicated, the term privacy is also frequently subject to varying
interpretations. Privacy involves the legal and social rights of individuals, with
the implementation of security measures being one of the ways to implement
privacy directives. Major security and privacy issues arise from applications soft-
ware that is built by subcontractors for mobile devices, such as smartphones
[5]. As smartphones and similar mobile devices are increasingly used to control
physical systems, such as monitoring one’s home, we are seeing safety issues
coming to the fore [6].

These changes in the way in which commonly-used applications are de-
veloped, distributed, and used has meant that oversight and management con-
trols regarding such development activities have become much more difficult to
enforce, if even it is possible. Software-intensive systems produced in this open
environment are much more likely to contain vulnerabilities and hence are
easier to compromise. Consequently, while the pioneering work of the 1980s
provides a good basis for mitigating risks stemming from the software system
design and development processes themselves, they do not account for the large
number of exploits that the Internet, mobile computing, and other techno-
logical innovations have produced. Nor did the early researchers anticipate the
immense proliferation across the world of the development of software appli-
cations by individuals or small groups not subject to the discipline, oversight,
and controls that can be expected from large software manufacturers. While
some platform providers, such as Apple Inc., have in place some level of screen-
ing apps before they are made available to the public; such screening is mostly
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done to ensure that apps function correctly and do not contain malicious code
or malware. This form of screening is less thorough when it comes to consid-
eration of security, privacy, and safety consequences that might result from the
large-scale deployment of these apps, which are typically used (and abused) by
huge online populations that generate millions of uses per day.

Motivations for Risk Mitigation

A strong motivator for incorporating safety and security requirements into soft-
ware systems is the identification, assessment, and mitigation of risks. In virtu-
ally all situations, a trade-off must be made between the quality of software
(where quality comprises security, safety, integrity, resiliency and the like) and
the time and effort that might be needed to get the software systems out the
door within acceptable timeframes. The trade-off is more apparent for security-
critical systems than it is for safety-critical systems; this is in large part due to
the far greater consequences of a failure in safety-critical systems (such as con-
trol systems for avionics, transportation, electricity grids, oil rigs, space shuttles,
and nuclear power plants), and a failure of information systems operated by
banks, stock exchanges, payment card processors, and the like. It is perhaps due
to this conflict in risks and goals that there seem to be so many deficient and
defective software systems created, delivered, and operated, and many software
development projects that are abandoned even before going into production.
Of course, the press tends to report mostly data breaches and project and sys-
tem failures. Understandably, the media do not report that software systems
have been operating well and without incident and that they have met their
expected performance requirements since this is not considered newsworthy,
although given the complexities and challenges involved, it is a major achieve-
ment. Similarly, bringing in software development projects on time, on budget,
and meeting all requirements where those requirements include the needs for
security, safety, dependability, performance, availability, integrity, and resiliency
are not commonly reported, although they do appear in industry publications
from time to time.

Even though they are considered newsworthy, only a very small percent-
age of data breaches and software system failures are actually reported to the
public. Major data breaches have indeed occurred, but have not been reported
in the press or included in chronologies of data breaches. Affected organiza-
tions made no attempt to hide or cover up these breaches; these breaches were
not reported on because only a relative few such events, compared to the total
population of known and unknown breaches, are noticed by the press.

Some lack of reporting of privacy breaches, in particular, is also due to
there not being notification requirements for such breaches in many countries,
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such as those in the European Union. In the United States, if data are encrypted,
then unauthorized access to the data by hackers does not need to be reported;
it is not required. This encryption criterion is somewhat misleading because
the majority of attacks, estimated to be some 70 percent, are achieved through
the application layer, in which case the attacker will be able to access the data
since applications have to decrypt data in order to process them. Consequently,
encryption has limited value with respect to protecting data if the applications
processing the data are compromised.

Many U.S. state laws require notification to authorities, to the public
at large, and to affected individuals in the event of data-security breaches that
potentially affect nonpublic personal consumer and employee information. In
Europe, although the original 1995 E.U. Data Protection Directive, which at
the time of writing is likely to be superseded in 2012, was more stringent about
protecting personal information than U.S. laws. The requirement for notifica-
tion has been virtually nonexistent in Europe, for example, although that situ-
ation is in the process of changing.

Furthermore, many instances of data compromise are not detected by the
specific organizations that are under attack by insiders or external forces. Often
organizations are unaware that they have been successfully attacked until or un-
less some third party determines that an attack has in fact taken place because
of consequences such as fraudulent activity, and the third party traces fraud
back to the original breach. Because of the manner in which many breaches
are in fact detected, it is fair to presume that the vast majority of breaches are
never detected. In part, this is due to woefully inadequate data creation, moni-
toring, reporting, and response. In contrast, malfunctions and failures of sys-
tems controlling power-generation facilities, electricity grids, water treatment
plants, airplanes, ground vehicles, and the like are usually very obvious because
of highly visible consequences, such as train and airplane crashes or explosions
at refineries, oil rigs, power stations, telecommunications hubs, chemical plants,
and the like. Of course, even with control system failures, many near misses (for
example, when the damage was avoided by human intervention, actual failures
that did not not produce visible physical consequences, or failures that went
unobserved) do not find their way into the press.

Defining Risk

The analysis of risk depends first and foremost upon one’s definition of the
term 7isk, which is not as obvious as it may seem. In this chapter, we shall
examine a number of ways in which risk is defined and calculated. Once the
approach to risk management has been determined, the implementation of the
agreed-upon risk measurement methods then depends upon having certain in-
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formation, often in the form of security-related and safety-related metrics, avail-
able to the analyst who is making the risk determinations. The results are then
typically presented to decision-makers who are supposed to be in a position to
make requisite trade-offs.

Furthermore, this chapter expands upon standard methods of calculating
the return on security and safety investments in several ways. First, we take into
account the dynamic nature of threats, vulnerabilities, and defenses. Next, we
take a more holistic view of security and safety investments.

The protection of information assets can be viewed in two ways. One is
the hierarchical view of security and safety measures, such as avoidance, deter-
rence, and prevention. The other is defense in depth, wherein various secu-
rity tools and processes such as firewalls, identity and access management, and
intrusion detection and prevention products are combined for greater overall
protection and many levels of fail-safe procedures are introduced to prevent
harm from coming to people or environments. The reader will gain a deeper
understanding of the factors that affect risks and returns from investments in
security and safety measures, tools, and processes, and will find that using a
portfolio approach can lead to more cost-effective security and safety.

Assessing and Calculating Risk

There is an ongoing, frequently vituperative, and particularly confusing debate
about what risk is, how it is calculated, who the appropriate decision-makers
might be, how they should make decisions, and how those decisions should
be implemented [7] Two thought-leaders in this area, namely, Donn Parker
[8] and Scott Borg [9], have voiced very different opinions on risk assessment
and the use of risk measures for use in determining one’s information security
program, in particular. While both Parker and Borg have concerns with cur-
rent risk assessment and management practices, their issues differ. Parker has
criticized the common approach to risk assessment, which uses estimates of
damaging events and their likelihood; Parker claims that neither factor can be
measured or estimated with any degree of accuracy, and so the entire approach
should be jettisoned. He suggests that, in its place, the best of the practices used
by peer organizations need to be established and adopted

Borg, on the other hand, supports the use of traditional risk assessment
methods, but emphasizes that “[e]conomics drives security,” and that the focus
should be on “loss of value.” He contends that the common fixation on assets is
a mistake because the consequences of compromising a low-value asset, such as
a cheap pressure gauge that gives false readings due to a cyber attack, can have
huge consequences, such as the release of a toxic gas. This example emphasizes
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the need to determine the impact of consequences of failure rather than the
intrinsic value of the protected asset.

In a couple of articles, Jeff Lowder questions a traditional approach [10]
that is commonly based on the equation:

Risk = Threats x Vulnerabilities x Impact

where the term consequences (or loss) is often substituted for the term impact.
Lowder claims that such a formula is mathematically nonsensical and
should be discarded. He believes that the formula should be expressed as:

Risk (Expected Loss) = Function (Threats, Vulnerabilities, Consequences)

That is to say, the expected loss from an adverse security or safety event is
a function of exploits, rather than specific mathematical relationship with the
attacks. Threats, in Lowder’s presentation, are actual instances in which a threat
has been realized as opposed to the possibility of an attack. The expected loss is
turther related to vulnerabilities that have not been mitigated and consequen-
tial losses in the event that an attack is successful. As Lowder correctly claims,
the mathematical relationship is not multiplication, nor is it simple addition.
However, giving those who support this formula the benefit of the doubt , one
might assume that the use of addition and multiplication of the independent
variables are not meant to be interpreted literally, but that they should only
be used to show risk being dependent, in some fashion or other, on a series
of specific independent variables. However, granting this assumption does not
avoid the problem of the units of measure being inconsistent. Be that as it may,
it makes much more sense and is also less confusing to be specific and rigorous
in the use of terms, the expressing of relationships among variables, and the use
of mathematical symbols.

As a further example of the imprecise multiplicative approach to the risk
calculation, Borg [9] defines risk as follows:

Risk = Threat x Consequence x Vulnerability
where the independent variables are defined as follows (emphasis added):

* Threat. an estimate of the likelihood of a given type of security event in
a given time period.

* Consequence: an estimate of the /losses that could arise from the above
security event.
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* Vulnerability: an estimate of the extent to which the event will cause the
above losses, given existing security measures.

The above equation and definitions of the independent variables some-
what reflect the common view of risk as a function of the probability of a
loss (Borg’s #hreat) and magnitude of the loss (Borg’s consequence), which when
multiplied together yields the expected loss. It would appear that vulnerability,
as defined by Borg, might be considered to be a modifier of the probability of
loss and can be expressed as a conditional probability (i.e., the probability of
loss given some level of security in place). This allows for considering only those
security measures that might reduce or eliminate the chances of a particular
exploit actually doing damage. However, as suggested above, one could com-
bine these definitions of threat and vulnerability into one factor, namely, the
conditional probability that an attack is successful, given that a particular set
of security measures have been put in place and are being maintained. In any
event, given the appropriate units of measure, Borg’s equation has some mean-
ing reflective of the standard expected loss formulation.

A range of formulations for risk is shown in Table 6.1. One additional
point to note is the difference between the negativistic view of outcomes lead-
ing to losses versus a neutral view that outcomes can be both losses and gains.
From the insurance underwriter’s perspective, only losses from negative events
have a significant detrimental impact on costs incurred by insurers. If nothing
bad happens, the insurers just continue collecting premiums with no payout.

A more detailed multistep process and somewhat different set of specific
definitions and metrics is illustrated in Figure 6.1, which separates out the vari-
ous individual influences of factors on risk.

Figure 6.1 shows the progression of threats to exploits, where only a sub-
set of the full range of threats are actually realized in the form of exploits, and
only a fraction of exploits have effective means of delivery and deployment.
Of those threats that have been converted into exploits and have a means for
launching, usually only a small percentage are able to penetrate defenses and get
into systems. Once inside, there is always a question as to the real value of the
assets at risk. It should be pointed out, however, that few assets obtained from
random exploits have much value unless the attacker knows to target a specific
set of data about which he or she is already aware and is able to transform into
some type of benefit, usually financial fraud.

Threats Versus Exploits

There are many definitions of the term threat other than the one that Borg
mentions in [9], in which threats represent the probability of adverse events. In
their book on Microsoft’s Security Development Lifecycle (SDL), Howard and
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Figure 6.1 Threats, exploits, events, vulnerabilities, and incidents.

Lipner [11] define a threat as an aztacker’s objective, while noting that some view
a threat as the actual attacker or adversary.

These definitions agree broadly with the model illustrated in Figure 6.1,
in which a threat is thought to embody the potential for, or likelihood of, devel-
oping a working exploiz, but is not considered to be the exploit itself. It should
be noted that, in this model, a threat is really a prerequisite for an exploit and
is not something that might lead directly to a security or safety incident. The
exploit has still to overcome several hurdles before it can be credited with having
triggered an attack.

In Figure 6.1, an exploit is shown as the functioning realization of the
threat’s intent, as it were—typically a piece of malicious computer code (com-
monly termed malware) that acts upon a target system for the purposes of en-
gaging in some form of illegal, fraudulent, or otherwise damaging activity. That
is to say, a threat, as so defined, is not in and of itself a danger—it is the pre-
cursor of an activity that could lead to a dangerous product in the form of an
exploit.

A threat can also be construed as the initial step towards a potential inci-
dent, which could be intentional or not, but which will likely damage or com-
promise a system nonetheless. For example, there is always a threat that software
contains errors or bugs that could result in malfunction or failure, or that op-
erational errors might cause damage. There are unplanned and unintended ex-
ploits leading to incidents, such as when a circuit component burns out, which
might cause the system to fail. This means that there are only a (likely) small
percentage of threats that are ever converted into exploits, and fewer still when
one considers the small fraction of all exploits that are released by their creators
and are also successful in their attacks of their targets. Also, the impact on the
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software system of an error by a developer, operator, or some other individual
may be reduced by designing resiliency into the system using technologies that
are self-healing, fail-safe, and/or redundant, as described in Axelrod [12].

Whereas one might say that this approach validates Borg’s threat defini-
tion, in that we should end up with the aggregated likelihood that a particular
security event or incident occurs, we get far more insight into the process, and
likely more accurate estimates of the probability of successful attacks, by using
the more multistep model illustrated in Figure 6.1, particularly if we extend the
approach to include consideration of time-dependency (or dynamics) and the
human behavior of stakeholders, as we do later in this chapter. Also, the com-
bination or aggregation of different types of risk (or of the same risk assessed
by different individuals or groups) is not straightforward, particularly when one
includes probability distributions that are usually more appropriate, though
more difficult to collect, than are single point values.

Many approaches to risk assessment require only point estimates of the
loss due to an incident and of the probability of that loss. However, such fac-
tors are more accurately expressed as probability distributions. For example, the
loss might follow a normal or lognormal probability distribution with mean pt
and standard deviation 0. While it is difficult enough to get assessors to come
up with point values, it is considerably more demanding for those doing the
estimating to come up with probability distributions for particular variables.
Furthermore, while estimates of point values for variables will vary among
individuals, requests for probability distributions of these values will add sig-
nificantly to the data-collection process, and the results from such requests are
much more difficult to reconcile, analyze, and aggregate.

Typically, we have to consider trade-offs among more realistic models, the
cost of collecting and analyzing the more complex data, and the impact that
more detailed models will have on decisions. If decisions are not improved by
adding this layer of complexity, then requiring the probability distributions may
not be worthwhile. However, if there is expected to be a significant improve-
ment in decision-making, and if it is likely that the more complex approach will
lead to better decisions, where better means reducing risk significantly, then it
might make sense to put in the extra effort.

Threat Risk Modeling

There is some disagreement, and possibly considerable misunderstanding,
when it comes to the definition of threat modeling or threat risk modeling. In
terms of the model shown in Figure 6.1, what is being modeled in most cases
are exploits rather than threats because writers have provided specific instances
of threats that have been realized as an attack or exploit, yet still refer to them
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as threats. This confusion of terms carries through to threat modeling. Perhaps
a more meaningful term would be exploit risk modeling.

Threat risk modeling is basically the development of models that can be
used to try to anticipate the range of exploits that might be directed against a
software system’s vulnerabilities, the likely impact that would have been felt if
no preventative actions had been taken, and the anticipated impact if various
protective and avoidance actions are taken. The processes described below pro-
vide a good background in how to go about performing threat risk analyses, but
they do not guarantee that all potential exploits and existing vulnerabilities will
be accounted for, especially in the intensely dynamic world of attacks against,
and defenses of, mission-critical software systems. Performing such risk analyses
requires both knowledge of the changing and intensifying threat environment
and a detailed understanding of the components of the software systems (ap-
plications, system software, firmware, hardware, interoperations, etc.). Because
few individuals have such a broad knowledge, except perhaps for the smallest of
software systems, it is necessary to bring together subject-matter experts, usually
including specialists from third-party service providers and vendors, to address
the threats, vulnerabilities, and mitigation strategies for the typical large, com-
plex software systems found in today’s organizations.

McGraw [13] claims that Microsoft employees use the term threat model-
ing when they really mean risk analysis, McGraw quotes Swiderski [14]: “Dur-
ing threat modeling, the application is dissected into its functional compo-
nents. The development team analyzes the components at every entry point
and traces data flow through all functionality to identify security weaknesses.”

Despite McGraw’s contention, Microsoft employees Howard and Lipner
include their discussion of threat modeling [11]. They negate the claim that the
term threat modeling is misused at Microsoft. Just to confuse matters further,
the Open Web Application Security Project (OWASP) straddles the issue by
using the term hrear risk modeling in its description of this activity [15]. In-
cidentally, OWASP endorses Microsoft’s approach to the threat risk modeling
process, which, according to OWASP, consists of the following five steps:

Identification of security objectives;
Review of the application;
Decomposition of the application;

Identification of threats;

hANEOEN

Identification of vulnerabilities.
Howard and Lipner [11] list nine steps in the process, namely:

1. Definition of use scenarios;
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Constructing a list of external dependencies;
Definition of security assumptions;

Creation of external security notes;

RANTIN SN

Creation of one or more data flow diagrams (DFDs) of the applica-
tions being modeled;

Determination of threat types;
Identification of threats to the system;

Determination of risk;

Y 2N A

Planning of mitigations.

Clearly there are parallels between the two processes, although Microsoft’s
list is more comprehensive than the OWASP list.

Perhaps the most interesting aspect of the threat modeling process, as it
relates to our discussion, is the classification of threat types by Howard and
Lipner [11], using the acronym STRIDE rto identify types of threat. STRIDE
stands for the following categories of security risk:

* Spoofing identity: One user must not be able to assume the attributes of
another user.

* Tampering: Users must not be able to modify data or program code in
unauthorized ways.

* Repudiation: Users must not be able to deny having done something
that they actually did.

* Information disclosure: Users must be prevented from disclosing sensitive
information.

* Denial of service: The system must protect against attacks that cause the
system not to be available to authorized users.

* Elevation of privilege: Users must not be allowed to gain increased capa-
bility beyond what they are authorized to perform.

In the above definitions, users might be considered to be valid (i.e., they
might have been authenticated and duly authorized) with specific rights with
respect to particular software systems, or they could be malevolent outsiders or
insiders with the intention of doing harm. However, it should be recognized
that both valid and malicious users often exhibit similar usage patterns because
the hackers frequently masquerade as authentic users, as in identity spoofing,.
Furthermore, access rights and privileges are very often beyond what legiti-
mate users need to know because identity and access management for many
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large-scale systems might be poorly managed. Assigning application access
rights to users is complex and is further complicated by user populations that
are constantly changing through internal reassignments and external events,
such as natural disasters, takeovers, or mergers.

Threats from Safety-Critical Systems

When it comes to safety-critical software systems, which are frequently indus-
trial or military control systems, threats are from, rather than ro, software sys-
tems, as we have discussed. Now that control systems are increasingly being
attached to networks, particularly public networks like the Internet, control
systems are becoming subject to many of the same security threats that plague
security-critical information systems.

Safety-critical software-intensive systems also have to tackle their own set
of threats and exploits. Even if the networks supporting control systems are
physically and logically isolated, it is still possible to enter the network via other
vectors, such as USB drives, as was used for the Stuxnet worm. Had the victim
of Stuxnet, a uranium-processing system in Iran, been completely closed, the
particular method used to infiltrate the system would not have been viable.
Futhermore, if the Stuxnet virus had not “escaped” it would not have replicated
over the Internet; it may have remained a secret. It is claimed that the virus got
out into the world because of a programming error [16].

The consequences of malfunctions or failure are used to determine the
level of safety that must be achieved for particular certification. In Tables 6.2
and 6.3, we show the various levels attributable to control systems and informa-
tion systems in aircraft (i.e., avionics) and in automotive vehicles, respectively
(17].

It should be noted that, for the most part, control system malfunctions
and failures are considered to be much more damaging than failures of informa-
tion systems because the former could result in physical injury or loss of life,
whereas the latter usually cause inconvenience, annoyance, and possibly loss
of money and other assets (i.e., intellectual property). Nevertheless, secondary
and tertiary effects of an information-system failure could impact the physi-
cal world. For example, the compromise of a financial system might result in
major financial losses, which could lead to damage to one’s lifestyle or worse.
For example, the month-long computer system outage of the main processing
systems of Ulster Bank in Northern Ireland, which lasted from mid-June to
mid-July 2012, caused a great deal of hardship to customers, even though all of
the customers will be compensated for any resulting monetary losses.

Of course, malfunctions and failures can be internal to safety-critical con-
trol systems, as would result from programming errors, or they can be induced
by unauthorized access to those systems and consequent attacks upon them.



Software Systems Security and Safety Risk 115
Table 6.2
RTCA/D0-178B Standard Applied to Aircraft Certification
Type of Level A Level B Level C Level D Level E
System System (Catastrophic) (Hazardous) (Major) (Minor) (None)
Flight control Control X — — — —
system
Cockpit display ~ Control X — — — —
and controls
Flight Control X — — — —
management
system
Brakes and Control — X — — —
ground guidance
system
Centralized Information ~ — — X — —
alarms
management
Cabin Information ~ — — — X —
management
system
Onboard Information ~ — — — X —
communications
system
Centralized Information  — — — X —
maintenance
system
Entertainment Information ~ — — — — X
system
Table 6.3
IEC 61508 Applied to Automotive Vehicles
Type of Not

System System SIL3 SIL2 SIL1 Applicable

Steer-by-wire Control X — — —

Brake-by-wire Control X — — —

Engine management system  Control — X — —

Dashboard Informaton —  — X —

Body controller Informaton —  — X —

Navigation Informaton —  — — X

Diagnostic Informaton —  — — X

Entertainment system Informaton —  — — X

Note: SIL = Safety Integrity Level [18].
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The damage caused by the malfunctioning or failure of security-critical infor-
mation systems is usually less dramatic than for safety-critical systems because
compromises usually involve financial losses rather than physical harm as men-
tioned above. Nevertheless, there are many parallels with safety-critical systems.
It is just that, to date, no one has categorized the severity of the damage caused
by malfunction and failure for information systems in a comparable way to
those categories used for certifying safety-critical systems because there are no
established standards against which such information systems might be certi-
fied. The losses for both security-critical information systems and safety-critical
control systems can be expressed in monetary terms, although the estimates for
the latter will tend to be less accurate because it might involve putting a value
on loss of life or injury or damage to the environment; both valuations are
highly subjective.

In the financial services industry, there have been some attempts by regu-
lators and industry bodies, such as the Payment Cards Industry (PCI) Security
Standards Council, to establish criteria and standards to be applied to critical
systems, such as those handling sensitive personal information or those running
core processes vital to the continued operation of financial systems. The failure
of Ulster Bank’s automated processing systems on June 16, 2012, underlines
this need.

There is a pressing and urgent need for such categorization and certifica-
tions in the security-critical information systems arena along the same lines as is
currently done for safety-critical systems.

In Figure 6.2, we illustrate the types of attacks (such as external/internal,
intentional/accidental) that might occur on security-critical and safety-critical
software systems and what the consequences of successful attacks and malfunc-
tions might be.

Creating Exploits and Suffering Events

There are many existing and potential threats that cannot be, or will not be,
converted into exploits that can be used to attack software systems. Conversely,
there are many events that occur spontaneously or are the result of human error
or ineptitude.

Many exploits are unintentional (due to software errors, operational mis-
takes, etc.) or due to natural disasters, although the latter occur mostly in the
physical domain. There is always the threat of human error, and it needs to be
accounted for in ensuring that software systems are safe and secure. On the
other hand, there are many occasions when human action averts the impact
of attacks. This can occur before these threats are realized, at which point they
actually become dangerous exploits, or when they are meting out their damag-
ing payloads. For example, manual overrides are frequently built into industrial
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Figure 6.2 Threats and exploits and the consequences of system compromise and failure.

control systems. If the system goes haywire due to an error or attack, or if there
is a natural disaster (such as a hurricane, earthquake, tsunami, etc.), operators
can shut down systems, switch over to backups, and perform other mitigating
actions.

With respect to the creation of real-world exploits, one reason for not de-
veloping fully-fledged exploits based on known vulnerabilities might be that the
technology to implement the exploits does not exist, is not feasible, or is in the
process of being developed but is not yet available. Another reason that threats
are not turned into exploits might be that an exploit may be too complex or
too expensive to develop and launch. In other cases, a hacker may not think
that potential gains from a successful exploit are worth the effort, expense, or
personal risk. In yet other cases, an exploit might indeed be feasible, but the
developer of the exploit may decide not to release it, but to sell it to buyers who
want to keep it “under wraps” and use it when and where they wish. Examples
of such buyers might be makers of the software against which the exploit could
be targeted, competitors of vulnerable software who are interested in ensur-
ing that their own software is protected, nation states and terrorists wanting
to keep a particular exploit against a specific vulnerability in hand for use in
cyber warfare, organized criminals who are looking to attack specific public and
private-sector organizations for financial gain, and the like. Here, vulnerability
is thought of as a weakness that can be exploited by attackers in their quest to
obtain financial or other gain, or perform acts of damage and destruction.
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Unanticipated and unauthorized events happen frequently. They may re-
sult from errors in programs or from the manner in which the software systems
are installed and used. Errors may be introduced at any point in the devel-
opment life cycle, including during distribution, installation, and operation.
Howard and Lipner [11] present the estimates of the costs of fixing such errors
based on when the defect is introduced and when it is found, as shown in Table
6.4, which is derived from a book by Steve McConnell [19]. McConnell de-
rived the table from eight other sources.

Some of these relative costs appear to be inconsistent. For example, one
would expect that the cost of fixing defects introduced in the requirements
phase and found during the test phase would be greater than those introduced
in the architecture phase and found in the test phase, and even greater still than
those introduced in the construction phase and found in the test phase. Simi-
larly, it would be expected that the cost of fixing defects found once the software
is in production would be greater with respect to the range of values for those
defects introduced in the requirements phase than those introduced in the ar-
chitecture phase. Despite these apparent anomalies, the statistics clearly show
that, in general, the earlier a defect is introduced and the later it is discovered,
the more expensive it is to fix.

The remediation cost matrix has significant impact on whether or not
an organization decides to take the hit from known exploits or make the effort
to fix the defect or vulnerability that would allow the attack to be successful.
Clearly, as the cost of remediation is so much larger for defects introduced early
in the life cycle but not identified until much later, it is less likely that the fix
will be done late in the life cycle unless the losses are expected to be very large.
In other cases, companies appear to be willing to sustain losses that are consid-
ered manageable and a cost of doing business [20]. Sometimes, if feasible, it
pays to replace a software-intensive system altogether rather than trying to fix
it, although only too often organizations choose to throw good money after
bad and keep the old systems running for as long as possible. At some point in
the lifespan of IBM’s OS/360 operating system, it was found that trying to fix

Table 6.4
Relative Costs of Fixing Defects at Various Stages of the SSDLC

Phase where Phase Where Defect was Found

Defect was

Introduced Requirements Architecture Construction Test Production
Requirements 1 3 5-10 10*  10-100*
Architecture N/A 1 10 15 25-100
Construction N/A N/A 1 10 10 -25

*Inconsistent values based on expectations with respect to the form of the relationships.
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defects actually resulted in introducing more bugs than were fixed, suggesting
that it was no longer worthwhile to put in fixes and that a complete rewrite was
justified [21].

When an exploit, say in the form of a computer virus or worm, has been
developed but not released it is considered to be “in the zoo,” whereas malware
that has been activated and released is characterized as being “in the wild.” As
long as an exploit remains in the zoo, it does not endanger potential victims,
but its very existence does present a risk because the exploit could well be re-
leased accidentally. A recent example of this concern was the attempt to prevent
publication of a paper describing a mutation of the avian-flu virus that was
developed in the laboratory. There was great concern that the virus could be ac-
cidentally released or that terrorists or other evildoers might use the technology
to develop the virus for their own use [22].

Of course, an in-the-zoo exploit may or may not actually work. Often,
hackers will run tests on early versions of malware to determine their potential
effectiveness without actually releasing them. An astute security professional
who also has access to a wealth of network traffic data at the transaction level
might be able to spot the prototyping of exploits, as has Dr. Ed Amoroso, the
chief information security officer at AT&T. In other cases, such as the notori-
ous Morris worm, the exploit got out of hand and did far more damage than its
creator, Robert Tappan Morris, had intended [23].

Vulnerabilities

Figure 6.1 shows that some percentage of exploits is released into the wild or
directed against specific targets or set of targets. However, successful attacks
depend on vulnerabilities existing and being accessible or exploitable by the
attacker. McGraw [13] defines a vulnerability as “an error that an attacker can
exploit.” McGraw goes on to state that vulnerabilities arise from defects, which
are called bugs at the implementation level and flaws at the design level. How-
ever, it should be noted that software might contain few, if any, discernible
defects, yet still be subject to compromise. For example, Professor Ed Felton
and his team discovered that by cooling down memory chips, data was retained
beyond when the power to the chip was cut off, enabling researchers to pull
information off the chip before it disappeared [24]. This example underlines
the importance of context. It is not sufficient to build application software
products that are demonstrably free from defects; the software system needs to
be immune from attacks against operating systems, and against the logical and
physical platforms upon which it might reside.

Of course, known vulnerabilities can be fixed in many cases, usually by
installing patches issued by the maker of the software. There are, however, many
vulnerabilities for which patches are not available or are not known, possibly
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because information about them is restricted or has been sold to the highest
bidder. Nevertheless, given the existence of an exploit that can be directed
against a vulnerability, there is a good chance that a hacker will attempt to use
the exploit against an unprotected software system and be successful in gaining
unauthorized access, inserting malware into the system, copying sensitive data,
modifying programs, and the like. However, there is one last defense, namely,
that the intruder—be it a person, an application, or a transaction—does not
find anything of value to steal or otherwise compromise. This is an example of
avoidance.

Responses to attacks can be active or passive. They can be achieved not
only by protecting assets against attacks, but also by avoidance and deterrence,
as shown by one of the curved arrows in Figure 6.1. Deterrence requires that
victims of attacks or their representatives, such as law enforcement, announce
that they will take effective legal action against perpetrators who are found and
apprehended, and are seen to do so. However, because of the ability of hackers
to attack from practically anywhere in the world with relatively little fear of be-
ing apprehended and punished, deterrence is often not very effective, particu-
larly in a global context. Avoidance has a lot more going for it; if critical systems
are not readily accessed by outsiders and restricted to insiders on a need-to-
know basis, then chances are that unauthorized access will be minimized. Ad-
ditionally, if care is taken to avoid putting sensitive data within easy reach, the
effectiveness of attacks will be further diminished or eliminated.

Application Risk Management Considerations

The OCC Bulletin 2008-16 states that national banks should ensure that the
manner in which applications are developed and tested addresses risks to the
confidentiality, availability, and integrity of data, particularly customer infor-
mation [25].

While the OCC Bulletin 2008-16 states that scope may vary with the size
and complexity of a bank, it asserts that the following key factors impacting risk

should be considered:

* Accessibility of the application via the Internet;

* Processing or provision of access to sensitive data;

* Source of development;

* Extent of secure practices in application development;

* Effective, recurring process for monitoring, identifying, and fixing vul-
nerabilities;
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* Periodic independent assurance of security of applications;

* Management responsibility for ensuring applications are secure at ac-
quisition (i.e., in RFIs and RFPs) and thereafter;

* Evidence of vendor adherence to sound practices and validation through
third-party testing and/or audits for higher-risk applications;

* Support of purchased applications via vulnerability identification and
remediation processes;

* Assurance that purchased and contracted applications are subject to the
banks’ ongoing testing process.

For in-house developed applications, OCC Bulletin 2008-16 suggests
that banks need to include the following in their enterprise-wide efforts:

* Incorporation of appropriate attack models;
* Analysis of applications’ environments;

* Ensuring that open source applications are subject to appropriate devel-
opment and assurance processes;

* Assurance that personnel are trained in and aware of risk in the IT en-
vironment;

* Ensuring the appropriate protection of transactions and customer data
by engaging in periodic application testing or validation.

While directed primarily at U.S. banks, these considerations should be
applied generally.

Subjective vs. Objective vs. Personal Risk

A column “Risk Mismanagement—Scoring vs. Monte Carlo vs. Scoring” trig-
gered a discussion as to the difference between subjective and personal risk
postures [26]. Comments by Douglas Hubbard in response to the column
prompted thought about the difference between subjective risk assessments and
personal risk assessments. It is argued that the term subjective means a person’s
individualistic view of a risk relating to someone or something else, which may
or may not cause the person assessing the risk to change actions and activities.
On the other hand, personal risk assessment is about the direct impact of the
decision on the person making the risk assessment and subsequent decisions.
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Personalization of Risk

The value assigned by someone to a particular risk is usually very personal.
As Jones [27] points out: “... risk tolerance is unique to every individual.”
That is, individuals generally assess risk in large part with respect to how they
might be personally affected by a particular adverse or beneficial event and its
outcome. Jones and others recognize that risks are personal or individual, but
they do not suggest how to address this most significant, least understood, and
least accounted-for factor in the whole of risk management. Risk-assessment
values should be adjusted to allow for the personal and subjective biases that
are commonly introduced. This is an area of research unto itself and cannot
be dismissed with a simple acknowledgment that it exists. It may well be that
a method, similar to the interview approach propounded by Hubbard in [28]
for obtaining estimates of impact and their likelihood of occurrence, might
be applied to the issue of the personalization and subjectivity of risk factor
estimation.

That is not to say that decision-makers do not account for the adverse or
positive impact of incidents on others. As mentioned previously, an actuary at
an insurance company will likely determine the probability of loss events and
the potential losses incurred in as objective a way as possible to provide his or
her employer with the basis for underwriting specific risks of loss and determin-
ing the amount charged in premiums. On the other hand, that same person will
decide whether or not to buy an insurance policy based on his or her personal
view as to the likelihood of incurring such a loss and the degree to which the
actuary might be personally affected; the actuary’s risk assessment is not likely
to be absolutely objective. The actuary may well exhibit some bias related to the
need to be conservative so as to not subject the insurance company to exces-
sive risks, as well as the desire to advance one’s career by being recognized for
thorough analysis and accurate forecasts. Further, there will also be some level
of subjectivity based on the actuary’s prior successes and failures.

The Fallacies of Data Ownership, Risk Appetite, and Risk Tolerance

In much of business and government, it appears that if you know the buzzwords
and what the acronyms stand for, you are considered a bona fide expert in a
particular field. This seems to be the case in the risk area, where, if you know
what the acronym GRC stands for (yes, it’s governance, risk [management] and
compliance), then you are clearly one of the cognoscenti. You are then able
to talk convincingly about “data owners,” “risk appetite,” and a host of other
equally meaningless terms. At the risk of having riled up many of my readers, I
will try to support these wild claims.



Software Systems Security and Safety Risk 123

Table 6.5
Comparison of Influences on Risk Assessors Based on Level of Objectivity
Objective Subjective Personal
Influences| Ability to demonstrate Depends on expertise and Depends on self image
that correct risk approach  experience and concerns and concerns about
was taken about acquiring and personal damage
retaining customers
Examples | Actuary using historical Insurance broker expressing  Insurance broker
statistics and predictions  to potential customers concerned that his or
of weather patterns, the need for insurance to her own home might be
global warming, etc., to  cover the risk of flood in a flooded
derive estimates of flood-  particular area
related risks over a broad
geographical area

I have sat through too many meetings where “the team” has worked its
way through a long list of data items and assigned “owners” to each one. An
example is “Social Security number” or SSN, which might logically “belong to”
the head of the New Accounts Department, but it is unlikely that the person
in question really tracks the use of the SSN. Typically, the SSN weaves through
many systems within an organization, and so it is questionable as to whether
the owner really understands what underlies the formal requests for approval
for using SSNs in other applications. In addition, it is unlikely that the data
owner is fully aware of the legal and regulatory requirements for protecting such
information and the ramifications if the data should fall into the wrong hands.

This leads us to ask, what does “ownership” entail? Well, it means that the
owner (whoever “owns” the data item, like a Social Security number or a pass-
word) is responsible for ensuring the security and integrity of that data item,
that it is only made available on a need-to-know basis, that it is suitably pro-
tected (e.g., encrypted) whether in transit or at rest, and that when it no longer
serves any useful purpose, it and all of its instances are appropriately deleted
and destroyed. That is all well and good, but are the processes in place to supply
the data owner with all of the information required to make decisions? Do com-
puter software developers meet with the data owner and carefully describe how
the data will be used, who will see it, who can change it, and who ensures that
there are no stray instances of the data when the data files are destroyed? Fre-
quently, many of these decisions are made by the information security staff in
collaboration with an administrator. They act as surrogates for the true owner
of the data who may be the only person that truly understands the importance
and sensitivity of the data, if in fact he or she does so. Is it any wonder that so
much highly sensitive information is inadvertently leaked?

We then have risk appetite (also called risk tolerance). It is incumbent upon
managers to express their feelings about the risks surrounding a particular deci-
sion. But whose risks are being presented? The decision-maker will likely mix
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together a whole range of risks from those that are highly personal to those
about which they do not really care, since those risks might not be seen to affect
the decision-maker. Part of this characteristic is determined by whether the risks
involve the decision-maker’s own funds versus those of the institution, whether
the risks are seen as personal versus corporate, and the chance of something
negative or positive occurring “on their watch.” Jones [27] points out that “[r]
isk analysis only identifies how much risk exists” and not what level of risk is
acceptable or unacceptable.

Then there is a whole range of risks for which nobody appears to have
responsibility, although the consequences of negative events might well affect a
broad range of stakeholders. This is referred to as the rragedy of the commons, as
described in Hardin [29]. Generally, when there is no owner of a risk, such as
the security of the Internet, the outcomes of failure of those resources for which
no one takes responsibility are much worse than would have occurred if there
was specific responsibility for those resources.

The Dynamics of Risk

Risks related to software-intensive systems are not static and they do not change
according to any prescribed schedule. Different risk characteristics change in
response to both external and internal factors. It is important, therefore, to
account for such changes, often as quickly as they occur or are discovered, or
preferably in anticipation of new exploits, the introduction of new features and
new releases of software products, or changes in business volumes and mix.
With respect to the introduction of new features, there is always a risk that
a new feature will itself have unintended consequences or that, in combination
with other applications and software-intensive and data-intensive systems, a
feature or group of features will provide unexpected capabilities that may con-
tain undesirable aspects. A current example of this is the proliferation of apps
that facilitate many activities but that also collect substantial amounts of per-
sonal data. This data, especially when combined with data from other sources,
can reveal much more information about individuals than they would have
agreed to if they had understood the potential for compromising their privacy.
A good analysis of the risks of big dara is provided in Angwin [30]. Axelrod [31]
predicts that there will be a major shift in emphasis from issues relating to the
security of data and software systems to privacy issues, and it appears from the
increased press and rising concerns expressed in professional publications that
this is happening. However, it is also common to see new, as well as longstand-
ing features, being exploited by hackers to gain access to systems and data.
Regarding new releases of software, it was well-recognized as far back
as the 1970s that, as software became more complex over time, the upgrade
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process reached a point of diminishing returns. In their definitive article, Belady
and Lehman [32], who were directly involved in the maintenance and enhance-
ment of the IBM OS/360 operating system, present three “laws” relating to the
dynamics of systems and their need for continual effort and attention.

The demand for continuous repair and improvement is expressed in Be-
lady[11] as the “First Law of Evolution Dynamics” as follows:

“I. Law of continuing change. A system that is used undergoes continuing
change until it is judged more effective to freeze and recreate it.”

A system will degenerate over time and become less manageable and more
complex as it is changed, as expressed in the “Second Law of Program Evolution
Dynamics,” as follows:

“Il. Law of increasing entropy. The entropy of a system (its unstructured-
ness) increases with time, unless specific work is executed to maintain or reduce
it.”

The “Third Law of Program Evolution Dynamics” reflects how a system
and the process for developing and maintaining it, is “constrained by conserva-
tion laws,” and is expressed as follows:

“Ul. Law of statistically smooth growth. Growth trend measures of global
system attributes may appear to be stochastic locally in time and space, but,
statistically, they are cyclically self-regulating, with well-defined long-range
trends.”

These laws describe how the structure of a system inevitably degener-
ates over time and requires substantial effort to maintain a desirable level of
operability. At some point, it might not be worth the effort to try to keep on
improving existing software systems, at which time the software maker has to
decide whether to continue supporting the existing system or to replace it with
a new system.

However, creating a replacement system also involves risk. The reliability
of new software systems is lower at the point of introduction of the system and
improves over time until a new version or an upgrade is released, when the reli-
ability drops again. In contrast, when large complex software systems undergo
major revisions, the malfunctions and failures may in fact increase over time
and may not drop back to meet the prior failure-rate trend as would be expected
if the system were replaced.

A Holistic View of Risk

Information security and control-system safety professionals tend to take some-
what narrow views of their fields and their responsibilities. The challenge of
determining risk is to engage all the various stakeholders and somehow account
for their personal and subjective views about the risks relating to a particular



126 Engineering Safe and Secure Software Systems

software system. The vast majority of publications about software security and
safety are written by those who have a strong tendency to emphasize broad-
based technical approaches rather than the specific functionality of particular
software-intensive systems.

The willingness to invest in security and safety is highly dependent upon
whose point of view is being taken. These viewpoints will vary significantly
among stakeholders, with the emphasis on one or the other often depending
on the relative authority of each group of stakeholders as well as the degree to
which losses might be incurred by each of the various groups. While it is much
more difficult to take this approach, the value produced and the reduction in
friction will often overwhelm the costs.

Summary and Conclusions

We have considered a broad range of approaches to risk assessment and risk
management, pointing out the deficiencies of some and expressing support for
others. In general, the more simplistic approaches, which are based on point
estimates, ordinal (e.g., high, medium, low), or cardinal (e.g., 1 through10)
measures, tend to be generally representative rather than precise measures; yet,
followers of these approaches are often encouraged to take the results as more
accurate than the approach warrants. Risks should be determined using prob-
ability distributions of estimates of the likelihood of occurrence and the mag-
nitude of losses. If this is done, then the calculation of risk is not simplistic,
but requires the use of simulation techniques to obtain random samples from
probability distributions of the independent variables (such as the likelihood
of occurrence and magnitude of outcome) in order to arrive at the probability
distribution of the dependent variable (i.e., risk). It should be noted, however,
that the use of such techniques, the quality of the inputs, and the interpretation
of the results all require a level of sophistication higher than that needed for the
more simple methods.

Not only must the analyst take a mathematical approach that is more
complicated, but he or she must also account for the dynamics of the situation.
When it comes to security and safety, the threats, exploits, and vulnerabilities
are in a continual state of flux. Some factors are the result of changing technolo-
gies and technical environments that facilitate access to software systems over
public networks, and enable those with a technical bent, who are not trained
in security and safety and are not answerable to any corporate policies and
standards, to develop heavily-used apps. Technology advances also allow sys-
tems with different security and safety criteria to be combined into systems of
systems and cyber-physical systems. Other influences include changing laws
and regulations, particularly as they apply to personal data protection and the
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safety of products. Still other factors are inward looking, where organizations
incorporate secure and safe systems development techniques to varying degrees
and respond differently to the build-security-in movement.

The dynamics introduced by these factors must be accounted for in the
risk calculations. Current and anticipated changes need to be included in risk
models, and calculations need to be rerun whenever there are material changes
in any of the variables contained in the risk model, or if the decision-makers
believe that there will be major new developments that will affect the outcomes.
The changes might also suggest that the model itself needs to be revised, as
it may be discovered that it no longer accurately represents the environment
being considered. Preferably, risk models will be run for a variety or range of
scenarios, considering different probabilities of events, different losses or gains,
and the like, resulting from new assumptions about known advances in tech-
nologies, changes in marketplaces including greater competition, and cheaper
sources of product. In summary, it is not adequate to run one risk model or set
of models and then sit back and operate based on the results of those models.
Technical innovations, changes in markets, social changes, competing products,
staff defections, and the like, all call into question the original results, and so
the models need to be rerun to account for these changes. The result might be
retrenchment, expansion, changes to the business model, new alliances, and the
like. However, it is far better to be aware of these changes and respond to them
than to be the victim of obsolete technology and miss business opportunities.

Furthermore, the inputs to the risk models and the interpretation of re-
sults are often influenced by personal views. Even when risk assessors are trying
to be as objective as possible, personal bias will creep in. For instance, if a pro-
fessional safety engineer is estimating the risks relating to a control system for
which he or she has no direct responsibility, the engineer will want to protect
his or her reputation; this is because one’s reputation affects one’s opinion of
one’s self, and will also affect future work opportunities. Consequently, there is
a need to adjust estimates for personal bias, which is a task that few want to take
on because that would mean assuming some of the responsibility and liability
in the event that something bad were to occur. The extreme example of this is
the tragedy of the commons, wherein no one is responsible or accountable for
the risks, although ultimately someone or some group will pay the price if a
disaster occurs.

Finally, the view of risk needs to be holistic. The points of view of a broad
range of stakeholders need to be considered. It is often the case that different
stakeholders, such as vendors, law enforcement officers, regulators, auditors,
customers, and users, all have different interests in the security and safety of
software-intensive systems. While it is a daunting task to try to elicit such views,
it is even harder to incorporate them into risk calculations. This is because one
must determine the relative weights to apply to the opinions of each group and
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come up with a way in which to aggregate those views, which are always chang-
ing based upon events and experiences.

In conclusion, if one agrees that improved risk assessment and manage-

ment is needed, it is necessary to consider and incorporate all the approaches,
biases, and responsibilities into on€’s analysis of risks as they relate to security-
critical and safety-critical software systems. If any one of the above factors is ig-
nored, then the risk analyses and the actions they suggest will be flawed, which
only serves to increase the risk further. However, it is better to identify risks and
perform as good an analysis as one can, even if it is deficient, than to throw up
one’s hands and abandon risk analysis altogether.
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Software System Security and Safety
Metrics

Not everything that can be counted counts, and not everything that

counts can be counted.

—Attributed to Albert Einstein (Originated by William Bruce
Cameron [1])

If you cannot measure it, you cannot improve it.
—Lord Kelvin [2]

What you measure affects what you do ... if you don’t measure the right
thing, you don’t do the right thing.”
—TJoseph E. Stiglitz, Nobel Laureate (as quoted in [3])

There is no accepted agreement on software safety measures and metrics.
—Andrew J. Kornecki, Embry Riddle Aeronautical University, [4]

Introduction

The above quotations are clearly contradictory. Lord Kelvin and modern day
thought-leaders such as Gary McGraw, Dan Geer, and Andrew Jaquith (to
name a few), believe that one cannot improve that which one is not able to
measure. However, Albert Einstein and William Bruce Cameron, together with
Gary Hinson and others, support the view that there are system attributes,
which may not be measurable in numeric terms but which nevertheless can be
used to significant advantage in assessing risks. Joseph Stiglitz, quoted above,
extends the argument beyond how one might measure to whar one should in-
deed measure.
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Hinson [5], Hubbard [6], and Axelrod [7] believe one can use charac-
teristics that are not simple to measure or that may not in fact be considered
measurable in the traditional sense for decision-making purposes.

If one can come up with a preferred method for risk identification, assess-
ment, and management (which is no easy task), further questions arise about
being reasonably confident that the resulting risk analyses are based on realistic
and meaningful metrics. Here is a list of some of those questions:

* What information must be obtained in order to calculate risk using a
specific selected method?

* To what extent is historical and real-time data useful, relatively speak-
ing?

* How quickly must data collection, analysis, and reporting be done in
order to ensure that decisions can lead to timely actions?

* How accurate does the data have to be for one to be reasonably sure of
making the right decisions?

* Is required data readily available for effective decision-making—if not,
what has to done to obtain it?

* What level of effort is needed to generate, collect, analyze, report, and
respond to specific data?

* Is the additional effort required to obtain the data worth the incremen-
tal value of such data?

* To what extent are risk metrics constrained by the availability and suit-

ability of data?

The most valuable security-related and safety-related data about software-
intensive systems may well be more difficult and expensive to collect, maintain,
and analyze than run-of-the-mill, readily-available data. Furthermore, easily-
available data may be less useful for calculating software security and safety risks
and for making useful decisions than data that is more difficult and costly to
come by. Of course, it is difficult to prove these assertions other than from rec-
ognizing that there are deficiencies in current metrics. One would expect that
the state of software-system security and safety would be much better if security
and safety metrics were more accurate and complete.

It is important to define careful measurements and metrics and note the
differences between them. This includes pointing out the differences between
data and metrics, measurements and metrics, and so on.
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Obtaining Meaningful Data

In the 1970s, IBM used the phrase “Not just data, reality” in their advertising.
This slogan is especially insightful when it comes to gathering and analyzing
software security and safety data. It is not useful to collect extraneous or irrel-
evant data, even if collecting such data costs virtually nothing (there will likely
still be substantial data management and storage costs to absorb, however), nor
is it beneficial to collect particularly pertinent data if there is no way to imple-
ment any decisions that might result from it. There is usually a trade-off to
consider when determining what to spend on obtaining specific data because
there may well be diminishing returns of such data collection, particularly over
time. For example, it is much less useful to learn that your systems are vulner-
able to a particular exploit after they have been successfully attacked than to
obtain such information sufficiently in advance to be able to apply a patch to
negate the impact of an attack. Furthermore, one must allow for the cost and
time required to convert data into the “reality” of metrics; it is often not enough
to collect information quickly—it must be converted into useful actionable
information on a timely basis.

Defining Metrics

There are many definitions of the word mezrics. Here are a few of them:

* “Metrics are tools designed to facilitate decision making and improve
performance and accountability through collection, analysis and report-
ing of relevant ... data” [8].

* “Metrics report how well policies, processes and controls are func-
tioning, and whether or not desired performance outcomes are being

achieved ...” [9]

* “A metric is a quantitative measure of the degree to which a system,
component or process possesses a given attribute” [10].

A common theme throughout these definitions is that the purpose of met-
rics is to lead to decisions about how to enforce policies and manage processes
and procedures. It is not sufficient that a metric be intellectually interesting.
Nor should metrics and analytical results be taken at face value without giving
some thought as to their meaning, particularly with respect to cause and effect.
There appears to have been a recent proliferation of analyses, particularly in the
health and nutrition fields, that discover relationships that do not necessarily
have the underpinning of cause and effect. In many of these cases, researchers
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commonly include a disclaimer that the results do not imply a causal relation-
ship. This raises the question as to what the value of the analysis really is in the
first place, as the researchers seem to be suggesting that the public should not
respond to the results. This begs the question as to why researchers published
the findings at all. Furthermore, it is quite possible in such circumstances that
the analytical results will lead to wrong and possibly damaging decisions and
actions on the part of decision-makers. A similar situation exists in the system
security and safety space in that many metrics are published but they cannot
be used to protect against attacks, prevent a system from doing damage, and
the like.

Unfortunately many reported metrics relating to information security are
not very useful. For example, it is interesting to learn how viruses and other
malware are growing exponentially in volume and effectiveness. However, a
decision-maker needs to know whether these same viruses, say, will have any
impact over the domain for which he or she is responsible. If there is no impact,
then those metrics are not actionable and therefore not useful. In fact, they may
be detrimental because of the cost of gathering, reporting, and discussing them.

Andrew Jaquith [11] defines a metric as “a consistent standard for mea-
surement.” He states that a good metric should be:

* Consistently measured;
* Cheap to gather;
* Expressed as a cardinal number or percentage;

* Expressed using at least one unit of measure.

It was argued earlier that “cheap to gather” is not necessarily a good cri-
terion for metrics, so this requirement is questionable. Also, the use of cardinal
and percentage metrics is often misleading because they often contain too little
information for useful decision-making. In particular, a numeric metric out of
context, such as: “We applied 200 patches last month,” provides no sense as to
what level of patching is adequate. A percentage metric, such as: “We patched
90 percent of our servers last month,” does not indicate how critical the servers,
particularly those that were not patched, might be. Frequently, some explana-
tory wording is needed to make these metrics more meaningful, such as “The
10 percent of servers that were not patched are considered the least critical to
secure operations.”

As a real-world example of misleading metrics, consider an actual case
in which full-disk encryption had been applied to 95 percent of a company’s
laptop computers, with a goal of encrypting the remaining machines when
employees brought them in for service. However, one of the remaining 5 per-
cent, on which the disks were not encrypted, was stolen. This particular laptop
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computer held personal information of hundreds of thousands of customers.
The out-of-pocket costs to the company of this loss exceeded one million dol-
lars, with indirect and less tangible costs possibly doubling that amount. The
metric of 95 percent completion might have been considered good in many
situations—but not in this one.

Differentiating Between Metrics and Measures

The difference between a measure and a metric is expressed and illustrated in
a number of places. For instance, in “Risk Measure and Risk Metric,” we read
the following [12]:

* A measure is an operation for assigning a number to something.

* A mertricis our interpretation of the assigned number.

As an example, if someone stands on a scale, the process of noting the
number of pounds (or kilograms) on the dial is a measure, whereas the inter-
pretation of that number to determine that a person is overweight turns it into
a metric that can be used for decision-making, such as deciding to go on a diet.

This is somewhat in line with the differentiation proposed above; the
mere obtaining of a number is not a metric—only when a number is interpret-
ed can it be used for decision-making and then decisions can lead to actions.
This concept is illustrated in Figure 7.1.

The diagram shows, by means of narrowing arrows, that there are losses
as the process progresses. That is to say, not all measurements can be converted
into metrics; decision-makers are likely only to use a subset of metrics to make
their decisions; and action-takers might only respond to certain decisions and
not to others. For example, one might have access to weather forecasts for vir-
tually any location on Earth. However, temperature alone is not useful until it
can be attributed to a particular geographic area in which the decision-maker
happens to be or to which he or she is planning to travel (although, of course,
others will be interested in forecasts for other regions). Based on the tempera-
ture forecast, the decision-maker might determine that it is appropriate to wear
and/or pack particular sets of clothing and take the actions necessary to find
and don that clothing and/or include suitable clothing in his or her luggage.
The decision-maker and action-taker may be the same person, as in the weather
example. However, in many organizations, those making decisions and taking
action are often different individuals or groups, with managers making the deci-
sions and workers implementing those decisions.

Another source that differentiates between measures and metrics is the
National Institute of Standards and Technology Software Assurance Metrics
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Decisions
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Figure 7.1 From measurement to action.

and Tool Evaluation (NIST SAMATE) Project [13], which presents the follow-
ing definitions:

* The term measure is used for more concrete or objective attributes.

* The term metric is used for more abstract, higher-level, or somewhat
subjective attributes.

An example of this, provided on the NIST website, is that the number of
lines of program code in a computer program is a measure, whereas the robust-
ness, quality, and effectiveness of the code are considered to be metrics. This is
somewhat consistent with the Risk Glossary definitions [14] if one were to con-
sider the number of pounds shown on a scale as being concrete and objective,
and the concept of weight as being more abstract. In fact, the term weight is
often misapplied; the difference between weight and mass should be taken into
account; where “[m]ass is a measurement of the amount of matter something
contains” and weight is “the measurement of the pull of gravity on an object.”
Therefore, weight needs to be defined in a specific context, since someone of the
same mass will weigh one sixth as much on the moon as they do on Earth due to
the moon’s lower gravity. This is a significant aspect of software systems, where
metrics generally only apply in a particular context, such as operating system,
platform, network configuration, and the like.

Another definition of measurement in Munson [15] is:
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... the mapping of numbers to attributes of objects in accordance with
some prescribed rule ... The mapping must preserve intuitive and
empirical observations about the attributes and entities.

Munson is not as specific as NIST in assigning descriptors like concrete
and objective to a measure. However, one might argue that his definition of
measurement is more general and can apply to both measures and metrics in-
sofar as both objective and subjective attributes (measures and metrics, respec-
tively) are subject to some form of measurement.

The question then arises as to whether qualitative measurement applies to
both measures and metrics. After all, according to NIST, the difference is in the
objectivity or subjectivity of the attributes, not the means of obtaining them.
For an answer to this question, we refer to Cruickshank [16], who states that:

Empirical observation requires experimentation. Therefore ... for a
software metric to be valid, it must be based on empirical observation
through experimentation, whether qualitative or quantitative.

Consequently, we should understand that measures and metrics can be ei-
ther quantitative or qualitative and, in either case, they provide a better picture
as to what is going on within a software system than not having the measures
or metrics. In Table 7.1, we show examples of the relationships among these

Table 7.1

Examples of Metrics and Measurement Attributes for an Automobile

Measure-related
Decision

Measure-related
Action

Metric
(Subjective)

Metric-related
Decision

Metric-related
Action

Attribute Quantitative Measurement Qualitative Measurement
Measure The speed of an automobile in The relative time that a vehicle takes to
(Objective) miles per hour (mph) as shownon  reach 60 mph from a standing start (e.g.,

the speedometer.

Is the vehicle traveling within a
numeric speed limit, say 55 miles
per hour?

If yes, no action required.

If not, slow the vehicle down until
it is traveling at or below the speed
limit.

The revolutions per minute (rpm) as
shown on the tachometer.

When should | change gear?

Change gear up or down when at
a particular revolutions-per-minute
limit (say, 2,000 rpm)

slow, average, fast).

Does the car accelerate quickly enough
for my needs (and wants)? For example,
can | beat my colleague’s car from a
standing start.

Select that vehicle based on relative
acceleration if that is primary or a highly
significant factor.

The sound of the vehicle's exhaust
system.

Does the sound produce the desired
emotional feelings?

Choose a vehicle that provides a desirable
feeling with respect to the sound of

the exhaust system, or replace existing
exhaust system with one that produces
the desired sound.
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factors with respect to an automobile. The example illustrates the differences
between objective and subjective attributes, and whether the numeric value of
the attribute needs to be accurate or can be relative.

The same categorization can be used for safety-critical and security-critical
software systems, and we will go through a similar exercise for them. Software
is less tangible (or more abstract) in many ways than an automobile; it is not as
easy to come up with examples within each category. As Cruikshank [16] puts
it: “... the abstract nature of software can often preclude quantitative measures
of certain quality attributes.” Because safety and security are essentially quality
attributes, the challenge is therefore to come up with quantitative, but mean-
ingful, measures so that very specific decisions can be made. This is the chal-
lenge that we attempt to address in this book from both the demand side (i.e.,
determining which measures are needed) and the supply side (i.e., creation of
requisite measures and metrics).

In Table 7.2, we look at the uses of measurements and metrics to deter-
mine how useful they are for the purposes of deciding what actions to take.
In general, measurements that have not been processed into metrics are not
particularly useful for decision-making. However, some metrics also lack ap-
propriateness for decision-making, which is the main criterion against which

they should be judged.

Software Metrics

One definition of software metric is ... a measure of some property of a piece
of software or its specifications” [17]. This definition differs in a fundamental

Table 7.2
Comparing Measurements and Metrics with Respect to Use and Usefulness

Use Measurements Metrics Comments

General Measurements lack ~ Some metrics are Concern about the overly

usefulness contextand donot insufficient for appropriate  subjective interpretation of
have the attributes ~ decision-making —need to  metrics.
necessary to foster include context and other
decision-making and  factors such as value and
action. uncertainly.

Use for Measurements are  Some metrics do support Often metrics that are the most

decision-  often not particularly effective decision-making,  useful for decision-making are

making useful for decision-  but others can be very those that are more costly and
making. misleading. difficult to collect.

Actionable  Usually, actions In many cases, metrics can  The ability to take effective
cannot be derived be the basis for decisions  action depends on many factors,
directly from and actions; sometimes not. some of which may not be under
measurements. the control of either those taking

the measurements or decision-
makers.
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way from the metrics above. In fact, this definition does not require that met-
rics are input for decision-making and that the decisions should be actionable.
If not actionable, then such a “property becomes a measure, not a metric. On
the other hand, all metrics are not actionable according to the common view,
although it would be preferable if they did lead to positive action.

Cruickshank [16] draws the following conclusions, which includes sup-
port for nonnumeric metrics with respect to software metrics:

Software metrics are ... quantitative measurements of ... product (system
or component), process, or even project ... indicating the quality of a
desired attribute. However, software metrics can be concerned with more
than just quantitative measurements. Since we are measuring quality

of product, process or project, qualitative aspects must be considered.
Metrics can also be qualitative in nature [emphasis added].

On the other hand, McGraw [18] favors numerical representations of
measures and metrics, where ... [m]easures are numeric values assigned to a
given artifact, software product, or process” and “... [a] metric is a combination
of two or more measures that together provide some business relevant mean-
ing.” McGraw provides an example of a metric, namely, “the number of breach-
es per lines of code,” which represents a “security defect density,” as opposed to
“the number of breaches,” which he defines as a measure. McGraw [18] echoes
Cruikshank’s assertion [16] that metrics can be obtained for project, process,
and product, and adds a fourth area—namely, organization. He also points out
that processes and controls must be put in place early in the development life
cycle in order to provide the requisite metrics, which is a concept that is applied
in subsequent chapters, although we will be address the approach more in terms
of the application (or product) generating metrics rather than looking to the
processes and controls.

It is worth noting the tendency of security and safety professionals to take
a very specific view of their areas of responsibility, combined with an underlying
need to quantify metrics. These characteristics make for a strong bias towards
quantitative measures, that is, the numeric values of concrete, objective mea-
sures. The problem is that software-intensive systems are much less amenable
to the application of precise measures. This means that the exercise to convert
software measures to metrics for decision-making and action is often lacking,
As a result, the wrong decisions are often made and inappropriate actions taken
based on insufficient and misleading metrics. Because this focus on quantitative
measurement and very specific decisions is part of the culture of an engineering
background, it will likely take considerable time before researchers and prac-
titioners evolve a broader view of software systems and define a full range of
requirement to be met.
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Measuring and Reporting Metrics

When it comes to measuring security-related and safety-related metrics, there
are a number of approaches with varying degrees of merit. A specific taxonomy,
as suggested in Axelrod [7], is shown in Table 7.3.

The advantages and disadvantages of the above categories of metric are
shown in Table 7.4. The weighting of such metrics is highly dependent upon
the nature of the organization from which the data is being collected, as well as
who is collecting and analyzing the data. Often, an outside consultant will have
more success in obtaining useful data and performing objective analyses.

In Figure 7.2, we show the behavior of cost and value estimates as the
complexity of the metrics approaches increases. In general, as the data collec-
tion and analysis becomes more complex, the costs will increase and it is ex-
pected that the value, as it relates to decision-making, will increase even more.
Although the diagram shows value growth increasing relative to the costs of
increasingly complex metrics and risk approaches, value might not necessarily
keep up with costs as the data collection and risk models become more sophis-
ticated. In part, this can be due to the benefits being less tangible when value
and uncertainty are taken into account.

Figure 7.2 indicates a range of values and costs with upper and lower
bounds. Because of the ranges shown, the curves suggest that, at any level of
complexity, the net value of the exercise, namely the usefulness of the metrics
category for decision-making less the cost of data collection and analysis, can in
fact be negative. As costs increase along with the complexity of the approach, so
the value of the results also increases. It is up to the risk manager and/or analyst
to arrive at an optimal approach with respect to net value. The optimal ap-
proach might lie in the range of the holistic, value, and uncertainty approaches
because they produce the most meaningful representations of risk.

Table 7.3

Taxonomy of Categories of Metrics
Category of
Metric Description of Responses
Existence “Yes,” “No,” or “Not Applicable (N/A)"
Ordinal Typically “High,” “Moderate,” or “Low”
Score On a scale, such as “one to ten”
Cardinal A number in response to the question: “How many...?"
Percentage A number in response to the question: “What percentage of...?"
Holistic More complete view from authoritative source
Value Typically, total net loss in value for different approaches
Uncertainty  Stochastic or probabilistic approach
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Figure 7.2 Cost versus value of various metrics approaches.

In Figure 7.2, the ranges of the cost and value curves are shown to increase
generally with complexity, denoting the higher level of uncertainty that accom-
panies the more complex methods. There is also considerable uncertainty when
it comes to the quality of the data gathering and analysis processes as approaches
become more sophisticated. Clearly, it does not take the same level of expertise
to collect and analyze ordinal data as it does to collect and analyze stochastic or
probability-related data. As Hubbard [6] correctly points out, respondents need
to be trained in how to assess probabilistic situations and analysts must have a
background in the pragmatic use of statistics.

Metrics for Meeting Requirements

Requirements can be classified as functional or nonfunctional, those terms are
defined as follows, per Braude [19]:
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* Functional requirements (or behavioral requirements) specify services that
the application must provide.

* Nonfunctional requirements include all requirements not considered to
be in the class of functional requirements.

Of course, many have pointed out that the latter term could be inter-
preted to mean “requirements that do not function,” but that is not how it
is commonly meant in systems engineering. The usual categorization of attri-
butes, such as safety and security, as nonfunctional requirements results in the
lack of attention that is usually accorded these requirements in any but the most
mission-critical of systems.

A major point of this book, which is often given short shrift in other
texts, is that many so-called nonfunctional requirements also have their func-
tional counterparts. The separation of knowledge and duties is such that those
with expertise and responsibility in the functionality of software systems are
generally not knowledgeable about, or even interested in, the nonfunctional
attributes of those same systems. Many experts in the nonfunctional aspects of
software systems, many of whom do not know or care about the detailed func-
tionality of the systems. This state of affairs might be acceptable were it not for
the fact that functional aspects of software systems have considerable impact on
nonfunctional requirements and vice versa.

Table 7.5 describes the nonfunctional attributes, as mentioned in Braude
[19], and some that are in MISRA [20]. In particular, the omission of safety
and interoperability as significant attributes is typical of books, papers, and pre-
sentations that focus on general software engineering, such as Braude [19] and
security engineering, such as Anderson [21]. Safety, in particular, is usually only
included in those publications specializing in that attribute, and these publica-
tions are likely to omit consideration of security, as in Herrmann [22].

Similarly, there is usually little reference to relationships between software
functionality and nonfunctional requirements in security-oriented publications,
whereas safety attributes are considered to be tightly interrelated with software
functionality. In Table 7.6, we show some of the more significant nonfunctional
requirements that impact the security and safety of various software functions.

Sometimes certain nonfunctional attributes, such as security-related au-
thorization or encryption, are written into the functionality of the applications.
While commonly done, such a practice is suboptimal and can lead to errors and
inappropriate use, as opposed to when such nonfunctional services are isolated
from functional applications.

There are usually serious issues regarding organizational structure and
the expertise and biases of those with responsibility for determining require-
ments and ensuring that they are included and enforced throughout the secure
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Table 7.5
Descriptions and Uses of Nonfunctional Attributes
Nonfunctional
Attributes Description/Use
Reliability* Determines availability and integrity of systems and data
Availability* Determines whether or not systems can be used for their intended purposes
when they are needed
Performance™® Includes speed, throughput, storage capacity.
Describes responsiveness of system and timeliness of its functional
services—Ilack of performance leads to lower productivity, loss of users, higher
operational costs, etc.
Security* Protection of information assets from incidents resulting in data breaches, loss

Confidentiality*
Integrity*
Availability and
reliability®
Nonrepudiation®
Authentication®
Authorization™
Maintainability™
Portability*
Error handling*
Interoperability
Resiliency

Safety’

Complexity"
Maintainability®
Modularity!
Structure!

Testability"

Reliability'

of service, fraud, etc.
Components stated as CIA: confidentiality, integrity, availability, plus others as
listed below.

Data not accessible by unauthorized subjects—included in security
requirement

Included in security requirement
Also a safety requirement (malfunction)

Affects average uptime—availability included in security requirement
Also a safety requirement (failure)

Proof of existence of agreements—included in security requirement
Ability to validate users” identities—included in security requirement
Permission to deal with subject—included in security requirement
Increases availability and reduces malfunctioning and failure rates

Ability to run software on different platforms and infrastructures with minimal
or no modification

Speed and correctness of error resolution, error routines, self-healing systems,
fail safe—affects availability

Ability to access data across applications running on different platforms—
affects availability

Combination of error handling, redundant systems, responsiveness—affects
availability, and affected by portability and interoperability of applications

Affects damage to external parties or environment from software system
malfunctions or failure

Increased complexity affects likelihood that system will contain errors
See above

Higher use of modules implies less complexity ahd therefore lower likelihood
of errors

Good structure with respect to control, data and information flow improves
likelihood of reduced errors

Ease with which software systems can be tested with a high level of
confidence that errors will be detected

See above

* From: Braude [19].
T From: MISRA [20].
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software development life cycle (SSDLC). This will be further addressed later
when we discuss the development process. Here, we merely draw attention to
many of the nonfunctional attributes that exist and to the unrealistic hope that
the same individuals who are fluent in the functionality of software might also
understand the full implications of all the nonfunctional attributes listed in
Table 7.5. It may even be optimistic to believe that applications developers
understand and care about even a couple of the nonfunctional attributes. It is
little wonder that nonfunctional requirements do not appear in software system
specifications.

Risk Metrics

There is surprisingly little agreement as to which metrics should be used. That
is particularly true of risk-related metrics for security-critical and safety-critical
systems. It should be noted here that there does not seem to be anywhere near
the same level of confusion and debate when it comes to metrics relating to
the operation of safety-critical systems, probably because the latter are more
ingrained into the physical world, where metrics are often easier to come by
and to interpret than for the more abstract world of software. Nevertheless,
Cruickshank [16] points out that metrics relating to the development process
for safety-critical software systems are also lacking, particularly with respect to
the validation process. These differences are shown in Table 7.7.

Consideration of Individual Metrics

We first look into individual metrics, which are particularly relevant to the se-
curity and safety of software systems, and then consider the superset of metrics

Table 7.6

Typical Nonfunctional Requirements for Various Software Functions
Software
Function  Nonfunctional Requirements Affecting Software Function
Read Authentication, authorization, integrity, confidentiality
Write Authentication, authorization, integrity, confidentiality, nonrepudiation
Modify Authentication, authorization, integrity, confidentiality, nonrepudiation
Delete Authentication, authorization, nonrepudiation
Save Authentication, authorization, integrity, confidentiality, nonrepudiation
Transfer Authentication, authorization, integrity, performance, confidentiality, availability
Calculate Authentication, authorization, integrity, performance, availability
Display Authentication, authorization, integrity, confidentiality, availability
Print Authentication, authorization, integrity, availability, performance
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Table 7.7
Understanding of Risk Metrics for Security-Critical and Safety-Critical Software Systems

Security-Critical Software

Characteristics Systems Safety-Critical Software Systems
Attributes considered  Risks are mostly considered for Risks are mostly related to the
nonfunctional attributes and dangers of malfunctioning and failure

likelihood that the systems will be
compromised by an attacker

Risk evaluation and Security risk evaluation and Verification of safety standards
testing testing relates mostly to platforms conformance is rigorous for critical
and networks, with relatively little systems and involves the functional
attention given to the functional ~ aspects of systems and the level of
security aspects of software hazard that they would represent if

they were to malfunction or fail

applicable to software-intensive systems of systems or cyber-physical systems,
which must meet both security and safety requirements.

Historically, these two areas have not been related to one another. For
example, if you read Merkow [23] on the development of secure and resilient
software, and Hermann’s book [22] on the safety and reliability of software, you
will see that there is no mention of safety in [23], and no mention of security
in [20]. It is also interesting to note that books specializing in security metrics
usually pay little attention to application or software system security metrics.
For example, Jaquith [11] devotes a mere dozen pages to the topic.

We can further support this lack of focus on application software security
metrics by looking at popular works on the development of secure software and
see the extent to which the authors discuss metrics. For example, McGraw [18]
covers the topic of establishing a metrics program in a single page, and Howard
and Lipner [24] omit measures or metrics completely.

Generating requisite metrics is crucial in order to monitor and report
questionable activities within applications, and hence be assured of the effec-
tiveness of their security and safety methods. Knowing what is going on within
an application is crucial to ensuring the secure and safe operation of mission-
critical software-intensive systems. The apparent lack of interest in the topic
by thought leaders in the software security area is disconcerting. In fact, the
disconnect between software development teams and those requiring additional
instrumentation could well be a significant contributor to our seeming inability
to build highly secure software-intensive systems.

Safety-critical software systems, on the other hand, are not usually subject
to the same levels of attack as security-critical systems because their failure rates
appear to be very low. Also, looking at press coverage, safety-related software
malfunctions and failures appear to be infrequent relative to breaches and fail-
ures of security-critical software systems. Safety metrics, as they relate to soft-
ware systems, are very different from security metrics. This is likely due to the
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different perspective of those responsible for safety and the restrictions placed
upon them in obtaining certifications for their systems.

Table 7.8 provides examples of functional and nonfunctional metrics as
they apply to security-critical and safety-critical software systems.

Over the past couple of years, researchers have begun to see the impor-
tance of looking at software systems from both the perspective of safety and
security at the same time, as in Gutgarts [25]. However, there is relatively little
published about the confluence of security and safety from a requirements and
metrics perspective. We shall first look at the security and safety requirements
of software systems separately, as illustrated in Table 7.9, and then take a com-

bined view.

Table 7.8

Examples of Metrics Relating to Security and Safety

Security-Critical Software

Metrics Category Systems

Safety-Critical Software
Systems

Functional

Nonfunctional

Determination of secure coding
deficiencies

Monitoring of user activities within
applications

Security
Dependability
Performance
Resiliency
Availability
Quality

Requirement for resistance to
malfunction and failure
Determination of limits on
potential damage incurred

Safety
Performance
Resiliency
Availability
Quality

Table 7.9

Primary Focus of Software Security and Safety Engineers

Security-Critical Software Systems

Safety-Critical Software
Systems

Software
security
engineers

Software
safety
engineers

Most of the focus is on nonfunctional system
attributes

Relatively little attention paid to functional
security attributes as shown by the minimal
discussion in the literature, see Axelrod [26]
Relatively little attention paid to context

Limited knowledge or experience in the
security area

Generally a lack of attention to security
aspects

Limited knowledge or experience
in the safety area

Generally a lack of attention to
safety aspects

Strong focus on safety attributes
as required by various certifying
bodies

Both functional and
nonfunctional attributes are
usually considered

Some degree of attention paid
to context
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Table 7.10
Ordinal Metrics for Information and Control Systems
Metrics Application1  Application2  Application3 Application N
Predominant system type Information system Information system Control system Control system
Authentication method Strong Weak Strong Weak
Authentication process Effective Somewhat Somewhat Ineffective
controls effective effective
Authorization method Formal Informal Formal Ad hoc
Authorization process Somewhat Ineffective Effective Nonexistent
controls effective
Identity and Access COTS product None Home-grown None
Management (IAM) system system
Classification of data Formal None Informal None
Restrictions on data flows Highly restrictive ~ None None Highly restrictive
Value of data Extremely high High Moderate Low
Degree of encryption In motion only In motion and at In motion only None
(in motion, at rest, in rest
storage)
Knowledge of secure coding  Moderate Moderate Moderate None
(training)
Implementation of secure Moderate Minimal High None
coding
Testing of secure design and Moderate Minimal Minimal None
coding
Completeness of security/ Fairly complete Minimal Minimal Minimal to none
safety data generation and
collection
Effectiveness of analysis Moderate Minimal High Minimal
and reporting of security/
safety data
Responsiveness to breaches  Highly responsive  Minimally Somewhat Unresponsive
and malfunctions/failures responsive responsive
Software complexity Very complex Fairly complex Relatively simple  Fairly complex
Complexity of software- Very complex Simple Moderately Highly complex
intensive systems complex
Context/environment Integrated system  Public facing Isolated, internal ~ Public facing
of systems
Accessibility of system by Highly restricted Somewhat Unrestricted Unrestricted
unauthorized persons or restricted
systems
Security/safety aspects of ~ High security Low security Low security Minimal security
platform Low safety Moderate safety ~ Low safety Moderate safety
Security/safety aspects of ~ High security Low security Moderate Low security
infrastructure Low safety High safety security Low safety
High safety
Current phase of SDLC Production Production Testing Coding
Overall security posture High Moderate Moderate Low
Overall safety posture Low Moderate High Moderate
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Security Metrics for Software Systems

There has been a great deal published on security metrics and the processes,
tools and measurements for increasing application security. However, most of
the focus has been on nonfunctional attributes, which may or may not be inde-
pendent of the functionality of the application software.

To the extent that application software security metrics do exist, they usu-
ally fall into the cardinal or percentage metrics categories described above. In-
formation security professionals appear to be very fond of numbers, such as the
number of unsuccessful attacks per week, the percentage of systems that have
had the latest patches applied to them, and the like. This is all well and good,
except that these numbers frequently require a footnote to explain them. For ex-
ample, as discussed previously in regard to the encryption of laptop computers,
the percentage of servers that have had patches applied often refers to all servers
equally. However, the most important aspect of such a metric is whether or not
patches have been applied to all critical servers, where “critical” generally means
that the servers support mission-critical applications that are essential because
they are needed for business continuance, are required for legal and regulatory
compliance, and the like. Application security metrics seldom consider value
and uncertainty and are consequently of limited value in their effectiveness.

Another deficiency in application security metrics is that they often do
not consider the context in which the software is running. This is a serious
omission because applications will display different sets of vulnerabilities de-
pending upon the operating systems on which they are based, for example. It
also matters very much, from a security perspective, whether an application is
Web facing, and from security and safety perspectives, whether the application
runs on an isolated internal network with limited access.

We illustrate this issue in Table 7.10 by showing the levels (i.e., ordinal
values) for a given set of characteristics of several security-critical information
systems and safety-critical control systems. It should be noted that this table
is for illustrative purposes and that, in order to actually use the approach in
practice, the analyst needs to obtain much more detail about each element in
the matrix, preferably expressing them in value and uncertainty (probability
distribution) terms, rather than the ordinal metrics shown here.

It is an interesting and useful exercise to consider the implications of each
metrics attribute separately and then in combination. For example, applications
1 and 2 are already in production so that any changes at this stage would be
extremely costly. However, because the value of the information is classified as
very high and high for applications 1 and 2, respectively, it might still be cost-
effective to go back and correct certain security and safety deficiencies. It is
doubtful that a major rework could be justified.
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Application 3 is not yet in production so that the results from the testing
can still be incorporated into the system at a relatively moderate cost. Applica-
tion N is only at the coding stage so that it is comparatively inexpensive, and
not likely to delay implementation much, to modify the programs, although, if
a major design change were recommended, it could cause much more signifi-
cant increases in cost and effort and could delay implementation. On the other
hand, the value of the information processed by application N is comparatively
low, so that it would likely not make sense to invest much in making the system
more secure. However, it should be noted that even if a control system does not
contain valuable information as such, malfunctioning and failures could have
a huge impact. That is to say, unauthorized access to the application could lead
to an outside force taking over control of the system and forcing the system to
perform inappropriate and dangerous tasks. In this case, protection has more
to do with bad consequences than it does to exposure of sensitive personal data
and intellectual property. Application 3 is shown as a control system running on
a low-safety platform, yet running on an infrastructure rated high for security.
Whether this is acceptable or not will depend on a combination of factors.

The above indicators bring up issues regarding how to weight each at-
tribute and how to aggregate them. Clearly, the interaction of the various at-
tributes is complex and one’s ability to come up with precise metrics is very
limited. Nevertheless, the exercise itself has considerable value because it will
highlight those important characteristics that may be lacking and help focus on
which defects and deficiencies should be fixed first, or at all.

Incorporating numeric values into the above evaluation might appear to
add precision to the exercise, but in most cases it will not. In fact, there is a
considerable danger that using numeric values will be counterproductive. We
might ask, therefore, how one might incorporate value measures and uncer-
tainty into a situation that is already fraught with issues with respect to the true
representation of subjective ordinal measures of the attributes. The answer is
that, if one were able to develop, as an example, a probability distribution of
the losses that might be incurred as a result of an inadequate infrastructure or
of poor security coding, then one would get a more useful picture of the risk
involved in not remediating certain deficiencies.

Safety Metrics for Software Systems

Metrics related to safety-critical software-intensive systems are most concerned
with the impact of a malfunction or failure of the system. The hardware compo-
nents of such systems are always subject to failure, but there are well-established
approaches to dealing with them, usually by swapping out components or the
like. That is to say, the impact of a hardware failure is usually relatively easy to
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identify and evaluate, and the response is generally quite straightforward. The
exception to this is if it is suspected or shown that the equipment has a weak-
ness or has been compromised in some way; it then serves no purpose to replace
the hardware component with a new one that is also defective. The same goes
for software.

The root causes of software malfunctions and failures are often less easily
identified than are hardware failures. Sometimes a hardware failure is caused
by a software error, or vice versa, which can confuse the determination of the
reason for the failure or malfunction. For example, if a telecommunications
network goes down, the halt in traffic may be because of an equipment failure,
because of software errors, or due to human error.

Consider, for example, the actual case where a particular trading desk
telephone system would fail and reboot repeatedly. It took engineers weeks to
determine the problem. Apparently, in the pristine laboratory environment,
there was no noise from the cables, which had short runs and were carefully in-
stalled. In the field, with less-than-perfect cabling, the software control system
kept invoking a recovery routine that had never been tested in the lab because
the carefully-installed cables never malfunctioned. It was determined that there
was a coding error in the recovery routine that was activated by signal losses and
noise on the cables, and caused the entire system to fail.

As another example, there has generally been a fair amount written re-
cently about securing industrial control systems that are increasingly being ex-
posed to public networks. Numerous articles, congressional hearings, and the
like, about securing the smart grid fall into this category. However, there is still
relatively little published on trying to reconcile the major conceptual differ-
ences that exist between safety and security software engineers’ views on system
requirements, which is the basic deficiency in the development processes for
these systems of systems and cyber-physical systems.

Summary and Conclusions

The development and use of security and safety metrics, as they apply to soft-
ware systems, are definitely works in progress. Current approaches do not gen-
erate all of the requisite measures and metrics, and those that are produced are
often insufficient to make appropriate decisions and take necessary actions. As a
result, organizations are frequently unaware that successful attacks and breaches
have taken place and, when they are notified that such an attack or breach has
occurred, they are usually at a loss in determining what happened, who did it,
and what to do about it.

The first recommendation for getting a handle on this problem is to un-
derstand the range of metrics categories that are available and used, and then to
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arrange to create, collect, and analyze the data needed to produce meaningful
metrics. The resulting risk analyses can be used to determine what actions need
to be taken in preparation for and in the wake of an attack or data breach.

This is not a trivial effort, as the most useful metrics for risk identifica-
tion, assessment, and management are often more difficult to collect and inter-
pret than metrics of lesser value. Post-processing the metrics in order to arrive
at aggregated values is also a challenge. Often, respondents need to be trained
on how to answer surveys, and analysts need to understand the consequences of
threats, exploits, and vulnerabilities and be able to produce results and recom-
mendations in sufficient time to take mitigation actions.

It also seems that metrics appropriate for security-critical software systems
are not particularly useful for safety-critical software systems, and vice versa. Yet
there is a need to exchange methods and procedures between security and safety
silos, particularly as the trend is to combine security-critical and safety-critical
systems into complex systems of systems and cyber-physical systems, which
must demonstrate the ability to maintain a strong security posture and, at the
same time, exhibit safety characteristics.

The basic recommendation here is to understand the strengths and weak-
nesses of various types of measurements and metrics so that one can determine
the best data to collect in order to perform risk analyses that will lead to ap-
propriate mitigation.
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Software System Development
Processes

For some decades, many development models, standards, laws, meth-
ods, assessments ... have been created to improve product quality ... The
resulting quagmire becomes increasingly difficult to understand and al-
most inscrutable.

Dr. Winfried Russwurm, Siemens AG, The Multi-Model and
Multi-Appraisal Quagmire:An Approach to Organize by a Classifi-
cation Scheme [1]

Introduction

One aspect that is common to the majority of published approaches to software
system development is the lack of attention to security and safety processes,
which need to be incorporated into the basic set of process areas common to
software development frameworks. This deficiency appears to be virtually uni-
versal and is made very apparent by those creating safety and security extensions
to the basic processes.

Originally, there was no intention to spend much time on processes and
process frameworks, with most of the focus to be on projects and project man-
agement. However, two events changed that view, resulting in more attention
being given to processes. In fact, this entire chapter is devoted to processes.
Projects and their management will be examined subsequently.

One motivator behind paying more attention to processes was the arrival
of a prepublication draft of a report [2] that describes the +SECURE extensions
to CMMI®-DEV [3]. These +SECURE extensions, together with the +SAFE
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V1.2 extensions in [4], which are already available online, provide substantial
guidance with respect to processes. These guidelines serve to encourage the de-
velopment of safer and more secure software-intensive systems. While some
documentation about safety and security extensions to the integrated CMM®
already existed in Ibrahim [5] prior to the publication of the +SAFE and +SE-
CURE extensions, focus on software safety and security will undoubtedly in-
crease considerably with the advent of the +SECURE extensions [3] to comple-
ment the +SAFE document [4], which has been available since 2007.

At this point, it is worth noting the unusual chronology of the +SECURE
draft document [2] and +SAFE V1.2 report [4]. In 2004, Ibrahim [5] referred
to a +SAFE V1.0 document [6], which had been published in 2001. While it
is true that the +SAFE V1.2 document [4] refers to the earlier +SAFE V1.0
document [6], it does so in the context that the latter “... was released to a
limited audience for trial and evaluation.” A point of interest is that neither the
+SECURE draft [2] or the +SAFE V 1.2 report [4] mention this predecessor
document [5].

Russwurm [1] has affirmed what many have suspected all along, namely
that the whole area of process improvement is complex, convoluted, and dif-
ficult to navigate. While trying to cut through the maze of frameworks and
models is too large a task for this book, this chapter should help explain the
problem, even if it does not fully solve it. The hope is that there is value in
examining the diversity of processes and process issues and the existence of in-
consistencies across the various approaches and, by such means, improving the
way in which safe and secure software systems are built and operated. However,
excellent processes do not guarantee high-quality products and services, even
though effective processes are more likely to generate products of better quality.

Processes and Their Optimization

It often seems, especially in the field of software development, that much time
and effort is spent trying to improve processes. Similarly, the management of
projects receives a great deal of attention. However, the amount of attention has
not been enough to avoid many projects being late and over-budget. Further-
more, the resulting products and services often do not meet the requirements
and expectations of stakeholders.

Much of the benefit from invoking world-class processes is lost if the
resulting products and services are poor because the projects are badly man-
aged. Furthermore, if even the best products do not go through an effective
quality-assurance phase, the result is almost guaranteed to be poor quality
products, services, and systems. That is not to say optimized processes are not
important—they are. Mature, continuously-improving processes are generally
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considered to be necessary, though not sufficient, particularly for large multi-
player projects. Nevertheless, using world-class processes does not necessarily
ensure that end-products or services will satisfy stakeholders” requirements. Nor
does it guarantee that products and services will be of sufficiently high quality,
where quality includes attributes like security and safety. In fact, it seems that
some researchers appear to be deluded into thinking that invoking a mature
process will automatically produce quality products and services. However, it is
entirely possible to build an inferior product using a superior process and good
project management, particularly if safety and security requirements do not
receive adequate attention or are completely omitted.

Notwithstanding the above disclaimers, there can be significant value gen-
erated from a complete set of well-organized processes. Unfortunately, as point-
ed out in [1], process models and frameworks are proliferating at breakneck
speed, and it is a particularly difficult task to navigate through what Russwurm
terms a quagmire. Furthermore, safety and security extensions to well-respected
maturity models are relatively recent and, even within this subset of processes,
we see the problems introducing these processes into entities that heretofore
have not included specialty processes in their development life cycles.

In this chapter, we discuss some of the most commonly referenced pro-
cess models, such as the CMMI® and various offshoots, particularly as they
might relate to safety and security. We compare the processes for developing
safety-critical and security-critical software systems. We also discuss how two
seemingly-divergent philosophies might be brought closer together to address
today’s safety and security issues with systems of systems and cyber-physical sys-
tems, which must satisfy the requirements of many constituencies. This is not
an easy task because the history of process models is complex and convoluted.

Processes in Relation to Projects and Products/Services

Even though organizations may achieve high levels of process maturity in some
areas, not all projects necessarily fall under this umbrella. As stated in Chrissis
[7] with regard to differentiating the CMMI®-DEV approach from others:

... most available improvement approaches focus on a specific part of the
business and do not take a systemic approach ...

It is quite possible that some, or many, projects conducted in other parts of
an organization may not reflect the quality and maturity of processes achieved
by a particular area that, for example, obtains a high-level CMMI® certification.
This is simply illustrated in Figure 8.1, where some projects are shown to fall
within an established mature process whereas others do not. The process for
obtaining certification requires significant time, effort, and cost, with the result
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Established process
Project Proquct or
service
Project Prod'uct or
service
Project Prod'uct or
service

Figure 8.1 Projects within and outside mature process.

that only a few organizations could justify having all of their businesses and op-
erational areas so certified. The problem resulting from this is that a customer
might presume that all products and services emanating from an organization
equally meet the maturity level asserted by a vendor, say, whereas not all prod-
ucts and services necessarily conform to this claim. This is a typical “buyer
beware” situation, in which it pays to perform appropriate due diligence.

A common theme running through this chapter is the differentiation be-
tween effectiveness and efficiency, where effectiveness is “doing the right things”
and efficiency is “doing things right or correctly.” Thus, one can aim for effective
processes to provide greater assurance that projects falling under such processes
result in products and services that are wanted and expected by stakeholders.
A project that comprises a specific set of activities suggested by the process
must also be managed in an efficient manner. However, efficient projects do
not ensure that resulting products and services meet stakeholder requirements,
whether functional or nonfunctional. The only claim that can be made is that
the projects have been managed to make the best use of available resources.
Consequently, one should recognize that adhering to a well-defined process
may not be as useful as hoped for; this is so when projects that are governed by
the process, do not create products and services that meet all important stake-
holder requirements (that is, the validation process) and fall within budget.

Effectiveness and efficiency are considered differently depending on
whether one is looking at these criteria from the process or project viewpoints.
For example, from a process-effectiveness perspective, it is important to have in
place appropriate specifications for the full range of process areas, whereas for
projects, effectiveness is achieved by obtaining complete and accurate specifica-
tions and validating that end-products and services satisfy those requirements.

Note that “process area” has a particular definition in the context of

CMMI®, as follows, per Chrissis [7]:
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A cluster of related practices in an area that, when implemented
collectively, satisfy a set of goals considered important from making
improvement in that area ...

The key to efficient processes is in their appropriateness and acceptance
within particular organizational cultures, whereas the efficiency of projects has
to do with how they are planned and managed. As mentioned, assurance that
the outputs of projects operating under a particular set of processes effectively
meet stakeholder requirements is via validation, which mostly involves testing.
The determination that, for each step of the development life cycle, the arti-
facts generated or components built in the prior phase do not contain defects is
through verification, which generally consists of inspections, reviews and some
testing. Whereas effectiveness and efficiency criteria affect both processes and
projects, the emphasis is usually on the effectiveness of the former and the ef-
ficiency of the latter. Here, we will focus on the effectiveness of processes inso-
far as they are complete and appropriately directed. We will consider attaining
project efficiency by means of good management.

In Table 8.1, we show how effectiveness and efficiency differ in terms of
processes, projects and assurance.

Some Definitions

As usual, we will start out by examining the meanings of the words process,
project, product, and organization, and not take them for granted or use one
term where another one is more appropriate.

Sufficient distinction between process and project is often not made in
the literature or in practice. This often leads to misinterpretations as to the
meaning of certifications and reviews, such as CMMI® Level certification and
SAS 70 Type I and Type II (now SSAE 16) audits [8].

It needs to be reemphasized that CMMI®and SSAE 16 examinations are
usually restricted in scope to specific projects and operational areas respective-
ly. However, as mentioned above, it is common for individuals who are not
sufficiently aware of these limitations and restrictions to assume, albeit incor-
rectly, that the certifications apply across an entire organization. That is to say,
a CMMI® Level 5 certification, which represents the highest and most mature

Table 8.1
Doing the Right Things and Doing Them Right
Criterion Realization  Processes Projects Assurance

Doing the right thing  Effectiveness  Specifications Requirements  Validation
Doing it right Efficiency Implementation  Management  Verification
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level attainable, may have been obtained for a small subsidiary isolated from
the main business, and yet one might be given to believe that it applies to the
entire organization.

Similarly, SAS 70 (now SSAE 16) reviews are usually limited to a single
operational unit. The reality is that it is not usually reasonable to jump from the
particular to the general. Such leaps of faith inevitably lead to confusion, misin-
terpretations and inappropriate decisions and to the expectation that a level of
excellence achieved by a subsidiary, say, applies across the board.

The following definitions come from the glossary in CMMI® for Develop-
ment [3].

* A process is a “set of interrelated activities, which transform[s] inputs
into outputs, to achieve a given purpose.”

* A project is a “managed set of interrelated activities and resources, in-
cluding people, [which] delivers one or more products or services to a
customer or end user.”

* A product is a “work product that is intended for delivery to a customer
or end user.”

It should be noted that the definition of a product according to the ISO/
IEC 12207-2008 [9] is “the result of a process” [emphasis added]. This differs
from the above definitions of process and project. In terms of the above defini-
tions, a software product should be considered the result of a project, because
a process is a description of what should be done in order to achieve a purpose,
whereas products are created by a series of steps that makes up a project. This is
another example where inconsistency across different sources results in confu-
sion. The following definitions come from the glossary in CMMI® for Develop-
ment [3]:

* A service is a “product that is intangible and non-storable.”

* An organization is an “administrative structure in which people collec-
tively manage one or more projects or work groups as a whole, share a
senior manager, and operate under the same policies.”

According to the above definitions, both processes and projects are sets
of interrelated activities, except that a project is an instance of a process that
is managed and which consumes specific resources used to create products or
services.

The difference between a product and service has, according to the above
definitions, to do with a service being intangible and nonstorable. Axelrod [10]
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describes services as being “perishable,” in that services, which are not used, are
no longer available for future use whether or not they were used in a prior pe-
riod; this is the typical “use it or lose it” syndrome. It leads to the need to have
excess service capacity to meet peak load conditions. This characteristic of per-
ishability is also somewhat applicable to many products—typically those that
flow, such as water, gas, oil, and electricity. These products do not disappear if
not used—only the opportunity to use them during a particular time is often
unable to be deferred, although some can be stored for future use. An example
is a system by which excess hydro-electricity is used to pump water up to a lake,
which is then used to produce electricity at some future time. If this is not done,
then peak demand might exceed the capacity to generate. Many products, such
as processed drinking water (as opposed to regular water supplies), are physi-
cally tangible, whereas others, such as electricity, are less tangible, especially if
they are not visible in their native state. Nevertheless, all these products (where
their delivery is in the form of services) can be measured and charged for based
on the amount of product used or supplied within a given period of time.

However, even though services are not considered to be physical items per
se, they often stem from the use of, or support for, physical items. It is really not
so clear that services are intangible because they can result in measurable added
value, as described above. In fact, services are the major component of modern
developed countries” economies, where manufacturing and farm sectors have
been relatively reduced as a percentage of total economic activity. Services usu-
ally accompany products, such as a meal (product) produced by a chef (project)
and delivered by the wait staff (service), but they don’t have to link to a product,
as for example when one hires a babysitter. The value of a service can usually be
inferred from the price someone is willing to pay for that service.

In the context of this book, we claim that a process consists of a series
of steps, or set of interrelated activities, along with related policy, procedures,
practices, and controls that are required to produce safe and secure software-
intensive systems meeting appropriate and predetermined levels of quality. The
achieved quality can be verified through formal inspection. In such a context,
processes themselves don’t actually produce anything; they define and govern
projects that comprise activities that build a product or create a service. Process-
es can, and should, evolve and improve over time as experience is gained from
projects, and flaws and inadequacies are identified and eliminated. Such im-
provement is the basis of the Capability Maturity Model Integration (CMMI®),
originated in its current form and fostered by the Software Engineering Insti-
tute (SEI) at Carnegie Mellon University (CMU) in Pittsburgh, PA, with as-
sistance from The MITRE Corporation, in 1986. It should be noted that SEI
and The MITRE Corporation did not originate the concept of a step-by-step
maturity model. More than a decade before the SEI/MITRE effort, Richard

Nolan introduced the concept of stages in an organization’s evolution [11].
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According to Paulk [12], the purpose of the CMMI® framework is to “...
help organizations improve their software process” [emphasis added]. In an over-
view, cited on the SEI website [13], the approach is defined as follows:

CMMI® (Capability Maturity Model Integration) is a process
improvement approach that provides organizations with the essential
elements of effective processes, which will improve their performance.

Since 1986, there have been a number of major advances in maturity
models with more recent releases extending the original concepts to the safety
and security aspects of software system engineering processes.

Chronology of Maturity Models

The CMMI® process maturity framework was originally developed in the
1980s and formalized in 1993 in Paulk [12]. The CMMI® approach is specifi-
cally oriented towards software development and was used originally to assess
“the ability of government contractors’ processes to perform a contracted soft-
ware project” [emphasis added] [14].

A number of additions to and variations from the original concentration
on software development of CMMI® have occurred since the original version
was created. CMU SEI has expanded the approach to cover many other or-
ganizational processes besides software development, such as those relating to
acquisition, services, and people. A chronology of CMMs, specifically relating
to safety and security, is shown in Table 8.2. It is derived from “Figure 1.2 The
History of CMMs” in [3], but with some important additions, particularly
regarding recent or pending publications; specifically, the +SECURE [2] and
+SAFE [4] extensions to CMMI®-DEV [3].

Table 8.2
Chronology of Capability Maturity Models Related to Safety and Security
Document Year Derived from Input to/Superseded by
+SAFE V1,0 2001 — +SAFE v1.2
CMMI for Development 2006  CMMI for Development V1.1~ CMMI for Acquisition V1.2
V1.2 CMMI for Services V1.2
CMMI for Development V1.3
+SAFE V1.2
+SAFE V1.2 2007 +SAFEV1.0 —
CMMI for Development V.1.2
CMMI for Development 2010 CMMI for Development V1.2 +SECURE V1.3
V1.3
+SECURE V1.3 (Draft) 2012 CMMI for Development V1.3  —
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The International Systems Security Association (ISSEA) used the CMM*™
approach to develop the Systems Security Engineering Capability Maturity
Model (SSE-CMMI). The ISSEA published the SSE-CMM model in a guide
in 2003, which five years later became ISO/IEC 21827:2008 [15,16].

Security and Safety in Maturity Models

We will now examine several maturity models that have been created over the
years.

FAA Model

In September 2004, the United States Federal Aviation Administration (FAA)
published a report [5] on safety and security extensions for integrated capability
maturity models. Almost half of the report is devoted to mapping the “safety
and security application practices” against sources, and separately to safety and
security sources. The application practices (APs) by goal are shown in Table 8.3.

It is interesting to note that neither safety nor security are specifically de-
fined in Ibrahim [5], as is the case for many other similar reports—presumably

Table 8.3
Goals and Application Practices
Goals AP Number AP (Application Practices) Description
An infrastructure for safety AP 01.01 Ensure safety and security competency
%na(jinstzciﬁ(;iéy is established and - Ap 01 02 Establish qualified work environment
AP 01.03 Ensure integrity of safety and security information
AP 01.04. Monitor operations and report incidents
AP 01.05 Ensure business continuity
Safety and security risks are AP 01.06 |dentify safety and security risks
identified and managed AP01.07  Analyze and prioritize risks
AP 01.08 Dletermine, implement and monitor risk mitigation
plan
Safety and security AP 01.09 Determine regulatory requirements, laws and
requirements are satisfied standards
AP 01.10 Develop and deploy safe and secure products and
services
AP 01.11 Objectively evaluate products
AP 01.12 Establish safety and security assurance arguments
Activities and products are AP 01.13 Establish independent safety and security reporting
managed to achieve safety AP01.14 Establish a safety and security plan
and security requirements and .
objectives AP 01.15 Sele.ct and manage suppliers, products, and
services
AP 01.16 Monitor and control activities and products
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one is supposed to gather the meaning of these terms from their use through-
out the text. It is clear from [5] that safety and security are considered to be
very separate areas, which is confirmed by such differences as, say, the sources
used. Most of the safety-related sources are in the form of United States and
United Kingdom military requirements and standards, whereas the security-
related sources tend to be from global standards organizations. While such a
separation of sources is to be expected, it nevertheless points to an obvious
bias. This bias may partially explain why the military, up until quite recently,
appeared to focus more on safety and less on security, and why fewer interna-
tional standards (to date) have evolved for safety. This situation appears to be
changing as the military pays greater attention to security as it applies to their
information systems and networks, as well as to weapons systems and the like.
Businesses are becoming more concerned about safety as applied to industrial
control systems, which are increasingly being integrated into systems of systems
and cyber-physical systems.

Ibrahim [5] states that the purpose of a so-called safety and security ap-
plication area is to:

1. Establish and maintain a safety and security capability.

2. Define and manage requirements based on risks attributable to threats,
hazards and vulnerabilities.

3. Assure that products and services are safe and secure throughout their
life cycles.

As mentioned above, there are a number of comparisons made between
the application area practices from [5] and various sources. Relevant safety
sources, which are mainly military in origin, include the following:

* DEF STAN 0056: Safety Management Requirements for Defence Sys-
tems, U.K. Ministry of Defence, December 1996.

* MIL-STD-882C: System Safety Program Requirements, Military Stan-
dard, U.S. Department of Defense, January 1993.

* MIL-STD-882D: Standard Practice for System Safety, U.S. Depart-
ment of Defense, February 2000.

* [EC 61508: Functional Safety of Electrical/Electronic/Programmable
Electronic Systems, International Electrotechnical Commission, 1997.

Some relevant security sources, which tend to be international standards,
are listed as follows:
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* ISO/IEC 17799: Information Technology—Code of Practice for Infor-
mation Security Management, International Organization for Standard-
ization, 2000.

* ISO/IEC 15408: Common Ciriteria for Information Security Evalua-
tion, Part 3: Security assurance requirements, Vol. 2.1, Common Crite-
ria Project Sponsoring Organization, 1999.

* ISO/IEC 21827: System Security Engineering Capability Security
Model (SSE-CMM), v3.0, SSE-CMM Project, 2003.

 NIST 800-30: Risk Management Guide for Information Technology
Systems, Special Publication 800-30, National Institute of Standards
and Technology, 2001.

The +SAFE V1.2 Extension

In 2007, the Defence Materiel Organisation of the Australian Department of
Defence sponsored research by Carnegie Mellon University’s Software Engi-
neering Institute (CMU SEI). The result of this research was the +SAFE docu-
ment, which is a safety extension to CMMI® for Development V1.2, (CMMI®
-DEV), described in [7]. In 2010, Version 1.2 of the CMMI®-DEV was re-
placed with Version 1.3 [4].

The +SECURE V1.3 Extension
A group from Siemens AG developed a +SECURE extension [2] to the CMMI®

for Development Version 1.3, a draft of which was made available to this author
in March 2012. The final version of the report had not been released when this
book was being written. However, much of the content of the forthcoming
report is revealed in an article by Fichtinger [17].

We now examine CMMI® -DEV and its safety and security extensions in
more detail in order to better understand how processes that incorporate safety
and security process areas should be developed.

The CMMI® Approach

General CMMI®

According to CMMI® documentation, an organization evolves its processes
through five stages or levels:
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1. Initial: no structure or documentation to speak of.

2. Repeatable: the steps of the process are documented and may be re-
peated.

3. Defined: the process is considered to be a standard business process.
4. Managed: the process is managed against quantitative measures.

5. Optimizing: the process is continuously improved and optimized.

The range of processes included in the CMMI® portfolio is large and in-
creasing as areas of engagement grow rapidly. There is a vast array of documents
and training describing the CMMI® approach and how to obtain certification
in various areas and at increasingly demanding levels. A good place to start to
get a good understanding of the CMMI® approach is the CMU SEI website
[18].

CMMI® for Development

CMMI®-DEV came out of the fundamental CMMI® process and more specifi-
cally addresses software development, even though the original intent of CMM
was to improve software development efforts. Table 8.4 lists process areas with-
in each CMMI®-DEV module or category, as provided in CMMI® for Develop-
ment, Version 1.3 [3].

ISO/IEC 12207-2008 [9] process groups are shown in Table 8.5. It
should be noted that the processes cover both systems and software; there is
another standard, ISO/IEC 15288, IEEE Std 15288-2008 [19], which only
covers system life cycle processes, whereas both systems and software are covered
in ISO/IEC 12207-2008.

We compare the entries in Tables 8.4 and 8.5 to one another in Table B.1
in Appendix B.

If you find the above confusing, you are not alone, as Russwurm so aptly
stated in [1]. It is often difficult for someone with responsibility for the entire
range of software development processes to determine which might be the best
taxonomy to adopt. The more conservative approach is to take the superset of
processes, which, in the above case, would be to take the process categories of
ISO/IEC 12207-2008 and fill in any areas where CMMI®-DEV is more de-
scriptive. The CMMI® approach is, as one would expect from the size of the
documents alone (some 482 pages), much more comprehensive and provides
guidance and support, including training. These types of support are not as

readily available for the ISO/IEC standard.
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Table 8.4
Specific Process Areas by Category per CMMI®
Process Area Category Specific Process Areas
Process management Organizational process focus

Organizational process definition
Organizational training

Organizational process performance
Organizational performance management

Project management Project planning
Project monitoring and control
Supplier agreement management
Integrated project management
Risk management
Quantitative project management

Engineering Requirements development
Requirements management
Technical solution
Product integration
Product verification
Validation

Support Configuration management
Process and product quality assurance
Measurement and analysis
Decision analysis and resolution
Causal analysis and resolution

Incorporating Safety and Security Processes

A high-level comparison is given in Table 8.6 for those process areas with
equivalent process (or application) areas as CMMI®-DEV in +SAFE V1.2 [4]
+SECURE [2] and with the application areas in Ibrahim [5]. It is interesting to
note that not every process area (PA) has an equivalent in the other documents.
For example, there is no specific extension of the Process Management PA in
the +SAFE document. The application practices (APs) in +SECURE [2] have
equivalents, for the most part, in CMMI®-DEV and mapping that serve to il-
lustrate the complexity of the quagmire of definitions and terms. Nevertheless,
one can draw parallels, add, or join the dots in order to complete the picture.
For example, there is clearly a need for organizational preparedness for safe de-
velopment, which incorporates establishing an appropriate work environment
and training individuals in particular skill sets, even though it may not be stated
explicitly in the same terms across approaches.
We now look into +SAFE V1.2 [4] and +SECURE [2] in more detail.

+SAFE V1.2 Comparisons
Table 8.6 clearly shows that the safety extensions are in the CMMI®-DEV pro-

cess areas of Project Management and Engineering, but that the process areas



170 Engineering Safe and Secure Software Systems

Table 8.5
Life Cycle Process Groups per ISO/IEC 12207
Category Subcategory Individual Processes
System Context Agreement processes Acquisition process
Processes Supply process
Organizational project-  Life cycle model management process
enabling processes Infrastructure management process

Project portfolio management process
Human resources management process
Quality management process

Project processes Project planning process
Project assessment and control process
Decision management process
Risk management process
Configuration management process
Information management process
Measurement process

Technical processes Stakeholders requirements definition process
System requirements analysis process
System architectural design process
Implementation process
System integration process
System qualification testing process
Software installation process [distribution?]
Software acceptance support process
Software operation process
Software maintenance process
Software disposal process

Software Specific  Software Software implementation process
Processes implementation Software requirements analysis process
processes Software architectural design process

Software detailed design process
Software construction process
Software integration process
Software qualification process

Software support Software documentation management process
processes Software configuration management process

Software quality assurance process

Software verification process

Software validation process

Software review process

Software audit process

Software problem resolution process

Software reuse Domain engineering process
processes Reuse asset management process
Reuse program management process

of Process Management and Support do not appear to have equivalent safety-
related processes. The +SAFE document [4] addresses these differences. The
relationships among the process areas of safety management, safety engineering,
and support are considered to be the same for +SAFE as for CMMI®-DEV.
The +SAFE document does not appear to address the process management
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process area, particularly the need for preparedness, including training of per-
sonnel. Presumably, this area reverts back to the parent document. However, it
is something that should be made explicit for safety, especially as there is a lack
of knowledge and expertise of safety engineering among developers of security-
critical software and, as described in previous chapters, there is little interchange
among the various silos of expertise. Training and knowledge transfer relating to
safety are areas in need of particular explicit attention and the failure to call out
these areas could well be a significant contributor to the current gap.

From +SAFE V1.2, it would appear that the CMMI®-DEV process for
training is addressed in what is termed Specific Goal 1 (SG 1), although train-
ing is not mentioned in the description of SG 1.

Of particular interest is Table 4 in the +SAFE report which cross refer-
ences +SAFE SGs with nine of the twenty-two CMMI®-DEV PAs. Table 8.7
summarizes the comparison at a higher level (i.e., not drilling down to indi-
vidual SGs).

While this analysis may be comforting to some, there are questions as to
how well the SGs match the CMMI®-DEV PAs and whether comparing in
nine categories is adequate. Perhaps incorporating the +SAFE extensions di-
rectly into the parent document would have been a better approach, as it would
clarify which process areas are addressed and which are not. Nevertheless, the
+SAFE document [4] is a major step in the right direction despite its taking a
safety perspective that is geared to safety engineers and may not be particularly

helpful for others.

+SECURE V1.2 Comparisons

While the authors of the +SECURE document [2] assert that the +SECURE
extension was “developed using the similar methods [to] the +SAFE extension

Table 8.7
Cross References of CMMI®-DEV vs. +SAFE Process Areas
Safety Safety
Management Engineering
CMMI®-DEV Process Areas Process Area Process Area
Causal analysis and resolution Yes —
Configuration management — Yes
Decision analysis and resolution Yes Yes
Measurement and analysis Yes —
Organizational training Yes —
Process and product quality assurance — Yes
Project monitoring and control Yes —
Project planning Yes —
Requirements development Yes Yes
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..., the documents differ in many respects. We have already established that the
+SAFE extension does not specifically address the process management process
area, and that neither +SAFE nor +SECURE includes any support process ar-
eas. However, there are many other differences that show up as one digs down
into the specific goal and practice levels, as illustrated in Table 8.8.

Table 8.8 is very revealing. First of all, it shows that the +SECURE spe-
cific goals and practices cover many more areas than do the specific goals of the
+SAFE extension and the +SECURE specific goals appear to be much more
oriented to the software development process than are the safety goals and prac-
tices. The safety approach appears to be less formal than the security approach.
For example, in the design category, the +SAFE requirement is to apply safety
principles, whereas +SECURE calls for using security standards.

Summary and Conclusions

In many ways, this venture into the world of processes was highly informa-
tive for the author, and, it is hoped, for the reader, too. The overall impression
matches Russwurm’s representation of software development process models
as a quagmire [1], which was unfortunately shown to be accurate. One who is
interested in implementing one of the many process frameworks is sure to be
confronted with a myriad of approaches. These approaches are difficult to com-
pare and each requires substantial effort to understand and implement.

Attempts to extend process models from the general software develop-
ment framework to safety and security are highly variable in their rigor and use-
fulness. There also appears to be a tendency to reinvent the wheel to the extent
that references to prior work and to parent documents are often incomplete.

Nevertheless, for all their problems, process improvement methods are
much needed, as are those that relate specifically to safety and security. It is
crucial to include safety and security in process models because, if they are
not included, there is little hope for advancing the art of secure and safe soft-
ware systems engineering. That being said, the process models are not yet good
enough to assure IT professionals that the complex systems that they build and
operate will meet the security and safety requirements of diverse stakeholders.

Whereas world-class processes do not guarantee top-quality products and
services, the lack of adequate processes practically ensures that many critical
considerations relating to safety and security will not be included in the overall
processes and projects that underlie the creation of all software-intensive prod-
ucts and software-based services.
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Secure SSDLC Projects in Greater Detail

A comprebensive, systematic approach to implementing security from the
very start of applications development is essential.
—Patrick McBride and Edward P. Moser, [1]

In an era riddled with asymmetric cyber attacks, claims abour system

reliability, integrity and safety must also include provisions for built-in

security of the enabling software [emphasis added].

—The Data and Analysis Center for Software (DACS), Depart-
ment of Defense [2]

Dependability specifications are analogous to safety and security require-
ments ...

—Praxis High Integrity Systems, [3]

Introduction

As we have already discussed, there are numerous acronyms for security-critical
and safety-critical software-intensive system-development life cycles. Many of
these acronyms, though seemingly different, apply to very much the same types
of systems and processes, whereas others are clearly or subtly different, often
ambiguous. All such attempts to define the development process and life cycle
components are intended to bring structure, formality, completeness, and re-
peatability to processes and procedures, which are often ad hoc in practice.
Many processes address only the creation of standalone software products; oth-
ers take into account broader aspects of software-intensive systems by including
platforms, infrastructures, and possibly hardware. Yet other approaches special-
ize in one attribute of software such as security, safety, reliability, integrity, avail-
ability, performance, resiliency, and the like, but pay little attention to the other
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characteristics of software systems. Thus books about software security seldom
mention safety and those covering the topic of software safety pay little or no
attention to security.

The purpose of this chapter is to examine the phases and detailed tasks
and subtasks that are most crucial to developing, operating and decommis-
sioning secure software systems. In Chapter 10, we shall look into the same
processes as they apply to safety-critical software systems. We shall then look
at the particular issues that relate to creating software systems that are both
security-critical and safety critical.

Different Terms, Same or Different Meanings

The simple acronym SDLC is itself ambiguous. In some instances, SDLC refers
to the system development life cycle, or system design life cycle, whereas in other
cases it has the meaning soffware development life cycle. Going back some years,
the IBM Corporation came up with the abbreviation SDLC for Synchronous
Data Link Control, referring to a network communications protocol. To fur-
ther complicate matters, Microsoft Corporation has adopted the acronym SDL
to stand for the “security development life cycle” [4], when the authors really
meant “secure software development life cycle.”

In this book, we will use the acronym SSDLC to mean software system
development lifecycle. It should be noted that this abbreviation is neither origi-
nal nor unique; it has been used to mean secure software development life cycle
in a number of cases [5]. Others used SSDLC to mean “security system devel-
opment life cycle,” which has the same problem of confusing secure systems
with security systems, as discussed previously [6]

We shall depict particular flavors of the SSDLC using the terms secure
SSDLC, safe SSDLC, resilient SSDLC, and the like. This is because the term
software system emphasizes the fact that software is not developed in isolation,
nor can it run without other software, firmware, and hardware components.
Software is always part of a broader system that includes platforms (i.e., op-
erating systems, system utilities) and infrastructures (i.e., equipment and net-
works), and must generally be designed and developed with specific platforms
and infrastructures in mind.

In order to accommodate security and safety, we use terms such as secure
software system development lifecycle (secure SSDLC) and safe software system
development lifecycle (safe SSDLC). When we consider building systems that
have both explicit security and safety requirements, we use the cumbersome
term safe and secure software system development life cycle (S*DLC), favoring
precision over brevity.
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At this point, we will again differentiate among secure software systems,
security software systems, and secure security software systems. With respect to
secure software systems, security is a quality aztribute of the software systems,
whereas for security software systems, security is the predominant function of
the software systems. Odd as it may seem, the term secure security software
system is not redundant because it refers to software systems, the main function
of which is to provide security services. The attack against RSA’s SecurelD tech-
nology, detailed below, is an example of the security of a security system being
compromised. Therefore, these same security software systems need be built so
that the security software systems themselves exhibit strong security attributes
and are resistant to attack. The reported attacks against RSA and Symantec
demonstrate that these security product vendors are perhaps more vulnerable
than generally understood [7].

The terms and meanings are similar for safety-critical systems and com-
bined security-critical and safety-critical systems. As with secure software sys-
tems, safe software systems are those for which safety is an astribute. For safety
software systems, safety is the main function of the software systems. Therefore,
safe safety software systems provide safety services and themselves meet speci-
fied safety standards. Secure safety systems are those for which the main func-
tion is safety, but which are also secure because they are protected from adverse
attacks or events. Safe security systems are those that provide physical or logical
security functions and do not threaten harm to people, other creatures, or the
environment. An example of the latter would be a building entry system that
fails in an open state so that, in the event of a fire, say, persons within the facility
can escape and firefighters, emergency service personnel, and other responders
can enter the facility freely.

Even more confusing are safe and secure software systems that reflect
safety and security requirements, but have functions other than the provision of
safety and security services.

When we talk about safe and secure safety and security software systems,
we mean software systems that function to preserve both safety and security,
and also meet specified safety and security requirements. Thus, one might have
(as with systems of systems and cyber-physical systems, such as the smart grid
[8]) safety-critical systems that satisfy safety standards and have been secured
against outside attacks and internal mishandling. Conversely, such systems may
be those that provide security services but have also been specified as not doing
damage to living beings or the environment were they to fail or malfunction.
The above is summarized in Table 9.1.

Table 9.1 illustrates how the attribute of security (which previously was
not considered a high priority for safety-critical systems) is now considered to
be important, particularly for systems that have both security and safety require-
ments. Security-critical systems clearly must exhibit high degrees of intrinsic
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Table 9.1
Safety and Security Attributes vs. Safety and Security Functions
Functions
Combined Safety

Attributes | Safety Security & Security
Security | Currently high Very high Very high

Traditionally low
Safety High Currently medium  Very high

Traditionally low

security due in part to the negative reputational fallout when compromised, as
in the case of the security-firm RSA, which was the victim of a successful attack
that brought into serious question the security of their two-factor authentica-
tion technology [9].

RSA sells one of the most popular two-factor authentication technologies
in the form of their SecurID tag, which is usually in the form of a key fob or
as credit-card size unit with a small screen on it. The screen displays a numeric
code which changes every minute and is synchronized with a number generator
on the system to which access is to be granted. The use of the SecurID card, in
conjunction with some other code, such as a password or personal identifica-
tion number (PIN) provides two-factor authentication, which is considered to
be highly secure. As a result, SecurID technology is used to protect some of
the most security-critical software systems, such as those operated by defense
contractors. When RSA was compromised by a cyber attack, the underlying
SecurID technology was stolen. The technology was then used to attempt to
infiltrate the systems of such entities as large defense contractor Lockheed Mar-
tin. From the perspective of cybersecurity professionals, this compromise was
particularly disconcerting because it showed weaknesses in what was considered
to have been one of the most effective ways to prevent unauthorized access to
critical systems.

With respect to safety, a system controlling something like entry to a high-
security facility needs to have very good safety features. If the safety software
were to fail, the reputation of the company supplying the control software and
its ability to perform would be brought into question. When systems of systems
and cyber-physical systems have both safety and security requirements, the con-
trolling software must have particularly stringent safety and security attributes.

Creating and Using Software Systems

There are many published approaches to building software systems. Most of
them follow the traditional basic systems engineering approach to projects.
Some expand beyond the basic scope and add specific security and safety com-
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ponents. Others are less complete than the basic systems approach. For exam-
ple, many software system lifecycles omit consideration of disposal or decom-
missioning of obsolete systems and planning for their replacements with new
systems. Furthermore, typical development life cycles frequently do not fol-
low the commonly-held of birth-life-death-rebirth cycles, restricting consider-
ation to a single pass. The inevitable end-of-life of software systems is often not
planned, particularly for security-related lifecycle processes in the private sector.
To their credit, many government approaches do consider the decommission-
ing and disposal of secure software systems, although the decommissioning and
disposal phases appear more often in safety-related control systems than they do
for information systems. It is emphasized here that the activities that take place
when a software-intensive software system is discontinued must be carefully
planned if one is not to be exposed to a litany of risks, including loss of valu-
able intellectual property. Many researchers and practitioners appear to assume
that once the useful life of a software system is at an end, then the software has
no value. Often this is not the case because older versions of software products,
while not necessarily supported by the vendor, can usually still operate usefully,
if so desired and may well contain valuable intellectual property.

In some cases, even when a software system is decommissioned, the data
handled by the system may have to be retained over a longer term so as to meet
the requirements of the taxing authorities or regulatory agencies. Sometimes,
data records must be retained for a given number of years; in other cases, they
may have to be retained forever. This raises a key issue regarding the ability
to retrieve electronic records that are compatible with the decommissioned
software systems. If replacement systems are not backward-compatible, then
some means to reconstitute the replaced software and hardware systems may
be required in order to retrieve required data. This can become a particularly
onerous requirement, especially if the systems and those familiar with the ap-
plications and those who are needed to support the systems operationally are
long since gone.

In addition, there are seldom preliminary plans for the creation of a re-
placement system put in place at the time the original system is created. Indi-
viduals developing software systems usually take no responsibility for consid-
eration of replacement systems because it only takes more time and resources
to include features that will facilitate replacing the original system; expending
those resources can only be detrimental to the timely completion of the project
at hand, unless consideration of replacement is a specific requirement.

This omission of replacement considerations can lead to panic and con-
fusion when, for example, a vendor announces that it will no longer support
a specific software product beyond a given date, or if the business conditions
change drastically, calling for a different system, be it needing greater scalability,
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increased functionality, and the like, which may well be beyond the capabilities
of the current software system.

Between 2004 and 2005, the Microsoft Corporation announced that it
would no longer support Windows NT 4.0 beyond a specific date [10]. This
created a huge uproar among customers who were not able to upgrade to a new
system within the remaining time. Microsoft then agreed to provide security
patches; however, they wanted a substantial additional maintenance fee in ex-
change for these patches. This further angered customers who felt that Micro-
soft was forcing them into changes and support terms and conditions that they
felt were onerous.

Phases and Steps of the SSDLC

We will now examine each phase, and the steps within each phase, of a typical
SSDLC, with particular initial focus on the security attributes of those systems,
and consideration of the safety attributes in Chapter 10.

In Figure 9.1, we show three aspects of the life cycle inside the ovals. The
center stream, labeled “Manufacture,” is the typical sequence of development
activities. In parallel with the development of the system is an “Oversight,” or
managerial cycle, which involves the initial risk analysis and continuing audit
reviews and testing by auditors and examiners. The bottom third of the dia-
gram shows the “Assurance” cycle, which comprises developing test cases and
test plans and performing the various forms of testing. The shaded boxes in the
diagram are those functions that are often not given the amount of attention
commensurate with their importance. Two areas stand out as much-needed
enhancements to the typical SSDLC. One is the specification of nonfunctional
requirements and their testing to ensure that they are correctly incorporated
into the system. The other is the decommissioning and disposal phases that
need to be planned for, tested, and performed, but are often neglected in the
private sector in particular.

A somewhat different view of the same set of concepts is shown in Figure
9.2, which derives largely from McGraw [11]. Here, the security aspects are
related specifically to phases of the SSDLC.

It is interesting to review how the SSDLC has evolved. We now examine
what particular steps were considered to be part of the system development life
cycle around 1980. Historically, researchers did not usually make explicit dis-
tinctions between systems processes in general and software systems, processes,
and projects in particular. In Biggs [12], there is a very detailed description of
what we might term soffware-intensive systems project management rather than
the process management of systems, as implied by the title of the book, which
is Managing the Systems Development Process.
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Figure 9.2 Security aspects related to the SSDLC.

Table 9.2 provides an overview of the various phases and steps of the
development life cycle as described in [12]. It is noteworthy that there is no
mention of security or safety and that there is no decommissioning phase. The
approach does, however, require reviews by senior management and approval
of the prior phase before the subsequent phase is initiated. Also, in Phase III:
Systems Development, we see the term specifications relating to the techni-
cal aspects of the system and with respect to the application (Steps 1 and 3,
respectively). While the term was used commonly in the 1980s, it appears to
have somewhat gone out of favor in texts relating to the secure development of
software systems. The content relative to specifications is generally subsumed
under the requirements analysis or the architecture and design phases.

As an example, in the U.S. Federal Aviation Administration’s report on
the SDLC [13], under the heading “Software requirements analysis,” we read
the following:
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Table 9.2

Traditional Systems Development Process per Biggs [6]

Phases

Steps

Phase | Systems planning

Top management review
and decision

Step 1: Initial investigation
Step 2: Feasibility study

Phase Il Systems requirements

Top management review
and decision

Step 1: Operations and systems analysis

Step 2: User requirements

Step 3: Technical support approach

Step 4: Conceptual design and package review

Step b: Alternatives evaluation and development
planning

Phase Il Systems development

Top management review
and decision

Step 1: Systems technical specifications
Step 2: Technical support development

Step 3: Application specifications

Step 4: Application programming and testing
Step 5: User procedures and controls

Step 6: User training

Step 7: Implementation planning

Step 8: Conversion planning

Step 9: Systems test

Phase IV Systems implementation

Systems maintenance

Step 1: Conversion and phased implementation
Step 2: Refinement and tuning

Step 3: Post-implementation review

Step 1: Ongoing maintenance

* Safety specifications. includes those relating to methods of operation and
maintenance, environmental influences, and personal injury

* Security specifications: includes those relating to the compromise of sensi-

tive information.

These descriptions differentiate between safety and security specifications
in much the same way as we have done earlier.
Within each step, Biggs [12] provides an overview and lists of standard
activities and key considerations. For example, in Phase III, Step 4, Application
Programming and Testing, we have the following standard activities:

* Verify the availability of all necessary resources;
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* Assign applications to programmer(s) and monitor progress;

* Develop program;

* Code;
* Compile;
e Unit test (module or subroutine);
* Integrate and test;
* Document;
* Review and approve test results and documentation;

Also in Phase III, Step 4, Application Programming and Testing, we have
the following key considerations:

* Know the software;

* Control of creativity;

* The 90% complete program;
* “Impossible” conditions;

* Resource utilization.

These activities and considerations are what one would expect for this
step of a typical software system development project. However, an item of
particular interest to considerations of security and safety (although not men-
tioned specifically), is the one labeled as “impossible conditions.” As described
by Biggs, this condition “happens because a situation is encountered that users,
systems analysts, and programmers thought ‘impossible” [12]. According to
Biggs, such conditions are not preventable, but they can be avoided or mini-
mized to the extent that they can be predicted or anticipated or, if they do oc-
cur, then somewhat more timely corrective action can be taken [12].

Biggs proposes the use of structured walkthroughs and reviews to attempt
to anticipate these conditions and from there develop mitigating procedures
[12]. This is somewhat analogous to the concept of functional security testing,
as described in Axelrod [14], or functional safety testing, which is the analo-
gous method with respect to safety-critical software systems. In retrospect, it
is strange that safety and, in particular, security considerations were not even
mentioned in earlier work. In a sense, this lack of attention to such matters in
prior decades might well have contributed to the failure to anticipate the need
to build safety, and particularly security, into software systems.

The initial point of entry for the development of safe and secure systems
is indeed the requirements phase. In fact, many writers believe that deficiencies
in requirements are the main contributors to omissions and errors in software
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systems, many software systems development efforts fail to fully satisfy stake-
holders’ needs and often fall far short of stakeholders™ expectations because of
inadequate requirements.

Undoubtedly, a key critical success factor is obtaining a complete, com-
prehensive, unambiguous, and doable set of requirements, in which safety and
security issues have been addressed early in the development lifecycle and con-
tinue to be addressed throughout the lifecycle, up to and including the de-
commissioning and disposal of the system. A more detailed description of the
essential attributes of requirements is as follows:

* Complete and comprehensive requirements: these include material from all
stakeholders (including requirements for security, safety, business conti-
nuity, performance, etc). One way to improve the chances of getting all
relevant requirements is to think of all the various groups that may have
a vested interest in the system development effort succeeding—and also
of the groups that may be looking for the project to fail. This is often em-
bodied in the “nobody asked me” syndrome, wherein information is not
properly conveyed because it was not asked for. There is often a need to
motivate stakeholders to respond and to be forthright in their responses.
This can often be achieved by encouraging stakeholders to participate
through various incentives, such as positive periodic personal reviews,
special mention in company newsletters, and other forms of recognition.
The effectiveness of the methods chosen will depend upon the culture of
the organization. Suggested involvements for each phase of the life cycle
are shown in Appendix C for security-critical software systems.

* Unambiguous requirements: it is important for stakeholders to under-
stand the terminology being used and to be able to translate their per-
sonal needs into highly specific requirements. Those requirements, both
functional and nonfunctional, are then converted into specifications,
which are used as the basis for system design and architecture, coding,
testing, and the like. At each stage, there needs to be confirmation that
the program code accurately implements requirements, whether or not
the requirements truly represent the needs of the user. This is the verifi-
cation process. In addition, the originator of the requirements (usually
the customer or user) should make sure that what has been produced byt
the project team is the right product (that is, it is what the user expected
to see). This is the validation process.

* Doable requirements: in all cases, requirements need to be reasonable
and achievable with existing technology (or allowance has to be made
if technology is new or very different from the norm). Sometimes it
might not be known until well into the development effort whether
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or not required capabilities are achievable within reasonable time and
money constraints. The ability to determine feasibility without major
expenditures and effort is the value of techniques such as prototyping,
agile development, and the like. Many stakeholders, particularly among
end users, often do not understand the terms used by technologists and
their implications unless they actually see a model or prototype of the
system. Not wanting to appear ignorant, some stakeholders may allow
the process to continue, whether or not there are definite warning signs
that the project might be going off the rails.

Given the above, we see that today safety and security requirements tend
to be different animals. Safety requirements are usually based on specific stan-
dards, such as DO-178B, which will be discussed in more detail in Chapter 10.
Security requirements, on the other hand, frequently do not have an equivalent
set of standards and certifications to turn to. They are often based on de facto
standards, such as the Payment Card Industry Data Security Standards (PCI
DSS), which specifically addresses credit cards, debit cards, and other forms of
payment systems, such as smart phones, which are increasingly being used in
place of plastic cards.

There are also high-level management standards for security, such as
ISO/IEC 27001/27002, which provide guidance for implementing security
measures.

Calder [15] provides a good guide to certification under the ISO/IEC
27001/27002 standards. The areas covered by the standards are extensive, but
adherence to these standards is usually voluntary, so that their value is dimin-
ished. However, it is helpful to be aware of the range of subject areas that are
covered, which are as follows:

* Organizing information security;

* Information security policy and scope; risk assessment;
* External parties;

* Asset management;

* Human resources security;

* Physical and environmental security;

* Equipment security,

» Communications and operations management;

* Controls against malicious soffware;

* Network security management and media handling;

* Exchanges of information;
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¢ E-mail and internet use;

* Access control (networks, operating systems, applications);

* Systems acquisition, development and maintenance;

* Cryptographic controls;

* Security in development and support services;

* Monitoring and information security incident management;
* Business continuity management

* Compliance.

The above areas in italicized print have particular relevance to software
engineering for security-critical applications. The other areas are important for
a comprehensive information security program.

There was also an effort to develop a set of Generally-Accepted Informa-
tion Security Principles (GAISP). An initial effort, begun in 1992, was called
Generally-Accepted System Security Principles (GASSP). A description of the
GASSP was issued for public comment purposes in 1999 [16]. The GASSP
project was originally sponsored by the International Information Security
Foundation (I*SF). The Information Systems Security Association (ISSA) took
over the effort with a project involving more than a hundred volunteers and
renamed it the Generally-Accepted Information Security Principles (GAISP)
project [17]. Unfortunately, the GAISP effort collapsed under its own weight,
with the net result that there is still no set of universal security principles and
standards. In contrast, the American Institute of Certified Public Accountants
(AICPA) and the Canadian Institute of Chartered Accountants (CICA), with
assistance from the Information Security and Control Association (ISACA) and
the Institute of Internal Auditors (IIA)), developed the Generally-Accepted Pri-
vacy Principles (GAPP) with a relatively small team of volunteers and published
the results in two editions, the Business Edition [18] and the Practitioner Edi-
tion [19].

There are very specific software security recommendations, such as the
Open Web Application Security Project (OWASP) top ten vulnerabilities and
the SANS top 25 errors made by programmers described in Appendix A, as well
as work done by The MITRE Group on a Common Vulnerability Scoring Sys-
tem (CVSS) [20] and a Common Weaknesses Evaluation (CWE) [21]. How-
ever, the guidelines for security do not even approach the rigorous certification
requirements of safety-critical systems.

The net result of all this complex tapestry of security standards is a quan-
dary which many designers, developers, and testers of security-critical software
systems face, regarding what they need to do to ensure that the security attri-
butes of a software system meets generally accepted standards. Because no such
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security standards exist, the approach recommended here is to examine each
security-related task and subtask within the development life cycle and deter-
mine what makes sense to do at each stage and for what purpose.

The tables in Appendix C show security-related task areas, subtasks, and
purposes of those subtasks for the following software systems development life
cycle phases:

* Requirements analysis;

* Architecture and design;

* Development (building/configuration/integration);
* Testing;

* Deployment;

* Operations/maintenance.

It should be noted that specifications and decommissioning phases are
not included explicitly in the above list; they should be added either as specific
task areas or incorporated into existing tasks. It seems that including explicit
specification tasks or subtasks has fallen out of favor in references covering the
secure SSDLC. A specification is a detailed description of the design and ma-
terials used to make something. In Table 9.2, above, there are two types of
specification—technical and application. On the other hand a requirement is
a “singular documented physical and functional need that a particular product
or service must be or perform”[22]. That is to say, a requirement is an expres-
sion as to what is wanted, whereas a specification describes how the product
should be manufactured or the service developed. It is reasonable, therefore,
to include specifications as an extension to the design and architecture phases,
although Biggs [12] puts application and technical specifications in the devel-
opment phase.

On the other hand, the decommissioning phase can be considered sepa-
rately even though it might be considered to be an extreme example of a system
modification. With respect to omitting the decommissioning phase, it is unfor-
tunate that this phase is so often neglected or omitted completely, particularly
as it is arguably a period of very high risk with respect to changing procedures
and operations with a relatively high risk of unauthorized access to data and the
misuse of sensitive information.

Detailed security requirements and specifications provide much more
useful information for the builders of security-critical systems than do the high-
level requirements. However, the high-level requirements are more easily under-
stood by nontechnical participants (i.e., customers, clients, etc). Drilling down
deeper, we see that detailed tasks and subtasks provide very specific guidelines
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for secure coding, for example. These latter guidelines are for shirtsleeve de-
velopers, testers, and implementers, but also need to be understood by project
managers. The need to utilize secure methods has to also appeal to business-unit
managers as a means of improving their products and services. Microsoft is a
good example of this, as evidenced by their development life cycle described by
Howard [4].

In Appendix C, we examine each identified phase of the development life
cycle, and show a full range of security-related task areas, specific subtasks, and
the reasons for performing each subtask. Much of the information contained in
these tables comes from MacBride [1], which is not readily available [23]. How-
ever, the decommissioning/disposal phase has been added as have a number of
the individual task areas and subtasks. Also, the format of the tables and how
the information is distributed throughout the tables is new.

Table 9.3 shows the overall involvement of the various participating
groups and teams in the security aspects of the lifecycle. The table is taken
from Table C.17 in Appendix C. As expected, the major overall participants are
the security and audit team members, but the application development team
and the infrastructure team follow close behind. For the effort to be success-
ful, participants must be fully engaged and perform the tasks assigned to them
diligently.

What conclusions might one draw from Table 9.3? It would appear that
the security team and the internal and external auditors should be heavily en-
gaged throughout the lifecycle and that most of the other players hover around
the moderate value, which is what one might expect. However, in a typical
organization, we do not see this level of involvement. Most areas would be as-
sessed at least one level lower in terms of their involvement. This is even true of
security teams and auditors, whom you would expect to be very much in tune
with the Secure SSDLC. The level of involvement is to some extent represented
in the Building Security in Maturity Model (BSIMM) described at the BSIMM
website [24].

Summary and Conclusions

In order to ensure that appropriate security attributes are included in software
systems, especially those that are considered to be security-critical, it is neces-
sary to include tasks and subtasks within the development lifecycle that are spe-
cifically geared to meet security requirements. Unfortunately, there is a dearth
of information security principles, and detailed standards available to software
safety engineers. Some guidance is available from various government and in-
dustry sources, and there are international standards that provide high-level rec-
ommendations for those wanting to be certified under those standards. How-
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ever, many entities are not required to follow any particular standards, resulting
in an abundance of weaknesses. Even if there were a set of generally-accepted
standards, there would still be a need to engage internal and external subject-
matter experts in the broad range of information security areas.

One cannot hope to achieve the required level of security if those who are
responsible do not engage in the process and ensure that all necessary steps are
taken. The involvement of auditors is also required to ensure that these steps
have been completed at a satisfactory level.

Unfortunately, as is apparent from the number and intensity of success-
ful attacks, many organizations still have a long way to go before they satisfy
even the lowest level of acceptable compliance. In this chapter, we looked at
the life cycle for secure system development and indicated which areas need
to be addressed. An extensive list of suggested tasks and levels of involvement
is provided in Appendix C for those looking for guidance on what to do to
improve the security of their mission-critical systems in the face of increasingly
sophisticated attacks.
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[System safety is] the application of engineering and management prin-

ciples, criteria, and techniques to optimize all aspects of safety within

the constraints of operational effectiveness, time and cost throughout all

phases of the system life cycle.

—TJoint Software System Safety Committee, Soffware System
Safety Handbook [1]

A secured system ensures that there is no security bug so that security

threats are eliminated, whereas for a safety-critical system, any bug

could be devastating.

—Asoke K. Talukder and Manish Chaitanya, Architecting Secure
Software Systems [2]

Introduction

One might assume that all that needs be done to generate the tasks, subtasks,
purposes, and levels of involvement for safety-critical software systems is to du-
plicate the many tables in Appendix C and substitute the words safe and safery
for the words secure and security. One wishes that it were that simple. While,
in many instances, it does make sense to perform such a substitution, there are
many cases where such parallels fall short.

Both the secure and safe software system development life cycle models
have similar, if not the same, heritages. They both derive from systems and
software engineering which are described in Chapters 2 and 3. However, as de-
scribed in Chapters 5, there are significant differences between the approaches
of those involved in developing secure software systems and those focused on

195



196 Engineering Safe and Secure Software Systems

safe software systems—namely, software security engineers and software safety
engineers, respectively.

The main differences are ones of emphasis on specific phases and tasks
rather than structural differences. In particular, development life cycles pro-
posed for safety-critical systems pay significantly more attention to the require-
ments, testing, and certification phases, than do the development life cycles for
security-critical systems. This is not to support or encourage this difference—in
fact, developers of security-critical systems can learn a great deal from their
software safety engineering counterparts, as described in [3].

Definitions and Terms

As we did in Chapter 9 for security-intensive software systems, we must clarify
the differences among safe software systems, safety software systems, and safe safety
software systems. With respect to safe software systems, safety is a quality ar#ri-
bute of the software systems, whereas for safety software systems, safety is the
predominant function of the software systems. As with the term secure security
software system the term safe safety is not redundant, as it might seem to be.
This is because the latter term refers to software systems for which the main
function is to provide safety services. However, these software systems need to
be built so that the safety software systems themselves exhibit strong safety at-
tributes. While difficult to come up with specific examples, one suggestion is
to consider a system that locks a door in order to prevent radiation from leak-
ing from a nuclear plant in distress. It is important that a door control system
does not fail in a closed default status, since that would result in workers be-
ing trapped in the radioactive space. This actually happened at the Fukushima
nuclear power station, which was knocked out by an earthquake followed by a
tsunami on March 11, 2011. Workers were unable to escape from a highly ra-
dioactive space because the doors locked automatically and an operator was un-
willing to manually override the system because of fear that the trapped workers
would contaminate others [4].

Somewhat more difficult is trying to come up with examples of safe and
secure software systems that exhibit both safety and security attributes but have
functions other than the provision of safety and security services. Likewise,
safety and security software systems are systems with predominant functions
in the safety and security spaces. However, we must ask, are the latter both safe
and secure? Not necessarily. According to our earlier definitions, such systems
are both protective of internally-processed information assets and are designed
not to harm humans and the environment. Examples of such software sys-
tems are increasing quite rapidly as engineers are combining safety-critical and
security-critical software systems (as with the smart grid [5] and a host of other
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industrial control systems, such as water treatment plants, nuclear power plants,
etc). The danger to these control systems was considered to be minimal because
they were not connected to any public networks. However, other means of
injecting malware, such as via portable USB thumb drives, further negates that
argument. The approach to making these systems of systems or cyber-physical
systems are both safe and secure is usually based on securing the control systems
by ensuring that means of access, of introducing malware, and of effecting deni-
al-of-service attacks, which might be opened up in creating these combined sys-
tems, meet high security standards. These standards will often be greater than
those that would apply to information systems in isolation because the range
and magnitude of the risks faced by systems of systems and cyber-physical sys-
tems are raised to much higher levels. This is because the information systems
not only must protect data but also ensure that access to the control systems
is restricted so as to prevent those with evil intent from gaining control of the
authorized access to safety-critical control systems.

Finally, if we talk about safety and security software systems, which are
both safe and secure, we mean software systems that function to preserve the
safety of humans and security of assets and that also meet safety and security re-
quirements. There are likely not that many examples of such systems, although
some of those that do exist have shown particularly bad judgment on the part
of decision makers when it came to the inevitable trade-off between safety and
security considerations.

Perhaps the primary examples are those software systems that control in-
gress into and egress from a physical plant. The previously mentioned Fuku-
shima incident is a prime case. Here, the system was designed so that, in the
event of radiation being leaked into a room, no one would be able to open
the door from the outside without using an interlock system. From one point
of view, this is a safety requirement, but it can also be thought of as a security
requirement, where the asset (in a negative sense) being secured is radiation.
The trade-off, if it was ever considered as such, was between allowing radiation
to escape versus risking having workers trapped in the room. In general, safety
trumps security because when safety-critical systems malfunction or fail, there is
the potential for injury, loss of life, and damage to the environment. However,
it often depends on who is making the decisions. Based on the outcome, one
might presume that the senior management at TEPCO (the company respon-
sible for operating the Fukushima plant) appears to have put financial returns
above the safety of their employees and contractors in their decisions about
the level of physical protection. This was somewhat reflected in the heights of
walls protecting against tsunamis, although the risk of a tsunami of the size and
strength of that which knocked out the plant on March 11, 2011 could have
fairly been assumed to be extremely low. Only after the fact did it appear as if
TEPCO management had been remiss.
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A similar, though not as devastating, situation, which was not reported
but came from a reliable source, arose in a building during a Y2K test of the
building entry system. A high-security building had an extremely effective sys-
tem that locked down crash-proof doors and windows. During the test, the
system failed and doors and windows closed, preventing anyone from entering
or exiting the facility. Engineers were unable to reset the system and open the
doors and windows, which were so hardened that rescuers had to bulldoze a
hole in a wall in order to gain entry and help the trapped workers to get out of
the building. The trade-off here was between protecting the building against in-
truders and allowing those within the building to escape. It might have been the
case that, under normal operating conditions, the system would have allowed
the workers to get out of the building, as in the case of a fire for example, but
that in its failed state it was not able to release the doors and windows. Clearly,
the failure that occurred during Y2K testing had not been anticipated.

The above is summarized in Table 10.1, which is similar to Table 9.1, ex-
cept that the entries of the table are from the subjective perspective of a system
safety engineer rather than a system security engineer.

Table 10.1 shows some awareness by software safety engineers of the need
for security, but not as great a commitment to secure attributes as might a
software security engineer might have. When it comes to combined security-
criticality and safety-criticality, software safety engineers will undoubtedly show
a bias in favor of safety aspects.

Hazard Analysis

The fundamental characteristic of safe software systems, as we have discussed, is
that such systems should not do harm to humans or the environment as a result
of their specified functioning, malfunctioning, or failure. As a result, it is wise
to perform a risk analysis of the impact of various hazards to which a safety-
critical system might be vulnerable.

An excellent overview of the common approaches to hazard analysis is
given in the report from the Joint Software System Safety Committee [6].

Table 10.1
Safety and Security Attributes vs. Safety and Security Functions

Attributes Functions

Combined Safety

Safety Security and Security
Secure Medium Medium to high ~ Medium
Safe Very high  Mediumtolow  Very high

Safeand Veryhigh  Mediumtohigh  Very high
Secure
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According to Military Standard 882D [6], the purpose of which is to
establish a System Safety Program (SSP), there are a number of tasks as follows:

* Software requirements hazard analysis;
* Top-level design hazard analysis;

* Detailed design hazard analysis;

* Code-level software hazard analysis;

* Software safety testing;

* Software/user interface analysis;

* Software change hazard analysis.

To this list, we might add: software system decommissioning and disposal
hazard analysis.

The Standard [6] is directed at contractors and applies to both system
and software requirements, so that it might be more accurate to replace soffware
with the words soffware system, based on previous discussions.

The relationship between the various types of hazard analysis and the
development lifecycle is illustrated in Figure 10.1.

Software Requirements Hazard Analysis

Examples of software system safety requirements include unsafe modes, such as:

* Out-of-sequence;

* Inappropriate magnitude;
* Inadvertent command;

e Adverse environment;

* Wrong deadlocking;

¢ Failure to command.

Some of these modes, such as out-of-sequence and wrong deadlocking,
are inherently within the software systems themselves; others relate to out-of-
range data or calculation results that might arise from a combination of soft-
ware and data entry errors; others relate to the environment or context within
which the software system operates. Some of the above situations can be con-
trolled directly by the system designers and programmers, and others may be
out of their control but should be anticipated and accounted for in the design.
Operators or support personnel can work around poor design decisions and
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Figure 10.1 Hazard analysis throughout the SSDLC.

faulty program code, which is quite common but not at all a desirable means of
dealing with such situations.

Top-Level Design Hazard Analysis

This level of risk analysis covers safety-critical software components and in-

cludes the following:

* Definition of safety-critical risk;

* Determination of the degree of risk involved;

* Design to be followed ;

* Creation of a test plan for verifying that the design meets safety require-

ments.
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The results of this analysis should be submitted as input to preliminary
design reviews. This type of risk analysis can, and should, be applied to hard-
ware also, particularly since many safety-critical software systems include hard-
ware modules and also control physical systems.

Detailed Design Hazard Analysis

This analysis of the detailed design of the software system should be completed
prior to the start of coding software programs. The detailed design takes the
results of the hazard analyses for software requirements and top-level design and
must ensure that these results are accounted for in the safety-critical software
components. The results of this analysis provide input to the final design review.

Code-Level Software Hazard Analysis

This analysis is based on the results of the Detailed Design Hazard Analysis and
requires the analysis of program code and system interfaces to determine if there
are any errors, faults, or conditions in the code or interfaces that might result in
undesirable safety-related events. This analysis should be ongoing throughout
the remainder of the life cycle.

Unfortunately, the so-called static analysis of programming code is often
an art rather than a science, despite numerous attempts at automating the code
review process. The ability of the coding practices to avoid programming haz-
ardous states is also a function of the programming language selected. Some
languages, such as Ada, MISRA C, and SPARK, have built-in restrictions that
serve to avoid certain unsafe or risky conditions. However, more prevalent lan-
guages, such as C, C++, C#, Java, and SQL, are less restrictive and, it can be
argued, allow more safety issues, as described in [7].

The consideration of interfaces with other systems is key, as is the need to
verify that no new issues are introduced when the systems to which the subject
software system is linked and the interfaces between them are changed in any
way. Sometimes changes external to the system being analyzed can have major
negative impact on the operation of such a system. In addition, the context in
which a system operates can change, both within the overall system with respect
to platforms and infrastructure, and also with respect to the environment in
which the system operates, which could change so as to no longer meet safety
requirements.

Software Safety Testing

The purpose of this task is to generate documentation showing that all known
hazards have been addressed and that they have been eliminated or reduced to
an acceptable level of risk.
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There are several issues here that affect all security-critical and safety-crit-
ical software systems; namely, that the completeness and quality of the testing
depends on how complete the safety requirements are and how extensive the
testing is. Safety testing should go beyond checking against the list of known
potential safety hazards and investigate the impact of malfunctioning and fail-
ure beyond the usual scope. In addition to this nonfunctional safety testing that
examines the general safety aspects of the software system, it is important to
perform functional safety testing, which looks at hazard conditions that might
arise from the software not doing what it is not supposed to be doing.

Another issue relates to who must decide what level of risk is acceptable.
An engineer might have a different view of risk from management, for example.
In some cases, management overrules the concerns and warnings of engineers
because of budgetary and timeliness issues, sometimes with dire consequences.

While many of the methods for reviewing software design, analyzing
source code, and testing functionality are common to both security-critical and
safety-critical software systems, safety-critical control systems use methods spe-
cific to control software systems, such as model checking, abstract interpreta-
tion, and theorem proving as described in Feron [8].

Software/User Interface Analysis

The objective of this task is to ensure that software user procedures are fully
developed and documented.

Human error remains one of the main reasons for software system mal-
functioning and failure, and such errors can be greatly reduced by proper train-
ing in the use of the system, as well as by responding to feedback from users
with respect to observed ambiguities, incorrect functioning, unexpected sys-
tem responses, unintelligible error codes, and the like. While human beings
can compensate for many system deficiencies, their ability to work around and
compensate for incorrect or hazardous system operation is limited by their
understanding of how the system is supposed to work. Also, many modern
technologies respond in much quicker and more complex ways than human
operators, meaning that compensation for system misbehaviors is not always
possible, and is particularly lacking if the software system is under a cyber at-
tack or is functioning in inexplicable ways because of errors in the software or
unanticipated user actions.

An example of errors causing wrong responses is the crash of Air France
Flight 447, which is documented in a report that describes how the Air France
Airbus 330 crashed into the ocean due to a “slow speed stall” that likely resulted
from the pilots not being able to properly take over manual controls when the
fully-automated aircraft-control system failed [9]. The failure of the automated
system aborted because all the primary and backup airspeed sensors failed due
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to icing. A possible contributing factor was that the Airbus 330 uses a fly-by
-wire system, which takes over virtually all pilot functions. As a result, the pilots
were thought not to have had enough experience with manually controlling the
aircraft.

When software-based control systems are particularly safety-critical, it
may not be adequate to run the software through a series of tests and then rely
on users to point out discrepancies between what was required and what was
manufactured. In such cases, it is helpful, if not mandatory, to prototype the
user interface and build simulation models on which users can be trained to
handle many abnormal situations without them being exposed to the conse-
quences of actual crashes.

Software Change Hazard Analysis

When software systems, their platforms and infrastructures, or their operational
contexts are changed, there can be considerable impact on potential safety haz-
ards. Not only must all prospective changes, modifications, patches, and the
like be analyzed prior to making the change to the greatest extent possible, but
there needs to be a tracking and monitoring program in place to ensure that
important changes affecting safety have been made and continue to be in force.

Sometimes a fix can make the situation worse, or a problem can occur in
a seemingly unrelated part of the system. It is no wonder that making security
and software changes once a system is operational can be orders of magnitude
more costly than if the problem had been resolved in the early stages of the
development life cycle.

In a certain respect, the decommissioning and disposal of a safety-critical
system can be considered to be in the major change category. Not only do the
hazards resulting from changes need to be considered—here in terms of replac-
ing the existing system with a new system, but the decommissioning process
itself also heightens risk from users and operation/support staff having to main-
tain both the former and replacement systems in parallel, having to learn new
systems and procedures, and the like.

In addition, there are potential hazards in the disposal of software-based
systems. For example, the system might be taken up inadvertently or purposely
by an unauthorized party and misused because of lack of training and sup-
port, causing risk to the new users. Or the system might be used against those
who originally developed the system, as might be the case for a weapons sys-
tem that has been discarded. This suggests that oversight of the decommission-
ing and disposal processes is very important from both the safety and security
perspectives.

It should be noted that the decommissioning and disposal phases are often
not given the attention that they deserve and need. This is further exacerbated
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by auditors and others with oversight responsibility wash their hands of a
system once it has become obsolete and not monitoring how the systems are
discontinued.

The Safe Software System Development Lifecycle

As with the details of the secure SSDLC, shown in the tables of Appendix C,
another set of tables, this time addressing the safe SSDLC, is given in Appendix
D. Noteworthy differences between the entries in the tables of Appendix C
and Appendix D include the additional focus on hazard analysis, verification,
and validation in the latter appendix. While these functions also play a part in
the design, development, and testing of security-critical software systems, they
are not given nearly the attention that they get with safety-critical software
systems. Furthermore, there is usually more attention paid to the choice of pro-
gramming languages, platforms, and infrastructure when the safety of software
systems is at stake.

In Figure 10.2 (which is similar to Figure 9.2 except that it refers to safety
instead of security), we can see how various safety aspects affect the individual
phases of the SSDLC. Noteworthy differences include a greater emphasis in the
safety case on risk analyses in the early stages of the development life cycle, as
well as a lack of penetration testing during the implementation, deployment,
and operational phases. This is in keeping with the cultural and technical per-
spectives of software safety engineers.

In Figure 10.3, we show the hazard risk management process used in the
design of safety-critical systems mapped against equivalent security risk factors.
It is immediately apparent that the hazard risk analysis is a much more refined
and extensive system that the comparable security risk analysis.

We will now briefly elaborate on the steps in the hazard risk management
process as follows:

o Identify potential hazards: if this were readily achievable at reasonable
cost, then one would not be surprised as frequently by unusual events.
However, it is clear that even some high impact hazards are missed in
part because identifying hazards is bounded by the ability of analysts to
anticipate highly unlikely events, especially if they have not occurred
previously (see item on identifying new hazards). This effort is also lim-
ited by time and resources available.

* Estimate severity: for safety-critical systems, as previously discussed, haz-
ards are categorized by their consequences which can be catastrophic,
critical, marginal, or negligible. Security systems” consequences are often
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Figure 10.2 Safety aspects related to the SSDLC.

critical but seldom seen as catastrophic, even when they are, because
there may be little visible impact.

* [dentify causes: for some safety-related incidents, the causes are easily
identified, but in many cases, such as plane crashes, accurate causes are
often not determined until data from the flight recorders, are analyzed.
Consequently, anticipated relationships between causes and effects are
difficult to develop.

e Estimate likelihoods: as we discussed in Chapter 6, it is very difficult
to estimate the probability that a particular adverse event will happen,
especially for low-probability, high-impact events. Nevertheless, it is a
worthwhile exercise to attempt to derive some probability estimates be-
cause, even if they are off the mark, they might still help analysts and
decision-makers to put certain risks in perspective.
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Figure 10.3 Hazard risk management process and the equivalent security risk factors.

* Calculate risks: as we also discussed in Chapter 5, there are many differ-
ent ways in which to calculate risk, many of which are erroneous or do
not contribute to decision-making. With safety-critical systems, such as
avionic and nuclear plant control systems, it is worth investing a con-
siderable amount in order to generate useful results on the likelihood of
system malfunctions and failures.

* Mitigate risks: while the common view of risk mitigation for security-
critical, software systems is to make sure that coding is correct and that
there are protective tools in place, this is not sufficient for safety-critical
systems that are required to give sufficient warnings of imminent fail-
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ures. It may be necessary to redesign and rewrite the software to avoid
such risks. There is usually, but not always, more of an interest in mitiga-
tion for safety-critical systems than for security-critical systems.

* Determine if residual risk is acceptable: the main issue here is whether the
risk that remains after various mitigation strategies have been applied is
acceptable to decision-makers. The problem here, as has been discussed,
is that risk acceptance is highly dependent on personal subjective feel-
ings. Also, the degree to which a risk can be transferred to someone or
some entity has a lot to do with the decisions.

* Determine new hazards: the hazard environment is changing rapidly, and
so even a recent risk analysis could be out-of-date because of situational
changes of many different kinds. It is important to continually update
the risk analysis, even when the system has already been deployed.

* Determine whether safety is adequate: here we have the same problem as
for risk assessment; whether the safety is enough is somewhat subjective
and varies significantly with who is making the decisions and what their
agenda might be.

This is clearly a process from which those designing security-critical soft-
ware systems could benefit and one that becomes mandatory when one com-
bines separate systems into complex cyber-physical systems.

Combined Safety and Security Requirements

The main thesis of this book is that safety and security engineering for software
systems, while deriving from the same evolutionary tree, have become separate
branches, even though the trend is for safety-critical and security-critical soft-
ware systems to be functionally combined into systems of systems with both
safety and security attributes.

One of the few references to address combined safety-critical and securi-
ty-critical software systems certification is SafSec. In this regard, Lautieri [10]
makes the following statement:

Many systems, particularly in the military domain, must be certified or
accredited by both safety and security authorities. Current practice argues
safety and security accreditations separately. A research project called
SafSec has been investigating a combined approach to safety and security
argumentation, and has shown that there can be practical benefits in
performing a combined analysis and documenting a combined argument

for both safety and security.
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SafSec Methodology: Standard [11] and the SafSec Methodology: Guidance
Material [12] are available for download from the Altran Praxis website. SafSec
Methodology: Standard [11] includes a good set of definitions of terms used. It
is apparent from the SafSec documents that security and safety are considered
to be contributors to a system’s dependability.

This same definition of dependability as having security and safety com-
ponents is used by Firesmith [13]. While such a definition is reasonable, the
concept of dependability is considered to be too broad for detailed examina-
tion, which is why we treated safety and security as separate, specific attributes
of software systems. Indeed, dependability includes other important attributes
relating to reliability, resiliency and survivability, but these represent areas of
study that require dedicated research and exposition. Consequently, we shall
leave these latter issues for others to follow up on.

Summary and Conclusions

We have seen in this chapter that those who design and develop safety-critical
software systems have a very different perspective in regard to the various phases
of the SSDLC.

Software safety engineers focus on the risks of their systems doing harm
if they were to fail or malfunction and are less concerned about someone get-
ting into their systems and stealing sensitive information or gaining control of
the system. However, as we see increasing numbers of complex cyber-physical
systems, it is clear that these same software safety engineers need to be aware of
the dangers of attacks from outside or from within, since it is not just a matter
of protecting information, but also covers concerns about an attacker gaining
control of safety-critical systems and forcing it to malfunction, fail, or behave
in undesirable and dangerous ways.

The viewpoints of software security engineers and software safety engi-
neers towards the design and development of software systems are so diver-
gent that one might question whether these individuals, upon whom our lives
and livelihoods so much depend, will ever collaborate to the degree necessary
to ensure that modern systems of systems meet prudent security and safety
requirements. Even those who are promoting collaboration between software
safety and security engineers, such as the proponents of SafSec, are not hopeful
that such partnerships will ever come together. However, such commonality of
purpose is inevitable, except that it is likely to take many more years to come
to fruition.

It is only through continuously driving home the point that safety and
security are different animals but that will have to learn to live together in
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harmony if there is to be any hope of reaching an acceptable level of safety and
security in future software systems.
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The Economics of Software Systems’
Safety and Security

Security is an area where taking shortcuts can lead to disaster.
—Eric Allman [1] Multifaceted software engineer

Introduction

The question asked in this final chapter is if safety and security will ever be
adequately incorporated into software systems and whether such safety and se-
curity improvements can be economically justified now and in the future. The
purpose of this analysis is to determine how one might create safer and more se-
cure software systems using justifications based on behavioral economics rather
than on some general sense that it is a good thing to do.

In prior chapters, we examined the origins of systems and software engi-
neering, enumerating specific requirements that need to be met in order to try
to ensure that safety and security will be built into software-intensive systems.
We also looked at the extent to which those requirements are, and are not, be-
ing met in practice. Having gone through this entire process, there remains a
sense that perhaps we will never completely master these needs and produce
completely protective and protected software systems. The reasons for such
shortfalls are many, including lack of knowledge and training of those given
responsibility for safety and/or security aspects of software-intensive systems
and their having neither the skills nor inclination to accept that responsibility.
Another possible reason is the increasing cost burden demanded by complex in-
tegrated software systems and cyber-physical systems that operate in ever-higher

n
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risk environments, and yet for which sufficient monies are not made available
to create essential security and safety.

Modern software systems are victims of rapidly increasing numbers of at-
tacks and of attackers acquiring greater sophistication and effectiveness. Also,
a proliferation of unintentional errors and uncontrollable external and inter-
nal events often lead to even greater adverse financial consequences. There are
clear indications that the gap is rapidly widening between the exposure of these
systems to malware, malfunctions, and failures in comparison to the amount
and effectiveness of the efforts to bring existing and new software systems to a
reasonable level of security and safety.

Put another way, there is clearly a growing divergence between the “sup-
ply” of threats to the safety and security of software systems along with success-
ful exploits than result from those threats, and the “demand” for huge invest-
ments in safety and especially security, which are not keeping up with the risks.

Closing the Gap

What can be done to change these odds in favor of those trying so hard to infuse
software systems with appropriate levels of safety and security? How important
is it to correct the huge number of severe weaknesses still inherent in legacy
systems? What is needed to ensure that future software systems can be trusted
to be secure and safe in the face of countermanding trends? These are questions
that are frequently asked, and to which the answers are mostly disappointing.
Perhaps we are asking the wrong questions or those hearing the questions do
not fully understand them. After all, where the pressure for improving safety
and security is most intense, software engineers have responded with respect-
able attempts to shore up those systems, so we know that it can be done, albeit
at high cost.

Or perhaps there are underlying psychological reasons. Beth Gardiner [2]
presented the results of studies by psychologist Robert Gifford of the University
of Victoria, British Columbia, who determined “behavioral barriers to combat-
ing climate change.” Gifford presented the following four behavioral character-
istics, which could just as easily be applied to cybersecurity:

* We have trouble imagining a future drastically different from the present;
* We block out complex problems that lack simple solutions;

* We dislike delayed benefits and are therefore reluctant to sacrifice today
for future gains;

* We find it harder to confront problems that creep up on us than emer-
gencies that hit quickly.
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In the 1960s, typical business-oriented computer systems would fail on
a daily basis. A common remark at that time was that if airplanes were as un-
reliable as computers, nobody would be willing to fly. Since then, reliability of
hardware components of computers has improved by orders of magnitude. It
might therefore be construed that software components are also much more
reliable. However, the complexity and diversity of software systems and their
aggregation into so much more complicated systems of systems have worked
against software developers in their attempts to eliminate security vulnerabili-
ties and to keep occurrences of malfunction and failure as low as possible. This
is why system architects have heretofore pushed to isolate safety-critical sys-
tems from public communications networks since avoidance is pretty much the
only approach to use when protection and prevention are not viable. However,
requirements for increased functionality on the one hand, and reduced costs
on the other hand, have pushed engineers into realms that are uncomfortable,
unsafe, and not secure.

The fundamental question is whether there is any real motivation to make
software systems safer and more secure or whether the diminishing returns of
increasing safety and security mean that, as time progresses, stakeholders are less
inclined to embark on the necessary activities to improve the safety and secu-
rity attributes of software-intensive systems. As supported by the Gifford study
mentioned above, human nature may be such that people will only respond to
disasters, particularly with respect to cybersecurity, and that it will take the oc-
currence of a major cyber or cyber-physical attack before government and the
private sector will respond to previously ignored warnings. For example, Vice
Admiral Michael McConnell (USN, Ret.), in his February 23, 2010 testimony
before the U.S. Senate Committee on Commerce, Science, and Transportation,
said that risks from cyber attacks will not be mitigated until there is more active
government involvement and that such involvement will not be forthcoming
until a “catastrophic event” actually happens [3].

Just as the public’s unwillingness to accept frequent airplane crashes has
led to much more stringent standards and certifications in the airline industry,
such as DO-178B, disastrous or catastrophic cyber events may be the only real
impetus for improving security.

However, there is another view; namely, that a greater understanding of
the forces behind motivations of various participants might result in actions
that, by assigning safety and security as personal risks to various players, actions
will result that will mitigate those risks. But in order to accomplish this, it is
first necessary to identify, understand, and quantify how particular risks affect
individuals and the degree to which various players can indeed effect change.

In this chapter we will look at the following:

* Technical debt in regard to the development of software systems;
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* The impact of security and safety on individuals and groups according
to their value functions;

* The means of persuading or forcing such individuals and groups to take
actions to minimize their personal exposure and by so doing, optimizing

globally;

* An agenda for optimizing the objectives of all those involved in the cre-
ation, operation, and use of safety-critical and security-critical software
systems.

The goal is to design a program that over time will reduce exposure of
security-critical and safety-critical software systems to an acceptable level, de-
spite the fact that the bar is continually being raised.

We will discuss ways to detect, protect against, and fight tampering as
a means of responding to increased threats in the cyber and physical worlds.
Finally, we will take a look at the use of “security and safety patterns.”

Technical Debt

The concept behind technical debt is that, as software systems are designed,
developed, implemented, operated, and replaced, those involved in the devel-
opment life cycle and the subsequent operational environment are taking on,
knowingly or not, technical debt that can be either borne or reduced, con-
sciously or otherwise.

Allman [1] states that “... technical debt is acquired when engineers take
shortcuts that fall short of best practices.” Of course, so-called “best practices”
might also fall short of ideal practices, which implies that there are in fact two
or more layers of technical debt in that common practices often exclude essen-
tial elements, depending upon the authority and vision of the sources of these
practices.

Allman gives a number of examples where technical debt might be taken
on due to competition between best practices and other factors. The following
are some of his examples:

* Setting too-tight deadlines;
* Not anticipating the costs of tools and using them inappropriately;
* Assigning engineers with inadequate or inappropriate skills to projects;

* Skipping documentation requirements or writing inadequate documen-
tation;

* Skimping on good security practices;
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* Using obscure and incomplete error messages;

* Using slow, simple algorithms rather than better algorithms that are
complex and run more efficiently.

There are clearly a host of other factors to be considered such as under-
budgeting projects, using inexperienced project managers, and the like.

All of these deficiencies lead to the amassing of technical debt. As pointed
out by Allman, various constituencies assume technical debt according to their
roles and their power to limit that debt. Also, they can accrue and transfer
technical debt to others knowingly or inadvertently, much as we described in
Chapter 6. This is a form of moral hazard where those who create the debt
manage to avoid blame or responsibility for controlling and repaying the debt.

Allman provides a good exposition of how technical debt impinges on
various areas within and outside organizations. His lists of characteristics and
shortfalls are supplemented with items inferred from those lists. Augmented
lists are provided in Table 11.1.

While the lists in Table 11.1 are not exhaustive, they do contain helpful
indicators as to what is important to various participants in the development
life cycle from their particular viewpoints. Desired characteristics and typical
shortfalls clearly vary greatly between and among participants depending on
their personal agendas, organizational roles, and vulnerability with respect to
having technical debt assigned to them. Suggesting how participants might re-
act to factors that affect them personally goes a long way towards helping to
determine how they might be influenced to act in a manner that optimizes the
overall system rather than just the specific individual components for which the
individuals are responsible. Such methods as pricing, taxing, and other discour-
aging activities, and incentives, such as bonus payments for good performance
in the areas of security and safety, can be used to encourage individuals to work
in the interests of all stakeholders rather than in his or her personal interest.

Application of Technical Debt Concept to Security and Safety

Allman [1] does reference security as an issue with respect to technical debt.
However, his treatment of security is somewhat marginal and there is no men-
tion at all of safety in the article. This is not unusual since most researchers in
software development have backgrounds in information or cyber systems rather
than industrial control systems. However, the amassing of technical debt is very
pertinent to security and, to a somewhat lesser extent, to safety, because of
the permeating of risk analysis throughout the SafeSSDLC. Of particular note
is the previously mentioned aspect that as software development progresses it
becomes increasingly costly to “bolt on” security and safety functionality. At
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Table 11.1

Augmented Requirements and Shortfalls from Various Perspectives

Perspectives Desired Characteristics

Typical Shortfalls

Customers Software systems that:

- Work (operate as expected)

- Are understandable

- Can be [readily] maintained over
the long term

- Are reliable [and resilient]

- Incorporate industry-standard
security [and safety] practices

- Can be extended (i.e., are scalable)

- Can be enhanced (i.e., modified in
response to new requirements)

- Are easy and enjoyable to use

Help Desk Well-designed interfaces for the user
support function
Extensive documentation of features
and functions of the software systems
Frequently asked questions (FAQs) that
users might view prior to requesting to
speak to help desk staff
Direct and immediate access to
knowledgeable technical support

Operations Software products that are:
- Reliable
- Maintainable
- Understood
DevOps approach whereby operations
staff work with development staff at
early stages of the life cycle
Ready access to the code
Availability of up-to-date, accurate,
and complete documentation

Engineers Developers:
Detailed, accurate, unambiguous,
complete specifications
Agile methods allowing for user sign-
off on design at early stages

Maintainers:

Well-documented code and operational
procedures

Easy-to-maintain code

Easy-to-change procedures without
jeopardizing functionality or ease-of-
use

Management  Understands risk management and
balances out demands of internal
departments, business partners, and
customers
Understands technical debt and how to
minimize it across the lifetime of the
product

Inadequate user documentation
Unstable software

Frequent malfunctions and failures
Unexpected and inaccurate results from
specific user actions

Inaccurate processing and results
Inability for customers to initiate
corrections, changes, and enhancements
Unavailable, unresponsive technical and
operational support staff

Lack of knowledge of technical and
operational support staff

Poorly designed interfaces

Bad or nonexistent documentation
Indirect effect of code obscurity

Long time to respond to customer
questions

No direct access to those able to solve
problems

Poorly designed interfaces

Bad or nonexistent documentation
Limited access to those able to solve
problems

Limited access to other resources, such
as code, procedures, etc.

Developers:

Ambiguous and incomplete
specifications

Absence of suitable test cases
Inadequate knowledge and training,
especially relating to security, safety,
performance, resiliency, etc.

Maintainers:

Undocumented or minimally documented
code

Inadequate, inaccurate, and out-of-date
operational procedures

Favors one area over another to the
detriment of the organization

Does not understand concept of
technical debt

Incurs considerable amounts of technical
debt without knowing that such debt has
been amassed

Specific additions to some of the items in Allman’s existing list of characteristics are shown in square brackets.
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some point, it becomes impossible to justify even minor corrections, patches,
or additions. The result is that software systems frequently remain vulnerable to
attack, malfunction, and failure because no one could present a reasonable and
convincing case in favor of assuring that certain security and safety features are
implemented.

The transfer or avoidance of technical debt is particularly prevalent in cy-
bersecurity as there are huge swaths of systems and networks for which no one
is willing or able to take on the requisite responsibility and liability. Nor would
they be able to assume the technical debt even if they were willing to do so. The
“tragedy of the commons,” in which the securing of common resources is not
assigned to anyone, and “moral hazard,” whereby liability is avoided by those
directly involved and consequently transferred to others, such as the general
public. Both the tragedy of the commons and moral hazard work against the
assignment of technical debt to its rightful owners.

Conversely, when it comes to safety, there appear to be relatively clear
lines of responsibility, except when the event is so large, as in the March 11,
2011 tsunami that hit the northeastern coastline of Japan and destroyed the
Fukushima nuclear power plant, that no single entity, in this case Tokyo Electric
Power Company (TEPCO), which owns and operates the Fukushima facility,
is able to afford to assume full liability. Therefore it becames a partial govern-
ment responsibility to deal with the consequences. Interestingly, when TEPCO
issued its final report on June 19, 2012, they agreed that they had not been suf-
ficiently anticipated the catastrophe and that they were not adequately prepared
for a tsunami of the magnitude experienced [4].

System Obsolescence and Replacement

Allman [1] seems to suggest that when one system is expected to be replaced by
another, the technical debt, which has been accrued by the original system, is
somehow forgiven and disappears. This is not necessarily the case, especially for
systems that are not retired within the anticipated time frame. A prime example
of this was Y2K. Billions of lines of code were written decades prior to the year
2000 with the expectation that they would be replaced by the time the end
of the century rolled around. That assumes that the problem emanating from
representing years with two digits, rather than four, had even occurred to the
programmers, which it likely did not. The technical debt on this oversight ran
into several hundreds of billions of dollars. Similarly, when Microsoft decided
that it would replace an obsolete operating system NT 4.0, it had to deal with
stragglers, who were not ready to upgrade their systems. Customer pressure can
mean that vendors have to provide support for software products well beyond
the date on which they are originally intended to abandon the product.
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The Responsibility for Safety and Security by Individuals and Groups

We now consider how the safety and security of software systems, in particu-
lar, are viewed by a wider-ranging constituency and the extent to which safety
and security attributes are really considered to be the responsibility of various
groups. In a sense, this approach is similar to technical debt in that the cost of
neglecting security and safety is accrued throughout the software system devel-
opment life cycle. Here we look at the economic consequences of security lapses
and safety failures on a boarder population comprising those directly and indi-
rectly involved in the creation, deployment, and operation of software systems.

Basic Idea

The fundamental concept behind the proposed risk-based value approach is
that stakeholders have a personal view of how including or excluding particular
safety and security software features will directly affect them as individuals.
While there may be other motivations, an individual will still view the impact
of safety and security features and capabilities from his or her personal perspec-
tive. Individual motivations will likely only coincide with organizational goals if
personal benefits result from a healthy and prosperous organization. This might
appear somewhat cynical, but it is not meant as a criticism and does not deny
that people will often act altruistically for the benefit of a group, organization,
or country. The point is that one’s assessment and response to risk is generally
highly subjective and intensely personal.

As an example, if a group of developers is responsible for completing
an application by a certain deadline and within a predetermined budget, and
achieving these goals is the basis for team members being rewarded, then any
time delays and additional costs or resource requirements that might threaten
the official deadline will be avoided as much as possible. It is only if criteria
for rewards and benefits are included in safe and secure software design, archi-
tecture, development, and testing that the proper amount of attention will be
given to these areas. However, the decision to tailor compensation and other
rewards to how well particular safety and security requirements are met has to
come from high-level management within an organization.

By recognizing the motivators for security-related decisions and incorpo-
rating them into an economic model of how individuals respond to motivators,
one understands why certain decisions are made for incorporating security and
safety into software development, operation, and decommissioning of software-
intensive systems. To quote from Axelrod [5]:

One cannot develop effective economic models for information security
and privacy without having a good understanding of the motivations,
disincentives, and other influencing factors affecting the behavior of
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criminals, victims, defenders, product and service providers, lawmakers, law
enforcement, and other interested parties Predicting stakeholders™ actions
and reactions will be more effective if one has a realistic representation of
how each of the various parties will respond to internal motivators and
external stimuli.

As we have seen, safety engineering is very formal in certain critical indus-
tries, such as aerospace, avionics, and vehicular and power plant safety, requir-
ing that systems be evaluated based on their potential for doing harm, which
then points to a level of certification needed by the industry.

Extending the Model

The model in [5] discusses the motivations by various stakeholders to attack
and defend security-critical software systems. Here, we extend the model to
cover safety-critical software systems and focus the impact of stakeholder moti-
vations on the SSDLC.

We now examine each of the phases of the life cycle and see how stake-
holders are currently involved with or influence each stage. We then recom-
mend how we might change the list of players involved at each stage and their
roles and responsibilities in order to achieve a more acceptable level of safety
and security. We also suggest mechanisms, both motivators and deterrents,
which might be used to influence the outcomes of each step so that the final
product or service meets an organization’s safety and security requirements. The
intent is to come up with a list of actions that will move decision makers and
stakeholders towards security and safety postures that best meet the needs of
society as a whole. While many of the suggestions will be normative, and will
be unlikely to be put into effect because of factors such as high costs, limited
resources, and lack of authority, the model at very least points to areas that need
attention, and to some extent suggests new and different ways to improve the
situation as it stands today.

Concept and Requirements Phase

When requirements for a system are being determined, those making decisions
as to what the functional and nonfunctional requirements of the proposed sys-
tem might be are unlikely to consider a full range of security and privacy is-
sues. The likelihood that safety issues will be included is usually much higher,
in large part because safety-related software-system malfunctions and failures
might result in injury or loss of life. Insurance companies have formulae for de-
termining the value of an injury or death in monetary terms for their purposes,
but often the indirect impact is much greater in terms of loss of confidence in
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the manufacturer of a defective system, additional burdensome regulatory and
audit requirements, and loss of business.

One needs to include a full range of representatives of key areas after a
concept is originated and when in the requirements development phase. Con-
cept origination may be a result of ideas from internal business and technical
staff, or senior management and/or marketing may become aware of new tech-
nologies and competitors” systems, legal and regulatory requirements, obsoles-
cence of current systems, and so on. The concept then needs to be described
in terms of the requirements of sponsors, users, and technical, and operational
staff, where each participant provides inputs to what then becomes a set of
functional, and hopefully nonfunctional, requirements.

In Table 11.2, we see a breakdown of the SSDLC into its component
phases and indications as to which stakeholders are involved in each phase and
what their roles should be. For the origination and requirements phase, there is
usually a mix of business, technical, and operational participants, each of whom
brings his or her own perspective to the formulation of the needs of the system.
Thus, senior business management and marketing will be most interested in
ensuring that the software system provides needed functionality. They also want
to be assured that developing the system will take a specific amount of resources
and money within a time frame that may be determined by external factors
such as time to market (or time to value). The technical staff will want to ensure
that currently available technologies can deliver the desired functionality at a
reasonable cost within the time parameters. The value profiles of clients, such
as management, marketing as a customer surrogate, and end users, will push to
maximize functionality and minimize cost and time to market, whereas the per-
sonal risks of technology and operational teams will cause them to move in the
opposite direction of reduced functionality, increased resources, and more time.
A balance between the two groups needs to be agreed upon and is often deter-
mined by the relative power and authority of those involved in the negotiations.
The client side, consisting of senior corporate and business unit management,
often prevails, and the technical and operational development teams are forced
to concede. This may be much of the reason behind so many deficient and
defective software systems.

The list of areas that are often excluded from this phase of the SSDLC is
disconcertingly long, particularly as deficiencies in requirements, particularly
the nonfunctional requirements, could likely be avoided if the listed areas had
been included in the discussions and had a vote in the decision-making process.
Occasionally a senior executive will make a pronouncement about one of these
neglected areas having to be included in the process and having his or her direct
support, as was the case when Bill Gates of Microsoft mandated building trust-
worthy secure software. However, much of the time, it appears that many such
areas are excluded to the detriment of the project and with the result that these
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Table 11.2

Participants and Decision-Makers for Each SSDLC Case

SSDLC Phase

Typical Participants

Usual Decision
Makers

Suggested Additional Participants
(Often Excluded)

Origination and
requirements

Design,
architecture, and
specifications

Development

Verification
(reviews, code
inspections)

Validation (testing)

Deployment,
operations,
maintenance, and
technical support

Decommissioning
and disposal

Senior management (if
strategic system)
Business unit
management

Business unit
operations

Marketing (if
appropriate)
Internal-user
representatives
Information technology
Safety engineering (if
safety-critical system)

Systems analysts
Software architects

Developers
Technical support

Business unit sponsors
Systems analysts

Business unit sponsars
Developers
Testers

Customer relations
Marketing

Operations

Network engineers
Technical support
Field service engineers

Business unit sponsars
Computer operations

Senior management (if
strategic system)
Business unit
management
Information technology
management

Safety engineering (if
safety-critical system)

Systems analysis
management
Software architect
management

Development
management

Systems analysts

Testers

Marketing
Operations

Marketing
Computer operations

Information security

Security administration

Internal auditors

Risk management

Software assurance

Application security analysts
Application safety analysts
Internal user representatives
Customer user representatives
Computer operations

Technical support

Help desk

Software certification liaison
Identity and access management
Legal department (representing
lawmakers and law enforcement)
Compliance department (representing
regulators and external auditors)
System administration

Business continuity planning
Disaster recovery planning

Information security

Internal auditors

Application security analysts
Application safety analysts
Computer operations
Technical support

System administration
Business continuity planning
Disaster recovery planning

Information security
Application security analysts
Application safety analysts
Business continuity planning
Disaster recovery planning

Application security analysts
Application safety analysts

Application security analysts
Application safety analysts

Information security

System safety

Systems analysts

Business continuity planning
Disaster recovery planning

Information security
System safety
Internal and/or external auditors

areas, which are usually called in during the later stages of development and
testing, if at all, are forced into the predicament of either accepting substandard
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systems or trying to bolt on security and safety, achieving better performance
by adding processing capacity, writing contracts that protect against inevitable
malfunctioning, and so on. As was discussed previously, the costs of these after-
the-fact fixes can be orders of magnitude greater than if the need for security,
safety, resiliency, and the like had been incorporated at the requirements phase.
Since there are usually little or no additional available funds during the later
stages of the life cycle, the compromise is often to do some minimal touch-up
and force people to work around the issues. Perhaps the one exception to this
general situation is when the software systems are safety-critical and need to
be certified according to very specific safety requirements, in which case safety
engineering participants are included. However, this does not necessarily mean
that appropriate soffware safety engineers get involved at this stage.

By not including the additional participants list in the right-hand col-
umn of Table 11.2, the cost to the project will inevitably be greater. If these
participants are heeded later in the project, the some of their requirements will
be addressed. If not, then the costs will be in the form of opportunity costs or
indirect costs that may not be linked back to the root cause of the deficiencies.
For example, if security is not built into the software system, then expensive
tools and personnel will need to be added when the system is deployed in order
to provide some higher level of security. However, application firewalls, intru-
sion detection and prevention, and similar technologies do not make up for
vulnerabilities inherent in the software system and are a continuing cost drain
for their deployment, maintenance, and management.

From a value perspective, we see that staff with power and authority push-
es to minimize what they believe to be costs attributable directly to them. They
will try to maximize the benefits (other cost savings, competitive edge, etc.),
and ignore the remonstrations of those who are essentially tasked with control-
ling the risks related to the software systems. Unfortunately, over time, as the
costs of early-stage neglect mount up, it is often those who were not consulted
or heeded in the initial phases of the SSDLC who shoulder the blame and bear
the brunt of the negative consequences. Ultimately, someone has to pay for the
inadequacies of the requirements phase—and often as not it is those who were
excluded from the process. The overall aggregated costs are easily as high, if not
a great deal higher, than they would have been had the right type and level of

resources been brought to bear earlier in the life cycle.

Design and Architecture Phase

For the most part, the design of software systems and their architecture (plat-
forms, networks, etc.) is left to technicians. This is because this phase usu-
ally consists of taking a set of requirements, as developed in the prior phase,
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and translating those requirements into specific designs comprising application
modules, system software, physical systems, and networks.

There are many problems related to this phase of the process. First, it
relies on the quality and completeness of the requirements and also on the
knowledge and experience of the software-system designers and architects, any
of which could be lacking. Second, designers and architects are motivated to
come up with designs that will meet requirements, whether or not requirements
are adequate. Thus, for example, nonfunctional attributes, such as security and
performance, may not be adequately covered in the requirements and hence
will likely not be accounted for in the design. In many cases performance, par-
ticularly for systems using innovative technologies, cannot be predicted unless
a prototype is developed or a simulation is built. Therefore, in order to moti-
vate designers and architects to develop designs that will perform satisfactorily,
or prevent them from suggesting architectures that will not meet performance
goals, one needs to appreciate the importance of the attributes to those for
whom the value of performance, security, resiliency, data integrity, and so on is
high. Then one has to ensure that appropriate measures are taken to encourage
full consideration of these attributes.

One aspect that is often neglected is the need to incorporate the necessary
monitoring, data collection, and analysis, particularly so that users of the sys-
tem can be tracked. This type of information is critical for computer forensics
following a data breach, for example, and yet the need for it to be included as
requirements is seldom recognized. However, when the need is expressed, it is
usually received negatively as it will lead to immediate increases in costs and
resources, along with some operating overhead, and the benefits will not show
up for months or years, if at all.

For these reasons, there needs to be oversight from security and safety
software engineers, auditors, support staff, and so on in the design stage to
make sure that their interests are covered and to verify that the design correctly
interprets requirements . This is shown in Table 11.2 in the last column of the
design/architecture row.

Development

During the development phase, programmers and other technical staff are gen-
erally focused on writing code that is functionally correct and error-free and
completed within the assigned timeframe. As with design teams, developers are
not required to be particularly creative, except in writing efficient and effective
programs. They are usually rewarded for following requirements to the letter
rather than trying to second-guess them. This is generally positive, but can be
detrimental if developers find questionable requirements and are reluctant to
report them. That is one reason that it is desirable to have other participants,
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such as software security engineers, in advisory roles throughout this phase.
Such participants also need to have enough influence to effect their demands.
While there might be contention between developers and these other groups
attempting to have their requirements included, the result will likely be an in-
crease in the overall value of the system to the various group members.

Verification

The goal of those verifying the system is to ensure that it is being constructed
according to detailed customer and user specifications both in terms of ac-
curately depicting those requirements and ensuring that all requirements have
been included. This means that individuals not directly involved in creating
the programs must go through each and every requirement and be shown how
each one has been implemented. They also must determine that the proposed
methods of testing the programs against requirements and specifications meet
the needs. The tests themselves are done in the validation phase.

Part of this phase should also be the determination that the set of require-
ments are complete and correct. If not, there needs to be a process whereby the
results of the verification are fed back to the appropriate groups involved in the
requirements phase. If any requirements are changed as a result of this review,
then specifications must be updated and changes made to the program to in-
corporate the corrected set of requirements. It can easily be seen how change
emanating from later phases in the life cycle are so much more costly in money
and time to implement, and how it is so much less burdensome to get it right
early in the life cycle.

Thus developers are participants, but not the decision-makers with re-
spect to verification, as shown in Table 11.2. In some sense, the reviewers are
encouraged to find errors and omissions and to ensure that the errors are cor-
rected. Again, there is some contention involved because of having to rework
the programs. This can delay completion and increase resource use. However,
overall there is enormous benefit from the verification phase since errors and
omissions caught at this phase are orders of magnitude easier and less expensive
to fix than if the errors are caught later in the life cycle. Any costs or delays
caused by verification should be set against the much greater costs and delays
that would be incurred as a result of missing the errors.

Validation

In this phase, the correct working of the software system is proven by running a
series of prespecified tests and observing the results. If errors are detected, they
are fed back to the developers for reworking of the computer programs. In turn
the revised programs need to be retested until the errors are resolved.
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At issue here is whether so-called security and safety functional testing,
in which the testers check that the software system is not doing that which it is
not supposed to, and nonfunctional testing, in which security services, safety,
performance, reliability, resiliency, and the like, are sufficiently represented in
the testing program. Often they are omitted, which is why it is important to
bring in those with vested interests in these other characteristics, as shown in
the validation phase in Table 11.2.

Deployment, Operations, Maintenance, and Technical Support

There is quite a range of ways in which software can be deployed ranging from
downloading from a Web site to custom installation. The former method usu-
ally involves some form of online or telephone support, typically from a call
center or help desk, with more difficult situations being referred to technical
support. Depending on the nature, size, cost, and complexity of the software
system, the vendor might have their field service organization manage the in-
stallation, or the customer’s technical support engineers might have the ability
to do the installation in the field, particularly if it is an upgrade rather than a
new installation. Ongoing operations will usually be managed by the organiza-
tion running the software system using their internal staff or a third party, and
scheduled maintenance and repair services will generally be done by the ven-
dor’s field service engineers or a third-party original equipment manufacturer
(OEM).

Generally, information security and safety software engineers, either from
the vendor or customer organization, will not be involved in the operational
phase unless there is a security breach or a safety-related incident. However,
there are strong indications that there should be security and safety oversight
of the maintenance and repair functions since, for example, there are a number
of recorded cases of counterfeit parts being substituted, some of which contain
malware. In Table 11.2, we show these participant requirements along with
others that might be called in to perform forensics and track down and arrest
the perpetrators in the event of a breach or the discovery of malicious software
or hardware.

The operations phase is probably the one that receives the least relative
attention from security and safety proponents. The operations and technical
support staff generally do not have the expertise to deal with security incidents,
yet the vast majority of security-related attacks are on software systems that are
in production. For safety-critical control systems, operational staffs are gener-
ally trained in how to handle day-to-day hardware malfunctions and failures,
but are generally much less well equipped to detect and deal with software
and data breaches, as the Stuxnet attack in Iranian uranium-processing facilities
demonstrated.
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Decommissioning and Disposal

The area that generally receives the least attention in the private sector is the
decommissioning and disposal of security-critical and, to a lesser extent, safety-
critical software systems and the data that they might contain. Very few texts
on software security even discuss the disposal phase and the consequent risk of
leakage of intellectual property and other sensitive data. On the other hand,
government agencies in particular, such as the U.S. Department of Defense,
often address the disposal of safety-critical systems—especially if the decommis-
sioned system contains dangerous components that could kill or injure—and
classified security-critical data.

If the responsibilities for decommissioning and disposal are clearly defined
and assigned, those doing the job have some incentive to perform correctly and
completely, since failure to perform might be readily discerned were an incident
with, or data leakage from, a discarded system to occur. The greatest risk here,
especially for security-critical systems, is that there may well not be anyone held
accountable for the proper disposal of systems and media, so that there are few,
if any controls in place. It is therefore important that security and safety experts,
as well as internal and external auditors, be involved in the decommissioning
and disposal phase, as shown in Table 11.2.

Overall Impression

The above analysis serves to point out that the exclusion or delayed participa-
tion of those who have specific interests, particularly in nonfunctional areas,
leads to software system deficiencies in the early stages that result in subsequent
excessive costs to revise requirements and solutions at later stages—the bolt-on
versus built-in syndrome. The challenge is a matter of inducing those in author-
ity to include all the necessary players early enough and sufficiently intensely to
ensure that the overall value of the software system is maximized. Clearly it is
not adequate to appeal to those in authority to do “the right thing.” There have
to be mechanisms for encouraging behavior that will push the system towards
higher value. This can be done by mandate, threats, cajoling, economic plays,
laws, regulations, and so forth. However, unless the impact is measured against
the personal values of those who can influence the situation, it is not clear how
effective these measures are. In the following section, we look at motivators and
deterrents and what their impact might be.

Methods for Encouraging Optimal Behavior

There are a number of ways in which the behavior of individuals with respect
to their roles and responsibilities throughout the SSDLC can be influenced
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in order to encourage the inclusion of certain attributes, such as security and
safety. Such motivators and deterrents act upon individual decision-makers and
project participants in order to encourage them to respond in ways that are
globally desirable to the software-system manufacturing organization and other
stakeholders, such as customers, business partners, regulators, and auditors.

Of course, decisions relating to the global optimization of the critical at-
tributes are also highly subjective, but for our purposes, we will assume that it is
possible to define some global value function that includes tangible and intan-
gible costs and benefits from the perspective of an overall authority. While far
from ideal, this approach at least enables one to determine which attributes are
key, what their optimal levels might be, the contribution to global value of each
phase of the SSDLC, and the specific participants and decision-makers who
need to be persuaded, either directly or indirectly, to act in ways that promote
the common good.

Pricing

If it can be applied, the pricing of resources can be one of the more efficient
ways in which one can influence behavior. The typical mechanism for most
organizations and their projects is some form of budgeting combined with
chargeback. A critical component of this approach is to be able to fund certain
desired attributes from a separate pool of money, the use of which does not im-
pinge upon a particular project budget. This is important because, as described
above, including security considerations and capabilities in the development
life cycle is often against the personal interests of designers, developers, and
testers who are generally motivated to complete a project on time and within
budget. Security attributes usually fall into this category and will generally be
underserved unless they are “paid for” from an organization-level.

Chargeback

The rules for charging overhead costs such as general administrative expenses
can greatly influence the cost of a project and sometimes whether a project
will actually go forward. Chargeback also influences the behavior of users. The
chargeback rules affect how participants respond to various requirements. It is
often desirable to have a central pool of funds for such factors as information
security. In this way, senior management can enforce security requirements, say,
without penalizing the development team for any delays or cost overruns due
to incorporating security attributes into the software system.
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Costs and Risk Mitigation

One can invoke incentives, such as the linking of a person’s compensation to
how well they implement corporate goals in areas such as security, safety, and
resiliency. The latter goals might not normally be success factors for participants
such as developers and testers.

The behavior of some can be influenced by opportunity costs and costs
of opportunity. The former, which are those costs incurred in doing one thing
rather than another, imply that a decision-maker might be in a position to
choose one means of risk mitigation over another. An example would be the
incorporating of security during the SSDLC or installing application firewalls
and other tools once the software system has been deployed. In another exam-
ple, a company might choose to invest in ruggedizing a data center by provid-
ing onsite backup for their systems, redundant equipment, emergency power
supplies (e.g., battery backup, diesel generators), several telecommunications
vendors, and so on, rather than spend the money on a fully functional backup
data center. With some of the money saved, the company might contract with
a third party to provide disaster recovery services on demand. The latter in-
fluence—namely, the cost of opportunity—refers to the willingness of some
to make decisions that reduce current costs but which might have an adverse
impact at some future time. This is termed risk acceptance, where for example
the decision-maker is willing to take a chance as to whether a cyber attack will
happen.

Management Mandate

An effective means of encouraging the desired behavior is to make it company
policy and put in place credible enforcement procedures. If senior management
is convincing and has a track record indicating that they mean what they say,
then this approach can be extremely effective. A very good example of this is
the previously mentioned case of Bill Gates, founder of Microsoft Corporation,
who made a pronouncement that trustworthiness would be a key ingredient in
their products going forward. In the decade since that policy statement, Micro-
soft has greatly increased its reputation for building secure software.

By establishing a goal and publishing a related policy, senior management
is directing lower-level managers to meet or beat the goal but is leaving the
details of implementation to the judgment of the managers. Usually this means
that reasonable budget requests for introducing security, safety, and other capa-
bilities will be met with approval.
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Legislation

Lawmakers have become highly sensitized to the threat of data breaches lead-
ing to identity theft because of the alarming number of breaches reported and
the fact that many of their constituents have been victims of identity theft and
account takeover. In the United States, most of the states have enacted data
privacy laws but as of this writing, several Federal bills have been crafted in the
U.S. Congress but none have actually passed into law.

Laws can be a very effective means of motivation or deterrence in many
slower-moving areas. However, the challenges of cybersecurity and system safe-
ty are so dynamic that it is difficult for even tech-savvy individuals to keep up
with such rapid change, let alone members of Congress, many of whom do
not have a good understanding of information technology and especially the
security-related and safety-related consequences

Regulation

Regulators translate laws into actionable directives and then ensure that the
resulting regulations are being followed through various oversight, monitoring,
and auditing methods. In the U.S. financial services industry, banks are regulat-
ed by a number of agencies, including the Federal Reserve Board and the Office
of the Comptroller of the Currency (OCC), and securities firms and all public
companies in the United States are regulated by the Securities and Exchange
Commission. Some agencies have issued very detailed guidance in regard to
application security, such as OCC Bulletin 2008-16, which includes many sug-
gestions as to how to achieve acceptable levels of application security [6].

Many other industries, of which some are involved with developing and
using both security-critical and safety-critical software systems, are regulated,
such as the telecommunication industry that is regulated by the Federal Tele-
communications Commission and the airline industry by the Federal Aviation
Administration. These regulators often provide standards that must be met
by aircraft manufacturers, ground vehicle manufacturers, nuclear power plant
builders, and so on.

Standards and Certifications

Not only must many industry members comply with laws and regulations, they
might need to achieve a predefined certification level in order to operate within
that industry. Certifications are common when it comes to safety-critical soft-
ware systems, which are usually in the form of industrial control systems that
could cause loss of life or injury if they malfunction or fail. Obtaining certifica-
tions are a very strong motivator.
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While common in industries operating safety-critical systems, certifica-
tions are few and far between when it comes to security-critical systems. The
Payment Card Industry-Data Security Standard (PCI-DSS) provides applica-
tion security guidance, but its jurisdiction is limited to issuers and processors
of payment card information, such as data relating to credit, debit, and cash
cards [7].

It is to the detriment of many security-critical software systems that stan-
dards and certifications, equivalent to those that apply to safety-critical systems,
are not available to those developing, operating, and maintaining such security-
critical systems.

Going Forward

In order to deal with the shortfall in safety and security in software systems, it is
necessary not only to implement the recommendations contained in this book
but also to look to promising developments, some of which are in the research
phase and others that have been implemented commercially. This is not to en-
dorse any of these approaches but to claim that, in addition to the synergies of
transferring good practices between the software safety and security engineer-
ing disciplines, we need to look beyond what is currently being done as there
is clearly room for improvement given the many breaches, malfunctions, and
failures that occur with regularity.

Confirmation that there is a need for breakthrough approaches and tech-
nologies is readily apparent from the previously mentioned Broad Agency An-
nouncement (BAA) [8] issued in February 2012 by Defense Advanced Research
Projects Agency (DARPA) with the title “High-Assurance Cyber Military Sys-
tems (HACMS).” It is noteworthy from the quotation below, which was taken
directly from the BAA, that the definition of high-assurance cyber-physical sys-
tems includes requirements to satisfy specifically “... safety and security proper-
ties” in addition to their being “functionally correct.”

The goal of the High-Assurance Cyber Military Systems (HACMS) program
is to create technology for the construction of high-assurance, cyber-physical
systems, where high assurance is defined to mean functionally correct
and satisfying appropriate safety and security properties. Achieving this
goal requires a fundamentally different approach from what the software
community has taken to date. Consequently, HACMS will adopt a clean-
slate, formal methods-based approach that enables semi-automated code
synthesis from executable, formal specifications. In addition to generating
code, such a synthesizer will produce a machine-checkable proof that the
generated code satisfies the functional specification as well as security and

safety policies.
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Perhaps the most telling assertion in the introduction section of the re-
port is that in order to construct high-assurance cyber-physical systems, there
is a need to develop and apply a different approach from what has existed until
now. DARPA insists that ... research should investigate innovative approaches
that enable revolutionary advances in science or systems.”

While there is clearly a need for innovation in this area, it is not obvious
as to what forms such development technologies should take. It is worth the
effort to try to follow the particular research that will emanate from this BAA
and that will be funded by DARPA in order to get some guidance as to future
directions in creating safe and secure systems.

However, in the meantime, there are a number of interesting approaches
to improving the safety and security of software systems, two of which will be
discussed here. These are relatively new methods and processes but hold prom-
ise for improving the safety and security of critical systems and systems of sys-
tems. One relates to tampering; the other to so-called “patterns.” The former is
in the category of avoiding the impact of attacks by shielding (or immunizing)
software systems from attacks, whereas the second is a process for information
sharing and learning from experience, which has already been applied in the
security areas and holds promise with respect to safety attributes.

Tampering

It is clear from the frequency and descriptions of attacks, both successful and
not, on software-intensive systems, and from the manner in which they are
discovered, that much of the time victims don't even know about most cyber
attacks and are also ignorant about quite a few physical attacks. It is not always
clear whether victims’ lack of knowledge about attacks having taken place stems
from not having detected them or because the criminals are expert enough to
cover up their tracks—or both.

Experience in information security and attempts to prevent loss of valu-
able data—commonly called data leak prevention (DLP), makes one aware
of the differences among tamper-evident, tamper-resistant, and tamperproof
methods and how they might apply to security-critical and safety-critical soft-
ware systems and the data they contain and handle.

Tamper Evidence

In simple terms, tamper-evident means that attempts to gain access to software
or hardware systems or media is apparent from some change in the protec-
tive logical or physical “tape,” which the thief is not able to reverse to remove
evidence of tampering. Often, the individuals doing the tampering do not par-
ticularly care whether the recipient of a package or the software knows that
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someone has broken in. The recipient may have some claim on the sender or
issuer of the product, but that is about the limit.

In other cases, the owner of a package or a piece of luggage, say, may have
to allow some known authority, such as the Transportation Security Adminis-
tration (TSA), but only that authority, to access the contents. Special padlocks
have been designed to permit access by TSA representatives and show whether
the package has been opened by someone with a TSA standard key.

Tamper Resistance

Tamper resistance is a different concept. Here access to the product may be dif-
ficult but not impossible. In the physical world, those funny little screw heads,
come to mind. They allow someone to turn the screw in a clockwise direction
with a regular screwdriver but won't allow counterclockwise unscrewing come
to mind. There are quite a few approaches in the physical world. Comparable
systems for software might also exist, although if they do, they are not well-
known. In any event, with some effort that is likely to be destructive, such as
drilling out the screws, the protective method can be bypassed. This is good
for someone interested in getting at the innards of the device and not worried
about whether such intrusion can be detected by intended users.

Tamper resistance works well to deter or discourage the amateur thief but
can be broken by professionals with the appropriate skills and tools. Depending
on the value of the assets being protected, such tamper resistance might well be
adequate, but many not meet requirements for protecting highly sensitive data
or classified equipment.

Tamperproofing

Tamperproofing is different from the other methods. Here, attackers are usu-
ally not only hampered in their attempts to gain access to a working version
of the hardware or software being protected but the hardware or software may
self-destruct. There are two flavors of tamperproofing. In the physical world in
particular, attempts to break into the item will result in the immediate destruc-
tion of whatever is contained within the tamperproof container. The destruc-
tion might be through shorting and burning out of circuitry and wiping out of
any software and firmware contained therein, or the destruction can be more
aggressive, and the unit can be made to explode—but in such a situation the
risk of collateral damage and injury to bystanders needs to be considered.
From a software perspective, there are methods and products that can
prevent anyone from accessing and modifying software. Since it is readily ap-
parent that few, if any, software systems can be fully protected from attack and
that deterrence is seldom effective, we're left with avoidance. Avoidance is not
about making the assets available to a potential attacker. This is acceptable in
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some situations, but not all. Obviously, if you need to run a program or process
certain sensitive data, then one has no choice but to make the program and
data available, knowing that attack is virtually impossible to prevent. Much as
in the physical world, the answer lies in building up the immune system rather
than trying to destroy the attacks and attackers. Tamperproofing is a very ef-
fective way to do so. Of course, a decision has to be made as to whether the
self-destruction of specific software and hardware is justifiable. The decision
for software is usually much simpler in that it is easy to restore copies of soft-
ware. There may be a reluctance to destroy extremely valuable equipment and
a preference for disabling and presevering it so that it can be brought back to
operational status at some future time. For example, one would not want such
systems as those involving warfare (artillery, planes, ships, submarines, etc.) to
fall into enemy hands, so self-destruction is a viable approach. In other cases,
it might be adequate to get assurance that someone who has captured such
equipment is not able to use it or reverse-engineer it. The latter aspects are very
difficult to prove.

In Table 11.3 we show advantages and disadvantages for the different levels
of tamper-related characteristics. Essentially, the cheaper, easier-to-implement
methods, such as those that provide evidence of tampering, offer little protec-
tion of the contents but may act as a deterrence since the tape protecting the
box, say, will show that someone tried to or succeeded in getting unauthorized
access to the contents. Furthermore, it behooves the recipient to check that the

Table 11.3
Advantages and Disadvantages of Various Tamper-Related Methods

Characteristic  Advantages Disadvantages

Tamper-evident  Inexpensive and easy to implement  Easy to access system, but may be
Provides evidence of attempted and/ subject to penalties, etc., such as
or successful break-in invalidating warranty
Does not prevent intrusion and access
Assets become available in usable form

Tamper-resistant ~ Usually inexpensive and easy to Moderately easy to access system if
implement some level of destruction is tolerable by
Usually provides evidence of tamperers
tampering Does not prevent intrusion and access
Provides some measure of Assets become available in usable form

protection, much like a physical
roadway speed bump

Tamperproof Ensures that attacker does not Protected hardware is destroyed so that
get access to working versions of it cannot be reused by originator
hardware or software in usable form  Need tailored software that might
Intellectual property and secrets be costly and difficult to create and
may be assured if self-destruction is  implement
effective

Usually provides evidence of
tampering
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contents are complete and intact when there is an indication that someone has
opened the container. More protective methods are generally more expensive
and difficult to implement but offer a higher level of assurance that the sensitive
and valuable resources will be safe from unauthorized access. The self-destruc-
tion mode is the most effective, but makes units useless, as intended, so that if a
unit is recovered it has no reclamation value to the rightful owner either.

In Table 11.4 we show which tamper-related methods are available for
security-critical and safety critical software, hardware, and media.

A Brief Note on Patterns

The predominant issue, which comes from examining what is needed to build
software systems that are both safe and secure, is the need to communicate
among the various stakeholders and interested parties across silos in order to
have the desired attributes and characteristics added to systems during the early
stages of the SSDLC. While it might be helpful at some level to pronounce a
normative approach, such as including all relevant stakeholders in meetings to
discuss all the required safety and security attributes, that really does not address
the question of which mechanisms are available and should be used to facilitate
the transfer of information.

In an attempt to address this issue researchers have developed the con-
cept of “patterns” that can be used to convey to designers and developers the
experience of those who have addressed the same particular issues in the past.
According to Schumacher [9], the interest in the use of patterns was created by
Gamma [10] in 1995. The Schumacher book specifically addresses “security
patterns,” which are highly relevant to this book, and it is easy to see how this
approach can be readily extended to cover other nonfunctional features such as
safety, resilience, and the like.

According to Schumacher, patterns have the following properties:

* A pattern describes both a process and a thing—where the “thing” is a
high-level design outline or detail of programming code, and the “pro-
cess” is a set of instructions for creating the defined configuration ef-
fectively.

* A pattern is a solution that is both proven and of high quality and re-
solves a given problem optimally.

* A pattern supports both the understanding of a problem and its solu-
tion.

* A pattern is generic—it does not describe a specific solution or arrange-
ment of components.
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* A pattern tells “a successful engineering story” and initiates a dialog
about how to best resolve a particular problem.

* Patterns frequently tackle problems in indirect, unusual, and counter-
intuitive ways.

The concept of patterns and their use is somewhat analogous to the use
of objects in object-oriented programming in that concepts are encapsulated in
reusable form so that software system engineers do not have to start from the
beginning each time that they need to address a particular requirement. In this
way, they can benefit from the experience of their predecessors who addressed
the same problem previously and came up with an effective solution.

Such an approach could potentially provide a very effective mechanism
for software security engineers and software safety engineers to communicate
with one another and with other members of the various SSDLC teams. And,
as discussed throughout this book, it is communication among subject-matter
experts that is a critical success factor in building and operating safe and secure
software systems.

Conclusions

Having journeyed through the evolution and requirements for security-criti-
cal and safety-critical software systems, one is impressed with the tremendous
amount of good material that is already available in this space, whether it is in
the form research papers, commercial tools, scholarly and practically oriented
books, and government and industry standards and certifications. Yet, for a
variety of organizational, cultural, and technical reasons, the strengths in vari-
ous aspects and zones of software systems engineering never seem to find their
way to other areas. There will be considerable potential benefits to the high-
assurance software world through just the transference of existing knowledge
about software security and safety processes, methods, tools, and the like across
the entire field. Today’s gaps between software security and safety engineering
are exacerbated by the fissures between government and the private sector, and
the private sector and academia and research institutions. Bridging those gaps
will be no easy task. Prior attempts at public-private information-sharing and
collaboration have met with limited success, and there is no indication that the
present situation will improve in the foreseeable future unless effective legisla-
tion and regulation were to come into being, which itself is not particularly
likely. There is still a need to express the risks of attack, malfunction, and system
failure in a way that is understood by lawmakers, regulators, law enforcement,
the military, and the public. Also these groups need to internalize and personal-
ize those risks and understand what it will take to mitigate them. Such educa-
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tion and awareness is critical to the formulation, implementation, and enforce-
ment of effective laws, regulations, policies, and certification requirements.

Yet, even if everyone “spoke the same language” and struck an appro-
priate balance between protection and protectiveness, between the relatively
casual testing of information systems compared to the rigorous verification and
validation of safety-critical control systems, and between the strict certification
standards in avionics, for example, and the lack of standards for most business
software-intensive systems, there would still be big holes in the approaches. Not
enough effort has been applied to date or appears likely to be made in the near
future. The research, development, and implementation effort, which has been
and is being made, appears to many to be grossly inadequate as witnessed by
the large and escalating numbers of successful attacks and the many complaints
by those experts who should know about the deficiencies in the software system
development life cycle processes and content.

This latter dangerous situation draws others to the conclusion that the
only way to succeed in this arena will be through breakthrough innovation.
That may indeed be what is needed, but there is no guarantee that currently
proposed and existing research projects, whether in the public or private sectors,
will yield results that will be strong enough, cost-effective, and timely enough to
get ahead of the attackers. Meanwhile, there are today’s security and safety issues
to address, and they cannot wait for some hoped-for white knight approach to
save us from what appear to be some inevitable disasters.

This conclusion brings us back to the need to form a solid body of knowl-
edge across the software safety and security engineering disciplines and to im-
plement the most effective methods and procedures across the entire software
security and safety space. In addition, effective enforcement, measurement,
management, and response capabilities need to be developed—they alone will
lead to significant improvements, but are by no means the whole answer.

In a nutshell, the goal, with respect to engineering safe and secure soft-
ware systems, should be to learn from the past, bring together team members
with the appropriate state-of-the-art technical and business knowledge, and
push for innovative and practical research into approaches and solutions for the
future. The problems surrounding the making and operating of safe and secure
software-intensive systems will only increase over time. Therefore it is necessary
to develop the means of resolving these problems at an accelerating rate if there
is to be any hope of catching up with and eventually surpassing the rate of in-
crease of threats, exploits, and vulnerabilities. We are talking here of a veritable
Manhattan Project for the engineering of safe and secure software systems [11].

How quickly that crossover point, where the defense against cyber attacks
and the malfunctioning or failure of safety-critical software systems overtakes
the dynamics of attacks and deficiencies, will be reached depends on the level of
effort and resources committed to the task. It is unreasonable to expect that this
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point at which attackers and defenders are on equal footing will occur in any-
thing less than 5 years, assuming major commitments by those who understand
the risks and have the funds, power, and authority to make it happen. If such
support is not forthcoming, then defenders may never catch up and we will
be forever condemned to suffering increasing damaging attacks, breaches, and
failures. And if there is support, but it is not sufficient to overtake the abilities
of attackers and their attacks as well as unintentional and uncontrollable events,
then there is the risk that catastrophic events, man-made or natural, will occur
before adequate security and safety measures are in place, which could in effect
negate the entire effort. It is never too soon to get high-level commitments to go
forward with the necessary efforts, but might it already be too late?
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Appendix A
Software Vulnerabilities, Errors, and
Attacks

In this appendix, we discuss commonly available lists of attacks, vulnerabili-
ties, and risks relating to software, predominantly web applications. Web ap-
plications generally have a strong security bias, as they are information systems
rather than control systems and, being web-facing, they are prone to attacks by
external agents. However, we will see that the lists contain recommendations
that are also applicable to information systems that do not face the web and to
safety-critical control systems, even though they were not necessarily created
with such systems in mind.

As shown in Figure A.1, there are two main approaches to making devel-
opers and testers, in particular, aware of the security and safety risks relating to
software systems engineering. One is to bring top vulnerabilities and risks to
their attention. These lists are best represented by the popular OWASP [1] top
ten vulnerabilities and security risks, shown on the left side of Figure A.1, and
by the CWE/SANS [2] top 25 most dangerous programming errors, also on
the left of the diagram. Furthermore, we show a fair amount of overlap in the
diagram between the two lists, about which we will be more specific later.

It is interesting to note that lists equivalent to the OWASP and CWE/
SANS lists do not appear to exist for software safety. A list claiming to be “The
Top Ten Internet Safety Tips from Net Nanny is really a set of security sug-
gestions and recommendations on the use and blocking of various resources
available on the Internet [3]. This is not a matter of the web applications being
unsafe, but of their potential danger to misuse by children, which could lead
to harm.

239
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There are some safety-related rankings, such as the “Top Ten Safety Tips,”
from Emergency Management Magazine [4]. However, these tend to be high-
level guidelines rather than specific technical suggestions, such as contained in
the OWASP and CWE/SANS security-related rankings mentioned above.

On the right side of Figure A.1 we show some approaches to the enu-
meration and classification of weaknesses, vulnerabilities, attack patterns and
malware attributes. These approaches tend to list all existing attributes rather
than trying to rank them in order of impact. For example, the CWE/SANS Top
25 are taken from more than 900 CWE cases.

Ranking Errors, Vulnerabilities, and Risks

There are two schools of thought when it comes to publicizing the riskiest vio-
lations and the most dangerous programming errors relating to information se-
curity. One group claims that, by knowing where the greatest vulnerabilities lie,
software-system designers and architects will account for them in their designs,
and developers will avoid writing program code that will expose their computer
applications to these weaknesses. In addition, testers and auditors have check-
lists against which they can use to ascertain that the programs do not violate the
most egregious risk attributes.

SECURITY-RELATED ENUMERATION AND
VULNERABILITIES, RISKS SAFE ANDfOR SECURE CLASSIFICATION OF
AND PROGRAMMING SOFTWARE-INTENSIVE VULNERABILITIES,

ERRORS SYSTEMS MALWARE, ETC.
B ————— -
! | 1 1 Common Weakness
1 Enumeration (CWE)
I OWASPTopTen | o
i P 1 ! Security-Critical
I Most Severe 1 1
V' capuritvl Information
; urity lssues 3 Systems Common Vulnerability
Enumeration {CVE)
@ Common Attack
Pattern Enumeration
CWE/SANS Top 25 Safety-Critical and Classification
Most Dangerous } Contral {CAPEC)
Programming I Systems
1
Errors 1 Mahware Attribute
1
Systems of Systems and Enumeration and
| Cyber-Physical Systems Characterization
:_ o __ fs _______ {MAEC)

Figure A1 Various approaches to addressing weaknesses, vulnerabilities and risks.
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The other viewpoint is that developers will on/y attend to those vulner-
abilities and errors on the lists, and will not attend to other important errors
that did not quite make it to the list of top items; that is to say, the lists should
certainly be viewed as necessary to follow, but they are not sufficient for ensuring
a high-level of security or safety. Who is to say that the eleventh and twelfth
ranking vulnerabilities are not extremely important even though they didn’t
make the top 10 or 25? To their credit, the CWE/SANS publication (wherein
their lists are described in detail) guides readers to an “On the Cusp” page,
which gives an additional sixteen weaknesses that did not fall into the top 25.
On the other hand OWASP continues to limit its list to 10 items, although they
do warn developers not to limit themselves to the 10 risks listed but to read
various OWASP online documents to learn about the hundreds of issues that
affect overall security.

The OWASP Top Security Risks

OWASP began publishing its “top 10” lists in 2003. In the early versions, the
list consisted of attacks, vulnerabilities, and countermeasures. In 2007, the fo-
cus was entirely on vulnerabilities, and in 2010, the list contained security risks.
Figure A.2 shows how the 10 examples in the list changed from 2003 to 2010.
Five items, representing half of the total, were dropped during the 2003-to-
2010 period. For many of the remaining items, their rankings changed between
one version and the next. Sometimes these changes were quite significant;
for example, the category “broken authentication and session manag-ement”
jumped from seventh position in 2007 to third position in 2010.

Judging from past trends, a new version of the OWASP Top Ten might be
expected to appear in the 2013 timeframe, although such timing has not been
announced by OWASP.

The OWASP Top 10 has received a great deal of attention from infor-
mation security professionals, even to the extent that regulators and oversight
entities have suggested that the OWASP Top 10 should be a requirement for
compliance [5].

In Table A.1, we list the 2010 Top 10 web application security risks. In
the table, the occurrence of the item is explained and the potential impact is
given for each of the security risks. OWASP published a report with the title
OWASP Top Ten—2010: The 1en Most Critical Web Application Security Risks,
which is available online [6]. The report describes each of the top ten security
risks in detail.

For each item, the OWASP report lists the following:

* Threat agents;
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Table A1

OWASP 2010 Top 10 Web Application Security Risks

Rank Name Occurs when ... Potential Impact
1 Injection ... untrusted data is sent as part of a command  Tricks the interpreter into
or query. executing unintended commands
or accessing unauthorized data.
2 Cross-site ... an application takes untrusted data and sends  Allows attackers to hijack user
scripting (XSS) them to a web browser without proper validation sessions, deface websites, or

and escaping .

Broken ... application functions related to authentication
authentication and session management are not implemented
and session correctly.

management

Insecure direct ... a developer exposes a reference to an internal
object references  implementation object, such as a file, directory,
or database key.

Cross-site request ... the browser of a logged-on victim is forced to

forgery (CSRF) send a forged HTTP request, which includes the
victim’s session cookie and other authentication
information, to a vulnerable web application.

Security ... the configuration, which is defined and

misconfiguration  deployed for applications, frameworks,
application servers, web servers, database
servers, and platforms, is secure, with all
settings defined, implemented and maintained,
and all software and code libraries kept up-to-

date.
Insecure ... web applications do not protect sensitive
cryptographic data, such as social security numbers, credit-
storage card information, authentication credentials, and
intellectual property, with appropriate encryption
or hashing.
Failure to restrict ... web applications do not perform access
URL (uniform control checks each time pages are accessed.
resource locator)
access
Insufficient ... web applications fail to authenticate, encrypt
transport layer and protect the confidentiality and integrity of
protection sensitive network traffic.
Unvalidated ... web applications redirect or forward users to
redirects and other pages and websites, using untrusted data
forwards to determine the destination pages.

redirect the web browser user to
malicious sites.

Allows attackers to compromise
passwords, keys, session tokens,
or exploit other implementation
flaws to assume other users’
identities.

Allows attacker to manipulate
access control checks and
other protection in order to gain
unauthorized access to data.

Allows attacker to force the
victim’s browser to generate
requests that the vulnerable
application believes are
legitimate.

Allows a broad variety of attacks
to be successful.

Facilitates the theft and/or
modification by attackers of
weakly-protected data to conduct
identity theft, fraud, industrial
espionage, and other crimes.

Enables attackers to forge URLs
to access hidden pages.

Allows attackers to “sniff” the
data flowing over networks and
obtain sensitive information such
as usernames, passwords, social
security numbers, and the like.

Allows attackers to redirect users
to phishing (sending messages
from criminals masquerading as
legitimate senders) or malware
(malicious software) websites, or
access unauthorized pages.

* Attack vectors and their exploitability;

* Security weaknesses and their prevalence and detectability;

* Technical and business impacts.
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The OWASP report helps readers determine whether specific applications
are vulnerable to each of the various threat agents, and how to prevent the
threat from exposing the particular application to compromise. Examples of

attack scenarios are also given. Merkow [7] provides very good explanations of
the 2010 OWASP Top 10.

The CWE/SANS Most Dangerous Software Errors

The CWE effort is described as a “community-developed dictionary of software
weakness types,” [2]. The CWE effort is also in the category of approaches that
enumerate exhaustive lists of weaknesses, vulnerabilities, threats, errors, and so
on, and is included on the right side of Figure A.1. The top 25 most dangerous
software errors for 2011 are available on the CWE website [8].

As of Version 2.2, there are 909 CWE errors. Included among these CWE
errors are the OWASP Top 10, as well as the CWE/SANS Top Twenty-Five. By
following the links provided to each of the OWASP Top Ten, one can see which
CWE errors relate to each item. Those for the top 25 CWE errors are shown in
the right-most column of Table A.2. Note that some of the CWE/SANS Top
25 do not have OWASP equivalents, and some have two.

Table A.2 shows the ranking not only of the highest-ranking 25 software
errors but also of the next-ranked 16 errors. The CWE website [9] also splits
the top 25 items into three categories, depicted in the table as columns A, B,
and C, as follows:

* Column A: Insecure interaction between components (insecure way in
which data are sent and received between components, modules, pro-
grams, processes, threads, or systems).

* Column B: Risky resource management (software does not manage
properly the creation, use, transfer or destruction of important system
resources).

* Column C: Porous defenses (defensive techniques that are often mis-
used, abused or ignored).

Top-Ranking Safety Issues

There do not appear to be any safety equivalents to the lists of leading risks,
threats, errors, and the like that exist for software security. This is probably due
to there not being the same need for such lists in the safety arena because there
are many highly-detailed safety standards against which software systems must
be certified, many of which are described by Herrmann [10].
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Table A2
CWE/SANS Top 25 Most Dangerous Software Errors
OWASP
Rank Name A B C TopTen
1 Improper neutralization of special elements in SQL command X 1
2 Improper neutralization of special elements in OS command X 1
3 Buffer copy without checking size of input X
4 Improper neutralization of input during web page generation (cross-site X 2
scripting—Xss)
5 Missing authentication for critical function X 3
6 Missing authorization X 4,8
7 Use of hard-coded credentials X
8 Missing encryption of sensitive data X 79
9 Unrestricted upload of file with dangerous type X 4
10 Reliance on untrusted inputs in a security decision X
" Execution with unnecessary privileges X
12 Cross-site request forgery (CSRF) X 5
13 Improper limitation of a pathname to a restricted directory (path traversal) X 4
14 Download of code without integrity X
15 Incorrect authorization X 4,8
16 Inclusion of functionality from untrusted control sphere X 4
17 Incorrect permission assignment for critical resource X
18 Use of potentially dangerous function X
19 Use of a broken or risky cryptographic algorithm X
20 Incorrect calculation of buffer size X
21 Improper restriction of excessive authentication attempts X 3
22 URL redirection to untrusted site (open redirect) X 10
23 Uncontrolled format string X
24 Integer overflow or wraparound X
25 Use of a one-way hash without a salt X 7
26 Allocation of resources without limits
27 Improper validation of array index
28 Improper check for unusual or exceptional conditions
29 Buffer access with incorrect length value
30 Inappropriate encoding for output context
31 Use of insufficiently random values
32 Untrusted pointer dereference
33 Concurrent execution using shared resource with improper synchronization
(race condition)
34 Improper cross-boundary removal of sensitive data
35 Incorrect conversion between numeric types
36 NULL pointer dereference
37 Improper enforcement of behavioral workflow
38 Missing release of resource after effective lifetime
39 Information exposure through an error message
40 Expired pointer dereference
4 Missing initialization
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However, it is clear from the OWASP and CWE/SANS lists that, while
many of the items clearly apply exclusively to web applications, others can be
readily related to safety software. Examples of those risks and errors that can be
applied to safety-intensive software systems include those relating to authenti-
cation, authorization, and encryption, for example. Strong safety-critical soft-
ware systems will have such attributes as encryption and authentication even if
they are only intended to operate in physical and logical isolation. Besides being
a good practice in and of itself, this approach puts such safety-critical systems
in good stead for when they might be incorporated into cyber-physical systems.

Examples of the guidelines that are relevant to safety software (but zor
safety-intensive software systems) can be found in the blog, Emergency Manage-
ment Magazine [4]. According to the blog article, the top five mistakes made in
the selection of “public safety software” are:

Poorly defined goals and operational outcomes;
Trying to solve the wrong problem;
Poor requirements and request-for-proposal documents;

Lack of coordination, cooperation, and communication;

hAEEEN

Not getting peer reviews.

This list is interesting in that it essentially focuses on the need for high-
quality risk analyses and requirements definitions, and highlights the impor-
tance of collaboration and communication. These are all factors that are em-

phasized throughout this book.

Enumeration and Classification

We now turn our attention to the various classification and evaluation methods,
some of which are shown in Figure A.1, on the right side of the diagram. We
will add several other related approaches.

Different from the “top so many” lists, these approaches (shown in Table
A.3) are usually exhaustive lists of vulnerabilities and weaknesses for legitimate
and malicious software. They are mostly published online by The MITRE
Group in the form of dedicated websites for each enumeration category. In
Table A.3, we also include the focus of each method and the purpose of each
approach.

The difference between a vulnerability and a weakness is given in the
definitions below, where a vulnerability is the occurrence of a weakness, much
as an exploit or attack is the occurrence of a threat.
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Table A3
Various Enumeration, Scoring, and Classification Methods
Acronym Full Name Focus Purposes
CAPEC Common Attacks To describe attack patterns associated with high-level malware

Attack Pattern taxonomy, such as those dealing with network reconnaissance,

Enumeration and propagation insertion and command and control. To ensure that

Classification the attacker's perspective with respect to implementing these
behaviors is properly represented. See http://capec.mitre.org/

cC Common Criteria ~ Software To facilitate the comparison of the results of independent
security evaluations of security properties of information-technology
products and systems using a common set of requirements for
security functions. See http://www.commoncriteriaportal.org/
CCE Common Configuration  Facilitates fast and accurate correlation of configuration data

Configuration across a number of information sources and tools using unique

Enumeration identifiers for system configuration issues. See http://cce.mitre.
org/

CEE Common Event Malware To describe logged events associated with malware activity in

Expression order to determine the presence of malware. See http://cee.
mitre,org

CME Common Malware Malware To provide single, common identifiers for new and prevalent

Enumeration virus threats in order to reduce confusion during malware
incidents.*

CPE Common Platform  Platform To allow for assessing threats that a malware instance poses

Enumeration to organizational computing resources (applications, operating
systems, and hardware devices) based on the targeted
platforms. See http://cpe.mitre.org/

CVE Common Vulnerabilities To enable data exchange between security products and provide

Vulnerabilities and a baseline index point for evaluating coverage of tools and

Exposures services. See http://cve.mitre.org/

CVSS Common Vulnerabilities To assess the severity of computer system security

Vulnerability vulnerabilities by establishing a measure of how much concern a

Scoring System vulnerability warrants, compared to other vulnerabilities, so that
efforts can be prioritized. See http://www.first.org/cvss

CWE Common Weaknesses  To enable, from the CWE's unified, measurable set of software

Weaknesses weaknesses, more effective discussion, selection, and use

Enumeration of software security tools and services, which can find these
weaknesses in source code and operational systems, and
better understand and manage software weaknesses related to
architecture and design. See http://cwe.mitre.org

MAEC Malware Attribute Malware To close the gap in malware-oriented communication using a

Enumeration and language for characterizing malware based on its behaviors,

Characterization artifacts, and attack patterns. See http://maec.mitre.org/

OVAL Open Vulnerability Vulnerabilities To standardize how to asses sand report upon the machine state

Assessment of computer systems.

Language To provide enterprises with accurate, consistent, and actionable
information so that they might improve their security. See http://
oval.mitre.org

WASCTC Web Application  Attacks To develop and promote industry standards for classifying

Security
Consortium Threat
Classification

the weaknesses and attacks that can lead to compromise of
websites, data and/or users. See http://www.webappsec.org/

The http://cme.mitre.org website has been replaced with the http://maec.mitre.org website (last accessed July 29, 2012)

The obsolete CME website contains the statement: “In late 2006 the malware threat changed away from the pandemic,
widespread threats CME was developed to address to more localized, targeted threats, which significantly reduced the need for
common malware identifiers to mitigate user confusion in the general public. Therefore, all CME-related efforts transitioned into
support to MITRE's Malware Attribute Enumeration and Characterization (MAEC™) effort.”

The websites in the table were all accessed on July 29, 2012.
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WASC Threat Classification

The Web Application Security Consortium (WASC) is described [11] as being
“made up of an international group of experts, industry practitioners, and organi-
zational representatives who produce open source and widely agreed-upon best-
practice security standards for the World Wide Web.”

The WASC attacks and weaknesses listed in Table A.4 are linked to excel-
lent descriptions of each attack and weakness [12]. Also available via the WASC
website is the report, WASC Threat Classification Version 2.0 (last updated as of
January 1, 2010). The report is very extensive and examines each of the threats,
attacks and weaknesses, which the report defines as follows:

* Threat: a potential violation of security (per ISO 7498-2).

e Attack: a well-defined set of actions that, if successful, would result in
either damage to an asset or undesirable operation.

* Weakness: a type of mistake in software that, under proper conditions,
could contribute to the introduction of vulnerabilities within that soft-
ware ... [the term] applies to mistakes regardless of whether they occur
in implementation, design or other phases of the SDLC. (From the MI-
TRE Group’s CWE website at http://cwe.mitre.org).

* Vulnerability: an occurrence of a weakness (or multiple weaknesses)
within software, in which the weaknesses can be used by a party to cause
the software to modify or access unintended data, interrupt proper ex-
ecution, or perform incorrect actions that were not specifically granted
to the party who uses the weakness. (From the MITRE Group’s CWE
website at http://cwe.mitre.org).

It is readily apparent that many of the WASC attacks and weakness are
the same as in the OWASP Top 10 and the CWE/SANS Top 25. This raises the
question as to whether the WASC threats can replace the CWE and CAPEC
lists. In the frequently asked questions section in the WASC Threar Classification
Report [11, 12] the response to that question is as follows:

... The work done by ... MITRE ... is far more comprehensive than anything
online. The TC (threat classification) serves as a usable document for the
masses (developers, security professionals, quality assurance) whereas
CWE/CAPEC is more focused for academia ...

This is frequently the case. Research organizations and academic institu-
tions tend to publish long and complex reports on this subject, but there is still



Appendix A

249

Table A4

WASC Attacks and Weaknesses

Attacks

Weaknesses

Abuse of functionality
Brute force

Buffer overflow

Content spoofing
Credential/session prediction
Cross-site scripting
Cross-site request forgery
Denial of service
Fingerprinting

Format string

HTTP response smuggling
HTTP response splitting
HTTP request smuggling
HTTP request splitting
Integer overflows

LDAP injection

Mail command injection
Null byte injection

It is readily apparent from the
above 0S commanding

Path traversal
Predictable resource location
Remote file inclusion
Routing detour
Session fixation
SOAP array abuse
SSlinjection

SQL injection

URL redirector abuse
XPath injection

XML attribute blowup
XML external entities
XML entity expansion
XML injection

XQuery injection

Application misconfiguration
Directory indexing

Improper file system permissions
Improper input handling
Improper output handling
Information leakage

Insecure indexing

Insufficient anti-automation
Insufficient authentication
Insufficient authorization
Insufficient password recovery
Insufficient process validation
Insufficient session expiration
Insufficient transport layer protection
Server misconfiguration

a need for the academic work to be translated into a form that is more useful for
the practitioner. This is accomplished to some degree by publishing an abbrevi-

ated list of leading cases as OWASP and CWE/SANS have done.
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Summary and Conclusions

It is apparent from the above descriptions that there is a divide between the
security and safety approaches to making practitioners more aware of common
risks, threats, attacks, weaknesses, and vulnerabilities. In the security domain,
we see the use of lists of leading issues and exhaustive lists of weaknesses, vul-
nerabilities, attacks, and so on. And yet these lists are guidelines with which
software security engineers may or may not comply. There is little compulsion
and even less enforcement, even when regulators support such lists.

On the other hand, software safety engineers have to adhere to strict stan-
dards if they are to have their systems certified at a particular level. This obvi-
ates the real need for lists of leading issues, and so we do not see them. This
is all well and good, except for the fact that many of the security-related lists
contain very good advice for those developing safety-critical software systems,
especially when such systems are combined with information systems to form
cyber-physical systems.

It serves both communities well if those responsible for security-critical
software systems and those creating safety-critical software systems are aware of
the tools available to the other group.

Endnotes

[1] OWASP stands for the Open Web Application Security Project, which was founded in
2001. OWASP is an “open community dedicated to enabling organizations to conceive,
develop, acquire, operate, and maintain applications that can be trusted.” The website is
WWW.0Wasp.org.

[2] CWE stands for “Common Weakness Enumeration” and can be accessed at htep://cwe.
mitre.org. The SANS Institute is the “SysAdmin, Audit, Network, Security Institute,”
which is a leading training organization for information security professionals. The SANS
Institute website is at www.sans.org . Both websites were last accessed on July 29, 2012.

[3]  See http://www.netnanny.com/learn_center/safety_tips, last accessed on July 29, 2012.

[4] See http://www.emergencymgmt.com/emergency-blogs/tips/Top-five-mistakes-in-soft-
ware-selection-010912.html, last accessed on July 29, 2012.

[5] CC Bulletin 2008-16 on Application Security, see http://www.occ.gov/news-issuances/
bulletins/2008/bulletin-2008-16.html, last accessed on July 29, 2012.

[6] Available via a link at https://www.owasp.org/index.php/Category: OWASP_Top_Ten_
Project, last accessed on July 29, 2012.

[7]1 Merkow, M. S., and L. Raghavan, Secure and Resilient Software Development, Boca Raton,
FL: CRC Press, 2010.

[8] See http://cwe.mitre.org/top25, last accessed on July 29, 2012.
[9]  See http://cwe.mitre.org/, last accessed on July 29, 2012.
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Herrmann, D. S., Soffware Safety and Reliability, Los Alamitos, CA: IEEE Computer
Society, 1999.

See http://www.webappsec.org/, last accessed on July 29, 2012.

See http://projects.webappsec.org/w/page/13246978/Threat%20Classification, last
accessed on July 29, 2012.






Appendix B
Comparison of ISO/IEC 12207 and
CMMI®-DEV Process Areas

As can be seen from the Table B.1, there are many similarities among the ma-
jority of process areas of both ISO/IEC 12207 and CMMI®-DEYV, although
some comparisons are closer matches than others. Also, there are specific dif-
ferences in categories—for example, verification and validation are included in
the CMMI®-DEV category engineering, whereas ISO/IEC 12207 shows them
as belonging to the software support category.

The main difference between these two sources is that ISO/IEC 12207
includes processes for individual phases of the development life cycle, whereas
CMMI®-DEYV does not. It appears that the reason for this is that CMMI®-DEV
has a Specific Process (SP 1.2) to establish life cycle model sescriptions, whereas
ISO/IEC 12207 does not, but rather presents a life cycle model directly.
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Appendix C
Security-Related Tasks in the Secure
SSDLC

In this appendix, we list task areas for each of eight phases of the secure soft-
ware system development life cycle (Secure SSDLC) in Tables C.1 through C.8,
respectively. In Tables C.9 through C.16, we identify those who should be re-
sponsible for each task within each of the eight phases, and to what degree or
level each area within an organization should be involved. Table C.17 provides
a summary of responsibility levels for all eight phases and an aggregated level
for the entire lifecycle.

While these tables contain substantial detail, they should still be used for
guidance purposes only. Organizations can have very different organizational
structures and risk profiles. Therefore the emphasis on which task areas to focus
is likely to vary significantly from one organization to the next. That being said,
there are usually more commonalities than differences when building security
into software systems. Consequently, it should be helpful for those involved
in creating and supporting security-critical software systems to have at hand
what is essentially a checklist. This checklist should prove even more valuable to
those who are less involved with security and are more focused on safety-critical
systems; such individuals are less likely to be familiar with what is commonly
required to make critical software-intensive systems secure.

It should be noted that we do not include any roles for software safety
engineers in the secure SSDLC. This is fairly typical for information systems
that are not directly subject to safety hazards. However, going forward, it is like-
ly that more information systems will have safety-critical components or will
be interfacing with safety-critical systems. Particularly when security-critical
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information systems are combined with safety-critical control systems to form
cyber-physical systems do the creators, maintainers, and operators of the infor-
mation systems have to account for safety issues. Of course, a physical event,
such as a power blackout or a telecommunications network failure, can drasti-
cally impact information systems, but usually from performance, resiliency, and
availability perspectives and not so much with respect to security.

As will be argued in Appendix D, the reverse is not necessarily true. Those
designing, developing, operating, and supporting safety-critical software-inten-
sive control systems often need to consider some security aspects of their soft-
ware systems, even if the systems themselves are designed to be physically and
logically isolated. There is always the possibility of intentional insider attacks
by authorized employees or contractors, or unintended insider assistance to an
attacker, as in the case of the Stuxnet worm that attacked the industrial control
systems operating the centrifuges in uranium-processing facilities in Iran.

Task Areas for SSDLC Phases

In Tables C.1 to C.8, we provide descriptions and suggest purposes for each of
the tasks throughout the following eight phases of the Secure SSDLC:

Risk analysis;

Security requirements;

Security architecture and design;

Development (building/configuration/integration);
Functional and nonfunctional security testing;
Deployment;

Operations, maintenance and support;

PN NN BN

Decommissioning and secure disposal.

Tables C.1 through C.8 below will give those tasked with ensuring that
security is built into software systems a fuller understanding of what is involved
within each step (or task area) and why individual steps are needed.

The initial phase comprises the analysis of risk and its management. As
shown in Table C.1, it is first necessary to determine potential risk factors, such
as threats and weaknesses that evolve into exploits and vulnerabilities that have
some probability of allowing successful attacks. These latter attacks cause losses,
which can be reduced or mitigated to some extent using prevention, avoidance
and/or deterrence methods.

The results of the risk analyses not only point towards the need to miti-
gate the identified risks, but also provide input to the requirements phase, as
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detailed in Table C.2. This table describes and explains the tasks to produce
complete sets of security requirements for software systems.

Once the security requirements have been decided upon and agreed to, by
authorized persons, and adequate funding has been approved, the project team
can embark on defining the security architecture and design of the software
system, as described in Table C.3.

The design phase produces specifications from which developers build
secure software systems. Table C.4 describes the various tasks that will produce
sufficiently secure software systems based upon these specifications.

While it is expected that developers, their supervisors, and their project
managers will check programs to ensure that they operate successfully (though
not necessarily correctly), the testing of functionality is usually left to the Qual-
ity Assurance department. If addressed at all, testing of nonfunctional attributes
such as security and performance is usually handed over to subject-matter ex-
perts, either internal to the organization or outside consultants. Nonfunctional
security testing comprises the task areas shown in Table C.5.

Once the software system has been thoroughly tested to assure a high
level of security, it is ready to be deployed into the production environment.
However, even though a software system might be intrinsically secure, its secure
operation is highly dependent on it being securely distributed and installed, as
well as running in an environment that is secure, with security-oriented operat-
ing, support, and maintenance processes. The transition from development to
production is a very sensitive step in the overall SSDLC and should follow the
task areas that are described in Table C.6.

After a software system has been deployed, it is critical to its ongoing se-
curity that qualified staff has specific roles in order to maintain ongoing security
throughout the operational life of the system. Table C.7 includes the task areas
necessary for continued security in the operation, maintenance and support of
the system.

Many publications on the Secure SSDLC stop at the operations phase.
However, it is important that the end-of-life tasks are performed in a manner
that will ensure that there are no security issues when the software systems are
decommissioned and disposed of. These important tasks are described in Table
C.8, along with reasons why it is so important to pay sufficient attention to this
critical phase.

Involvement by Teams and Groups for Secure SSDLC Phases

We now look at each of the tasks within the various phases and indicate the lev-
els of involvement in those tasks by various teams or groups within a typical or-
ganization. The entries in these tables (Tables C.9 to C.16) and in the summary
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(Table C.17) are normative. That is to say, many of the teams or groups might
not exist in typical small and medium-sized businesses or in some large entities.
Also, it is the exception, rather than the rule, for groups so designated to have
the level of involvement shown. While some surveys, such as those conducted
and reported as part of the Building Security in Maturity Model (BSIMM)
effort [1], show relatively high levels of involvement by team members, the
companies participating in the BSIMM exercise are largely self-selecting. The
general picture in both public and private sectors is not nearly as encouraging.

In Table C.9, we show the degree of involvement of various areas in the
risk analysis and control phase. For the most part, risk analysis focuses on the
business perspective, preferably with considerable support from the informa-
tion security department and risk area and oversight by internal and external
auditors. The results from the risk analysis become a major source for the subse-
quent requirements development phase. This approach is far from ideal because
if the software development and operations teams were to be more involved
than usual, they would better understand the concerns of the business areas and
account for such concerns in the design, development, and implementation of
software-intensive systems. This disconnect leads to developers not assuming
responsibility for ensuring that their software addresses business management
risk concerns—this transfer of responsibility is described in greater detail in the
section on technical debt in Chapter 11. In Table C.9, and in the subsequent
tables, we indicate the ideal levels of involvement. It should also be noted that
the entries in the following tables are highly subjective based on personal expe-
rience and judgment, and that other situations may call for different levels of
involvement.

It is usual for the development team and the infrastructure team to be
heavily involved in the requirements phase, as shown in Table C.10 preferably
with a high level of involvement by the business units for which the software
system is being created. Often, the security requirements are given short shrift,
as evidenced by the readily apparent lack of security and privacy capabilities
of many web applications, in particular, but also of production systems. There
should be heavy involvement of the security team and auditors to ensure that
the requirements are adequate with respect to security.

The security-related tasks in the design and architecture phase, shown in
Table C.11, should depend heavily on the security team, as well as on the ap-
plication development and infrastructure teams and, to the extent possible, on
the auditors. Business units, where the end-users generally reside, are somewhat
less involved because most of the work in this phase is technical.

As Table C.12 indicates, the development or coding phase is mostly de-
pendent on the technical teams, with strong oversight by auditors. The business
side is less involved. Similar involvement carries through to the testing phase,
depicted in Table C.13, for the same reasons.



Engineering Safe and Secure Software Systems

280

S|oAg)

ajelapoul ubiy aInjanJiseljul pue uonedljdde ayy
MO ybiy a1eJapolA 01 M07 01 B1eJBpPOIA| ybiH ybiy ybiH  1e ubisap A1indas |eaIuyIB) MBIASY
ybiy ybiy o1 sjuswia|s ubisap A1Indas snoLiea
0] 81BISPO\  BIBIBPOI 91eIBPOI ybiH 91eI9POA 91BI8PO\ 91eIBPOI ubiH 10} S11}8U8Q pUB SIS0 BZA|BUY
ybiy ubisap
9)eJ8poj\  81elapoly 81eJ8poj\| 03 81elapoj 81eI8poA 91eI8PO\ 31eI8pOo UbiH  AMINJ8S [BIIUYIBIUOU PB|IeIBp 81e8I)
ajelapowl yby ubisap
MO 8lBISPON TN 01 MO 01 81BJIBPOIN ubiH ybiH ybiH Anass [e1UYIs) pa|Ielep 81e8l)
ybiw ubisap A1Inaas
9)eJ8pOJ\  81RIBPOIN 91eJopOJ\ 0} 81eI3POI 91eIBPOA 91eI8PO\ 91eIBPOI ubiH |BaIUYIBIUOU [8A3]-d0} USI|gels]
alelapowl ybiy ubisap
MO 8leIBpO 81eI8pOo 0} MO 0} 81IBPOJN ubiH ybiH UbiH  Alndas |ealuyaay |aAs|-doy ysi|qelsy
ajelapowl ybiy
MO]  81eIBpOIA 31eJapolA 01 M07 01 B1eJ3pPOIA| ybiH ybiH ubiH  ubisap A1INJas |aAa|-WalSAS a1ealn
ubiy alelapowl
MOT yblH 01 81RIBPOI 01 M0 ybiH ybiH ybiy ybiH ybnolypyjem ainiasiyale wiopad
ybiy $]0J3U02
9)eJ8poj\  81elapoly 91eJopoj\ 03 81elapoj 81eI8poA 91eI8PO\ 81eI8pOo UbIH Avnaas |ealuyasiuou suIwlale(Q
ajelapowl yby
MO 8lBISPON 91BIBPOJ\ 01 MO 01 81BJIBPOIN| ubiH ybiH ybiH  s[0J3u0d A1NJss |BOIUYIB] BUILLIBS(]
a1elapou ybiy aIna8lyae
MO  81eIBpO 31eI3POI 01 M0] 01 B1RJBPOIN ybiH ybiy ybiH A1In2as |ans|-walsAs a1eal)
yuawabeueyy  sioypny s1abeuepy siabeuepy siabeuepy weaj weaj wea] sealy jysel
annnoaxy Jewaixy  suopesadg nun 190loid aimonnseyu] uawdojanag  Auanoag
R |ewaju| ssauisng uoneaijddy

Juawanjoau] dnoin/wea] jo [anaq

aseyd ubisa(] pue 81n13a11yaly 8y 10} sdnoJo/Swes| o JUSWSA|OAU] JO S|9AS]

L1°J alqeL




281

Appendix C

a1elapow ybiy yby
0} M0 ybIH 81eJ8poj\| 0} 81eJBPO|\ 0} B1RIBPOIN ubiH ybiH UbIH ||e18AQ
EINS
ybiy ybiy 31eM1J0S J0 UBISap pue ainydsllydle
MO ybiy MO MO ybiH 01 81eJ3pO\ 01 81RIBPOJN ybiH J0 mMalAal A1indas Juapuadapu)
SJUBWIUOIIAUB
|euonelado pue 1s8} Juawido|ansp
MO ybiH MO ybiH ybiH ybiH ybiH ybiH  Joj swuswalinbal A1INd8s auIwIB1a(]
Salll[IgeJaunA
ybiw ybiw ainjoniseljul pue uonedldde
MOT ybiH DTN DTN TN 01 81BJBPO)\ 01 81BJISPON ybiH A8y jo uonebiiw Joy ueid 81eai)
Aessadau se
ybiy saunpado.d Jo/pue ‘splepuels ‘Adijod
91eI8pOo\ ybly 01 81eI8pPO 81eI8po| 81eI8po|A| 91eI8PO 81eI8pOo UbIH Anass uonewlojul syepdn Jo ppy
ajelapow ue|d 1s8} AjIndas
01 MO ybiH 31eJapolA ybiH ybiH ybiH ybiH UbBIH  |eUOIdUNJUOU PUB [BUOIIOUN) B)e8IY
1uswabeuew
9AIINJ8Xa pue ‘sisfeuew ssauisng
'$103e48d0 'SI01eISIUIWPE ‘SI8sN
-pua Jo} sweiboud ssauaieme
9)eJ8poj\  81elapoly 81eI8pOo| 81eI8pOo| 81eI8po 91eI8PO\ 91eI8PO UbIH pue Bululesy AjInaas apinolg
ajelapowl yby

MO 8lBISPON TN 01 MO 01 81BJIBPOIN ubiH ybiH ybiH SWaISAS 81n28s J0 Uonesl)
yuswafeueyy  sioupny siabeuepy siabeuepy  siabeuepy weaj weaj weaj sealy jyse|

aAnnoaxy Jewd)xy  suonesadg nupn 193load aimonnseyuj juawdojanaqg  Auinaag

R |eusaju| ssauisng uoneoiddy

Juawanjoau] dnosg/wea) jo |ana]

(panunuod) L1’ 8lqeL




Engineering Safe and Secure Software Systems

282

91813pOW 01 MOT ybIH 91e13POIN| 91e13POIN| ybIH ybiy ybiH ybiH TETEIN)
s1onpoud
pue sassanold juswdo|anap
31eI8poIA| UbIH 81eJapOIA 81eJapOIA ybiH ybiy ybiH ybiH 10 MBIABI uBpuadapu|
MO ybiH Mo Mo yBIH ybIH yBiH UBIH M8IAS] 8p03J UE|d
yby $891A8S A1IN2as Jo Bunsel
31RJIBPOI ybiH ybiH  0181eI8pON ybiH ybiy ybiH ybiH  uoissaibal pue ‘uoneibalul ‘uun
ybiy

8]eJapoj\| ubiH ybiH 01 81el3pOIN ybIH ybIH ybiH ybIH Bunsay Ayinoas ueld
ssaooud
MO UbIH a1eJapOo|A| MO ybiH ybiy ybiH ybiH Bupyoely Aujigesauina dn 18s
ybiy alelapow 31em1jos uonealjdde jo 1oddns ul
MO 0} 8}JISPOIN 01 M0 MOT ubiH ybiH 91eI8PO ublH  aunmonuisesyul 8Indss Juswaldw
alelapowl alelapowl syuauodwod Ajinaas
MO ybIH 0] M0 0] M0 ybIH a1eJapo ybiH ybIH |aAs|-uoiiealjdde dojanaq
ybiy ajesspow Swea} aInjonliseljul
9)eJapow 0} M0 0} 81eJ3poJ\ 01 M0 MOT 91BIBPOJN ybiH 91eI8pO\ ubiH 10} Buiuresy paie|ai-A1inaag
ybiy swea) Juswdojanap
81RJIBPOI ybiIH 91eI3POIN| MO7 01 81RI8POJ\ 31eI3PO ybiH ybiH 10} Buiuieny paiejal-Aiinaag
$311IAI10e 1UsWdo|anap
91eJapoW 01 MO7 ybIH a1eJ3poIN a1eJ3poIN ybIH ybIH ybIH ybIH 10} JuswuoJIAUS 8In38s dn 185
juawaheuepy sio)ipny  siabeuepy siabeuely  siabeuey weaj wea| wea| sealy yse|

annnoaxy lewd)xy  suopesadQ nun 103load aimonnseyu;  juawdojanag Ainoaag

9 |eusaju) ssauisng uoneaiddy

jJuawaajoau| dnoin/wea) jo [ana]

ased Juawdo|ana( 8y} 4o} SAN0JD/SWIBs| JO JUBWAA|OAU] JO S|9AT]
¢l @lqeL




283

Appendix C

Mo YbIH Mo 81elapoly ybiH ybiH ybiH ybiH |[eJ3AQ

Bunsal Jo s1oadse A11indas

MO ybiH MO a1eI3pOoN ybiH ybiy ybiH ybiH JO M3IA8I Juapuadapul

S1UBWSSAsSe

Mo YbIH Mo 81eJapojy ybiH ybIH ybiH ybiH Anjigessuina Juspuadapu

Mo ybiy 91eI8poN ybiH YbIH ybiH ybiH YbIH Bunsa Avijigesn

MO ybIH a1eIapoIN ybIH ybiH ybIH ybiH ybiH Buiisa) peo|/aaueuniopiad

Mo ybiH Mo Mo ybIH ybiH ybiH ybIH Bunsa) waisAg

sainpaosold

MO ybiH ybiy MO ybiH ybiy MO ybiH uoneinbyuod Bunss|

Mo ybIH Mo Mo ybiH UBIH ybiH ybiH M3IA3I BP0

juawabeueyy  sioypny  siabeuepy siabeuepy  siabeuey weaj weaj weaj sealy jsel
annnoax3y  |ewsd)xy suonesadg vo/mun joaloid aimonnseyu]  juswdojanag Awanoag

9 |eusaju) ssauisng uoneaddy

Juawanjoau| dnoig/wea] jo [ana]

aseyq Bunsa] ayy 10} sdnoin/swes)] Jo JUSLBA|0AU] JO S|BAST

€1°J 9lqelL




Engineering Safe and Secure Software Systems

284

ybiy

ybiy

91e13pOIN ybiH 91e13POIN 91e13POIN ybIy 0191eJ3pOJ\ 0} 81RJSPOJ ybIH [|BI8AQ
wawAho|dap
J0 S108dse A111nJss Jo
a1eJapolA| ybiH ybiH a1elapoly ybiH ybiH ybiH ybiH MBIABJ Juspuadapu)
Y1y o1 s3e18po ybiH ybiH alelapoly ybIH ybiH ybiH ybiH JusuwiAojdap 8|eas-|n4
ybiy
ybiy o3 81IBPOJ ybiH 91e13POIN ybiH 031 81eIBPOIN BRI 91e13pOIN ybiH ssaualeme pue Buluiel|
MOT ybiH MO MO ybiy 31RJIBPO ybiH ybiH saju e1ep Buniedwon
ybiy oy

MO 91eIBPOIA a1eJapolN MO ybIH ybiH a1elapolp ybIH $a|l} waisAs Buedwon
suorelado 0}
Mo ybiH ybiH alelapoly UBIH ybiH ybiH ybiH  Bunse) jeuy woly uonisuel]
MO B]elapoly yBIH ajelapoly UBIH ybiH YBIH YBIH JuswAoldap 10jid
juawabeueyy  sionpny  siabeuepy siabeuely  siabeuepy weaj weaj weaj sealy ysel

annnaaxy lewd)xy  suonesadQ nun abueyy aimonnseyu; juawdojansg Amnoag

1 [ewiayu| ssauisng puejoaloid uoneaiddy

yuawanjoau| dnoin/wea) jo |anaq

aselyd uswhojdaq ay} Joj sdnoin/swes] Jo JUBWAAJOAU| JO S|9AS]

v1°J alqeL




285

Appendix C

ybiy

91eIBPOJ ubiH 91eIOpOJ\| 01 81RIBPOIA 91eI8PO 81eI9POJA 91BIBPOIN ubiH [|BI8AQ
yby alelapow alelapow Buiaiyale ‘Burioyuow
31eJapOo ybiH ybiH 01 81eJBPOIN 0] M0 01 M0] 8lelapowl 0} MO ybIH ‘Buibbo| ‘Buiipny
MO ubiH 81eI9POA 81eI9POA 91O 81eI9pOJ 91eIBPO\ UbiH  Siuswssasse Aljiqesaulnp
weJBoud
ubiy 03 a1e18pO UbIH MO UbIH 91eIapo 81eI8poj\ 91eI8pOo ubiH ssaualeme A1n2ag
yb1y 01 81eI8POIN ybiH MO ybiH MO MO MO ybiH SMBIABL YSIY
UbIH UbIH UOISIBA 81BM}J0S MBU
MO yblH  o181elapoj 01 81eIapOIA| ybiH ybiH ybiH ybiH 01 BunesBiw pue Bunss|
jawabeueyy sioupny  siabeuepy siabeuely siabeuep weaj weaj wea] sealy jsel

annnoaxj  |ewsd)xy  suopesadg nun 109loid aimonnseyu]  juswdojanag Khunaag

R |eusaju] ssauisng uoneayddy

jJuawanjoau] dnoin/wea] jo |anaq

aseyd uoddng pue ‘saueusiuie|y ‘suoieladq 8y} 1o} sdnoin/swes| Jo JUSWSA|OAU| JO S[8AsT
G1°) alqeL




Engineering Safe and Secure Software Systems

286

Mo ybiy ybiH Mo MO Mo Mo ybiH [EEN)
Buluoissiwwoaap
MO ybiy ybiy MO MO MO MO ybiH JO M3IA8I Juapuadapul
BuluoissiwwoIap
Mo ybIH ybIH Mo Mo Mo’ Mo ybIH 8|eas-||n4
|esodsip 1o}
MO ybiH ybiy MO MO MO MO ybiH ssaualeme pue Buluiel|
elpaw
MO ybiH ybiy MO MO MO MO yblH  pue sa|l eiep Jo [esodsi(
MO ybIH ybIH MO MO MO MO yblH  sa|y exep jo uosiedwo?
ajesapow S9|lf WaIsAs pue
MO ybiH ybiH MO MO 01 07 81eJapoW 01 MO ybiH uorneardde o |esodsiq
ybiy 01
MOT  91BIBPOIN 31eI3PO MO ybiH ybiH 31eI3PO ybiH se|l weisAs Jo uosiedwon
ubiy 91E1S PAUOISSIWILI0IBP 0}
Mo ubiH 03 s1eJBpO Mo MO MO Mo ybiy |euoiielado woiy uoiHSuBl]
Buluoissiwwoasp Buunp
SwaIsAS mau pue p|o Jo
MO ybiH ybIy a1eIapo 81eJaPO 91eJ3POIN 31eI3pOo ybIH Abayur jo Buluieiure|y
jawabeueyy  sioupny  siabeuepy siabeueyy siabeuepy wea] wea) weaj sealy jysel
aApnaaxjy  |ewd)xy suopesadQ nup 19aload aimonnsesyu]  juawdojanag Khunaag
9 |eusaju| ssauisng uonealddy

yuawanjoau] dnoin/wea] jo |ana]

aseyd |esodsi(] pue BuiuoissIWwWoda( 8y 1o} sdnoJ/Swies| o JUSWSA|OAU] JO S|9Aa]

91') 2lqelL




287

Appendix C

ybly ybly ybiy ybly 8]9ko
81eJ3poUW 0} MOT ybiH 91eJOpOj\| 01 81eJBPO|\ 01 B1RIBPOIN| 0} 81J3PON 01 91RIBPO\ UbiH 81| 8yl 1o} S|8AaT ||BIBAQ
|esodsip
MO ybiH ybiH MO MO MO MO ybiH pue BuluoIssIwwods(]
ybiy 9oURUBIUIRI
91RIBPO ybiH 91eIBPOJ\| 01 81RIBPOIA 31RIBPO|A 91RIBPOJ 91RI8PO ybiH pue suolieladg
ybly ybiy
a1elapojA| UbiH a1elapolA| 31eIapolA ybiH 01 81eJapo|A| 01 81RI8POJN ybiH JuawAoldaq
MO ybiH MO 91eI8pojN ybiH ybiH ybiH ybiH Bunsal
a]elapow 0} MO ybiH 81eJapo 81eJapo ybiIH ybIH ybIH ybiH wswdojans(
ybiy ybiy
81e1apow 0} Mo ybiH 81EISPOJ 01 8IBIBPOJN O} BIRIBPOI ybIH ybiH ybiy  uBisaq pue ainsNyaly
yby yby alelapow alelapowl
ybiy 01 are18pON ybly  0181RI8pPO)\ 01 BIRIBPOJ 01 M0 0} MO7  8)RIBPOW 0} MO ybiy sjuawalinbay
alesapowl ybiy yby
TN ybiH 0} M0 TN ETETIN 0} 81JI3PON 01 91RIBPOJ ybiy  |0:U09 pue sisAjeue ysiy
juawaheuepy sioppny siabeuepy siabeuepy siabeuepy weaj wea| weaj aseyq
annN2ax3 lewd)xy  suonesadg nun 1oaloid aimonnseyu; jawdojanag Apanoag
pue [eusaju| ssauisng uoneaddy

Juawanjoau] dnoig/wesa) jo [ana]

aseyd Aq 1uswaA|oAu| 40 S|anaT 0 Alewwing

L17) 21qe)L




288 Engineering Safe and Secure Software Systems

The weighting of effort for the deployment phase, as shown in Table
C.14, shifts to the operational areas, although there is still significant support
required from the security team and technical teams. As shown in Table C.15,
the same applies when the system moves into production or operation.

Decommissioning involves the operational areas with oversight by secu-
rity and audit, as shown in Table C.14.

The summaries of Tables C.9 to C.16, which provide levels of involve-
ment for tasks within phases, are combined into Table C.17, which shows the
overall involvement of the various groups and teams in the security aspects of
each phase of the life cycle. As expected, the main overall participants are the
security and audit team members, but the application development team and
the infrastructure team follow close behind. For the effort to be successful, par-
ticipants must be fully engaged and perform their tasks diligently.

A Note on Sources

The entries in the above tables cannot all be attributed to specific references be-
cause they represent an amalgamation of concepts drawn from various sources,
many of which are given in the End Notes section of Chapter 9. Most of the
tables in this appendix are derived from McBride [2], although their form and
content varies considerably from those in [2]. For example, the risk analysis and
control phase as well as decommissioning and disposal phase are not included
in [2].

Endnotes

[1]  See www.bsimm.com, accessed August 15, 2012.

[2] McBride, P, and E. P. Moser, Secure System Development Life Cycle (SDLC) Building Securi-
ty Into Your System—INot Bolting It On After the Damage is Done, Atlanta, GA: METASeS,
2000. Available at http://lazarusalliance.com/horsewiki/images/3/38/Secure-System-De-
velopment-Life-Cycle.pdf. Accessed August 5, 2012.



Appendix D
Safety-Related Tasks in the Safe SSDLC

As in Appendix C, which focused on the Secure SSDLC, Tables D.1 through
D8, show tasks for each phase of the safe software system development life cycle
(SSDLC), describe them, give their purposes. Table D.9 shows the levels of
involvement of various players for each phase.

The following tables should to be used for guidance purposes only. These
tables should be helpful for those responsible for the safety of mission-critical
software systems and they offer a checklist to assist in the process of ensur-
ing that adequate attention has been applied to safety considerations through-
out the life cycle. The checklist should have even more value to those who
concentrate on security-critical systems, as these individuals will likely not be
very familiar with safety-critical software system requirements and methods for

building them.

Task Areas for Safe SSDLC Phases

We now show the tasks, descriptions, and purposes for each of the following

phases of the Safe SSDLC:

* Hazard risk analysis and control;

* Safety software requirements;

* Safety architecture and design;

* Development (building/configuration/integration);

e Verification, validation and certification;
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* Deployment;
* Operations, maintenance and support;

* Decommissioning and safe disposal.

Tables D.1 through D.8 provide guidance for those tasked with ensuring
that safety is built into software systems and that those systems meet particular
standards necessary for certification. The main differences between the phases
presented here and those phases described in Appendix C are (1) replacement
of risk analysis and control relating to protecting information assets with hazard
risk analysis and control relating to damage that a malfunction or failure might
do to humans, other creatures, or the environment; and (2) the substitution of
verification, validation, and certification phase for the testing phase. The other
phases of the Safe SSDLC appear to be similar in name to the phases in the
Secure SSDLC, but significant differences will be highlighted as we go through
the phases one at a time. For example, the disposal of a safety-critical software
systems and data can take a very different form in comparison with the disposal
of security-critical software systems and data.

As mentioned in Appendix C, there is some degree of asymmetry be-
tween the Secure and Safe SSDLCs, particularly with respect to a strong recom-
mendation to have software-security subject-matter expertise available to the
software-safety project team. This is in contrast to not usually needing to have
safe-software experts involved in the Secure SSDLC.

As with the Secure SSDLC, the first phase of the Safe SSDLC is also a risk
analysis and control phase. However, in the latter case, it is the risk that a mal-
function or failure will cause physical harm to humans and/or the environment.
In the former case, it is generally a matter of determining the likelihood that a
security-critical software system will be penetrated and sensitive data compro-
mised. While it is true that the result of a breach or failure of a security-critical
software system can result in harm, the damage is usually in the form of fraud
against financial assets, theft of intellectual property, and the release of nonpub-
lic personal information. These latter consequences can be extremely distressing
and might lead indirectly to physical harm. However, financial losses are gener-
ally considered not to be as serious as physical harm, even though the former
can usually be estimated fairly accurately and the latter are generally rough
estimates because of the difficulty in assessing the value of a life, the cost of an
injury, and the financial impact of an environmental disaster.

In Table D.1 we show the task areas related to hazard risks. As with fi-
nancial risks, the impact of a malfunction or failure of a safety-critical software-
intensive system is on both the owner of the system and those affected by the
system, such as internal end users, customers, or the public in general. The
main difference in approach between security risk and safety risk evaluations is
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that when safety is the main criterion, the emphasis is on the harm that could
be inflicted on others rather than the financial, reputation, and other losses of
the entity running the system, even though the latter could be very substantial.
However, we do include in Table D.1 the determination and assessment of
threats, exploits, weaknesses, and vulnerabilities, as were incorporated into the
Secure SSDLC in Appendix C. Here, we distinguish between hazards, which are
those activities than could potentially be done &y the system, and threats, which
are those actions that could be done 7 the system. Up until recently, the lat-
ter threat scenarios were largely ignored by software safety engineers, although
that is changing with the advent of more cyber-physical systems. Ironically,
even isolated safety-critical systems have always been open to compromise by
malevolent insiders and by unwitting accomplices, as in the case of the Stuxnet
worm. Often, physical controls have been implemented for highly-dangerous
control systems (as with the need for two separate and independent operators
to activate a nuclear missile launch) but such methods are increasingly being
replaced by computer systems.

When considering risks relating to safety-critical software systems, it is
important to include both safety and security factors, especially as a security
breach can lead to unsafe functioning of safety-critical systems. As mentioned
in the main text, safety and security software attributes are frequently dealt with
separately in the literature, with little crossover between silos. Only a relatively
small number of publications address both safety and security together. Task
areas for security-critical software systems for the remainder of the SSDLC were
addressed in Appendix C. Many of the task areas for the Safe SSDLC described
below are in similar categories to those of the Secure SSDLC, except for the
safety orientation of each task area. Certain terms, such as verification and vali-
dation, are more common for safety-critical systems, with zesting being the term
most often used for security-critical systems; the overall concepts are similar.
Many of the concepts used are from the JSSSC report [2], which in turn leans
heavily on United States military standards. The JSSSC report presents an ex-
cellent example of a Plan of Action and Milestones (PAO&M) schedule for de-
veloping safe software systems, which also includes consideration of hardware.

In Table D.2, we describe the task areas needed for coming up with ge-
neric safety requirements for the software system. As stated in [2]:

Generic SSRs [software safety requirements] are those design features,
design constraints, development processes, “best practices,” coding
standards and techniques, and other general requirements that are levied on
a system containing safety-critical software, regardless of the functionality
of the application. The requirements themselves are not ... tied to a specific
system hazard ...
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According to the JSSSC report [2], the requirements are based up experi-
ence of errors or omissions that resulted in mishaps or potential mishaps.

When the above tasks have been completed, the project team should have
a complete set of approved safety requirements for the proposed software sys-
tem, along with formal approvals of the requirements, funding, and resource-
levels for the implementation of those requirements. The requirements are then
used in the subsequent software system safety architecture and design phase,
which is described in Table D.3.

Once the safety architecture and design tasks have been accomplished,
the results need to be incorporated into the application development process
as indicated in Table D.4. As noted in Table D.3, it is important to secure the
phases of the development life cycle for safety-critical software systems and to
ensure that appropriate security services, such as strong authentication, restric-
tive authorization, and strong encryption, are incorporated into safety-critical
systems and that the monitoring, reporting of events, and incident response are
built into safety-critical software systems even though they are not expected to
be exposed to external attacks.

Verification tasks are generally performed at each phase throughout the
Safe SSDLC, with validation conducted when the software has been developed,
and certification applied for when the fully-integrated software system is final-
ized. These tasks are shown in Table D.5.

It would appear that too little attention is being paid to the deployment
phase in many projects, yet this phase subjects the organization to huge poten-
tial risks, particularly if the deployment involves integration with other software
systems that are not under the direct control of the deploying entity. A case in
point is the faulty deployment of a mission-critical trading system on August
1, 2012 by the Knight Capital Group. The launch of the updated system re-
sulted in a catastrophic malfunctioning and an immediate financial loss of $440
million [4]. While this example does not have direct safety implications, it is
indicative of the type of disaster that can occur during the deployment phase,
and it provides strong evidence that supports paying full attention during this
critical phase.

There are two types of safety risk during deployment. One is that the
deployment process might be deficient in that it does not adequately check that
all the modules needed are being installed and that no superfluous modules
remain in the software system. The other relates to intrinsic problems within
the software itself due to such causes as inadequate requirements, specifications,
and testing in the context into which the software is being released.

The task areas relating to the deployment of safety-critical software sys-
tems are described in Table D.6.
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Once the software system has been deployed, there are ongoing opera-
tional, maintenance, and support functions that are required in order to keep
the system running in a safe manner, as described in Table D.7.

As long as there are few changes to the system and its environment, it can
be expected that the system will remain relatively stable over long periods of
time. Any changes can adversely affect safety, and so it is appropriate to conduct
periodic safety reviews that will consider the safety impact of any such changes.
However, in many cases, the next significant period begins when there is an
impetus to close down the system, whether such pressure to change systems
is internally or externally initiated. For example, at some point, safety-critical
systems will become obsolete and will need to be replaced within the relatively
near future, say 18 months to two years. This will result in the need to dis-
continue the current system and dispose of any traces of the applications. For
safety-critical systems, it is very important that the disposal of the system being
replaced is done in a safe and secure way. The tasks relating to this decommis-
sioning and disposal phase are described in Table D.8.

Levels of Involvement

In Table D.9, we show the overall involvement of the various groups and teams
in the safety aspects of the life cycle. The entries in this table are normative. As
expected, the main participants are the safety, security and audit team mem-
bers, with the other areas generally moderately involved. This differs from Table
C.17 in Appendix C, mainly with respect to Table D.9 showing relatively lower
involvement of the application development and infrastructure teams and busi-
ness managers for safety-critical systems. This is attributable to safety being
more oriented towards the physical world, resulting in somewhat less involve-
ment by the more technical teams.

A Note on Sources

The tables in this appendix were developed in large part from the JSSC report
[2]. The structure and many of the entries in the tables were derived from
McBride [5], as was the case for Appendix C. However, as in Appendix C, the
phases relating to risk analysis and control, decommissioning, and disposal were

added.
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Endnotes

CWE Version 2.2, 2012, S. M. Christey, J. E. Kenderdine, ]J. M. Mazella and B. Miles
(eds.), and R. A. Martin (project lead), available at http://cwe.mitre.org/data/published/
cwe_v2.2.pdf, last accessed on August 12, 2012.

Joint Software System Safety Committee (JSSSC), Soffware System Safety Handbook: Tech-
nical ¢ Management Team Approach, 1999. Available at htep://www.system-safety.org/
Documents/Software_System_Safety_Handbook.pdf. AccessedJuly 23, 2012.

Braude, E. J., and M. E. Bernstein, Soffware Engineering: Modern Approaches, Second Edi-
tion, Hoboken, NJ: John Wiley & Sons, 2011.

See, for example, http://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-
mishap-cost-it-440-million/, last accessed on August 12, 2012.

McBride, P, and E. P. Moser, Secure System Development Life Cycle (SDLC) Building Securi-
ty into Your System—Not Bolting It On After the Damage is Done, Atlanta, GA: METASeS,
2000. Available at http://lazarusalliance.com/horsewiki/images/3/38/Secure-System-
Development-Life-Cycle.pdf. Accessed August 5, 2012.
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