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Preface

The aim of this handbook is to provide readers with an overview of cutting-edge
research on the dynamics and evolution of financial markets. While the insights offered
in this book will be valuable for the future development of finance theory, we are
convinced they are also of vital importance to today’s financial practitioners. All chap-
ters are written exclusively for this handbook with the goal of being accessible to the
nonspecialist reader, may they be asset managers or researchers from other disciplines.

The view of financial markets promoted here goes far beyond traditional finance
approaches to asset management. The classic credo is still to buy and hold a market port-
folio or, in more sophisticated versions, to place bets on the convergence of asset prices
to some equilibrium. In contrast, the models presented in this book aim to explain the
market dynamics of asset prices based on the heterogeneity of investors. This can offer
insights for asset management approaches including market timing, which is poten-
tially very fruitful but also very difficult without a clear understanding of the various
interactions in a financial market.

Although this handbook is not the only work in finance highlighting the importance
of dynamics and heterogeneity for financial markets, it is unique because it is the most
recent and most encompassing account of this literature. Other important contributions
to the general theme are, for example, Shefrin’s excellent book, A Behavioral Approach
to Asset Pricing, and Volume 2 of the Handbook of Computational Economics edited
by Tesfatsion and Judd, both published by Elsevier. As compared to this one, the two
other contributions have a different focus; however, Shefrin’s book is “less dynamic”
because it is fully based on general equilibrium, and the Tesfatsion and Judd chapters of
the book dealing with finance focus more on illustrating the dynamics of heterogeneous
agents models by computational simulations.

The importance of this work for the development of finance theory is best explained
by contrasting it to the main paradigm in finance: optimization and rational expec-
tations as theoretical underpinnings of the efficient market hypothesis. The prevalent
view of traditional finance is that of any point in time all traders make use of all avail-
able information; and as a consequence, any predictable pattern, such as a price trend
must already be anticipated and reflected in current prices. Only the arrival of new
information can lead to price changes. In 1964 Cootner formulated the conjecture that
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period-by-period price changes are random movements statistically independent of each
other. This stochastic price mechanism is at the heart of many of the key theoretical
models in finance such as optimal portfolio rules inspired by the work of Markowitz
and Merton from 1952 onward; the static and intertemporal capital asset pricing models
of Sharpe, Lintner, Mossin, and Merton from the 1960s; and models for the pricing of
contingent claims beginning in the 1970s with the work of Black and Scholes.

The two main theoretical justifications of the traditional finance view—optimization
and rational expectations—have been under heavy attack for some time and will clearly
not emerge unscathed. One may argue that people think twice when money is involved,
coming to a conclusion that is void of any biases or mistakes. Empirical evidence for
this view is weak at best. To the contrary, high monetary gains (or losses) are often
observed to trigger emotions that severely distort traders’ decisions. The second argu-
ment is that the market itself will take care of irrational behavior and erase it through the
force of market selection. This conjecture—made by Cootner, Friedman, and Fama—is
challenged on the basis of theoretical and practical work (see, for example, Blume and
Easley’s contribution, “Market Competition and Selection,” to the New Palgrave Dic-
tionary of Economics). Work by Shleifer and others has shown that too many irrational
investors are a risk to rational investors because they cannot be “arbitraged away,” at
least in the short run. One of the contributions of this handbook is to show the state of
the current debate on the market-selection hypothesis—a debate that still has not come
to a definite conclusion.

Recent empirical and experimental work challenged the traditional view of effi-
cient markets and the long-sustained belief in market rationality; see, for example, the
excellent surveys on asset pricing in the Journal of Finance by Campbell (2000) and
Hirshleifer (2001). Indeed a new paradigm based on behavioral models of decision
under risk and uncertainty is beginning to crowd out the traditional view based on com-
plete rationality of all market participants. The traditional and the behavioral finance
models, however, share one important feature: They are both based on the notion of
a representative agent—although this mythological figure is dressed differently. While
traditionally he had rational preferences, expectations, and beliefs, he is currently a
prospect theory maximizer, unable to carry out Bayesian updating and likely to fall into
framing traps.

The chapters in this book, in contrast, suggest models of portfolio selection and asset
price dynamics that are explicitly based on the idea of heterogeneity of investors. They
are descriptive and normative as well, answering which set of strategies one would
expect to be present in a market and how to find the best response to any such market.
The models presented are successful as a descriptive approach because they are able
to explain facts of asset prices such as fat tails in the return distribution, stochastic and
clustered volatility, and bubbles and crashes—facts that are anomalies or puzzles in
the traditional finance world. On the second issue, the main observation is that there is
nothing like “the” best strategy because the performance of any strategy will depend
on all strategies in the market. Rationality therefore is to be seen as conditional on the
market ecology. The key to investment success, thus, is understanding the interaction of
the various strategies.
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This handbook has nine chapters on topics within the emerging field of dynamics
and evolution in financial markets. They aim to explore the preceding ideas in con-
sistent and adequate models with the goal of contributing to a better understanding of
the dynamics of financial markets. The collection of chapters reflects the diversity of
evolutionary approaches in terms of both conceptual and methodological aspects. On
the conceptual level, readers will be exposed to several different modeling approaches:
temporary and general equilibrium models are considered; dynamic systems theory, as
well as game-theoretic reasoning, is applied; traders’ behavior originates from expected
utility maximization, genetic learning, or is only restricted by being adapted to the infor-
mation filtration; and fundamentalists and noise traders also enter the stage. On the
methodological level, readers will see analytical, empirical, and numerical techniques
applied by this book’s authors. In the best tradition of the Handbooks in Finance series,
all chapters share a thorough and formal treatment of the issue under consideration.
As with every growing area of research, we expect to see further progress and fruitful
applications in this exciting field.

Chapter 1, “Thought and Behavior Contagion in Capital Markets” by David Hirsh-
leifer and Siew Hong Teoh, surveys more than 200 theoretical and empirical papers
that emphasize the social interaction of traders. The authors argue that the analysis
of thought contagion and the evolution of financial ideologies, and their effects on
markets, is a missing chapter in modern finance, including behavioral finance. While
financial practitioners always emphasize that their decisions are influenced not only
by fundamentals and price movements but also by opinions expressed (e.g., in the
media), theorists have done little to provide them with models that can check the
consistency of these claims, and moreover help them to better understand in which
direction financial markets might move. Given the progress in information technology
that allows researchers to categorize and to rapidly put into context any piece of news,
we can expect profitable trading strategies to evolve from the novel research on behavior
contagion in capital markets.

Chapter 2, “How Markets Slowly Digest Changes in Supply and Demand” by Jean-
Philippe Bouchaud, J. Doyne Farmer, and Fabrizio Lillo, is a beautiful piece on the
market microstructure of financial markets that makes the “econophysics” approach
accessible to a wide audience. It exemplifies how natural scientists do research: In
contrast to economics and finance, observations are more important than theories. It
is argued convincingly that the standard dichotomy of finance between informed and
uninformed traders can neither be supported empirically nor is it useful theoretically
because it leads to overly complicated models. The authors suggest, instead, distin-
guishing between speculators and liquidity traders. They develop a theory of market
liquidity and show that block trades can be traced back in markets for several days.
Moreover, this chapter’s authors have proven in practice that their insights are very
valuable—measured in real money.

Chapter 3, “Stochastic Behavioral Asset-Pricing Models and the Stylized Facts” by
Thomas Lux, acknowledges that traditional finance in the form of the efficient market
hypothesis still plays a dominant role in explaining the first moment of asset returns
by the martingale property, but that it fails to explain robust stylized facts concerning
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higher moments such as fat tails of the return distribution and stochastic and clustered
volatility. The chapter outlines recent models of stochastic interaction of traders using
simple behavioral rules that can explain these stylized facts as emergent properties of
interactions and dispersed activities of a large ensemble of agents populating the market
place. Understanding the properties of higher moments of asset returns is very prof-
itable, since using derivatives allows the exploitation of predictability of any degree.
Moreover, showing that market behavior emerges as a fundamentally different behavior
than individual behavior avoids wasting money on simple analogies often used in stan-
dard finance, such as the “representative agent,” according to which market behavior is
of the same type as individual behavior.

Chapter 4, “Complex Evolutionary Systems in Behavioral Finance” by Cars
Hommes and Florian Wagener, provides inspiring theoretical, empirical and experimen-
tal results. The theoretical results are outlined by a simple adaptive beliefs system based
on trading strategies derived from mean–variance analysis with heterogeneous beliefs.
In the most simple setting, beliefs are of two types: fundamentalists and trend followers.
The population weights are driven by the success of the strategies. The model results
range from perfect foresight equilibria to chaotic dynamics. This model has become the
leading paradigm of heterogeneous agents models, and it has been generalized in many
directions, one of which is the large type limit case—an approximation of a market with
many different trader types—which is also outlined in this chapter. The model does well
on yearly data going back to 1871. Finally, the main results of the model are validated
by forecasting experiments.

Chapter 5, “Heterogeneity, Market Mechanism, and Asset Price Dynamics” by Carl
Chiarella, Roberto Dieci, and Xue-Zhong He, shows the similarities and the differences
in market dynamics between models populated by constant absolute and constant rel-
ative risk-averse agents. In both cases, agents have heterogeneous price expectations,
some of which are formed by simple rules of thumb, and markets clear through a
Walrasian auctioneer or through a market maker. The resulting dynamics are nonlin-
ear and stochastic and differ according to the market-clearing mechanism assumed. As
the authors show empirically, the framework nicely explains asset-price features such
as fat tail behavior, volatility clustering, power-law behavior in returns, and bubbles and
crashes.

Chapter 6, “Perfect Forecasting, Behavioral Heterogeneities, and Asset Prices” by
Jan Wenzelburger, develops an intertemporal CAPM with heterogeneous expectations
that lies between models in which agents have perfect foresight and models with exoge-
nous and ad hoc expectation rules. The twist of this contribution is to properly define the
expectations of rational agents, which consider that other agents may be irrational and
that their own behavior has some market impact. Such perfect forecasts need to solve
for the temporary equilibria of each period. These issues are discussed for the CAPM,
with detailed derivation of the asset-price dynamics and conditions for market selection
and survival of agents using various expectations.

Chapter 7, “Market Selection and Asset Pricing” by Lawrence Blume and David
Easley, focuses on the old but nevertheless unsettled and very important debate about
whether markets select for rational agents. The framework is traditional in its choice of
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a dynamic general equilibrium model populated by infinitely lived subjective expected
utility maximizers. This chapter provides a very important link between finance and
mainstream economics because the main topics of this handbook are exemplified in a
model setup that every classically trained finance or economics student knows by heart.
The main result discussed is that if equilibrium allocations are Pareto-efficient, markets
select for rational agents (i.e., the market selects for those traders whose subjective
beliefs are closest to the objective probabilities with which the states of the world occur).
The chapter also provides insights into the deeper workings of market selection in this
modeling framework by describing the discipline imposed by the market. A relevant
and interesting issue is the analysis of the relationship between market selection and the
noise trader literature.

Chapter 8, “Rational Diverse Beliefs and Market Volatility” by Mordecai Kurz, out-
lines a model in which all market participants do the very best they can—but not better.
Every agent keeps track of all publicly available information and builds expectations
that are consistent with this observation. This modeling approach leaves sufficient het-
erogeneity to explain asset-price features that, according to the rational expectations
literature, are “anomalous” or “puzzling”: excess volatility of asset returns, high- and
time-varying risk premia, high volume of trade, and so on. Rational diverse beliefs turn
out to provide a realistic and flexible paradigm between the two extremes—rational
expectations and arbitrary ad hoc beliefs.

Chapter 9, “Evolutionary Finance” by Igor V. Evstigneev, Thorsten Hens, and Klaus
Reiner Schenk-Hoppé, studies market selection among traders following behavioral
rules that may not necessarily be generated by utility maximization. The model allows
for complete and incomplete markets and for short-and long-lived assets. The surprising
finding of the literature surveyed is that, even though the pool of behavioral rules is quite
large and the model is fairly general, a simple fundamental trading strategy—investing
proportional to the expected relative dividends—“does the trick” (i.e., achieves the high-
est expected growth rate) or is at least the unique evolutionary stable trading strategy.
This trading strategy can be seen as the Kelly Rule—betting your beliefs—applied in
a market that generates returns endogenously from the interaction of trading strate-
gies. One possible application of this result is to explain the success of value investing.
Moreover, aggressive betting strategies in markets with endogenous odds, such as stock
markets, can be derived from these results.

This handbook’s nine chapters can be characterized by several attributes, one of
which is the time scale of the dynamics studied. Chapters 6 and 8 study expectation
dynamics (i.e., the adjustment and learning process of boundedly rational investors).
For most investors these dynamics happen on a medium time scale (months, quarters,
even years). Both chapters develop new expectation hypotheses that are somewhere
in between simple ad hoc heuristics and rational expectations. This interpretation can
also be given for Chapter 4, in particular since the asset-pricing application is based on
annual data.

Chapter 2 goes to a much smaller time scale: intraday dynamics where the market
microstructure—and in particular the market-clearing mechanism—plays a crucial role.
Chapter 5 is concerned with these issues as well. Chapter 3 is somewhere in between



xx Preface

the high-frequency intraday scale and medium-term dynamics, as can be seen from
the attempt to explain daily return data. Finally, Chapters 7 and 9 consider long-term
dynamics because they study market selection determined by the evolution of wealth.
Chapter 1 surveys models across the board.

Alternatively, the nine chapters can also be ordered according to the degree of ratio-
nality of the traders considered. Chapter 7 is closest to the traditional view of complete
rationality since agents maximize subjective expected utility and have correct price
expectations. Chapters 6 and 8 define notions of rationality that are still quite demanding
but more realistic: in Chapter 6 the problem of what a completely rational agent should
expect in a market with irrational agents is solved, while Chapter 8 defines a notion of
rationality that uses all available information but not more than that. Further “down the
road” to a smaller degree of rationality, we find the modeling approach that Chapters 1
to 5 outline. Agents maximize but they may not have completely rational price expec-
tations. Finally, the approach of Chapter 9 dismisses all assumptions on rationality by
moving to a purely behavioral model of investment.

It is our hope that this handbook, which encompasses several directions of current
developments in dynamic and evolutionary models of financial markets, will serve inter-
ested readers by providing insight and inspiration.

Thorsten Hens
Swiss Banking Institute, University of Zurich

Klaus Reiner Schenk-Hoppé
Business School and School of Mathematics,

University of Leeds
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2 Chapter 1 • Thought and Behavior Contagion in Capital Markets

Abstract

Prevailing models of capital markets capture a limited form of social influence and
information transmission, in which the beliefs and behavior of an investor affect others
only through market price, information transmission and processing is simple (without
thoughts and feelings), and there is no localization in the influence of an investor on
others. In reality, individuals often process verbal arguments obtained in conversation or
from media presentations and observe the behavior of others. We review here evidence
about how these activities cause beliefs and behaviors to spread and affect financial
decisions and market prices; we also review theoretical models of social influence and
its effects on capital markets. To reflect how information and investor sentiment are
transmitted, thought and behavior contagion should be incorporated into the theory of
capital markets.

Keywords: capital markets, thought contagion, behavioral contagion, herd behavior, information
cascades, social learning, investor psychology, accounting regulation, disclosure policy,
behavioral finance, market efficiency, popular models, memes

1.1. INTRODUCTION

The theory of capital market trading and pricing generally incorporates only a lim-
ited form of social interaction and information transmission, wherein the beliefs and
behavior of an investor affect other investors only through market price. Furthermore,
in standard capital market models, there is no localized contagion in beliefs and trading.
Trading behaviors do not move from one investor to other investors who are proxi-
mate (geographically, socially, professionally, or attentionally through connectivity in
the news media). Even most recent models of herding and information cascades in secu-
rities markets involve contagion mediated by market price so that there are no networks
of social interaction. Furthermore, existing behavioral models of capital market equilib-
rium do not examine how investors form naı̈ve popular ideas about how capital markets
work and what investors should do, and how such popular viewpoints spread.1

The theory of investment has incorporated social interactions somewhat more exten-
sively, both in the analysis of increasing returns and path dependence (see Arthur, 1989)
and in models of social learning about the quality of investment projects (discussed in
Section 1.10.1). However, traditional models of corporate investment decisions do not
examine the process of contagion among managers of ideas about investment, financing,
disclosure, and corporate strategy.

In reality, individuals often observe others’ behavior and obtain information and
ideas through conversation and through print and electronic media. Individuals process
this information through both reasoning and emotional reactions rather than performing

1 Section 1.9 discusses work on social networks and securities trading (DeMarzo, Vayanos, and Zwiebel,
2001, and Ozsoylev, 2005) and learning in standard capital market models. The work of Robert Shiller and
coauthors on “popular models” in finance is discussed in Section 1.11.
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the simple Bayesian or quasi-Bayesian updating of standard rational or behavioral mod-
els. Popular opinions about investment strategies and corporate policies evolve over
time, partly in response to improvements in scientific understanding and partly as a
result of psychological biases and other social processes. We are influenced by others
in almost every activity, and price is just one channel of influence. Such influence can
occur through rational learning (see, e.g., Banerjee, 1992; Bikhchandani, Hirshleifer,
and Welch, 1992) or through through irrational mechanisms (see Section 1.5), the lat-
ter including the urge to conform (or deviate) and contagious emotional responses to
stressful events.

This essay reviews theory and evidence about the ways beliefs about and behaviors
in capital markets spread. We consider here decisions by investors about whether to
participate in the stock market and what stocks to buy; decisions by managers about
investment, financing, reporting, and disclosure; and decisions by analysts and media
commentators about what stocks to follow, what stocks to recommend, and what fore-
casts to make. We also consider the effects of contagion on market prices, regulation,
and welfare as well as policy implications.

We argue that in actual capital markets, in addition to learning from price, a more
personal form of learning is also important: from quantities (individual actions), from
performance outcomes, and from conversation—which conveys private information,
ideas about specific assets, and ideas about how capital markets work. Furthermore,
we argue that learning is often local: People learn more from others who are proximate,
either geographically or through professional or other social networks. We therefore
argue that social influence is central to economics and finance and that contagion should
be incorporated into the theory of capital markets.

Several phenomena are often adduced as evidence of irrational conformism in cap-
ital markets, such as anecdotes of market price movements without obvious justifying
news; valuations which, with the benefit of hindsight, seem like mistakes (such as the
valuations of U.S. Internet stocks in the late 1990s or of mortgage-backed securities in
recent years); the fact that financial activity such as new issues, IPOs, venture capital
financing, and takeovers move in general or sector-specific waves (see, e.g., Ritter and
Welch, 2002; Rau and Stouraitis, 2008). Observers are often very quick to denounce
alleged market blunders and conclude that investors or managers have succumbed to
contagious folly.

There are two problems with such casual interpretations. First, sudden shifts do not
prove that there was a blunder. Large price or quantity movements may be responses to
news about important market forces. Second, even rational social processes can lead to
dysfunctional social outcomes.

With respect to the first point, market efficiency is entirely compatible with mas-
sive ex post errors in analyst forecasts and market prices and with waves in corporate
transaction actions in response to common shifts in fundamental conditions.

With respect to the second point, the theory of information cascades (defined in
Section 1.2) and rational observational learning shows that some phenomena that seem
irrational can actually arise naturally in fully rational settings. Such phenomena include
(1) frequent convergence by individuals or firms on mistaken actions based on little
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investigation and little justifying information; (2) fragility of social outcomes with
respect to seemingly small shocks; and (3) the tendency for individuals or firms to
delay decision for extended periods of time and then, without substantial external
trigger, suddenly to act simultaneously. Furthermore, theoretical work has shown that
reputation-building incentives on the part of managers can cause convergent behavior
(Item 1) and has also offered explanations for why some managers may deviate from
the herd as well. So care is needed in attributing either corporate event clustering or
large asset price fluctuations to contagion of irrational errors.2

In addition to addressing these issues, we consider a shift in analytical point of view
from the individual to the financial idea or meme. A meme, first defined by Dawkins
(1976), is a mental representation (such as an idea, proposition, or catchphrase) that
can be passed from person to person. Memes are therefore units of cultural replication,
analogous to the gene as a unit of biological heredity. The field of memetics views cul-
tural units as replicators, which are selected upon and change in frequency within the
population. Just as changes in gene frequency imply evolution within biologically repro-
ducing populations, changes in meme frequency imply cultural evolution. We argue that
certain investment theories have properties that make them better at replicating (more
contagious or more persistent), leading to their spread and survival.

Furthermore, we argue that through cumulative evolution, financial memes combine
into coadapted assemblies that are more effective at replicating their constituent memes
than when the components operate separately. We call these assemblies financial ideolo-
gies. Memetics offers an intriguing analytical approach to understanding the evolution
of capital market (and other) popular beliefs and ideologies.

Only a few finance scholars have emphasized the importance of popular ideas about
markets (especially Robert Shiller, as mentioned in Footnote 1), and there has been very
little formal analysis of the effects and spread of popular financial ideas. We argue here
that the analysis of thought contagion and the evolution of financial ideologies, as well
as their effects on markets, constitute a missing chapter in modern finance, including
behavioral finance.

Our focus is on contagion of beliefs or behavior rather than defining contagion as
occurring whenever one party’s payoff outcomes affect another’s. Therefore we do not
review systematically the literature on contagion in bankruptcies or international crises
in which fundamental shocks and financial constraints cause news about one firm or
region to affect the payoffs of another.

Section 1.2 discusses learning and the general sources of behavioral convergence.
Section 1.3 discusses basic implications of rational learning and information cascades.
Section 1.4 discusses basic principles of rational learning models and alternative sce-
narios of information transfer by communication or observation. Section 1.5 examines
psychological bias and herding. Section 1.6 describes agency and reputation-based
herding models. Section 1.7 describes theory and evidence on herding and cascades in
security analysis. Section 1.8 describes herd behavior and cascades in security trading.

2Recent reviews of theory and evidence of both rational observational learning and other sources of behavioral
convergence in finance include Devenow and Welch (1996), Hirshleifer (2001), Bikhchandani and Sharma
(2001), and Daniel, Hirshleifer, and Teoh (2002).
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Section 1.9 describes the price implications of herding and cascading. Section 1.10
discusses herd behavior and cascading in firms’ investment, financing, and disclosure
decisions. Section 1.11 examines the popular models or memes about financial markets.
Section 1.12 concludes.

1.2. SOURCES OF BEHAVIORAL CONVERGENCE

An individual
,
s thoughts, feelings, and actions are influenced by other individuals by

several means: verbal communication, observation of actions (e.g., quantities such as
supplies and demands), and observation of the consequences of actions (such as payoff
outcomes or market prices). Our interest is in convergence or divergence brought about
by direct or indirect social interactions (herding or dispersing). So we do not count ran-
dom groupings that arise solely by chance as herding, nor do we count mere clustering,
wherein individuals act in a similar way owing to the parallel independent influence of
a common external factor.

Following Hirshleifer and Teoh (2003a) we define herding/dispersing as any behav-
ior similarity or dissimilarity brought about by the direct or indirect interaction of
individuals.3 Possible sources include the following:

1. Payoff externalities (often called strategic complementarities or network externali-
ties). For example, there is little point to participating in Facebook unless many other
individuals do so as well.

2. Sanctions upon deviants. For example, critics of a dictatorial regime are often
punished.

3. Preference interactions. For example, a teenager may want an iPhone mainly
because others talk about the product, though a few mavericks may dislike a product
for the same reason.

4. Direct communication. This is simply telling; however, “just telling” often lacks
credibility.

5. Observational influence. This is an informational effect wherein an individual
observes and draws inferences from the actions of others or the consequences of
those actions.

We can distinguish an informational hierarchy and a payoff hierarchy in sources of
convergence or divergence (see also Hirshleifer and Teoh, 2003a). The most inclusive
category, herding/dispersing, includes both informational and payoff interaction sources
of herding as special cases.

Within herding/dispersing, the informational hierarchy is topped by observational
influence, a dependence of behavior on the observed behavior of others or the results
of their behavior. This influence may be either rational or irrational. A subcategory is

3The interaction required in our definition of herding can be indirect. It includes a situation in which the action
of an individual affects the world in a way that makes it more advantageous for another individual to take the
same action, even if the two individuals have never directly communicated. But mere clustering is ruled out.
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rational observational learning, which results from rational Bayesian inference from
information reflected in the behavior of others or the results of their behavior. A further
refinement of this subcategory consists of information cascades, wherein the observa-
tion of others (their actions, payoffs, or statements) is so informative that an individual’s
action does not depend on his own private signal.4

Imitation, broadly construed, includes both information cascades and subrational
mechanisms that produce conformity with the behavior of others. A crucial benefit
of imitation is the exploitation of information possessed by others. When an insider
is buying, it may be profitable to buy even without knowing the detailed reason for
the purchase. There is also contagion in the emotions of interacting individuals (see,
e.g., Barsade, 2002). The benefits of imitation are so fundamental that the propensity
to follow the behaviors of others has evolved by natural selection. Imitation has been
extensively documented in many animal species, both in the wild and experimentally.5

In an information cascade, since an individual’s action choice does not depend on his
signal, his action is uninformative to later observers. Thus, cascades are associated with
information blockages (Banerjee, 1992; Bikhchandani, Hirshleifer, and Welch, 1992),
and, as we will see, with fragility of decisions (Bikhchandani, Hirshleifer, and Welch,
1992). Information blockages are caused by an informational externality: An individual
chooses her actions for private purposes, with little regard for the potential information
benefit to others.6

A payoff interaction hierarchy provides a distinct hierarchy of types of herding or
dispersing that intersects with the categories in the information hierarchy. The first sub-
category of the catch-all herding/dispersing category is payoff and network externalities.
This consists of behavioral convergence or divergence arising from the effects of an
individual’s actions on the payoffs to others of taking that action. Direct payoff exter-
nalities have been proposed as an explanation for bank runs (Chari and Jagannathan,
1988; Diamond and Dybvig, 1983), since a depositor who expects other depositors to
withdraw has a stronger incentive to withdraw, and clumping of stock trades by time
(Admati and Pfleiderer, 1988) or exchange (Chowdhry and Nanda, 1991), since unin-
formed investors have an incentive to try to trade with each other instead of with the
informed.

In several models, a desire for good reputation causes payoffs to depend on whether
individual behaviors converge.7 Thus, a subcategory of the payoff and network exter-
nalities category is reputational herding and dispersion, wherein behavior converges

4See Bikhchandani, Hirshleifer, and Welch (1992); Welch (1992). Banerjee (1992) uses a different terminol-
ogy for this phenomenon.
5See, e.g., Gibson and Hoglund (1992), Giraldeau (1997), and Dugatkin (1992). Some authors use definitions
of imitation that require substantial understanding on the part of the imitator, in which case such imitation is
rare among nonhumans.
6Chamley (2004b) and Gale (1996) review models of social learning and herding in general. For presenta-
tion of information cascades theory and discussion of applications, tests, and extensions, see Bikhchandani,
Hirshleifer, and Welch (1998, 2008a). Bikhchandani, Hirshleifer, and Welch (2008b) provides an annotated
bibliography of research relating to cascades.
7See Scharfstein and Stein (1990), Rajan (1994), Trueman (1994), Brandenburger and Polak (1996), Zwiebel
(1995), and Ottaviani and Sørensen (2006).
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or diverges owing to the incentive for a manager to maintain a good reputation with
some observer. When individuals care about their reputations, reputational herding and
information cascades can both easily occur, since an individual who seeks to build a
reputation as a good decision maker may rely on the information of earlier decision
makers (Ottaviani and Sørensen, 2000).

1.3. RATIONAL LEARNING AND INFORMATION
CASCADES: BASIC IMPLICATIONS

If many individuals possess conditionally independent signals about which choice alter-
native is better, their information could be aggregated to determine the right decision
with arbitrarily high precision. Information cascades lead to information blockage,
which reduces the quality of later decisions. This blockage also has several other impli-
cations for the contagion and stability of financial decisions, some of which hold even
in rational learning settings in which cascades proper do not occur.

Consider a sequence of individuals who face ex ante identical choices (e.g., invest-
ment projects), observe conditionally independent and identically distributed private
information signals, and observe the actions but not the payoffs of predecessors. Sup-
pose that individual i is in a cascade and that later individuals understand this. Then
individual i + 1, having learned nothing from the choice of i, is in an informationally
identical position to that of i. So i + 1 also makes the same choice regardless of his
private signal. By induction, this reasoning extends to all later individuals; the pool of
information implicit in the past actions of individuals stops growing when a cascade
begins. Indeed, in the simplest possible cascades setting, at this point the quality of
decisions never improves again.

When the assumptions are modified slightly, information is not blocked forever. If
individuals are not identical ex ante, then the arrival of an individual with deviant infor-
mation or preferences can dislodge a cascade. For example, an individual with a highly
precise signal will act independently, which conveys new information to later individu-
als. Furthermore, the arrival of public news, either spontaneously and independently of
past choices or as payoff outcomes from past choices, can dislodge a cascade. The more
generic implication of the cascades approach is that the quality of decisions improves
much more slowly than would be the case under ideal information aggregation. Infor-
mation blockages can last for substantial periods of time; as we will see, at such times
social outcomes are often fragile.

Information cascades are a special case of behavioral coarsening, defined as any
situation in which an individual takes the same action for multiple signal values. When
there is behavioral coarsening, as in an information cascade, an individual’s action does
not fully convey his information signal to observers. So, where a cascade causes (at least
temporarily) a complete information blockage, behavioral coarsening leads to partial
blockage. A surprising aspect of the theory of information cascades is that in a natural
setting the most extreme form of behavioral coarsening occurs.

Since information is aggregated poorly in an information cascade, the quality of
decisions is reduced. Rational individuals who are in a cascade understand that the
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public pool of information implicit in predecessors’ actions is not very precise. As a
result, even a rather small nudge, such as a minor public information disclosure, can
cause a well-established and thoroughly conventional behavior pattern to switch.

The arrival of a meaningful but inconclusive public information disclosure can,
paradoxically, reduce the average quality of individuals’ decisions. Other things can
equal, a given individual is better off receiving the extra information in the disclosure.
However, additional information will sometimes cause individuals to cascade earlier,
aggregating the information of fewer individuals. On balance, the public signal can
induce a less informative cascade (Bikhchandani, Hirshleifer, and Welch, 1992). Of
course, if highly conclusive public information arrives, rational individuals will make
very accurate decisions.

The dangers of a little learning are created in other information environments as well.
In cascade models, the ability of individuals to observe payoff outcomes in addition to
past actions, or to more precisely make a noisy observation of past actions can reduce
the average accuracy of decisions (Cao and Hirshleifer, 1997, 2002). Also, the ability to
learn by observing predecessors can make the decisions of followers noisier by reducing
their incentives to collect (perhaps more accurate) information themselves (Cao and
Hirshleifer, 1997). Furthermore, even if an unlimited number of payoff outcome signals
arrive, the choices that individuals can make may limit the resulting improvement in
the information pool. For example, there can be a positive probability that a mistaken
cascade will last forever (Cao and Hirshleifer, 2002).

Often individuals choose not only whether to adopt or reject a project but when to
do so. As a result, the timing and order of moves, which are given in the basic cas-
cade model, are endogenously determined. In models of the option to delay investment
choices,8 there can be long periods with no investment, followed by sudden spasms in
which the adoption of the project by one firm triggers investment by others.

Most of the conclusions described here generalize to other social learning settings in
which cascades proper do not occur. Even when information blockage is not complete,
information aggregation is limited by the fact that individuals privately optimize rather
than taking into account their effects on the public information pool. This creates a gen-
eral tendency for information aggregation to be self-limiting. At first, when the public
pool of information is very uninformative, actions are highly sensitive to private signals,
so actions add a lot of information to the public pool.9 As the public pool of information
grows, individuals

,
actions become less sensitive to private signals.

In the simplest versions of the cascade model, behavioral coarsening occurs in an
all-or-nothing fashion so that there is either full use of private signals or no use of
private signals (as in Banerjee, 1992, and the binary example of Bikhchandani, Hir-
shleifer, and Welch, 1992). In more general settings, coarsening occurs by degrees,
but complete blockage eventually occurs (see the cascades model with multiple signal

8See Chamley and Gale (1994); see also Hendricks and Kovenock (1989); Bhattacharya, Chatterjee, and
Samuelson (1986); Zhang (1997) and Grenadier (1999); and Chamley (2004a, 2004b).
9The addition can be directly through observation of past actions or indirectly through observation of conse-
quences of past actions, as in public payoff information that results from new experimentation with various
choice alternatives.
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values of Bikhchandani, Hirshleifer, and Welch, 1992). In some settings, coarsening
can gradually proceed without ever reaching a point of complete blockage, though
the probability that an individual uses his own signal asymptotes toward zero, a phe-
nomenon called “limit cascades” (Smith and Sørensen, 2000). Or, if there is observation
noise, the public pool of information can grow steadily but more and more slowly
(Vives, 1993).

So whether information channels become gradually or quickly clogged and whether
the blockage is partial or complete depends on the economic setting, but the general
conclusion that there can be long periods in which individuals herd upon poor decisions
is robust. In addition, there tends to be too much copying or behavioral convergence;
someone who uses her own private information heavily provides a positive externality
to followers, who can draw inferences from her action.

Information cascades result from the individual’s private signal being overwhelmed
by the growing public pool of information. Such an outcome is impossible in a setting
where there is always a chance that an individual will receive a signal that is conclusive
or arbitrarily close to conclusive. However, if near-conclusive signals are rare, the public
information pool can grow very slowly, in which case “information cascade” can be a
good approximation. Indeed, as the quality of the public information pool improves,
the likelihood that an individual will receive a signal powerful enough to oppose it
declines.

To summarize, the information cascade model and some related rational learning
theories provide a few key general implications. The first and central implication is
idiosyncrasy, or poor information aggregation. Cascades tend to emerge rapidly, so
the signals of a relatively small number of early individuals dominate the behavior of
numerous followers.

The second is fragility, or fads. The blockage of information aggregation that is char-
acteristic of cascades makes behavior sensitive to small shocks. We are accustomed to
thinking of sensitivity to shocks as a rare circumstance, as when a flipped coin lands on
its side. The tendency of cascades to form suggests that real life is somewhat like Hol-
lywood thrillers in which the chase scene inevitably ends with the hero’s car teetering
precariously at the edge of a precipice.

The third is simultaneity, or delay followed by sudden joint action. Such effects are
sometimes referred to as chain reactions, stampedes, or avalanches. Endogenous order
of moves, heterogeneous preferences, and precisions can exacerbate these problems.

The fourth is paradoxicality, or adverse effects on decision accuracy or welfare of
informational improvements; the fifth is path dependence, or outcomes depending on
the order of moves or signal arrival. This implication is shared with models of payoff
interactions (e.g., Arthur, 1989).

1.4. WHAT IS COMMUNICATED OR OBSERVED?

We now describe in somewhat more detail alternative sets of assumptions in observa-
tional influence models and the implications of these differences.
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1.4.1. Observation of Past Actions Only

Here we retain the assumption of the basic cascade model that only past actions are
observable, but we consider several model variations.

Discrete, Bounded, or Gapped Actions vs. Continuous
Unbounded Actions

If the action space is continuous, unbounded, and without gaps, an individual’s action
is always at least slightly sensitive to his private signal. Thus, actions always remain
informative, and information cascades never form. So, for inefficient information cas-
cades to occur, actions must be discrete, bounded, or gapped. As discrete or bounded
action spaces become more extensive, cascades become more informative, approaching
full revelation.10

The assumption that actions are discrete is often highly plausible. We vote for one
candidate or another, not for a weighted average of the two. A worker is hired or not
hired, fired or not fired. A takeover bidder either does or does not seek control of a target
firm. Often alternative investment projects are mutually exclusive. Although the amount
invested is often continuous, if there is a fixed cost the option of not investing at all is
discretely different from positive investment.

More broadly, one way in which the action set can be bounded is if there is a min-
imum and maximum feasible project scale. If so, when the public information pool is
sufficiently favorable, a cascade at the maximum scale will form, and when the pub-
lic information pool is sufficiently adverse, individuals will cascade on the minimum
scale. Since there is always an option to reject a new project, investment has a natural
extreme action of zero. Thus, a lower bound of zero on a continuous investment choice
creates cascades of noninvestment (Chari and Kehoe, 2004). Similarly, gaps can create
cascades.11

If perceptual discretizing is very finely grained, the outcome will still be very close to
full revelation. However, perception and analysis are coarse; consider, for example, the
tendency of people to round off numbers in memory and conversation. There is evidence
of clustering for retail deposit interest rates around integers and that this is caused by
limited recall of investors (Kahn, Pennacchi, and Sopranzetti, 1999).

10See Lee (1993); see also Gul and Lundholm (1995) and Vives (1993) for continuous settings without
cascades. Early cascade models were based on action discreteness (Bikhchandani, Hirshleifer, and Welch,
1992; Welch, 1992).
11Asymmetry between adoption and rejection of projects is often realistic and has been incorporated in several
social learning models of investment to generate interesting effects. As for gaps, sometimes either a substan-
tial new investment, no change, or disinvestment is feasible, but fixed costs make a small change clearly
unprofitable. If so, then a cascade upon no change is feasible. Similarly, a cascade of securities nontrading
can form when there is a fixed cost of taking a long or short position, or when there is a minimum trade size.
Even if the true action space is continuous, ungapped and unbounded, to the extent that observers are unable
to perceive or recall small fractional differences, the actions of their predecessors effectively become either
noisy or discrete.
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Observability of Predecessors’ Payoffs or Signals

Even if individuals observe a subset of past signals, such as the past k signals,
since in general uncertainty remains, inefficient cascades can form. With regard to
settings with observation of past payoffs, inefficient cascades can form and with pos-
itively probability last forever because a cascade can lock into an inferior choice
before sufficient trials have been performed on the other alternative to persuade later
individuals that this alternative is superior (Cao and Hirshleifer, 2002). We discuss
research on the effects of observability of past payoffs and signals in more depth in
Subsection 1.4.2.

Costless vs. Costly Private Information Acquisition

Individuals often expend resources to obtain signals, but they also often observe private
signals costlessly in the ordinary course of life. Most social learning models take the
costless route. Costs of obtaining signals can lead to little accumulation of informa-
tion in the social pool for reasons similar to cascades or herding models with costless
information acquisition. Individuals have less incentive to investigate or observe pri-
vate signals if the primary benefit of using such signals is the information that such
use will confer on later individuals. (Burguet and Vives, 2000, examine the conditions
under which complete learning occurs in a continuum model with investigation costs.)
Indeed, if the basic information cascade setting is modified to require individuals to pay
a cost to obtain their private signals, once a cascade is about to start, an individual has no
reason to investigate. The outcome is identical to the basic cascade model: information
blockage. But the individual is acting without regard to her signal in only a degenerate
sense: she has not acquired any signal to regard.

This suggests an extended definition of cascades that can apply to situations in which
private signals are costly to obtain. Following Hirshleifer and Teoh (2003a), we define
an investigative cascade as a situation in which either:

1. An individual acts without regard to his private signal, or

2. An individual chooses not to acquire a costly signal, but he would have acted without
regard to that signal had he been forced to acquire it at the same level of precision
that he would have voluntarily acquired if he were unable to observe the actions or
payoffs of others

Item 1 implies that all information cascades are also investigative cascades. Item 2
is simplest in the special case of a binary decision of whether or not to acquire an
information signal of exogenously given precision. Item 2 then reduces to the statement:
The individual chooses not to acquire the signal, but if he were forced to acquire it
he would ignore its realization (because of the information he has already gleaned by
observing others).12

12Item 2 further allows for the purchase of different possible levels of precision. The definition focuses on the
precision that the individual would select under informational autarky. If, under this precision, the individual’s
action does not depend on the realization, he is in an investigative cascade.
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Investigative cascades may occur in the decisions by individuals to invest in different
countries. If investigation of each requires a fixed cost, then with a large number of
countries investors may cascade on noninvestment (see the related analysis of Calvo
and Mendoza, 2001).

Observation of All Past Actions vs. a Subset or Statistical
Summary of Actions

Sometimes people can observe only the recent actions of others, a random sample of
actions, or the behavior of neighbors in some geographic or other network.13 In such set-
tings mistaken cascades can still form. For example, if only the preceding k actions are
observed, a cascade may form within the first k individuals and then through chaining
extend indefinitely. Alternatively, individuals may only be able to observe a statistical
summary of past actions. Information blockage and cascades are possible in such a set-
ting as well (Bikhchandani, Hirshleifer, and Welch, 1992). A possible application is
to the purchase of consumer products. Aggregate sales figures for a product matter to
future buyers because they reveal how previous buyers viewed desirability of alternative
products (Bikhchandani, Hirshleifer, and Welch, 1992; Caminal and Vives, 1999).

Observation of Past Actions, Accurately or with Noise

When past actions are observed with noise, social learning is still imperfect (Vives,
1993), and (depending on the setting) cascades can still form (Cao and Hirshleifer,
1997). In some scenarios a model in which individuals learn from price reduces, in
effect, to a basic social learning model with indirect observation of a noisy statistical
summary of the past trades of others.

Choice of Timing of Moves vs. Exogenous Moves

Consider a setting in which individuals or firms with private signals about project quality
have a choice about whether to invest or delay. In other words, firms decide when to
exercise their investment options. Then in equilibrium there is delay (Chamley and Gale,
1994) because a firm that waits can learn from the actions of others. However, if all were
to wait, there would be no advantage to delay. Thus, in equilibrium, firms with favorable
signals randomize strategies in deciding how long to delay before being the first to
invest. If only a few firms invest (by firms that have received favorable signals), other
firms infer that the state of the world is bad, and investment activity ends. However, if
many firms invest, this conveys favorable information and spurs a sudden rush to invest
by the other firms (even firms with adverse signals). Indeed, in the limit a period of
little investment is followed by either a sudden surge in investment or a collapse. Thus,
the model illustrates simultaneity. In equilibrium, cascades occur and information is
aggregated inefficiently.

13Bala and Goyal (1998) analyze learning from the actions and payoff experiences of neighbors. They show
that this leads to convergence of behavior and, under some conditions, efficient outcomes.
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Allowing for uncertainty about signal precision leads to a surprisingly simple
outcome (Zhang, 1997). Suppose that investors know the precisions only of their own
signals about project quality. In the unique symmetric equilibrium, those investors
whose favorable signals are less precise delay longer than those with more precise favor-
able signals; noisy information encourages waiting for corroboration. In equilibrium
there is delay until the critical investment date of the individual who drew the highest
precision is reached. Once he or she invests, other investors all immediately fol-
low, though investment may be inefficient. This sudden onset of investment illustrates
simultaneity in an extreme form.14

In settings with social learning, information blockages, delays in investment, peri-
ods of sudden shifts in investment, and overshooting can occur, either with (Caplin
and Leahy, 1994; Grenadier, 1999) or without (Caplin and Leahy, 1993; Persons and
Warther, 1997) information cascades. These models share the broad intuition that infor-
mational externalities cause socially undesirable choices about whether and when to
invest. For example, Caplin and Leahy (1994) analyze information cascades in the can-
celation of investment projects when timing is endogenous. Individual cancellations can
trigger sudden crashes in the investments of many firms.

Financial innovations such as leveraged buyouts often seem to follow a boom-and-
bust pattern. Several authors have explained this pattern as resulting from managers
adopting the innovation based on observation of the payoffs resulting from the repeated
actions of other firms. In the model of Persons and Warther (1997), there is a ten-
dency for innovations to “end in disappointment” even though all participants are fully
rational. Participants expect to gain from extending the boom until disappointing news
arrives. Related notions of informational overshooting have been applied to real estate
and stock markets (Zeira, 1999).

Presence of an Evolving Publicly Observable State Variable

In models of cascades in the exercise of investment options, the trigger for exercising
an option is often the exogenous continuous evolution of a publicly observable state
variable that affects the profitability of investment. In the model of Grenadier (1999),
eventually a small move in the state variable triggers a cascade of option exercise.

Stable vs. Stochastic Hidden Environmental Variables

The attractiveness of market conditions for financial transactions such as raising capital
varies greatly over time. When the underlying state of the world is stochastic but unob-
servable, there can be fads wherein the probability that action changes is much higher
than the probability of a change in the state of the world (Bikhchandani, Hirshleifer,
and Welch, 1992). Moscarini et al. (1998) examine how long cascades can last as the

14Chamley (2004a) finds that when individuals have different prior beliefs, multiple equilibria generate differ-
ent amounts of public information. Imperfect information aggregation can also occur in a rational expectation
(simultaneous trading) modeling approach, when information is costly to acquire and investment is a discrete
decision, causing price and investment fluctuations (Beaudry and Gonzalez, 2003).
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environment shifts. Hirshleifer and Welch (2002) consider an individual or firm sub-
ject to memory loss about past signals but not actions. They describe the determinants
(such as environmental volatility) of whether memory loss causes inertia (a higher
probability of continuing past actions than if memory were perfect) or impulsiveness
(a lower probability).

Homogeneous vs. Heterogeneous Payoffs

Individuals have different preferences, though this is probably more important in nonfi-
nancial settings. Suppose that different individuals value adoption differently. A rather
extreme case is opposing preferences or payoffs, such that under full information two
individuals would prefer opposite behaviors. If each individual’s type is observable,
different types may cascade upon opposite actions.

However, if the type of each individual is only privately known and if preferences
are negatively correlated, learning may be confounded; individuals do not know what to
infer from the mix of preceding actions they observe, so they simply follow their own
signals (Smith and Sørensen, 2000).

Endogenous Cost of Action: Models with Markets
and Endogenous Prices

We cover this topic separately in Section 1.9.

Single or Repeated Actions and Private Information Arrival

Most models with private information involve a single irreversible action and a single
arrival of private information. In Chari and Kehoe (2004), in each period one investor
receives a private signal, and investors have a timing choice as to when to commit to an
irreversible investment. In equilibrium there are inefficient cascades. If individuals take
repeated, similar actions and continue to receive nonnegligible additional information,
actions will, of course, become very accurate. However, there can still be short-run
inefficiencies (e.g., Hirshleifer and Welch, 2002).

Discrete vs. Continuous Signal Values

Depending on probability distributions, with continuous signal values, limit cascades
instead of cascades can occur (Smith and Sørensen, 2000). Of course, signal values
are often discrete. For example, the buyer of a consumer product may observe as a
signal of quality the number of “stars” or “thumbs-up” the product has received by
a reviewing agency.15 Furthermore, the empirical and policy significance of the two

15In practice, signal discreteness is rampant. Often the signal is information about whether something does
or does not fall into some discrete category. For example, in voting for a U.S. Presidential candidate, an
individual may take into account whether the individual currently is or is not Vice President. In deciding
whether or not to bet on a horse, a gambler may use as a signal whether or not the horse won the last
race; he may not know its exact time. When people obtain advice about a course of action, the advisor
often recommends an alternative, with little elaboration.
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predictions is much the same. Information arriving too late to be helpful for most
individuals’ decisions is similar to information being completely blocked for some
period (Gale, 1996).

Exogenous Rules vs. Endogenous Contracts and Institutional Structure

Institutional rules and compensation contracts can be designed to manage herding and
information cascades in project choice.16

1.4.2. Observation of Consequences of Past Actions

If vicarious learning can be used to aggregate the outcomes of many past trials of alterna-
tives, one might expect that society could overcome information blockages to converge
on correct actions. However, as emphasized by Shiller (2000b), imperfect rationality
makes conversation a very imperfect aggregator of information. Biases induced by
conversation are therefore likely to be important in terms of stock market behavior.

In formal modeling in an imperfectly rational setting (though not one designed
specifically to capture Shiller’s arguments), Banerjee and Fudenberg (2004) find con-
vergence to efficient outcomes if people sample at least two predecessors. In their
model, in each period a continuum of individuals tries choice alternatives. Since each
individual observes only a sample from past history, the shadow of history is not
overwhelming. Particular individuals fall into cascades, but different individuals make
different choices. With a continuum of individuals, society cannot get unanimously
stuck on a bad choice. Information about the payoffs from all possible options is
continually regenerated, creating a rich inventory of information from which to draw.

A setting that is closer to the basic cascade model allows for observation of payoff
outcomes without assuming the infinitely rich inventory of past information. In Cao
and Hirshleifer (2002), there are two alternative project choices, each of which has
an unknown value state. Payoffs are in general stochastic, each period conditional on
the value state. Rational individuals receive private signals and act in sequence, and
individuals can observe all past actions and project payoffs. Nevertheless, idiosyn-
cratic cascades still form. For example, a sequence of early individuals may cascade
on Project A, and its payoffs may become visible to all, perhaps revealing the value
state perfectly. But since the payoffs of Alternative B are still hidden, B may be the
superior project. Indeed, the ability to observe past payoffs can sometimes trigger cas-
cades even more quickly, reducing average decision quality and welfare—that is, there
is paradoxicality.

Intuitively, comparing the different settings when only a sample of past actions and
outcomes is observed, decisions are improved because the shadow of the past becomes
less overwhelming. When individuals are discrete, a sampling scenario makes it less
likely that society will unanimously fix on a bad behavior, because there is more oppor-
tunity for a few individuals who observe an unusual historical sample to choose deviant

16See Prendergast (1993), Khanna (1997), and Khanna and Slezak (2000) (discussed later); see also Ottaviani
and Sørensen (2001).
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actions that generate new corrective information. Bad cascades become less frequent.
In a sampling setting, having a greater number of individuals also reduces the like-
lihood of chance unanimous fixation on a bad action. At the extreme of an infinite
number of individuals (as with a continuum), the risk of unanimous bad cascades can
be eliminated.

Potential industry entrants can learn indirectly about the actions of previous entrants
by observing market price, since this is affected by previous decisions. In the model
of Caplin and Leahy (1993), entrants do not possess any private information prior to
entry. Information problems slow the adjustment of investment to sectoral economic
shocks.

1.4.3. Conversation, Media, and Advertising

A growing recent literature provides evidence suggesting that conversation in social
networks conveys valuable information for financial decisions and spreads corporate
and individual behaviors.17 Biases in conversation contribute to the spread of mistaken
beliefs. Contributing to this problem is a tendency for people to take at face value
statements that they hear from acquaintances and the news media rather than rationally
discounting for cheap talk.

News media activity can provide a measure of the extent to which information is
being conveyed to investors. Veldkamp (2006) provides a model of “frenzies” in emerg-
ing equity markets in which media coverage rises and investors become better informed
about asset payoffs and therefore face less risk so that asset prices rise. She provides
supporting evidence.

Some individuals are more central than others in the social network that disseminates
financial ideas and information. The news media creates nodes of high influence. Recent
research has confirmed that the political opinions disseminated by media outlets affect
those of viewers (DellaVigna and Kaplan, 2007). There is every reason to believe that
media dissemination affects the financial ideologies of receivers as well.

Part of the effect of the media results from the sheer existence of high-influence nodes
in the social network, especially since media commentators may have different beliefs
from the public at large. Other effects arise from the self-interest of journalists and
media firms, which can also influence the viewpoints expressed or the stories selected
for reporting. This could bias stories because of a direct financial interest on the part
of journalists in the firm they are reporting on, or bias could come from the benefits of

17Analysts who have old-school ties to corporate managers at a company make better stock recommendations
about the company (Cohen, Frazzini, and Malloy, 2008a). Mutual fund managers who have old-school ties to
corporate directors are more willing to take a large position in the firm and achieve better return performance
on their holdings (Cohen, Frazzini, and Malloy, 2008b); and investors who have stronger social interaction
based on several measures (old college ties, sharing the same profession, and geographical proximity) make
more similar portfolio choices (Massa and Simonov, 2005). Gupta-Mukherjee (2007) finds that information
relevant to achieving investment performance is transmitted among fund managers (along fund–fund net-
works) and between fund managers and companies in which they invest (along fund–company networks),
where network linkage is identified by geographical proximity.
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reporting a story that will grab the attention of the public (possibly at the expense of
reporting more important stories).

Financial firms influence investors both by disclosures to the media and through
advertising. Mullainathan and Shleifer (2005) argue that audiences like to see news
that matches their beliefs and are more likely to be persuaded by advertising messages
that fit their predispositions. Mullainathan and Shleifer provide evidence that, over the
course of the Internet bubble, in good times (after high market returns) financial firms
emphasize in their advertisements how their products create opportunity for investors,
whereas in bad times advertisements emphasize safety.

1.5. PSYCHOLOGICAL BIAS

Conformism allows individuals to obtain the benefit of the valuable ideas of others.
Several researchers have modeled the circumstances under which a propensity toward
conformism is favored by natural selection and how conformism maintains cultural dif-
ferences between groups (Henrich and Boyd, 1998; Boyd and Richerson, 2005). Kuran
(1989) analyzes the effects of external pressures for and preferences for conformity;
Bernheim (1994) analyzes the consequences of a preference for conformity.

Even without a direct preference for conformity, psychological bias can promote
herding and cascades. Several models of herding or cascades assume either mechanis-
tic or imperfectly rational decision makers, including Ellison and Fudenberg (1993,
1995; rules of thumb), Hirshleifer, Subrahmanyam, and Titman (1994; “hubris” about
the ability to obtain information quickly), Bernardo and Welch (2001; overconfidence
about the quality of information signals), Hirshleifer and Noah (1999; misfits of several
sorts), and Hirshleifer and Welch (2002; memory loss about past signals).

A reasonable imitation strategy for individuals is to base choices on the payoffs that
past adopters have received and on the market shares of the choice alternatives, as in
the model of Smallwood and Conlisk (1979). An individual may observe a past sample
of individuals and take an action based on the actions and payoffs within this sample
(Ellison and Fudenberg, 1993, 1995).

If individuals use a diversity of decision rules (whether rational, quasi-rational, or
simple rules of thumb), there will be greater diversity of action choices after rational
individuals fall into a cascade. Action diversity can be informative and can break mis-
taken cascades (Bernardo and Welch, 2001; Hirshleifer and Noah, 1999). Consistent
with Bernardo and Welch (2001), experiments show that individuals often overweight
private signals, breaking cascades (Goeree, Palfrey, Rogers, and McKelvey, 2007).

Evidence of emotional contagion within groups suggests that there may be merit to
popular views that there are contagious manias or fads in speculative markets (see also
Shiller, 2000b; Lynch, 2000; and Lux, 1995). However, there are rational models of
bubbles and crashes that do not involve herding (see, e.g., the review of Brunnermeier,
2001).

In security market settings, the assumption that the variance of aggregate noise trad-
ing is large enough to influence prices nonnegligibly (as in DeLong, Shleifer, Summers,
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and Waldmann, 1990), and subsequent models of exogenous noise implicitly reflects an
assumption that individuals are irrationally correlated in their trades. This could be a
result of herding (social interaction) or merely a common irrational influence of some
noisy variable on individuals’ trades. Park and Sgroi (2008) find evidence of irrational
herding in an experimental security market.

We and others have argued that limits to investor attention are important for finan-
cial disclosure, financial reporting, and capital markets.18 Such limits to attention may
pressure individuals to herd or cascade despite the availability of a rich set of public and
private information signals (beyond past actions of other individuals). A related issue
is whether the tendency to herd or cascade is greater when the private information that
individuals receive is hard to process (cognitive constraints and the use of heuristics for
hard decision problems were emphasized by Simon, 1955; in the context of social influ-
ence, see Conlisk, 1996). In this regard, there is evidence that apparent herd behavior
by analysts is greater for diversified firms, for which the task that analysts face is more
difficult (Kim and Pantzalis, 2000).

1.6. REPUTATION, CONTRACTS, AND HERDING

The seminal paper on reputation and herd behavior, Scharfstein and Stein (1990),
captures the insight of John Maynard Keynes that “it is better to fail convention-
ally than to succeed unconventionally.” Consider two managers who face identical
binary investment choices. Managers may have high or low ability, but neither they
nor outside observers know which. Observers infer the ability of managers from
whether their investment choices are identical or opposite and then update based on
observing investment payoffs. Managers are paid according to observers’ assessment
of their abilities. It is assumed that high-ability managers will observe identical sig-
nals about the investment project, whereas low-ability managers observe independent
noise.

There is a herding equilibrium in which the first manager makes the choice that his
signal indicates, whereas the second manager always imitates this action regardless of
her own signal. If the second manager were to follow her own signal, observers would
correctly infer that her signal differed from that of the first manager, and as a result they
would infer that both managers are probably of low quality. In contrast, if she takes
the same choice as the first manager, even if the outcome is poor, observers conclude
that there is a fairly good chance that both managers are high quality and that the bad
outcome occurred by chance.

During bad times, the necessity for even a good firm to take actions indica-
tive of poor performance can create an opening for a firm that has a choice to
take such actions without severe reputational penalty. Rajan (1994) considers the
incentive for banks with private information about borrowers to manage earnings

18See the review of Daniel, Hirshleifer, and Teoh (2002) and the models of Hirshleifer and Teoh (2003b,
2004), Peng and Xiong (2006), and Dellavigna and Pollet (2006, 2007).
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upward by relaxing their credit standards for loans and by refraining from setting
aside loan-loss reserves. In a bad aggregate state, even the loans of high-ability
managers do poorly, so observers are more tolerant of a banker who sets aside loan-
loss reserves. Thus, a set-aside of reserves triggers by a bank triggers set-asides by
other banks. This simultaneity in the actions of banks is somewhat analogous to the
delay and sudden onset of information cascades in the models Zhang (1997) and
Chamley and Gale (1994).

Furthermore, Rajan shows that banks tighten credit in response to declines in the
quality of the borrower pool. Thus banks amplify shocks to fundamentals. Rajan pro-
vides evidence from New England banks in the 1990s of such delay in increasing
loan-loss reserves, followed by sudden simultaneous action.

It is often argued that stock market analysts have a reputational incentive to herd
in their forecasts of future earnings. The classic model along these lines is Trueman
(1994), which we cover in the next section. One of his findings is that analysts have
an incentive to make forecasts biased toward the market’s prior expectation. Branden-
burger and Polak (1996) show that a firm or set of firms with superior information can
have a reputational incentive to make investment decisions consistent with observers’
prior belief about which project choice is more profitable—a sort of herding of man-
agers on outsiders rather than each other. There can also be an incentive for subordinate
managers to make recommendations consistent with the prior beliefs of their superiors
(Prendergast, 1993).

In contrast with the model of Scharfstein and Stein, in which it is better to fail as
part of the herd than to succeed as a deviant, in Zwiebel (1995) it is always best to
succeed. Herding (and antiherding) is caused by the fact that a manager’s success is
measured relative to the success of others. The first premise of the model is that there
are common components of uncertainty about managerial ability. As a result, observers
exploit relative performance of managers to draw inferences about differences in ability.
The second premise is that managers are averse to the risk of being exposed as having
low ability (perhaps because the risk of firing is nonlinear). For a manager who follows
the standard behavior, the industry benchmark can quite accurately filter out the com-
mon uncertainty. This makes following the industry benchmark more attractive for a
fairly good manager than a poor one, even if the innovative project stochastically domi-
nates the standard project. The alternative of choosing a deviant or innovative project is
highly risky in the sense that it creates a possibility that the manager will do very poorly
relative to the benchmark.19

However, in Zwiebel’s model a very good manager can be highly confident of beating
the industry benchmark even if he chooses a risky, innovative project. If this project is
superior, it pays for him to deviate. Thus, intermediate-quality managers herd, whereas
very good or very poor managers deviate. Zwiebel’s approach suggests that under some
circumstances portfolio managers may herd by reducing the risk of their portfolios rel-
ative to a stock market or other index benchmark, but under other circumstances they
may intentionally deviate from the benchmark.

19Relative wealth concerns can also induce investment herding (DeMarzo, Kaniel, and Kremer, 2007).
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Institutions and compensation schemes can be designed to address or exploit
managers’ incentives to cascade or to make choices to match an observer’s priors
(Prendergast, 1993 [discussed above]; Khanna, 1997; Khanna and Slezak, 2000).
Khanna (1997) examines the optimal compensation scheme when managers have incen-
tives to cascade in their investment decisions. In his model, a manager who investigates
potentially has an incentive to cascade on the action of an earlier manager. Further-
more, a manager may delay investigation about the profitability of investment in the
expectation of gleaning information more cheaply by observing the behavior of the
competitor. Khanna describes optimal contracts that address the incentives to investigate
and to cascade and the implications for compensation and investments across various
industries.

Within the firm, the incentive to cascade on the recommendations of other man-
agers makes it hard to motivate managers to make meaningful recommendations. In
the model of Khanna and Slezak (2000), cascading among managers reduces the qual-
ity of project recommendations and choices. This is a drawback of a regime of “team
decisions,” in which managers make decisions sequentially and observe each others’
recommendations. Incentive contracts that eliminate cascades may be too costly to
be desirable for the shareholders. A hub-and-spoke hierarchical structure in which
managers independently report recommendations to a superior eliminates cascades but
requires superiors to incur costs of monitoring subordinates to prevent communication.
Thus, under different conditions the optimal organizational form can be either teams or
hierarchy.

1.7. SECURITY ANALYSIS

Most of the literature on information cascades in securities markets has focused on
direct cascades in trading (Section 1.8) and elucidates the conditions under which such
cascades can or cannot form. However, even in those scenarios in which direct cas-
cades in trading cannot form, cascades of investigation can form before any trading has
occurred. Such cascades still affect trading behavior.

1.7.1. Investigative Herding

Consider a sequence of individuals deciding whether to access a costly source of private
information, such as an investment newsletter. If individuals can observe the decisions
of predecessors (directly, through conversation, or through circulation data), an infor-
mation cascade of acquisition of this information can form. The cascade may eventually
be broken owing to a negative externality: When more investors have access to an
information signal, its value goes down.

Such cascades are one case of what we call investigative herding. Positive payoff
externalities can also create investigative herding (though information still plays an
important role). The analysis of Brennan (1990) was seminal in illustrating a source
of positive payoff externalities in the analysis of securities and the way this can create
investigative herding. In his overlapping generations model, private information about
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a security is only reflected in market price the next period if a prespecified number of
individuals have acquired the signal. Thus, the benefit to an investor of acquiring infor-
mation about an asset can be low if no other investor acquires the information. However,
if a group of investors tacitly coordinates on acquiring information, the investors who
obtain information first do well.

This insight raises the question of whether investigative herding can occur in settings
with greater resemblance to standard models of security trading and price determination.
In the model of Froot, Scharfstein, and Stein (1992), investors with exogenous short
horizons find it profitable to herd by investigating the same stock. In so doing they
are indirectly able to effect what amounts to a tacit manipulation strategy. When they
buy together the price is driven up, and then they sell together at the high price. Thus,
herding even on “noise” (a spurious uninformative signal) is profitable.

However, even in the absence of opportunities for herding there is a potential incen-
tive for individuals, acting on their own, to effect such manipulation strategies. If
individuals are allowed to trade to “arbitrage” such manipulation opportunities, it is
not clear that such opportunities can persist in equilibrium. This raises the question
of whether there are incentives for herding per se rather than for herding as tacit
manipulation.

Hirshleifer, Subrahmanyam, and Titman (1994) examine the security analysis and
trading decisions of risk-averse individuals, where investigation of a security leads some
individuals to receive information before others. They find a tendency toward herding.
The presence of investigators who receive information late confers an obvious benefit
on those who receive information early; the late informed drive the price in a direction
favorable to the early informed. But by the same token, the early informed push the
price in a direction unfavorable to the late informed.

The key to the herding result is that the presence of the late informed allows the
early informed to unwind their positions sooner. This allows the early informed to
reduce the extraneous risk they would have to bear if, to profit on their information,
they had to hold their positions longer. This risk reduction that the late informed confer
on the early informed is a genuine ex ante net benefit—it is not purely at the expense
of the late informed. Overconfidence about the ability to become informed early further
encourages herding in this model; each investor expects to come out the winner in the
competition to study the “hot” stocks.

1.7.2. Herd Behavior by Stock Analysts and Other Forecasters

We expect rational forecasts to glean information from the forecasts of others, causing
herding. A further question is whether, owing to reputational effects or irrationality,
herding causes biased forecasts or recommendations.

Several studies provide evidence of herding in various kinds of forecasts, such
as forecasts of the Japanese macroeconomy (Ashiya and Doi, 2001). If herding
occurs for reputational reasons, other things equal, we would expect forecasters to tilt
their forecasts toward the most accurate among other forecasters. Ehrbeck and Wald-
mann (1996) show that the pattern of repeated forecasts over time made by accurate
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(low mean-squared-error) forecasters tend to differ (e.g., smaller forecast revisions)
from that of less accurate forecasters. Inconsistent with a rational reputational approach,
in their tests economic forecasters bias their forecasts in directions characteristic of less
accurate forecasters. Nevertheless, most analytical literature on stock market analysts
has focused on rational reputational reasons for bias.

Analyst earnings forecasts are biased (see Givoly and Lakonishok, 1984; Brown,
Foster, and Noreen, 1985). Forecasts are generally optimistic in the United States and
other countries, especially at horizons longer than one year (see, e.g., Capstaff, Paudyal,
and Rees, 1998). More recent evidence indicates that analysts’ forecasts have become
pessimistic at horizons of three months or less before the earnings announcement (see,
e.g., Richardson, Teoh, and Wysocki, 2004).

A concern for reputation can pressure analysts to herd. The compensation received
by analysts is related to their ranking in a poll by Institutional Investor about the best
analysts (Stickel, 1992). Furthermore, analysts whose forecasts are less accurate than
peers’ are more likely to experience job turnover (Mikhail, Walther, and Willis, 1999).20

These findings suggest that analysts may have an incentive to adjust their forecasts
to maintain good reputations for high accuracy. Less experienced analysts are more
likely than experienced ones to be terminated for “bold” (deviant) forecasts that devi-
ate from the consensus forecast. This seems to place a higher pressure to herd on those
analysts for whom uncertainty about ability is greater (Hong, Kubik, and Solomon,
2000). Clement and Tse (2005) finds that analysts with greater prior accuracy and
experience are more likely to make “bold” (deviant) forecasts (see Trueman, 1994,
below) and that herding forecast revisions tend to be less accurate than bold forecast
revisions.

True herding (issuing forecasts that are biased toward those announced by previous
analysts—a form of social interaction between analysts) should be distinguished from
issuing forecasts that are biased toward prior earnings expectations. In the reputation
model of Trueman (1994), both occur. In his analysis, an analyst has a greater tendency
to herd if he is less skillful at predicting earnings—it is less costly to sacrifice a poor
signal than a good one.

When analysts herd, a shift in forecast by one analyst stimulates response by others.
A challenge for testing this prediction and for evaluating whether the response is appro-
priate is that it is difficult to show causality. Changes in consensus analyst forecasts are
indeed positively related to subsequent revisions in analysts’ forecasts (Stickel, 1990),
which is potentially consistent with herd behavior. This relationship is weaker for the
high-precision analysts who are ranked in an elite category by Institutional Investor
magazine than for analysts who are not. Thus, it appears that analysts ranked as elite
are less prone to herding than those who are not, consistent with the prediction of the
Trueman model.

Experimental evidence involving experienced professional stock analysts has also
supported the model (Cote and Sanders, 1997). Cote and Sanders report that these

20The importance of relative evaluation supports the premise of reputational models of herding. However,
Mikhail et al. find no relation between either absolute or relative profitability of an analyst’s recommendations
and probability of turnover.
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forecasters exhibited herding behavior. Furthermore, the amount of herding was related
to the forecasters’ perception of their own abilities and their motivation to preserve or
create their reputations.

Two papers that provide methodologies for estimating herding or exaggeration of dif-
ferences (dispersing, the opposite of herding) by analysts in the field (Zitzewitz, 2001;
Bernhardt, Campello, and Kutsoati, 2006) find dispersing, that is, analysts exagger-
ate their differences. Zitzewitz also finds that analysts under-update their forecasts in
response to public information, indicating an overweighting of prior private informa-
tion. This evidence is supportive of overconfidence by analysts in their own private
signals or with reputational models in which some individuals intentionally diverge
(e.g., Prendergast and Stole, 1996; Ottaviani and Sørensen, 2006).

It is also often alleged that analysts herd in their choice of stocks to follow. There
is high variation in analyst coverage of various firms (Bhushan, 1989); this does not
prove that herding is the source of this variation. Rao, Greve, and Davis (2001) provide
evidence that analysts tend to follow each other in initiating coverage on a stock, and
they provide a cascades interpretation.

There are also allegations that analysts herd inappropriately in their stock recommen-
dations. The evidence of Welch (2000) indicates that revisions in the buy and sell stock
recommendations of a security analyst are positively related to revisions in the buy and
sell recommendations of the next two analysts. Welch traces this influence to short-term
information, identified by estimating the ability of the revision to predict subsequent
returns.21

Welch also finds that analysts’ choices are correlated with the prevailing consensus
forecast. The “influence” of the consensus on later analysts is not stronger when it is a
better predictor of subsequent stock returns. In other words, the evidence is consistent
with analysts herding even on consensus forecasts that aggregate information poorly.
This is consistent with either agency effects such as reputational herding or imperfect
rationality on the part of analysts. Finally, Welch finds an asymmetry—that the tendency
to herd is stronger when recent returns have been positive (“good times”) and when the
consensus is optimistic. He speculates that this could lead to greater fragility during
stock market booms and the occurrence of crashes.

A different way to test for the effects of herding in recommendations is to examine
the stock price reactions to new recommendations that are close to versus farther from
the consensus forecast (Jegadeesh and Kim, 2007). Such tests indicate that stock price
reactions are stronger when the new recommendation deviates farther from the con-
sensus. Assuming that the market is efficient, this suggests that analysts herd (and that
investors appropriately adjust for this fact in setting prices).

There is mixed evidence of herding in recommendations of investment newslet-
ters (Jaffe and Mahoney, 1999; Graham, 1999). Graham (1999) develops and tests a
reputation-based model of the recommendations of investment newsletters, in the spirit
of Scharfstein and Stein (1990). He finds that analysts with better private information

21This could reflect cascading, or could be a clustering effect wherein the analysts commonly respond to a
common information signal.
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are less likely to herd on the market leader, the Value Line investment survey. This
finding is consistent with either reputational herding or information cascades.

1.8. HERD BEHAVIOR AND CASCADES
IN SECURITY TRADING

Some sociologists have emphasized that the “weak ties” of liaison individuals, who
connect partly separated social networks, are important for spreading behaviors across
networks (Granovetter, 1973). Recent literature in economics has examined the strength
of peer-group effects in a number of different contexts (see, e.g., the review of Glaeser
and Scheinkman, 2000).

Questionnaire/survey evidence indicates that word-of-mouth communication is
important to the trading decisions of both individual and institutional investors (Shiller
and Pound, 1989). Employees are influenced by the choices of coworkers in their deci-
sions as to whether to participate in various employer-sponsored retirement plans (Duflo
and Saez, 2002, 2003). Furthermore, there is both modern and historical evidence
suggesting that social interactions between individuals affect decisions about equity
participation and other financial decisions.22 There is also evidence of clustering in
the trading of institutional managers. Mutual fund managers located in a given city
tend to be more correlated in their purchases or sales of stocks than managers located
in different cities (Hong, Kubik, and Stein, 2005), possibly owing to access to similar
information sources.

1.8.1. Evidence on Herding in Securities Trades

Herding on Endorsements

According to the information cascades theory, endorsements can be extremely influ-
ential if the endorser has a reputation for accuracy and if the endorsement involves
an actual informative action by the expert. This could take the form of knowing that
the expert took a similar action (buying a stock), but it could also involve the expert
investing his reputation in the stock by recommending it.

Empirically, the choice by a big-five auditor, top-rank investment bank, or venture
capitalist to invest its reputation in certifying a firm causes investors to update favor-
ably.23 There are many examples of influential investors. The publication of news that
Warren Buffett has purchased a stock is associated with a positive stock price reaction
that is on average greater than 4% (Martin and Puthenpurackal, 2008). Stock prices
react to the news of the trades of insiders (e.g., Givoly and Palmaon, 1985). Such trades

22See Kelly and O’Grada (2000); Hong, Kubik, and Stein (2004); Ivkovich and Weisbenner (2007); Shive
(2008); and Brown, Ivkovich, Smith, and Weisbenner (2008).
23See the model of Titman and Trueman (1986), and the evidence of Beatty and Ritter (1986), Beatty (1989),
Simunic (1991), and Michaely and Shaw (1995).
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provide information, and this price evidences indicates that observers use it to adjust
their demand for stock.

Investing in human capital is a form of endorsement; the signing of a famous name
to a management team affects the way a startup is perceived by investors. Investors are
sometimes irrationally influenced by famous but incompetent analysts—stock market
“gurus.” This may involve a limited attention/availability effect wherein investors use
an analyst’s visibility as an indicator of ability. A would-be guru can exploit the flaws
of this heuristic by using even outlandish publicity stunts to gain notoriety—see, for
example, the description of Joseph Granville’s career in Shiller (2000b). There is also
evidence that investors are influenced by implicit endorsements, as with default settings
for contributions in 401(k) plans—see Samuelson and Zeckhauser (1988) and Madrian
and Shea (2001).

Herding on Trades

A key challenge for empirical tests for herding is to show that there is actual social
interaction or strategic complementarity rather than clustering based solely on some
external causal factor (Manski, 1993). If an external factor shifts the cost or benefit of
some action (such as buying a stock) for a group of investors, their trades will shift
together even if there is no social interaction.

Several lines of attack have been used to identify herding in financial markets. One
approach is to carefully control variables that jointly affect the behavior of different
individuals (see, e.g., Grinblatt, Keloharju, and Ikaheimo, 2008 on demand for cars;
for a general analysis of econometric issues in measuring social interaction, see Brock
and Durlauf, 2000). Using an instrumental variable approach, Brown, Ivkovich, Smith,
and Weisbenner (2008) show that the effect of neighbors on stock market participation
is stronger in communities with stronger social interactions. To identify the effects of
local peers on an individual’s stock ownership (as distinguished from the effects of
other factors that may affect all local individuals), Brown et al. focus on the effects
of stock ownership by the nonlocal parents of the local peers. Ng and Wu (2006)
provide relatively direct evidence of social influence in trades through word-of-mouth
communication in trading rooms in China; see also Ivkovich and Weisbenner (2007).

If higher population density encourages social interaction, density should affect vol-
ume of trading (see the tests of Eleswarapu, 2004). Survey evidence indicates that
households that are more social or that attend church participate more in the stock mar-
ket (Hong, Kubik, and Stein, 2004), suggesting that participation is contagious. Shive
(2008) measures the opportunity for investors who own a stock to “infect” nonholders
in a municipality by the product of the number of owners and the number of nonown-
ers of the stock; models from epidemiology contain such product terms. She finds that
this product term is a predictor of trading in the 20 most actively traded Finnish stocks,
consistent with social interactions affecting trading.

A few studies examine natural or artificial experiments that rule out the possibility
of an omitted influence. There is evidence of the peer effect of roommates on grade-
point average and on decisions to join fraternities even when roommates are assigned
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randomly (Sacerdote, 2001), which avoids the possible bias. Also, a growing literature
starting with Anderson and Holt (1996) has confirmed learning by observing actions
and the existence of information cascades in the experimental laboratory.24

The causation issue is especially tricky in financial market trading tests because
of the market clearing condition as mediated by price. Correlation in trades within a
group of investors (conditioned on past price movements in some tests) may merely
reflect herding (or other reasons for correlated trading) by some other investor group of
investors. For example, individual investors buying and selling in tandem could result
from some other group of investors such as mutual funds buying and selling in tandem,
influencing prices. If individual investors supply liquidity to institutions by trading as
contrarians in response to price movements (as found by Kaniel, Saar, and Titman,
2008), they will tend to trade together.

If there are only two groups of traders, by market clearing herding by one group of
traders causes correlation in the trades of the other group, even if there are no interac-
tions and no strategic complementarities between members of this other group. Thus, to
verify that a group is truly herding, it is crucial to either control for price or find some
other way to verify the causality of the behavioral convergence.

Several alternative measures of herding in trading behavior have been developed in
papers on the behavior of institutional investors.25 Bikhchandani and Sharma (2001)
critically review alternative empirical measures of herding. Griffiths et al. (1998) find
increased similarity of behavior in successive trades for securities that are traded in an
open-outcry market rather than a system trading market on the Toronto stock exchange,
consistent with the possibility of imitation trading raised by the evidence of Biais,
Hillion, and Spatt (1995). Grinblatt and Keloharju (2000) provide evidence consistent
with herding by individuals and institutions.

Institutional investors constitute a large fraction of all investors. By market clearing
it is impossible for all investors to be buyers or all to be sellers. So, although testing
for herding by such a large group is not unreasonable, it is helpful to examine finer
subdivisions of investors.

Recent studies find evidence of correlated trading by various categories of institu-
tional investors, especially those trading in small firms. Whether this reflects actual
herding by (interaction among) institutions, common responses to common information
signals, or correlated trading in response to herding by individual or other institutional
investors is unclear. There is evidence that the trades of individual investors as a group
are correlated (Kumar and Lee, 2006) and evidence from trading in China of stronger
correlation in trades among individual investors who are geographically close (Feng and
Seasholes, 2004).26

24See also Hung and Plott (2001), Anderson (2001), Sgroi (2003) and Celen and Kariv (2005, 2004). Con-
sistent with cascades, female guppies tend to reverse their mate choices in experiments where they observe
other females choosing different males (Dugatkin and Godin (1992)).
25See Lakonishok, Shleifer, and Vishny (1992), Grinblatt, Titman, and Wermers (1995), and Wermers (1999).
26Several papers provide evidence of correlation in the trades of institutional investors (referred to as ‘herd-
ing’ in this literature with no clear implication of interaction between traders), and provide many interesting
stylized facts (Lakonishok, Shleifer, and Vishny, 1992; Grinblatt, Titman, and Wermers, 1995; Kodres and
Pritsker, 1997; Wermers, 1999; Nofsinger and Sias, 1999; and Sias, 2004).
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Fund managers who are doing well tend to lock in their gains toward the end of
the year by indexing the market, whereas funds that are doing poorly deviate from the
benchmark to try to overtake it (Brown, Harlow, and Starks, 1996, and Chevalier and
Ellison, 1997). Chevalier and Ellison (1999) identify possible compensation incentives
for younger managers to herd by investing in popular sectors and find empirically that
younger managers choose portfolios that are more “conventional” and that have lower
nonsystematic risk.

There is evidence suggesting that mutual fund herding affects prices (Brown, Wei,
and Wermers, 2008). Mutual funds tend to buy stocks that have experienced consen-
sus analyst upgrades and to sell stocks with consensus downgrades. Brown, Wei, and
Wermers find that the upgraded stocks at first achieve superior return performance but
subsequently underperform, suggestive of either reputational or imperfectly rational
herding.

1.8.2. Financial Market Runs and Contagion

The problem with motivating provision of public goods is that the contributions of one
party confer positive externalities on others. When there are strategic complementarities
in contributions, there is the possibility of a “run,” possibly triggered by information
disclosure, in which contributions suddenly shrink to zero or some other low level. As
a result, unbiased disclosure can reduce welfare (Teoh, 1997).

The most familiar form of a financial market run is the bank run. There is a negative
payoff externality in which withdrawal by one depositor or the refusal of a creditor to
renegotiate a loan reduces the expected payoffs of others. Bernardo and Welch (2004)
model how financial market runs can arise endogenously among investors in a stock
because of illiquidity.

A traditional view is that bank runs are due to “mob psychology” or “mass hysteria”
(see the references discussed in Gorton, 1988). At some point economists may revisit
the role of emotions in causing bank runs, or “panics,” and more generally causing
multiple creditors to refuse to finance distressed firms. Such an analysis will require
attending to evidence from psychology about the way emotions affect judgments and
behavior.

The main existing models of bank runs and financial distress are based on full ratio-
nality (for reviews of models and evidence about bank runs, see, e.g., Calomiris and
Gorton, 1991; and Bhattacharya and Thakor, 1993, Section 5.2). The externality in
withdrawals can lead to multiple equilibria involving runs on the bank or firm or to
bank runs triggered by random shocks to withdrawals (see, e.g., Diamond and Dybvig,
1983). This of course does not preclude the possibility that there is also an informational
externality.

The informational hypothesis (e.g., Gorton, 1985, 1988) holds that bank runs result
from information that depositors receive about the condition of banks’ assets. When a
distressed firm seeks to renegotiate its debt, the refusal of one creditor may make others
more skeptical. Similarly, if some bank depositors withdraw their funds from a troubled
bank, others may infer that those who withdrew had adverse information about the value
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of the bank’s illiquid assets, leading to a bank run (see, e.g., Chari and Jagannathan,
1988; Jacklin and Bhattacharya, 1988).

Since the decision to withdraw is bounded (an investor can only withdraw up to
the amount of his or her order deposit), bank runs can be modeled as information cas-
cades. There is a payoff interaction as well. However, at the start of the run, when
only a few creditors have withdrawn, the main effect may be the information con-
veyed by the withdrawals rather than the reduction in the bank’s liquidity. Furthermore,
if asset values are imperfectly correlated, cascades can pass contagiously between
banks and cause mistaken runs in banks that could have remained sound (on infor-
mation and contagious bank runs, see Gorton, 1988; Chen, 1999; and Allen and Gale,
2000).

There is evidence of geographical contagion between bank failures or loan-loss
reserve announcements and the returns on other banks (Aharony and Swary, 1996;
Docking, Hirschey, and Jones, 1997). This suggests that bank runs could be triggered by
information rather than being a purely noninformational (multiple equilibria, or effects
of random withdrawal) phenomenon.27 There is also evidence of contagion effects in a
sample of United States bank failures during the period 1930–32 (Saunders and Wilson,
1996), but see also Calomiris and Mason (1997, 2001).

The problem of financial runs can potentially explain regional financial crises as
well. Adverse information can cause lenders to be reluctant to extend credit, and owing
to the externality in providing capital, this can potentially lead to a collapse. Chari and
Kehoe (2003) model international financial crises as informational runs. The model of
Teoh (1997) suggests that intransparency can in principle have the desirable effect of
preventing crises.

1.8.3. Exploiting Herding and Cascades

Firms often market experience goods by offering low introductory prices. In cas-
cade theory, the low price induces early adoptions, which helps start a positive
cascade. Welch (1992) developed this idea to explain why initial public offerings of
equity are on average severely underpriced by issuing firms. The pricing decision for
the Microsoft IPO seems to have reflected this consideration (Uttal, 1986, p. 32),
and later authors have provided supporting evidence (Amihud, Hauser, and Kirsh,
2003).

The advantages of inducing information cascades may apply to auctions of other
goods. In the model of Neeman and Orosel (1999), there is a potential winner’s curse,
and a seller (such as a firm selling assets) can gain from approaching potential buy-
ers sequentially and inducing information cascades rather than conducting an English
auction.

27There is also evidence of contagion in speculative attacks on national currencies (Eichengreen, Rose, and
Wyplosz, 1996).
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1.9. MARKETS, EQUILIBRIUM PRICES, AND BUBBLES

In classical models of asset markets such as the Capital Asset Pricing Model (CAPM),
investors are rational and markets are perfect and competitive. There is complete
agreement about probability distributions of exogenous variables, which are common
knowledge. As a result, risk-adjusted returns are unpredictable. Furthermore, in a clas-
sical market there is no excess volatility, if by this term we mean some faulty processing
of information by the market that creates opportunities for abnormal trading profits. So,
fully rational and frictionless models of cascades or herding cannot explain anomalous
evidence regarding return predictability or excess volatility based on public information.
(For recent surveys of theory and evidence on investor psychology in capital markets,
see, e.g., Hirshleifer, 2001; Daniel, Hirshleifer, and Teoh, 2002.) To explain return pat-
terns that are anomalous for classical models, market frictions or imperfect rationality
are needed.28

However, information blockages and herding can still affect prices. For example,
in the model of Abreu and Brunnermeier (2003), the common knowledge assumption
is violated, and arbitrageurs who seek to profit from the end of a bubble are not sure
when other arbitrageurs will start to sell. Arbitrageurs may use a public news event to
synchronize, causing the bubble to burst.

Within a fully rational setting (and with common knowledge about probability distri-
butions), cascades or herding can block information aggregation. Cascades or herding
can affect how much information gets into that information set in two ways. First, there
can be direct cascades in investor trading, causing some information to remain private
that otherwise would be reflected in prices. Here we discuss some models in which
this occurs because of market imperfections. Second, even if markets are perfect, cas-
cades or herding can cause individuals to cascade in their investigation behavior, which
affects the amount of private and public information that is generated in the first place.
For example, if individuals cascade in subscribing or not subscribing to a stock market
newsletter, the effect of this on the distribution of private information across investors
affects trading and prices.

An intuition similar to the intuition of cascades or herding models with exogenous
action cost can be extended to the issue of how quickly investors learn in competitive
securities markets. In cascades and other learning models, the past history of informative
actions creates an information pool that can crowd out the accumulation of new informa-
tion because new decision makers have insufficient incentive to take informative actions.
Even in a market setting without cascades, an informed trader does not internalize the
benefit that other traders have from learning his private information as revealed through
trading. As more private information is reflected in price, informed traders have dimin-
ishing incentive to trade speculatively against the market price (setting aside any change
in the riskiness of speculative trading). If informed traders trade less, their trades tend
to be lost amid the uninformative trades, reducing the aggregation of their information

28In rational expectations models of information and securities trading, returns are predictable owing to
so-called noise or liquidity trading. But limited amounts of noncontingent liquidity trading will not explain
major bubbles and crashes.
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into market price. Thus, the rate of convergence of price to efficiency can slow over time
(Vives, 1995).

In settings without technological externalities, market interactions typically lead to
dispersing (antiherding) because the attempt to acquire a resource makes it more costly
for others to do so.29 Consider, for example, competition among demanders in the
market for bread. An increase in an individual’s demand drives up the price, causing
others to reduce their demand quantities. This supports market clearing; prices rise to
constrain purchases to the available supply.

Similarly, in the market for a security, the tendency to imitate past trades is limited
by the fact that past trades tend to drive prices to be averse to further trades in the same
direction. Nevertheless, under asymmetric information there are circumstances under
which cascades or other forms of herding occur.

Under asymmetric information, social learning, and a perfectly liquid securities
market, the basic argument for why cascades of trading will not form is still fairly
direct. If at a given price an individual were going to buy (for example) regardless of
his information signal, a rational seller who understands this would charge a higher
price. For this reason, even in a securities market model where the action space is dis-
crete and there there are transactions costs, such as that of Glosten and Milgrom (1985),
the argument implies that there will be no information cascades.

To see this in more detail, consider the market clearing condition. If privately
informed traders were buying regardless of their signals, a fortiori so would uninformed
traders; having no signal encourages buying more than having an adverse signal. But if,
foreseeably, both informed and uninformed will try to buy, then (the argument goes)
the market maker should set prices higher—a contradiction. Indeed, some experimental
tests in a simple Glosten/Milgrom setting do not yield cascades.30

There are three main snags with the argument against direct cascades in trading deci-
sions. First is that special constraints may prevent prices from adjusting. Second is that
the party on the opposite side of the transaction (call it the “market maker”) may not
know for sure that the investor is going to buy regardless of his signal. The third is
that owing to transaction costs, an individual may refrain from trading regardless of her
signal, which blocks information aggregation.

With respect to the first snag, there are special circumstances in which nonmarket
clearing prices are imposed. In the short run, the expectation that NYSE specialists
will maintain an “orderly market” by keeping prices continuous can force temporary
deviations of prices from fundamental values, blocking information flow. This suggests
that during extreme market periods such as crashes, cascades can form. Sometimes
prices are explicitly constrained by price move limits. This permits cascades in which
all investors try to buy (or all sell), resulting in nontrading.

29There is a growing literature on externalities as a source of herding, as in work on strategic complem-
entarities (Haltiwanger and Waldman, 1989) and agglomeration economies (Krugman and Venables, 1995).
30See Cipriani and Guarino (2005) and Drehmann, Oechssler, and Roider (2005). On the other hand, other
experimental evidence suggests that market settings do not solve the problem of inefficient information
aggregation (Hey and Morone, 2004).
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The second problem with the argument against direct trading cascades is that the
party on the opposite side of the transaction (call it the “market maker”) may not know
for sure that the investor is going to buy, regardless of his signal. We will first dis-
cuss how this issue can lead to what we will call quasi-cascades. We then discuss how
cascades proper can occur.

It is standard to assume that informed investors know more than the market maker
about a single dimension of uncertainty, the expected payoff of the security. Suppose
that in addition there is a second type of informational advantage to informed investors
over the market maker—knowledge about whether informative signals were sent. Then
a price rise can encourage an investor with an adverse signal to buy when there is a
transaction cost or bid–ask spread (Avery and Zemsky, 1998). The price rise persuades
the investor that others possess favorable information, whereas the market maker adjusts
prices sluggishly in response to this good news.

This relative sluggishness of the market maker arises as a result of his ignorance over
whether an informative signal was sent. Informed traders—even those with adverse
signals—at least know that information signals were sent, so that the previous order
probably came from a favorably informed trader. In contrast, the market maker places
greater weight on the possibility of a liquidity trade.

The behavior described by Avery and Zemsky is very cascade-like in that the individ-
ual trades in opposition to her private signal—a rather extreme behavioral coarsening.
However, it is not strictly an information cascade, because when no information sig-
nal is received, the investor takes a different action than she does when information
is received. There are really three possible signal realizations—favorable, unfavorable,
and “no signal.” Action does depend on the value of this appropriately redefined signal.
Still, the result is a quasi-cascading phenomenon with partial information blockage.31

The third snag with the argument against cascades in trading decisions is that transac-
tion costs can easily cause cascades of nontrading. Bid–ask spreads or other transactions
costs, by deterring trade, can block information flow. In the model of Cipriani and
Guarino (2007), transaction costs cause cascades of nontrading that block information
aggregation and cause prices to deviate from full-information fundamental value. Cipri-
ani and Guarino (2007) also provide experimental support for the predictions of their
model.

Cipriani and Guarino (2003) provide a modified version of Glosten/Milgrom with
multiple securities. Starting with a single security intuition, the trading of informed

31Private information about the existence or quality of private signals (i.e., multiple dimensions of uncer-
tainty) can also lead to information blockages in which learning about precision stops (Gervais, 1996). In
the model of Gervais (1996), owing to uncertainty about investors

,
information precision, traders’ private

information is not fully incorporated into price. Informed investors know the precision of their private signal,
but the market maker does not. Initially a high bid–ask spread acts as a filter by deterring trade by informed
investors unless they have high precision. By observing whether trade occurs, the market maker updates about
signal precision and asset value and narrows the spread over time. Eventually even investors with imprecise
signals trade, and the market maker stops learning about precision. The independence of the decision to trade
the private information about precision is a behavioral coarsening and causes some information about the
insiders’ precision to remain forever private.
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investors causes information to be partly reflected in price. At some point, as price
becomes more informative, having one more conditionally independent private signal
causes an investor to update expected fundamental value only modestly. So, an investor
who has a nonspeculative reason to purchase the security finds it profitable to buy even if
his private information signal is adverse; similarly, an investor who has a nonspeculative
motive to sell does so regardless of his signal. In other words, he is in a cascade. With
all informed investors in a cascade, further aggregation of information is completely
blocked. Thus, in contrast to Avery and Zemsky, information cascades in proper form.
In addition, cascades can result from contagion across markets; trading in one asset can
trigger a cascade in another market. Furthermore, cascades can occur in both markets at
the same time, leading to complete information blockage.

In Lee (1998), quasi-cascades result in temporary information blockage, then infor-
mation avalanches. This results from transaction costs and discreteness in trades, which
can cause informed investors to be sidelined. In sequential trading, hidden informa-
tion becomes accumulated as the market reaches a point at which, owing to transaction
costs, trading temporarily ceases. Eventually a large amount of private information can
be revealed by a small triggering event. The triggering event is a rare, low-probability
adverse signal realization. An individual who draws this signal value sells. Other indi-
viduals who observe this sale are drawn into the market, causing a market crash or
information avalanche.32

A key issue regarding the occurrence of information blockage in these models is the
significance of the assumption of discrete actions. Any model that attempts to explain
empirical phenomena such as market crashes as (quasi-)cascades must calibrate with
respect to minimum trade size or price movements. Such constraints are most likely to
be more significant in markets that are less liquid.

Perhaps the more important role of cascades is likely to be in the decision of whether
or not to participate at all rather than in the decision of whether to buy or sell at a
particular price. If there is a fixed setup cost (perhaps psychic) of participating, there
can be a substantial discreteness to individual decisions that does not rely on limiting
the size of trades to a single unit. Cascades of participation versus nonparticipation may
have important pricing effects.

Some of the most important puzzles in finance involve failures of investors to par-
ticipate in asset classes. For example, there is the puzzle of insufficient participation in
equity markets and the preference for participating in the markets for local and famil-
iar stocks, which includes the home bias.33 The phenomenon of underpriced neglected

32When investors are risk averse and action choices are discrete, even with endogenous price, cascades proper
form (Décamps and Lovo, 2006).
33Huberman (2001) provides evidence and insightful discussion indicating that individuals prefer to invest
in familiar stocks; Cao, Han, Hirshleifer, and Zhang (2008) model the effects of familiarity on economic
decisions and capital markets. There is also evidence of local preferences in investment for both institutional
investors (Coval and Moskowitz, 1999) who achieve better performance on local investments (Coval and
Moskowitz, 2001), and individual investors (Zhu, 2003; Ivkovich and Weisbenner, 2005) who in some studies
do (Ivkovich and Weisbenner, 2005) and in others do not (Zhu, 2003; Seasholes and Zhu, 2005). On the home
bias puzzle of international finance, see Tesar and Werner (1995) and Lewis (1999).



David Hirshleifer and Siew Hong Teoh 33

stocks (which is exogenous in the model of Merton, 1987) can also be viewed as a
puzzle of nonparticipation.

Cascades within a purely rational setting offer a partial explanation. Suppose that
investors are more likely to interact and observe the behavior of other investors in the
same income class than those in different income classes. If a group of low-income
investors do not invest in the stock market (possibly for historical reasons or because
some are deterred by fixed costs of participation), their choices can trigger a cas-
cade of nonparticipation. Similarly, if investors in a locality observe (or discuss) each
other’s investment choices, and if some individuals invest locally (for historical or
informational reasons), this can trigger a cascade of local investment.

Such arguments may require greater fleshing out to provide a complete explanation
for the puzzles, since rationally an investor should draw inferences from what investors
in other groups are doing. For example, even if one’s peers are not investing in the
stock market, there is also information to be gleaned from the fairly obvious fact that
someone else is. Of course, an individual may believe that the benefits of stock investing
are heterogeneous and that her own benefits are more similar to those of her peers than
the nonpeers who are making different choices.

Psychological biases can reinforce the effects of rational social learning, which may
help explain cascades of nonparticipation. For example, suppose that some individu-
als irrationally fear and avoid unfamiliar stocks. Then other investors who observe low
participation in such stocks may draw adverse inferences about the benefits of participa-
tion, causing a cascade. This occurs if investors draw such inferences in a quasi-rational
fashion that fails to adjust for the irrationality of others. More generally, cascades
in market participation offer a rich avenue for theoretical analysis. For example,
fragility in cascades of participation may help explain bubbles and crashes in stocks or
portfolios.

There is starting to be some exploration of how the decisions of individuals over time
as to whether or not to participate in trading cause information blockages to form and
clear.34 In settings with limited participation, large crashes can be triggered by minimal
information, and the sidelining and entry of investors can cause skewness and volatility
to vary, conditional on past price moves.

The use of the availability heuristic (Tversky and Kahneman, 1973) and the mere
exposure effect (Moreland and Beach, 1992) should also affect participation in markets
and the amount of buzz about or neglect of a stock. Using the availability heuristic, peo-
ple judge how common something is by how easy it is to retrieve or imagine examples
of it. Among other things, this causes vivid case examples to be too persuasive of the
truth of a proposition. The mere exposure effect is the tendency for people to like things
that they have been exposed to more than things they have not.

In the context of risk regulation, Kuran and Sunstein (1999) develop the notion of
availability cascades, in which social processes together with availability bias make
a belief or behavior self-reinforcing. Kuran and Sunstein define an availability cas-
cade as “a self-reinforcing process of collective belief formation by which an expressed

34See Romer (1993); Lee (1998); Cao, Coval, and Hirshleifer (2002); and Hong and Stein (2003).
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perception triggers a chain reaction that gives the perception of increasing plausibility
through its rising availability in public discourse” (1999, 283). Availability cascades
can result either from information cascades or reputational effects or a combination of
the two.

Availability cascades offer a possible explanation for security market bubbles and
waves of corporate events. Highly favorable publicity about a firm or market theory
makes supportive positive arguments more salient and “available” to investors. Fur-
thermore, mere exposure should also make the firm or transaction more familiar and
therefore more appealing. Such effects make enthusiasm for investment self-reinforcing.
The phenomenon of hot versus cold IPOs and of sudden excitement at different
times about types of transactions (hostile takeovers, leveraged buyours, asset-backed
securities, and so forth) seem to be availability cascades.

Popular allegations that securities markets are irrational often emphasize the conta-
giousness of emotions such as panic or frenzy. Critics often go on to argue that this
causes excess volatility, destabilizes markets, and makes financial systems fragile (see,
e.g., the critical review of Bikhchandani and Sharma, 2001, and references therein).
There is indeed evidence that the contagious spread of emotions affects perceptions and
behavior (see, e.g., Hatfield, Cacioppo, and Rapson, 1993; Barsade, 2002).

Prevailing models of capital market trading and equilibrium are quite limited in the
forms of social influence and information transmission that they accommodate. This
applies both to classical models of information and securities markets such as Grossman
and Stiglitz (1976), Kyle (1985), and most of the work reviewed here on cascades and
herding in capital markets.

The first premise is that the beliefs and behavior of an investor affect others only
through market price.35 This is perhaps most easily seen in the “rational expectations”
approach of Grossman and Stiglitz (1976), wherein uninformed investors observe the
market price, draw an inference from that price about the beliefs of informed traders,
and trade based on their resulting beliefs.

The second premise is there is no localization in the influence of an investor on
others. This rules out conversation with neighbors within a social network (which could
be organized geographically or in other ways) and in which media may have influential
nodes.

The evidence discussed in Section 1.8 suggests that social interactions between
individuals affect financial decisions, which suggests that the social or geographical
localization of information may be an important part of the process by which trading

35In the Capital Asset Pricing Model (CAPM) and its generalizations, beliefs are exogenous and investors
form demands for securities, taking prices as given. In consequence, an investor’s characteristics affect other
investors only through the effect of his behavior on prices. In models of information and securities market,
interactions between investors are still mediated by price. In Kyle (1985), a competitive market maker quotes a
pricing function that fixes the price of the security as a function of aggregate demand. Investors submit demand
quantities, and their orders are fulfilled at a price determined by the pricing function. So, one investor affects
another solely through the effect of his order on price (via the pricing function). In Glosten and Milgrom
(1985), the market maker sets a bid–ask spread, and each investor (who can be either informed or uninformed)
submits a buy or sell order that is executed at the prespecified price. An investor is affected by the previous
actions of other investors solely through the effect of those actions on bid–ask prices.
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behaviors spread. Furthermore, there are often strategic complementarities or threshold
effects in social processes, wherein the adoption of a belief or behavior by a critical
number of individuals leads to a tipping in favor of one behavior versus another
(Granovetter, 1978; Schelling, 1978; Kuran 1989).

Thus, an important direction for further empirical research is to examine how and
whether a localized process of contagion of beliefs and attitudes affects stock markets
(see, e.g., Shiller, 2000a) and whether securities market price patterns are consistent
with rational models of contagion. Shive (2008) finds that “socially motivated trades”
(as measured based on the predictive power of an epidemiological model) predict future
returns and that this effect does not reverse out; this suggests that such trading helps
aggregate meaningful information.

An important direction for future theoretical research is to examine the implications
for securities market trading, participation, and prices of conversation between indi-
viduals (see, e.g., DeMarzo, Vayanos, and Zwiebel, 2001; Ozsoylev, 2005). DeMarzo,
Vayanos, and Zwiebel (2003) provide a general analysis of the effects of persuasion
bias in social networks. Individuals do not adjust appropriately for the fact that the
information they receive from others may have come from a single common source.
Individuals who have more connections in the social network have a stronger influence
on beliefs in the network (even if their information is not more accurate).

Ozsoylev (2005) provides a model in which investors learn by observing the sig-
nals of other investors to which they are linked within a social network. Investors who
belong to a relatively tightly integrated social cluster have relatively high correlation in
their investment positions. Furthermore, although investors are rational, those who have
many social network connections have a stronger influence on asset prices than those
with fewer connections.

Agency-induced herding by investment managers, such as reputational effects, can
also create mispricing (Brennan, 1993; Dasgupta and Prat, 2005). Brennan (1993) ana-
lyzes the asset-pricing implications of index-herding behavior. Any price effects of
herding caused by agency problems should be driven by the behavior of institutional
investors. Dasgupta, Prat, and Verardo (2005) test their model prediction that the rep-
utation return premium increases with the past trades of career-driven traders and find
that buying by such traders predicts return underperformance, and selling predicts over-
performance. There is evidence suggesting that institutional investors are a source of
positive portfolio return serial correlations (both own and cross correlations of the secu-
rities held by institutions); see Sias and Starks (1997). There is also evidence that
the autocorrelation of the returns of emerging stock markets increased sharply at the
time that institutional investors were expanding their positions in emerging markets
(Aitken, 1998). Aitken argues that this indicates the effect of fluctuating sentiment by
institutional investors.

There is a substantial literature on contagion between the debt or equity markets of
various nations (see, e.g., Bikhchandani and Sharma, 2001). With regard to price effects
of herding, there are some large correlations in returns, but it is hard to measure whether
this is an effect of herding. Many studies have examined how the occurrence of a crisis
in one country affects the probability of crisis in another country (Berg and Pattillo,
1999, review this research).
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Experimental asset markets have been found to be capable of aggregating a great
deal of the private information of participants; however, in complex environments the
literature has found that blockages form so that information aggregation is imperfect.36

Experimental laboratory research (see, e.g., Cipriani and Guarino, 2007) and field
experiments (see Alevy, Haigh, and List, 2007, who test for cascades among finan-
cial market professionals on the Chicago Board of Trade) are promising ways of testing
the way cascades and herding affect information aggregation in markets and will offer
important directions for improving theories of financial herding.

Correlated sentiment for certain kinds of real assets may move prices and resources
for nonfundamental reasons. Gompers and Lerner (2000) provide evidence of “money-
chasing deals” in venture capital. Inflows into venture capital funds are associated with
higher valuations of the new investments made by these funds, but not with the ultimate
success of the firms. However, Froot, O’Connell, and Seasholes (2001) find that port-
folio flows in and out of 44 countries during 1994 to 1998 were positive forecasters of
future equity returns, with statistical significance in emerging markets.

1.10. CASCADES AND HERDING IN FIRM BEHAVIOR

It is often alleged in the popular press that managers are foolishly prone to fads in
management methods (for examples and formal analysis, see Strang and Macy, 2001),
investment choices, and disclosure or reporting practices. We first consider investment
and financing choices and then disclosure and reporting.

1.10.1. Investment and Financing Decisions

Managers learn by observing the actions and performance of other managers, both
within and across firms. This suggests that firms will engage in herding and be subject to
information cascades, leading to management fads in accounting, financing and invest-
ment decisions. We have already discussed models of social learning and investment
decisions.37

As for stylized facts, the popularity of various investment valuation methods, securi-
ties to issue, and so on have certainly waxed and waned. There are booms and quiet
periods in new issues of equity that are related to past stock market returns and to
the past average initial returns from buying an IPO (see, e.g., Lowry and Schwert,
2002; Ritter and Welch, 2002; Rau and Stouraitis, 2008). However, it is not easy to
test whether fluctuations in investments and strategies are the result of irrationality,
rational but imperfect aggregation of private information signals, or direct responses
to fluctuations in public observables.

36See Noeth et al. 2002; Bloomfield and Libby (1996); and the survey of Libby, Bloomfield, and Nelson
(2002).
37In addition, a growing literature analyzes how rates of learning vary during macroeconomic fluctuations
and how the learning process causes booms and crashes in levels of investment (see, e.g., Gonzalez, 1997;
Chamley, 1999; and Veldkamp, 2000).
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Takeover markets have been subject to seemingly idiosyncratic booms and busts of
enormous scale, such as the wave of conglomerate mergers in the 1960s and 1970s,
in which firms diversified across various industries, the subsequent refocusing of firms
through restructuring and bustup takeovers in the 1980s, followed by the merger boom
of the 1990s. Targets of a takeover bid are “put into play” and often quickly receive
competing offers, despite the negative cost externality of having a competitor. A distinct
kind of evidence suggesting that the decision to engage in a takeover is contagious is
that within a 1981–90 sample; a firm was more likely to merge if one of its top managers
was a director of another firm that had engaged in a merger during the preceding three
years (Haunschild, 1993).

Several studies test for herd behavior in corporate investment decisions. This raises
the question of whether there is a general tendency toward strategic imitation.38 Survey
evidence on Japanese firms indicates that a factor that encourages firms to engage in
direct investment in an emerging economy in Asia is whether other firms are investing
in that country. This is consistent with possible cascading based on a manager’s per-
ception that rival firms possess useful private information about the desirability of such
investment (Kinoshita and Mody, 2001). Gilbert and Lieberman (1987) examined the
relationships among the investments of 24 chemical producers over two decades. They
found that larger firms in an industry tend to invest when their rivals do not. In contrast,
smaller firms tend to be followers in investment. This behavior is consistent with the
“fashion leader” version of the cascades model (Bikhchandani, Hirshleifer, and Welch,
1992) in which the less precise free-ride informationally on the more precise (if large
firms have greater absolute benefit from acquiring precise information or if there are
scale economies in information acquisition).

Analogous to herding on endorsements in individual investor trading, there are
endorsement effects in real investments. Often investments are clustered in time, but
it is important to evaluate carefully whether investors are really imitating each other.
Real estate investment is a natural field of application for cascades/endorsement effects
because the investment decisions are discrete and conspicuous. (Caplin and Leahy,
1998, analyze real estate herding/cascading.)

Economists have studied agglomeration economies as an explanation for geographi-
cal concentration of investment and economic activity. Such effects are surely important,
but geographical concentration can occur without agglomeration economies owing to
learning by observation of others—“spurious agglomeration” (DeCoster and Strange,
1993). Barry, Görg, and Strobl (2004) test between agglomeration economies and what
they call “demonstration effects,” whereby a firm locates in a host country because the
presence of other firms there provides information about the attractiveness of the host
country. They conclude that both effects are important.

38D’Arcy and Oh (1997) study cascades in the decisions of insurers to underwrite risks and the pricing
of insurance. Foresi, Hamao, and Mei (1998) provide evidence consistent with imitation in the investment
decisions of Japanese firms. Greve (1998) provides evidence of firm imitation in the choice of new radio
formats in the United States. Kedia and Rajgopal (2006) find geographical clustering in the decision by firms
to use option compensation for rank and file workers.
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1.10.2. Disclosure and Reporting Decisions

Since investors make comparisons in evaluating firms, the disclosure and reporting
practices of one firm impose externalities on others. This point is reinforced by the
likelihood that the voluntary disclosure/reporting practices chosen by firms help estab-
lish informal standards for other firms (though such practices are also, of course, subject
to regulation).

Disclosure and reporting practices vary over time. For example, in recent years it
has been popular for U.S. firms to disclose pro forma earnings in ways that differ from
the GAAP-permitted definitions on firms’ financial reports. Regulators have expressed
concern about this practice, but firms argue that this allows them to reflect better long-
term profitability by adjusting for nonrecurring items. It is also possible that firms are
just herding or exploiting herd behavior by investors.

Surprisingly, Pincus and Wasley (1994) report that voluntary accounting changes by
firms do not appear to be clustered in time and industry, suggesting no herding behavior
in accounting changes. This result further suggests that firms do not switch accounting
methods in response to changes in macroeconomic investment conditions that are expe-
rienced at about the same time by similar firms within an industry. Rather, the voluntary
accounting changes would appear to be made in response to firm-specific needs, such
as a firm-specific need to manage earnings.

However, it is not obvious why firms would manage earnings in response to firm-
specific but not common factor shocks. One speculative possibility is that there is a
concern for relative performance, as reflected in the model of Zwiebel (1995), combined
with some deviation from perfect rationality that causes investors to adjust imperfectly
for accounting method in evaluating firms’ earnings.39 The concern for relative perfor-
mance may create a stronger incentive for managers to manage earnings upward when
the firm is doing poorly relative to peers than when the entire industry is doing poorly.

Geographical proximity does affect reporting practices. Kedia and Rajgopal (2008)
find that the accounting practices of neighboring firms are correlated with the likelihood
that a firm misreports accounting items, resulting in accounting restatements. Presum-
ably this is because managers of firms in close proximity interact and share information
about their accounting practices. One would expect such an effect to be strongly in gray
areas that could result in eventual restatement.

Furthermore, Kedia and Rajgopal (2008) find that counties that are farther from
SEC regional offices have a higher frequency of income-decreasing restatements, and
Defond, Francis, and Hu (2008) find that distance from Securities and Exchange
Commission (SEC) regional offices affect the likelihood of severe problems, SEC
enforcement actions, and consequently the quality of the auditor and the financial state-
ments. To the extent that word-of-mouth communication among auditors, managers, and

39For example, Daniel, Hirshleifer, and Teoh (2002) suggest that owing to limited attention, investors are too
credulous in the sense of failing to adjust for the interested motives of firms and that this explains actions such
as issuing equity or failing to disclose information. Hirshleifer, Lim, and Teoh (2004) provide a model of how
informed parties adjust their disclosure decisions to exploit the limited attention of observers.
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regulators is localized, we expect a greater chance that information about questionable
reporting practices will leak to regulators when enforcement offices are close.

Option backdating affects the way that compensation levels are reported to investors.
Bizjak, Lemmon, and Whitby (2007) find that option backdating seems to spread con-
tagiously through interlocked boards of directors and auditor links and are also affected
by geographical proximity. This suggests that word-of-mouth discussion between
managers and directors spreads corporate behaviors.

1.11. CONTAGION OF FINANCIAL MEMES

Rational and behavioral models of information in capital markets usually focus on
very simple signals and signal processing. Such modeling does not capture the way
that people accept or rule out arguments based on chains of reasoning, triggered
associations, and emotional reactions. So, most existing information models say lit-
tle about how thoughts and beliefs about firms or capital markets spread from person to
person.

In reality, investors use verbal “reasons” to decide how to trade, and these reasons
are often not cogent. Barber, Heath, and Odean (2003) find that individual investors
and their investment clubs tend to buy stocks for which plausible reasons are available
(such as a firm being on a media list of most admired companies). The reasons exam-
ined do not predict superior trading performance. Reasons seem to be spread by social
interaction; stock clubs favor such stocks more strongly than individuals.

Reasons, or financial memes (units of cultural replication, as defined in the intro-
duction), can be simple (“buy on the dips”) or elaborate (e.g., portfolio theory). The
contagion of such memes, their effects on markets, and (more ambitiously) the way
combinations of memes evolve as they move from person to person are the subjects of
a missing chapter in financial theory.

Leading the charge, Robert Shiller and coauthors have discussed and provided survey
evidence about “popular models” during bubbles in securities and real estate markets
(see Footnote 1).40 For example, Shiller, Kon-Ya, and Tsutsui (1996) find that dur-
ing the late 1980s to early 1990s U.S. investors were much more prone to viewing
the Japanese stock market as overpriced than were Japanese investors and that the
popularity of this meme among Japanese investors followed market movements. They
also report that a substantial fraction of investors viewed the market as overpriced but
recommended staying in the market because it was going to go up before it fell—a
bubble-promoting viewpoint. More research is needed about what affects the popularity
of the “The market is overpriced (or underpriced)” and the “The market is rising (or
falling)” memes.

Case and Shiller (1989; 2003) find that real estate investors in “glamour cities” have
unrealistic beliefs about the risk and expected appreciation of residential housing and

40See also Lynch (2000) for intriguing discussion. The phrase popular model implicitly connotes some kind
of analysis (even if erroneous). But a meme can become popular without any supporting analysis.
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that these beliefs seem to come from “simplistic theories” that are more prevalent in
glamour cities than in a nonglamour city (Milwaukee).41

Apart from Shiller’s discussions and pioneering surveys, behavioral economics and
finance have focused mainly on the effects of individual psychological biases and the
way individuals interact through buying and selling as mediated by price. The memetic
approach focuses specifically on the social transmission mechanism (e.g., conversation
or news media communication); a meme can replicate only through information that
is conveyed from one person to another. Furthermore, memetics focuses on the idea’s
ability to hijack the psychological mechanisms of its carriers, much the way a virus
hijacks cellular mechanisms within the bodies of carriers to replicate itself.

Thus, the memetic approach is not primarily about importing ideas from social
psychology into behavioral finance. It is about the way memes exploit the process
by which ideas are stored and replicated. This suggests a different kind of question
from those typically asked in behavioral economics or in social psychology. A standard
question is, “What are the kinds of biases that individuals are prone to?” Somewhat
closer to memetics is the question. “How do individual biases affect whether people
will be tempted to succumb to some exogenously specified popular idea about finan-
cial markets?” Some less conventional questions: “What are the characteristics of an
idea (meme) in relation to its environment that help it replicate and predominate within
the population of ideas?”42 “How do financial ideologies evolve?” Thus, the memetic
perspective suggests different hypotheses, approaches to modeling, and tests.43,44

In terms of modeling, a memetic approach considers shifts in population frequencies,
as in population genetics models and models of disease contagion. The memetic stance
further suggests developing models in which the meme is the (as-if) optimizer, select-
ing characteristics that will promote its own reproduction. This is analogous to models
of adaptiveness in evolutionary biology in which genes have maximal reproductive

41One such meme is the idea that more desirable real estate tends to appreciate more rapidly. Case and Shiller
(2003, p. 325) propose and provide survey evidence that this is because people “confuse the level of prices
with the rate of change.” Another fallacy is the idea that when housing is scarce, price becomes irrelevant.
42There is a population of people and a population of ideas that people hold. If an idea spreads from one person
to another, it has reproduced, and its frequency within the population of ideas has risen. Of course, individual
psychology (and the answers to the first two questions) is still crucial for answering memetic questions.
43Of course, a correct memetic understanding must be consistent with a correct psychological understanding,
just as correct biochemistry must be consistent with correct genetics or physics. But the memetic stance
suggests different insights and research questions.

The memetic (i.e., a Darwinian, or adaptationist) stance focuses on how selection results in the evolu-
tion of well-adapted cultural variants. This puts the spotlight on the meme metaphorically striving to be fit.
A mechanical stance puts the spotlight on forces that push meme frequencies up or down. So long as it makes
sense to think about adaptiveness, these perspectives are two sides of the same coin and must be consistent.

There is also subtle discussion among scientists and philosophers as to how to define replicator. For our
purposes the terminological discussion of whether to call cultural variants memes is not crucial, so long as it
is accepted that natural selection on cultural variants leads to cumulative evolution and adaptation.
44Several objections have been raised about the memetic approach to cultural evolution. This is not the place
to review these issues, but we will mention that even some authors who deemphasize the need for replicators
(Henrich and Boyd, 2002) still champion the propositions that natural selection operates on cultural variants
and that this results in cumulative evolution of culture.
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success. As discussed earlier, Shive (2008) models and tests the contagion of investment
behaviors through a population, analogous to the spread of a disease. Similarly, Shiller
(2000b, Chapter 8) likens the spread of ideas about the stock market to a contagion
spread through conversation. Epidemiological models have also been applied to the
spread of ideas (see Bartholomew, 1982), an approach that could easily be applied to
the spread of an investment idea (e.g., “Sell your losers, ride your winners”) as an
infection.

Similarly, the rate at which financial ideas replicate in populations can be measured.
Shiller 2007, discussed further later) measures the rise and fall in popularity of the con-
cept of the real rate of interest. Natural further memetic questions are, In what ways
are this meme adaptive to its environment? How well does it exploit the mechanisms
that transmit ideas from person to person? The answer to this will depend on the char-
acteristics of this meme and its environment (most notably the existing population of
memes and the population of people who carry those memes). For example, the concept
of the real rate requires explanation to be understood. Furthermore, during periods of
relatively low and stable inflation, the real/nominal distinction becomes less useful in
daily life, which hinders the meme’s spread.45

Some characteristics that help a meme reproduce include logical cogency, ease of
cognitive processing (portfolio theory would be more popular if it were easy to learn),
and emotional vividness (hence the popularity of dysfunctional investment memes that
promise ways to “get rich quick”). The characteristics of the environment that mat-
ter include the effectiveness of unrelated memes that struggle for attention in people’s
minds and the cogency or vividness of directly competing memes that oppose the given
meme. For example, the meme “Sell your losers, ride your winners” is opposed by the
meme “Buy or sell based on expectations, not history.”

A great puzzle in finance is why individual investors trade actively or place money
with actively trading money managers. This effort to beat the market leads to wasted
transaction cost and (if correlated investor sentiment affects price) to subnormal gross
returns. Information cascades and memetics can potentially help explain the seductive-
ness of active investing. If friends and acquaintances are investing in an active mutual
fund, an individual who learns this but does not observe their return performance can
be in a cascade and imitate.

Furthermore, a conversational bias helps the survival of the meme that “Active trad-
ing is the road to exceptional profits,” even if it harms its carriers. People like to talk
more about their gains than their losses. If listeners do not discount for this bias, they
will overestimate the benefits of active trading. Such effects should be exacerbated when
an individual spends more time discussing investments, as occurs when an individual
participates in an investment chat room, message board, or investment club.

Biological evolution has led to the development of coadapted teams of genes
that produce organisms. Distin (2004) calls coadapted sets of memes assemblies,

45Berger and Heath (2005) perform several field and experimental laboratory tests of the effects of “idea
habitat,” the range of situations in which people have the opportunity to use a meme, on its success in
reproduction.



42 Chapter 1 • Thought and Behavior Contagion in Capital Markets

examples being religions, scientific theories, and philosophies. We will refer to financial
ideologies, which could be good or bad. The meme “dead cat bounce” is too simple
and disjointed from other financial memes to be an ideology or part of an ideology.
But the efficient markets hypothesis is an elaborate financial ideology (and a largely
valid one).

It is intuitive that valid financial ideologies would develop through cumulative evo-
lution and prosper, but invalid ideologies also do so. Although the surveys of Shiller and
his coauthors do not focus on distinguishing simple financial memes from assemblies,
their research is a first step toward identifying financial ideologies and devising theories
of how they develop.

To give some hints of the memetic approach, we discuss some speculative exam-
ples of how popular financial ideologies seem to be adaptive (that is, good at spreading
themselves). Shiller (2000b) provides insightful historical review of popular theories
that developed and prospered during past market booms. It seems that periods of rising
stock prices, which investors observe and seek to explain, provide a salubrious habitat
for “new era theories” of the stock market that seem to evolve repeatedly and indepen-
dently.46 Such repeated evolution of similar ideologies is reminiscent of the repeated
independent biological evolution of behaviors (flight) or organs (the eye). It raises the
hope that the adaptiveness concept (for memes, not people) can help explain cumulative
memetic evolution.

When an environmental shift creates an exceptional opportunity for a meme to
spread, an availability cascade is often triggered (see Section 1.9). The availability cas-
cade concept applies to spasms of activity in public discourse (as with bubbles or hot
IPOs) and to the psychological effects of availability. The field of memetics concerns all
aspects of the evolution of populations of ideas, including both periods of dynamic shifts
and stable evolutionary equilibria, and including all psychological forces that affect the
reproduction memes.

The marketing of an IPO can be viewed as a way of trying to trigger an availability
cascade wherein the idea that the company is a good investment suddenly becomes
popular.47 In the dot-com period an availability cascade supported the meme that the
Internet was a uniquely spectacular investment opportunity. This meme was mutually
reinforcing with more specific memes (and availability cascades) about particular dot-
com startups, such as Netscape.

As discussed in Section 1.4.3, in bad times people crave safety and in good times
opportunity (Mullainathan and Shleifer, 2005). Mullainathan and Shleifer find that
advertisers adjust their persuasion activities accordingly. More generally, even apart
from the exploitive efforts of sellers, during downturns we expect memes about danger
versus safety to spread in popular discussions, and during upturns we expect memes
about opportunity. The memes that investment clubs or day-trading are ways for indi-
vidual investors to achieve exceptional performance became popular during the 1990s,

46Shiller (Chapter 5) discusses remarkable parallels between the turn-of-the-century optimism of 1901, the
1920s optimism, the new era thinking of the 1950s and 1960s, and new era thinking in the 1990s.
47Pollock, Rindova, and Maggitti (2008) discuss information and availability cascades in IPOs.
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a period of rising stock prices. This was probably due in part to a self-feeding effect in
which individuals learned from advertising, the media, and word of mouth that many
others were engaged in these activities and supposedly profiting thereby. The rise and
fall of these practices therefore seem to be availability cascades.

These examples are a kind of microevolution of memes in response to changing
market conditions. Perhaps the most basic microevolution in financial markets is the
perpetual seesawing contest between bullish and bearish memes. These fluctuate in
response to fundamental news, the rise through mutation of salient new memes (“The
Internet changes everything”), and emotional factors that influence the public mood.

The value ideology versus growth ideologies also swing widely, the tech boom
and bust being the most spectacular recent example. In good times, speculative stocks
(growth options) tend do well, providing evidence in favor of growth investing. Further-
more, optimistic mood encourages the pursuit of opportunity. In bad times the evidence
from recent returns favors the value ideology. Emotionally, investors seek greater safety.
Furthermore, a pessimistic mood causes investors to place a high premium on frugality.
The emphasis of the value-investing approach on measures of “cheapness” of stocks
plays to this trend.

Furthermore, the value ideology provides an ego-boosting narrative of folly (by
others, the greedy speculators) and wisdom (by the self, the wise and prudent value
investor). The moralistic tone of value-investing expositions in the popular media is
striking. This reveals a successful strategy used by the value meme assembly.

Beneath the microevolutionary tug of war between the value and growth ideolo-
gies are deep wells of appeal that allow both to coexist in the long run. We conjecture
that frequency-dependent natural selection supports coexistence between conflicting
investment ideologies in general. When there are many growth investors, growth stocks
become overvalued, increasing the subsequent profits of value investors; greater profits
generate more favorable stories that can be passed on, spreading the value ideology.
The reverse occurs when there are few growth investors. A similar reasoning suggests
that bullish versus bearish ideologies are self-limiting. In the language of genetics, we
expect a balanced polymorphism.

Shiller (2007) argues that changes in popular economic models are central to under-
standing asset overvaluation. Following Modigliani and Cohn (1979), he proposes that
owing to money illusion on the part of investors, low nominal interest rates raise asset
valuations. Investors who are unaware of the real-versus-nominal interest rate dis-
tinction discount at nominal rates without adjusting forecasts of future dividends for
forecasts of inflation. He documents the historical rise in public references to “real inter-
est rates” and finds that recently the use of the phrase has dropped precipitously. He also
documents the recent rise in popularity of the meme that global markets are “awash with
liquidity,” by performing a Lexis-Nexis search of this phrase.

There are also managerial fads and stable popular theories about management meth-
ods (e.g., EVA), capital budgeting techniques (e.g., payback versus NPV), and other
aspects of corporate investment and financing policy. As discussed in Section 1.4.3,
there is evidence that some corporate behaviors spread across firms through the inter-
locking social networks of managers and boards. Goldfarb, Kirsch, and Miller (2007)
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model the influence of the “get big fast” ideology about the best strategy for dot-com
startups to achieve success; they provide evidence suggesting that it resulted in overin-
vestment by existing firms and too little entry. (This ideology was motivated in large
part by the economic theory literature on network externalities and increasing returns.)
They model the adoption of this meme as an information cascade.

In summary, to develop a memetic understanding of the micro- and macroevolution
of these ideologies, research is needed to understand how they exploit investors’ psy-
chological needs. Financial ideologies also influence public policy. Hirshleifer (2008)
argues that an ideology of anti-short-termism combines a number of ideas that are con-
ceptually unrelated but emotionally linked and that this meme assembly is an important
driver of financial and accounting regulation.

1.12. CONCLUSION

Observers have long wondered whether sudden large shifts in prices, actions, and
resource allocation in capital markets are caused by social contagion. Such phenomena
include asset and security market booms and crashes; real investment booms and busts;
takeover and financing waves (including boom/bust patterns in the design of securities,
such as asset-backed securities); shifts in disclosure practices, such as the use of pro
forma earnings disclosures; and financial market runs. Often the behaviors of relevant
participants converge despite negative payoff externalities, suggesting that such patterns
may be caused by contagious effects of psychological bias or by the failure of rational
social learning to aggregate information efficiently.

We review here the causes and effects of contagion of thoughts and behaviors in
capital markets among participants such as investors, managers, security analysts, advi-
sors, and media commentators. We examine theory and evidence about how rational
observational learning, agency problems, and psychological forces affect contagion in
firms’ investment, financing, and disclosure choices and in investors’ trading decisions
and the consequences of contagion for the pricing of real assets and securities. In addi-
tion to herding by managers or other agents, we consider how such agents exploit the
readiness of investors to herd.

An externality problem is central to the theory of rational observational learning.
Each individual maximizes his own payoff without regard to the effect of his choice
on the information obtained by later decision makers by observing the individual’s
action choice and/or the payoff consequences of that choice. Over time, individuals act
mainly based on the accumulated inventory of public information (perhaps including
payoff information) generated by past actions. This delays or blocks the generation and
revelation of further information.

Thus, in a range of economic settings, even if payoffs are independent and people
are rational, decisions tend to quickly converge on mistaken action choices. In other
words, the resulting cascade or herd is idiosyncratic. Owing to idiosyncrasy, rational
individuals place only modest faith in the conventional action; the cascade or herd
is easily dislodged (fragility). Furthermore, rational observational learning tends to
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cause simultaneity (delay followed by a sudden spasm of joint action), paradoxicality
(increasing the availability of public information by various means can decrease welfare
and decision accuracy), and path dependence (chance early events have big effects on
ultimate outcomes).

Depending on the exact assumptions, information may be completely suppressed for
a period (until a cascade is dislodged). Under other assumptions, no cascades form and
asymptotically all uncertainty is resolved, but too slowly (relative to full aggregation of
private signals). Information cascades require discrete, bounded, or gapped action space
(or cognitive constraints); these conditions are highly plausible in many investment
settings. Even when these conditions fail owing to noise, the growth in accuracy of
the public information pool tends to be self-limiting because an individual who places
heavy weight on the information derived from past actions puts little weight on his own
signal, making his own action less informative to those who follow.

Markets have been praised as marvels of spontaneous information aggregation
(Hayek, 1945). Indeed, we see that rational price setting in perfect markets encour-
ages investors to use their private signals rather than imitating the trades of others,
discouraging direct information cascades of trading. However, in settings with multi-
ple dimensions of uncertainty, quasi-cascading behavior can occur in which individuals
trade in opposition to their information signals.

Furthermore, transaction costs, minimum trade sizes, or psychological biases can
prevent price from fully aggregating information. As a result, proper trading cascades
can form, including cascades in participation versus nonparticipation in markets. Even
without frictions or biases, information cascades (and other sources of herd behavior)
in investigation indirectly affect trading and the amount of information aggregated into
market price. So, despite some arguments to the contrary, in several economic settings
information cascades affect securities trading and prices.

Although inefficient behaviors can be locked in by noninformational factors (such as
positive payoff externalities), the theories of rational observational learning, especially
the information cascades theory, differ in their implication of fragility. Therefore, pay-
off externality models are helpful in explaining herds that seem stable and robust.48

Reputational models, for example, generate stable patterns of herding or dispersing
through endogenously generated payoff externalities. Reputational models help explain
when herding versus dispersing will occur and offer implications about the effect on the
pressure to herd on the career status of managers.

We need new models of price setting in financial markets in which beliefs are not
transmitted solely through price, in which ideas spread between neighbors in a social
network and by means of electronic media. Furthermore, we need analysis that reflects
the fact that the information conveyed is not necessarily a simple normally distributed
signal, processed in some rational or quasi-rational fashion. Often what are conveyed
are investment ideas or memes, and we need to understand how both isolated financial
memes (e.g., “This stock is going to rise”) and full-fledged financial ideologies (such as

48However, informational effects including cascades can still occur in settings with payoff externalities,
leading to idiosyncratic (though not fragile) outcomes.
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“new era” theories and the value and growth ideologies) spread from person to person
as a sort of social epidemic. Empirical testing will of course be crucial to the success of
a research program based on thought contagion.

Such a program involves understanding the spread of particular financial memes
viewed as an epidemic, studying the characteristics of financial memes that tend to
promote their own replication, and assessing the characteristics of the environment that
favor different kinds of memes. In other words, it involves studying what makes some
financial memes better adapted than others. Even more ambitiously, it is important to
understand why certain financial memes complement each other and how this leads to
the cumulative evolution of financial ideologies that are well adapted in the sense that
they are good at spreading themselves.

We have suggested that many of the puzzles and anomalies of capital markets can
be understood by going beyond a focus on individual psychological biases and the way
biased individuals interact through trading and market price. Instead, as Robert Shiller
has proposed, we need to understand the social processes that lead to the spread of
popular ideas. For dynamic phenomena such as bubbles and crashes, the concept of
availability cascades is especially promising. We have offered some tentative speculative
memetic explanations for such phenomena as the survival of invalid capital budgeting
methods and money-losing active trading strategies, bubbles, hot IPOs, short-run fluctu-
ations in the profitability of value versus growth strategies and frequencies of the value
and growth ideologies, and long-run coexistence of these ideologies.
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Abstract

In this chapter we revisit the classic problem of tâtonnement in price formation from a
microstructure point of view, reviewing a recent body of theoretical and empirical work
explaining how fluctuations in supply and demand are slowly incorporated into prices.
Because revealed market liquidity is extremely low, large orders to buy or sell can only
be traded incrementally, over periods of time as long as months. As a result order flow
is a highly persistent long-memory process. Maintaining compatibility with market effi-
ciency has profound consequences on price formation, on the dynamics of liquidity,
and on the nature of impact. We review a body of theory that makes detailed quantita-
tive predictions about the volume and time dependence of market impact, the bid–ask
spread, order book dynamics, and volatility. Comparisons to data yield some encourag-
ing successes. This framework suggests a novel interpretation of financial information,
in which agents are at best only weakly informed and all have a similar and extremely
noisy impact on prices. Most of the processed information appears to come from supply
and demand itself, rather than from external news. The ideas reviewed here are rele-
vant to market microstructure regulation, agent-based models, cost-optimal execution
strategies, and understanding market ecologies.

Keywords: financial markets, market microstructure, price impact, market ecology

2.1. INTRODUCTION

In this chapter we discuss the slow process by which markets “digest” fluctuations in
supply and demand, reviewing a body of work that suggests a new approach to the
classic problem of tâtonnement—the dynamic process through which markets seek to
reach equilibrium.

2.1.1. Overview

The foundation of this approach is based on several empirical observations about
financial markets, the most important of which is long memory in the fluctuations of
supply and demand. This is exhibited in the placement of trading orders, and corre-
sponds to long-term, slowly decaying positive correlations in the initiation of buying
vs. selling. It is observed in all the stock markets studied so far at very high levels of
statistical significance. It appears that the primary cause of this long memory is the
incremental execution of large hidden trading orders. The fact that the long memory
of order flow must coexist with market efficiency (at least in a statistical sense) has a
profound influence on price formation, causing dynamic adjustments of liquidity that
are strongly asymmetric between buyers and sellers.

This has important consequences for market impact. (By market impact we mean
the average response of prices to trades; liquidity refers to the scale of the market
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impact.1) We discuss theoretical work predicting the average market impact as a func-
tion of both volume and time. The asymmetric liquidity adjustments needed to maintain
compatibility between the long memory of order flow and market efficiency can equiv-
alently be interpreted in terms of the temporal response of market impact, leading to a
slow decay of market impact with time.

This work also has important consequences about the interpretation and effect of
information in financial markets. In particular, the explanation for market impact that
we develop here differs from the standard view in the finance literature, which holds
that the shape of the impact function is determined by differences in the information
content of trades. The body of work reviewed here instead assumes that the impact of
trades depends only on their predictability; for example, that highly predictable trades
have little impact, as originally postulated by Hasbrouck (1988). We argue that this is a
much simpler explanation that produces stronger predictions, is more plausible from a
theoretical point of view, and is more in line with what is observed in the data.

The implications of this work range upward from microstructure—that is, at the level
of individual price changes—to patterns of price formation on time scales that can be
measured in months. At the microstructure level this work makes several predictions,
such as the relationship between market impact, the bid–ask spread, and volatility. It
also make predictions about the impact of large trades executed over long periods of
time as well as the effect such trades may have in causing clustered volatility.

2.1.2. Organization

In the remainder of the introduction we discuss the motivation and scope of the work
described here and discuss our approach to creating a theory for market microstructure,
which is somewhat unusual within economics. In Section 2.2 we discuss the institu-
tional aspects of the markets that form the basis of our empirical studies and define
some of the terms that will be used throughout the paper. In Section 2.3 we lay out
some of the main conceptual issues, discussing the concept of information in finance
and its relationship to market efficiency and the important role that liquidity (or more
accurately, the lack of liquidity) plays in forming markets. We critique so-called “noise
trader” models and present an alternative point of view. In Section 2.4 we present the
empirical evidence for long memory in order flow, develop a theory for its explana-
tion based on strategic order splitting, and present evidence that this theory is correct.
In Section 2.5 we describe the various types of impact and review the empirical evi-
dence. In Section 2.6 we develop a theory for market impact for each type of impact. In
Section 2.7 we discuss the problem of explaining the behavior of the bid–ask spread and
compare theory and empirical observations. Section 2.8 discusses the close relationship
between liquidity and volatility. In Section 2.9 we discuss models for the order book,

1Market impact is closely related to the demand elasticity of price and is typically measured as the return
associated with a transaction as a function of volume. Liquidity (as we will use it here) measures the size of
the price response to a trade of a fixed size and is inversely proportional to the scale of the impact. If trading
a given quantity produces only a small price change, the market is liquid, and if it produces a large price
change, it is illiquid.
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which can be regarded as models for liquidity. Section 2.10 discusses the problem of
trading in an optimal manner to minimize execution costs. Section 2.11 describes recent
attempts to characterize trading ecologies of market behavior in short time scales, and
Section 2.12 presents our conclusions.

2.1.3. Motivation and Scope

Markets are places where buyers meet sellers and the prices of exchanged goods are
fixed. As originally observed by Adam Smith, during the course of this apparently
simple process, remarkable things happen. The information of diverse buyers and sell-
ers, which may be too complex and textured for any of them to fully articulate, is
somehow incorporated into a single number—the price. One of the powerful achieve-
ments of economics has been the formulation of simple and elegant equilibrium models
that attempt to explain the end results of this process without going into the details of
the mechanisms through which prices are actually set.

There has always been a nagging worry, however, that there are many situations in
which broad-brush equilibrium models that do not delve sufficiently deeply into the
process of trading and the strategic nature of its dynamics may not be good enough
to tell us what we need to know; to do better we will ultimately have to roll up our
sleeves and properly understand how prices change from a more microscopic point of
view. Walras himself worried about the process of tâtonnement, the way in which prices
settle into equilibrium. While there are many proofs for the existence of equilibria, it is
quite another matter to determine whether or not a particular equilibrium is stable under
perturbations—that is, whether prices initially out of equilibrium will be attracted to
an equilibrium. This necessarily requires a more detailed model of the way prices are
actually formed. There is a long history of work in economics seeking to create models
of this type (see e.g., Fisher, 1983), but many would argue that this line of work was
ultimately not very productive, and in any case it has had little influence on modern
mainstream economics.

A renewed interest in dynamical models that incorporate market microstructure is
driven by many factors. In finance, one important factor is growing evidence suggesting
that there are many situations where equilibrium models, at least in their current state,
do not explain the data very well. Under the standard model prices should change only
when there is news, but there is growing evidence that news is only one of several
determinants of prices and that prices can stray far from fundamental values (Campbell
and Shiller, 1989; Roll, 1984; Cutler et al., 1989; Joulin et al., 2008).2 Doubts are further
fueled by a host of studies in behavioral economics demonstrating the strong boundaries
of rationality. Taken together this body of work calls into question the view that prices
always remain in equilibrium and respond instantly and correctly to new information.

The work reviewed here argues that trading is inherently an incremental process
and that for this reason, prices often respond slowly to new information. The reviewed
body of theory springs from the recent empirical discovery that changes in supply and

2See Engle and Rangel (2005) for a dissenting view.
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demand constitute a long-memory process; that is, that its autocorrelation function is
a slowly decaying power law (Bouchaud et al., 2004; Lillo and Farmer, 2004). This
means that supply and demand flow in and out of the market only very gradually, with a
persistence that is observed on time scales of weeks or even months. We argue that this
is primarily caused by the practice of order splitting, in which large institutional funds
split their trading orders into many small pieces. Because of the heavy tails in trading
size, there are long periods where buying pressure dominates and long periods where
selling pressure dominates. The market only slowly and with some difficulty “digests”
these swings in supply and demand. To keep prices efficient in the sense that they are
unpredictable and there are not easy profit-making opportunities, the market has to make
significant adjustments in liquidity. Understanding how this happens leads to a deeper
understanding of many properties of market microstructure, such as volatility, the bid–
ask spread, and the market impact of individual incremental trades. It also leads to an
understanding of important economic issues that go beyond market microstructure, such
as how large institutional orders impact the price and in particular how this depends on
both the quantity traded and on time. It implies that the liquidity of markets is a dynamic
process with a strong history dependence.

The work reviewed here by no means denies that information plays a role in forming
prices, but it suggests that for many purposes this role is secondary. In the last half of the
twentieth century, finance has increasingly emphasized information and deemphasized
supply and demand. The work we review here brings forward the role of fluctuations
and correlations in supply and demand, which may or may not be exogenous. As we
view it, it is useful to begin the story with a quantitative description of the properties of
fluctuations in supply and demand. Where such fluctuations come from doesn’t really
matter; they could be driven by rational responses to information or they could simply
be driven by a demand for liquidity. In either case, they imply that there are situa-
tions in which order arrival can be very predictable. Orders contain a variable amount
of information about the hidden background of supply and demand. This affects how
much prices move and therefore modulates the way in which information is incorpo-
rated into prices. This notion of information is internal to the market. In contrast to the
prevailing view in market microstructure theory, there is no need to distinguish between
“informed” and “uninformed” trading to explain important properties of markets, such
as the shape of market impact functions or the bid–ask spread.3

We believe that the work here should have repercussions on a wide gamut of
questions:

• At a very fundamental level, how do we understand why prices move, how
information is reflected in prices, and what fixes the value of the volatility?

• At the level of price statistics, what are the mechanisms leading to price jumps and
volatility clustering?

3Since modern continuous double auction markets are typically anonymous, it is hard to see how the identity
of traders could play an important role in the size of the price response to trades. See the discussion in
Section 2.3.
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• At the level of market organization, what are the optimal trading rules to ensure
immediate liquidity and orderly flow to investors?

• At the level of agent-based models, what are the microstructural ingredients
necessary to build a realistic agent-based model of price changes?

• At the level of trading strategies and execution costs, what are the consequence
of empirical microstructure regularities on transaction costs and implementation
shortfall?

We do not wish to imply that these questions will be answered here—only that the work
described here bears on all of them. We will return to discussing the implications in our
conclusions.

2.1.4. Approach to Model Building

Because this work reflects an approach to model building that many economists will find
unfamiliar, we first make a few remarks to help the reader understand the philosophy
behind this approach. Put succinctly, our view is that the enormous quantities of data
that are now available fundamentally change the approach one should take to building
economic theories about financial markets.

In recent years the computer has made it possible to automate markets, has enabled
an explosion in the amount of recorded data, and has made it possible to analyze
unprecedented quantities of information. Financial instruments are now typically stan-
dardized, stable entities that are traded day after day by many thousands of market
participants. Modern electronic markets offer an open and transparent environment that
allows traders across the world to get real-time access to prices, and most important
for science, makes it possible to save detailed records of human decision making. The
past decades have seen an explosion in the volume of stored data. For example, the total
volume of data related to U.S. large caps on, say, October 2, 2007, was 57 million lines,
approximately a gigabyte of stored data. The complete record of world financial activity
is more than a terabyte per day. Each market has slightly different rules of operation,
making it possible to compare market structures and the way they affect price formation
and, most important of all, to look for patterns of behavior that are common across all
market structures. The system of world financial markets can be viewed as a huge social
science experiment in which profit seekers spend large quantities of their own money to
collect enormous quantities of data for the pleasure of scientists.

With so much data it becomes possible to change the style in which economics is
done. When one has only a small amount of noisy data, statistical testing must be done
with great care, and it is difficult to test and reject competing models unless the differ-
ences in their predictions are very large. Data snooping is a constant worry. In contrast,
with billions of data points, if an effect is not strong enough to leap out of the noise,
it is unlikely to be of any economic importance. Even more important is the effect this
has on developing and testing theories. With a small data set inference requires strong
priors. This fosters an approach in which one begins with pure theory and tests the
resulting models only after they are fully formulated; there is less opportunity to let the
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data speak for itself. Without great quantities of data it is difficult to test a theory in a
fully quantitative manner, and so predictions of theories are typically qualitative.

The work reviewed in this chapter takes advantage of the size of financial data sets
by strongly coupling the processes of model formation and data analysis. This begins
with a search for empirical regularities, that is, behaviors that under certain circum-
stances follow consistent quantitative laws. Even though such effects do not have the
consistency of the laws of physics, one can nonetheless be somewhat more ambi-
tious than simply trying to establish a set of “stylized facts.” An attempt is made to
describe regularities in terms that are sufficiently quantitative so that theories have a
clear target and can thus sensibly make strongly falsifiable predictions. A key goal of
such theories is, of course, to understand the necessary and sufficient conditions for
regularities.

The approach for building theory described here is phenomenological. That is, it does
not attempt to derive everything from a set of first principles but rather simply tries to
connect diverse phenomena to each other to simplify our description of the world. Many
economists will be uncomfortable with this approach because it often lacks “economic
content,”—that is, the theories developed do not invoke utility maximization. In this
sense this body of work lies somewhere between pure econometrics and what is usually
called a theory in microeconomics. Even though the models infer properties of agent
behavior and connect them to market properties such as prices, there is no attempt to
derive the results from theories that maximize preferences. Instead we content ourselves
with weaker assumptions, such as market efficiency. Given all the empirical problems
surrounding the concept of utility, we view this as a strength rather than a weakness.

The work described here is still in an early stage and is very much in flux; many of
these results are quite new, and indeed our own view is still changing as new results
appear.

2.2. MARKET STRUCTURE

All of the work described here is based on results from studying stocks from the London,
Paris, New York (NYSE and NASDAQ), and Spanish stock markets. These markets
differ in their details, but they all do at least half of their trading (and in some cases all
their trading) through a continuous double auction. “Auction” indicates that participants
may place quotes (also called orders) stating the quantities and prices at which they are
willing to trade; “continuous” indicates that they can update, cancel, or place new quotes
at any time, and “double” indicates that the market is symmetric between buyers and
sellers.4

4There are some small exceptions to symmetry between buying and selling, such as the uptick rule in the
NYSE, but these are relatively small effects.
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There are some important differences in the way these markets are organized. The
NYSE was unusual (until the end of 2007) in that each stock has a designated specialist
who maintains and clears the limit order book. The specialist can see the identity of
all the quotes and can selectively show them to others. The specialist can also trade for
his own account but has regulatory obligations to “maintain an orderly market.” The
London Stock Exchange, in contrast, has no specialists. It is completely transparent
in the sense that all orders are visible to everyone, but it is completely anonymous in
the sense that there is no information about the identity of the participants, and such
information is not disclosed even to the counterparties of transactions. The Spanish
Stock Market is unusual in that membership codes for quotes are publicly displayed.
Thus these exchanges are generically similar but have their own peculiar characteristics.

Markets also differ in the details of the types of orders that can be placed. For
example, the types of orders in the London Stock Exchange are called “limit orders,”
“market orders with limiting price,” “fill-or-kill,” and “execute and eliminate.” To treat
these different types simply and in a unified manner, we simply classify them based on
whether an order results in an immediate transaction, in which case we call it an effec-
tive market order, or whether it leaves a limit order sitting in the book, in which case we
call it an effective limit order. Marketable limit orders (also called crossing limit orders)
are limit orders that cross the opposing best price and so result in at least a partial trans-
action. The portion of the order that results in an immediate transaction is counted as an
effective market order, whereas the nontransacted part (if any) is counted as an effective
limit order; thus in this case a single action by the participant gets counted as two sep-
arate orders. Note that we typically drop the term effective so that, for example, market
order means effective market order. Similarly, a limit order can be removed from the
book for many reasons; for example, because the agent changes her mind, because a
time specified when the order was placed has been reached, or because of the institu-
tionally mandated 30-day limit on order duration. We will lump all these together and
simply refer to them as cancellations.

In addition to continuous double auctions, the London Stock Exchange has what is
called the off-book market and the New York Stock Exchange has what is called the
upstairs market. These are both bilateral exchanges in which members can interact in
person or via telephone to arrange transactions. Such transactions are then reported
publicly at a later time. With exceptions noted in the text, all the results obtained are
from the continuous markets.

2.3. INFORMATION, LIQUIDITY, AND EFFICIENCY

The aim of this section is to motivate the empirical study of microstructure in a broader
economic context—that of the information content of prices and the mechanisms that
can lead to market efficiency. We discuss several fundamental questions concerning
how markets operate. The discussion here sets the stage for the detailed quantitative
investigations that we report in the following sections. Since one of our main subjects
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here is market impact, we review and critique the standard model for market impact,
which is based on informed vs. uninformed trading.

2.3.1. Information and Fundamental Values

It is often argued that there is a fundamental value for stocks, correctly known to at
least some informed traders who buy underpriced stocks and sell overpriced stocks. By
doing so they make a profit and, through the very impact of their trades, drive back the
price toward its fundamental value. This mechanism is the cornerstone of the theory of
efficient markets and is often used to justify unpredictable prices. In such a framework,
the fundamental value of a stock can only change with unanticipated news. The scenario
is then the following: A piece of news becomes available, and market participants work
out how this changes the fundamental price of the stock and trade accordingly. After
a (supposedly fast) phase of tâtonnement, the price converges to its new equilibrium
value, and the process repeats itself. To explain deviations from this picture, one can
add a suitable fraction of uninformed trades to add some high-frequency noise.

Is this picture fundamentally correct to explain the reason that prices move and to
account for the observed value of the volatility? Judging from the literature, it looks as
if a majority of academics still believe that this story is at least a good starting point
(but see, for example, Lyons, 2001). Recent empirical microstructure studies open the
way to testing in detail the basic tenets and the overall plausibility of the standard equi-
librium picture. We hope to convince the reader that the story is in fact significantly
different. That is, we argue that an alternative way of looking at events provides supe-
rior explanatory power based on a simpler set of hypotheses. Before discussing at length
the microstructural evidence for a change of paradigm, we would like at this stage to
make several general comments that will be relevant—first on the very notion of fun-
damental value and information and second on various orders of magnitude and time
scales involved in the problem.

Is the fundamental value of a stock or a currency a valid concept in the sense that it
can be computed, at least as a matter of principle, with arbitrary accuracy with all infor-
mation known at time t? The number of factors influencing the fundamental value of a
company or of a currency is so large that there should be, at the very least, an irreducible
intrinsic error. All predictive tools used by traders, based on economic ratios, earning
forecasts, or the like, are based on statistical models detecting trends or mean reversion
and are obviously noisy and sometimes even biased. For example, financial experts are
known to be on the whole rather bad at forecasting the next earning of a company (see,
e.g., Guedj and Bouchaud, 2005). News is often ambiguous and not easy to interpret.
But if we accept the idea of an intrinsically noisy fundamental value with some band
of width Δ within which the price can almost freely wander, the immediate question is,
how large is the uncertainty Δ? Is it very small, say, 10−3 in relative terms, or quite a
bit larger, say, 100%, as suggested by Black (1986)? If Black is right (which we tend
to believe) and the uncertainty in the fundamental value is large, then the information
contained in a trade is noisy and the amount of information contained in any given
trade is necessarily small. Analysis of price impact makes it clear that the standard
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deviation of impacts is very large compared to their mean, suggesting that this is indeed
the case.

2.3.2. Market Efficiency

Market efficiency is one of the central ideas in finance and appears in many guises.
A standard definition of market efficiency (in the informational sense) is that the current
price should be the best predictor of future prices; that is, that prices should be a mar-
tingale. Another closely related notion is arbitrage efficiency, which in its weakest form
states that it should not be possible to make a profit without taking risks; in a stronger
form it says that two strategies with the same risk should make the same profits, at
least once their usefulness for inclusion in a portfolio is taken into account. Steve Ross,
among others, has advocated that market efficiency (rather than equilibrium) should be
the core postulate for financial theory (Ross, 2004).

We agree with this point of view, at least in so far as it does not imply believing
in allocative efficiency; that is, that prices correctly reflect the underying value of the
assets. Strictly speaking a market is allocatively efficient if it is Pareto optimal, in the
sense that there is no alternative allocation of prices and holdings that makes someone
better off without making someone worse off. This is related to whether or not prices are
set at their “proper” values. It is entirely possible to imagine a market in which prices
are unpredictable and yet in which there is no sense that prices are set correctly. That
is, once we depart from neoclassical equilibrium, a market might be informationally
efficient yet allocatively inefficient.

A closely related point is that there are two very different possible explanations for
market efficiency:

1. The standard view in economics is that perfect efficiency reflects perfect information
processing. Traders process each new bit of information as it arrives, and prices
immediately go to their new equilibrium values.

2. An obvious alternative is the standard one that explains randomness in many other
fields, such as fluid turbulence. Markets are too complicated to be predictable. Under
this explanation prices move randomly because investor behavior is complicated,
based on many hidden factors, so to an external observer it is “as if” individual
investors are just flipping coins.

The correct explanation is likely to be a mixture of both effects. On one hand markets
are inherently complicated, but on the other hand, whatever predictability is left over is
substantially removed by arbitrageurs. Under this synthetic view, which we take here,
one can simply associate an impact with trades, treat all investors as more or less the
same, and adjust the expected impact as needed to preserve efficiency based on factors
that derive from the predictability of trades.

Finally we want to emphasize that though we believe that market efficiency is a very
useful concept and provides an excellent starting point for developing theories, it is
inherently contradictory and is at best an approximation. Markets can only be informa-
tionally efficient at first order but must necessarily be inefficient at second order. This
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was originally pointed out by Milton Friedman, who noted that without informed traders
to push prices in the right direction, there is no reason that markets should ever be effi-
cient. If markets were truly efficient, informed traders should make the same profits as
anyone else, and there would be no motivation for them to remain in the market. Thus
markets cannot be fully efficient.

Even if for many purposes it can be a good approximation to assume that markets
are efficient, there are other situations in which deviations from efficiency can be quite
important. Understanding how markets evolve from inefficient to efficient states, pre-
dicting the necessary level of deviations from efficiency that must persist in steady state,
and understanding their role in the way markets function remain areas of investigation
that are still largely not understood. This is relevant for our discussions on incorporating
information into prices because when we speak about information we must have traders
to process that information and trade based on it. It is precisely the market impact of
these traders that moves prices. Thus while on one hand market impact is a friction, it
can also be viewed as the factor that maintains efficiency, and so it is essential that we
properly understand it.

2.3.3. Trading and Information

Informational efficiency means that information must be properly incorporated into
prices. Under assumptions of rationality, when all traders have the same information,
prices should move more or less automatically, with very little trading (Milgrom and
Stokey, 1982; Sebenius and Geanakoplos, 1983). But of course that’s not true—people
don’t have the same information, and even if they did, real people are likely to take
different views on what the information means. The empirical fact that there is so much
trading supports this idea (Shiller, 1981). Grossman and Stiglitz (1980) developed an
equilibrium model in which traders have different information that shows that in this
situation, trading and price movements are informative (see also Grossman, 1989).
If I know that you are rational, and I know that you have different information than
I have, when I see you trade and the price rises I can infer the importance of your
information and thus I should change my own valuation.

Intuitively the problem with this view is that even small deviations from rationality
and perfect information can lead to incorrect prices and instabilities in the price process.
Suppose, for example, that you and I both overestimate how much information the other
has. Then when I see you trade I change my valuation too much. When I see you buy, I
also buy, but I buy more than I should. To make this slightly more quantitative, let the
initial price be p0 and suppose that after Agent A observes new fundamental information
the price rises by f , which might or might not be the correct fundamental level. After
Agent A trades, the new price becomes p1 = p0 + f . Agent B sees the price rise by
f , and assuming that Agent A has more information than he really does, he buys and
causes the price to rise to p2 = p0 + af . Then B sees the price rise more than f , so he
buys, driving it to p3 = p0 + a2f , and so on. This process is clearly unstable if a > 1.
The agents either need to know the value of a exactly or they need to be able to adapt
a based on information that is not contained in the price. It is difficult to understand
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how they can do this since by definition if they are not rational, not only do they not
have full information, they do not know how much information they have, and they
thus cannot know a priori the proper value of a. Under deviations from rationality,
deviations from fundamentals are inevitable. For a beautiful model where copycats lead
to such instabilities, see P. Curty and M. Marsili (2006).

In its extreme version, this is just the kind of scenario that occurs during a bubble
(see Bouchaud and Cont, 1998, for an explicit model). Any reasonable investor who
lived through the millennium technology bubble experienced this problem. Even though
high prices seemed difficult to rationalize based on values, prices kept going up. This
led many sanguine investors to lose confidence in their own valuations and to hang
onto their shares much longer than they thought was reasonable. If they didn’t do this
they experienced losses as measured relative to their peers. Under this view, bubbles
stem from the problem of not knowing how much information price movements really
contain and the feedback effects that occur when most people think they contain more
information than they really do. This point of view differs from that in the standard
literature on rational bubbles. As we argue here, though not entirely different, there
are important contrasts between this view and the standard rational expectations/noise
trader models.

2.3.4. Different Explanations for Market Impact

Why is there market impact? We will distinguish three possibilities:

1. Trades convey a signal about private information. This idea, discussed in the pre-
vious section, was developed by Grossman and Stiglitz (1980). The arrival of new
private information causes trades, which cause other agents to update their valu-
ations, which changes prices. In this case it is fair to say that trades cause price
changes, since even if there happens to be no information, unless this is common
knowledge the observation of a trade is still interpreted as information, which causes
the price to change.

2. Agents successfully forecast short-term price movements and trade accordingly. This
can result in measurable market impact even if these agents have absolutely no effect
on prices at all. If an agent correctly forecasts price movements and trades based on
this forecast, when this agent buys there will be a tendency for the price to subse-
quently rise. In this case causality runs backward, that is, because the price is about
to rise, agents are more likely to trade in anticipation of it, but a trade based on no
information will have no effect.

3. Random fluctuations in supply and demand. Even in the standard market-clearing
framework, if a given agent increases her demand while other agents keep theirs
constant, when the market clears that agent buys and the price rises. Fluctuations
in supply and demand can be completely random, unrelated to information, and the
net effect regarding market impact is the same. In this sense impact is a completely
mechanical—or better, statistical—phenomenon. As we will see in Appendix 2.1,
the meaning of this can be subtle and may depend on the market framework.
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All three of these possibilities result in identical short-term market impact—that is, a
positive correlation of trading volume and price movement—but they are conceptually
very different. If some traders really know the “true” price at some time in the future
(say, the end of the day, after the market closes), the observation of an excess of buy
trades allows the market to guess that the price will move up and to change the quotes
accordingly (see Section 2.7.2 on the Glosten-Milgrom model). In this sense, informa-
tion has progressively included in prices as a function of the observed order flow. In
this picture, as emphasized in Hasbrouck (2007), “orders do not impact prices. It is
more accurate to say that orders forecast prices.” But if the mechanical interpretation
is correct, correlation between price changes and order flow is a tautology. If prices
move only because of trades, “information revelation” may merely be a self-fulfilling
prophecy that would occur even if the fraction of informed traders is zero. The only pos-
sible differences between these pictures come about in the temporal behavior of impact,
which we discuss in Section 2.6.

2.3.5. Noise Trader Models and Informed vs. Uninformed Trading

In behavioral finance, the problem of irrational investors is typically coped with by
introducing “noise trader” models, in which some agents (the noise traders) are stupid
while others are completely rational (Kyle, 1985; DeLong et al., 1990; Shleifer, 2000).
Noise trading could be driven by the need for liquidity (here meaning the need to raise
capital for other reasons), it could be driven by the desire to reduce risk, or it could
be “irrational behavior,” such as trend following. The assumption is made that such
investors lack the skill or information-processing ability to collect and/or make full use
of information. The rational investors, in contrast, are assumed to correspond to skilled
professionals. Their trading is perfect in the sense that they know everything. Examples
of what they must know include the strategies of all the noise traders and the fraction of
capital traded by noise traders as opposed to rational investors. In such models, prices
can deviate from fundamental values due to the action of the noise traders and the desire
of the rational agents to exploit them as much as possible, but the rational agents always
keep them from deviating too much. The rational traders make “informed” trades while
the noise traders make “uninformed” trades.

There are several conceptual problems with noise trader models that are clear a
priori. No one can seriously dispute that traders must have different levels of skill,
but is the noise trader approach the right way to model this? Though it might be fine to
model a continuum of skill levels as “low” and “high,” the idea of identifying the “high”
level with perfect rationality postulates a level of skill at the top end that is difficult to
imagine. The panoply of strategies used by real traders is large, and financial profes-
sionals (and even private investors) are sufficiently secretive about what they do that it
is difficult to imagine that even the most skilled traders could fully understand everyone
else’s behavior.

Another problematic issue is the operational problem of measuring information. For
example, under the theory that urgency is a proxy for informativeness, empirical work
on the subject has often defined an informed trade as one that is executed by a market
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order and defined an uninformed trade as one that is represented by a limit order. This
goes against the fact that many of the most successful hedge funds make extensive use
of limit orders.5 The only alternative is to use data that contains information about the
identity of the agents making the trades. Such data does indeed confirm that profession-
als perform better than amateurs (Barber et al., 2004), but as mentioned, there is no
demonstration that this means they are rational, and other than stating that professionals
make larger profits it is impossible to determine whether or not professionals are good
enough to be considered rational. (On this point, see also Odean, 1999).

2.3.6. A Critique of the Noise Trader Explanation of Market Impact

One of the most important questions to ask about any theory is what it explains that
is not explained by a simpler alternative. Noise trader models have been proposed to
explain why market impact is a concave function of trading volume. The empirical
evidence for this concept is discussed in detail in Sections 2.5 and 2.6; in any case, it is
a well-established empirical fact that the market impact as a function of trade size has
a decreasing derivative. This can be alternatively stated as saying that the price impact
per share decreases with the total size of the trade. The standard explanation for this is
that it is due to a mixture of informed and uninformed trading. If more informed traders
use small trade sizes and less informed traders use large trade sizes, small trades will
cause larger price movement per share than large trades.

There are several problems with this theory:

• A concave market impact function is observed in all markets that have been stud-
ied, including many such as the London and Paris markets, where the identities of
orders are kept completely anonymous. This rules out any explanation that depends
on trades made by some agents communicating more information about prices
than others and leaves only the possibility that some traders are able to anticipate
short-term price movements better than others; see the discussion in Section 2.3.4.

• The model is unparsimonious in the sense that it requires the specification of a
function that states the information that traders have as a function of the size of the
trades that they use.

• The model is difficult to test because it requires finding a way to specify the infor-
mation that various groups of traders have a priori. One proposal is to do this based
of the average profits of different groups of traders. This proposal suffers from the
problem that the time horizon for market impact is typically very different than
the time horizon on which traders attempt to make profits. A fund manager who
intends to a buy a stock and hold it for three years may make the trade to take up
that position in a single day. Though this manager might have great skill in predict-
ing stock price movements on a three-year time horizon, she may have no skill at

5We are basing this on personal conversations with market practitioners and so can only place a lower bound:
We know many people working in many sophisticated trading operations and all of them at least partially use
limit orders. We suspect the correct statement is that “most” or even “nearly all” successful hedge funds use
limit orders for at least a substantial part of their trading.
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all on a daily horizon. Thus in a large fraction of cases, even under large variations
in trader skill, impact may have little correlation with profits.

• If it is indeed advantageous to use small trades, then since this is a trivial strat-
egy, one would think that everyone would quickly adopt it and the effect would
disappear. In fact, in the past five years or so there has been a huge increase in
algorithmic trading, in which brokers automatically execute large trades for clients
by cutting up the trades into small pieces. One would therefore think that in modern
times the concavity should have diminished or even eliminated entirely. There is
little evidence for this; the impact continues to be highly concave.

Thus we have argued in the preceding that the theory is implausible, but even more
important, that it makes weak and untestable predictions. The prediction of concavity
requires a set of assumptions that are complicated to specify and impossible to measure.
The predictions are purely qualitative, and it is not obvious how they might be extended
to other properties of impact, such as temporal behavior.

2.3.7. The Liquidity Paradox: Prices Are Not in Equilibrium

We will argue here that liquidity is an important intermediary that modulates the effect
of information. We are defining liquidity in terms of the size of the price response to a
trade of a given size. High liquidity implies a small price response. Since trades carry
information, if the size of trades in response to a given level of information remains
constant, as the liquidity varies the price response to information varies with it.

Under the assumption that trading is an intermediate step in the response of prices to
information, one can conceptually decompose it into two terms:

Δp = T (I)/λ (2.1)

where λ is the liquidity and T (I) is the response of trades to information I . Variations
in the liquidity do not tell the full story about the response of prices to information; to do
that one would also need to understand T (I). Nonetheless, as we argue here, the effects
of varying liquidity are substantial, and they have the huge advantage of being easily
measurable.6 In contrast, since information is difficult to measure, T (I) is difficult to
measure. Furthermore, the preceding equation should be interpreted rather loosely; as
we shall see, impact is in fact neither linear nor permanent.

A very important empirical fact that is crucial to understanding how markets operate
is that even “highly liquid” markets are in fact not that liquid. Take, for example, a U.S.
large-cap stock. Trading is extremely frequent: a few thousand trades per day, adding
up to a daily volume of roughly 0.1 to 1% of total market capitalization. Trading is even
more frantic on futures and Forex markets. However, the volume of buy or sell limit
orders typically available in the order book at a given instant in time is quite small: only
the order of 1% of the traded daily volume—that is, 10−4 – 10−5 of the market cap for

6Of course, liquidity may also depend on information, and indeed in Section 2.6 we will develop this
connection.
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stocks. Of course, this number has an intraday pattern and fluctuates in time, and it can
reach much smaller values in liquidity crises.

The fact that the outstanding liquidity is so small has an immediate consequence:
Trades must be fragmented. The theoretical motivations for this were originally dis-
cussed by Kyle (1985). It is not uncommon that investment funds want to buy large
fractions of a company, often exceeding several percent. One possibility is to arrange
upstairs block trades, but this lacks transparency and can be costly. If trading occurs
through the continuous double auction market, these numbers suggest that to buy 1%
of a company requires at least the order of 100–1000 individual trades. This is under
the unrealistic assumption that each individual trade completely empties the order book;
more realistically, each trade consumes only a fraction of the order book, and the num-
ber of trades is even larger. But because 1000 trades corresponds to roughly the whole
daily liquidity, it is clear that these trades have to be diluted over several days, since oth-
erwise the market would be completely destabilized. Thus an informed trader cannot use
her information immediately and has to trade into the market little by little.

But why is liquidity, as measured by the number of standing limit orders, so
low? Both for similar and for opposite reasons. Too large a buy limit order from an
“informed” trader would give her away and raise the price of the sellers. Too large a
limit order from a liquidity provider would put him at risk of being “picked-off” by
an informed trader. There is a kind of hide-and-seek liquidity game taking place in
organized markets, where buyers and sellers face a paradoxical situation: Both want to
have their trading done as quickly as possible, but both try not to show their hands and
reveal their intentions. As a result, markets operate in a regime of vanishing revealed
liquidity but large latent liquidity; this leads to a series of empirical regularities that we
will present here.

From a conceptual point of view, however, the most important conclusion of this
qualitative discussion is that prices are typically not in equilibrium in the traditional
Marshall sense. That is, the true price is very different than it would be if it were set so
that supply and demand were equal as measured by the honest intent of the participants,
as opposed to what they actually expose. As emphasized previously, the volume of indi-
vidual trades is much smaller than the total demand or supply at the origin of the trades.
This means that there is no reason to believe that instantaneous prices are equilibrium,
efficient prices that reflect all known information. Much of the information is necessar-
ily latent, withheld due to the small liquidity of the market, and only slowly revealing
itself (see Lyons, 2001, for similar ideas). At best, the notion of equilibrium prices can
only make sense over a long time scale; high-frequency prices are necessarily soiled by
a significant amount of noise.

2.3.8. Time Scales and Market Ecology

Consider again the case of a typical U.S. large-cap stock—say, Apple, which (as of
November 2007) had a daily turnover of around $8 billion. There are on average six
transactions per second and on the order of 100 events per second affecting the order
book. These are extremely small time scales compared to the typical time for public
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news events, in which a hot stock like Apple might be mentioned by name every few
hours during a period of fast information arrival. Perhaps surprisingly, the number of
large jumps in price is much higher. For example, if we define a jump as a one-minute
return exceeding three standard deviations, there are on the order of ten such jumps per
day, reflecting the very heavy-tailed distribution of high-frequency returns (Joulin et al.,
2008). More often than not such jumps occur in the absence of any identified news. It
is obviously a particularly important question to understand the origin and the mech-
anisms leading to these jumps. The difference between the frequency of news and the
frequency of jumps already suggests that something else must be at work, such as fluc-
tuations in liquidity, that may have little or nothing to do with external news entering the
market.

What is the typical time scale of the round-trip trades of investors? This depends
very much on the style of trading; traditional long-only funds have investment horizons
on the scale of years, whereas more aggressive long-short statarbs have time scales of
weeks or days, sometimes even shorter. Some empirical results support the existence of
a broad spectrum of investment horizons (see Sections 2.4.3 and 2.11.1). The optimal
frequency of a trading strategy is a trade-off between the expected profit and the friction
and transaction costs. Since the fraction of costs grows with the trading volume, large
investment funds cannot trade too quickly. This, again, is directly related to the small
prevailing liquidity. So it is reasonable to think that information-based trading decisions
have intrinsic frequencies ranging from a few days to years. As we have already empha-
sized, for large investors a single decision may generate many more trades: A decision
to buy or sell may persist for days to months, generating a series of small trades.
Again, the important message is that low-frequency, large-volume investment decisions
imply high-frequency, small-volume trades and that high-frequency prices cannot be
equilibrium prices.

There is, however, a potentially viable high-frequency strategy called market mak-
ing that consists of providing instantaneous liquidity to buyers and sellers and trying to
eke out a profit from the bid–ask spread. As originally shown by Glosten and Milgrom
(1985), the difficulty is to avoid losses due to adverse price moves. Since market makers
are offering either to buy or to sell, they are giving a free option to others who might
have better information. The profitability of market-making strategies depends both on
the spread, which is beneficial, and on the long-term impact of trades, which is detrimen-
tal. This intuition will be made more precise and discussed in detail in Section 2.7. On
some exchanges market making is institutionalized, with certain obligations and advan-
tages bestowed to those who take the burden of providing liquidity. However, markets
have become more and more electronic, with an open order book allowing each investor
to behave either as a liquidity provider by posting limit orders or as a liquidity taker
by issuing market orders. Depending on market conditions (for example, the instan-
taneous value of the spread), investors can choose either type of order. There is both
empirical and anecdotal evidence that some players implement high-frequency, market-
making strategies. This contribution to order flow is often described as “uninformed.”
Although this flow differs from longer horizon trades, which are supposed to be econom-
ically informed, these market-making strategies routinely use sophisticated short-term
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prediction tools and exploit any profitable high-frequency signals. The preceding sim-
plified separation of market participants into two broad classes—speculators/liquidity
hunters that trade at medium to low frequencies and market makers/liquidity providers
at high frequencies—is both realistic and useful to understand the ecology of financial
markets (Handa and Schwartz, 1996; Farmer, 2002; Wyart et al., 2008; Lillo et al.,
2008b). The competition between these two categories of traders allows one to make
sense of a number of empirical facts, we believe much more usefully than noise trader
models. In Section 2.11 we present some recent empirical results on the characterization
of a market ecology.

2.3.9. The Volatility Puzzle

Given that markets are ecological systems in which participants have a broad dis-
tribution of time horizons from seconds to years, it is perhaps not surprising to see
long-memory effects in financial markets—for example, in trading volume, volatility,
and order flow. What is a priori surprising, however, is that despite the fact that high-
frequency prices cannot possibly be in equilibrium because of lack of liquidity, and
despite the fact that it should take time for the market to interpret a piece of news and
agree on a new price, the average volatility is remarkably constant on a wide range of
different time scales. As measured by autocorrelation, prices are remarkably efficient
down to the fastest time scales. We have argued that news arrival happens on much
longer time scales. Given that this is true, how can prices remain so efficient, at least
with respect to linear models, even on very fast time scales?

One possible explanation might be that public information as evidenced on news
feeds is only a small part of the available information. Instead, suppose there are many
sources of private information, which agents are continually processing. As they make
their decisions, they trade. Given that heavily traded stocks average many trades per sec-
ond, this would suggest that a truly staggering amount of information is being processed.
We find this explanation implausible.

The alternative is that there is an information-processing cascade from fundamental
information on slow time scales to technical information on fast time scales. As we have
argued, fundamental information enters at a relatively slow rate and then is processed
and incorporated into prices. Under this view, high-frequency strategies play an impor-
tant role. Such strategies do not directly process external information but rather serve
the role of digesting that information and keeping the price stream unpredictable. Such
strategies are not processing fundamental information but rather are acting as technical
trading strategies, processing information contained in the time history of prices, trad-
ing volume, and other information that is completely internal to the market. The ability
to substitute information in a time history for state information is well supported in
dynamical systems theory (Packard et al., 1980; Takens, 1981; Casdagli et al., 1991).
Thus we argue that in the ecology of financial markets, high-frequency strategies are fed
by lower-frequency strategies through an information cascade from longer to shorter
time scales and from fundamental to technical information, finally resulting in white
noise on all scales.
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This also suggests that microstructural effects may influence the value of the volatil-
ity, as suggested by Lyons (2001); “microstructure implications may be long-lived”
and “are relevant to macroeconomics.” We will comment on the relation between
microstructure and volatility in Section 2.8. This relation is also relevant for the reg-
ulator who might attempt to alter the microstructural organisation of markets to reduce
the volatility.

2.3.10. The Kyle Model

A classic noise trader model for market impact, which is a natural point of compari-
son, is due to Kyle (1985). This model assumes that there are three types of traders:
noise traders who make random trades, market makers who set prices to guarantee effi-
ciency, and an insider who has access to superior information. Under the most general
version of the model the noise traders and insider trade continuously from a starting
time until a final liquidation time, at which point everyone is paid the liquidation price
for their holdings. The insider has superior information about the final liquidation price
p∞ and an infinite bank, which she uses to maximize profits at the expense of the noise
traders.

The optimal amount that the investor should trade is easily found to be proportional
to the difference p∞ − pt, where pt is the current price. With the assumption of a linear
and permanent impact, in Kyle’s notation the price evolution is given by:

pt+1 − pt = λ [Φt + ξt] + ηt Φt = β[p∞ − pt] (2.2)

where Φt is the signed demand of the investor, λ, β are coefficients, ξt is the noise trader
demand coming from all other market participants, and ηt is a noise term accounting for
possible changes of prices not induced by trading (news, etc.). This equation can easily
be solved and leads to an exponential relaxation of the initial price toward p∞ plus a
bounded noise term.

The impact in this model can be regarded as essentially mechanical. There is an
apparently permanent change in price that is linearly proportional to the total amount
that the noise traders and insider trade. We say “apparently permanent” because, since
there is a final liquidation time, what happens past this point is undefined. Note that in
this model the price will move toward p∞ regardless of whether it is the correct price;
all that is necessary is that insiders believe it is the correct price. A random assignment
of beliefs about p∞ will result in a corresponding random set of impacts. Thus, referring
to our discussion of the various explanations for market impact in Section 2.3.4, while
the Kyle model is built in the spirit of explanation (1), that trades convey a signal about
private information, it is equally consistent with (3), random fluctuations in supply and
demand.

The assumption of a final liquidation price can naı̈vely lead to erroneous conclusions.
For example, this model suggests that one can easily manipulate the price. However,
in the absence of a liquidation price where a transaction with a counterparty can be
realized without impact, things are not so trivial: As soon as the investor wants to close
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his position, he will again mechanically revert the price back to its initial value and take
losses. (To see this, note that in a single round trip the investor will buy at a high price
and sell at the original price.) The preceding impact model, Eq. (2.2), although used
very often in agent-based models of price fluctuations (two of us have also developed
similar ideas, i.e., Bouchaud and Cont, 1998; Farmer, 2002), is far too naı̈ve to represent
the way real markets operate, at least at the tick-by-tick level.

Thus we see that while the Kyle model provides a good starting point for under-
standing why there should be market impact and why it is useful to trade into a position
incrementally, it falls short of making realistic predictions about impact. We feel that
the key elements that need to be extended are (1) removing the final liquidation price,
(2) eliminating the infinite bank of the insider and replacing it with the more realistic
assumption of a finite, predetermined trading size, and (3) eliminating the distinc-
tion between the insider and the noise trader. The aim of the following sections is to
explain in detail how to construct a model generalizing Eq. (2.2), using an approach
based on robust facts observed in empirical data and consistency arguments. We will
find that impact is in general nonlinear and transient—or equivalently, as explained in
Section 2.6.5, history dependent. It is only after a properly defined “coarse-graining”
procedure that such an impact model can possibly make sense.

2.4. LARGE FLUCTUATIONS AND LONG
MEMORY OF ORDER FLOW

From a mechanical point of view, price formation process is the outcome of (i) the flow
of orders arriving in the market and (ii) the response of prices to individual orders. Since
price dynamics are reasonably well described by a Brownian motion, one might naı̈vely
assume that this would be true for order flow as well. In fact, this is far from the truth. As
we explain in detail in this section, order flow is a highly autocorrelated long-memory
process. As a consequence, to maintain market efficiency the price response to orders
must strongly depend on the past history of order flow. This has profound conseqences
on the way in which markets incorporate information.

2.4.1. Empirical Evidence for Long Memory of Order Flow

We discuss here the statistical properties of order flow by considering the time series of
signs of orders. Specifically, consider the symbolic time series obtained in event time by
replacing buy orders with +1 and sell orders with −1, irrespective of the volume of the
order. We reduce these series to ±1 rather than directly analyzing the signed series of
order sizes to avoid problems created by the large fluctuations in order size.7 This reduc-
tion can be done for market orders, limit orders, or cancellations, all of which show very

7Fluctuations in order size are heavy tailed and have long memory themselves, so statistical averages based
on them converge only slowly. The essential behavior is captured by the series of signs.
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FIGURE 2.1 Autocorrelation function of the time series of signs of orders that resulted in immediate
trades (effective market orders) for the stock Vodafone traded on the London Stock Exchange from May 2000
to December 2002, a total of 5.8 × 105 events.

similar behavior.8 We denote with εi the sign of the ith market order. Figure 2.1 shows
the sample autocorrelation function of the market order sign time series for Vodafone
(VOD) in the period 1999–2002 in double logarithmic scale. The figure shows that the
autocorrelation function for market order signs decays very slowly. The autocorrelation
function is still above the statistical noise level even after 104 transactions, which for
this stock corresponds to roughly 10 days. This result indicates that if one observes
a buy market order now, based on this information alone there is some nonvanishing
predictability of the market order signs two weeks from now.

We also note that the autocorrelation function shown in Figure 2.1 is roughly linear
in a double logarithmic scale over more than four decades.9 This suggests that a power-
law relation Cτ ∼ τ−γ might be a reasonable description for the sample autocorrelation
function.10

Stochastic processes for which the autocorrelation function decays asymptotically
as a power law with an exponent smaller than one are called long-memory processes
(Beran, 1994). A precise definition of long memory processes can be given in terms
of the autocovariance function Γτ . We define a process as long memory if in the limit
τ → ∞

Γ(τ) ∼ τ−γL(τ), (2.3)

8Long memory is also observed if the side of all activity (bid or ask), including both limit and market orders,
is taken together. In contrast, if one assigns to limit orders to sell and cancellations of buy orders a negative
sign, corresponding to the fact that the only nonzero price movements it can produce are downward, the
combined sequence of signs for market orders, limit orders, and cancellations does not show long memory.
9The noisy behavior for large τ comes from the fact that for large lags the statistical errors are remaining
roughly constant while the signal decreases, so the relative size of the fluctuations becomes larger.
10f (y) ∼ g(y) means that there exists a constant K �= 0 such that limy→∞ f (y)/g(y) = K.
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where 0 < γ < 1 and L(τ) is a slowly varying function11 at infinity. The degree of
long memory is given by the exponent γ; the smaller γ, the longer the memory. The
integral of the autocovariance (or autocorrelation) function of a long-memory process
diverges. Long memory can also be discussed in terms of the Hurst exponent H , which
is simply related to γ. For a long-memory process, H = 1 − γ/2 or γ = 2 − 2H . Short-
memory processes have H = 1/2, and the autocorrelation function decays faster than
1/τ. A positively correlated long-memory process is characterized by a Hurst exponent
in the interval (0.5, 1). The use of the Hurst exponent is motivated by the relationship
to diffusion properties of the integrated process. For normal diffusion, where by defini-
tion the increments do not display long memory, the standard deviation asymptotically
increases as t1/2, whereas for diffusion processes with long-memory increments, the
standard deviation asymptotically increases as tHL(t), with 1/2 < H < 1, and L(t) a
slow-varying function. In econometrics of financial time series, many variables have the
long-memory property. For example, it is widely accepted that the volatility of prices
(Ding et al., 1993) and stock market trading volume (Lobato and Velasco, 2000) are
long-memory processes. Models of long-memory processes include fractional Brown-
ian noise (Mandelbrot and van Ness, 1968) and the ARFIMA process introduced by
Granger and Joyeux (1980) and Hosking (1981).

As Figure 2.1 suggests and as discovered by Bouchaud et al. (2004) and Lillo and
Farmer (2004), order flow is also described by a long-memory process. The long-
memory of order flow is very robust and is consistently observed for every stock
that has so far been examined. Lillo and Farmer tested for long memory in a panel
of 20 highly capitalized stocks traded at the London Stock Exchange using Lo’s
modified R/S test (Lo, 1991), which is known to be a strict test for long memory.
They found that even on short samples, in most cases the hypothesis of long mem-
ory could not be rejected. The value of H observed in the London Stock Exchange
was generally about H ≈ 0.7, which corresponds to γ = 0.6. Bouchaud et al. (2004)
measured a larger interval of γ values in the Paris Stock Exchange, ranging from
0.2 to 0.7. Long memory has also measured an assortment of stocks in the NYSE;
these results are mentioned in Lillo and Farmer (2004) but have not been published in
detail.

2.4.2. On the Origin of Long Memory of Order Flow

What causes long memory in order flow? The presence of persistent time correlations
in the order flow suggests two possible classes of explanations. The first type of expla-
nation is that this is a property of the order flow of each investor, independent of the
behavior of other investors, as proposed by Lillo et al. (2005). The second type of expla-
nation is that investors herd in their trading though an imitation process that involves

11L(x) is a slowly varying function (see Embrechts et al., 1997) if limx→∞ L(tx)/L(x) = 1 ∀t. In the
preceding definition, and for the purposes of this chapter, we are considering only positively correlated long-
memory processes. Negatively correlated long-memory processes also exist, but the long-memory processes
we consider in the rest of the chapter are all positively correlated.
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an interaction between them, as proposed by LeBaron and Yamamoto (2007). It is of
course possible that both effects operate at once, but in any case one would like to know
their relative magnitude.

We believe that the evidence gathered so far strongly favors the first explanation.
More explicitly, we believe that the dominant cause is the strategic behavior of large
investors who split their orders into many small pieces and execute them incrementally.
The evidence for this stance comes from two sources. One is the agreement of the
properties of the order flow with theory, and the other is additional evidence based on
data that gives information about the identity of participants. We summarize both of
these here.

2.4.3. Theory for Long Memory in Order Flow Based on Strategic Order Splitting

Lillo et al. (2005) have hypothesized that the cause of the long memory of order flow
is a delay in market clearing. To make this clearer, imagine that a large investor decides
to buy ten million shares of a company. It is unrealistic for her to simply state her
demand to the world and let the market do its job. It is unlikely that enough sellers will
be present, and even if there were, revealing the intention to buy a large quantity of
shares will very likely push the price up substantially. Instead the large investor keeps
her intentions as secret as possible and trades incrementally over an extended period
of time, possibly through intermediaries. As already discussed, the strategic reasons
for doing this were made clear by Kyle (1985), who investigated a model in which
an insider with information about a final liquidation price tries to maximize profits. In
simple terms, the motivation is that by splitting the hidden order into small pieces, the
investor is able to execute much of the hidden order at prices that do not reflect the full
price movement that it will eventually cause.

Our perspective differs from Kyle’s in that we assume that the size of the order,
which we call the hidden order, is given at the outset when the initial trading decision
is made. We believe that the size of such orders is largely determined by the fund man-
ager a priori and is influenced by a combination of the funds under management and
the time scale of the strategy, which is typically much longer than the time scale for
completing the trade. The other notable differences are that we do not assume a final
liquidation price and we do not make a distinction between informed traders and noise
traders. When taken together these differing assumptions create key differences in the
predictions of the model in comparison with Kyle.

In several studies based on data giving the identity of hidden orders, about a third of
the dollar value of such institutional trades took more than a week to complete (Chan
and Lakonishok, 1993, 1995; Vaglica et al., 2008). This conflicts with the standard
model of market clearing presented in textbooks, which assumes that agents fully state
their supply and demand and that prices are set so that supply and demand are evenly
matched. The fact that large orders are kept secret and executed incrementally implies
that at any given time there may be a substantial imbalance of buyers and sellers. Effec-
tive market clearing is delayed by variable amounts that depend on fluctuations in the
size and signs of the unrevealed hidden orders.
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We now describe a recently proposed simple model of order flow that postulates
the independence of trading activity of investors and which is able to reproduce the
long-memory properties of order flow (Lillo et al., 2005). In the simplest version of the
model, assume that at any time there areK hidden orders present in the market. Initially
the size V of these hidden orders is drawn from a distribution P (V ) and the sign εi is
randomly chosen. For simplicity we assume that V is an integer number. We indicate
with Vi(t) the volume of hidden order i that has not yet been traded at time t. At each
time step t an existing hidden order i is chosen at random with uniform probability,
and a unit volume of that order is traded, so that Vi(t + 1) = Vi(t) − 1. This generates a
revealed order of unit volume and sign εi. A hidden order i is removed if Vi(t + 1) = 0;
that is, when the hidden order is completely traded. When this happens a new hidden
order is created with a random sign and a new size.

It is possible to find a closed expression for the autocorrelation function of the trade
sign Cτ as a function of the hidden order size distribution P (V ). The asymptotic behav-
ior of Cτ can be obtained through a saddle point approximation. If the hidden order size
is asymptotically Pareto distributed, that is,

P (V ) ∼ α

V α+1
(2.4)

the autocorrelation function of order sign behaves asymptotically as (Lillo et al., 2005)

Cτ ∼
Kα−2

α

1
τα−1

(2.5)

Thus the model makes the falsifiable prediction that the exponent γ of the power-law
asymptotic behavior of the autocorrelation of order sign is determined by the exponent
α of the power-law asymptotic behavior of the hidden order size distribution through

α = γ + 1 (2.6)

Since we observe that γ 	 0.5, this model predicts that α = 1.5.
It is worth noting that Lillo et al. (2005) also introduced a more general model in

which the number of hidden orders is not constant in time. Specifically, at each time t a
new hidden order is generated with probability 0 < λ < 1 if K(t) > 0, or probability 1
ifK(t) = 0. Although this model is not solved analytically, numerical simulation shows
that the relation between the exponent of the autocorrelation of order sign and the expo-
nent of order size distribution is the same as in the simpler model where the number of
hidden orders is fixed.

This model for the origin of correlation in order flow is in principle empirically
testable. The main difficulty arises from the lack of large and comprehensive databases
of the hidden orders of investors. There are two ways to check the consistency of the
theory. The first one is to compare the distribution of trade sizes in block markets to
the autocorrelation function of order signs in order book markets. In block markets,
trades are made bilaterally and the identity of counterparties is known. Brokers do not
like order splitting and strongly discourage it. Thus block markets can be considered a
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crude proxy for observing the distributional properties of hidden orders.12 In the next
section we discuss evidence that suggests that block trade volume is indeed asymptot-
ically power-law distributed with an exponent α 	 1.5. For comparison13 the average
measured values of γ for LSE stocks is γ = 0.57, close to γ̂ = 0.59 as predicted by
γ̂ = α − 1. The second supporting evidence comes from a study of the Spanish Stock
Exchange by Vaglica et al. (2008), who have inferred hidden orders using data with
membership codes. This study is discussed in Section 2.11.1.

2.4.4. Evidence Based on Exchange Membership Codes

Empirical testing is difficult due to the fact that it is not easy to collect data on the
behavior of individual investors. Nonetheless, partial information about the identity of
participants can be obtained using data that identifies the broker or the member of the
exchange who executes the trade, which we will simply call the membership code. In
many stock markets, such as the LSE, the Spanish Stock Exchange, the Australian Stock
Exchange, and the NYSE, it is possible to obtain data containing this information. It
is important to stress that knowing the membership code is not the same as knowing
the individual participant, since the member may either trade on its own account or
act as a broker for other trades, or do both at once. Nonetheless, several recent papers
have demonstrated that it is possible to extract useful information about the identity of
individual traders using such information; for example showing that there are consistent
behaviors that are persistent in time associated with particular membership codes, that
such behaviors can be organized into a taxonomic tree, and that it is possible to detect
the presence of large institutional trades (Lillo et al., 2008b; Zovko and Farmer, 2007;
Vaglica et al., 2008).

Gerig et al. have used membership codes of the London Stock Exchange to test
the hypothesis of the theory presented in Lillo et al. (2005). The autocorrelation func-
tion of market order signs is computed by considering realized orders placed by the
same membership code or by different membership codes separately. Figure 2.2 shows
the autocorrelation function of market order signs with the same membership code,
different membership codes, and all transactions irrespective of membership code. The
circles in the figure represent the autocorrelation function irrespective of the member-
ship code and, as anticipated, it is well fitted by a power law. When only transactions
with the same membership code are considered (the triangles), the autocorrelation is
still power law with a slightly smaller exponent. Moreover, for a fixed lag τ, the auto-
correlation function with the same membership code is one order of magnitude larger
than the autocorrelation function irrespective of the membership code. Finally, when
only transactions with different membership codes are considered, the autocorrelation
function decays very rapidly to zero, and it is clearly not consistent with power-law

12The exception is that it is possible to split an order and trade with multiple brokers.
13The error bars in computing both γ and α are substantial, as can be seen by computing them for subsam-
ples of the data, and the close agreement observed by Lillo et al. (2005) between γ and α − 1 is probably
fortuitious. Unfortunately, there still are not good statistical methods for assigning confidence intervals for
exponents of power laws, particularly when the observations have long memory, but the errors can be roughly
assessed by examining subsamples.
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FIGURE 2.2 Autocorrelation of signs-versus-transaction lag for transactions with same membership
code, different membership code, and all transactions irrespective of membership code, plotted on double
logarithmic scale. The investigated stock is AstraZeneca (AZN) traded the LSE from 2000 to 2002.

behavior. Under the assumption that most investors use only a few brokers to execute
a given hidden order, this plot strongly supports the hypothesis that the long memory
of signs is due to the presence of investors that place many revealed orders of the same
sign and that there is no clear sign of herding behavior among different investors. It is in
principle possible that herding happens between investors using the same broker but not
between investors with different brokers; however, the reasons why this would occur are
unclear, and it seems implausible that it could explain such a dramatic difference.

2.4.5. Evidence for Heavy Tails in Volume

The theory we have developed makes it clear that the distribution of trading volume
plays a key role in shaping many properties of the market, including the long memory
of order flow, which, as we will show, in turn has important consequences for mar-
ket impact. In recent years there has been a debate about the statistical properties of
trading volume. This is partly due to the fact that markets have different structures
and one should be careful in specifying which volume is considered in the analysis.
Gopikrishnan et al. (2000) originally observed that volume of trades at the NYSE are
asymptotically power-law distributed. Specifically, they claimed that for large volumes
the probability distribution scales as

P (V > x) ∼ x−3/2 (2.7)

This law has been termed the “half cubic” law. The NYSE, like many other finan-
cial markets, employs two parallel markets that provide alternative methods of trading,
called the on-book, or “downstairs,” market and the off-book, or “upstairs,” market.
Orders in the on-book market are placed publicly but anonymously and execution is
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FIGURE 2.3 Volume distributions of off-book trades (circles), on-book trades (diamonds), and the
aggregate of both (squares) for a collection of 20 different stocks, normalizing the volume of each by the
mean volume before combining. The dashed black lines are for the slope found by the Hill estimator and are
shown for the largest 1% of the data. (Source: Adapted from Lillo et al., 2005.)

completely automated. The off-book market, in contrast, operates through a bilateral
exchange mechanism, via telephone calls or direct contact of the trading parties. The
anonymous nature of the on-book market facilitates order splitting—that is, large orders
are split into smaller pieces and traded incrementally. On the other hand, the off-book
market is a block market, where large orders can be traded in a single transaction. The
NYSE data used by Gopikrishnan et al. (2000) includes a mixture of order book trades
and block trades. Since the typical size of block trades is much larger than the size of
orders traded in the order book, the size of block trades dominates the tail of volume
distribution.

This can be seen more clearly in a market (or database) where it is possible to sep-
arate block trades from order book trades. In Figure 2.3 (from Lillo et al., 2005) we
show the cumulative distribution function of trading volume for off-book trades, on-
book trades, and the aggregate of both for a collection of 20 LSE stocks. The distribution
of block trades is consistent with the power-law hypothesis of Eq. 2.7 with an exponent
close to 1.5, whereas the distribution of order book trades is not consistent with the
half-cubic law and instead has a much thinner tail (see also Farmer and Lillo, 2004, and
Plerou et al., 2004).

2.5. SUMMARY OF EMPIRICAL RESULTS FOR DIVERSE
TYPES OF MARKET IMPACT

The relation between the transacted volume and the consequent expected price shift is
called the price impact, or alternatively, the market impact function. Letting R be a
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price return associated with a trade of size V , the market impact a time l after the trade
occurred is

I(V , l) = E[R|V , l]

For many purposes it is useful to separate the dependence on volume from the depen-
dence on time. One can make the hypothesis that the impact function can be written as
a product of two functions, that is,

I(V , t) = S(V )R(l)

In this section we primarily discuss the dependence on volume, saving the discussion of
time dependence for Section 2.6.

At this stage we are intentionally being vague about the definition of the returnR and
the volume V ; defining these more precisely is one of the main points of this chapter.
The way in which the market impact behaves depends on the market structure as well as
on what one means by “return” and “volume.” Many studies have empirically investi-
gated market impact with a range of different results; we argue that in many cases these
differences stem from differences in what is being studied. The important distinctions
that should be made are:

• First, one can consider market impact of an individual transaction vs. an aggregate
of many transactions. Aggregation here means that the market impact is condi-
tioned on a given number of trades or to a given interval of time. We discuss
the volume dependence of individual impact in Section 2.5.1 and the time depen-
dence in Sections 2.6.2–2.6.5, and we study the properties of aggregate impact in
Sections 2.5.2 and 2.6.8.

• A second important aspect is the type of market exchange in which the transac-
tions take place. As we said, most financial markets have upstairs or block markets
as well as downstairs or order book markets. In the downstairs market, trades are
made by placing orders in a limit order book, and it is quite common to aggres-
sively split large trading orders into many small pieces. The upstairs market trades
are arranged bilaterally between individuals. As a result of the varying market
structures, the impacts can be quite different.

• A third factor that must be kept in mind is that large trading orders, which we will
call hidden orders, are typically split into small pieces and executed incrementally.
This is in contrast to realized orders, which are the actual orders that are traded—
for example, the pieces into which hidden orders are split. For realized orders the
impacts may be part of a larger process of order splitting that is invisible with
the data that we have here. The impacts of hidden orders may be quite different
than those of realized orders. The impacts of individual orders behave much like
those of individual transactions, as described in the next bullet. We will discuss the
impact of hidden orders in Section 2.6.7.

• Finally, even if we have discussed market impact in terms of transacted volume,
other events in the market have an impact on price. Specifically, in double auction
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market limit, orders and cancellations can have a market impact that is different
from the impact of a market order.

In the following sections we discuss the empirical regularities in these different types
of market impact.

2.5.1. Impact of Individual Transactions

We now discuss the impact of individual transactions in limit order book markets, whose
volume we will denote by v. Many studies have examined the market impact for a sin-
gle transaction, and all have observed a concave function of the transaction volume
v, that is, one that increases rapidly for small v and more slowly for larger v. The
detailed functional form, however, varies from market to market and even period to
period. Early studies by Hasbrouck (1991) and Hausman, Lo, and MacKinlay (1992)
found strongly concave functions but did not attempt to fit functional forms. Keim and
Madhavan (1996) also observed a concave impact function for block trades.

Based on Trades and Quotes (TAQ) data for a set of 1000 NYSE stocks, the concavity
of the market impact was interpreted by Lillo et al. (2003b) using the functional form

E[r|v] =
εvψ

λ
(2.8)

The exponent ψ (v) is approximately 0.5 for small volumes and 0.2 for large volumes.
Even normalizing the volume v by daily volume, the liquidity parameter λ varies for
different stocks; there is a clear dependence on market capitalization M that is well
approximated by the functional form λ ∼Mδ, with δ ≈ 0.4.

Potters and Bouchaud (2003) analyzed stocks traded at the Paris Bourse and
NASDAQ and found that a logarithmic form gave the best fit to the data. For the
London Stock Exchange, Farmer and Lillo (2004) and Farmer et al. (2005) found that
for most stocks Eq. 2.8 was a good approximation with ψ = 0.3, independent of ν.
Hopman (2007) studied market impact on a 30-minute time scale in the Paris Bourse
for individual orders and found ψ ≈ 0.4, depending on the urgency of the order. Thus
all the studies find strongly concave functions but report variations in functional form
that depend on the market and possibly other factors as well. Figure 2.4 shows the price
impact of buy market orders for five highly capitalized LSE stocks, that is, AZN, DGE,
LLOY, SHEL, and VOD. The price impact is well fit by the relation E[r|v] ∝ v0.3.

2.5.2. Impact of Aggregate Transactions

Studies of aggregated market impact have produced variable results, reaching different
conclusions that we will argue depend substantially on the time scale for aggregation.
The BARRA market impact model, an industry standard, uses the TAQ data aggregated
on a half-hour time scale (Torre, 1997). They compare fits using Eq. 2.8 and find ψ ≈
0.5; they obtain similar results using individual block data. Kempf and Korn (1999)
studied data for futures on the DAX (the German stock index) on a five-minute time
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FIGURE 2.4 Market impact function of buy market orders for a set of five highly capitalized stocks
traded in the LSE, specifically AZN (filled squares), DGE (empty squares), LLOY (triangles), SHEL (filled
circles), and VOD (empty circles). Trades of different sizes are binned together, and the logarithmic price
change’s average size for each bin is shown on the vertical axis. The dashed line is the best fit of the market
impact of VOD with a functional form as described in Eq. 2.8. The value of the fitted exponent for VOD
is ψ = 0.3.

scale and found a very concave functional form. Plerou et al. (2002) studied data from
the NYSE during 1994 and 1995 ranging from 5- to 195-minute time scales and fit the
market impact function with a hyperbolic tangent. They noted that at shorter time scales
this functional form did not work well for small v; tanh(v) is linear for small v, but
at short time scales (e.g., 5 or 15 minutes) they observed a nonlinear impact function
becoming more linear as they went toward longer time scales.

Evans and Lyons (2002) studied foreign exchange rate transactions data for DM
and Yen against the dollar at the daily scale over a four-month period. They used the
number of buyer-initiated transactions minus the number of seller-initiated transactions
as a proxy for the signed order flow volume v and found a strong positive relationship
to concurrent returns. Chordia and Subrahmanyam (2004) study impacts of stocks in
the S&P 500 at a daily time scale and perform linear regressions but do not compare
to other functional forms. For the Paris Bourse Hopman (2007) measures aggregate
order flow as

∑
i εiv

ψ
i , where the sum is taken over fixed time intervals. At a daily scale

he finds that he gets the best linear regression against contemporary daily returns with
ψ ≈ 0.5. He also documents that the slope of the regression decreases with increasing
time scale. Finally, as discussed in more detail later, Gabaix et al. (2003, 2006) have
made extensive studies of data from the New York, London, and Paris stock markets on
a 15-minute time scale and find exponents ψ ≈ 0.5.

What is the origin of these differences in the observed functional form of the aggre-
gate market impact? Part of the difference comes certainly from the fact that these
studies consider different markets, different assets, and different time periods. However,
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another important difference across studies is the time scale of aggregation. There is no
reason that the aggregate market impact over a ten-minute time interval should have the
same functional form of that over a one-hour time interval or over an interval that is
defined by 30 trades.

To get an idea of how the market impact changes its shape with aggregation scale,
consider a specific example. Let vt be the volume of transaction happening at time t
(in event time). Let rt = log(pt+1/pt) be the corresponding log-return, where pt is the
price of transaction t. For a sequence of N successive transactions beginning at time
t, let QN =

∑N
i=1 εt+ivt+i be the aggregate volume and RN =

∑N
i=1 rt+i be the aggregate

return. The average market impact conditioned on volume is

R(Q,N) = E[RN |QN = Q] (2.9)

that is, it is the expected return associated with a signed volume fluctuation Q. We write
R(Q,N) to emphasize that this can depend both on the signed trading volume imbal-
anceQ and the number of transactionsN . In Figure 2.5 we show empirical estimates for
the market impact of the stock AZN, which is traded on the London Stock Exchange,
from Lillo et al. (2008a). Figure 2.5 shows the market impact for different values of
N with offsets added to the vertical axis to aid visualization. As one would expect,
the scale increases with N . The shape of R(Q,N) also changes, becoming more linear
with increasing N . This is illustrated more clearly in Figure 2.5(b), where we rescale
the horizontal and vertical axes using a rescaling factor based only on QN . The renor-
malization makes the increasing linearity clearer. As N increases, the market impact
nearQ = 0 becomes linear, and the size of the region that can be approximated as linear
grows with increasing N . It also illustrates a surprising feature: The slope of the linear
region decreases withN . These same basic features (increasing linearity and decreasing
slopes) hold for all the stocks in our sample, in both the New York and London Stock
Exchanges. This result shows that the shape and the scale of the aggregate market impact
change with the aggregation scale. At short time scales the function is significantly non-
linear, but at large aggregation scales the market impact becomes close to linear, and the
slope of the impact decays with the aggregation scale. For this reason it is in general
misleading to compare aggregate impact curves with different scales unless one has a
theory for how the market impact depends on aggregation scale. This also shows why
the studies mentioned previously found different forms of the market impact. In Sec-
tion 2.6.8 we present some models that help explain the behavior of aggregate impact
observed in real data.

2.5.3. Hidden Order Impact

Because data for hidden orders, which are sometimes also called trading packages,
are difficult to obtain, there are only a few studies (Chan and Lakonishok, 1993,
1995; Almgren et al., 2005; Vaglica et al., 2008). These studies show that hidden
orders can be extremely long, involving thousands of realized trades spread over peri-
ods of many weeks or even months. As reviewed in Section 2.11.1, the most recent
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FIGURE 2.5 Aggregate market impact R(Q,N) for the LSE stock Astrazeneca for 2000–2002. (a) Plot
of the shifted aggregate return R(Q,N) +R0 vs. the aggregate signed volume Q for three values of N .
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study by Vaglica et al. confirms that hidden orders obey a power-law distribution of
size, which, as we argue in Section 2.6, plays an important role in determining their
impact.

The theoretical considerations for treating hidden orders are quite different from
those for individual orders, and they also very different from those of aggregated anony-
mous orders. The reason is that such orders come from the same agent, creating bursts
of orders in the order flow which are all of the same sign. As we argued in Section 2.4.3,
this generates strong correlations in order flow that have to be compensated for, as dis-
cussed in Section 2.6. The volume dependence of hidden order impact is intimately
connected to the temporal aspects, and so we save the development of the theory for
hidden order impact for the next section.

2.5.4. Upstairs Market Impact

Market impact in the upstairs market has been studied by Keim and Madhavan (1996).
As in other cases, they find empirically that market impact is concave. They explain this
based on a model for the difficulty of finding counterparties for trading. Ultimately, as
pointed out by Gabaix et al. (2006), upstairs market impact should match hidden order
impact, for the simple reason that the upstairs market is competing with the downstairs
market, and if costs in the upstairs market are too high, they have the option of splitting
up their trades in the downstairs market. This is convenient because it implies that a
theory for either market automatically gives a theory for the other.

2.6. THEORY OF MARKET IMPACT

In this section we develop theoretical explanations for both the volume dependence and
the temporal dependence of market impact. As stressed in the previous section, there are
several distinct types of impact that require a different approach to their analysis. We
begin in Section 2.6.1 by explaining why the impacts associated with individual trades
are so concave, arguing that the dominant cause is selective liquidity taking.

Then, in Sections 2.6.2 through 2.6.5, we develop a theoretical approach to under-
standing the temporal behavior of impacts associated with individual trades. We show
that the long memory of order flow and market efficiency play a crucial role, which one
can take into account one of two ways. One can either assume a fixed impact, in which
case the future contribution to the impact of each trade must decay to zero with time,
or one can assume a varying but permanent impact, which implies asymmetry liquidity.
We show that these two approaches are equivalent.

In Section 2.6.6 we present empirical results supporting these ideas. In Section 2.6.7
we develop a theory for the impact of hidden orders—that is, linked sets of trades made
by large investors. Finally, in Section 2.6.8, we develop a theory for the aggregate impact
of successive trades and show that it does a good job of explaining the empirical results
of Section 2.5.2.



Jean-Philippe Bouchaud, J. Doyne Farmer, and Fabrizio Lillo 91

2.6.1. Why Is Individual Transaction Impact Concave?

Let us first consider the impact of individual transactions. Several different theories have
been put forth to explain why market impact for single transactions is concave. These
can be grouped into three classes: (1) size-dependent informativeness of trades (e.g.,
due to stealth trading, as postulated by Barclay and Warner, 1993), (2) average depth
vs. price in the limit order book (Daniels et al., 2003), and (3) selective liquidity taking
(Farmer et al., 2004).

The standard reason given for the concavity of market impact is that it reflects the
informativeness of trades. If small trades carry almost as much information as large
trades, the price changes caused by small trades should be nearly as big as those for large
trades. For example, this could be due to “stealth trading,”; that is, because informed
traders keep their orders small to avoid revealing their superior knowledge (Barclay
and Warner, 1993). Hypothesis 2, due to Daniels et al. (2003), is that it reflects the
accumulation of liquidity in the limit order book—that is, the depth in the order book
as a function of the price will determine the market impact for a market order as a
function of its size. Hypothesis 3 is that this is due to selective liquidity taking; that is,
that liquidity takers submit large orders when liquidity is high and small orders when it
is low (see Farmer et al., 2004; Weber and Rosenow, 2006; and Hopman, 2007).

Theory 2 is easily ruled out by computing the average virtual market impact as a
function of volume. This is defined as the average price change that would instanta-
neously occur for an effective market order of size v (Weber and Rosenow, 2006; Farmer
and Zamani, 2007). In Figure 2.6 we show the virtual impact for AZN, computed by
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FIGURE 2.6 Comparison of virtual to true market impact: true impact (circles), virtual impact
(triangles). The fitted curve for true impact (black line) is of the form f (v) = Avψ , with ψ = 0.3.
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hypothetically submitting orders for a range of different values of v and measuring the
immediate price response. This is done for each time when real effective market orders
were submitted. The resulting price response is a direct probe of the depth of the limit
order book. The fact that the mechanical impact is linear to very good degree of approxi-
mation makes it clear that this is not the cause of the concavity of the real market impact
function.

The selective liquidity taking (Hypothesis 3) means that agents condition the size
of their transactions on liquidity, making large transactions when liquidity is high and
small transactions when it is low. As shown by Farmer et al. (2004), for LSE stocks it is
rare that a trade penetrates more than one price level.14 For example, for Astrazeneca,
approximately 87% of the market orders creating an immediate price change have a
volume equal to the volume at the opposite best. Moreover, approximately 97% of the
market orders creating an immediate price change have a volume that is either equal
to the opposite best or larger than this value but smaller than the sum of volume at the
second best opposite price. This means that to a good approximation the market impact
can be written in the very simple form

E[r|v] = P (+|v)E[r] (2.10)

where P (+|v) is the probability that a trade of size v generates a nonzero return—that
is, the probability that v ≥ Φb, where Φb is the volume offered or bid at the opposite best
price. E[r] is the expected return given that there is a nonzero return, which is of the
order of the bid–ask spread (see Section 2.7 for more precise statements). This demon-
strates that trading orders that penetrate the opposite best are rare. This is because agents
do not like to suffer price degradation more than the opposite best and so condition the
size of their orders on what is being offered there.

We have now to explain why P (+|v) is a concave function. An explanation in terms
of selective liquidity taking is the following. Suppose that the volume at the best is
drawn from a distribution Pb(Φb) and suppose that the liquidity taker draws the volume
v she would like to trade from another distribution and independently from Φb. If v < Φb

she places a market order of size v, whereas if v > Φb she places a market order of
size Φb. What is the probability P (+|v) under this simple model? A straightforward
calculation shows that P (+|v) =

∫ v
0 Pb(Φb)dΦb; that is, it is equal to the cumulative

distribution of the volume at the best. This is an increasing and concave function of
v that could be used to fit the empirical P (+|v). Under this model the shape of the
market impact is explained by P (+|v), that is, by the conditioning of trading orders on
the liquidity that is offered. In other words, Theory 3 does a good job of explaining the
data, at least qualitatively.

It is a matter of interpretation, however, whether this is also consistent with Theory 1;
that is, that smaller trades are proportionately more informative than larger trades. From
one point of view, one can simply say that the market impact defines the informativeness
of trades. If so, then it is obviously consistent. However, if it means that price changes
are a response to the new information contained in trades, the evidence presented here

14See Table 2 of Farmer et al.
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is inconsistent with Theory 1. In the LSE the quoted volume is visible to all, and so,
except for occasional latency problems, in which the quote changes just before a trade
is placed, the trader is aware of the quote when she places the trade. The fact that the
size of the trade is strongly correlated with the size of the best quote implies that the
size of the trade carries little new information. This does not mean that the trade is
based on inferior information; it merely means that other market participants do not
learn much from its size when it occurs. It is the conditioning of trade size on best
quotes that drives concavity and not because the smaller trades are nearly as “informed”
as the larger trades.

2.6.2. A Fixed Permanent Impact Model

In the previous section we described how midquote prices react on average to market
orders of a given volume v. The preceding discussion was restricted to the immediate
impact, that is, the impact that is felt immediately after a trade is completed. In general
this can have both temporary and permanent components. In this section we discuss the
impact of individual transactions—that is, the average midquote price change between
just before the nth trade and just before the n + 1th trade. It is an empirical fact that this
immediate impact, defined as E[rn|εnvn], is nonzero and can be written as E[r|εv] =
εf (v), where f is a function that grows with v. Clearly, it is important to understand if
and how this immediate impact evolves with time (which we will measure in terms of
the sequence number of the trades). Is the impact of a trade permanent or transient? Is
it fixed or is it variable? How does it depend on the past order flow history?

The simplest situation is that of a usual random walker, where position at any time is
the sum over all past steps—however far in the past they might be. In financial language,
this corresponds to the case where the impact of a transaction is permanent, which
translates into the following equation for the midquote price mn at time n:

rn = mn+1 − mn = εnf (vn;Ωn) + ηn, (2.11)

where ηn is an additional random term describing price changes not directly attributed
to trading itself—for example, the impact of news where quotes could instantaneously
jump without any trade. We will assume here that ηn is independent of the order flow
and we set E[η] = 0 and E[η2] = Σ2. We have included a possible dependence of the
impact on the instantaneous state Ωn of the order book. We expect such a dependence
on general grounds: A market order of volume vn, hitting a large queue of limit orders,
will in general impact the price very little. On the other hand, one expects a very strong
correlation between the state of the book Ωn and size of the incoming market order:
Large limit order volumes attract larger market orders.

The preceding equation can be written as:

mn =
∑
k<n

εkf (vk;Ωk) +
∑
k<n

ηk (2.12)



94 Chapter 2 • How Markets Slowly Digest Changes in Supply and Demand

which makes explicit the nondecaying nature of the impact in this model: εk∂mn/∂vk
(for k < n) does not decay as n − k grows. This simple model makes the following
predictions for the lagged impact function R� and the lagged return variance V�:

R� ≡ E[εn · (mn+� − mn)] = E[f ];

V� ≡ E[(mn+� − mn)2] =
(
E[f2] + Σ2)� (2.13)

that is, constant price impact and pure price diffusion, close to what is indeed observed
empirically on small-tick, liquid contracts. However, if we consider the autocovariance
of price returns within this model, we find that

E[rnrn+τ] ∝ E[εnεn+τ] ∼τ−γ (2.14)

which means that price returns are strongly autocorrelated in time. This fact would
violate market efficiency because price returns would be easily predictable even with
linear methods. We therefore come to the conclusion that the empirically observed long
memory of order flow is incompatible with the previous random walk model if prices are
efficient (Bouchaud et al., 2004; Lillo and Farmer, 2004; Challet, 2007). In other words
one of the assumptions of the random walk model must be relaxed. Among the various
possibilities we will relax either the assumption that price impact is permanent or the
assumption that price impact is independent of the order flow. As we will see, these two
possibilities are related one to each other, but for the sake of clarity we present them in
two different subsections.

2.6.3. The MRR Model

To illustrate the preceding concepts, let us discuss a slight variant of a model due to
Madhavan, Richardson, and Roomans (Madhavan et al., 1997) that helps define various
quantities and hone in on relevant questions. The assumptions of the model are (1) that
all trades have the same volume vn = v and (2) the εn’s are generated by a Markov
process with correlation ρ, which means that the expected value of εn conditioned on
the past only depends on εn−1 and is given by:

E [εn|εn−1] = ρεn−1 (2.15)

The case ρ = 0 corresponds to independent trade signs, whereas ρ > 0 describes positive
autocorrelations of trade signs. Note that in this model, correlations decay exponentially
fast, that is,

C� = E[εiεi+�] = ρ� (2.16)

which, as we discussed in Section 2.4, does not conform to reality.
The MRR model postulates that the midpoint mn evolves only because of unpre-

dictable external shocks (or news) and because of the surprise component in the order
flow. This postulate, of course, automatically removes any predictability in the price
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returns and ensures efficiency. Under the assumption that the surprise component of the
order flow at the nth trade is given by εn − ρεn−1, one writes the following evolution
equation for the price15

mn+1 − mn = ηn + θ[εn − ρεn−1] (2.17)

where η is the shock component and the constant θ measures the size of trade impact.
These equations make it possible to compute several important quantities such as the

lagged impact function defined earlier (Eq. 2.13). One may write:

mn+� − mn =
n+�−1∑
j=n

ηj + θ
n+�−1∑
j=n

[εj − ρεj−1] (2.18)

The full impact function is found to be constant, equal to:

R� = θ(1 − ρ2), ∀� (2.19)

We can also define the “bare” impact of a single trade G0(�), which measures the influ-
ence of a single trade at time n − � on the the midpoint at time n. In terms of G0(�), the
midpoint is therefore written as:

mn =
n−1∑
j=−∞

ηj +
n−1∑
j=−∞

G0(n − j − 1) εj (2.20)

here found to be given by G0(� = 0) = θ and G0(� ≥ 1) = θ(1 − ρ); a part θρ of the
impact instantaneously decays to zero after the first trade, whereas the rest of the impact
is permanent. The instantaneous drop of part of the impact compensates the sign cor-
relation of the trades. Finally, the volatility, within this simplified version of the MRR
model, reads: [

θ2(1 − ρ2) + Σ2] � (2.21)

2.6.4. A Transient Impact Framework

Compared to the simplifying assumptions of the MRR model, the data shows that
(1) the volumes v of the incoming market orders are very broadly distributed, with a
power-law tail (see Section 2.4.5); (2) the sign time series εn has long-range correlations
C� that decays again as a power-law ∼ c0�

−γ with γ < 1, defining a long-memory pro-
cess. The smallness of γ makes the correlation function C� nonsummable: The average
relaxation time is infinite, whereas the correlation time of the Markovian sign process
in the preceding MRR model is finite, equal to (1 − ρ)−1.

In this section we relax the assumption that impact of a single trade is permanent
in time. Rather, we find that long-range correlations in trades imply that the impact

15The assumption that prices respond linearly to the order flow is a very strong assumption.
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itself has to decay slowly with time. In the next section, we discuss an alternative but
equivalent model, where the impact is permanent but asymmetric and history dependent.

Transient Impact and Mean Reversion

What would happen if the impact of each trade was purely transient—for example, an
exponential decay in time? Eq. 2.11 would now read:

mn =
∑
k<n

αn−k−1εkf (vk;Ωk) +
∑
k<n

ηk, (0 ≤ α < 1) (2.22)

The lagged impact and the return variance would then be given by:

R� = α�−1E[f ] V� = 2E[f2]
1 − α�
1 − α2

+ Σ2� (2.23)

That is, a short-time volatility ≈ E[f2] + Σ2 larger than its long-time value Σ2, in
which only the “news” component survives. The price would exhibit significant high-
frequency mean reversion: Impact kicks it temporarily up and down, but the long-term
wandering of the price is unrelated to trading. Of course, one could be in a mixed sit-
uation where the impact decays exponentially but toward a positive value, in which
case the long-term volatility still involves an impact component. This conforms with
conventional wisdom about efficient markets: an increased value of high-frequency
volatility driven by the tâtonnement process and a long-term volatility made up both of
unexpected news and long-term impact of market orders, which translates private infor-
mation into prices. However, recall that this does not conform to observations, which
show volatility very nearly constant across all time scales (see Section 2.3.9).

What is the relation between the average R� and the impact of a single trade that
we call G0(�) henceforth? If trades were uncorrelated, the two quantities would be
identical, but trade correlations, as we shall see, change the picture in a rather inter-
esting way.

Mathematical Theory of Long-Term Resilience

The long-term memory of trades is a priori paradoxical and hints of a nontrivial property
of financial markets, which can be called long-term resilience. Take again Eq. 2.20
with the assumption that single trade impact is lag independent, G0(�) = G0, and that
volume fluctuations can still be neglected. The midprice variance is easily computed
to be:

V� ≡ 〈(mn+� − mn)2〉 = [Σ2 + G2
0]� + 2G0

�∑
j=1

(� − j)Cj (2.24)

When γ < 1, the second term of the rhs can be approximated, when � � 1, by
2c0G0�

2−γ/(1 − γ)(2 − γ), which grows faster than the first term. In other words, the
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price would superdiffuse, or trend, at long times, with a volatility diverging with the
lag �. This, of course, does not occur: The market reacts to trade correlations so as
to prevent the occurence of such trends. In fact, within the present linear model, the
impact to single trades must be transient rather than permanent. Before explaining why
and how this occurs in practice, let us first express mathematically how the efficiency of
prices imposes strong constraints on the shape of the single trade impact function. For
an arbitrary function G0(�), the lagged price variance can be computed explicitly and
reads:

V� =
∑

0≤j<�
G2

0 (� − j) +
∑
j>0

[G0(� + j) − G0(j)]2 + 2Δ(�) + Σ2� (2.25)

where Δ(�) is the correlation-induced contribution:

Δ(�) =
∑

0≤j<k<�
G0(� − j)G0(� − k)Ck−j

+
∑

0<j<k

[G0(� + j) − G0(j)] [G0(� + k) − G0(k)]Ck−j

+
∑

0≤j<�

∑
k>0

G0(� − j) [G0(� + k) − G0(k)]Ck+j (2.26)

Assume that G0(�) itself decays at large � as a power law, Γ0�
−β . When β, γ < 1,

the asymptotic analysis of Δ(�) yields:

Δ(�) ≈ Γ2
0c0I (γ, β)�2−2β−γ (2.27)

where I > 0 is a certain numerical integral. If the single trade impact does not decay
(β = 0), we recover the above superdiffusive result. But as the impact decays faster,
superdiffusion is reduced, until β = βc = (1 − γ)/2, for which Δ(�) grows exactly lin-
early with � and contributes to the long-term value of the volatility. However, as soon
as β exceeds βc, Δ(�) grows sublinearly with �, and impact only enhances the high-
frequency value of the volatility compared to its long-term value Σ2, dominated by
“news.” We therefore reach the conclusion that the long-range correlation in order flow
does not induce long-term correlations nor anticorrelations in the price returns if and
only if the impact of single trades is transient (β > 0) but itself nonsummable (β < 1).
This is a rather odd situation in which the impact is not permanent (since the long-
time limit of G0 is zero) but is not transient either because the decay is extremely slow.
The convolution of this semipermanent impact with the slow decay of trade correlations
gives only a finite contribution to the long-term volatility. The mathematical constraint
β = βc will be given more financial flesh later.

Within this framework, one can also compute the average impact function R� . From
Eq. 2.13 one readily obtains:

R� = G0(�) +
∑

0<j<�

G0(� − j)Cj +
∑
j>0

[G0(� + j) − G0(j)]Cj (2.28)
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This equation can be understood as a way to extract the impact of single trades G0 from
directly measurable quantities, such as R� and Cn; see Section 2.6.6 and Appendix 2.2.
From a mathematical point of view, the asymptotic analysis can again be done when
G0(�) decays as Γ0�

−β . When β + γ < 1, one finds:

R� ≈��1 Γ0c0
Γ(1 − γ)

Γ(β)Γ(2 − β − γ)

[
π

sinπβ
− π

sinπ(1 − β − γ)

]
�1−β−γ (2.29)

where we have explicitly given the numerical prefactor to show that it exactly vanishes
when β = βc, which means that in this particular case one cannot satisfy oneself with
the leading term. When β < βc, one finds that R� diverges to +∞ for large �, whereas
for β > βc, R� diverges to −∞, which is perhaps counterintuitive but means that when
the decay of single trade impact is too fast, the accumulation of mean reverting effects
leads to a negative long-term average impact—see Figure 2.7. When β is precisely equal
to βc,R� tends to a finite positive valueR∞: The decay of single trade impact precisely
offsets the positive correlation of the trades.

In this framework, volume fluctuations have been neglected. An extended version of
the model, which is directly related to the discussion in the next section, is presented in
Appendix 2.2 (see also Bouchaud et al., 2004).

0.015

0.010

R(
�

)

0.005

0.000
1 10

Trade time (log)

100 1000

� � �c

� � �c

� � �c

FIGURE 2.7 Theoretical impact function R� , from Eq. 2.28, and for values of β close to βc. When
β = βc, R� tends to a constant value as � becomes large. When β < βc (slow decay of G0), R�→∞ diverges
to +∞, whereas for β > βc, R�→∞ diverges to −∞.
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2.6.5. History Dependent, Permanent Impact

An alternative interpretation of the preceding formalism is to assume that price impact
is permanent, but history dependent as to ensure statistical efficiency of prices (Lillo
and Farmer, 2004; Farmer et al., 2006; Gerig, 2007).

Predictable Order Flow and Statistical Efficiency

Let us consider a generalized MRR model:

rn = mn+1 − mn = ηn + θ(εn − ε̂n), ε̂n = En[εn+1|I] (2.30)

where I is the information set available at time n. In line with our discussion in Sec-
tion 2.3.8, we assume that in the market there are three types of traders. First, there
are directional traders (liquidity takers) that have large hidden orders to unload and, by
placing many consecutive orders with the same sign, create a correlated order flow. The
second group of agents consists of the liquidity providers, who post bids and offers and
attempt to earn the bid–ask spread. The third group is made by noise traders—that is,
traders placing uncorrelated order flow. Anticipating the discussion in Section 2.7.3, it is
indeed reasonable to assume that the strategies of the first two types of agents will adjust
in such a way as to remove any predictability of the midpoint change; in other words,
that En−1[rn|I] = 0 as implied by Eq. 2.30. This is a plausible first approximation,
although one can expect (and indeed observe) deviations from strict unpredictability
at high frequencies.

Within the preceding simplified model, in which we have neglected volume fluctua-
tions (see Appendix 2.2 for an attempt to include them), there are only two possible
outcomes. Either the sign of the n+ transaction matches the sign of the predictor
En[εn+1|I] or they are opposite. Let us call r+n and r−n the expected ex-post absolute
value of the return of the nth transaction, given that εn either matches or does not
match the predictor. If we indicate with ϕ+

n and (ϕ−n ) the ex ante probability that the
sign of the nth transaction matches (or disagrees) with the predictor εn, we can rewrite
En−1[rn|I] = 0 as:

ϕ+
n r

+
n − ϕ−n r−n = 0 (2.31)

Within the MRR model as described previously, this means

r+n = θ(1 − ε̂n) (2.32)
r−n = θ(1 + ε̂n) (2.33)

This result shows that the most likely outcome has the smallest impact. We call this
mechanism asymmetric liquidity: Each transaction has a permanent impact, but the
impact depends on the past order flow and its predictability. The price dynamics and
the impact of orders therefore depend on (1) the order flow process, (2) the informa-
tion set I available to the liquidity provider, and (3) the predictor used by the liquidity
provider to forecast the order flow.
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Equivalence with the Transient Impact Model

In the following we consider the case where the information set available to liquidity
providers is restricted to the past order flow. We call this information set anonymous
because liquidity providers do not know the identity of the liquidity takers and are
unable to establish whether or not two different orders come from the same trader.
We assume also that the predictor used by liquidity takers to forecast future order
flow comes from a linear model. In some cases, such as for an order flow gener-
ated according to the model presented in Section 2.4.3, this may not be an optimal
predictor. However, linear time series models are probably the most widely used
forecasting tools. Here we analyze a linear time series model based on the signs of
executed transactions, and we assume a K th order autoregressive AR model of the
form

ε̂n =
K∑
i=1

aiεn−i (2.34)

where ai are real numbers that can be estimated on historical data using standard meth-
ods (see Lillo and Farmer, 2004; Bouchaud et al., 2004; and Appendix 2.2). The MRR
model corresponds to an AR(1) order flow, with a1 = ρ and ak = 0 for k > 1, with an
exponential decay of the correlation.

The resulting impact model, Eq. 2.30 with a general linear forecast of the order flow,
is in fact equivalent, when K → ∞, to the temporary impact model of the previous
section (see the appendix of Bouchaud et al., 2004). It is easy to show that one can
rewrite the generalized MRR model in terms of a propagator as

mn = mn−1 + θεn +
∞∑
i=1

[G(i + 1) − G(i)]εn−i + ηn, θ = G(1) (2.35)

The equivalence is obtained with the relation:

θai = G(i + 1) − G(i) or G(i) = θ[1 −
i−1∑
j=1

aj] (2.36)

More General Information Models

In the previous section we saw that the fixed/temporary impact model is equivalent
to the variable/permanent impact model under the additional assumptions that (1) the
information set available to the liquidity provider is the set of the past order flow
and (2) that liquidity providers use a linear forecast model to predict the future order
flow from the past and to adjust price response. These two assumptions of the vari-
able/permanent impact model are far from general. In the following we discuss the
more general situations in which a different information set and forecast model can
arise.
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In most financial markets order flow is available in real time to all market partici-
pants; thus it is clear that any liquidity provider could use the past order flow time series
to trade efficiently. However, in some cases participants can use information other than
the time series of order flow signs. There are often indirect clues about the identity of
orders such as the consistent use of particular round lots for orders that arrive at regular
intervals. Activity in block markets can also provide clues about the activity of large
orders. Another case is when a trader is trying to execute his large order by a so-called
“slicing and dicing” algorithm. The liquidity provider could be able to detect the pres-
ence of this trader, and therefore the liquidity provider has additional information to add
to his information set.

The algorithm used by the liquidity provider to forecast the future order flow depends
on the information set and on the degree of sophistication of the liquidity provider.
Even if linear forecasting methods are widespread, they can lead to suboptimal predic-
tions if the time series one is trying to forecast is strongly nonlinear. For example, in
Section 2.4.3 we discussed a microscopically based order flow model that reproduces
the correlation properties observed in the real order flow. This model (Lillo, Mike, and
Farmer, 2005) is clearly nonlinear. Despite the fact that an optimal forecast method for
this order flow model is not easily available, one can find suboptimal nonlinear forecast
models that outperform the linear forecast method. When one incorporates nonlinear
forecast models in the variable/permanent impact model, the price dynamics will not be
equivalent to the fixed/temporary model.

In conclusion, the variable/permanent model sets a general framework for describing
the interaction between order flow and price dynamics. In a paper in progress, Gerig
et al. (2008) show how different assumptions on the information set and on the forecast
method lead to different functional forms of the impact of hidden orders and on the
dynamical properties of prices.

Mechanisms for Asymmetric Liquidity

Let us rephrase in more intuitive terms the results established earlier. Due to the small
outstanding liquidity, order flow must develop temporal correlations. This is such an
obvious empirical fact that high-frequency traders/market makers quickly come to learn
about it and adapt to it. In the simple MRR model where signs are exponentially cor-
related, the probability that a buy follows a buy is p+ = (1 + ρ)/2. The unconditional
impact of a buy is θ (see Eq. 2.60); however, a second buy immediately following the
first has a reduced impact equal to R+

1 = θ(1 − ρ). The second buy is not as surprising
as the first and therefore should impact the price less. A sell immediately following a
buy, on the other hand, has an enhanced impact equal to R−

1 = θ(1 + ρ), in such a way
that the conditional average impact of the next trade is zero: p+R+

1 + (1 − p+)R−
1 ≡ 0

Gerig (2007). This is the “asymmetric liquidity” effect explained previously (Lillo and
Farmer, 2004; Farmer et al., 2006; and Gerig, 2007; see also Bouchaud et al., 2006,
where it is called “liquidity molasses”). This mechanism is expected to be present in
general; because of the positive correlation in order flow, the impact of a buy following
a buy should be less than the impact of a sell following a buy—otherwise, trends would
appear.
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But what are the mechanisms responsible for asymmetric liquidity, and how can
they fail (in which case markets cease to be efficient)? This is still an open empirical
question that started to be investigated only recently. For example, Lillo and Farmer
(2004) showed that when the order flow becomes more predictable, the probability that
a market order triggers a price change is larger for market orders with the unexpected
sign than for those with the expected one. Moreover, the same authors showed that the
ratio between the volume of the market order and the volume at the opposite best is
lower (higher) for market orders with an expected (unexpected) sign.

Another related basic mechanism is “stimulated refill”: Buy market orders trigger
an opposing flow of sell limit orders, and vice versa (Bouchaud et al., 2006). This ris-
ing wall of limit orders decreases the probability of further upward moves of the price,
which is equivalent to saying that R+

1 < R
−
1 , or else that the initial impact of the first

trade reverts at the second trade. This dynamical feedback between market orders and
limit orders is therefore fundamental for the stability of markets and for enforcing effi-
ciency. It can be directly tested on empirical data. For example, Weber and Rosenow
(2005) have found strong evidence for an increased limit order flow compensating
market orders.

Since such a dynamical feedback is so important to reconcile correlation in order
flow with the diffusive nature of price changes, it is worth detailing its intimate mecha-
nism a little further and insisting on cases where this feedback may break down. Recall
our discussion of the market ecology in Section 2.3.8: Market participants can be, in
a first approximation, classified as a function of their trading frequencies. Large latent
demand arises from low-frequency participants; the decision to buy or sell can be con-
sidered as fixed over a time scale of a few hours or a few days, much longer than the
average time between trades. These participants create long-term correlations in the
sign of the trades. Higher-frequency traders try to profit from microstructural effects
and short time predictability. Even if institutionally designated market makers are no
longer present in most electronic markets, these high-frequency strategies are in fact
akin to market making—they make money from providing liquidity to lower-frequency
traders. This is why we often (incorrectly) call this category of participants market
makers.16 So, one should think of two rather large latent supply and offer quantities that
await favorable conditions, in terms of both price and quantity, to be executed on the
market. Then begins a kind of hide-and-seek game, where each side attempts to guess
the available liquidity on the other side. A “tit-for-tat” process then starts, whereby mar-
ket orders trigger limit orders and limit orders attract market orders. A buy trade at the
ask (say) is a signal that an investor is indeed willing to trade at that particular price.
But the seller who placed a limit order at the ask is also, by definition, willing to trade
at that price. The natural consequence is that a flow of refill orders is expected to occur
at the ask immediately after a buy trade (and at the bid after a sell).

16Of course, the preceding distinction between participants must be taken with a grain of salt: Low-frequency
decisions may be executed using smart high-frequency algorithmic trading. In this case, the same participant
is at the same time a low-frequency trader and a market maker.
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In other words, optimized execution strategies that look for micro-opportunities
impose strong correlations between market order flow of one sign and limit order flow
of the opposite sign. Imagine a case where buy market orders eat up sell limit orders
at the ask, with no refill. The ask then moves up one tick. By making the price more
expensive, the flow of buy market orders slows and the probability that a sell limit
order reappears at the previous ask increases. Imagine now that the refill process is too
intense; sell limit orders at the ask now pile up. This has two effects: (1) the probabil-
ity of a large market order that executes a large volume in one shot increases; (2) the
large volume at the ask decreases the probability of further sell limit orders joining the
queue because the priority of these new orders is low. Both cases (no refill or intense
refill) therefore induce a clear feedback mechanism ensuring local stability of the order
book.

The previous mechanism can be thought of as a dynamical version of the supply-
demand equilibrium, in the following sense: Incipient up trends quickly dwindle
because as the ask moves up, the buy pressure goes down, while the sell pressure
increases. Conversely, liquidity induced mean reversion—keeping the price low—
attracts more buyers and soon gives way. Such a balance between liquidity taking
and liquidity providing is at the origin of the subtle compensation between correlation
and impact explained previously. It is interesting to notice that several other dynamical
systems operate similarly, with a competition between two antagonist systems; heart-
beats is an interesting example: The sympathetic and parasympathetic system act in
opposition to speed/slow the cardiac rhythm.

One easily envisions that such a subtle dynamical equilibrium can quickly break
down; for example, an upward fluctuation in buy order flow might trigger a momentary
panic, with the opposing side failing to respond immediately. These liquidity micro-
crises are probably responsible for the large number of price jumps; if the feedback
mechanism changes sign, this can even lead to crashes. The tug of war is a vivid illus-
tration of this phenomenon. A major challenge of microstructure theory is to turn the
previous qualitative story into a quantitative model for heavy-tailed return distributions
and volatility clustering, with interesting potential ideas on how to limit the occurence
of these liquidity micro-crises. We are convinced that a consistent theory of hidden
liquidity and stimulated refill is well within reach at this stage.

2.6.6. Empirical Results

The section reviews how the preceding ideas can be directly tested and measured on
high-frequency data.

We start with the full impact function, defined by Eq. 2.13, which is easily mea-
sured, at least when the lag � is not too large. When � becomes of the order of the
number of daily trades or more, the error bar on R� quickly becomes large. The main
features of R� are, however, quite robust from stock to stock and also across different
markets. For example, R� for France Telecom in 2002 is shown in Figure 2.8. One
sees a mild increase by a factor λ ∼ 2 between � = 1 and � = 1000 before a satura-
tion or maybe a decline for larger lags. This behavior is quite typical, in particular the
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FIGURE 2.8 Average empirical response function R� for FT during three different periods (1st and 2nd
semester of 2001 and 2002); error bars are shown for the 2002 data. For the 2001 data, the y axis has been
rescaled such that R1 coincides with the 2002 result. R� is seen to increase by a factor ∼2 between � = 1
and � = 100.

roughly twofold increase between small lags and large lags. So R� reveals some non-
trivial temporal structure; recall that R� is constant within models where the midpoint
reacts to surprise in order flow. In an MRR setting, the amplification factor λ should be
1/(1 − C1), which is found to be in the range of 1.2 to 1.4, still too small to explain
λ ∼ 2.

As noted, one can in fact extract the theoretical impact of single trades G0(�) from
the empirically measured impact R� and the correlation between the sign of the trades
C� , using Eq. 2.28. This was done in Bouchaud et al. (2006) and indeed produces nice,
power-law decaying G0(�)’s; see Figure 2.9 for a few examples. Within the previous
restrictive theoretical framework, this provides a direct proof of the transient nature of
the impact of single market orders and the long-term resilience of markets. This is quite
important as far as execution strategies are concerned; see Section 2.10.

We should, however, list a number of caveats. One is the assumption that the impact is
time translation invariant—that is, only the lag � is relevant. This is clearly questionable,
since strong intraday seasonality effects are expected. For example, there are indications
that the trade sign correlation function C� for a given lag � is quite different intraday
and from one day to the next (Eisler et al., 2008). Similarly, we expect that the single
trade impact should decay differently intraday and overnight. Second, we have to a
large extent discarded the interesting correlations between the state of the order book
Ωn, the incoming volume vn and the resulting impact (see Eq. 2.11). All this complexity
was replaced by an average description: εnf (vn;Ωn) −→ εn ln vn. Certainly, a refined
version is needed, in particular because the fluctuations of f (vn;Ωn) will contribute to
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FIGURE 2.9 Comparison between the empirically determined G0(�), extracted from R and C using
Eq. 2.28, and the power-law fit Gf0 (�) = Γ0/(�2

0 + �2)β/2 for a selection of four stocks: ACA, CA, EX,
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the diffusion properties (see Eq. 2.25). Finally, we have chosen from the start to give
a special role to market orders, as if only those impact the price. But this is not true:
Obviously, limit orders also impact the price. In fact, it is precisely the impact of limit
orders that offsets that of market orders and leads to a decay of the single trade impact
G0(�). In other words, we have studied an effective model in terms of market orders
only, dumping into G0(�) the counteracting effect of limit orders. A more symmetric
version of the model, which treats market and limit orders on an equal footing, would
be quite enticing (Eisler et al., 2008).

We now consider some empirical evidence for asymmetric liquidity. Figure 2.10
shows the behavior of the conditional returns r+ and r− defined in Eq. 2.33 as a func-
tion of the sign predictor ε̂. The data we show in Figure 2.10 is for Astrazeneca, a stock
traded at the LSE. The sign predictor is the linear predictor defined in Eq. 2.33. The
larger the absolute value of ε̂, the stronger the predictability of the next market order
sign. We have plotted the average value of the return conditioned to be in the direction
of the predictor, r+, and the average return when the sign of the predictor is wrong, r−.
We see that r− is indeed larger than r+ and this difference increases with the predictabil-
ity of the order flow. This is a clear evidence for asymmetric liquidity. Note also that
both r+ and r− are approximately described by a linear function of the predictor ε̂. This
is expected under the model described in the “Predictable Order Flow and Statistical
Efficiency” section (see Eq. 2.33). However, the slopes of r+ and r− vs. ε̂ are different,
challenging the implicit symmetric assumption (Eq. 2.33) in the MRR model. Other
evidence for the buildup of the “liquidity molasses” accompanying the flow of market
order can be found in Bouchaud et al. (2006) and Weber and Rosenow (2005).
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FIGURE 2.10 Expected return as a function of the sign predictor ε̂. The quantity r+ (r−) refers to trades
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contains an equal number of observations. Error bars are standard errors. (Source: Adapted from Gerig, 2007.)

2.6.7. Impact of a Large Hidden Order

We now want to calculate, within the stated theoretical framework, the impact of a
hidden order of size N . For simplicity, let us first assume that the hidden order is made
of N consecutive trades made by the same institution, though this remains “hidden”
if trades are anonymous. Let us call m0 the price at the beginning of the hidden order
and compute the average price mN+t observed t transactions after the completion of the
hidden order. Within the generalized MRR model with a linear predictor of the order
flow, a straightforward calculation shows that

E[mN+t] − m0 = εθ

t+N∑
i=t+1

[1 −
i−1∑
j=1

aj] (2.37)

For t = 0 this expression gives the (temporary) total impact of the hidden order, whereas
for t > 0 we can calculate the price reversion after the completion of the hidden order,
and the permanent impact (if any) for t → ∞.

This result can be generalized to the case where there is only one hidden order active
at a given time, which mixes with a flow of uncorrelated orders with a constant partici-
pation rate π. The total time needed to execute the hidden order is then T = N/π. It is
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possible to show in this case that (Farmer, Gerig, Lillo, and Waelbroeck, 2008):

E[mN ] − m0 = εθ

N∑
i=1

(
1 −

i/π∑
k=1

ak

)
(2.38)

Let us estimate this formula in the case where the autocorrelation Cτ of order flow
asymptotically decays as a power law Cτ ∼ τ−γ for large τ. There are several different
ways of generating and forecasting long-memory processes. Here we assume that the
participants observing public information model the time series with a FARIMA pro-
cess. It is known (Beran, 1994) that for large k the best linear predictor coefficients of a
FARIMA process satisfy ak ≈ k−β−1, where β = (1 − γ)/2. For large k we can go into
the continuum limit, and from Eq. 2.38 the impact is:

E[mN ] − m0 = εθ

[
1 +

N−1∑
i=1

(
1 −

(
1 − (n/π)−β

))]
(2.39)

Converting the sum to an integral gives:

E[mN ] − m0 ≈ εθ
(

1 +
2β−1πβ

1 − β [(2N − 1)1−β − 1]
)
∼ πβN1−β (2.40)

Thus, for a fixed participation rate, the market impact asymptotically increases with the
length of the hidden order as N1−β . A typical decay exponent for the autocorrelation of
order signs is γ ≈ 0.5 (Lillo and Farmer, 2004; Bouchaud et al., 2004), which means
that β ≈ 0.25. This means that according to the linear time series model, the impact
should increase as roughly the 3

4 power of the order size. An interesting property of this
solution is that it depends on the speed of execution. The size of the impact varies as
πβ . This means that the more slowly an order is executed, the less impact it has, and
in the limit as the order is executed infinitely slowly, the impact goes to zero. Note,
however, that if the execution time T = N/π is fixed, the impact becomes linear with
N but decays as T−β .

To investigate the reversion dynamics, we again make use of the Eq. 2.37. We assume
that the liquidity provider uses a FARIMA model to forecast order signs, and for the
sake of simplicity in the following, we assume that π = 1—that is, that there are no
noise traders. Realistically, the regression made by the liquidity provider on past signs
will use a finite lag K, leading to:

ε̂n =
K∑
i=1

a
(K)
i εn−i (2.41)

where (Beran, 1994):

a
(K)
i = −

(
K

i

)
Γ(i −H + 1/2)Γ(K −H − i + 3/2)

Γ(1/2 −H)Γ(K −H + 3/2)
(2.42)
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and H = 1/2 − β is the Hurst exponent of the FARIMA process. It is possible to derive
an analytical exact result for the permanent impact. In fact, from Eq. 2.37, one can
obtain:

E[m∞] − m0 = εθN (1 −
K∑
j=1

a
(K)
j ) = εθN

4H−1√π Γ[H] sec[(K −H)π]
Γ(3/2 +K −H]Γ[2H − 1 −K]

(2.43)

Using the Stirling formula and the reflection formula for the Gamma function, one can
show that for large K, the permanent impact scales as:

E[m∞] − m0 ∼ εθ
N

Kβ
(2.44)

If K is infinite, E[m∞] − m0 = 0; that is, the impact is completely temporary. This can
be shown in the mathematically equivalent propagator model Bouchaud et al. (2004,
2006). For a FARIMA forecast model with finite K (or equivalently, if the sign auto-
correlation function decays fast beyond time scale K), the permanent impact is nonzero
and is linear in N . Even if for large K the permanent impact is small, the convergence
to zero with the memory K is very slow.

Another interesting issue that can be discussed within the model is the decay of the
impact immediately after the end of the hidden order (defined by Eq. 2.37). One finds
that the initial drop for t� N is in fact very sharp for β < 1: mN+t − mN ∝ −t1−β , such
that the slope of the decay is infinite when t → 0 (in the continuous limit).

2.6.8. Aggregated Impact

Impact is often measured not on a trade-by-trade level but rather on a coarse-grained
time scale, say five minutes or a day. One then speaks of positive correlations between
signed order flow and price returns. At the level of single trades, impact is strongly
concave in volume and decays in time. How does this translate at a coarse-grained
level? In Section 2.5.2 we have discussed this from an empirical point of view. Here
we show how the impact theories we have developed so far make predictions about the
impact function, following the approach of Lillo et al. (2008a).

Suppose one aggregates the returns and volumes of N consecutive trades (not
necessarily from the same hidden order). Using the same notation as in Section
2.5.2, the total volume imbalance is QN =

∑N−1
n=0 εnvn. Conditioned to a particular

value QN = Q, what is the average price return R(Q)? The answer to this ques-
tion depends on the order flow and the properties of the impact function. In the
following discussion, we consider two extreme cases. In the first case we con-
sider an unrealistic model where the order flow is described by an independent
identically distributed random process, and the impact is fixed and permanent. In
the second case we consider a correlated order flow and a fixed/temporary impact
model.
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Independent Identically Distributed Order Flow

If the unconditional distribution of market order volume and the functional form of the
impact function are known, it is possible to find a closed expression for the impact
R(Q). Consider a series of N transactions with signed17 volumes vi corresponding to
total returnR =

∑N
i=1 ri and total signed volumeQ =

∑N
i=1 vi. The expected return given

Q can be written:

R(Q,N) ≡ E[R|Q] =
∫
RP (R|Q,N) dR

=
1

PN (Q)

∫
RP (R,Q,N) dR (2.45)

where PN (Q) is the probability density for Q. We assume that the N individual price
impacts ri due to the IID signed volumes vi are given by a deterministic function18

ri = f (vi). Let the distribution of individual vi be p(vi). Then the joint distribution of vi
is P (v1, . . . , vN ) = p(v1) . . . p(vN ). The integral above becomes:

∫
RP (R,Q,N) dR =

∫
dv1 . . . dvNp(v1) . . . p(vN )

N∑
i=1

f (vi)δ(Q −
N∑
i=1

vi) (2.46)

where we introduced the Dirac delta function.
By making use of the integral representation of the Dirac delta function, after some

manipulations it is possible to rewrite R(Q,N) as:

R(Q,N) =
N

2π
1

PN (Q)

∫
dλe(N−1)h(λ)g(λ)e−iλQ (2.47)

where h(λ) is the logarithm of the Fourier transform of the volume distribution and
g(λ) is the Fourier transform of the product of the volume distribution and the impact
function. Moreover, PN (Q) is the probability density that the total signed volume in the
N trades is Q.

The functional form of the aggregate impact R(Q,N) can be calculated by integrat-
ing this expression. It is possible to show that many of the properties of the solution
are robust, independent of the details of the model. For small values of Q the aggre-
gate impact R(Q) is always linear with a slope that depends on N and on the details
of the volume distribution and the impact function. For example, if the impact func-
tion is a power-law function ε|v|ψ and the volume distribution decays asymptotically as
P (V ) ∼ V −α−1, for large N the aggregate impact behaves for small Q as:

R(Q,N) ∼ Q

Nκ
(2.48)

where κ depends in a nontrivial way on α and ψ (see Lillo et al., 2008a). For exam-
ple, if volumes have a finite second moment and the impact function is concave, then

17Only in this subsection we indicate with vi the signed and not the absolute value of volume.
18The results remain the same if a noise term is added to the impact function.
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κ = 0; in contrast, if the second moment of the volume does not exist and the impact
function is sufficiently concave, then κ > 0. The latter case agrees with what is seen in
Figure 2.5, where the slope of the aggregate impact decreases with N . Thus theories for
the aggregate impact make falsifiable predictions connecting volumes, order flow, and
impact.

Transient Impact Model

Within the model of Section 2.6.4, the aggregate impact reads:

R(Q,N) =
N−1∑
n=0

G0(N − n)E[qn|Q] +
∑
m<0

[G0(N − m)

− G0(−m)]E[qm|Q] (2.49)

where qn = εn ln vn, and we assume that volumes are lognormally distributed (see
Appendix 2.2). Because trades are long ranged correlated, the second term is nonzero.
But one can show it is subdominant when N � 1, so we discard it in a first approxi-
mation. In the first term, one can compute E[qn|Q] = x using the fact that the qns are,
within the model, Gaussian with rms = s. Noting also that typical values of Q are of
order N1−γ/2 � N , one finds:

x ≈ sQ

IN , I = 2
∫∞

0
du u eus−u

2/2 (2.50)

With R(Q,N) ≈ Γ0N
1−βx/(1 − β) and the previous relation between β = (1 − γ)/2,

we finally find the following result, written in a suggestive scaling form:

R(Q,N) =
√
N

sΓ0

I(1 − β)

(
Q

N1−γ/2

)
(2.51)

This means that by rescaling the return and the signed volume by their respective root
mean square value, one obtains at large N a limiting curve that is a straight line.
Whereas for small N impact is strongly concave, impact becomes linear when N � 1.
One can go one step further and compute the leading nonlinear correction in Q when
N is large. One finds that it is negative, as a remnant of the small N concavity, and
becomes noticeable at increasingly larger values of Q ∼ N , as seen in empirical data;
see Figure 2.5.

The important conclusion of this model is that although the impact of individual
trades is concave and decays in time, the compensating effect of correlated trades leads
to a well-defined linear relation between order imbalance and returns at an aggregated
level. This is important because such a relation is often interpreted as a manifestation of
the permanent component of the impact.

Is this linear relation telling us that part of the trades have indeed correctly predicted
the aggregated return (in Hasbrouck’s words); see Hasbrouck (2007)? In light of all
the previous results, it looks much more plausible to us that anonymous trades in fact
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statistically induce price changes, although in a quite nontrivial and perhaps unexpected
fashion.

2.7. THE DETERMINANTS OF THE BID–ASK SPREAD

In modern electronic markets, liquidity is self-organized in the sense that any agent
can choose, at any instant of time, to either provide liquidity or consume liquidity. The
liquidity of the market is partially characterized by the bid–ask spread S, which sets
the cost of an instantaneous round trip of one share (a buy instantaneously followed by
a sell, or vice versa).19 A liquid market is such that this cost is small. A question of
both theoretical and practical crucial importance is to know what fixes the magnitude
of the spread in the self-organized setup of electronic markets and the relative merit of
limit vs. market orders. In the economics literature (O’Hara, 1995; Biais et al., 1997;
Madhavan, 2000; Glosten and Milgrom, 1985), the existence of the bid–ask spread is
often attributed to three types of liquidity providing costs (Stoll, 1978):

• Order processing costs (this includes the profit of the market maker)
• Adverse selection costs—liquidity takers may have superior information on the

future price of the stock, in which case the market maker loses money
• Inventory risk—market makers may temporarily accumulate large long or short

positions that are risky; if agents are risk sensitive and have to limit their exposure,
this may add extra costs

A somewhat surprising conclusion of early econometric studies is that order pro-
cessing costs account for a large fraction of the spread. This may make sense in illiquid
markets where market makers exploit a monopolistic situation to open large spreads but
cannot be the correct picture in highly liquid, electronic markets in which market mak-
ing is highly competitive. What we argue is that the main determinant of the spread is
in fact impact.

2.7.1. The Basic Economics of Spread and Impact

What are the basic economics behind a trade—that is, the encounter between a liquidity
taker and one (or several) liquidity provider(s)?

The Average Gain of Market Makers

Consider the sequence of all trades (not necessarily coming from the same hidden
order). Let the nth trade have volume vn and sign εn. The profit collectively made by

19Other determinants of liquidity discussed in the literature are the depth of the order book and market
resiliency, see Black (1971), Kyle (1985).



112 Chapter 2 • How Markets Slowly Digest Changes in Supply and Demand

liquidity providers on that given trade, marked to market at time n + �, is given by:

GL(n, n + �) = vnεn

[
(mn + εn

Sn
2

) − mn+�
]

(2.52)

where Sn is the value of the spread at that moment in time. Think of a buy trade εn = +1.
This equation compares the money received by the liquidity provider when the trade
occurs (vn(mn +

Sn
2 )) to its mark-to-market (midpoint) price at time n + �. Symmet-

rically, the profit made by the liquidity taker using market orders is GL(n, n + �) =
−GM (n, n + �). This equation clearly shows that the profitability of market making
comes from the spread (+Sn/2), whereas the losses are induced by market impact
(−εn(mn+� − mn)), which may or may not come from more informed traders (see the
following discussion).

Neglecting for simplicity volume fluctuations at this stage (vn ≡ v) and using
Eq. 2.13, we see that the average gain of the market maker in the absence of extra
costs is given by:

E[GL](�) = v

(
E[
S

2
] −R�

)
(2.53)

which shows explicitly that for a given total market impact R� , the spread S should be
larger than a minimum value for market-making strategies to be at all profitable on a
time scale �—or else, for a given value of S, the impact functionR� should be as small
as possible. We recover here the idea that it is in the interest of liquidity providers to
control the growth of R� by tuning the liquidity asymmetry.

In fact, this reasoning neglects the cost of unwinding the market-maker position,
and a better estimate will be provided later in this article. But the main message of the
preceding simple computation is that the spread compensates for the impact of market
orders. In the microstructure literature, this is refered to as adverse selection; as alluded
to previously, this implies that market orders originate from better informed traders, with
an information on the future price on average worthR� . But the same result would hold
if impact was purely statistical, with no information content whatsoever. In fact, one
could even revert the logic and claim that it is the spread that determines the impact:
If some traders accepted to pay mn + Sn/2 for the stock, it is natural that the market
as a whole revises its fair-price estimate from mn to mn + αSn/2, where α ≥ 0 is a
number measuring how trades influence the participants beliefs, leading toR∞ = αS/2.
The MRR model with spread (see The MRR Model with a Bid–Ask Spread section),
in this context, assumes that market participants believe that the last traded price is
indeed the correct price (α = 1). Clearly, in that model, the cost of a market order or
the gain of a limit order are exactly zero. This leaves us, by the way, in the familiar
but uncomfortable situation of the “no trade theorem”: If the spread is such that the
information content of a market order is compensated, why would the informed trader
trade at all?



Jean-Philippe Bouchaud, J. Doyne Farmer, and Fabrizio Lillo 113

How Informed Are the Trades?

So, are some market orders informed? Can one find convincing ex-post signatures of
informed trades? A minimal definition of an informed trade is a trade that earns a profit
significantly larger than the transaction costs (including both brokerage fees and market
slippage). Introducing the signed return r(n, n + �) ≡ εn(mn+� − mn), the profit of the
nth market order on time scale � is:

GM (n, n + �) = vn

[
r(n, n + �) − Sn

2

]
(2.54)

Note that by definition the average of r(n, n + �) is equal to the total impact R� , which
is positive. If one averages this equation over all trades, one in fact finds that E[GM ]
is close to zero, which means that the spread compensates for the average impact, at
least measured on short time scales � (between a few seconds to a few days). More
precisely, on liquid NYSE stocks in 2005 (when market makers were still present), one
finds that E[GM ] is zero within error bars, which means that, after transaction costs,
market orders lose money, on average. The situation is slightly better for liquid PSE
stocks in 2002, where one findsE[GM ] = gE(S)/2 with g ≈ 0.3 (see Figure 2.14 later).
This amounts to 3 to 5 bp per trade, close to the transaction costs. So, on average, and
although market orders do impact prices, there does not seem to be much short-term
information in these orders, at least judging from their ex-post profitability. The question
of longer-term information is, of course, left open here, simply because the statistics are
not sufficient to judge the average profitability of trades on long time scales and because
long-term drift effects cannot be neglected. (On average, buy trades are profitable in the
long run!)

We can look in more detail at the full distribution of r� ≡ r(n, n + �), P (r�), which
contains much more information. Note that its second moment E[r2|�] is very close to
the volatility on scale �, which soon becomes much larger than R2 when � increases.
Concerning the shape of P (r�), two extreme scenarios could occur (see Figure 2.11 for
an illustration):

• A small proportion of well-informed trades predict the future price while a major-
ity of trades are uninformed and do not impact the price at all. The distribution
of r� should then be composed of a broad blob, symmetric around r� = 0, corres-
ponding to uninformed trades, plus a hump (or more plausibly, a broad shoulder)
on the positive side, corresponding to well-informed trades. The nonzero value of
E[r�] comes from these informed trades. This is the scenario behind, for example,
the Kyle model or the Glosten-Milgrom model.

• All trades are equally weakly informed or even not informed, but all statistically
impact prices. In this case one expects a symmetric broad blob but around the
average impact E[r�].

Empirically, the distribution of r� is found to be very close to the second picture
for � corresponding to intraday time scales. In particular, no noticeable asymmetry
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FIGURE 2.11 Two extreme cases for the distribution P (r� ) of signed returns r� . Thick curve means
nearly all trades are uninformed but impact prices, leading to a symmetric P (r� ) around a nonzero average
impact. Narrow curve means most trades are uninformed and do not impact prices, while some trades are
informed and predict correctly the future return, leading to a thick tail in the r� > 0 region.

(beyond the existence of a nonzero value of E[r�]) is observed on liquid stocks; see
Figure 2.12 for an example. This suggests that trades, on average, impact prices but
do not seem to “predict” future prices—at least not on short time scales. The strong
relation between order imbalance and price returns would then be a tautological con-
sequence of this impact (see Section 2.6) and not a signature of “true” information
revelation.

2.7.2. Models for the Bid–Ask Spread

The Glosten-Milgrom Model

One of the earliest theories of the spread that makes the preceding discussion is the
sequential trade model of Glosten and Milgrom (Glosten and Milgrom, 1985). One
assumes that market orders are either due (with some probability q) to informed traders,
who know the end-of-day price pf , or (with probability 1 − q) to noise traders. The
value of q is assumed to be known by the market maker, which is not necessarily very
realistic (a similar assumption is made within the Kyle model). The end-of-day price
pf can either be above (p>) or below (p<) the open price. The probabilities for either
outcome at the start of the day are δ+ = δ− = 1/2 for simplicity. But as trading occurs,
either at the bid or at the ask, the market maker updates in a Bayesian way the value
of δ+ = 1 − δ−: trades at the ask increase the value of δ+, whereas trades at the bid
increase δ−.
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FIGURE 2.12 Probability distribution P (r� ) of the quantity r = (mn+� − mn).εn (in Euros) for � = 128;
data are again for France Telecom during 2002. The negative part of the distribution has been folded back to
positive r to highlight the small positive assymetry of the distribution. The average value R� = E[r] ≈ 0.01
is shown by the vertical dashed line. The dashed-dotted line corresponds to the distribution of r − 0.01, for
which no asymmetry of the type shown in Figure 2.11 can be detected. This curve has been shifted upwards
for clarity.

This leads to a certain update rule for δ+ as a function of the sign of the next trade,
which we do not write here explicitly. Anticipating the value of δ± after the next trade
allows the market maker to position his quotes in such a way as not to have ex-post
regrets. More precisely:

a = δ+(+)p> + δ−(+)p<, b = δ+(−)p> + δ−(−)p< (2.55)

where (±) refers to the sign of the next trade. This leads to the following prediction for
the bid–ask Sn after the nth trade:

Sn = 4qδ(n)
+ δ

(n)
− (p> − p<) (2.56)

where δ(n)
± is the updated value of δ± after n trades (with δ

(0)
± = 1/2), and we have

neglected terms of order q2, which must be small if this model is to be realistic. This
model is by construction compatible with a random walk for the midpoint, with a volatil-
ity per trade σ1 proportional to the bid–ask spread, as reported later in this chapter. It
also predicts that the bid–ask spread declines on average throughout the day, since the
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update rule drives δ+ either to zero or to one: As trading occurs, the market maker
discovers more accurately which outcome is more likely.

A detailed comparison of this model with empirical data is given in Wiesinger et al.
(2008). Here we simply note that as far as order of magnitude goes, the spread at the
beginning of the day (when δ± = 1/2) is typically 0.1%, whereas the daily volatility
fixes the order of magnitude of p> − p< to typically 2%, leading to q ∼ 0.05. Within
this framework, one finds again that the fraction of short-time “informed trades” must be
small. One also finds that in this model the spread decays exponentially fast with time, at
variance with the slow, power-law relaxation that has been observed (see Section 2.7.4).

The MRR Model with a Bid–Ask Spread

The original MRR model is in fact slightly different from the model described in
Section 2.6.3. MRR model rather assumes that it is the “true” fundamental price pn
rather than the midpoint mn, which is impacted by the surprise in order flow, and
hence:

pn+1 − pn = ηn + θ[εn − ρεn−1] (2.57)

MRR then specifies a rule for the bid and ask price, which in turn allows one to compute
the midpoint mn. Since market makers cannot guess the surprise of the next trade, they
post a bid price bn and an ask price an given by:

an = pn + θ[1 − ρεn−1] + φ, bn = pn + θ[−1 − ρεn−1] − φ (2.58)

where φ is the extra compensation claimed by the market maker, covering processing
costs and the shock component risk. This rule ensures no ex-post regrets for the market
maker: Whatever the sign of the trade, the traded price is always the “right” one. The
midpoint m ≡ (a + b)/2 immediately before the nth trade is now given by:

mn = pn − θρεn−1 (2.59)

whereas the spread is given by S = a − b = 2(θ + φ).
More generally, assuming that only the sign surprise matters, one can write, for

arbitrary correlations between signs:

mn+� − mn =
n+�−1∑
j=n

ηn + θ
n+�−1∑
j=n

{
εj − Ej

[
εj+1

]}
(2.60)

where the last term is the conditional expectation of the next sign. In the Markovian
case, Ej[εj+1] = ρεj , and we recover the previous result. The impact function, in the
general case, reads:

R� = θ [1 − C�] (2.61)

Using Eq. 2.53, one sees that the long-term profit of market makers is zero. However,
due to correlations between trades, the longtime impact is enhanced compared to the



Jean-Philippe Bouchaud, J. Doyne Farmer, and Fabrizio Lillo 117

short-term impact by a factor:

λ =
1

1 − C1
> 1 (2.62)

As we’ve discussed very generally, spread and impact are two sides of the same coin.
This is particularly clear within the MRR model, where the half-spread S/2 is set to be
equal to the long-term impact R∞ = θ. This means that the profit of market makers is
exactly zero (provided φ = 0), but also, as noted previously, that the profit of putatively
informed market orders is zero. The spread in the MRR model is

S = 2(θ + φ) = 2(R∞ + φ) = 2λR1 + 2φ (2.63)

where λ = (1 − ρ)−1. Appendix 2.3 provides an alternative, enlightening derivation.
One computes the midpoint volatility on scale �, defined as

σ2
� =

1
�
〈(m�+i − mi)2〉 (2.64)

One finds a sum of a trade-induced volatility θ2(1 − ρ)2 and a “news”-induced
volatility Σ2:

σ2
1 = 〈(mn+1 − mn)2〉 = Σ2 + θ2(1 − ρ)2 (2.65)

and

σ2
∞ = Σ2 + θ2(1 − ρ)2(1 + 2

ρ

1 − ρ ) = Σ2 + θ2(1 − ρ2) ≥ σ2
1 (2.66)

The MRR model therefore leads to two simple relations among spread, impact, and
volatility per trade

S = 2λR1 + 2φ σ2
1 = R2

1 + Σ2 (2.67)

where λ = (1 − ρ)−1 and φ is any extra compensation claimed by market makers. These
relations are generalized to more realistic assumptions and tested empirically in the next
two sections.

2.7.3. Limit vs. Market Orders: The Microstructure Phase Diagram

Market Order Strategies

As we have mentioned, the gain (or cost) of a given market order can be defined as
vn[r(n, n + �) − Sn

2 ]. This definition in fact marks the trade to market after � trades
and is often referred to as the realized spread (Bessembinder, 2003; Stoll, 2000). The
volume-weighted averaged gain (over a large number of trades) of market orders over a
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long horizon � � 1 is therefore:20

E[GM ] ≈ λE[vR1(v)]
E[v]

− E[vS]
2E[v]

(2.68)

In this expression we have introduced the volume-dependent lagged impact function

R� (v) = E[εn(mn+� − mn)|vn = v] (2.69)

and we have used the previous definition of the amplification factor λ: R��1 = λR1. In
the plane x = E[vR1(v)]/E[v], y = E[vS]/E[v] (which will repeatedly be used later),
the condition E[GM ] = 0 defines a straight line of slope 2λ separating an upper region
where market orders are on average costly from a region where single market orders
are favored: see Line a in Figure 2.13. For large spreads, the positive average cost of
the market orders would deter their use; limit orders would then pile up and reduce the
spread.

Below Line a of slope 2λ, market orders have a negative cost, and one might be
able to devise profitable strategies based solely on market orders. The idea would be to
try to benefit from the impact term R∞ in the previous balance equation. The growth
of R� ultimately comes from the correlation between trades—that is, the succession
of buy (sell) trades that typically follow a given buy (sell) market order. The simplest
“copycat” strategy one can rigorously test on empirical data is to imagine placing a
market order with vanishing volume fraction (so as not to affect the subsequent history
of quotes and trades), immediately following another market order. This strategy suffers
on average from the impact of the initial trade, used as a guide to guess the direction of
the market. Therefore, the profit GCC of such a copycat strategy, marked to market after
a long time and neglecting further unwinding costs, is reduced to:

GCC = [λ − 1]
E[vR1(v)]
E[v]

− E[vS]
2E[v]

(2.70)

By requiring that this gain is nonpositive, one obtains a lower line in the plane x, y, of
slope 2(λ − 1). Only below Line d can the preceding infinitesimal copycat strategy be
profitable. We therefore expect markets to operate above this line and below Line a of
slope 2λ.

Note also that the longtime impact of an isolated market order, uncorrelated with the
order flow, is given by G0(� � 1), which is small (see Section 2.6.2). These isolated
market orders thus also have a positive cost equal to half the spread. The only way to
benefit from the average impact R� is to free-ride on a wave of orders launched by
others, as in the copycat strategy. Let us now take the complementary point of view of
limit orders and determine the region of profitable market-making strategies.

20Note that this definition neglects the fact that one single large market order may trigger transactions at
several different prices, up the order book ladder, and pay more than the nominal spread. Nevertheless, this
situation is empirically quite rare in the markets we are concerned with and corresponds to only a few percent
of all cases; see Farmer et al. (2004).
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FIGURE 2.13 General “phase diagram” in the plane x = E[vR1(v)]/E[v], y = E[vS]/E[v],
showing several regions: (a) above the line of slope 2λ, market orders are costly (on average) and
market-making is profitable; (b) below the line of slope ≈ 2/(1 − C1), limit orders are costly and
no market-making strategy is profitable; (c) above the thick line of slope 2λβ , market-making on
time scale β−1 (or faster) is profitable (PMM); (d) below the fine line of slope 2(λ − 1), copycat
strategies can be profitable (PCC). Since neither market orders nor liquidity providing should be
systematically penalized to ensure steady trading, we expect that markets should operate in the
“neutral wedge” in between the (b) and (a) lines. Competition between liquidity providers should
push the market toward the (b). Since copycat strategies should not be profitable either, the PCC
(d) line cannot lie above (b). Note that the (b), (a), and (c) all coincide within the MRR model.

An Infinitesimal Market-Making Strategy

We now compute the gain of a simple market-making strategy, which amounts to par-
ticipating in a vanishing fraction of all trades through limit orders. The simplest strategy
is to consider a market maker with a certain time horizon who provides an infinitesimal
fraction ϕ of the total available liquidity. As illustrated by Eq. 2.68, the cost incurred by
the market maker comes from market impact: The price move is anticorrelated with the
accumulated position. When the crowd buys, the price goes up while the market-making
strategy accumulates a short position, which would be costly to buy back later, and vice
versa.

We consider a steady-state market-making strategy that avoids explicit unwinding
costs. The strategy is such that tendered volume dynamically depends on the accu-
mulated position, which ensures that the inventory is always bounded. We choose the
tendered fraction ϕ to be given by ϕi = ϕ0(1 + αViε), where Vi is the (signed) position
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accumulated up to time i−, and ε = +1 for orders placed at the ask and ε = −1 for
orders placed at the bid. This mean-reverting strategy ensures that the typical position
is always bounded. One can now use this strategy for an arbitrary long time T ; its profit
and loss is simply given by

GL =
T−1∑
i=0

ϕiεivi

(
mi + εi

Si
2

)
(2.71)

For large T one can replace this expression by its average:

GL = TE

[
ϕiεivi

(
mi + εi

Si
2

)]
(2.72)

with O(T 0) corrections due to the residual position at T . This quantity has been com-
puted in Wyart et al. (2008) and depends on the value of β = 1 − αϕ0E[v] that fixes
the typical time scale �∗ = (1 − β)−1 of the market-making strategy. When β → 0 (fast
market-making), the gain per unit time and unit volume reduces to

GL(β → 0)
Tϕ0E[v]

≈ E[vS]
2E[v]

[1 − C1] − E[vR1(v)]
E[v]

(2.73)

whereas β → 1, corresponding to slow market making, yields:

GL(β → 1)
Tϕ0E[v]

=
E[vS]
2E[v]

− E[vR1(v)]
E[v]

(2.74)

The competition between impact and spread is more favorable to limit orders when
the strategy is fast (β = 0) than when it is slow (β = 1). Imposing that there is a certain
frequency β such that the gain of market-making strategies is zero leads to a linear
relation between spread and impact, generalizing the prerious MRR relation Eq. 2.67:

E[vS]
E[v]

= 2λβ
E[vR1(v)]
E[v]

(2.75)

Using the empirical shape of R� and C� , the slope 2λβ is found to increase between
≈ 2/(1 − C1) and 2λ when β increases from zero to one. When β → 1, λβ → λ and the
lower limit of profitability of very slow market making is precisely Line a of Figure 2.13,
where market orders become profitable. Faster strategies correspond to smaller values
of λβ , closer to 1/(1 − C1), leading to an extended region of profitability for market
making.

From the assumption that the preceding market-making strategy for any value of β
should be at best marginally profitable (since one might find more sophisticated strate-
gies that take full advantage of the correlations between signs and volumes), we finally
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obtain the following bound between spread and impact:

E[vS]
E[v]

≤ 2
1 − C1

E[vR1(v)]
E[v]

(2.76)

defining Line b of slope 2/(1 − C1) in the x, y plane of Figure 2.13. Consistent with the
MRR model, when λ = 1/(1 − C1), the Lines a and b of Figure 2.13 exactly coincide.
Using that fact thatRn+

1 ≤ R(n−1)+
1 , a simple generalization of the argument presented in

Appendix 2.3 allows one to show directly that the cost of limit orders is indeed negative
above Line b.

Eqs. 2.68 and 2.76 and the resulting microstructural “phase diagram” of Figure 2.13
are the central results of this section. The preceding analysis delineates, in the impact-
spread plane, a central wedge bounded from above by a slope 2λ and from below by
a slope ≈ 2/(1 − C1), within which both market orders and limit orders are viable. In
the upper wedge, market orders would always be costly and would be substituted by
limit orders. In the lower wedge, market-making strategies, even at high frequencies,
would never eke out any profit. Such a market would not be sustainable in the absence
of any incentive to provide liquidity. But if the spread happened to fall in this region,
the enhanced flow of market orders would soon reopen the gap between bid and ask. In
the MRR model, this wedge reduces to a single line.

Comparison with Empirical Data

In conclusion of the preceding theoretical section, one expects electronic markets to
operate in the vicinity of Line b of Figure 2.13, that is, there should be a linear relation
between spread and market impact with a slope close to 2/(1 − C1). This prediction has
been tested on empirical data in Wyart et al. (2008), where different markets were con-
sidered. The prediction can be tested in two different ways: for a given stock across time
and across all different stocks. In both cases, a rather convincing agreement with the the-
ory is obtained. We show, for example, in Figure 2.14 the cross-sectional test of Eq. 2.75
over 68 different stocks of the PSE in 2002. The relative values of the spread and the
average impact vary by a factor of five between the various stocks, which makes it pos-
sible to test the linear relations Eqs. 2.70 and 2.76. A linear fit with zero intercept gives
a slope of 2.86,21 while the average of 2/(1 − C1) over all stocks is found to be ≈ 2.64.

However, the situation appears to be different on the NYSE, where specialists are
present. Plotting the data corresponding to the 155 most actively traded stocks on the
NYSE in 2005 in the spread-impact plane, one now finds that the empirical results clus-
ter around the upper Line a limit where market orders become costly; see Figure 2.15.
The regression has a significantly larger slope of 3.3, larger than 2/(1 − C1) ≈ 2.78, and
a positive intercept 2φ ≈ 1.3 basis points.22 This suggests the existence of monopoly
rents on NYSE; even if there is some competition to provide liquidity with other

21The intercept of a two-parameter regression is in fact found to be slightly negative.
22This is five times smaller than the average spread, leading to φ/θ ∼ 0.25, much smaller than the result
φ/θ ∼ 1 − 2 found within the MRR model in 1990 or a similar value reported in Stoll (2000).
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FIGURE 2.14 Plot for 68 stocks on the Paris Stock Exchange in 2002. Each point corresponds to a pair
(y = 〈vS〉/〈v〉, x = 〈vR1〉/〈v〉), computed by averaging over the year. Both quantities are expressed in basis
points. We also show the different bounds, from largest to smallest slope: Eqs. 2.68, 2.76, and 2.70, and a
linear fit that gives a slope of 2.86, while 〈2/(1 − C1)〉 ≈ 2.64. The correlation is R2 = 0.90.

market participants. Market makers post spreads that are systematically overestimated
compared to the situation in electronic markets, with a nonzero extrapolated spread 2φ
for zero market impact. This result is in agreement with older studies on the NYSE:
Harris and Hasbrouck (1996) used data from the early 1990s to show that limit orders
were more favorable than market orders; and Handa and Schwartz (1996) showed that
pure limit order strategies were indeed profitable. We refer to Wyart et al. (2008) for
more discussion.

The empirical analysis therefore shows that for liquid markets, an approximate sym-
metry between limit and market orders holds, in the sense that neither market orders nor
limit orders are systematically unfavorable. Markets operate in the “neutral wedge” of
Figure 2.13. In fully electronic markets, competition for providing liquidity is efficient
in keeping the spread close to its lowest value. For markets with specialists, such as the
NYSE, spreads appear to be significantly larger and market orders are now marginally
costly on average.

Note that the preceding analysis does not require any model-specific assumptions
such as the nature of order flow correlations or the fraction of informed trades. In fact,
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FIGURE 2.15 Plot of 155 stocks on the NYSE in 2005. Each point corresponds to a pair (y = 〈vS〉/〈v〉,
x = 〈vR1〉/〈v〉), computed by averaging over the year. Both quantities are expressed in basis points; also
shown are bounds, from largest to smallest slope: Eqs. 2.68, 2.76, and 2.70. Data clearly show that market
orders are less favorable than in the electronic Paris Bourse. The regression now has a positive intercept of
1.3 bp with an R2 = 0.87.

the preceding results hold even if trades are all uninformed but still mechanically impact
the price.

2.7.4. Spread Dynamics After a Temporary Liquidity Crisis

The preceding analysis has shown the existence of relations between market impact and
the unconditional value of the spread. The spread, however, is a variable with interest-
ing temporal dynamics. Several studies have characterized the statistical properties of
spread. Generally these studies have found that the spread distribution is fat tailed and
the time correlation properties are consistent with a long-memory process (Plerou et al.,
2005; Mike and Farmer, 2008; Gu, Chen, and Zhou, 2007).

It is also interesting to ask how the spread responds after a temporary liquidity crisis.
As we describe in more detail in Section 2.8.1, even at the scale of individual transac-
tions, price returns are heavy tailed; that is, it is not infrequent to observe individual
transactions triggering large price changes. This often happens because a market order
removes all the volume at the best, and the next-to-best occupied price level has a price
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very different from the price at the best (Farmer et al., 2004). As a consequence, even a
small order can create a large price change, creating a very large spread. A large spread
is what we mean here by a “temporary liquidity crisis.”

We now describe the average dynamics followed by the spread as it converges to
its “typical” value. First, a large spread is a strong incentive for limit orders inside the
spread and a strong disincentive for market orders. Direct measurements of the order
flow conditional on the spread value confirm this intuition (Mike and Farmer, 2008;
Ponzi et al., 2008). The limit order flow inside the spread has a limit price distribu-
tion that is roughly independent of spread size and monotonically decreasing when
one moves from the same best toward the opposite best. This suggests that the typical
spread dynamics is not a fast reversion to its typical value, but rather it is a slow process
where each liquidity provider competes with the others to close the spread. Each player
tries to do this as slowly as possible to get a more favorable price from the incoming
market orders, but at the same time competition prevents this process from being too
slow. Empirically this slow decay has been measured in Zawadowski et al. (2006) and
Ponzi et al. (2008). One way of quantifying the average dynamics is by computing the
quantity, Ponzi et al. (2008),

G(τ|Δ) = E(St+τ |St − St−1 = Δ) − E(St) (2.77)

where St is the spread at time t (in seconds). This quantity is the expected value of the
spread at time t + τ conditional to the fact that at time zero there is a spread change
of size Δ. Figure 2.16 shows this quantity for the stock AZN traded at the LSE as a
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FIGURE 2.16 Conditional spread decayG(τ|Δ) defined in Eq. 2.77 for the stock AZN, showingG(τ|Δ)
for different positive values of Δ (in ticks) corresponding to an opening of the spread at time lag τ = 0.
(Source: Adapted from Ponzi et al., 2008.)
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function of τ for different positive and negative values of Δ. The decay of G(τ|Δ) as a
function of τ is very slow and for large values of τ is compatible with a power-law decay
with a fitted exponent in the range 0.4–0.5. A similar slow decay of the volatility after a
shock has been reported in Lillo and Mantegna (2003), Zawadowski et al. (2006), and
Joulin et al. (2008).

2.8. LIQUIDITY AND VOLATILITY

One of the best-known statistical regularities of financial time series is the fact that the
empirical distribution of asset price changes is heavy tailed; that is, there is a higher
probability of extreme events than in a Gaussian distribution. This property has been
verified by many authors on many different financial time series (e.g., Mandelbrot,
1963; Lux, 1996; Gopikrishnan et al., 1998). Extensive empirical analyses have shown
that the distribution of price change over time intervals ranging from a few minutes to
one or a few trading days is asymptotically distributed in a way that is approximately
independent of the time interval size.

2.8.1. Liquidity and Large Price Changes

Many estimates indicate that the part of the distribution describing large price changes
is a power law. For larger time intervals, the tail behavior of the return distribution
becomes slowly consistent with a Gaussian tail in accordance with the central limit
theorem. The heavy-tailed property of large price change is important for financial risk,
since it means that large price fluctuations are much more common than one might
expect under a Gaussian hypothesis.

There have been several conjectures about the origin of heavy tails in prices. Two
theories that make testable hypotheses about the detailed underlying mechanism are the
subordinated random process theory of Clark (1973) and the recent theory of Gabaix
et al. (2003). The first model has its origins in a proposal of Mandelbrot and Taylor
(1967) that was developed by Clark. Mandelbrot and Taylor proposed that prices could
be modeled as a subordinated random process Y (t) = X(τ(t)), where Y is the random
process generating returns, X is Brownian motion, and τ(t) is a stochastic time clock
whose increments are independent and identically distributed and uncorrelated with X.
Clark hypothesized that the time clock τ(t) is the cumulative trading volume in time t. In
simple terms, the subordination hypothesis states that price changes would be Gaussian
if one measured them in equal intervals of volume (or number of trades) rather than in
real time intervals.

Gabaix et al.’s proposal, in contrast, is that high-volume orders cause large price
movements. They argue that the distribution of large trade size scales as P (V >
x) ∼ x−α , where v is the volume of the trade and α ≈ 1.5. Based on the assump-
tion that agents maximize a first-order utility function, with a risk penalty term that
is proportional to standard deviation rather than variance, they claim that the average
market impact function has the form Δp ∝ V ψ , where ψ ≈ 0.5. From this follows
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that large price changes have a power-law distribution with exponent α/ψ ≈ 3. For
a critique of the empirical results and a rebuttal, see Farmer and Lillo (2004) and
Plerou et al. (2004).

Both the Clark and Gabaix theories emphasize the role of trading volume as
the determinant of large price changes. Even if it is clear that volume has some
role in determining price changes, recent studies show that trading volume could
not be the key factor. In a recent paper, Farmer et al. (2004) considered the
distribution of returns generated by individual market orders. They showed that
even at this microscopic time scale, price returns are heavily tailed, and more
important, the size of price moves is essentially independent of the volume of
the orders; see also Joulin et al. (2008). Both these facts seriously challenge
the explanation of fat tails based on volume fluctuations. In that paper Farmer
et al. showed that price returns associated with individual transactions are driven by
liquidity fluctuations. The authors proposed and tested a mechanism for explaining
how liquidity fluctuations determine large price changes. Even for the most liquid
stocks in the London Stock Exchange, the limit order book often contains large gaps,
corresponding to a block of adjacent price levels containing no quotes. When such
a gap exists next to the best price, a new market order can remove the best quote
and generate a large price change. At this time scale the distribution of large price
changes merely reflects the distribution of gap sizes in the order book. The LSE data
indicate that approximately 85% of the trades having a nonzero price impact have a vol-
ume equal to the volume at the best. Moreover, 97% of the trades having a nonzero
price impact generate a price change equal to the first gap. In summary, the fluc-
tuations of the gap sizes in the book are a key determinant of large price changes.
The gap size is a measure of the liquidity available in the market as limit orders.
Thus fluctuations of liquidity—that is, in the market’s ability to absorb new market
orders—are the origin of large price changes, whereas the trading volume plays a
minor role.

The previously proposed mechanism raises the question of the importance of tempo-
rary liquidity crises, evidenced by large gaps in the book, for price changes over long
time intervals. Although a definite answer is not available, there are three indications
that short time scale and long time scale price fluctuations may be related. First, the gap
size displays long-memory properties in time; see Lillo and Farmer (2005). This means
that the gap size—that is, the liquidity availability—is strongly correlated in time. Peri-
ods when the typical gap size is large are likely to be followed by periods of large gaps;
that is, liquidity availability is a persistent quantity. Second, it has been shown that
the permanent component of the price impact is roughly proportional to the immediate
impact caused by the trade (Ponzi et al., 2008). Thus the distribution of permanent price
impacts, which is closely related to the distribution of price changes over relatively long
time intervals, is approximately the same as the distribution of temporary price impacts,
that is, of gaps in the order book. The third indication concerns the relative importance
of volume and liquidity in explaining aggregate price changes, as discussed in more
detail in the next section.
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2.8.2. Volume vs. Liquidity Fluctuations as Proximate Causes of Volatility

The existence of a relation between volume and volatility has been known for a long
time. This relation has been often interpreted as a causal relation, suggesting that volume
(or number of transactions) is the driving factor determining volatility (Ane and Geman,
2000). In the previous section we discussed the subordination hypothesis, which states
that returns would be Gaussian if measured in equal intervals of volume rather than
in equal intervals of real time. The theory by Gabaix et al. (2003, 2006) reaches the
same conclusion. Here we present some evidence challenging this view and indicating
that liquidity fluctuations may be more important than volume in explaining volatility
fluctuations. The question can be posed in terms of Eq. 2.1—that is, Δp = T (I)/λ:
Which is more important in determining the size of price movements, T (I) or λ?

In a recent paper, Gillemot et al. (2006) have presented evidence based on several
different tests involving comparisons of long memory and regressions of the volatility
in specific time intervals, showing that liquidity is a more important determinant of
volume. Even when one aggregates returns over a fixed number of transactions (or vol-
ume), the return probability density function remains heavy tailed with properties very
similar to those in fixed intervals of time. A simple way to see this effect is given in
Figure 2.17, which shows the empirical probability P (|r| > x) as a function of x for
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FIGURE 2.17 Cumulative distribution of absolute (log) returns P (|r| > x) for the NYSE Procter &
Gamble stock under different time clocks, plotted on double logarithmic scale. The circles refer to 15-minute
returns, the squares refer to returns aggregated with a fixed number of transactions, and the triangles show the
cumulative distribution obtained by randomly shuffling individual transaction returns and then aggregating
them in a way that matches the number of transactions in each real-time interval. The dashed line corresponds
to a normal distribution.
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the NYSE stock Procter & Gamble. Here r is the price return over a 15-minute time
interval. Suppose returns are measured in transaction time; that is, every 87 transactions
rather than every 15 minutes, where 87 is chosen because it is the average number of
transactions in 15 minutes (during the period from January 29, 2001, to December 31,
2003). The empirical distribution of transaction time returns matches that of real-time
returns very well. Since in this case the number of transaction is held constant, this
shows that the heavy tail of the return distribution is not due to variations in the number
of transactions. The same effect is seen by aggregating transactions with volume rather
than the number of transactions fixed (see Gillemot et al., 2006, for details).

This result shows that the fluctuation in number of trades or volume associated
with a fluctuating trading activity is not the main determinant of the heavy tails of the
return distribution. To highlight this effect, Figure 2.17 also shows the distribution of
returns obtained from a surrogate distribution, constructed by randomly shuffling the
returnsofindividualtransactionsandbyaggregatingtheminawaythatmatchesthenumber
of transactions in each real-time interval. In doing so the unconditional distribution of
returns of individual transactions is preserved, as are the fluctuation properties of trading
frequency, but any temporal correlations of individual trade returns are destroyed. The
figure shows that the tail of the surrogate distribution is less heavy than the real one,
indicating that fluctuations and the time correlation properties of the reaction of prices
to trades—that is, liquidity—are more important than fluctuations in trading frequency.

More supporting evidence for the importance of liquidity in determining volatility
comes from a recent paper testing the microscopic random walk hypothesis against real
data (Laspada et al., 2008). The price dynamics can be described as a random walk in
which the increments are due to individual transactions. Under the assumption that the
sign and the size of the price increments are mutually independent stochastic processes,
it is possible to derive an exact expression for the volatility expected in a time interval
with a given number of transactions. When one tests this expression on real data, it is
found that for one-hour intervals the model consistently overpredicts the volatility of
real price by about 70% and that this effect becomes stronger as the length of the time
interval increases. This fact suggests that the assumption of independence of size and
sign of price changes is wrong. However, data show that the contemporaneous corre-
lation between size and sign of returns is nonstatistically significant. By performing a
series of shuffling experiments, Laspada et al. (2008) show that the discrepancy between
the volatility of the model and of the data is caused by a subtle but long-memory noncon-
temporaneous correlation between the signs and sizes of individual returns. Therefore,
even after controlling for the number of transactions and the order imbalance in a given
time interval, the random walk model has a strong bias in predicting the volatility,
which is caused by the long memory of liquidity. This once again indicates that vol-
ume is not the key factor in explaining volatility. The neglected subtle relation between
return signs and sizes shows that fluctuating liquidity is an important factor in explaining
volatility.23

23In Section 2.6 we discuss how such a correlation is a consequence of the long memory of order flow and of
market efficiency. The asymmetric liquidity models described in Section 2.6 predict a reduction of volatility
relative to what one would expect under an unconditional permanent impact model.
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Finally, the correlation between large volumes and large returns was directly studied
in Joulin et al. (2008), both for trade-by-trade data and for one-minute bins, with the
conclusion that such a correlation is totally absent from the data.

2.8.3. Spread vs. Volatility

It is worth investigating the relation between spread and volatility in the framework
of the MRR model discussed previously. In fact, this model predicts a simple rela-
tion between volatility and impact, as shown in Eq. 2.67. Together with the relation
between spread and impact we’ve discussed at length, this suggests a direct link between
volatility per trade and spread, which we motivate and test in this section.

By definition of the volatility per trade σ2
1 = E[(m�+1 − m�)2] and of the instanta-

neous impact ri,i+1 ≡ (mi+1 − mi) · εi, one has as an identity:24

σ2
1 ≡ E

[
r2
i,i+1

]
(2.78)

The instantaneous impact ri,i+1 is expected to fluctuate over time for several reasons.
First, the volume of the trade, the volume in the book, and the spread strongly fluctuate
with time (Mike and Farmer, 2008; Wyart et al., 2008). Large impact fluctuations may
also arise from quote revisions due to addition or cancellation of limit orders. Second,
there might also be important news affecting the “fundamental price” of the stock. These
may result in large, instantaneous jumps of the midpoint with virtually no trade at all.
In order to account for both effects, one may generalize the previous MRR relation
(Eq. 2.67), as in Bouchaud et al. (2004), Rosenow (2002), and Wyart et al. (2008):

σ2
1 = AR2

1 + Σ2 (2.79)

where R1 ≡ E[R1(v)] is the average impact after one trade, A is a coefficient account-
ing for the variance of impact fluctuations, and Σ2 is the news component of the
volatility (see Section 2.6.2). This relation holds quite precisely across different stocks
of the PSE, with a correlation of R2 = 0.96 (see Figure 2.18). Perhaps surprisingly,
the exogenous “news volatility” contribution Σ2 is found to be small. (The intercept of
the best affine regression is even found to be slightly negative.) This could be related
to the observation made in Farmer et al. (2004)—and discussed earlier—that for most
price jumps, some limit orders are cancelled too slowly and get “grabbed” by fast market
orders. This means that most of these events also contribute to the impact component
R1.25 We can neglect Σ2 in the preceding equation; in this sense the volatility of the
stocks can be mostly attributed to market activity and trade impact. This is in agreement
with the conclusions of Evans and Lyons on currency markets (Evans and Lyons, 2002);
see also the discussion in Bouchaud et al. (2004) and Hopman (2007).

24Neglecting the extremely small drift contribution.
25One could argue that our results simply show that the news volatility Σ itself is proportional to R1 and thus
to the spread S. However, there is no reason that this should a priori be the case. For example, a model where
rare jumps of typical amplitude J and probability per trade p� 1 lead to Σ =

√
pJ , whereas the cost of such

jumps, contributing to S, is pJ � Σ.
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1, showing that the linear relation Eq. 2.79 holds quite precisely with
Σ2 = 0 and a ≈ 10.9. (The intercept of the best affine regression is even found to be slightly negative.) Data
here correspond to the 68 stocks of the PSE in 2002. The correlation is very high: R2 = 0.96.

A final important assumption is that of universality. When the tick size is small
enough and the typical number of shares traded is large enough, all stocks within the
same market should behave identically up to a rescaling of the average spread and the
average volume. In particular we assume that the statistics of (1) the volume of market
orders (2) the spread S, and (3) the impact R1 and the various correlations between
these quantities are independent of the stock when these quantities are normalized by
their average value. Empirical evidence for (at least approximate) universality can be
found in Lillo et al. (2003b) and Bouchaud et al. (2002). However, one expects that
universality holds only for large-cap, small-tick stocks; large-tick stocks are not covered
by the following analysis.

Universality then implies that:

E[vS] = BE[v]E[S], E[vR1(v)] = B′E[v]R1 (2.80)

where B,B′ are stock independent numbers. Equation 2.80 accounts well for the Paris
Stock Exchange data studied in Wyart et al. (2008), where it was found that B ≈ 1.02
and B′ ≈ 1.80: The incoming volume and the spread are nearly uncorrelated, whereas
the volume traded and the impact are correlated (B′ > 1), as expected.
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Therefore, using Eq. 2.76 as an equality and Eqs. 2.79 and 2.80 with Σ2 = 0, we
obtain the main result of this section:

E[S] = C σ1 (2.81)

where C is a stock-independent numerical constant, which can be expressed using the
constants introduced as C = 2λB′/

√
AB. This very simple relation between volatility

per trade and average spread was noted in Bouchaud et al. (2004), Zumbach (2004), and
Wyart et al. (2008), and we present further data to support this conjecture. Therefore, the
fact that the cost of limit and market orders should be nearly equal on average Eqs. 2.68
and 2.76 and the absence of a specific contribution of news to the volatility lead to a
particularly simple relation between liquidity and volatility. As an important remark,
we note that the preceding relation is not expected to hold for the volatility per unit time
σ, since it involves an extra stock-dependent and time-dependent quantity, namely the
trading frequency f , through:

σ = σ1

√
f (2.82)

The predicted linear relation between spread and volatility per trade was tested
empirically in Wyart et al. (2008) on small-tick stocks. For example, the results for
the Paris Stock Exchange are shown in Figure 2.19. One finds that Eq. 2.81 describes
the data very well, with R2 values over 0.9. One can also check that there is an average
intraday pattern that is followed in close correspondence both by E[S] and σ1: Spreads
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FIGURE 2.19 Test of Eq. 2.81 for 68 stocks from the Paris Stock Exchange in 2002, averaged over the
entire year. The value of the linear regression slope is c ≈ 1.58, with R2 = 0.96.
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are larger at the opening of the market and decline throughout the day. Note that the trad-
ing frequency f increases as time elapses, which, using Eq. 2.82, explains the familiar
U-shaped pattern of the volatility per unit time.

Note that there are two complementary economic interpretations of the relation
σ1 ∼ S in small-tick markets:

• Since the typical available liquidity in the order book is quite small, market orders
tend to grab a significant fraction of the volume at the best price; furthermore, the
size of the “gap” above the ask or below the bid is observed to be on the same order
of magnitude as the bid–ask spread itself, which therefore sets a natural scale for
price variations. Hence both the impact and the volatility per trade are expected to
be on the order of S, as observed.

• The relation can also be read backward as S ∼ σ1: When the volatility per trade is
large, the risk of placing limit orders is large and therefore the spread widens until
limit orders become favorable.

Therefore, there is a clear two-way feedback that imposes the relation σ1 ∼ S, and that
can in fact lead to liquidity instabilities: Large spreads create large volatilities, which
in turn may open the spread more. A detailed study of such effects would be highly
valuable. On average, however, any deviation from the balance between spread and
volatility tends to be corrected by the resulting relative flow of limit and market orders.

The result σ1 ∼ S therefore appears as a fundamental property of the market organi-
zation, which should be satisfied within any theoretical description of the microstruc-
ture. This is an important constraint on models of order flow; however, none of the
simple models studied in the past (zero intelligence models, Daniels et al., 2003;
bounded-range models, Foucault et al., 2005, Luckock, 2003, and Rosu, 2008; or
diffusion-reaction models, Slanina, 2001) is able to predict the preceding structural rela-
tion between S and σ1 (see, however, Mike and Farmer, 2008, for recent developments
using a “low intelligence” model, as discussed in the “A Simple Empirical Agent-Based
Model for Liquidity Fluctuations” section).

2.8.4. Market Cap Effects

It is interesting to study the systematic dependence of the volatility and spread as a
function of market capitalization M. Across stocks, the volatility per unit time shows a
systematic slow decrease with M , σ ∝M−ϕ, where ϕ is small. The trading frequency
f , on the other hand, increases with M as f ∝Mζ . For stocks belonging to the FTSE-
100, Zumbach finds ζ ≈ 0.44 (Zumbach, 2004), whereas for U.S. stocks the scaling
for f is less clear (Eisler and Kertecz, 2006), with apparently two regimes, one for
M > 10 B$, where ζ ≈ 0.44, and the other for M < 10 B$, for which ζ ≈ 0.86. The
average amount per trade vm, on the other hand, also increases withM in such a way that
f × vm is directly proportional to M . This last scaling holds with rather good accuracy
and merely states that the total volume of transactions is proportional to market capitali-
zation, which is somewhat expected a priori. What is interesting is that this is insured
by having both the frequency of trades and the volume per trade increase with M , and
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not, for example, the transaction frequency at fixed amount per trade. The constant of
proportionality is such that ∼10−3 of the total market cap is exchanged per day, on
average, both in London and in New York (Zumbach, 2004; Eisler and Kertecz, 2006).

Combining the above two relations for the volatility per trade σ1 = σ/
√
f results in

the following scaling law for the spread S,

S ∼ σ1 ∝M−ω ω = ϕ − ζ

2
≈ 0.22 (2.83)

The average spread therefore decreases with market capitalization. This result is in good
agreement with data from the LSE, Zumbach (2004), and from the PSE, Wyart et al.
(2008). It can also be directly compared with the impact data of Lillo et al. (2003b) in
the NYSE, where it was established that

R1(v) ≈M−0.3F
(
M0.3 v

v

)
(2.84)

where v is the average volume per trade for a given stock and F a master curve that
behaves approximately as a power law with exponent ψ . Since spread and impact are
proportional, this last result is directly comparable to Eq. 2.83. The average over v of
the preceding result then leads to E[R1] ∼M−ω with ω ≈ 0.3(1 − ψ), which is in the
range 0.15–0.25 (see Section 2.5.1 for a discussion of the value of ψ).

2.9. ORDER BOOK DYNAMICS

The previous section stresses the key role that liquidity plays in price formation. In
double auction markets, prices are formed in the limit order book. Thus one obvious
approach to understanding liquidity is to investigate the causes of liquidity fluctuations
in the limit order book. Although the dynamics of liquidity are still very much an open
question, several studies have identified statistical regularities in the behavior of limit
order books and give some insight into the relationship between order flow and liquidity.

2.9.1. Heavy Tails in Order Placement and the Shape of the Order Book

There are several statistical regularities of limit orders placement. First, as mentioned,
limit order signs are also well described by a long-memory process with a Hurst expo-
nent very close to the one for market order signs. Lillo and Farmer (2004) reported a
value of H = 0.69 for market orders and of H = 0.71 for limit orders.

Limit orders are characterized also by the limit price. The absolute value of the dif-
ference between the limit price and the best available price is a measure of the patience
of the trader. Patient (impatient) traders submit limit orders very far from (close to)
the spread. One of the statistical regularities recently observed in the microstructure of
financial markets is the power-law distribution of limit order price in continuous dou-
ble auction financial markets (Bouchaud et al., 2002; Zovko and Farmer, 2002). Let



134 Chapter 2 • How Markets Slowly Digest Changes in Supply and Demand

b(t) − Δ denote the price of a new buy limit order and a(t) + Δ the price of a new sell
limit order. Here a(t) is the best ask price and b(t) is the best sell price. The Δ is mea-
sured at the time when the limit order is placed. It is found that ρ(Δ) is very similar for
buy and sell orders. Moreover, for large values of Δ the probability density function is
well fitted by a single power law:

ρ(Δ) ∼ 1
Δ1+μ

(2.85)

There is no consensus on the value of the exponent μ. Zovko and Farmer (2002) esti-
mated the value μ = 1.5 for stocks traded at the London Stock Exchange, whereas
Bouchaud et al. (2002) estimated the value μ = 0.6 for stocks traded at the Paris Stock
Exchange. More recently, Mike and Farmer (2008) fitted the limit order distribution
for LSE stocks with a Student distribution, with 1.3 degrees corresponding to a value
μ = 1.3. This power law extends from 1 tick to over 100 ticks (sometimes even 1000
ticks), corresponding to a relative change of price of 5% to 50%. Such a broad distri-
bution of limit order prices tells us that the opinion of market participants about the
price of the stock in the near future could be anything from its present value to 50%
above or below this value, with all intermediate possibilities. This means that market
participants, quite oddly, anticipate the existence of large price jumps that would lead
to trading opportunities.

A heavy tail in the distribution of relative limit price Δ indicates that there is a large
heterogeneity in the limit price—that is, in the patience associated with each limit order.
Patience is in turn related to the time scale the investor is willing to wait before her order
is filled. The typical time to fill26 of a limit order grows with Δ. In a recent study Lillo
(2007) suggested that the origin of the heavy tails in the distribution of the relative limit
price Δ can be attributed to a heterogeneity of time scales characterizing the trading
behavior of individual utility maximizer investors and tested this theory using brokerage
data from the LSE.

The order flow and the interaction of orders determine the instantaneous state of the
book Ωt. By averaging over time, empirical studies consistently show that the average
shape of the order book is roughly symmetric between the bid and offer side of the book
and is consistent across various stocks (Bouchaud et al., 2002; Zovko and Farmer, 2002;
Mike and Farmer, 2008). They show that the maximum of the averaged book is not the
best price, as shown in the top panel of Figure 2.20, even though this is the most likely
place for an order to be placed. In Section 2.9.3 we present statistical models explaining
this fact.

It is important to stress that the average shape of the book is very different from the
“typical” shape of the book. As Farmer et al. (2004) showed, for most LSE stocks the
typical shape of the book is extremely sparse (see the bottom panel of Figure 2.20).
This occurs when the ratio between tick size and price is small so that there are often

26The mean time to fill of a limit order is infinite if the price process can be approximated by a random walk.
“Typical” means some other measure such as the median time to fill.
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FIGURE 2.20 (a) Average shape of the order book. (b) Instantaneous shape of the order book.

many unoccupied price levels. As we discussed in Section 2.8.1, this fact has important
consequences for the price impact of individual transactions and on the origin of large
price fluctuations.

2.9.2. Volume at Best Prices: The Glosten-Sandas Model

The distribution of available volumes at best can be fitted by a gamma distribution with
an exponent less than unity, meaning that the most probable value of the volume is much
smaller than the average value. Both the value of the spread S and the quantity available
at the bid and the ask, Φb,Φa, give information on the willingness of liquidity providers
to enter a trade. One would like to understand the relation between these quantities—
intuitively, large spreads are more favorable to liquidity providers and should attract
larger volumes. More generally, it would be extremely interesting to have a theory for
the shape of the whole order book, that is, the relation between the available volume
and the distance from the best price.
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The approach of Glosten and Sandas attempts to answer these questions, within a
framework where market orders are informed trades (Glosten, 1994; Sandas, 2001).
The idea is now that information is time dependent and modeled as a random variable
that gives the predicted future variation of the midpoint, which we call (in conformity
with the previous notation) εnr(n, n + �). Just before the nth trade, a liquidity provider
considers the volume of the queue at the ask, Φa,n and decides to add an extra (infinite-
simal) limit order if its expected gain, conditional on execution, is greater than some
minimum value Gmin ≥ 0. This reads:

E[mn+� − mn|εn = 1, vn ≥ Φa,n] ≤
Sn
2
− Gmin (2.86)

At this stage, Glosten and Sandas add several questionable assumptions. A crucial
one is that the volume that the informed trader chooses to trade is proportional to the
information he has: vn = αr(n, n + �), independently of the shape of the book at that
moment, and in particular of the available volume at the ask. He is prepared to walk up
the book if necessary, which occurs with only a very small probability in practice: As
discussed in Section 2.6.1, trading is, in fact, discretionary. Introducing the probability
of information content P� (r) and dropping the index n for convenience, the previous
conditional expectation inequality reads:∫+∞

Φa/α

rP� (r)dr ≤
[
S

2
− Gmin

] ∫+∞

Φa/α

P� (r)dr (2.87)

where we have used the fact that information is assumed to be reliable, that is,
the expected midpoint change is indeed given by the informed trader prediction. To
achieve a quantitative prediction, Sandas further assumes that P� (r) has an exponential
shape:27

P� (r) = βe−βr −→ Φa

α
+

1
β
≤ S

2
+ Gmin (2.88)

In fact, this calculation can be reinterpreted to give the total volume of orders available
Φ< at a price less or equal to p = m + S/2 and therefore makes a prediction for the
shape of the order book:

Φ<(p) = α(p − m) − αGmin −
α

β
(2.89)

that is, a linear order book with slope α and, in principle, a negative intercept. (The
prediction for the buy side of the book is obvious by symmetry.) Note that within this
framework, the volume-dependent impact of market orders is by assumption linear:
R� (v) = v/α, which we already know is quite a bad representation of real data, where
impact is always strongly sublinear (see Section 2.5.1). Altogether, this model fares
quite badly compared with empirical data:

27This exponential assumption is in fact not so important. For example, a pure power-law distribution P� (r) ∝
r−1−μ when r > r0 would lead to the following result instead: Φa/α ≤ (1 − μ−1)[S/2 + Gmin] (μ > 1).
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• The order book intercept, which should be negative according to the model, is
found to be positive when the model is fitted to empirical data, suggesting negative
costs for placing limit orders.

• The slope α, when obtained from the slope of the order book, is found to be ten
times larger than when obtained from direct impact estimates.

• As mentioned, the empirical shape of order books is nonmonotonic, exhibiting a
maximum away from the best price. This is not accounted for by the model.

The reason for such a failure is essentially that, as discussed in Section 2.6.1, as shown
by Farmer et al. (2004), the volume of the incoming market order is in fact strongly
correlated with the available volume at the best price. This is in fact why impact is
sublinear in volume and is at the heart of the liquidity game we have been detailing
in the previous pages. One cannot consider that the market order flow is an exogenous
process to which the limit order flow must adapt; rather, the two coevolve in a strongly
intertwined manner.

One can, however, directly test Eq. 2.86 on empirical data, without any further theo-
retical assumptions, much as we did in the previous section. We choose � = 1, 10, 100
and identify a “neutral line” in the S,Φ plane separating the region (above that line)
where executed limit orders are profitable from a region where they are costly (see
Figure 2.21 and Eisler et al., 2008). One sees that after the � = 1 trade the separation
line is flat and is located around the value of the average spread. This means that the
value of the spread is such that limit orders and market orders break even on average at
high frequencies, as discussed in Section 2.7.3. However, judged on longer time scales,
the profitability of a limit order behind a large preexisting order only becomes positive
for spreads significantly larger than the average. In other words, correlations between
spread and volume, of the type predicted by the Glosten-Sandas model (Eq. 2.86),
indeed appear on longer time scales.

2.9.3. Statistical Models of Order Flow and Order Books

An alternative point of view is to model the order flow directly as a stochastic pro-
cess, decomposed into three components: market orders, addition of limit orders, and
cancellation of limit orders.

Zero-Intelligence Models

There is a long list of literature that develops models of this type.28 We will describe the
approach of Daniels et al. (2003) (see also Smith et al., 2003), which has the advantage
that it makes predictions that can be tested against real data. They assume that each
elementary event is independent and concerns a fixed “quantum” of volume v. Buy

28Examples of stochastic process models of limit order books include Mendelson (1982), Cohen et al. (1985),
Domowitz and Wang (1994), Bak et al. (1997), Bollerslev et al. (1997), Eliezer and Kogan (1998), Maslov
(2000), Slanina (2001), Challet and Stinchcombe (2001), Daniels et al. (2003), Chiarella and Iori (2002),
Bouchaud et al. (2002), Smith et al. (2003), Farmer et al. (2005), and Mike and Farmer (2008). See Smith
et al. (2003) for a more detailed survey.
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and sell market orders are described by two Poisson processes of rate μ. Limit orders
have a constant probability per unit time ρ to land anywhere they will not generate an
immediate transaction, and existing limit orders have a probability ν to be canceled.
This model is of course highly schematic, since it neglects all correlations between
market and limit orders, in particular, the “stimulated refill” effect that we argued to be
so important. Another important effect neglected is the dependence of the canceling rate
on the size of the queue: One can actually observe that the probability of cancellation
decreases as the number of orders at that price increases.

A simple self-consistent argument makes it possible to estimate the size of the spread
S in this model. The total flux of limit orders between the midpoint and S/2 is by
definition

∫S/2
0 dΔρ(Δ), where Δ is the distance from the midpoint and we are allowing

here for the possibility that ρ might depend on Δ. If we assume that S is sufficiently
small so that ρ is approximately constant, one finds that this incoming flux is≈ ρ(0)S/2.
Whenever μ > ρ(0)S/2, the rate of market order eats up the limit orders that appear
within the spread completely, and the average volume present is close to zero. The
cancellation term can be safely neglected if removal by market orders is more efficient—
that is, when μ� ν(0). But the argument breaks down when S ∼ 2μ/ρ(0), which sets
the typical position of the best price, provided the tick size is small compared to S. The
spread is therefore larger for larger market order rates and smaller when the flow of
limit orders is larger, as expected intuitively. The above “scaling” result for the spread
has been derived more quantitatively when ρ and ν are independent of Δ. One finds for
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the average spread:

E[S] =
μ

ρ
F

(
ν

μ

)
(2.90)

where F (u) is a monotonically increasing function that can be approximated as F (u) ≈
0.28 + 1.86u3/4. Therefore, in the limit where cancellation can be neglected, one recov-
ers the previous result S ≈ 0.28μ/ρ(0). This prediction can be compared with empirical
data by independently measuring the spread and the rates of the various processes
(Farmer et al., 2005). In view of the simplicity of the model, the agreement with data
is quite good, but systematic deviations remain. In view of the importance of feedback
mechanisms that are neglected, this is hardly surprising.

These results are interesting because they demonstrate that some properties of the
limit order book are dictated more or less automatically by the structure of the con-
tinuous double auction itself. In particular, Eq. 2.90 is an “equation of state” relating
statistical properties of price formation to those of order flow. This equation of state
is clearly inaccurate due to the extreme assumptions that must be made to derive it.
However, it has some reasonable level of empirical validity, suggesting that such a rela-
tionship indeed exists for real markets. See the discussion concerning attempts to find a
more realistic equation of state in the section “A Simple Empirical Agent-Based Model
for Liquidity Fluctuations.”

Statistical Model of Order Book

The preceding model can also explain the hump shape of the average order book. From
a theoretical point of view, however, the problem is difficult to handle: If one chooses
a fixed reference frame, the rates of incoming orders and cancellations change with the
midpoint, whereas if one chooses the reference frame where the midpoint is fixed, limit
orders that are already present get shifted around. The main difficulty comes from the
fact that the motion of the midpoint is dictated by the order flow. To make progress, one
can artificially decouple the motion of the midpoint and impose that it follows a random
walk. An approximate quantitative theory of the volume in the book Φ(Δ) can then be
written as follows: Sell orders at distance Δ from the current midpoint at time t are
those that were placed there at a time t′ < t and have survived until time t. These orders
(1) have not been cancelled, and (2) have not been crossed by the ask at any intermediate
time t′′ between t′ and t.

An order at distance Δ at time t in the reference frame of the midpoint m(t) appeared
in the order book at time t′ at a distance Δ + m(t) − m(t′). The average order book can
thus be written, in the long time limit t → ∞, as

Φst(Δ) = lim
t→∞

Φ(Δ, t) =
∫ t
−∞

dt′
∫
duρ (Δ + u)P

(
u|C(t, t′)

)
e−ν(t−t′) (2.91)

where P (u|C(t, t′)) is the conditional probability that the time evolution of the price
produces a given value of the midpoint difference u = m(t) − m(t′), given the condition
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that the path always satisfies Δ + m(t) − m(t′′) ≥ 0 at all intermediate times t′′ ∈ [t′, t].29

The evaluation of P requires the knowledge of the statistics of the price process, which
we assume to be purely diffusive. In this case, P can be calculated using the method of
images. One finds:

P
(
u|C(t, t′)

)
=

1
√

2πDτ

[
exp

(
− u2

2Dτ

)
− exp

(
− (2Δ + u)2

2Dτ

)]
(2.92)

where τ = t − t′ and D is the diffusion constant of the price process.
After a simple computation, one finally finds, up to a multiplicative constant that

only affects the overall normalization,

Φst(Δ) = Φ(Δ, t → ∞) = e−αΔ
∫Δ

0
duρ(u) sinh(αu)

+ sinh(αΔ)
∫∞
Δ

duρ(u)e−αu (2.93)

where α−1 =
√
D/2ν measures the typical variation of price during the lifetime of an

order ν−1.
The preceding formula depends on the statistics of the incoming limit order flow,

modeled by ρ(u). When ρ(u) = e−βu, all integrals can be perfomed explicitly and one
finds:

Φst(Δ) = Φ0
αβ

α − β
[
e−βΔ − e−αΔ

]
(2.94)

which can easily be seen to be zero for Δ = 0, reach a maximum and decay back to zero
exponentially at large Δ. Here Φ0 is the total volume in the sell side of the book.

We have seen that the limit order price distribution is characterized by a power law
with exponent μ (see Eq. 2.85). When μ < 1, the parameter α in the preceding formula
can be rescaled away in the limit where α−1 is much larger than the tick size (this
is relevant for small-tick stocks, where α−1 ∼ 10 ticks). In this case, the shape of the
average order book only depends on μ. In rescaled units δ = αΔ, it is given by the
following convergent integral:

Φst(Δ) = e−δ
∫ δ

0
du u−1−μ sinh(u) + sinh(δ)

∫∞
δ

du u−1−μe−u (2.95)

For Δ → 0, the average available volume vanishes in a singular way, as Φst(Δ) ∝
Δ1−μ, whereas for Δ → ∞, the average volume simply reflects the incoming flow of
orders: Φst(Δ) ∝ Δ−1−μ. We have shown in Figure 2.22 the average order book obtained
numerically from the previous Poisson model with a power-law order flow and com-
pared it with Eq. 2.95, for various choices of parameters and μ = 0.6, as found for
various stocks of the Paris Stock Exchange. After rescaling the two axes, the numer-
ical models lead to very similar average order books, and the analytic approximation,
although crude, appears rather effective. The average shape of the order book therefore

29We neglect here the fluctuations of the spread. The condition should in fact read Δ + a(t) − a(t′′) = Δ +
m(t) − m(t”) + (S(t) − S(t”))/2 ≥ 0.
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reflects the competition between a power-law flow of limit orders with a finite lifetime
and the price dynamics that remove the orders close to the current price.

A Simple Empirical Agent-Based Model for Liquidity Fluctuations

We now return to discuss the problem of the relationship between order flow and
liquidity. The pure zero intelligence model of Daniels et al. (2003) was limited by its
extreme assumptions of Poisson processes and the use of a highly stylized simplified
model for order placement. A model based on more realistic assumptions was made by
Mike and Farmer (2008). They made simple econometric models for order placement
and cancellation and showed that by simulating this model it was possible to repro-
duce many of the empirical features of prices, including a quantitative match for the
distribution of returns and the distribution of the spread.

In Section 2.9.1 we discussed the remarkable heavy tails in order placement. This
result applied only to orders placed inside the same best.30 Mike and Farmer also stu-
died the distribution of order prices for orders placed inside the spread or crossing the
opposite best (i.e., those generating immediate transactions). Remarkably they found, in
a certain sense, that the same power-law behavior applied there as well. The frequency

30For example, for buy orders the same best is the best bid; the power law applies to orders placed at prices
less than the best bid. The “opposite best” for buy orders is the best ask.
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of order placement peaks at the same best and dies out on either side and can be reason-
ably well fit by a Student distribution (which has a power-law tail). Under the rule that
orders that cross the opposite best price are executed, this simple rule does a reason-
ably good job of explaining execution frequency. One of the predictions that emerges
automatically is that when the spread is small it is more likely for an order to cross the
opposite best; that is, market orders become more likely. This at least partially explains
the “stimulated refill” process mentioned earlier, since when the spread is large, orders
chosen at random are more likely to fall inside the spread (and therefore accumulate
in the limit order book), whereas when the spread is small executions are more likely.
In fact, the model based on this process relied on this effect to preserve stability in the
number of orders accumulating in the order book.

In this model the rate of cancellation was empirically found to depend on factors
such as the number of orders in the order book, the imbalance in the order book, and the
position of a given order relative to the opposite best price. Finally, it takes as an exoge-
nous input the long memory of order signs discussed in Section 2.4. When these three
elements (order placement, order sign, and cancellation) are put together, it is possible
to simulate this model, generating a time series of order books with the corresponding
prices. Note that it is critical that there is feedback between price formation and the
order placement process. The resulting series of prices are not efficient, which is not
surprising given that no effort was made to make them so and there are no agents who
can take advantage of inefficiencies.

Nonetheless, for a subset of stocks with properties similar to those that were used to
build the model, which were called “Type I” stocks, it does a good job of reproducing
many of the properties of real prices.31 In particular, it provides a good quantitative
match with the distribution of returns and the distribution of the spread. This match
includes not just the shape of the distributions but their scale, including the absolute
level of volatility. That is, for Type I stocks a simulation of prices based on the measured
parameters of the order flow produces forecasts of volatility that make a good match in
absolute terms; in other words the predictions and measured values lie along the identity
line. This provides further evidence for the existence of an equation of state relating
order flow and prices. (It remains to extend this model so that it also works well for
Types II and III.)

To summarize, the interesting point about this model is that it suggests that volatility
is directly related to fairly simple properties of the order flow.

2.10. IMPACT AND OPTIMIZED EXECUTION STRATEGIES

The fact that trades impact prices is obviously detrimental to trading strategies: Since,
again, liquidity is so small, trades must typically be divided into small chunks and spread

31Type I stocks are those with reasonably low volatility and small tick size. Type II stocks are those with high
volatility, and Type III are stocks with large tick sizes. At this stage the model only performs well for Type I
stocks.
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throughout the day. But because of impact, the price paid for the last lot is on aver-
age higher than the price for the first lot. This poses a well-defined problem: What is
the optimal trading profile as a function of time of day, such that the average execu-
tion price is as low as possible compared to the decision price (a quantity often called
“implementation shortfall”)?

Assume that a trader has a total volume V to execute; he decides to cut his order into
N trades, each of size v, with nv = V . His trading profile φ(t) is such that the number
of trades between t and t + dt is φ(t)dt. His own impact on the price of the stock at time
t′ ≥ t is modeled as

p(t′) − p0(t′) = P (0)
∫ t′

0
dtφ(t)G0(t′ − t) ln v (2.96)

where G0 is the continuous time version of the single trade impact discussed in
Section 2.6.4. Using all the results obtained previously, one has

G0(t − t′) = g0S

fβ |t′ − t|β
(2.97)

where g0 is a number of order unity (since impact and spread are proportional) and f
the number of trades per unit of time. We neglect here the possible dependence of the
spread S and of f on time of day.

The total extra cost due to impact for a given profile φ(t) is therefore given by:∫T
0
dt

∫ t
0
dt′φ(t)G0(t − t′)φ(t′) ≡ 1

2

∫T
0
dt

∫T
0
dt′φ(t)G0(|t − t′|)φ(t′) (2.98)

where T is the trading period (say, one day). The previous quantity should be minimized
with the constraint that the total trading volume is fixed, that is:∫T

0
dtφ(t)v = V (2.99)

This problem can be easily solved using the method of functional derivatives with
a Lagrange multiplier z to enforce the constraint. This leads to the following linear
equation for the profile: ∫ T

0
dt′G0(|t − t′|)φ(t′) = z (2.100)

where z is such that Eq. 2.99 is satisfied.
As a pedagogical example, let us assume that the impact decays exponentially as:

G0(τ) = G0 exp(−ατ) + G∞ (2.101)

Thanks to the constraint Eq. 2.99, the value of G∞ can be reabsorbed in z and drops out
of the computation; the permanent part of the impact is irrelevant to the optimization of
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execution costs (although the resulting implementation shortfall, of course, depends on
G∞). The solution of the optimization problem then reads:

G0φ
∗(t) = zδ(t) + zδ(T − t) + zα

2
(2.102)

and the constraint is:32

1
G0

[
2
z

2
+
zαT

2

]
= V −→ z =

G0V

1 + αT/2
(2.103)

so finally:

φ∗(t) =
V

1 + αT/2

[
δ(t) + δ(T − t) + α

2

]
(2.104)

the optimal profile is composed of two peaks at the open and at the close of the day and
a flat profile in between. The ratio of the volume traded within the day to the volume
traded at the open and at the close is αT/2; for a fast-decaying impact (αT large), most
of the volume should be spread out evenly intraday, whereas for a slowly decaying
impact, trading should mostly concentrate at the open and at the close.

More generally, it can be shown that the solution to Eq. 2.100 is symmetric
around T/2 and U-shaped (this is also mentioned in Hasbrouck, 2007, Chapter 15).
In particular, whenG0(τ) is given by Eq. 2.97, one finds that the optimal profile diverges
at both t = 0 and t = T , respectively, as tβ−1 and (T − t)β−1. An approximate solution
to Eq. 2.100 in that case reads:

φ∗(t) ≈ V Γ[2β]
T 2β−1Γ2[β]

tβ−1(T − t)β−1 (2.105)

It is interesting to note that none of the parameters g0,S, f entering in the numerical
evaluation of G0 appear in the shape of the profile, since again these can be reabsorbed
in the definition of z at an early stage of the computation.

A generic U-shape solution for the optimized execution profile suggests an interest-
ing interpretation of the observed U-shaped total traded volume as a function of the
time of day.

2.11. TOWARD AN EMPIRICAL CHARACTERIZATION
OF A MARKET ECOLOGY

The description of financial markets we have depicted is based on the assumption of the
existence of different degrees of heterogeneity among market participants. The first level

32Note that the two delta functions only contribute half of their “area” to the total volume, since they are at
the edge of the integration range.
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of heterogeneity is due to the existence of a broad distribution of scales among mar-
ket participants. Here scale refers to any quantity that measures the typical size of the
trades of an investor. Moreover, the size of the hidden order determines the time horizon
over which the order is worked and the number of transactions needed to complete the
order.

As described in Section 2.3.8, the second degree of heterogeneity is due to the exis-
tence of (at least) two classes of agents acting systematically on opposite sides of the
market. One group corresponds to liquidity providers and the other to liquidity takers.
It would be extremely valuable to have a comprehensive empirical study that connects
the heterogeneity of market participants with their strategy and with the properties of
price dynamics. Unfortunately, it is not easy to obtain databases containing this level
of information. Some data providers are starting to release datasets containing infor-
mation about the financial institutions involved in the transaction and/or submission or
cancellation of orders from the book.

It is important to stress that such financial institutions are not individual traders or
agents but rather are usually credit entities and investment firms that are members of the
stock exchange and are entitled to trade at the exchange. Very often these institutions are
acting both as brokers for other clients and trading for their own account. Although an
institution may act on behalf of many individuals and institutions with different strate-
gies, recent findings show that in most cases it is possible to characterize an institution
with an overall strategy, corresponding to that of the bulk of their trades. In the foll-
owing two sections we present the results of two recent papers investigating the behavior
of institutions in the Spanish Stock Exchange.

2.11.1. Identifying Hidden Orders

In a recent paper, Vaglica et al. (2008) used brokerage data on transactions in the
Spanish Stock Exchange to identify hidden orders and to characterize their statistical
properties. The identification of hidden orders is done using an algorithm designed
to identify segments of the inventory time series of an institution characterized by an
approximately constant and statistically significant drift term. The working hypothesis
is that these segments are associated with hidden orders. A hidden order is character-
ized by the traded volume V , the number of transactions N , and the (real) time period
T needed to complete the order.33 It is found that the distribution of these quantities
scales asymptotically for large values as

P (V > x) ∼ 1
x2

P (N > x) ∼ 1
x1.8

P (T > x) ∼ 1
x1.3

(2.106)

These relations show that the size of the hidden orders is asymptotically Pareto dis-
tributed in accordance with the hidden order model described in Section 2.4.3. It should
be noted that the value of the exponent for V and for N is slightly larger than the

33In Vaglica et al. (2008), the investigated variables are the volume and the number of trades associated with
those transactions characterizing the hidden order as a buy or sell hidden order.
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value 1.5 expected by the theory described in Section 2.4.3 and a more careful testing
of the theory is needed. The low value of the exponents indicates that the size of hid-
den orders is a very heterogeneous quantity, probably reflecting the heterogeneity of
market participants. To test this hypothesis, Vaglica et al. (2008) have considered the
distributional properties of hidden orders of individual brokerage codes. It is found that
the distribution of hidden order size of individual brokers is consistent with a lognor-
mal distribution, whereas the pool of the hidden orders of all brokers is not consistent
with a lognormal. This indicates that investor size heterogeneity is at the origin of the
power-law distribution of hidden order size.

The size variables of hidden orders are clearly related to each other. If the volume V
is large, we expect that the number of transactions N and the time needed to complete
the orders will also be large. The relation between the size variables reflects the strategic
behavior chosen by the trader to work the order. By performing a principal component
analysis of the hidden orders, Vaglica et al. find that

N ∼ V 1.1 T ∼ V 1.9 N ∼ T 0.66 (2.107)

The fraction of variance explained by the first eigenvalue is on the order of 88%, so
these characterizations are reasonably sharp.

The first relation indicates that the number of transactions of a hidden order is
roughly proportional to its size. This means that even if a trader needs to trade a large
hidden order, she will not split the order into larger chunks. This observation is consis-
tent with the empirical finding that it is rare that the size of market orders is larger than
the volume available at the opposite best (see Section 2.8.1 and Farmer et al., 2004). The
other two relations indicate that the larger the volume of the hidden order, the slower
the trading rate. This result has also been verified by using other statistical hidden order
detection algorithms and still needs to be properly understood. Finally, it is worth noting
that the relations of Eq. 2.107 also hold approximately true when one considers hidden
orders belonging to a single brokerage code. In other words, the scaling relations of
Eq. 2.107 are not the effect of heterogeneity among traders.

2.11.2. Specialization of Strategies

The presence of distinct classes of institutions and their mutual interaction has been
investigated in a recent work by Lillo et al. (2008b). This study clearly identifies classes
of institutions that are characterized by a similar trading behavior. Specifically, the
study has focused on the cross-correlation between the inventory variation of different
institutions. In general it is found that the cross-correlation of the inventory variation
of different institutions is often statistically significant, for both positive and negative
values. Principal component analysis reveals that the first eigenvalue of the correla-
tion matrix is associated with a factor that is strongly correlated with price return. To
give an idea of the level of correlation of the activity between different institutions, in
Figure 2.23 we show the contour plot of the correlation matrix of daily inventory varia-
tion of the institutions trading the stock BBVA in the Spanish Stock Exchange in 2003.
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FIGURE 2.23 Contour plot of the correlation matrix of daily inventory variation of institutions trading
the stock BBVA in 2003. This is plotted by sorting the firms in the rows and columns according to the strength
of the correlation of their inventory variation with the return of the price of BBVA during the same period.
Shades are chosen to highlight positive or negative firm daily inventory cross-correlation values above a
given significance level. Specifically, light gray (black) indicates positive (negative) cross-correlation with a
significance of 2σ, whereas medium gray indicates positive (negative) cross-correlation below 2σ. The thick
lines in the matrix are obtained from the bottom panel by partitioning the firms into three groups according to
the value of the correlation between returns and inventory variation (smaller than −2σ, between −2σ and 2σ,
and larger than 2σ). (Source: Adapted from Lillo et al., 2008b).

The various shades of gray refer to different levels of correlation (see the figure caption).
The institutions are sorted according to the value of the correlation of their inventory
variation with the price return of BBVA. Two groups of firms are shown, one on the top
left corner and the other on the bottom right corner.

The figure shows a clear block structure that makes it possible to identify communi-
ties of institutions characterized by a similar trading behavior. Specifically, the trading
institutions can be partitioned into three subsets. The first (see the bottom right cor-
ner in Figure 2.23) is composed of institutions with an inventory variation positively
correlated with price return—that is, these institutions buy when the price goes up and
sell when the price goes down. Moreover, they are typically large institutions and have
strongly autocorrelated order flow, probably because of order splitting. The second sub-
set (see the top left corner in Figure 2.23) is composed of institutions whose inventory
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variation is negatively correlated with price return; these institutions buy when the price
goes down and sell when the price goes up. The size of these institutions is very hetero-
geneous, as is the autocorrelation of their order flow. Finally, the third group is made up
of uncategorized firms. As Figure 2.23 shows, the cross-correlation between the inven-
tory variation of an institution belonging to the first group and an institution belonging
to the second group is typically negative (dark areas in the top right and bottom left cor-
ners). This and other more direct evidence suggests that institutions belonging to these
two groups are often trading counterparties.

2.12. CONCLUSION

In this review, we discussed market impact on two different, but overarching, levels.
The first level deals with ultra high-frequency scales: that of elementary transactions (a
level that in physics is called “microscopic”). It is concerned with the phenomenological
description and mathematical modeling of empirical observations on order flow, impact,
order book, bid–ask spread, and so on, which are of direct interest for high-frequency
trading, execution, and slippage control. Results on that front are surprisingly rich and
to some extent unexpected. Among the most salient points, one finds that impact of
individual trades is nonlinear (concave) in volume and has a nontrivial lag dependence
that can be thought of alternatively as a history-dependent impact. This is at variance
with many simple models, including the famous Kyle model, where impact is assumed
to be linear and permanent. The subtle temporal structure of impact can be traced back
to the long memory in the fluctuations of supply and demand. The compatibility of
the long memory in order flow and the absence of predictability of asset returns has
profound consequences on price formation.

The second level deals with phenomena on a longer “coarse-grained” time scale and
is more in line with the questions economists like to ask about markets and prices, such
as: Are prices in equilibrium? What is the information content of these prices? or Why
is the volatility so high? Much as in physics, where the detailed understanding of the
microscopic world provides invaluable insight into macroscopic phenomena, we believe
that a consistent picture of the microstructure mechanisms will help put in perspective
some of these traditional questions about markets and prices. From the set of results pre-
sented previously, two concepts seem to emerge with possible far-reaching theoretical
consequences:

• Because the outstanding liquidity of markets is always very small, trading is inher-
ently an incremental process, and prices cannot be instantaneously in equilibrium
and cannot instantaneouly reflect all available information. There is nearly always
a substantial offset between latent offer and latent demand, which only slowly
gets incorporated in prices. Only on an aggregated level does one recover an
approximately linear impact with a permanent component.

• On anonymous, electronic markets, there cannot be any distinction between
“informed” trades and “uninformed” trades. The average impact of all trades must
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be the same, which means that impact must have a mechanical origin: If every-
thing is otherwise held constant, the appearance of an extra buyer (seller) must on
average move the price up (down).

The theory of rational expectations and efficient markets has increasingly empha-
sized information and belittled the role of supply and demand, in contradiction with the
intuition of traders and of the layman.34 The work we have reviewed here underlines
the role of fluctuations in supply and demand, which may or may not be exogenous and
may or may not be informed in a traditional sense—it does not really matter. Attempts
to estimate ex-post the fraction of truly informed trades leads to very small numbers,
at least judged on a short time basis, meaning that the concept of informed trades is
not very useful to understand what is going on in markets at high frequencies. But still,
prices manage to be almost perfectly unpredictable, even on very short time scales.
The conclusion is that any useful notion of information must be internal to the market;
trades, order flow, and cancellations are information, whatever the final cause of these
events.

We are aware that some of these ideas go strongly against the prevailing view in
market microstructure theory and entail a rather abrupt change of paradigm. We hope
that this work will help clarify the issues and motivate further work to reconstruct
a fully rigourous modeling framework, deeply rooted in the empirical data. Such
data is now widely available and so abundant that it should be possible to raise the
achievements of microstructure theory to the level of precision achieved in the physical
sciences.

34On this point, see the lucid discussion in Lyons (2001), from which we reproduce the following excerpt:
Consider an example, one that clarifies how economist and practitioner worldviews differ. The example is the
timeworn reasoning used by practitioners to account for price movements. In the case of a price increase,
practitioners will assert, “there were more buyers than sellers.” Like other economists, I smile when I hear
this. I smile because in my mind the expression is tantamount to “price had to rise to balance demand and
supply.”
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APPENDIX 2.1: MECHANICAL VS. NONMECHANICAL
IMPACT

As we summarized in Section 2.3.4, there are two very different views of what causes
impact. The standard view is that it is essentially driven by information; the arrival
of a trade signals new information, which causes market participants to update their
valuations. But suppose a trade arrives that is really not based on any information. Does
such a trade have a purely mechanical effect on prices? If so, what is the nature of that
effect?

In Section 2.3.4 we introduced one such notion of mechanical impact, imagining a
standard market clearing framework in which agents randomly alter their excess demand
functions asynchronously. As each agent alters her demand function, she makes trades
that generate market impact. Whether or not these are permanent depends on whether
the alternations are permanent. Insofar as such alternations are permanent, the effect on
prices will also be permanent.

In this appendix we examine another notion of mechanical impact for continuous
double auctions. We define a mechanical impact as what happens if someone places an
order in the order book if this order has no effect on any future orders. We are essentially
asking the question of what happens to the price if an order is injected into the order
book at random but no one pays any attention to it. We describe a method for analyzing
order book data to answer this question (Farmer and Zamani, 2007). The essential result
is that though there is a significant instantaneous mechanical impact due to the simple
fact that such an order can consume the best quotes and move the midprice, this impact
decays to zero. This decay seems to follow a power law, decaying very fast initially
and very slowly later on. The reason for this decay is that orders are continually being
removed from the order book, and as this happens the mechanical impact decays away.
The mechanical impact as defined in this sense largely reflects the rate at which orders
are flushed out of the order book.

A2.1.1. Definition of Mechanical Impact for Order Books

The following definition of mechanical impact makes the convenient simplifying
assumption that the market framework is a continuous double auction. Consider the
order flow Ω = (ω1,ω2, . . . ,ωt, . . .) consisting of individual orders ωt, which can be
either new trading orders or cancellations of existing trading orders. Each individual
order could be originated because of information relating to the value of the asset, or
it could be originated “at random,”—for example due a demand for liquidity driven by
events having no bearing on the asset being traded.

Under the rules of the continuous double auction, any initial limit order book and
subsequent order flow generates a unique sequence of limit order books, which corre-
sponds to a unique sequence of midprices. Auction A can be regarded as a deterministic
function

bt+1 = A(bt,ωt+1)
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that maps an order ωt and a limit order book bt onto a new limit order book bt+1. For a
given order flow Ωt+τ

t = {ωt,ωt+1, . . . ,ωt+τ}, Auction A is applied to each successive
order to generate the limit order book bt+τ at time t + τ,

bt+τ = Aτ (bt,Ω
t+τ
t )

The continuous double auction can thus be thought of as a deterministic dynamical
system with initial condition b0 and exogenous input Ω.

Each limit order book bt defines a unique logarithmic midprice pt = p(bt). The mid-
point price at time t + 1 can be written in terms of the composition of the price operator p
and the auction operatorA as pt+1 = p ◦ A(bt,ωt+1). Thus, any initial limit order book bt
and subsequent order flow Ωt+τ

t will generate a series of future prices pt+1, pt+2, . . . , pt+τ ,
where, for example, the last price pt+τ is

pt+τ = p ◦ Aτ (bt,Ωt+τ
t ) (2.108)

To give a precise meaning to mechanical impact, suppose we modify a particular
order ωt and replace it with a new order ω′t while leaving the rest of the order flow unal-
tered. Since by assumption this modification does not affect the rest of the order flow,
we can freely assume that it occurred for purely mechanical reasons. We can then com-
pare the future stream of prices generated by the order flow Ωt+τ

t = {ωt,ωt+1, . . . ,ωt+τ}
to that generated by the altered order flow Ω′t+τ

t = {ωt,ωt+1, . . . ,ωt+τ}, for example,
for time t + τ, p′t+τ = p ◦ Aτ (bt,Ω′t+τ

t ).
This can be used to measure the mechanical impact of any existing order ωt by

comparing the prices that are generated when ωt is present to those that would have been
generated if were were absent. We thus replace Ωt+τ

t by Ω′t+τ
t = {0,ωt+1, . . . ,ωt+τ},

where 0 in this case represents a null order, that is, one that does not change the order
book. We can then define the mechanical impact ΔpMτ (t) of the order ωt as

ΔpMτ (t) = p ◦ Aτ (bt,Ωt+τ
t ) − p ◦ Aτ (bt,Ω′t+τ

t+1) (2.109)

The real price p contains both the informational and mechanical impact of order ω,
while in the hypothetical price p′ the mechanical impact is missing; that is, it contains
only the informational impact. Under subtraction, only the mechanical impact remains.
This isolates the part of the price impact that is “purely mechanical,” in the sense that
it is generated solely by the effect of placing an order in the book and observing its
effect under the deterministic operation of the continuous double auction. The informa-
tion impact can be defined as the portion of total impact that cannot be explained by
mechanical impact, that is,

ΔpIτ = ΔpTτ − ΔpMτ

where ΔpTτ is the total impact. Whatever components of the total impact not explained
by mechanical impact must be due to correlations between the order ωt and other events.
With the data we have it is impossible to say whether the placement of the order ωt
causes changes in future events Ωt+1 or whether the properties of Ωt+1 are correlated
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with those of ωt due to a common cause. In either case, changes in price that are not
caused mechanically must be due to information—either the information contained in
ωt affecting Ωt+1 or external information affecting both ωt and Ωt+1. These ideas can be
extended to apply to arbitrary modifications of the order stream—for example, infinites-
imal modification of order ωt, and to define mechanical generalization of elasticity
(Zamani and Farmer, 2008).

A2.1.2. Empirical Results

This definition has been applied to several stocks in the London Stock Exchange and
studied as a function of the order sequence number t (which as previously simply labels
the temporal sequence in which the orders are received). It is clear that the mechan-
ical impact is highly variable. In some cases there is an initial burst of mechanical
impact, which dies to zero and then remains there. In some cases there are long gaps
in which the impact remains at zero and then takes on nonzero values after more than
1000 transactions. In other cases there is no mechanical impact at all.

Despite the extreme variability, when an average is taken over time, a consistent
pattern emerges. By definition for τ = 1 the impact is entirely mechanical, since the
only order that can affect the price is the reference event ωt. After τ = 1, however, the
mechanical impact decays so that on average by the time of the next transaction it is
roughly half its initial value; that is, it is half the total impact. In the limit as τ → ∞, for
the stocks investigated in the LSE, to a good approximation for large τ the mechanical
impact decays to zero as a power law ΔpMτ (t) ∼ ταM , with exponent αM ≈ 1.6. See the
example given in Figure A2.1.1. For event time the total impact and mechanical impact
are by definition the same at τ = 1. This is because in moving from τ = 0 to τ = 1
the only event that affects the price is the reference event ωt; alterations in Ωt+1 cannot
effect ΔpT1 . For larger values of τ the mechanical impact decreases and the informational
impact increases. As the example shows, over the time scale shown here (100 orders),
when measured in units of the average spread, the mechanical impact is initially about
0.17 and then decays monotonically toward zero. In contrast, the total impact increases
toward what appears to be an asymptotically constant value slightly greater than 0.3.
This is the source of our statement that the initial value of mechanical impact is about
half the asymptotic value of the total impact.

In thinking about this, we should stress a few points. By requiring that any associated
alterations of orders be considered information, we have taken a very strict definition
of mechanical impact. Within our definition of “informational” there are two funda-
mentally different ways in which placing or removing an order can be correlated with
the placement or removal of other orders. One is that placing or removal of an order
causes a change in the placement or removal of another order. The alternative, however,
is that the placement or removal of the two orders are caused by the same external event
and are therefore correlated. From this point of view it can appear as though one order
causes the other, simply because it happens to occur a bit earlier.

Though it might be surprising that the mechanical effect of order placement is
completely temporary, in fact, this has a trivial explanation: Once all the orders were
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FIGURE A2.1.1 Average mechanical impact Et[εtΔpMτ (t)] (squares) and total impact Et[εtΔpTτ (t)]
(stars) in units of the average spread, plotted as a function of number of the order sequence for the LSE
stock AZN.

originally in the book when the reference order was placed, by definition all trace of the
original order’s presence is gone and so the mechanical impact is zero. Thus the power-
law decay of market impact that is observed for mechanical impact is just a reflection
of the rate at which orders turn over in the order book and is not related to the decay of
the total impact discussed in Section 2.6.

APPENDIX 2.2: VOLUME FLUCTUATIONS

How should one take into account volume fluctuations in the formalism developed in
Section 2.6.4? Since the volume of trades v is rather broadly distributed, the impact
of trades could itself be highly fluctuating as well. This is not so, because large trade
volumes mostly occur when a comparable volume is available at the opposite best price,
in such a way that the impact of large trades is in fact quite similar to that of small trades.
Mathematically, we have seen that the average impact is a slow power-law function vψ

or even a logarithm log v. As a simplifying limit, we postulate a logarithmic impact and
a broad, lognormal distribution of v.

The resulting impact of the nth trade qn = εn ln vn is then a (zero mean) Gaussian
random variable, which inherits long-range correlations from the sign process. Suppose
that, as in the MRR model, only the surprise in qn moves the price; this ensures by
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construction that the price returns are uncorrelated. An elegant way to write this down
mathematically is to express the (correlated) Gaussian variables qn in terms of a set of
auxiliary uncorrelated Gaussian variables ηm, through:

qn =
∑
m≤n

K(n − m)ηm E[ηmηm+�] = δ�,0 (2.110)

where K(n) is a certain kernel such that the qn have the required correlations:35

C� = E[qnqn+�] ≡
∑
m≥0

K(m + n)K(m) (2.111)

In the case where C decays as c0�
−γ with 0 < γ < 1, it is easy to show that the

asymptotic decay of K(n) should also be a power-law k0n
−δ with 2δ − 1 = γ and

k2
0 = c0Γ(δ)/Γ(γ)Γ(1 − δ). Note that 1/2 < δ < 1. Inverting Eq. 2.110 leads to:

ηn =
∑
m≤n

Q(n − m)qm (2.112)

where Q is the matrix inverse of K such that
∑�
m=0 K(� − m)Q(m) = δ�,0. For a power-

law kernel K(n) ∼ k0n
−δ, one obtains Q(n) ∼ (δ − 1) sinπδ/(πk0)nδ−2 < 0 for large n.

Note that whenever δ < 1, one can show that
∑∞
m=0 Q(m) ≡ 0.

When all qm,m ≤ n − 1 are known, the corresponding ξm,m ≤ n − 1 can be com-
puted; the predicted value of the yet unobserved qn is then given by:

En−1[qn] =
∑
m<n

K(n − m)ηm (2.113)

and the surprise in qn is simply:

qn − En−1[qn] = K(0)ηn (2.114)

The generalization of the price equation of motion (Eq. 2.60) is therefore:

mn+1 − mn = ξn + θK(0)ηn (2.115)

which, again by construction, removes any predictability in the price returns. From this
equation of motion one can derive G0(�) and R� .36 From the expression of the ηn in
terms of the qn, one finds:

G0(�) ≡ θK(0)
�−1∑
m=0

Q(m) = −θK(0)
∞∑
m=�

Q(m) (2.116)

35The following equation can be uniquely solved to extractK(�) from C� using the so-called Levinson-Durbin
algorithm for solving Toepliz systems (see, e.g., Percival, 1992).
36We now define G0 as the impact of the qn on the price.
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Using the previous asymptotic estimate of the sum of matrices Q(m), we finally
obtain

G0(�) ∼��1 θ
sin(πδ)K(0)

πk0
�δ−1 ≡ Γ0�

−β (2.117)

Identifying the exponents leads to β = 1 − δ = 1 − γ/2, recovering the above equality.
The quantity θ, relating surprise in order flow to price changes, measures the so-called
“information content” of the trades. It can be measured from empirical data using the
preceding relation between prefactors.

Finally, from Eq. 2.115, one finds the full impact function:

R� = E[(mn+� − mn)qn] = θK(0)2 ∀� (2.118)

that is, a completely flat impact function, independent of �, as in the simplified MRR
model decribed previously. However, if we assume with MRR that the fundamental
price, rather than the midpoint, is impacted by the surprise in qn, we find that the full
impact function is again given by Eq. 2.61: R� = θ[1 − C�], which increases with �.

APPENDIX 2.3: THE BID–ASK SPREAD IN THE MRR MODEL

A complementary point of view to that given in the main text is to analyze the cost of
limit orders within the MRR model. The following argument is interesting because it
can be, in essence, generalized to more complex cases as well. Suppose one wants to
trade at a random instant in time. Compared to the initial midpoint value, the average
execution cost of an infinitesimal buy limit order is given by:

CL =
1
2

(
−S

2

)
+

1
2

(
R1 + C+

L

)
(2.119)

With probability 1/2, the order is executed right away, S/2 below the midpoint; other-
wise, the midpoint moves on average by a quantity R1, to which must be added the
cost of a limit order conditioned to the last trade being a buy, C+

L , for which a similar
equation can be obtained:

C+
L =

1 − ρ
2

(
−S

2

)
+

1 + ρ
2

(
R+

1 + C++
L

)
(2.120)

with obvious notations. Since the MRR model is Markovian, one has R+
1 = R1 and

C++
L = C+

L , so that:

C+
L = −S

2
+

1 + ρ
1 − ρR1 (2.121)

Plugging this last relation in Eq. 2.119, we finally find:

CL = −S
2
+

1
1 − ρR1 (2.122)
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Imposing that CL ≡ 0, one recovers the MRR relation between the spread and the
asymptotic impact (see Eq. 2.67).
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Abstract

High-frequency financial data are characterized by a set of ubiquitous statistical
properties that prevail with surprising uniformity. Though these “stylized facts” have
been well-known for decades, attempts at their behavioral explanation have remained
scarce. However, recently a new branch of simple stochastic models of interacting
traders has been proposed. These models share many of the salient features of empir-
ical data. They draw some of their inspiration from the broader current of behavioral
finance. However, their design is closer in spirit to models of multiparticle interaction in
physics than to traditional asset-pricing models. This reflects a basic insight in the natu-
ral sciences that similar regularities like those observed in financial markets (denoted as
“scaling laws” in physics) can often be explained via the microscopic interactions of the
constituent parts of a complex system. Since these emergent properties should be inde-
pendent of the microscopic details of the system, this viewpoint advocates negligence
of the details of the determination of individuals’ market behavior and instead focuses
on the study of a few plausible rules of behavior and the emergence of macroscopic
statistical regularities in a market with a large ensemble of traders. This chapter reviews
the philosophy of this new approach, its various implementations, and its contribution
to an explanation of the stylized facts in finance.

Keywords: stylized facts, power laws, agent-based models, interacting agents

3.1. INTRODUCTION

The finance literature has a somewhat ambiguous approach toward the salient empirical
features that characterize financial markets. Though they are identified as “stylized
facts” in recent surveys (de Vries, 1994; Pagan, 1996), they have more often been chris-
tened as “anomalies” in the past (see Frankfurter and McGoun, 2001, who argue that the
increasing [mis]use of the term anomaly in the finance literature is evidence of a pro-
pagandistic “effort to imply that . . . the reigning paradigm is irreplaceable . . . ”; from
their abstract). The difference in language is perplexing: Whereas the former notion
implies an identification of robust features of the data that call for a scientific explana-
tion, the latter rather appears to denounce the same features as a minor nuisance for the
established theoretical framework. One certainly does not do injustice to a large body
of theoretical research in finance by stating that it had almost entirely ignored some
of the most pervasive characteristics of financial markets for quite some time. Though
this does not hold for all the stylized facts, it is certainly indisputable for two impor-
tant regularities that have motivated a large part of the empirical finance literature: the
fat tails of asset returns and the characteristic time variation of their fluctuations. To
be honest, a few attempts at explaining these features on the base of standard model-
ing frameworks do exist in recent literature (see Vanden, 2005),1 but at least there has

1However, his results are rather supportive of an alternative approach. Studying the capacity of representative
agent equilibrium models to account for volatility clustering, he concludes that “it is doubtful that there exists
any representative equilibrium model . . . that is consistent with the data” (p. 374).
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been no systematic theoretical approach toward their explanation within “mainstream”
models.

However, it also must be emphasized that mainstream finance has not been careless
about empirical results altogether; on the contrary, one of the most important empiri-
cal findings, the martingale character of prices, is at the heart of its main paradigmatic
approach, the efficient market hypothesis. It appears, however, that in focusing on the
explanation of this single feature, other equally universal findings have been deliber-
ately neglected and marginalized as anomalies. The point made in this chapter is that,
from a different perspective, what has been found to be strange and unexpected behav-
ior of markets might appear as revealing characteristics that could guide the scientist
toward a candidate explanation of price dynamics in financial markets. The surprising
insight here is that, when presented in an appropriate format, the stylized facts so well
known to econometricians and market practitioners would immediately be identified
as scaling laws by natural scientists. Viewed from this perspective, a picture emerges
that differs enormously from that of traditional finance: Scaling laws in natural science
are viewed as imprints of “complex” systems composed of many interacting subunits
that have to be explained as a result of their microscopic interaction. This motivates
an approach toward modeling of financial markets focusing on the interaction of many
actors rather than intertemporal optimization of representative investors. Models with
such an emphasis have been proposed from the early 1990s both by economists dissat-
isfied with the representative agent methodology as well as by physicists in the evolving
“econophysics” movement. To some extent the promise of the scaling approach seems
to have materialized: Models with interacting agents of a certain type appear to be quite
robust generators of the formerly mysterious anomalies of fat tails and clustered volatil-
ity. This explanatory power for some of the previously unexplained characteristics of
financial markets might lend some credibility to this new approach.

With their focus on emergent properties of microeconomic interactions of market
participants, stochastic agent-based models could provide the missing link between the
more micro-oriented analysis of behavioral biases and the econometric literature on
aggregate characteristics of markets. These models mostly lack a full-fledged foun-
dation in utility maximization or alternative psychological decision mechanisms. The
behavioral rules encoded in their stochastic dynamics are more germane to myopic
boundedly rational behavior rather than perfectly rational utility maximization over an
infinite horizon. The emphasis on the aggregate market outcome of uncoordinated activ-
ities of individual investors often provides patterns that are close in spirit to popular
perceptions of financial markets and could be seen as a formalization of psychological
factors and irrational components of human behavior in theories such as Kindlebeger’s
(1989) view on bubbles and crashes. One could argue that with its emphasis on eupho-
ria, hysteria, and self-deception among speculators, Kindleberger’s theory would defy
a formalization along the lines of fully rational utility-maximizing individual behav-
ior and would require the type of phenomenological formalization that is detailed here.
In this sense, this new approach could be viewed as a continuation of a time-honored
tradition that had been marginalized by its incompatibility with the basic axioms of
mainstream economic theory. The formalization of these approaches provides an avenue
toward empirical estimation and tests of hypotheses derived from such a framework.
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Though this literature is still in its infancy, one could imagine various practical
applications; the direct behavioral modeling of “sentiment” factors (see Section 3.4.3)
offers new insights on the determinants and dynamics of waves of excessive optimism
and pessimism and their influence on asset valuation. Widely available sentiment mea-
sures have been used in econometric studies as an exogenous variable (see Lee et al.,
2002; Brown and Cliff, 2005), but the theories detailed here allow for its endogenous
determination along with the unfolding price dynamics in a speculative market. In
empirical applications, one could then estimate joint models of, for instance, epidemic
dynamics of market sentiment together with a more conventional asset-pricing equa-
tion. For example, Alfarano et al. (2005) estimate the parameters of a simple stochastic
model of two groups of interacting agents that takes the form of a stochastic volatility
model, the parameters of which have a behavioral interpretation. Another important area
of applications is in market design and regulatory policy: Models for which output is
close to the empirical stylized facts should be a good test case for studying the effects of
various trading protocols, clearing mechanisms, and regulations. Although this would
require some effort at adding institutional detail to a relatively abstract theoretical setup,
a certain number of studies have already scrutinized agent-based models as a means to
explore the effects of various regulatory schemes (see Pellizzari and dal Forno, 2007, or
Bottazzi et al., 2005).

The remainder of this chapter starts with an outline of the empirical stylized facts
that have been of such utmost importance for the development of stochastic agent-based
models. In Section 3.2 we discuss, in turn: the martingale property, fat tails, and clus-
tering of volatility and we have a cursory look at other reported regularities. Section 3.3
highlights the interpretation of these stylized facts as “scaling laws” and the conno-
tations of this view for theoretical modeling. Section 3.4 goes into detail about some
representative models in the area; we start with a short exposition of sources of inspira-
tion for these models in Section 3.4.1 in the older literature on interaction of different
groups of speculators (e.g., fundamentalists vs. chartists) and then move on to mod-
els that are very explicitly based on microscopic interactions: Kirman’s (1993) “ant”
model and its financial interpretations are dealt with in Section 3.4.2, and the models
of interacting speculators proposed by Lux and Marchesi are featured in Section 3.4.3.
More complicated models with a lattice-based topological structure are considered in
Section 3.4.4. Section 3.5 concludes and tries to provide an assessment of the state of
this new approach vis-à-vis other approaches in the broader area of behavioral finance.

3.2. THE STYLIZED FACTS OF FINANCIAL DATA

3.2.1. Martingales, Lack of Predictability, and Informational Efficiency

The one empirical feature that has become a core ingredient of theoretical models and
that a broad literature attempts to explain is the martingale property of financial prices.
It can be stated simply as:

E[Pt+1|It� = Pt (3.1)
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where Pt denotes the prize of the asset at time t and It is the available information set
at date t. As a consequence, ownership of the asset can be viewed as a fair game with
expected pay-off equal to zero:

E[Pt+1 − Pt|It] = 0 (3.2)

and the realized price change is a random variable driven by the news arrival process
that leads to a price at time t + 1 after new information arrives that differs from its date
t conditional expectation:

Pt+1 − Pt = Pt+1 − E[Pt+1|It� = εt (3.3)

with E[εt� = 0 due to the stochasticity of new information arrivals. With returns being
defined as rt+1 = Pt+1−Pt

Pt
and

E[rt+1|It] =
E[Pt+1|It] − Pt

Pt
(3.4)

the randomness of price changes carries over to this quantity as well.
A glance at any financial returns series reveals that the lack of predictability of

price changes, E[εt� = 0, is at least a very reasonable characterization of the data; at
first view, the increments of high-frequency returns appear like random fluctuations
about a mean value close to zero with no apparent asymmetry between positive and
negative realizations (see the well-known examples exhibited in Figure 3.1). The ran-
dom nature of price changes is explained by the efficient market hypothesis (EMH) as
the imprint of informational efficiency, that is, all currently available information of
any relevance in evaluating the asset in question is already incorporated in the mar-
ket price. Therefore, only new information could lead to price changes, which then
would be the immediate and unbiased reaction of the market on any new information
item. It is worthwhile to note that the EMH is a theory about market outcomes and
originally had only suggested a relatively vague concept of how this macroscopic out-
come might emerge from the microscopic interaction of a diversity of agents in the
marketplace. This missing behavioral underpinning has been added by the literature on
market microstructure and asymmetric information (see Glosten and Milgrom, 1985;
Kyle, 1985; O’Hara, 1995), which shows how the private interaction of some agents
will be revealed via their trading activity and how the market over time approaches a
state of complete revelation of any formerly private information. Since what is revealed
of the private information of better-informed agents becomes public information, these
models support the so-called semi-strong version of the EMH that specifies It as the
information available to all market participants. The stronger version with It includ-
ing even all private information is only valid asymptotically, that is, after an infinite
number of trading rounds involving the better-informed agents. In these seminal con-
tributions, the price process in the repeated trading scenario can be shown to follow
a martingale.
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FIGURE 3.1 Two typical financial time series: the index evolution and daily increments of the (a) UK FTSE 100 index and
the (b) US NASDAQ.

Traditional finance thus provides a well-established body of literature offering a
plausible generic explanation of the martingale property that can be supported by
microeconomic models of price formation under various institutional settings.

Of course, there are many qualifications to be made from different angles: First, the
lack of predictability of price changes has been questioned in a large number of papers;
variance-ratio tests try to recover long swings in stock prices, trading rules have been
tested in-sample and out-of-sample for their ability to track hidden patterns in price
records, and artificial intelligence and data-mining techniques have been used for the
same purpose (see Taylor, 2005, for a comprehensive review). On the theoretical front
it is well known that allowing for risk aversion instead of the assumed risk neutrality of
early microstructure models leads to efficient markets without the martingale property
(see Leroy, 1989).

We do not attempt to go into detail on any of these points in this chapter, but we
simply note that markets might only be close to martingale behavior and that there
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might be good reasons to expect them to deviate from perfect efficiency and complete
randomness of price movements.

The point we want to emphasize is rather that the traditional framework, though
providing a generic explanation for one of the striking features of Figure 3.1, leaves
unexplained the remaining set of similarly ubiquitous findings.

3.2.2. Fat Tails of Asset Returns

Figure 3.2 highlights the distributional properties of the returns series exhibited in
Figure 3.1. A very natural benchmark for characterizing the unconditional distribution
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FIGURE 3.2 Distributional properties of returns: (a) Exhibits the distribution of returns of the FTSE (smoothed
via a Gaussian Kernel estimator) in comparison to the Normal distribution with the same mean and standard deviation;
(b) shows the empirical complement of the cumulative distribution of absolute returns for four financial indices (FTSE
100, NASDAQ, CAC 40, and MSCI Australia). Note that under the first case of hyperbolic tail behavior in Eq. 3.7,
this amounts to Prob(|returns| > x) ∼ x−α . In all cases, note the typical preasymptotic distribution: the tails are more
elongated than under a Normal distribution, but thinner than under a Levy stable distribution. The broken line in
(a) illustrates the decay factor of −3 of the “universal cubic law” claimed by Gopikrishnan et al. (1998). Though
not an equally good fit for all indices, the inverse cubic decay is close to the empirical behavior of all financial
assets.
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is the Normal distribution. As has been well known at least since the early 1960s (Fama,
1963; Mandelbrot, 1963), however, the Normal distribution provides a very poor fit to
financial returns. As shown in Figure 3.2, empirical distributions are, in fact, quite nicely
bell shaped and symmetric but typically have more probability mass in their center
and tails than the Normal distribution. Though the predominance of small fluctuations
(smaller than expected under the Normal with the same standard deviation) is apparent
from the histogram, the importance of fat tails can be better grasped from a comparison
of empirical returns with simulated Gaussians (see Figure 3.3). As can be seen, positive
and negative events exceeding, for example, five times the sample standard deviation
occur quite regularly in empirical data, whereas they would have negligible probabil-
ity in a Gaussian market. Table 3.1 provides some evidence that this behavior is truly
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TABLE 3.1 Kurtosis Statistics and Maximum Likelihood
Estimates for the Pareto Tail Index Characterizing the Extremal
Law G1,α and Tail Distribution W1,α

α2.5% α5% α10% κ

FTSE 100 3.21 3.06 2.80 11.10

(2.68, 3.75) (2.70, 2.56) (2.56, 3.03)

NASDAQ 3.31 3.23 2.69 7.36

(2.76, 3.86) (2.85, 3.62) (2.46, 2.91)

CAC 40 3.64 3.17 2.87 4.72

(2.99, 4.29) (2.77, 3.57) (2.62,3.13)

MSCI Aus 3.16 3.61 3.17 46.21

(2.62, 3.71) (3.17, 4.05) (2.90, 3.44)

Note: Data are the same as in Figure 3.2, with daily sampling frequency
and time horizon 1985 to 2005. The estimates are given for three different
sizes of the tail region (2.5%, 5%, and 10%) with asymptotic 95% confidence
intervals shown in brackets. All results are in good overall agreement with a
“universal cubic law” as postulated in the pertinent literature. The tendency
for a decrease of the estimated coefficient with increasing tail size is usu-
ally seen as reflecting contamination of tail data with observations from the
center of the distribution. With estimated tail indices significantly below 4,
the fourth moment would not exist. The expected divergence of the kurtosis
statistics would lead to unstable estimates in finite samples that increase with
sample size.

universal: For a number of assets, it lists the kurtosis statistics and the tail index (details
follow) for various definitions of the tail region of the data. Kurtosis is defined as the
standardized fourth moment:

κ =
1
N

N∑
t=1

(
rt − r
σ

)4

− 3 (3.5)

with r the mean value and σ the standard deviation of the sample. The benchmark of
κ = 0 characterizes the Normal distribution and separates platykurtic (κ < 0) from lep-
tokurtic (κ > 0) distributions. Leptokurtosis (at least for unimodal distributions) has the
visual appearance of higher peaks around the mean and heavier tails than the Normal,
which is the kind of shape that we always encounter in returns.

The finding of non-Normality and leptokurtosis as universal properties of financial
returns has spurred a long-lasting debate on the appropriate stochastic model for the
innovations (see Eq. 3.3). Stochasticity of returns quite naturally leads to the hypothe-
sis that aggregate returns should obey the Central Limit Law and, hence, would have
to approach the Normal distribution. However, despite their aggregation over large
numbers of high-frequency price changes, daily returns are apparently non-Normal.
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Mandelbrot (1963) and Fama (1963) provided a solution for this conundrum, evoking
the generalized central limit law. The basic tenet of this more general convergence the-
orem is that the distribution of sums of random variables converges to an appropriate
member of the family of Levy stable distributions. If the second moment exists, the
pertinent member is the Normal distribution (as a special parametric case of the Levy
stable distributions). If the second moment does not exist, other members of this family
are the limiting distributions of sums. In particular, these alternative limiting distri-
butions are all leptokurtic and share the typical deviation of the empirical histogram
from the Normal distribution. Whereas the Mandelbrot/Fama hypothesis has motivated
a large literature on parameter estimation and practical application of Levy distributions,
it eventually turned out that these models would largely overstate the frequency of large
returns (see Figures 3.2 and 3.3 for illustrations). Much of this evidence is owed to the
introduction of concepts from statistical extreme value theory in empirical finance. The
key concept of extreme value theory is the so-called tail index that allows a classification
of the extremal behavior of empirical data and distribution functions (see Beirlant,
Teugels, and Vynckier, 1996). The basic result is the classification of extreme values
(maxima and minima) from IID random variables with continuous distributions. Deno-
ting by M = max(x1, . . . , xn) the maximum of a sample of observations {xi}, it can be
shown that after appropriate change of location and scale, the limiting distribution ofM
belongs to one of only three classes of distribution functions. More formally, the dis-
tribution of the appropriately normalized maximum, Prob[anM + bn ≤ x], converges to
one of the following extreme value distributions (GEVs):

G1,α (x) =
{ 0 x ≤ 0

exp(−x−α) x > 0

G2,α (x) =
{ exp(−(−x)α) x ≤ 0

1 x > 0
(3.6)

G3(x) = exp(−e−x) x ∈ �

From this typology of extremal behavior, a similar classification of the underly-
ing distribution’s asymptotic behavior in its outer parts, that is, tails, can be inferred.
Namely, denoting probabilities Prob(xi ≤ x) ≡ W it follows directly from the classifi-
cation of extremes in Eq. 3.6 that if the maximum of a distribution follows a GEV of
type j(j = 1, 2, 3), its upper tail asymptotically converges to the pertinent distribution
from the following list:

W1,α = 1 − x−α , x ≥ 1

W2,α = 1 − (−x)α ,−1 ≤ x ≤ 0 (3.7)

W3 = 1 − exp(−x), x ≥ 0
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These three types of tail behavior can be described as hyperbolic decline (W1,α),
distributions with finite endpoints (W2,α), and exponential decline (W3). To nest all
three alternatives, one can integrate the three limit laws into a unified representation:

Wγ = 1 −
(

1 +
γx

σ

)−1/γ
(3.8)

with γ = 1/α (γ = −1/α) in the cases W1,α and W2,α and W3 being covered as the limit
γ → 0 (σ is a parameter for scale adjustment). Estimation of the tail index α allows us
to determine whether a particular distribution falls into class 1, 2, or 3. These estimates
would allow us to assess whether certain distributional hypotheses are in conformity
or not with the empirical behavior. For example, an empirical γ (= 1/α) significantly
above 0 would allow rejection of the Normal distribution as well as any other distri-
bution with exponentially declining tails. The indication of hyperbolic decline would
also exclude a finite endpoint as implied by W2,α type distributions. Needless to say, the
estimated α would be an extremely valuable tool in financial engineering as it could be
easily used to compute the probability of large losses and gains (see Lux, 2001).

Table 3.1 shows that, with some variation depending on the selection of the tail size,
empirical estimates hover within the interval of about 2 to 4. Ninety-five percent inter-
vals from the asymptotic distribution of the pertinent maximum likelihood estimates
allow us to demarcate even more sharply the set of distribution functions that would or
would not be in harmony with such extremal behavior. As an important consequence, the
family of Levy-stable distributions proposed by Mandelbrot (1963) and Fama (1963)
would have heavier tails than the empirical records, with their α being restricted to
the interval [0, 2]. Any empirical α significantly above 2 (as we mostly find it) would,
therefore, speak against the Levy stable model (which, as a consequence, would hugely
overstate the risks of large returns). On the positive side, an admissible candidate for the
unconditional distribution would be the Student twhose degrees of freedom are equal to
its tail index so that it could be tuned in a way to conform to empirical shapes of return
distributions. Fergussen and Platen (2006) show that for a variety of stock indices the
parameter estimates of a very general family of distributions (the generalized hyperbolic
distributions) cluster in the neighborhood of a Student t with 3 d.f.

What implications does this phenomenological characterization have for theoretical
models? First, from the viewpoint of the efficient market theory, price increments only
have to be random. The innovations in Eq. 3.3 could, therefore, be drawn from a Stu-
dent t as well as any other distribution function that meets the minimum requirement
E[εt] = 0. Since εt reflects the news arrival process, its realm is outside economics and
the EMH is agnostic as to what the joint distribution of all relevant news items might
look like. However, there is a more subtle issue here: Returns over longer time intervals
are aggregates of high-frequency returns, at least under continuous compounding, that
is, for rt = ln(Pt) − ln(Pt−1) and approximately so for rt =

Pt−Pt−1
Pt−1

. If all high-frequency
returns are reflections of IID news arrival processes, their aggregates should converge
toward the Normal distribution, irrespective of the underlying distribution of single
high-frequency returns. This is simply a consequence of the central limit law. One might
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argue that at the level of daily data (the time horizon we have investigated previously),
returns in liquid markets are already sums of thousands of intradaily price changes so
that we should have gone through the better part of the convergence toward the Gaussian
shape at this level of time aggregation. Nevertheless, as we have seen, daily returns are
quite different from Normally distributed random variates.2 With higher levels of time
aggregation (e.g., monthly returns), we indeed get closer to the Gaussian, as would be
expected from the central limit law.

The intriguing aspect about this phenomenology is that if we look at financial data
of a particular time horizon (e.g., daily), we find a kind of universal preasymptotic
behavior that seems to be independent of location, time, and details of the market struc-
ture. To appreciate this universality of the approximately cubic law of asset returns
(Gopikrishnan et al., 1998), note that it appears to apply to practically all types of
financial markets, for example, various developed stock markets, foreign exchange mar-
kets, precious metals, and emerging markets (Jansen and de Vries, 1991; Longin, 1996;
Koedijk et al., 1990; Lux, 1996; Rockinger and Jondeau, 2003). The relevant news
arrival processes might be quite different for all these markets. At least there is no a pri-
ori reason to assume that they should all obey a roughly identical distribution of news.
Furthermore, one might argue that the velocity of efficient information processing in
the trading process might have increased over time due to technical advances such as
electronic trading. Nevertheless, we have no indication that the shape of the return dis-
tribution has undergone any remarkable changes over the past decades, reflecting an
increase in information transmission.

It seems that the set of potential events (summarized in the distribution of returns)
during a day in a financial market is always pretty much the same, irrespective of
whether trading is organized via order-driven and quote-driven systems, whether shares
are traded on the floor or electronically, and broadly independent of the size of the
market. Despite the agnostic view of distributional properties by the EMH, we might
feel somewhat uncomfortable about the apparent universality of the type of random-
ness of price changes. If the return distribution is that robust, additional factors besides
new information in the trading process might be held responsible for this particular out-
come of the market process. However, if this were the case, the EMH would not offer
a full explanation of financial price movements and prices would not solely reflect new
information.

One might, then, argue that the universality of distributional properties of asset
returns should have its behavioral roots within the trading process and needs to the
explained by the way human subjects interact in financial exchanges. Section 3.3 will
further pursue this avenue by considering it from the perspective of “scaling” theory
developed in the natural sciences. Before we turn to this unfamiliar approach, we expand
on other ubiquitous regularities in the following subsections.

2This finding had actually motivated the proposal by Mandelbrot and Fama of the Levy stable distributions.
According to a generalized central limit law, these are the limiting distributions of sums of random variables
with infinite second moment (whereas with a finite second moment, we are back at the classical central limit
law). Unfortunately, the data also speak against the Levy stable hypothesis.
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3.2.3. Volatility Clustering and Dependency in Higher Moments

The martingale property of financial prices implies that price differences define a
martingale difference process and are, thus, uncorrelated. In empirical time series, one
typically finds marginally significant positive or negative autocorrelations at the first few
lags for stock and currency returns, respectively. These are, however, believed to reflect
the microstructural characteristics of particular markets and the way in which prices are
recorded; in stock markets, small positive autocorrelations are probably due to infre-
quent trading for single stocks and certain common news factors of importance for the
individual components of stock indices. In foreign exchange markets, bounces between
the bid and ask price for currency quotes lead to negative correlation of recorded trans-
action prices. Since these autocorrelations, though statistically significant, could mostly
not be exploited via pertinent trading strategies, they are usually not classified as strong
evidence against the EMH.

However, while almost uncorrelated, asset returns are not IID stochastic processes.
Another glance at Figure 3.1 reveals that although the ensemble of returns over a longer
horizon leads to fairly similar distributions across different sets of data, on shorter time
scales we encounter less homogeneous behavior. The comparison of empirical returns
and simulated Gaussian and Levy stable data in Figure 3.3 makes the difference par-
ticularly transparent; though the latter have a very uniform degree of fluctuations, the
former switch between periods of tranquility and more turbulent episodes. The returns-
generating process is, thus, characterized by nonhomogeneity of its higher moments.
This variability in the extent of fluctuations is actually the reason for the introduc-
tion of the concept of a martingale process in financial economics because it makes
no requirement on the noise term except for E[εt� = 0.3

The lack of IID properties is also reflected in autocorrelations of simple transforma-
tions of returns. Considering various powers of absolute returns {|rt|λ}, one typically
observes much higher and longer-lasting autocorrelations than for the raw series.
Figure 3.3 illustrates this finding for the most frequent choices λ = 1, 2. As can be
seen, there is strong dependence in these higher moments. Since powers of absolute
returns can be interpreted as measures of volatility (because they all drop the sign and
only preserve the extent of fluctuations), these results indicate a high degree of pre-
dictability of volatility (in the absence of significant predictability of the direction of
price movements).

The volatility clustering phenomenon has been known for a long time, but mod-
els covering this feature appeared first with Engle’s (1983) seminal proposal of the
ARCH framework that spurred a plethora of models with nonlinear dependency in sec-
ond movements (see Taylor, 2005, for an overview). Although most early literature had
considered only the second moment (λ = 2), Taylor (1986) pointed out that the first
absolute moment has even more pronounced dependence than the second. Ding, Engle,

3In contrast to the more restricted concept of a random walk, which would require a constant variance σ2
ε =

V ar[εt] of the fluctuations.
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and Granger (1993) discuss a whole range of positive λs and find that the highest degree
of autocorrelation is typically found for λ ≈ 1. Meanwhile, this hierarchy of strengths
of dependency also counts as an established stylized fact (Lobato and Savin, 1998).

An important facet of the empirical findings on higher-order dependencies is the
distinction between short memory and long memory in autocorrelation structures.
Short-memory processes are characterized by exponentially decaying ACF functions
(ARMA models as well as GARCH models are standard examples), but a long-memory
process has hyperbolically decaying autocorrelations, which implies a much slower
decay with long-lasting after-effects of innovations. Inspection of Figure 3.3 suggests
that the autocorrelations of absolute and squared returns are examples of hyperbolic
rather than exponential decline. Indeed, if one considers very long series, the autocor-
relations stay significant over perplexingly long horizons: For daily S&P 500 data over
the period 1928–1990, Granger and Ding (1996) report significant autocorrelations over
2500 lags—that is, more than 10 years! The decay of autocorrelations of squared and
absolute returns is, in fact, indicative of a hyperbolic decline. This implies that, for
example, covariances of absolute returns, would decay according to:

E[|rtrt+�t�] ∼ �t−β (3.9)

Processes with long-memory or long-term dependence have properties very differ-
ent from those that only display short memory (see Beran, 1994). In particular, the
variance of the sample mean decays to zero at a rate slower than n−1 and the spec-
tral density diverges at the origin. Findings of long memory in the mean of certain
series have motivated the development of fractional Brownian motion and autoregres-
sive fractionally integrated processes, whereas the finding of long-term dependence in
the second moment of financial data has inspired the development of pertinent exten-
sions of GARCH type and stochastic volatility models (see Baillie, Bollerslev, and
Mikkelsen, 1996).

3.2.4. Other Stylized Facts

One important recent addition to the set of time-series characteristics of financial
data is long memory of trading volume. It has been known for quite some time
that volume is highly contemporaneously correlated with volatility. This pronounced
comovement might suggest that both series have more common characteristics. Con-
vincing evidence for long-term dependence in volume has been presented in Lobato
and Velasco (1998), although the authors also point out that volatility and volume do
not share exactly the same degree of long-term dependence (i.e., have different decay
parameters β).

Recent work on U.S. high-frequency stock market data has come up with the
additional finding of fat tails in the unconditional distribution of transaction volume
(Gopikrishnan et al., 2001) and the number of trades within a time interval. Gabaix
et al. (2003) provide a theoretical framework in which they combine these findings, the
power law of returns, and a Zipf’s law for the size distribution of mutual funds within
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a choice-theoretic setting for the trading activity of large investors. However, empirical
evidence for the new regularities is so far restricted to the U.S. datasets investigated by
these authors.

3.3. THE STYLIZED FACTS AS “SCALING LAWS”

The neglect of almost all the prominent features of asset prices except for their mar-
tingale property by the efficient markets paradigm is not too hard to explain. If one
shares the view of informational efficiency being reflected in the unpredictability of
price changes, the price increments are simply one-to-one mappings of the news arrival
process. As noted, neither fat tails nor long-term dependence as properties of price
changes are, therefore, in contradiction to the EMH. One might, however, be aware
that as a consequence from accepting the empirical facts and the validity of the tradi-
tional EMH view, one would have to concede that “news” in all times and all places
seems to come with the very same underlying distribution.

Interestingly, scientists with a different background who have stumbled over one
of the huge data sets from financial markets have typically arrived at very different
conclusions after detecting the preceding “stylized facts.” Since financial data repre-
sent the largest available records of human activity, they have indeed attracted curiosity
from various other disciplines. A strong recent current is that of physicists engaging in
empirical analysis and theoretical modeling of financial markets. The reaction of these
researchers to the well-known stylized facts of empirical finance was entirely homo-
geneous and totally different from the received viewpoint recalled previously: Natural
scientists saw these as imprints of a complex system with a large number of interacting
microscopic entities. As Stanley et al. (1996) wrote in an influential early contribution
pointing out this viewpoint:

Statistical physics has determined that physical systems which consist of a large
number of interacting particles obey universal laws that are independent of the
microscopic details. This progress was mainly due to the development of scaling
theory. Since economic systems also consist of a large number of interacting
units, it is plausible that scaling theory can be applied to economics.

This statement basically argues that since the statistical properties of financial mar-
kets are similar to those of certain physical (or biological) systems, the explanation
of these characteristics should draw on similar general principles. This assertion has
(at least) three components that we can consider in turn for their empirical validity or
plausibility.

1. Financial stylized facts are analogous to the scaling laws that play a prominent
role in statistical physics. We have expended some effort in outlining how empir-
ical finance had arrived at very parsimonious characterizations of the fat tails
and clustered volatility of returns. Both the unconditional distribution of large
returns (Eq. 3.7) and the conditional dependence structures of their fluctuations
(Eq. 3.9) can be expressed by hyperbolic decay rates. Such hyperbolic distributional
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characteristics are, however, exactly what is denoted as a power or scaling law in
statistical physics. As far as the existence of these “laws” counts as well established
in empirical finance, financial data in this descriptive sense share the scaling laws of
various natural records.

2. Scaling laws (stylized facts) should typically be robust (universal) and should, there-
fore, hold for similar phenomena independent of the microscopic details. In finance
one could interpret these apparently unimportant microscopic details as the particular
institutional details of the market microstructure (floor trading vs. electronic trading,
quote vs. order-driven markets, and so on). In fact, though many other empirical find-
ings do somehow depend on the microstructure, the hyperbolic scaling laws are those
features that can be found everywhere, for example, the cubic law of large returns
seems to govern both stock markets as well as foreign exchange markets with their
very different organization of the trading process.

3. Scaling laws are the signature of systems with a large ensemble of interacting units
that emerge from the interaction of these subunits (particles, molecules) and are only
dependent on a few basic principles of interaction. Although this is simply an obser-
vation across many categories of dynamic processes in physics and other areas of
natural science (examples are turbulent flows or evolutionary processes in biology),
it seems harder to accept this viewpoint for manmade systems. It appears to imply
that we have to disregard the importance of individual rational choice, which is one
of the basic tenets of economic theory. We would certainly not deny the rationality
(or, from a behavioral perspective, the attempt toward rational behavior) of economic
agents, but we could argue that the diversity of micromotives, preferences, endow-
ments, access to information, and degrees of rationality and deliberation of these
agents could be better captured by a statistical approach than by the optimization of
one representative agent. It might well be that in the presence of this large ensem-
ble of heterogenous agents, a few basic principles of interaction can be found that
exert a dominating influence on the macroscopic market behavior and that prevail
in more or less the same way in different institutional settings (microscopic details).
It would, then, be the task of a theory motivated by the analogy between scaling
in physics and finance to show that this possibility can be substantiated by sensible
stochastic models of asset price dynamics. The relevant literature is reviewed in the
next section.

Some words of caution on the “scaling approach” have to be added: There might well
be an exaggeration of both the statistical basis and the potential implications of scal-
ing laws as signatures of complex dynamics in the pertinent literature. As it concerns
the statistical validity, detection of scaling in the natural sciences is typically based on
apparent linearity in some kind of log-log plot such as Figure 3.2. With the necessity of
“binning” the data (i.e., grouping it into intervals) and the violation of the independence
assumption in the linear regression, this approach appears questionable from a method-
ological viewpoint and has often been criticized by economists (Brock, 1999; Durlauf,
2005; and Gallegatti et al., 2006): The ubiquitous declaration of statistical objects as
fractal, self-similar, or scaling has also been attacked in a paper in Science.
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The authors (Avnir et al., 1998) had surveyed all 96 articles in the Physical Review
journals over the period 1990 to 1996 that contained some empirical scaling analysis
of natural or experimental time series. They conclude that the “. . . scaling range of
experimentally declared fractality is extremely limited, centered around 1.3 order of
magnitude . . .” whereas a true self-similar or fractal object in the mathematical sense
would require infinitely many orders of power-law scaling. They found power-low
behavior in most of these claims of studies quite questionable because of the limited
range of observations.

A number of papers also point out that one could obtain “spurious” or “appar-
ent” scaling behavior for processes without a “true” asymptotic power law. Gielens
et al. (1996) show that one can always find local alternatives to fat-tailed distribu-
tion that possess thin tails (i.e., that decline exponentially), while tail index estimates
would indicate a power-law behavior. The temporal scaling characteristics (long-term
dependence of absolute moments) could be obtained as a spurious outcome of cer-
tain specifications of GARCH models (Crato and de Lima, 1994), stochastic volatility
models (LeBaron, 2001), regime-switching processes, or even uncorrelated stochas-
tic processes with heavy tails (Barndorff-Nielsen and Prause, 2001). However, mostly
these alternatives would require a certain degree of fine-tuning of parameters in order
to “fool” the pertinent statistical tests. Given enough flexibility of parameter selection,
it would always be possible to design a local alternative to a process with power-law
characteristics that has no “true” scaling behavior but comes arbitrarily close to scaling
and could, then, not be distinguished from a generic power-law mechanism with finite
samples.

An example is the Markov-switching multifractal model introduced by Calvet and
Fisher (2001), which has “long memory over a finite interval” that could be made arbi-
trarily long by appropriate choice of the specification. This model had indeed been
designed as a well-behaved stochastic process that provides a close resemblance to the
statistically more cumbersome first vintage of multifractal models of asset returns with
true scaling behavior (see Mandelbrot et al., 1997). The ubiquity of fat tails and long
memory for financial data might, however, be viewed as support for models that have
these features generically rather than apparent scaling for particular sets of parameter
values.

As concerns the rigor of statistical analysis and the sample sizes of empirical data for
which “scaling” has been declared, pertinent studies in finance are in a better position
than most of the studies in natural sciences criticized by Avnir et al. (1998). First, finan-
cial econometricians routinely apply more rigorous methods than log-log plots. Most of
the research on fat tails in finance is based on the theoretical concepts of extreme value
theory and has adopted state-of-the-art estimators of the tail index (mostly without ref-
erence to the concept of scaling). Similarly, research on temporal dependence has also
used more refined methods from stochastics (see Lux and Ausloos, 2002, for a com-
parison of the tools used by physicists and financial econometricians). Second, as for
the sample sizes, the literature typically started out with daily recorded series but has
moved on to the immense databases of intradaily, high-frequency returns. Both the find-
ings on fat tails and long-term dependence of volatility in daily data are confirmed for



178 Chapter 3 • Stochastic Behavioral Asset-Pricing Models and the Stylized Facts

intradaily records (see Abhyankar et al., 1995; Dacorogna et al., 2001; and Bollerslev
and Wright, 2000).

Another concern might be the alleged relationship between power laws and “com-
plex” interactions of heterogenous subunits. The evidence for such a relation is mainly
illustrative in nature: Physics and biology offer a variety of examples in which the non-
linear interactions of elementary units result in overall system characteristics that can be
described by power laws. A famous case is the leading example of self-organized criti-
cality; dropping grains on piles of sand (or other materials such as rice) always leads to
a power-law distribution of avalanches that can be explained by a stochastic process of
the change of local gradients (Jensen, 1998). However, the usefulness of diffuse labels
of complexity theory has been critically discussed (Horgan, 1995). It might also be
noted that there exist some simple explanations for power laws: Power-law distributions
could be generated via a combination of exponentials, by taking the inverse of quanti-
ties that themselves obey harmless distributions, or by splitting processes, among others
(see Newman, 2004). As has been demonstrated by Granger (1980), long memory in
aggregate data could result from the aggregation of heterogenous individual behavior
(a principle that has recently inspired a new branch of empirical literature in political
science; see Box-Steffensmeier and Smith, 1996). However, none of the simple generat-
ing mechanisms has ever been proposed as a source of power laws in financial data, and
aggregation of individual behavior might not be inconsistent with the view of financial
markets as a system of interacting agents. Therefore, it seems worthwhile to explore the
“complexity” approach that views scaling as the consequence of phase transitions and
critical phenomena.

3.4. BEHAVIORAL ASSET-PRICING MODELS
WITH INTERACTING AGENTS

From the late 1980s and into the early 1990s, behavioral approaches to financial mar-
kets gained momentum. The literature on excess volatility and overreaction of asset
prices to news suggested that psychological mechanisms and boundedly rational behav-
ior might provide explanations for these and other mysterious “anomalies.” At the same
time surveys of trading strategies and expectation formation mechanisms of real-life
traders pointed to the importance of technical trading and adaptive expectations (Allen
and Taylor, 1990; Taylor and Allen, 1992). The dollar bubble of the early 1980s was
believed to have been at least partially due to positive feedback trading (Frankel and
Froot, 1986), and this perception gave rise to new interest in models of interacting
groups of chartist and fundamentalist speculators (Beja and Goldman, 1980; Day and
Huang, 1990). These models were framed as systems of difference or differential equa-
tions that contained the asset price as well as some characteristics of investors as state
variables.

Some of the pertinent models assumed permanent market clearing; others used a
sluggish price adjustment rule as a proxy for market-making activities in the presence
of excess demand (ED). While excess demand functions of the various groups of traders
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either could be formulated in an ad hoc fashion or were derived from particular utility
functions, traders were typically not assumed to be fully rational, since neither of these
groups properly takes into account the effect of its own trading activity on subsequent
price movements. In a sense (detailed in this section), these contributions were already
motivated by the idea to explain marketwide phenomena as emergent characteristics
from complex interactions, but they restricted the level of disaggregation to a small
number of behavioral types with complete homogeneity within groups.

3.4.1. Interaction of Chartists and Fundamentalists and Nonlinear
Dynamics of Asset Prices

The seminal paper by Beja and Goldman (1980) provides a simple example of the
legacy of models of chartist–fundamentalist interaction. Beja and Goldman assume
simple ad hoc functional forms for excess demand of fundamentalists and chartists.
Fundamentalists’ excess demand depends on the difference between the fundamental
value Pf (assumed to be known to them) and the current market price Pt:

EDf = a(Pf − Pt) (3.10)

where a is a coefficient for the sensitivity of fundamentalists’ excess demand to devi-
ations of the price from the underlying fundamental value. Assuming an expected
reversal of the market price toward Pt, together with constant risk aversion and constant
expected volatility, such a function could also be derived from myopic utility maximiza-
tion using a mean-variance framework or a negative exponential CARA utility function
together with Normally distributed expected price changes.

This format of fundamentalists’ excess demand is pretty standard in the literature and
can be found in early contributions such as Baumol (1957), but there is more variation in
this literature in the formulation of chartists’ excess demand. The particular hypothesis
employed by Beja and Goldman (1980) is that their excess demand depends on the
expected price change π (i.e., expected capital gains or losses):

EDc = bπ (3.11)

where b again captures the sensitivity of the order flow of this group to expected gains or
losses. In a continuous-time framework, π is the subjective expectation of the infinites-
imal price change dp

dt . Beja and Goldman (1980) invoke a market-maker mechanism to
justify sluggish Walrasian price adjustment:

dP

dt
= P ′(t) = λ(EDf + EDc) = λ(a(Pf − Pt) + bπ) (3.12)

with λ the price adjustment speed. Though this is a phenomenological characterization
without microeconomic motivation from the optimization problem of a market maker,
one may note that it closely resembles the micro-founded price adjustment rules of the
literature on price formation under asymmetric information (see, e.g., Kyle, 1985).
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Given the trading strategies of the two groups of investors, price changes result
endogenously from the total imbalance between demand and supply so that the chartists’
expectations might be confirmed or not. In the presence of a deviation of expected from
realized price movements, chartists are assumed to adaptively adjust their expectations:

dπ

dt
= π′(t) = c(P ′(t) − π) (3.13)

where c is a parameter for the speed of adaptation of expectations.
Neither group is characterized by rational expectation formation; chartists react

adaptively by assumption, so they will hardly ever correctly predict price changes. Fun-
damentalists neglect the existence of chartists and their influence on price changes, so
even if the price reverts toward its fundamental value (which might not be guaranteed),
the speed of its reversal toward Pf might be different from the hypothesized adjustment
coefficient of Eq. 3.10.

The model of speculative activity by Beja and Goldman (1980) boils down to a sys-
tem of two differential equations (Eqs. 3.12 and 3.13). It is a typical example of a large
body of literature that formalizes speculative market dynamics as a system of difference
or differential equations. In most cases, these models can be expressed as dynamic sys-
tems covering the market price, plus some group characteristics that undergo changes
over time in response to the asset price dynamics. It is also quite characteristic of the
broader literature in its main results. The interest of the authors of this and many subse-
quent contributions in this vein is mainly in the existence and stability of a fundamental
equilibrium in the presence of nonrational speculative activity. It is easy to see that
the conditions for existence of a stationary state of the joint dynamics of P and π,
P ′(t) = π′(t) = 0 leads to a dynamic equilibrium P ∗ = Pf ,π∗ = 0. The only possible
steady state is, therefore, obtained if both the price equals its fundamental value and
chartists expect no further price changes. In this case excess demand of both groups
of traders equals zero and the price remains unchanged. It is slightly more demanding
to arrive at results on the stability or instability of this steady state. Applying the stan-
dard stability criteria for systems of autonomous differential equations, we find that the
system converges asymptotically toward its steady state if the following necessary and
sufficient condition is met:4

aλ + c(1 − bλ) > 0 (3.14)

This condition yields the following plausible insights:

• High sensitivity of fundamentalists’ (chartists’) excess demand is stabilizing
(destabilizing).

• Whether increased price adjustment speed is destabilizing or not depends on
the relative sensitivity of the chartists’ and fundamentalists’ demand schedules.
Higher price adjustment speed has a more stabilizing (destabilizing) tendency if
a > (<)c · b.

4See Beja and Goldman (1980) for details.
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• The influence of the speed of expectation adjustment of chartists is ambiguous:
If 1 − bλ > 0 the system is always stable independent of the value of c (since
with b < 1

λ the market maker’s price adjustment succeeds in reducing chartists’
excess demand over time). Conversely, if b > 1

λ , price adjustment triggers even
higher order volumes by chartists due to pronounced bandwagon effects. In this
case increasing adjustment speed c in their adaptive expectation formation would
have a destabilizing tendency.

The second and third items illustrate that stabilizing and destabilizing features of
particular chartists strategies could be subtle and could easily change under different
specifications of their strategies. It is worthwhile to note that this model provides a
potential explanation of certain empirical regularities. If stability condition (3.14) is
satisfied and the eigenvalues of the dynamic system are complex conjugate numbers
(which happens in an open set of parameter values), the model exhibits overshooting
and subsequent mean reversal in the presence of new information. As an illustra-
tion, assume that the fundamental value of the asset increases from Pf ,1 to Pf ,2

(see Figure 3.4). Fundamentalists knowing of the increase of the intrinsic value will
start buying shares. This leads to excess demand and exerts upward pressure on mar-
ket prices. The increase of the asset price is interpreted as a positive trend by chartists
who subsequently also start buying shares. Due to this noninformed source of addi-
tional demand, the price will overshoot its new fundamental value and fundamentalists
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FIGURE 3.4 Overshooting and mean reversion of market prices after arrival of new information.
Simulation results with a = 0.7, b = 0.8, c = 0.9, λ = 1, Pf ,1 = 10, and Pf ,2 = 11.
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will switch from the demand to the supply side, leading to mean reversion toward Pf ,2.
In the following, the price will converge to its new fundamental value with damped
oscillations.

If the stability criterion (3.14) is not satisfied, these oscillations would—because
of strong feedback effects from chartists—display an increase rather than a decrease
in amplitude. Since the model by Beja and Goldman is framed as a linear system of
differential equations, there would be no limit to the divergence of the price from the
underlying fundamental value. Of course, such a scenario is unrealistic, which essen-
tially means that this baseline model is silent on the dynamics one would expect under
local instability of the fundamental equilibrium.

Similar dynamic models such as the one proposed by Beja and Goldman with added
nonlinear ingredients have been studied by a number of authors. Even prior to Beja
and Goldman, Zeeman (1974) published a very similar model that assumed a nonlinear
reaction function of chartists on observed price changes, which flattens out further away
from the fundamental equilibrium. While Zeeman’s interest is in the application of con-
cepts from catastrophe theory (demonstrating the possibility of sudden stock market
crashes), Chiarella (1992) showed that the Beja/Goldman model would generate peri-
odic oscillations around the fundamental equilibrium in the unstable case if chartists’
excess demand function gets sufficiently flat far from the equilibrium price.

Day and Huang (1990) consider a similar model formulated in discrete time whose
“information traders” (equivalent to the previously discussed fundamentalists) trade
more aggressively the farther the market price is from the fundamental value. With
a strong reaction of chartists destabilizing the fundamental equilibrium, the assumed
nonlinear reactions result in the same combination of centripetal and centrifugal forces,
as in Zeeman (1974) and Chiarella (1992): Strong reaction of chartists prevents conver-
gence to the fundamental equilibrium and generates bubble episodes of overvaluation
or undervaluation of the asset. However, once the deviation of the market price from
Pf becomes too large, either the chartists become more cautious or the fundamentalists
step in more aggressively so that the price process does not diverge endlessly but rather
reaches a turning point at which the attraction toward the fundamental value dominates
over the positive feedback effect. The global dynamic is, therefore, bounded but not
asymptotically stable. It does not converge to its (unique) equilibrium, but it also does
not exhibit unbounded deviations from the equilibrium.

Chiarella (1992) in a nonlinear version of the described setting in continuous time
ends up with a closed orbit with constant amplitude; Day and Huang get an even more
exciting outcome: Depending on parameter values, the market could exhibit chaotic
fluctuations.5 Despite the deterministic excess demand functions and price formation
rule, the price trajectories then appear similar to the realization of a stochastic pro-
cess, with random switches between bear and bull markets. The difference in outcomes
is mainly due to the mathematical formalization of the speculative dynamics; sys-
tems of differential equations are capable of generating chaos only if they consist of

5Gu (1995) analyzed market-mediating behavior of an active market maker in the framework of Day and
Huang, demonstrating that it would be in the interest of this agent to churn the market rather than calm it
down—that is, choose a price adjustment speed in the chaotic zone of parameter values.



Thomas Lux 183

at least three first-order equations (Beja and Goldman and Chiarella only have two
equations), but even difference equations of the first order can generate chaotic attrac-
tors. The erratic appearance of price paths from a deterministic system and the lack
of predictability of chaotic systems provided a new avenue toward an explanation of
the stylized facts: Despite deterministic behavioral sources, the systematic forces of the
market interactions could become “invisible” due to the apparent randomness of the
chaotic dynamics.

A similar avenue is pursued within a model of the foreign exchange market by
DeGrauwe et al. (1993). Assuming simple versions of moving average rules applied
by chartists, they end up with a higher-order system of difference equations that yields
chaotic attractors for a broad range of parameter values. Interestingly, their model also
allows us to explain stylized facts of foreign exchange markets other than merely the
deviation between market exchange rates and their fundamental values. In particular,
they demonstrate that their chaotic process is hard to distinguish from a unit root process
(martingale) by standard statistical tests and that the overall dynamics could explain the
forward premium puzzle (the finding that forward rates are poor and biased predictors
of subsequent exchange rate movements). Experiments with a macroeconomic news
arrival process indicate that although this incoming information is incorporated into
exchange rates over longer horizons, there is no one-to-one mapping between exchange
rate changes and macroeconomic news in the short run. The connection between
the currency movements and macroeconomic factors might, then, at times appear
quite loose, explaining the so-called “disconnect” puzzle and the failure of macroe-
conomic models to predict exchange rates.

A closely related recent branch of literature is that of “adaptive belief systems.” In
contrast to the contributions reviewed earlier, this class of model allows agents to switch
between various prediction functions (mostly chosen from the typical chartist and fun-
damentalist varieties). Thus, the fractions of agents using particular predictors become
additional state variables in addition to the market price. Early work in this vein was
mainly concerned with the possible bifurcation routes toward chaotic attractors in these
systems (Brock and Hommes, 1997, 1998). Various extensions have considered a broad
variety of prediction functions, have allowed for transaction costs, and have studied
the endogenous development of wealth of agent groups as an alternative to switches
due to the success or failure of their predictions (Gaunersdorfer, 2000; Chiarella, Dieci
and Gardini, 2002; Chiarella and He, 2002; Brock, Hommes, and Wagener, 2005;
DeGrauwe and Grimaldi, 2006).

A recent paper by Gaunersdorfer and Hommes, 2007, is concerned with a possi-
ble mechanism for volatility clustering within this framework. They demonstrate that
in a scenario with coexistence of a locally stable fixed point and an additional cycle or
chaotic attractor, superimposed stochastic disturbances would lead to recurrent switches
between both attractors. In the vicinity of the fixed point, fluctuations will be con-
fined to the stochastic disturbance, whereas the endogenous dynamics of the cycle or
chaotic attractors will magnify the stochastic fluctuations. As a consequence, switching
between both attractors will come along with the impression of volatility clustering and,
therefore, could provide a possible explanation of this stylized fact. Gaunersdorfer and
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Hommes show that estimation of GARCH parameters produces numbers close to those
of empirical data for some parameterizations of the model.

In a related framework, He and Li (2007) point out that an appropriate combination
of noise factors in an otherwise deterministic chartist-fundamentalist model (both a
stochastic fundamental value and an additional noise component in aggregate excess
demand are assumed) could lead to absence of autocorrelation in raw returns together
with apparent hyperbolic decay of autocorrelations in squared and absolute returns.

The adaptive belief models have a close resemblance to a class of models using
machine-learning tools for agents’ expectation formation. The prototype of this strand
of literature on artificial financial markets is the Santa Fe artificial stock market (Arthur
et al., 1997; LeBaron et al., 1999) that had already been launched in the early 1990s. In
this model, traders are equipped with a set of classifiers of chartist and fundamentalist
types to categorize the configuration of the market and formulate expectations of future
returns based on this classification. Both classifiers and forecast parameters evolve via
genetic operations. The main finding of this project is that dominance of either chartist
or fundamentalist components depends on the frequency of activation of the genetic
operations. Under frequent activation, chartist behavior was found to dominate while,
with a lower frequency of activation, fundamentalist classifiers gained in importance.
Imposing “short-termism” on the artificial agents, they are apparently forced to focus on
trends rather than on, for example, price-to-dividend ratios. It has also been shown that
the chartist regime had higher volatility than the fundamentalist regime, and the latter
exhibited excess kurtosis as well as positive correlation between volume and volatility.

Other recent artificial markets include Chen and Yeh (2002), whose traders are
equipped with genetic programming tools rather than classifier systems. Simpler models
with artificial agents have used genetic algorithms for parameter selection of trading
strategies (Arifovic, 1996; Dawid, 1999; Szpiro, 1997; Lux and Schornstein, 2005; and
Georges, 2006). Due to the inherent stochasticity of the evolutionary learning mecha-
nism, some of these models are closer in spirit to the stochastic models discussed later
in this chapter than to the deterministic approaches of the early “chaos” literature.

One concern regarding the body of literature on chartist-fundamentalist models with
a deterministic structure is the lack of convincing evidence of chaotic dynamics in finan-
cial markets. There had been some hope of detecting low-dimensional deterministic
chaos in financial returns in the early literature on this subject (Eckmann et al., 1988;
Scheinkmann and LeBaron, 1988), but it soon turned out that the daily datasets used
in these studies were too small for reliable estimation of, for example, the correlation
dimension of a chaotic attractor (Ruelle, 1990). The consensus that emerged from this
body of literature was that the empirical evidence for low-dimensional chaos is weak.
One should also note that despite their sensitivity with respect to initial conditions,
low-dimensional attractors are characterized by recurrent patterns that could probably
be exploited too easily by advanced methods from the toolbox of nonlinear dynamics.
Nevertheless, the literature agrees that there is strong evidence for nonlinearity in that
all standard tests for IID-ness would typically reject their null hypotheses when applied
to financial returns. However, this nonlinear dependency is mostly confined to higher
moments (GARCH effects) and might not be uniformly present in the data.
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As an interesting exercise by de Lima (1998) demonstrates, rejection of IID-ness by
the popular BDS test in S&P 500 returns over the 1980s happens only if one uses data
including the crash of 1987. If the series stops before this event, the data, in fact, look
like white noise and would not reject the null hypothesis. These findings indicate that
financial data have a structure that is even more complex than that of chaotic processes.
It might, therefore, be important to allow for both deterministic and stochastic factors,
the interaction of which could give rise to different behavior in different time windows.

3.4.2. Kirman’s Model of Opinion Formation and Speculation

A few attempts at modeling stochastic economies of interacting agents were published
decades ago (most notably Fölmer’s seminal 1974 paper); a more systematic analysis
of stochastic interactions only started in the 1990s and was largely confined to models
of trading in financial markets. The first study that gained wider prominence within
the economics literature is Kirman’s model (1991, 1993) of herding through pairwise
contacts. Its mechanism of contagion of opinions, which in principle could be applied
to a variety of problems in economics and beyond, has also been used as an ingredient
in models of interacting chartists and fundamentalists and serves to highlight the dif-
ferences in results brought about by an intrinsically stochastic rather than deterministic
framework.

We start with the basic stochastic interactions considered in Kirman’s approach. The
motivation for Kirman’s model stems from experiments on information transmission
among ants. If a group of foraging ants is offered two identical sources of food in the
vicinity of its nest, a majority of the population will be found to exploit one of the two
resources at any point in time. This concentration comes about by chemical information
transmission via pheromones by which successful pioneer ants recruit followers and
guide them to the same manger. The higher concentration of pheromones on one of
the two paths to both food sources stimulates more and more ants to exploit the same
source. However, if experiments last long enough, random switches of the preferred
source are observed, and averaging over time, a bimodal distribution is found for the
number of ants collecting food from one source. The switch is believed to be caused
by evaporation of pheromones together with random search of ants not yet recruited
for the exploitation of one resource. This combination of concentrated exploitation and
random search is often viewed as an evolved optimal foraging strategy that achieves a
balance between the costs and benefits of undirected search and exploitation of known
resources (see Deneubourg et al., 1990). It also counts as one of the leading examples
of natural optimization and together with similar findings of seemingly purposeful self-
organized behavior in insect societies has motivated the new brand of “ant algorithms”
in the artificial intelligence literature (Bonabeau, Dorigo, and Theraulaz, 1999).

Kirman (1993) has come up with a stochastic model of this recruitment process of
foraging ants. Following the experimental setup, he assumes that ants (agents) have
two alternatives at their disposal (which might be food sources, opinions, or strategies
such as chartism and fundamentalism). Each individual is assumed to adhere to one
of the two alternatives at any point in time. There exists a fixed number of N agents,
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and k denotes the number of those who are currently following alternative 1. Hence,
the probability that a randomly chosen agent belongs to group 1 (2) is k

N and N−k
N ,

respectively.
The state of the system then changes over time by a combination of recruitment and

random changes (random search):

1. Individuals meet pairwise and exchange information on their respective strategies or
opinions. From these meetings any agent might come out convinced or persuaded
that the choice of the other is more preferable. This happens with a constant proba-
bility 1 − δ (δ denoting the probability of holding on to one’s own former strategy or
opinion).

2. Individuals can also change their opinion or strategy without meeting others in an
autonomous fashion—say, due to idiosyncratic factors. This random change happens
with a probability ε.

Within a small time interval (small enough to allow for at most one pairwise
encounter), the number k of individuals of type 1 can, consequently, undergo the
following changes:

k →

⎧⎨
⎩
k + 1 with probability p1

k with probability 1 − p1 − p2

k − 1 with probability p2

(3.15)

The probabilities in Eq. 3.15 are determined by simple combinatorial considerations:

p1 = Prob((k → k + 1) =
N − k
N

(
ε + (1 − δ)

k

N − 1

)
(3.16)

p2 = Prob(k → k − 1) =
k

N

(
ε + (1 − δ)

N − k
N − 1

)
(3.17)

The resulting stochastic process converges to a limiting distribution which, for large
N and small ε, can be approximated by the symmetric Beta distribution:

f (x) = const · xα−1(1 − x)α−1 (3.18)

where x ≡ k
N . The shape parameter α ≡ ε(N−1)

1−δ depends on the relative strength of the
autonomous component ε and the recruitment probability is 1 − δ. The equilibrium dis-
tribution may have a unimodal or bimodal shape; for ε > 1−δ

N−1 the distribution will be
unimodal with a concentration of probability mass around the mean value k

2 . If we
increase the herding propensity, however, the population dynamics will undergo what is
denoted as a “phase transition” at ε = 1−δ

N−1 , with the equilibrium distribution changing
from unimodal to bimodal.

Figure 3.5 illustrates the various possibilities for the distribution of opinions together
with examples of stochastic simulations for the unimodal and bimodal case. Note that
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FIGURE 3.5 Two possible scenarios of Kirman’s ant model: The population might fluctuate around the mean value k/2 with
an equal number of agents in both groups (a) or it might tend toward a uniform state k = 0 or k = N with intermittent switches
between both polar cases due to the randomness of the recruitment process (b). Parameters are δ = 0.15,N = 100, and ε = 0.02
and 0.002, respectively. The top diagrams in (a) and (b) show simulations of both cases; the bottom ones exhibit the frequency of
observations k

N in these simulations.

in the bimodal case, the mean value of the equilibrium distribution is still k2 , but it is the
least probable realization to be observed in a simulated time series. Probability mass
is rather concentrated at the extreme ends, which means that a majority of agents will
follow one of the two alternatives most of the time. This also means that although all
agents are governed by the same conditional probabilistic laws, the emergent global
configuration may be inhomogeneous with alternating phases of dominance of one or
the other strategy. If we assume that the two alternatives in question are chartist and
fundamentalist strategies, we would observe waves of popularity of one or the other
alternative among traders due to noneconomic forces. Frankel and Froot (1986) and
Liu (1996) offer some evidence for changes in popularity of both types of strategies
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in foreign exchange markets.) From a certain perspective, such an added noneconomic
explanation for the popularity of chartist and fundamentalist trading strategies could
have some appeal; in an efficient market, both alternatives would be inferior to a sin-
gle buy-and-hold strategy so that some reasons outside the realm of economics would
be needed to explain their perseverance and popularity among traders.6 However, these
noneconomic forces would lead to dependence between agents. The lack of indepen-
dence of individuals’ deviations from rational behavior would prevent applicability of a
suitable law of large numbers. As a consequence, irrationality would not be washed out
in the aggregate but would exert a nonnegligible influence on equilibrium prices.

Kirman (1991) had already incorporated his recruitment mechanism into a chartist-
fundamentalist framework. His model is formulated as a monetary model of the foreign
exchange market. This implies that the equilibrium exchange rate is determined by
the uncovered interest parity (UIP) condition. Summarizing the fundamental macroe-
conomic factors influencing the domestic and foreign interest rates via a compound
contemporaneous macro variable xt, the equilibrium log exchange rate is obtained as

St = xt + δEm,t[St+1] (3.19)

where δ is the discount factor and Em,t[St+1] is the marketwide expectation of the future
exchange rate entering via UIP.

The traditional monetary approach would, of course, assume rational expectation
formation. Any current information on future changes of macroeconomic fundamen-
tals (components of xτ , τ = t + 1, t + 2, . . .) would, then, be incorporated into current
spot rates via their correctly predicted influence on future equilibrium exchange rates.
Upon iterative solution of Eq. 3.19, the fundamental value Sf ,t would be obtained.
Analogously to Beja and Goldman and the related literature on speculative models
of asset price formation, rational expectations are replaced in Kirman’s model by the
nonrational expectations of chartists and fundamentalists. Kirman assumes the standard
format of fundamentalists’ expectations:

Ef ,t[ΔSt+1] = a(Sf ,t − St−1) (3.20)

with ΔSt+1 = St+1 − St and a simple trend-following rule for chartists. In our rep-
resentation of chartists’ expectation function we slightly modify Kirman’s original
setup:

Ec,t[ΔSt+1] = b(St−1 − St−2) (3.21)

The number of agents formulating their expectations in one or the other way is
assumed to change under the influence of the stochastic recruitment process so that

6Kaldor (1939, p. 2) already argued that there might be a representation bias that might lead to a steady inflow
of new speculators, even in the presence of the net losses of the population of existing speculators as a whole:
“ . . . even if speculation as a whole is attended by a net loss, rather than a net gain, this will not prove, even
in the long run, self-corrective. For the losses of a floating population of unsuccessful speculators will be
sufficient to entertain permanently a small body of successful speculators; and the existence of this body of
successful speculators will be a sufficient attraction to secure a permanent supply of this floating population.”
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the aggregate forecast of the exchange rate, Em[St+1], is given as a weighted average
whose weights change stochastically with the group occupation numbers:

Em,t[St+1] = Em,t[ΔSt+1] + St

= St + wtEf ,t[ΔSt+1] + (1 − wt)Ec,t[ΔSt+1] (3.22)

Setting wt =
kt
N , we obtain:

Em,t[St+1] = St +
kt
N
Ef ,t[ΔSt+1] +

N − kt
N

Ec,t[ΔSt+1] (3.23)

In Kirman’s simulations of this model, weights are not exactly identical to group occu-
pation numbers but are given by agents’ assessment of what the majority opinion might
be. For this purpose every agent is assumed to receive a noisy signal of the majority
opinion. Assuming that agents follow this perceived majority, the aggregate of these
signals is, then, used instead of the raw outcome from the population model, kt. In addi-
tion, the social dynamic occurs at a faster time scale than price formation in the foreign
exchange market.

In particular, in the results reported in various papers (Kirman, 1991, 1992; Kirman
and Teyssière, 2002), the group occupation numbers are sampled after 10,000 pairwise
encounters, to implement the weights in the unit time steps of Eq. 3.23. However, all
these refinements are of minor importance. The more important insight is that we end
up with a complex dynamic system in which the process of social interactions between
agents exerts a crucial influence on the relatively conventional (in the light of the pre-
vious Section 3.4.1) speculative process component. To see this, plug Eqs. 3.20, 3.21,
and 3.22 into 3.19:

St = xt + wta(Sf ,t − St−1) + (1 − wt)b(St−1 − St−2) (3.24)

For constant fractions of chartists and fundamentalists, this is only slightly different
from the model of Beja and Goldman. Despite the formulation in the tradition of mon-
etary models of the exchange rate, the different formalization of chartists’ expectations,
and the discrete rather than continuous-time framework, we easily recover the stabiliz-
ing and destabilizing tendencies of both groups. In particular, we immediately see that
the system would be unconditionally unstable if all traders adopted the chartist forecast
rule (wt = 0). In the case of complete dominance of fundamentalists, we would find
stability of the fundamental equilibrium in the case a < 1 (as with a > 1, fundamental-
ists would overreact to a discrepancy between the current price and the fundamental
value). Furthermore, for the system of two interacting groups, stability conditions
can be expressed in terms of group occupation numbers. For a constant wt = w̄, this
second-order difference equation would have an asymptotically stable equilibrium if
the following conditions were satisfied:

1. w̄ > 1 − 1
b

2. w̄ < 2b+1
2b+a
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Note that the second condition is always met if fundamentalists’ reaction is not
excessive (a < 1). The autonomous recruitment dynamics can be seen as a driving fac-
tor that sweeps the speculative dynamics back and forth between stable and unstable
configurations. As can be inferred from a typical simulation, the stochastic fluctuations
of the prevailing majorities lead to different characteristic phases in the market’s dynam-
ics. During phases dominated by fundamentalists, the exchange rate stays close to its
fundamental value while speculative bubbles emerge if the majority turns to the chartist
forecast rule. Bubbles collapse together with the stochastic switches from the chartist
majority back to the fundamental majority. Kirman (1992b) shows that standard tests
would mostly not reject the unit root hypothesis for simulated time series, while Kirman
and Teyssière (2002), testing for long-term dependence in absolute and squared returns,
find robust indication of long-term dependence with decay parameters in the range of
those obtained with empirical data. Although we do not get the full set of stylized facts
reviewed in Section 3.2, the sweeping through a bifurcation value (threshold for a qual-
itative change of the dynamics) due to superimposed stochastic forces is a more general
phenomenon that also occurs in other models of interacting agents. As we will see, in a
slightly different framework it appears to be a potential key mechanism generating fat
tails and clustered volatility.

Alfarano, Lux, and Wagner (2008) study a continuous-time version of the “ant
process.” In their model, the speculative dynamic is closer to the Beja and Goldman
legacy. They assume constant fractions of fundamentalists and chartists, but they have
the number of buyers and sellers among chartists determined by the social interaction
dynamics. Using tools from statistical physics, they derive approximate closed-form
solutions for conditional and unconditional moments of returns of their asset price pro-
cess. They show that leptokurtosis and volatility persistence are generic features of this
model, although neither the unconditional distribution nor the autocorrelations exhibit
“true” power-law decay. However, Alfarano and Lux (2007), in a closely related model,
demonstrate that up to a characteristic time scale the temporal characteristics would
closely resemble those of a process with “true” long memory, and the deviation from
“true” asymptotic scaling behavior could only be detected for very long (simulated)
time series.

Gilli and Winker (2003) estimated via a heuristic grid search method Kirman’s
(1991) model for the U.S.$-DEM exchange rate and obtained parameter estimates
within the bimodal regime. Alfarano, Lux, and Wagner (2005) developed an approx-
imate ML approach for a similar model that generalizes the previous framework by
allowing for asymmetric autonomous transition rates between groups. This added
feature leads to arbitrary asymmetries in the limiting distribution of the population con-
figuration depending on parameter values, which translates into subtle asymmetries in
the distribution of returns. Since a higher autonomous tendency toward one group leads
to a certain dominance of one strategy, the empirical parameter estimates provide some
evidence on the average population composition in the market under investigation. As it
turns out, parameter estimates of this asymmetric ant model indicate that stock markets
mostly have a higher fraction of chartists than foreign exchange markets.
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3.4.3. Beyond Local Interactions: Socioeconomic Group Dynamics
in Financial Markets

Pairwise interactions as they appear in the seminal ant model are just one way to
formalize the interpersonal influences between economic agents. The first systematic
investigation into the effects of mutual noneconomic interaction between agents in an
economic setting is due to Föllmer (1974). He studied the existence and uniqueness of
the equilibria in a system of markets and pointed to the existence of a phase transition
from a unique prize vector to a “polarized” multimodal state with increasing strength
of interpersonal spillovers. This phenomenon is similar to the bifurcation from uni-
modality to bimodality in the ant model and can be found in various broadly similar
approaches.

Social Interactions: A General Framework

This section outlines another model in the chartist–fundamentalist tradition that uses
a formalization of interactions that can be viewed as the opposite extreme to pair-
wise influences: Traders will be assumed to be influenced by the overall mood of the
market, that is, an average of the influence from all their fellow traders. Such an overall
influence allows us to study the macroscopic dynamics more easily via so-called mean-
field approximations. As will be seen, most qualitative results of the simple model that
follows are in harmony with the previously reported findings. The added advantage
(besides the generalization of previous results) will be that this framework allows us to
illustrate a general avenue toward the analysis of macroscopic quantities in stochastic
systems of interacting agents that can be compared to typical stochastic models applied
in empirical finance. Our particular framework is adopted from Lux (1995, 1998).

As in Kirman’s model, a population is divided into two camps, say, optimistic and
pessimistic (or bullish and bearish) individuals whose average mood can be captured by
the opinion index x:

x =
n+ − n−

2N
(3.25)

with n+(n−) the current number of optimists (pessimists) and 2N the overall number
of agents. Individuals are assumed to revisit their choice of opinion from time to time
and to have a tendency to switch to the majority opinion. With an overall “field” effect
(i.e., all other individuals exerting the same influence on any one), the group pressure
can be modeled via some feedback effect from the macroscopic configuration x on indi-
vidual decisions. This feedback leads to migration of individuals between both groups
under the influence of the overall “field” of the average opinion. Formally, these transi-
tions might be specified by Poisson processes in continuous time with rates p+− and p−+
for an individual from the − group to switch to the + group, and vice versa. The canon-
ical function used for transitions in particle physics is the exponential, which motivates
an ansatz of the following type:

p+− = v · exp(αx), p−+ = v · exp(−αx) (3.26)
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Obviously, Eq. 3.26 supposes positive probabilities for agents to migrate between
groups but hypothesizes a stronger tendency for migration following the dominating
opinion: If x > 0 (x < 0), the majority of the population can be found in the + (−) group
and the probability for other agents to join this group is larger than that of members of
the majority to switch to the minority view. Thus we have a very direct formalization of
social interaction or herding among the members of our population. Note that Eq. 3.26
includes two parameters: v, which captures the general frequency of revision of opinion
within our population, and α, which parameterizes the strength of the herding effect.
Because of the assumed Poisson nature of the switches of opinion, we can easily come
up with probabilities for movements of agents from one group to another during a cer-
tain time interval Δt. For small time increments Δt, the simultaneous movements of
two or more individuals during an interval Δt become increasingly unlikely and can
be completely neglected in the limit Δt → 0. In addition, the probability for an indi-
vidual to switch from one group to the other converges to p+−Δt and p−+Δt. Since
these Poisson processes are assumed to be the same for all members of the optimistic
and pessimistic groups, respectively, we can infer the transition rates for group occupa-
tion numbers as the limiting cases of conditional probabilities w(ni + 1, t + Δt|ni, t) for
i ∈ {“ + ”, “ − ”}:

lim
Δt→0

w(n+ + 1, t + Δt|n+, t)
Δt

≡ w(n+ + 1|n+, t) = n−p+− (3.27)

lim
Δt→0

w(n− + 1, t + Δt|n−, t)
Δt

≡ w(n− + 1|n−, t) = n+p−+ (3.28)

Denoting by n = 1
2 (n+ − n−) = xN the socioeconomic configuration with n ∈ {−N ,

−N + 1, . . . ,N − 1,N}, and x ∈ {−1,−1 + 1
N , . . . , 0, . . . , N−1

N , 1}, the opinion dyn-
amics leads to a sequence of switches from n to one of the neighboring values n ± 1
(or from x to x ± 1

N ) in irregularly spaced time intervals. A complete description of
the dynamic process is obtained via the so-called Master equation, which captures the
change in time of the probabilities Q̃(n, t) or Q(x, t) over all candidate states n or x,
respectively. This amounts to a system of differential equations for the probability flux,
which in our case can be written as:

dQ(x; t)
dt

= w↓

(
x +

1
N

)
Q

(
x +

1
N

; t
)
+ w↑

(
x − 1

N

)
Q

(
x − 1

N
; t
)

︸ ︷︷ ︸
inflow of prob. to state x

− (w↓(x) + w↑(x))Q(x; t)︸ ︷︷ ︸
outflow of prob. from x

(3.29)
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The transition rates for the changes of x by one unit ± 1
N are identical to the rates

introduced in Eq. 3.27 and 3.28 translated into the pertinent transition rates of the
intensity x:

w↑(x) = n−p+− = (1 − x)Np+−,w↓(x) = n+p−+ = (1 + x)Np−+ (3.30)

Note that the rates w↑(x) and w↓(x) are both state dependent and nonlinear due to our
formalization of the individual transition rates p+− and p−+. Although one could in prin-
ciple use the Master equation to simulate the time development of our dynamic process,
it is certainly too complicated to allow an analytical solution. The major advantage of
this formalization consists, however, in its use as a starting point to derive more man-
ageable approximations. One potential avenue consists of performing a Taylor series
approximation to the Master equation itself, leading to the so-called Fokker-Planck
equation, the use of which is illustrated in Figure 3.7.

A second complementary approach is to investigate macroscopic characteristics of
the dynamic process; for example, first, second, or higher moments, the implementation
of which also requires the Master equation formalism. The details of both approaches
have been nicely laid out in the monographs by Weidlich and Haag (1983), Aoki (1996),
and Weidlich (2002). We will not go into too much detail here but simply illustrate some
of the main results that can be obtained for our opinion dynamics.

We start with the first moment of the opinion index, that is, xt, whose time change
characterizes the most probable development of the system conditional on an initial
condition x0 at time t = 0. Since the mean is defined by

xt =
1∑

x=−1

xQ(x; t) (3.31)

its change in time can be exactly computed only under complete knowledge of the
dynamics of the probability distribution over all states x:

dxt
dt

=
1∑

x=−1

x
dQ(x; t)
dt

(3.32)

The exact time evolution covered in Eq. 3.32 can be approximated in a Taylor series
expansion around the current mean xt to various degrees of accuracy. To first order, we
obtain a self-consistent differential equation:7

dxt
dt

= ax,1(xt) (3.33)

7Note that the first derivative vanishes because of E[(x − x̄)a′x,1(x)] = 0.
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while to second-order accuracy, a correction term involving the variance σ2
x enters the

equation:

dxt
dt

= ax,1(x) +
1
2
σ2
xa
′′
x,1(x) (3.34)

The function ax,1 in Eqs. 3.33 and 3.34 is denoted as the first-jump moment. It gives
the expected change of the system conditional on the previous realization. Evaluated
at the current expectation, xt (conditional on an initial condition), it allows us to track
the mean-value dynamics of the system. In the case of an infinite population, Eq. 3.33
would be exact. For finite populations, however, the influence of higher moments has to
be taken into account. Equation 3.34 includes the next higher term in the Taylor series
expression of Eq. 3.32 involving the second moment. Higher-order expansions would
involve higher-order moments in the additional entries on the right side of the equation.
An example for the determination of the jump moment ax,1 follows.

The dynamics of higher moments are obtained analogously. For example, the second
moment x2

t =
∑
x x

2Q(x; t) changes over time according to

d

dt
x2
t =

∑
x

x2 dQ(x; t)
dt

(3.35)

while the time change of the variance σ2
x is given by

d

dt
σ2
x =

d

dt
(x2 − x2) =

d

dt
x2 − 2x

d

dt
x (3.36)

and can be solved using Eqs. 3.34 and 3.31. Taylor series expansions of these exact
equations again lead to approximations of various orders of accuracy involving non-
linear functions of various moments on the right side. One immediate consequence is
that any model involving a group dynamic like the one under investigation (or a broad
range of alternative population processes) entails autoregressive dependence in higher
moments as well as cross-dependencies between moments.

It has already been pointed out by Braglia (1990) and Ramsey (1996) that stochastic
systems based on microscopic interactions (such as our illustrative example) provide a
generic avenue toward interesting nontrivial dynamics in higher moments and, there-
fore, a potential behavioral explanation for the ubiquitous ARCH effects in financial
data. Of course, it would have to be seen whether the direction and extent of auto-
regressive dependency in any hypothesized micro model is in qualitative and quantita-
tive agreement with the empirical stylized facts. Interestingly, Braglia (1990) already
argued that it would be natural to interpret a cross-dependence between the mean
and second moment as a fads effect. Lux (1998) provides a fully worked-out analy-
sis of the interactions between first and second moments in an asset-pricing model with
nonrational speculators, along the lines of our present framework.

Let us return to our particular model of social imitation. Implementing Eq. 3.33, the
exact mean-value dynamics turns out to be determined by the average change of the
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configuration, ax,1:8

dxt
dt

=
∑
x

∑
x′

(x′ − x)wx′xQ(x, t) =
∑
x

ax,1Q(x, t) (3.37)

Since possible movements within an infinitesimal time step are restricted to neighboring
states, x′ − x can only assume values 1

N and − 1
N , so that:

ax,1 =
1
N
w↑(x) + (− 1

N
)w↓(x) (3.38)

Since w↑ and w↓(x) are identical to w↑(n) and w↓(n) in Eq. 3.30, we end up with

ax,1 =
1
N
n−p+− −

1
N
n+p−+

= (1 − x)veαx − (1 − x)ve−αx (3.39)

Using the hyperbolic trigonometric functions, this can be rewritten as

ax,1 = 2v{tanh(αx) − x} cosh(αx) (3.40)

The exact mean value equation is thus:

dx̄t
dt

=
∑
x

2v{tanh(αx) − x} cosh(αx)Q(x; t) (3.41)

Its first-order Taylor series approximation around x̄t leads to the self-consistent
differential equation:

dx̄t
dt

= 2v{tanh(αx̄) − x̄} cosh(αx̄) (3.42)

while the second-order approximation involves a correction factor due to fluctuations
around the mean:

dx̄t
dt

= 2v{tanh(αx̄) − x̄} cosh(αx̄) +

v{(α2 − 2α) sinh(αx̄) − x̄α cosh(αx̄)}σ2
x (3.43)

which already reveals a rich nonlinear structure of interactions between first and second
moments. Note that σ2

x is time-changing as well. Approximating the dynamic law (3.36)
for σ2

x to first order, one would arrive at an equation that also depends on both the first

8Using wx′x as a shorthand notation for limΔt→0
w(x′ ,t+Δt|x,t)

Δt .
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and second moments, x̄t and σ2
x. Combining the second-order approximations of the

first moment and the first-order approximation of the second moment would, thus, lead
to a self-consistent system of two (highly nonlinear) first-order differential equations.

We proceed by investigating the properties of the first-order approximation,
Eq. 3.42. Since cosh(·) > 0 for all x, the condition for a steady state of the mean value
dynamics is

dx̄t
dt

= 0 ⇔ x̄∗ = tanh(αx̄∗) (3.44)

Since tanh(.) is bounded between −1 and 1 and its local slope at 0 is equal to 1, we
arrive at the following insights concerning the equilibria of the system:

• α ≤ 1 implies existence of a stable, unique equilibrium x∗0 = 0.

• α > 1 gives rise to multiple equilibria, x̄∗−, x̄∗0, x̄∗+ with x̄∗+ = −x̄∗− > 0, of which the
outer ones are stable and the middle one, x̄∗0, is unstable (see Figure 3.6).

The bifurcation from a unique steady state to multiple steady states shows that the
interaction intensity needs to surpass a certain critical value for a “polarized” state to
emerge. If interaction is weak (α ≤ 1), the system would fluctuate around a balanced
state with, on average and in expectation, as many optimistic as pessimistic agents.
Beyond the critical value (α > 1), however, a snowball-like process of infection would
result in the emergence of either a majority of + or − agents. Note that the level of the
majority x∗± depends on the intensity α (see Figure 3.6). Multiplicity of equilibria of
the mean-value dynamics corresponds to bimodality of the stationary distribution. The
steady states x∗± correspond to the two modes of the distribution, whereas the unstable
steady state x∗0 is identical to the antimode, that is, the local minimum of the stationary
distribution.

In the bimodal case the dynamics of the probability distribution would switch from
a concentration around the initial state to a bimodal shape according to the two equally
likely paths the system could take in the medium and long run. Figure 3.7 shows an
example of such a transient density simulated via numerical integration of an approxi-
mation to the Master equation (the so-called Fokker-Planck equation). In contrast to the
complete characterization of the stochastic process via its transient density, the mean-
value dynamics would “only” indicate the most likely path leading to the nearby mode
x∗+ or x∗−. This quasi-deterministic approximation would, therefore, neglect possible
recurrent switches between x∗+ and x∗− due to stochastic fluctuations.

If we interpret our social dynamics as a formalization of a fads process in our asset
market, the agents could be viewed as noise traders switching between bullish and bear-
ish disposition. How much this fads component influences the asset price would, then,
depend on the intensity of interaction: With α small, no dominating majority opinion
would emerge among the noise traders, and their influence would be minor because the
irrational influences would cancel each other out in the aggregate. (In fact, if both the
optimistic and pessimistic noise traders would have the same order volume, average
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FIGURE 3.6 Two cases of the social dynamics with mean-field effect. If the interaction intensity is weak (α = 0.8), minor
fluctuations around a balanced disposition among the population occur, while a majority of + or − agents emerges with strong
interactions (e.g., for α = 1.2). The bifurcation is similar to the one in Kirman’s model, but there is no tendency to totally uniform
behavior.

excess demand of the irrational agents would be equal to zero.) On the contrary, if
interaction is strong, one would observe more coherence among the noise traders’ activ-
ities, leading to a dominance of either optimists or pessimists at any point in time. The
resulting dominance of either buyers or sellers would presumably lead to price changes
away from some rationally determined fundamental value. The next section concretizes
these thoughts by embedding our model of social imitation into a simple asset-pricing
model along the lines of Beja and Goldman (1980).

An Asset-Pricing Model with Social Interactions

In this application, we interpret the former + and − groups as bullish and bearish
speculators who are influenced by herd effects together with observed price changes.
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FIGURE 3.7 Example of a transient density computed via numerical integration of the Fokker-Planck
equation. Parameters are α = 1.2, v = 4, and N = 50. From a deterministic initial condition, x0 = 0, the sys-
tem is seen to converge toward the known bimodal stationary distribution over time. (The time horizon shown
is T = 2 unit time intervals.)

Therefore, their transition rates include two terms:

p+− = ν exp
(
α1x +

α2

ν
P ′(t)

)
(3.45)

p−+ = ν exp
(
−α1x −

α2

ν
P ′(t)

)
(3.46)

where the price change P ′(t) reinforces or weakens the herding tendency, depending
on whether its sign is in harmony or not with a bullish (bearish) attitude.9 Following
the lines of our previous derivations, we can establish the mean value dynamics for the

9Division by ν of the second term is for technical reasons: An agent considers the price change during the
mean time interval between switches between groups (which is ν−1).
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opinion index for the average bullish or bearish market sentiment (which is pretty close
in its structure to some published indices of investor sentiment10):

dx̄t
dt

= 2ν
{

tanh
(
α1x̄t +

α2

ν
P ′(t)

)
− x̄t

}
cosh(α1x̄t +

α2

ν
P ′(t)) (3.47)

To close the model, we must add a hypothesis for price adjustment. A simple pos-
sibility is Walrasian price adjustment in reaction to excess demand (ED) with a certain
adjustment speed β:

P ′(t) =
dP

dt
= βED (3.48)

Following Beja and Goldman (1980), excess demand in our financial market could
be decomposed into two components: excess demand by chartists (EDc) and excess
demand by fundamentalist traders (EDf ).

The chartists might be just those whom we have classified as bullish or bearish in
the agent-based component of the model. If chartists have a trading volume tc (per
inidividual), this amounts to:

EDc = (n+ − n−)tc = 2Nxtc = xTc with Tc = 2Ntc (3.49)

following the definition of the opinion index x = n+−n−
2N . Fundamentalists, in contrast,

will have their excess demand depending on the difference between the perceived
fundamental value Pf and the current market price:

EDf = Tf (Pf − Pt) (3.50)

with Tf the proportional trading volume of fundamentalists. Putting both components
together, we arrive at the price adjustment equation:11

dPt
dt

= β(xtTc + Tf (Pf − Pt)) (3.51)

Eqs. 3.47 and 3.51 formalize our interdependent dynamic system in which the group
dynamics influence the price dynamics and the price development feeds back on investor
sentiment.

In studying the resulting system, we might first explore the question of existence
and uniqueness or multiplicity of equilibria. Steady states of the joint opinion and price

10In the United States, the popular sentiment data compiled by the American Association for Individual
Investors (AAII) as well as those of Investors Intelligence (II) have this structure.
11The price equation could in principle also be formalized as a Poisson process, with transition probabilities
for price changes in upward and downward direction (see Lux, 1997).
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dynamics require dx̄t
dt = dPt

dt = 0. Since this implies that the new second component of
the herding probabilities is zero in any steady state, we arrive at the joint condition:

dx̄t
dt

=
dPt
dt

= 0 =⇒ tanh(α1xt) = xt and P ∗t =
Tc
Tf
x + Pf (3.52)

Inspection reveals the following:

1. For α1 ≤ 1 we have a unique equilibrium x∗0, together with P ∗t = Pf .

2. For α > 1 we encounter the two majority equilibria x∗+ and x∗− (now bullish and
bearish majorities), with pertinent prices P ∗± = Tc

Tf
x∗± + Pf .

Hence, if herding is weak (Case 1) the price converges to the fundamental value (on
average); if herding is strong (Case 2), the equilibrium price comes along with an
overvaluation or undervaluation of the asset compared to its fundamentals.

However, there are additional possibilities in this more complex system: Both x∗0 and

the majority states x∗± could be unstable (stability conditions are more involved than
in the one-dimensional case). In such a scenario the market performs almost regular
cycles between overvaluation and undervaluation accompanied by investor sentiment
oscillating between bullish and bearish majorities (see Figure 3.8). Expanding our
methodology to the 2D case, we could also characterize the fluctuations in different
market phases via the variance dynamics and the time development of the covariance
between P and x (see Lux, 1997).

Realistic Dynamics and the “Stylized Facts”

Of course, neither stationary bubbles nor persistent cycles are realistic scenarios for
financial markets.12 One obvious criticism is that agents maintain their potentially
unprofitable strategies forever without learning from past experience. This criticism
could be faced by allowing agents to adapt to their environment using some learning
or artificial intelligence algorithm for the choice and adaptation of their strategies.

We reviewed some of the contributions in this vein in Section 3.4.1. Here we adopt
a very simple mechanism to slightly increase the degree of smartness of our agents.
Following Lux and Marchesi (1999, 2000), we allow agents to switch between the
fundamentalist and chartist (or noise trader) strategy on the basis of a rough measure
of their supposed profitability. As will be seen, this slight extension suffices to remove
predictability of market movements to a large degree and also leads to simulated
asset prices that share the ubiquitous stylized facts or scaling laws of empirical data.
We will argue later that this example might also serve to reveal a general mechanism for

12The second part of this statement needs some modification: Note that a cycle in mean values will appear
more or less blurred in single realizations of the stochastic process. This distortion might go as far as to leave
no apparent trace of cyclical dynamics. Lux and Schornstein (2005) investigate a more complicated model of
a foreign exchange market with agents using genetic algorithms to evolve their strategies. Simulations of this
model look extremely realistic in terms of returns and their statistical properties. Nevertheless, an analysis
of the mean-value dynamics reveals a clear cyclical tendency of the underlying dynamics that becomes fully
visible only with a very large population of traders.
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FIGURE 3.8a The case of symmetric “bubble” equilibria: the system tends toward (x∗+,P ∗+) or (x∗−,P ∗−)
but also switches occasionally between phases with overvaluation and undervaluation. Parameters are
ν = 0.5, β = 1, Tc = Tf = 0.5,Pf = 10, α1 = 1.2, α2 = 0.75, and N = 100. The broken and solid lines
demarcate the isoclines, P ′(t) = 0 and x′(t) = 0, respectively. Their intersections define the equilibria of the
system of differential Eqs. (3.47) and (3.48).

generating realistic behavior that could also be identified in some alternative models. The
new ingredient of switches between noise traders and fundamentalists is introduced via
exponential transition probabilities along the lines of Eqs. 3.45 and 3.46. Formally, four
new Poisson transition rates have to be introduced for the propensity of fundamentalists
to switch to the optimistic (pessimistic) noise trader camp and vice versa:

p+f = v2
n+
2N

exp(U2,1)

pf+ = v2
nf

2N
exp(−U2,1)
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FIGURE 3.8b The case of cyclical variation between bullish and bearish phases. Parameters as before
except for α1 = 1.1 and α2 = 0.95.

p−f = v2
n−
2N

exp(U2,2)

pf− = v2
nf

2N
exp(−U2,2)

The forcing functions U2,1 and U2,2 depend on the difference between the momen-
tary profits earned by noise traders and fundamentalists, respectively. We specify these
functions as

U2,1 = α3

{
r + 1

v2

dPt
dt

Pt
− R − s|Pf − Pt

Pt
|
}

(3.53)
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U2,2 = α3

{
R −

r + 1
v2

dPt
dt

Pt
− s|Pf − Pt

Pt
|
}

(3.54)

The first term of both functions represents the current profit of noise traders from the
optimistic and pessimistic camps, respectively. The second term is the expected profit of
fundamentalists after reversal to the fundamental value. Excess profits of the optimistic
chartists consist of nominal dividends (r) and capital gains (dPt/dt). Division by the
actual market price (Pt) yields the revenue per unit of the asset. Subtracting the average
real returns of alternative investments (or safe interest rate R) gives excess returns.
Pessimistic noise traders, in contrast, leave the market so that their excess profits consist
of the alternative return R minus the sum of forgone dividends plus capital gains of
the pertinent stock. It is somewhat more difficult to come up with a formalization of
fundamentalists’ profits.

Fundamental activity is based on a perceived discrepancy between the market price
and the fundamental value Pt �= Pf . Profits from the pertinent traders are, however,
expected profits only and will be materialized only if the stock price will have reverted
toward its fundamental value. Because of the time needed for a reversal toward fun-
damental valuation and the potential uncertainty of this reversal, expected profits by
fundamentalists have to be discounted by a factor s < 1. Otherwise, we treat funda-
mentalist speculation in periods of overvaluation and undervaluation symmetrically by
computing the expected gain per unit of the asset as |Pf−PtPt

|. Note that the fundamen-
talists’ profits did not contain dividends: This negligence is due to the assumption that
they use the long-run expected asset price Pf for computing real dividends and that
r/Pf = R; that is, (risk-adjusted) dividends are the same for alternative investments if
the price is equal to its fundamental value.

This new component endogenizes the fraction of chartists and fundamentalists,
which necessitates some adjustment in the x − P dynamics as well. In particular, the
opinion index x now refers to the numbers of optimists and pessimists within the
noise trader group, whose overall population is also changing over time, x = n+−n−

nc
.

Furthermore, the formalization of excess demand has to take into account the changing
numbers of noise traders and fundamentalists as well. Denoting by z the fraction of
noise traders, z = nc

2N , we modify Eq. 3.51 accordingly:

dPt
dt

= β(EDc + EDf ) = β(xt zt Tc + (1 − zt)Tf (Pf − Pt)) (3.55)

Investigating the overall mean-value dynamics, the system evolution can be character-
ized by the time change of the expectations of x, z, and p. We restrict ourselves here
to reporting the main results for the pertinent system of three differential equations. As
detailed in Lux and Marchesi (2000), for this quasi-deterministic system the following
characterization of its steady states can be obtained:

• There are three types of steady state:

(i) x∗t = 0,P ∗t = Pf with arbitrary zt

(ii) x∗t = 0, z∗t = 1 with arbitrary Pt
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(iii) z∗t = 0, P ∗t = Pf with arbitrary xt

• No steady states exist with both x∗t �= 0 and P ∗t �= Pf

The second result indicates that the additional assumption of switching between
strategies due to profit differentials prevents emergence of stationary bubbles. Quite
obviously, such lasting situations of overvaluation or undervaluation would give rise to
differences in profits between groups so that they could not persist any more.

The first part of the results indicates the types of equilibria that would be admitted
under flexible strategy choice; there could be either a price equal to its fundamental
value (on average) together with a balanced disposition of noise traders and an arbitrary
composition of the overall population with respect to noise traders and fundamentalist
strategy (i), there could be a dominance of noise traders (z∗t = 1) with an arbitrary price
development (ii), or there could be a dominance of fundamentalists with Pt again equal
to Pf on average (iii). All three categories are continua of equilibria rather than isolated
fixed points, since there is one “free” variable. The more interesting of these possibilities
is (i), whereas (ii) and (iii) are relatively uninteresting so-called absorbing states whose
existence is difficult to avoid in a population dynamic (if one group dies out by chance,
it has no way to get into existence again).

Inspecting Type i equilibria, their most interesting feature is the indeterminateness
of the composition of the population (i.e., of z). After some reflection, this outcome
seems quite natural: If agents are allowed to switch between strategies, then in an equi-
librium none of the surviving strategies should have a higher pay-off than others. This
is the case in our model almost by definition of a steady state: If there are no longer
any price changes and the price is equal to its fundamental value, both the noise traders
and fundamentalists would report excess profits equal to zero. Switching between sub-
groups would then occur unsystematically, leading to permanent changes of z along the
continuum of steady states due to the stochastic elements of our process.

The set of results obtained for the mean-value dynamics of the extended model
appears to indicate that the slight steps toward more rationality of agents represented
in Eqs. 3.53 and 3.54 weed out the weird cyclical and bubble processes of the simpler
model presented in the previous section. In any case, the interesting equilibria are char-
acterized by a price fluctuating around its fundamental value and a balanced disposition
of noise traders, that is, no more buildup of coherent optimistic or pessimistic majorities.
A glance at the stability properties of these equilibria adds some additional insights.

As shown in Lux and Marchesi (2000), an equilibrium along the line
(
x∗t = 0,

P ∗t = Pf , z
)

is unstable13 if

2zv1

(
α1 + α2

β

v1
zTc − 1

)
+ 2(1 − z)α3βzTc/Pf − β(1 − z)Tf > 0 (3.56)

13Since we have a continuum rather than isolated fixed points, it is more convenient to express the stability
properties in terms of conditions for instability rather than for stability.
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or

α1>1 + α3
v2TcR

v1TfPf
(3.57)

holds. The most interesting aspect of these results is that Eq. 3.56 defines a region
z ∈ [0, z] in which the dynamics reverts to the continuum after disturbances, while for
z beyond the threshold value z the dynamic becomes unstable. Since the stochastic
components lead to ongoing changes of z along the continuum of equilibria, the system
might wander from time to time from the subset of stable equilibria (z < z) to that with
repelling dynamics. The instability in the region z > z is due to the strong reaction on
price changes in a population dominated by noise traders. Figure 3.9 shows that stronger
fluctuations set in if the system is close to or surpasses the threshold z. Apparently these
fluctuations have the appearance of volatility clusters. They hold on for some time but
die out due to inherent stabilizing tendencies that become effective out of equilibrium.
Namely, strong fluctuations lead to relatively large deviations from the fundamental
value, and former noise traders are induced to switch to fundamentalist behavior in
large numbers.

The combination of deterministic and stochastic forces (incorporated in the stochas-
tic formalization of agents’ behavior) leads to repeated switches between turbulent and
tranquil episodes. It is worthwhile to emphasize that despite a certain number of free
behavioral parameters, the qualitative outcome of this process is entirely generic; all
combinations of parameters lead to a continuum of equilibria with stochastic switching
between attractive and repulsive phases.14

As demonstrated in Lux and Marchesi (1999) and Chen, Lux, and Marchesi (2001),
the apparent proximity of simulated returns to empirical records is reflected in the agree-
ment of many important statistics of simulated time series with empirical stylized facts.
In particular, both the scaling laws of large returns and the hyperbolic decay of autocor-
relations of squared and absolute returns are reproduced by the data from this artificial
market, and the pertinent estimates of, for example, tail indices and decay exponents of
autocorrelations of squared and absolute returns are numerically close to their typical
values for empirical data. Switching between strategies also eliminates autocorrelations
in raw returns to a large extent so that the apparent predictability of cyclical ups and
downs of the simpler model of the previous section does not carry over to the extended
framework. The lack of predictability seems plausible since the outbreak of fluctuations
is triggered by the stochastic part of unsystematic population movements in the vicin-
ity of the fundamental equilibrium. As a result, the market appears to be characterized
by speculative efficiency. Allowing for an additional news arrival process, the market
price is found to closely track the fundamental value, albeit with temporary deviations
that manifest themselves in a broader leptokurtotic distribution of returns compared to
changes of the fundamental value.

14The dynamic is also qualitatively similar in the extreme cases where z̄= 0 because stabilizing forces out of
equilibrium still prevail.
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FIGURE 3.9 Example of a simulation of the model of Lux and Marchesi (1999). Parameters are α1 = 0.8, α2 = 1,
α3 = 0.5, v1 = 1, v2 = 0.6, Tc = Tf = 2.5, s = 0.75, and R = 0.0004. The fundamental value has been shifted downward by two
units to provide better visibility. As can be seen, price most closely tracks the fundamental value but shows occasional large
deviations from this benchmark. The development of the fraction of noise traders or chartists in the top diagram in (a) indicates
that large fluctuations of returns and large degrees of mispricing occur if many traders follow the chartist strategy. The broken
line in the top diagram in (b) demarcates the theoretical bifurcation value, z = 0.46 in this case.

Lux and Marchesi (2000) argue that the underlying mechanism of periodic switch-
ing between stable and unstable states due to stochastic forces constitutes a relatively
general scenario to generate realistic ARCH type dynamics. In behavioral models, it
seems natural that an equilibrium will be characterized by an arbitrary mixture of
equally successful strategies and that the stability of such steady states will depend
on the current distribution of strategies among the population. Models with similar
features have been proposed by Giardina and Bouchaud (2003), with a larger set of
strategies, as well as Arifovic and Gencay (2000) and Lux and Schornstein (2005).
The latter have a totally different setup—a two-country general equilibrium model of
the foreign exchange market with agents choosing consumption and interest strate-
gies via genetic algorithms. Despite this very different framework, the dynamics of
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returns seem to be governed by a mechanism similar to that of the previously described
stock market dynamics: There is a continuum of steady states with indeterminateness of
investment decisions (in steady state, the revenue from domestic and foreign assets is
the same), but random deviations from the steady state (brought about by the inherent
randomness of genetic algorithms) destabilize this steady state and lead to the onset of
fluctuations.

The original framework by Lux and Marchesi has recently been extended by Pape
(2007a, b), who reformulates traders’ behavior as position-based trading (in this way
keeping track of their inventories) and adds both a second risky asset and a risk-free
bond. As it turns out, the main mechanisms of the original model are still found to be
at work in this richer setup, leading to similarly realistic simulations. It is worthwhile
to point out that the combination of stochastic and deterministic forces in these models
is also similar to that of Kirman’s population dynamics reviewed in Section 3.4.2. in
that it leads to movements back and forth across a stability threshold of the underlying
deterministic benchmark system.

3.4.4. Lattice Topologies of Agents’ Connections

The models reviewed in Sections 3.4.2 and 3.4.3 are among the first contributions to
allow for social interactions among agents in an economic context. However, they adopt
very different assumptions for the design of their social interactions: Kirman (1993)
allows for pairwise interactions only (after random encounters of agents), whereas Lux
(1995) and Lux and Marchesi (1999) use a mean-field approach. The latter implies that
all agents influence all other agents with the same intensity or, in the language of net-
work theory, that the social interactions are embedded in a fully connected network with
equal weights of its nodes. Although we do not have reliable information on market par-
ticipants’ social networks, both of these alternatives might not be very realistic. Even if a
certain simple topology of interactions might be acceptable for a first approach toward
social influences, one could be concerned about the intensity of social interactions in
relation to the size of the market (the number of agents).

As Egenter et al. (1999) show, stylized facts do vanish in the model of Lux and
Marchesi (1999) if one increases the number of agents while keeping the parameters of
social interactions constant. The reason is that, due to the law of large numbers, fluc-
tuations of noise traders’ moods become more and more moderate with increasing N .
With the opinion index x staying close to its steady-state value x∗ = 0 most of the time,
the emergence of an optimistic or pessimistic majority occurs less often so that the fre-
quency of small price bubbles declines. The intrinsic chartist “information” component
then loses its importance against the fundamental component in Eqs. 3.53 and 3.54 so
that the profit differential works in favor of the fundamentalist strategy. As a conse-
quence, the average fraction of noise traders gets smaller and smaller with increasing N
and the distribution of returns gets closer and closer to the assumed Gaussian distribu-
tion of the news arrival process. Therefore, the “interesting dynamics” with their fat tails
and clustered volatility are a finite size effect and do not survive in the limit N→∞.
Essentially, this is a consequence of the law of large numbers as the market excess
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demand is an aggregate over N Poisson processes for individual traders. Obviously,
the correlation between agents brought about by their social interactions is not strong
enough to undo the effect of aggregation.

With more than about 5000 socially interacting agents, the model converges to
returns following a pure white noise. A similar result is obtained for the very dif-
ferent artificial foreign exchange market with genetically generated strategies in Lux
and Schornstein (2005). As it seems, the genetic operations of selection, recombina-
tion, and mutation also lead to a reduced intensity of interpersonal coupling with an
increasing number of agents so that the dynamics loses its stochastic appearance with
increasing numbers of market participants. Again, interesting and realistic dynamics
are only obtained for markets with up to a few thousand traders. These findings are
disturbing in so far as empirical stylized facts are observed in quite the same way with
practically the same estimated scaling exponents for markets of all sizes. In this sense,
the universality of the empirical records is not reproduced by the preceding stochas-
tic models. On the other hand, the universality of non-Gaussian behavior of all known
financial markets implies that there probably is strong coupling between traders in real
life. With the largest markets having populations on the order of 106 or more mar-
ket participants, the law of large numbers would imply Gaussian behavior if all these
agents would act independently (or with sufficiently weak correlation). The universal
non-Gaussianity, then, appears to indicate that financial markets have a typical number
of effectively independent agents that is much smaller than their nominal number of
market participants.

The challenge for models of social interactions, therefore, would be to come up with
an explanation of this lack of sensitivity with respect to system size. Alfarano, Lux, and
Wagner (2008) discuss this problem for a variant of Kirman’s ant model. They show that
if the frequency of pairwise encounters increases linearly with the number of agents, the
resulting dynamic remains qualitatively the same for any number N of agents. In con-
trast, if the frequency of encounters is kept constant, the system converges to a Gaussian
limit with increasing N . Quite similar to the experiments of Egenter et al. (1999),
the relative importance of the herding component against the autonomous switching
propensity declines if one does not adjust the former to the system size. The intensity
of interpersonal coupling is only preserved in this model if the frequency of pairwise
exchange increases with the number of potential partners for exchange.15 Certainly, an
ever-increasing probability of pairwise exchange is somewhat difficult to digest in its
literal interpretation.

Departing from the extremes of either pairwise interactions or fully connected social
systems, network topologies of agents’ social interactions might be a promising avenue
to explore the way the intensity of social coupling might plausibly change with system
size. Alfarano and Milaković (2007) modify the ant model by replacing pair interactions
with neighborhood effects within various network topologies. Increasing the number of
agents but keeping the parameters of the network-generating mechanism fixed, they note

15Finite-size effects in alternative models of opinion formation are investigated in Toral and Tessone (2007).
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that most popular network designs (regular, scale-free, and “small-world” networks)
cannot overcome the N dependency within their generating mechanism, that is, with-
out adapting crucial parameters. The only case in which the generating mechanism
keeps the intensity of communication constant for varying numbers of agents by the
very nature of its construction is the random network. Although these results sound
somewhat disappointing, they have so far only focused on the mechanical structure of
various topologies. Incentives of agents to form links could lead to changes of the con-
nectivity with system size, which remains to be investigated. Interestingly, Alfarano and
Milaković (2007) also show that allowing for a small number of independent agents
who only influence others without being prone to social influences themselves (uni-
lateral links) changes the outcome and allows for prevalence of interesting dynamics,
whatever the number of herding agents (see also Schmalz, 2007).

A different type of network structure has been used in a related paper by Cont and
Bouchaud (2000). Essentially, their contribution is an adaptation of the seminal perco-
lation model from statistical physics. In this framework, agents are situated on a lattice
with periodic boundary conditions. Each site of this lattice might initially be “occupied”
with a certain probability p or empty with probability 1 − p. Groups of occupied neigh-
boring states form clusters. In Cont and Bouchaud (2000), occupied sites are traders
and clusters are subsets of synchronized trading behavior (i.e., all members of a cluster
are buyers or sellers or remain inactive). The type of activity of a cluster is determined
via random draws. The market price is again driven by an auctioneer equation depend-
ing on excess demand over all clusters. Since the underlying formal structure has been
extensively studied in physics, certain known results for the cluster size distribution can
be evoked, and due to the simple link between cluster distribution and price changes,
these known results also carry over to returns. In particular, both distributions will fol-
low a power law if the probability for the connection of lattice sites is close to a critical
value, the so-called percolation threshold. However, the power law is characterized by
an exponent 1.5, in contrast to the empirical law with decay rate ∼3. In the baseline
version of the model, higher moments are uncorrelated so that the percolation model
could not explain volatility clustering, either.

Despite (or because of ) these deficits, the framework of Cont and Bouchaud has
spawned a sizable literature (mostly published in physics periodicals) that tries to get
its time series characteristics closer to empirical scaling laws. Interesting extensions of
the original model include Stauffer et al. (1999) and Eguiluz and Zimmerman (2000),
who generate autocorrelations in higher moments via sluggish changes of cluster con-
figurations. In view of the previous discussion, it is worthwhile to note that the critical
connection probability at the percolation threshold is N dependent and, therefore, has
to be adjusted with system size to guarantee a power-law distribution of the clusters.

More realistic time series are obtained in some alternative lattice models: Iori (2002)
considers an Ising-type model with interactions restricted to nearest neighbors, whereas
Bartolozzi and Thomas (2004) propose a cellular automaton structure with a similar
neighborhood structure. In both models, realistic time series seem to be a robust out-
come without the need for fine-tuning certain parameter values. However, due to the
complexity of these structures, it is hard to single out the key features of these models
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that are responsible for the interesting dynamics. It is unknown so far whether the
realistic features of those models will persist for large populations of traders or not.

3.5. CONCLUSION

This chapter reviewed recent models that try to explain the characteristics of finan-
cial markets as emergent properties of interactions and dispersed activities of a large
ensemble of agents populating the marketplace. This view has a certain tradition start-
ing in the early 1990s (or even earlier if one includes contributions of the 1970s, such
as Zeeman’s, 1974) when chaotic processes based on simple behavioral assumptions
have been proposed as an explanation of the apparent randomness of financial data.
As it turned out in subsequent research, market statistics are in all likelihood more
“complex” than data from low-dimensional chaotic attractors and seem to be character-
ized by an intricate mixture of randomness and nonlinear structure in higher moments.
The most pervasive characteristics of the particular stochastic nature of financial mar-
kets are the power laws for large returns and autocorrelations of volatility. Similar
systemwide features are the typical imprints of large systems of interacting subunits
in the natural sciences.

Inspired by these analogies, some recent models have proposed simple structures
that could reproduce the empirical findings to a high degree with statistics that are
even quantitatively close to empirical ones. This appears the more remarkable since
“mainstream” theory has offered hardly any hint at the generating forces behind the
stylized facts, let alone models with precise numerical predictions. Offering expla-
nations for hitherto unexplained observations is typically what characterizes a new,
superior paradigm. This new view also opens the stage for entirely new avenues of
research and questions that could not even have been formulated before. Among these
questions, the most important task for future research might be the explanation of the
universal preasymptotic behavior of financial markets, that is, the answer to the ques-
tion of why they are not subject to the law of large numbers (as they should be, if they
were populated by independent agents).

From the viewpoint of mainstream finance, it might be a perplexing experience to
see some basic stylized facts explained by models that have hardly anything in common
with a traditional representative-agent approach. However, what these models offer are
simply those ingredients that critics of the mainstream have been emphasizing for a
long time. As a prominent example, Kindleberger (1989) has stressed the importance
of psychological factors and irrational behavior in explaining historical financial crises.
In fact, recent microstructure literature has allowed for irrational components such as
overconfidence or framing (e.g., Daniel et al., 1998; Barberis and Huang, 2001), with
highly interesting results. The analysis of certain types of nonrational behavior and its
consequences might explain important facets of reality, but an explanation of the overall
characteristics of the market might require a different approach.

Proponents of mainstream finance have, in fact, criticized the lack of a unifying
framework in the behavioral finance literature. Most notably, Fama (1998) pointed out
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that a variety of psychological biases could be used to explain various anomalies but
that behavioral finance models were unable to explain the “big picture” and to capture
the “menu of anomalies better than market efficiency” (Fama, 1998, p. 241). Though
stochastic models of interacting agents have so far not focused on overreaction and
other return anomalies, they appear to be able to provide generic explanations for the
“deeper” anomalies of fat tails and volatility clustering. Although they are mostly not
micro-based in the sense of featuring utility maximization or alternative psychological
decision mechanisms, they might provide a broader macroscopic picture of emergent
properties of microeconomic interaction embedding the wide spectrum of diverse devi-
ations from perfect rationality at the micro level. Since we probably encounter a wide
variety of trading motives, strategies, and degrees of (non-)rationality and (lack of)
foresight among agents, a stochastic approach might be required to compensate for
our ignorance of the microscopic details. This is the starting point of the preceding
models. The present stochastic approach could, therefore, be seen as complementary
to the focus of the previous strands of the behavioral finance literature on particular
behavioral observations in that it tries to infer macroscopic regularities via a simple rep-
resentation of the diverse collection of the boundedly rational behaviorial types in real
markets.
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Abstract

Traditional finance is built on the rationality paradigm. This chapter discusses simple
models from an alternative approach in which financial markets are viewed as complex
evolutionary systems. Agents are boundedly rational and base their investment decisions
on market-forecasting heuristics. Prices and beliefs about future prices co-evolve over
time with mutual feedback. Strategy choice is driven by evolutionary selection so that
agents tend to adopt strategies that were successful in the past. Calibration of “simple
complexity models” with heterogeneous expectations to real financial market data and
laboratory experiments with human subjects are also discussed.

Keywords: stylized facts, power laws, agent-based models, interacting agents

4.1. INTRODUCTION

Finance is witnessing important changes, according to some even a paradigmatic shift,
from the traditional, neoclassical mathematical modeling approach based on a rep-
resentative, fully rational agent and perfectly efficient markets (Muth, 1961; Lucas,
1971; Fama, 1970) to a behavioral approach based on computational models where
markets are viewed as complex evolving systems with many interacting, “boundedly
rational” agents using simple “rule of thumb” trading strategies (e.g., Anderson et al.,
1988; Brock, 1993; Arthur, 1995; Arthur et al., 1997a; Tesfatsion and Judd, 2006).
Investor’s psychology plays a key role in behavioral finance, and different types of
psychology-based trading and behavioral modes have been identified in the literature,
such as positive feedback or momentum trading, trend extrapolation, noise trading, over-
confidence, overreaction, optimistic or pessimistic traders, upward- or downward-biased
traders, correlated imperfect rational trades, overshooting, contrarian strategies, and so
on. Some key references dealing with various aspects of investor psychology include,
for example, Cutler et al. (1989), DeBondt and Thaler (1985), DeLong et al. (1990a,b),
Brock and Hommes (1997, 1998), Gervais and Odean (2001), and Hong and Stein
(1999, 2003), among others—see, for example, Shleifer (2000), Hirschleifer (2001),
and Barberis and Thaler (2003) for extensive surveys and many more references on
behavioral finance.

An important problem of a behavioral approach is that it leaves “many degrees of
freedom.” There are many ways individual agents can deviate from full rationality. Evo-
lutionary selection based on relative performance is one plausible way to discipline
the “wilderness of bounded rationality.” Milton Friedman (1953) argued that
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nonrational agents will not survive evolutionary competition and will therefore be driven
out of the market, thus providing support to a representative rational agent framework
as a (long run) description of the economy. In the same spirit, Alchian (1950) argued
that biological evolution and natural selection driven by realized profits may elimi-
nate nonrational, nonoptimizing firms and lead to a market in which rational, profit
maximizing firms dominate. Blume and Easley (1992, 2006) have, however, shown
that the market selection hypothesis does not always hold and that nonrational agents
may survive in the market. Brock (1993, 1997), Arthur et al. (1997b), LeBaron et al.
(1999), and Farmer (2002), among others, introduced artificial stock markets, described
by agent-based models with evolutionary selection between many different interacting
trading strategies. They showed that the market does not generally select for the ratio-
nal, fundamental strategy and that simple technical trading strategies may survive in
artificial markets. Computationally oriented agent-based simulation models have been
reviewed in LeBaron (2006); see also the special issue of the Journal of Mathemati-
cal Economics (Hens and Schenk-Hoppé, 2005) and the survey chapter of Evstigneev,
Hens, and Schenk-Hoppé (2009) in this book for an overview of evolutionary
finance.1

Stimulated by work on artificial markets, in the last decade quite a number of “simple
complexity models” have been introduced. Markets are viewed as evolutionary adaptive
systems with boundedly rational interacting agents, but the models are simple enough to
be at least partly analytically tractable. The study of simple complexity models typically
requires a well-balanced mixture of analytical and computational tools. This literature
is surveyed in Hommes (2006) and Chiarella et al. (2009); see also Lux (2009), who
discusses in detail how well models with interacting agents match important stylized
facts such as fat tails in the returns distribution and long memory. Without repeating
an extensive survey, this chapter focuses on a number of simple examples, in particular
the adaptive belief systems (ABSs) of Brock and Hommes (1997, 1998). These models
serve as didactic examples of nonlinear dynamic asset-pricing models with evolutionary
strategy switching, and they illustrate some of the key features present in the interacting
agents literature. The model also has been used to test the relevance of the theory of het-
erogeneous expectations empirically as well as in laboratory experiments with human
subjects. Simple complexity models may also be used by practitioners or policy makers.
To illustrate this point, we present an example showing how such a model can be used
to evaluate how likely it is that a stock market bubble will resume.

Two important features of the ABS are that agents are boundedly rational and that
they have heterogeneous expectations. An ABS is in fact a standard discounted value
asset-pricing model derived from mean-variance maximization, extended to the case
of heterogeneous beliefs. Two classes of investors that are also observed in financial
practice can be distinguished: fundamentalists and technical analysts. Fundamentalists
base their forecasts of future prices and returns on economic fundamentals, such as
dividends, interest rates, price-earning ratios, and so on. In contrast, technical analysts
are looking for patterns in past prices and base their forecasts upon extrapolation of

1Some other recent references are Amir et al. (2005) and Evstigneev et al. (2002, 2008).
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these patterns. Fractions of these two types of traders are time varying and depend on
relative performance. Strategy choice is thus based on evolutionary selection or rein-
forcement learning, with agents switching to more successful (i.e., profitable) rules.
Asset price fluctuations are characterized by irregular switching between a stable phase
when fundamentalists dominate the market and an unstable phase when trend followers
dominate and asset prices deviate from benchmark fundamentals. Price deviations from
the rational expectations fundamental benchmark and excess volatility are triggered by
news about economic fundamentals but may be amplified by evolutionary selection,
based on recent performance, of trend-following strategies.

There is empirical evidence that experience-based reinforcement learning plays an
important role in investment decisions in real markets. For example, Ippolito (1992),
Chevalier and Ellison (1997), Sirri and Tufano (1998), Rockinger (1996), and Karceski
(2002) show for mutual funds data that money flows into past good performers while
flowing out of past poor performers and that performance persists on a short-term basis.
Pension funds are less extreme in picking good performance but are tougher on bad
performers (Del Guercio and Tkac, 2002). Benartzi and Thaler (2007) have shown that
heuristics and biases play a significant role in retirement savings decisions. For example,
using data from Vanguard, they show that the equity allocation of new participants rose
from 58% in 1992 to 74% in 2000, following a strong rise in stock prices in the late
1990s; however, it dropped back to 54% in 2002, following the extreme fall in stock
prices.

Laboratory experiments with human subjects have shown that individuals often do
not behave fully rationally but tend to use heuristics, possibly biased, in making eco-
nomic decisions under uncertainty (Kahneman and Tversky, 1973). In a similar vein,
Smith et al. (1998) have shown the occurrence of bubbles and the ease with which
markets deviate from full rationality in asset-pricing laboratory experiments. These
bubbles occur despite the fact that participants had sufficient information to compute
the fundamental value of the asset. Laboratory experiments with human subjects pro-
vide an important tool to investigate which behavioral rules play a significant role in
deviations from the rational benchmark, and they can thus help discipline the class of
behavioral modes. Duffy (2008) gives a stimulating recent overview concerning the role
of laboratory experiments to explain macro phenomena.

Heterogeneity in forecasting future asset prices is supported by evidence from sur-
vey data. For example, Vissing-Jorgensen (2003) reports that at the beginning of 2000,
50% of individual investors considered the stock market to be overvalued, approxi-
mately 25% believed that it was fairly valued, about 15% were unsure, and less than
10% believed that it was undervalued. This is an indication of heterogeneous beliefs
among individual investors about the prospect of the stock market. Similarly, Shiller
(2000) finds evidence that investors’ sentiment varies over time. Both institutional and
individual investors become more optimistic in response to significant increases in the
recent performance of the stock market.

This chapter is organized as follows. Section 4.2 introduces the main features of
adaptive belief systems, and Section 4.3 discusses a number of simple examples with
two, three, and four different trader types. In Section 4.4 an analytical framework with
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many different trader types is presented. Section 4.5 discusses the empirical relevance
of behavioral heterogeneity. The estimation of a simple model with fundamentalists
and chartists on yearly S&P 500 data shows how the worldwide stock market bubble
in the late 1990s, triggered by good news about fundamentals (a new Internet tech-
nology), may have been strongly amplified by trend-following strategies. Section 4.6
reviews some learning to forecast laboratory experiments with human subjects, investi-
gating which individual forecasting rules agents may use, how these rules interact, and
which aggregate outcome they cocreate. Section 4.7 concludes the chapter, sketching
some challenges for future research and potential applications for financial practitioners
and policy makers. An appendix contains a short mathematical overview of bifurcation
theory, which plays a role in the transition to complicated price fluctuations in the simple
complexity models discussed in this chapter.

4.2. AN ASSET-PRICING MODEL WITH HETEROGENEOUS
BELIEFS

This section discusses the asset-pricing model with heterogeneous beliefs as introduced
in Brock and Hommes (1998), using evolutionary selection of expectations as in Brock
and Hommes (1997a). This simple modeling framework has been inspired by compu-
tational work at the Santa Fe Institute (SFI) and may be viewed as a simple, partly
analytically tractable version of the more complicated SFI artificial stock market of
Arthur et al. (1997b).

Agents can invest in either a risk-free asset or a risky asset. The risk-free asset is in
perfect elastic supply and pays a fixed rate of return r; the risky asset pays an uncer-
tain dividend. Let pt be the price per share (ex-dividend) of the risky asset at time t,
and let yt be the stochastic dividend process of the risky asset. Wealth dynamics is
given by

Wt+1 = RWt + (pt+1 + yt+1 − Rpt)zt (4.1)

where R = 1 + r is the gross rate of risk-free return and zt denotes the number of shares
of the risky asset purchased at date t. Let Eht and Vht denote the “beliefs” or forecasts
of trader type h about conditional expectation and conditional variance.

Agents are assumed to be myopic mean-variance maximizers so that the demand zht
of type h for the risky asset solves

Maxzt{Eht[Wt+1] − a

2
Vht[Wt+1]} (4.2)

where a is the risk-aversion parameter. The demand zht for risky assets by trader type h
is then

zht =
Eht[pt+1 + yt+1 − Rpt]
aVht[pt+1 + yt+1 − Rpt]

=
Eht[pt+1 + yt+1 − Rpt]

aσ2
(4.3)
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where the conditional variance Vht = σ2 is assumed to be constant and equal for all
types.2 Let zs denote the supply of outside risky shares per investor, also assumed to be
constant, and let nht denote the fraction of type h at date t. Equilibrium of demand and
supply yields

H∑
h=1

nht
Eht[pt+1 + yt+1 − Rpt]

aσ2
= zs (4.4)

where H is the number of different trader types.
The forecasts Eht[pt+1 + yt+1] of tomorrow’s prices and dividends are made before

the equilibrium price pt has been revealed by the market and therefore will depend on a
publically available information set It−1 = {pt−1, pt−2, . . .; yt−1, yt−2, . . .} of past prices
and dividends. Solving the heterogeneous market-clearing equation for the equilibrium
price gives

Rpt =
H∑
h= 1

nhtEht[pt+1 + yt+1] − aσ2zs (4.5)

The quantity aσ2zs may be interpreted as a risk premium for traders to hold risky assets.

4.2.1. The Fundamental Benchmark with Rational Agents

When all agents are identical and expectations are homogeneous, the equilibrium pricing
Eq. 4.5 reduces to

Rpt = Et[pt+1 + yt+1] − aσ2zs (4.6)

where Et is the common conditional expectation in the beginning of period t. It is well
known that, assuming that a transversality condition limt→∞(Et[pt+k])/Rk = 0 holds,
the price of the risky asset is given by the discounted sum of expected future dividends
minus the risk premium:

p∗t =
∞∑
k=1

Et[yt+k] − aσ2zs

Rk
(4.7)

The price p∗t in Eq. 4.7 is called the fundamental rational expectations price, or the
fundamental price for short. It is completely determined by economic fundamentals,
which are here given by the stochastic dividend process yt. In this section we focus on
the case of an independently identically distributed (IID) dividend process yt, but the
estimation of the simple two-type model discussed in Section 4.5 uses a nonstationary
dividend process.3 For the special case of an IID dividend process yt, with constant

2Gaunersdorfer (2000) investigates the case with time-varying beliefs about variances and shows that the asset
price dynamics are quite similar. Chiarella and He (2002, 2003) investigate the model with heterogeneous
risk-aversion coefficients.
3Brock and Hommes (1997b) also discuss a nonstationary example, in which the dividend process follows a
geometric random walk.
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mean E[yt] = ȳ, the fundamental price is constant:

p∗ =
∞∑
k=1

ȳ − aσ2zs

Rk
=
ȳ − aσ2zs

r
(4.8)

Recall that, in addition to the rational expectations fundamental solution in Eq. 4.7,
so-called rational bubble solutions of the form pt = p∗t + (1 + r)t(p0 − p∗0) also satisfy
the pricing Eq. 4.6. Along these bubble solutions, traders have rational expectations
(perfect foresight), but they are ruled out by the transversality condition. In a perfectly
rational world, traders realize that such bubbles cannot last forever, and therefore all
traders believe that the value of a risky asset is always equal to its fundamental price.
Changes in asset prices are then only driven by unexpected changes in dividends and
random “news” about economic fundamentals. In a heterogeneous world the situation
will be quite different.

4.2.2. Heterogeneous Beliefs

It will be convenient to work with the deviation from the fundamental price

xt = pt − p∗t (4.9)

We make the following assumptions about the beliefs of trader type h:

B1 Vht[pt+1 + yt+1 − Rpt] = Vt[pt+1 + yt+1 − Rpt] = σ2, for all h, t.

B2 Eht[yt+1] = Et[yt+1] = ȳ, for all h, t.

B3 All beliefs Eht[pt+1] are of the form

Eht[pt+1] = Et[p∗t+1] + Eht[xt+1] = p∗ + fh(xt−1, . . ., xt−L) (4.10)

for all h, t.
According to B1, beliefs about conditional variance are equal and constant for all

types, as discussed already. Assumption B2 states that all types have correct expecta-
tions about future dividends yt+1 given by the conditional expectation, which is ȳ in the
case of IID dividends. According to B3, beliefs about future prices consist of two parts:
a common belief about the fundamental plus a heterogeneous part fht.4 Each forecast-
ing rule fh represents a model of the market (e.g., a technical trading rule) according to
which type h believes that prices will deviate from the fundamental price.

An important and convenient consequence of the assumptions B1–B3 about traders’
beliefs is that the heterogeneous agent market equilibrium Eq. 4.5 can be reformulated in
deviations from the benchmark fundamental. In particular, substituting the price forecast

4The assumption that all types know the fundamental price is without loss of generality, because any forecast-
ing rule not using the fundamental price can be reparameterized or reformulated for mathematical convenience
in deviations from an (unknown) fundamental price p∗.
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(Eq. 4.10) in the market equilibrium Eq. 4.5 and using Rp∗t = Et[p∗t+1 + yt+1] − aσ2zs

yields the equilibrium equation in deviations from the fundamental:

Rxt =
H∑
h=1

nhtEht[xt+1] ≡
H∑
h=1

nhtfht (4.11)

with fht = fh(xt−1, . . ., xt−L). Note that the benchmark fundamental is nested as a spe-
cial case within this general setup, with all forecasting strategies fh ≡ 0. Hence, the
adaptive belief systems can be used in empirical and experimental testing where asset
prices deviate significantly from some benchmark fundamental.

4.2.3. Evolutionary Dynamics

The evolutionary part of the model describes how beliefs are updated over time, that
is, how the fractions nht of trader types evolve over time. These fractions are updated
according to an evolutionary fitness or performance measure. The fitness measures of
all trading strategies are publically available but subject to noise. Fitness is derived from
a random utility model and given by

Ũht = Uht + εiht (4.12)

where Uht is the deterministic part of the fitness measure and εiht represents an
individual agent’s IID error when perceiving the fitness of strategy h = 1, . . .H .

To obtain analytical expressions for the probabilities or fractions, the noise term
εiht is assumed to be drawn from a double exponential distribution. As the number of
agents goes to infinity, the probability that an agent chooses strategy h is given by the
multinomial logit model (or “Gibbs” probabilities):5

nht =
eβUh,t−1∑H
h=1 e

βUh,t−1
(4.13)

Note that the fractions nht add up to 1.
A key feature of Eq. 4.13 is that the higher the fitness of trading strategy h, the

more traders will select strategy h. Hence, Eq. 4.13 represents a form of reinforcement
learning: Agents tend to switch to strategies that have performed well in the (recent)
past. The parameter β in Eq. 4.13 is called the intensity of choice; it measures the sen-
sitivity of the mass of traders to selecting the optimal prediction strategy. The intensity
of choice β is inversely related to the variance of the noise terms εiht. The extreme case
β = 0 corresponds to noise of infinite variance so that differences in fitness cannot be
observed and all fractions (4.13) will be fixed over time and equal to 1/H .

The other extreme case β = +∞ corresponds to the case without noise so that the
deterministic part of the fitness can be observed perfectly, and in each period, all traders

5See Manski and McFadden (1981) and Anderson, de Palma, and Thisse (1993) for extensive discussion of
discrete choice models and their applications in economics.
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choose the optimal forecast. An increase in the intensity of choice β represents an
increase in the degree of rationality with respect to evolutionary selection of trading
strategies. The timing of the coupling between the market equilibrium Eq. 4.5 or 4.11
and the evolutionary selection of strategies (Eq. 4.13) is important. The market equilib-
rium price pt in Eq. 4.5 depends on the fractions nht. The notation in Eq. 4.13 stresses
the fact that these fractions nht depend on most recently observed past fitnesses Uh,t−1,
which in turn depend on past prices pt−1 and dividends yt−1 in periods t − 1 further in
the past, as shown next. After the equilibrium price pt has been revealed by the market,
it will be used in evolutionary updating of beliefs and determining the new fractions
nh,t+1. These new fractions will then determine a new equilibrium price pt+1, and so on.
In an adaptive belief system, market equilibrium prices and fractions of different trading
strategies thus coevolve over time.

A natural candidate for evolutionary fitness is (a weighted average of) realized
profits, given by6

Uht = (pt + yt − Rpt−1)
Eh,t−1[pt + yt − Rpt−1]

aσ2
+ wUh,t−1 (4.14)

where 0 ≤ w ≤ 1 is a memory parameter measuring how fast past realized fitness is
discounted for strategy selection.

Fitness can be rewritten in terms of deviations from the fundamental as

Uht = (xt − Rxt−1 + aσ2zs + δt)
(
fh,t−1 − Rxt−1 + aσ2zs

aσ2

)
+ wUh,t−1 (4.15)

where δt ≡ p∗t + yt − Et−1[p∗t + yt] is a martingale difference sequence.

4.2.4. Forecasting Rules

To complete the model, we have to specify the class of forecasting rules. Brock and
Hommes (1998) have investigated evolutionary competition between simple linear
forecasting rules with only one lag, that is,

fht = ghxt−1 + bh (4.16)

It can be argued that, for a forecasting rule to have any impact in real markets, it
has to be simple, because it seems unlikely that enough traders will coordinate on a

6Note that this fitness measure does not take into account the risk taken at the moment of the investment
decision. In fact, one could argue that the fitness measure (Eq. 4.14) does not take into account the variance
term in (Eq. 4.2) capturing the investors’ risk taken before obtaining that profit. On the other hand, in real
markets, realized net profits or accumulated wealth may be what investors care about most, and the non-
risk adjusted fitness measure (Eq. 4.14) may thus be of relevance in practice. See also DeLong et al. (1990)
for a discussion of this point. Given that investors are risk averse, mean-variance maximizers maximizing
their expected utility from wealth (Eq. 4.2), an alternative natural candidate for fitness, the risk-adjusted
profit given by πht = Rtzh,t−1 − a

2σ
2z2
h,t−1, where Rt = pt + yt −Rpt−1 and zh,t−1 = Eh,t−1[Rt]/(aσ2) is

the demand by trader type h. Hommes (2001) shows that the risk-adjusted fitness measure is, up to a
type-independent level, equivalent to minus-squared prediction errors.
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complicated rule. The simple linear rule (Eq. 4.16) includes a number of important
special cases. For example, when both the trend and the bias parameters gh = bh = 0,
the rule reduces to the fundamentalists forecast, that is,

fht ≡ 0 (4.17)

predicting that the deviation x from the fundamental will be 0, or equivalently, that
the price will be at its fundamental value. Other important cases covered by the linear
forecasting rule (Eq. 4.16) are the pure trend followers:

fht = ghxt−1 gh > 0 (4.18)

and the pure biased belief

fht = bh (4.19)

Notice that the simple pure bias forecast (Eq. 4.19) represents any positively or
negatively biased forecast of next period’s price that traders might have. Instead of
these extremely simple habitual rule-of-thumb forecasting rules, some might prefer the
rational, perfect foresight forecasting rule:

fht = xt+1 (4.20)

We emphasize, however, that the perfect foresight forecasting rule (Eq. 4.20)
assumes perfect knowledge of the heterogeneous market equilibrium Eq. 4.5, and in
particular perfect knowledge about the beliefs of all other traders. Although the case
with perfect foresight has much theoretical appeal, its practical relevance in a complex
heterogeneous world should not be overstated, since this underlying assumption seems
rather strong.7

4.3. SIMPLE EXAMPLES

This section presents simple but typical examples of adaptive belief systems (ABSs),
with two, three, or four competing linear forecasting rules (Eq. 4.16), where the
parameter gh represents a perceived trend in prices and the parameter bh represents a
perceived upward or downward bias. The ABS with H types is given by (in deviations

7Brock and Hommes (1997) analyze the cobweb model with costly rational versus cheap naı̈ve expectations
and find irregular price fluctuations due to endogenous switching between free riding and costly rational
forecasting. In general, however, a temporary equilibrium model with heterogeneous beliefs, such as the
asset-pricing model, is difficult to analyze if one of the types has perfect foresight. Brock et al. (2008) discuss
how a perfect foresight trader may affect the dynamics in an asset-pricing model with heterogeneous beliefs.
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from the fundamental benchmark):

(1 + r)xt =
H∑
h=1

nht(ghxt−1 + bh) + εt (4.21)

nh,t =
eβUh,t−1∑H
h=1 e

βUh,t−1
(4.22)

Uh,t−1 = (xt−1 − Rxt−2)
(
ghxt−3 + bh − Rxt−2

aσ2

)
+ wUh,t−2 − Ch (4.23)

where εt is a small noise term representing, for example, a small fraction of noise traders
and/or random outside supply of the risky asset.

To keep the analysis of the dynamical behavior tractable, Brock and Hommes (1998)
focused on the case where the memory parameter w = 0, so that evolutionary fitness is
given by last period’s realized profit. A common feature of all examples is that, as the
intensity of choice to switch prediction or trading strategies increases, the fundamental
steady state becomes locally unstable and nonfundamental steady states, cycles, or even
chaos arise. In the examples that follow, we encounter different bifurcation routes (i.e.,
transitions) to complicated dynamics. A mathematical appendix summarizes the most
important bifurcations, that is, qualitative changes in the dynamics (e.g., when a steady
state loses stability or a new cycle is created) when a model parameter changes.

4.3.1. Costly Fundamentalists vs. Trend Followers

The simplest example of an ABS only has two trader types, with forecasting rules

f1t = 0 fundamentalists (4.24)
f2t = gxt−1 g > 0 trend followers (4.25)

The first type are fundamentalists predicting that the price will equal its fundamental
value (or equivalently that the deviation will be zero) and the second type are pure trend
followers predicting that prices will rise (or fall) by a constant rate. In this example, the
fundamentalists have to pay a fixed per-period positive cost C1 for information gather-
ing; in all other examples discussed later, information costs are set to zero for all trader
types.

For small values of the trend parameter 0 ≤ g < 1 + r, the fundamental steady
state is always stable. Only for sufficiently high trend parameters, g > 1 + r, trend
followers can destabilize the system. For trend parameters 1 + r < g < (1 + r)2, the
dynamic behavior of the evolutionary system depends on the intensity of choice to
switch between the two trading strategies.8 For low values of the intensity of choice,

8For g > (1 + r)2 the system may become globally unstable and prices may diverge to infinity. Imposing a
stabilizing force—for example, by assuming that trend followers condition their rule on deviations from the
fundamental, as in Gaunersdorfer, Hommes, and Wagener (2008)—leads to a bounded system again, possibly
with cycles or even chaotic fluctuations.
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FIGURE 4.1 Time series of price deviations from fundamental (a) and fractions of fundamentalists (b)
and attractor (c) in the (xt, n1t)-phase space for two-type model with costly fundamentalist versus trend
followers buffeted with small noise (SD = 0.1). Price dynamics are characterized by temporary bubbles when
trend followers dominate the market, interrupted by sudden crashes, when fundamentalists dominate. In the
presence of (small) noise, the system switches back and forth between two coexisting quasiperiodic attractors
of the underlying deterministic skeleton, one with prices above and one with prices below its fundamental
value. Parameters are β = 3.6, g = 1.2, R = 1.1, and C = 1.

the fundamental steady state will be stable. As the intensity of choice increases, the
fundamental steady state becomes unstable due to a pitchfork bifurcation in which two
additional nonfundamental steady states −x∗ < 0 < x∗ are created.

As the intensity of choice increases further, the two nonfundamental steady states
also become unstable due to a Hopf bifurcation, and limit cycles or even strange
attractors can arise around each of the (unstable) nonfundamental steady states.9 The
evolutionary ABS may cycle around the positive nonfundamental steady state, cycle
around the negative nonfundamental steady state, or, driven by the noise, switch back
and forth between cycles around the high and the low steady states, as illustrated in
Figure 4.1. The simulations use the E&F Chaos software as discussed in Diks et al.
(2008).

This example shows that, in the presence of information costs and with zero memory,
when the intensity of choice in evolutionary switching is high, fundamentalists cannot

9See Appendix 4.2 for a more detailed discussion of the pitchfork bifurcation and the Hopf bifurcation.
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FIGURE 4.2 Bifurcation diagram (a) and largest Lyapunov exponent plot (b) as a function of the inten-
sity of choice β for two-type model with costly fundamentalist versus trend followers. In both plots the model
is buffeted with very small noise (SD = 10−6) for the noise term εt in Eq. 4.21; to avoid that for large
β values the system gets stuck in the locally unstable steady state. Parameters are g = 1.2, R = 1.1, C = 1,
and 2 ≤ β ≤ 4. A pitchfork bifurcation of the fundamental steady state, in which two stable nonfundamental
steady states are created, occurs for β ≈ 2.37. The nonfundamental steady states become unstable due to a
Hopf bifurcation for β ≈ 3.33, and (quasi-)periodic dynamics arise. For large values of β the largest Lyapunov
exponent becomes positive, indicating chaotic price dynamics.

drive out pure trend followers and persistent deviations from the fundamental price may
occur.10

Figure 4.2 illustrates that the asset-pricing model with costly fundamentalists versus
cheap trend-following exhibits a rational route to randomness, that is, a bifurcation
route to chaos occurs as the intensity of choice to switch strategies increases.

4.3.2. Fundamentalists vs. Opposite Biases

The second example of an ABS is an example with three trader types without any
information costs. The forecasting rules are

f1t = 0 fundamentalists (4.26)
f2t = b b > 0, positive bias (optimists) (4.27)
f3t = −b − b < 0 negative bias (pessimists) (4.28)

The first type are fundamentalists as before, but there are no information costs for funda-
mentalists. The second and third types have a purely biased belief, expecting a constant
price above and below, respectively, the fundamental price.

For low values of the intensity of choice, the fundamental steady state is stable. As
the intensity of choice increases the fundamental steady becomes unstable due to a
Hopf bifurcation and the dynamics of the ABS is characterized by cycles around the

10Brock and Hommes (1999) show that this result also holds when the memory in the fitness measure
increases. In fact, an increase in the memory of the evolutionary fitness leads to bifurcation routes very similar
to bifurcation routes that are due to an increase in the intensity of choice.
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unstable steady state. This example shows that, even when there are no information
costs for fundamentalists, they cannot drive out other trader types with opposite biased
beliefs. In the evolutionary ABS with high intensity of choice, fundamentalists and
biased traders coexist with fractions varying over time and prices fluctuating around
the unstable fundamental steady state.

Moreover, Brock and Hommes (1998, p. 1259, Lemma 9) show that as the intensity
of choice tends to infinity the ABS converges to a (globally) stable cycle of Period 4.
Average profits along this four-cycle are equal for all three trader types. Hence, if
the initial wealth is equal for all three types, in this evolutionary system in the long
run, accumulated wealth will be equal for all three types. This example shows that
the Friedman argument that smart fundamental traders will always drive out simple
rule-of-thumb speculative traders is in general not valid.11

4.3.3. Fundamentalists vs. Trend and Bias

The third example of an ABS is an example with four trader types, with linear fore-
casting rules (Eq. 4.16) with parameters g1 = 0, b1 = 0; g2 = 0.9, b2 = 0.2; g3 = 0.9,
b3 = −0.2; and g4 = 1 + r = 1.01, b4 = 0. The first type are fundamentalists again,
without information costs, and the other three types follow a simple linear forecasting
rule with one lag. The dynamical behavior is illustrated in Figures 4.3 and 4.4.

For low values of the intensity of choice, the fundamental steady state is stable. As
the intensity of choice increases, as in the previous three-type example, the fundamental
steady becomes unstable due to a Hopf bifurcation and a stable invariant circle around
the unstable fundamental steady state arises, with periodic or quasi-periodic fluctua-
tions. As the intensity of choice further increases, the invariant circle breaks into a
strange attractor with chaotic fluctuations. In the evolutionary ABS, fundamentalists
and chartists coexist with time-varying fractions and prices moving chaotically around
the unstable fundamental steady state. Figure 4.4 shows that in this four-type exam-
ple with fundamentalists versus trend followers and biased beliefs a rational route to
randomness occurs, with positive largest Lyapunov exponents for large values of β.

This four-type example shows that, even when there are no information costs for fun-
damentalists, they cannot drive out other simple trader types and fail to stabilize price
fluctuations toward its fundamental value. As in the three-type case, the opposite biases
create cyclic behavior and trend extrapolation turns these cycles into unpredictable
chaotic fluctuations.

4.3.4. Efficiency

What can be said about market efficiency in an ABS? The (noisy) chaotic price
fluctuations are characterized by an irregular switching between phases of close-to-the-
fundamental-price fluctuations, phases of “optimism” with prices following an upward

11This result is related to DeLong et al. (1990a,b), who show that a constant fraction of noise traders can
survive in the market in the presence of fully rational traders. The ABS, however, are evolutionary models
with time-varying fractions, driven by strategy performance.
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FIGURE 4.4 Bifurcation diagram (a) and largest Lyapunov exponent plot (b) for the four-type model,
buffeted with very small noise (SD = 10−6 for noise term εt in Eq. 4.21) to avoid that for large β-values the
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trend, and phases of “pessimism,” with (small) sudden market crashes, as illustrated
in Figure 4.3. In fact, in the ABS, prices are characterized by evolutionary switching
between the fundamental value and temporary speculative bubbles. Prices deviate per-
sistently from their fundamental value; therefore it can be said that prices are excessively
volatile. In this sense the market is inefficient. But are these deviations easy to predict?
Even in the simple, stylized four-type example in the purely deterministic chaotic case,
the timing and direction of the temporary bubbles seem hard to predict, but once a bub-
ble has started, the collapse of the bubble seems predictable. In the presence of (small)
noise, however, the situation is quite different, as illustrated in Figure 4.3 (top right):
The timing, the direction and the collapse of the bubble all seem hard to predict.

To stress this point further, we investigate this (un)predictability by employing a
so-called nearest neighbor forecasting method to predict the returns, at lags 1 to 20
for the purely chaotic as well as for several noisy chaotic time series, as illustrated in
Figure 4.5.12 Nearest-neighbor forecasting looks for patterns in the past that are close to
the most recent pattern and then predicts the average value following all nearby past pat-
terns. According to Takens’ embedding theorem, this method yields good forecasts for
deterministic chaotic systems.13 Figure 4.5 shows that as the noise level increases, the
forecasting performance of the nearest-neighbor method quickly deteriorates. There-
fore, in our simple nonlinear evolutionary ABS with noise, it is hard to make good
forecasts of future returns and to predict when prices will return to fundamental value.
Our simple nonlinear ABS with small noise thus captures some of the intrinsic unpre-
dictability of asset returns also present in real markets, and in terms of predictability the
market is close to being efficient.

4.3.5. Wealth Accumulation

The evolutionary dynamics in an ABS are driven by realized short-run profits, and
chartists strategies survive in a world driven by short-run profit opportunities. In
this subsection, we briefly look at the accumulated wealth in an ABS. Recall that
accumulated wealth for strategy type h is given by

Wh,t+1 = RWht + (pt+1 + yt+1 − Rpt)zht (4.29)

The first term represents wealth growth due to the risk-free asset, while the last term
represents wealth growth (or decay) due to investments in the risky asset. Because of
market clearing, the average net inflow of wealth due to investment in the risky asset is
given by ∑

h

nhtzht(pt+1 + yt+1 − Rpt) = zs(pt+1 + yt+1 − Rpt) (4.30)

12We would like to thank Sebastiano Manzan for providing this figure.
13See Kantz and Schreiber (1997) for an extensive treatment of nonlinear time-series analysis and forecasting
techniques.
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FIGURE 4.5 Forecasting errors for nearest-neighbor method applied to chaotic and noisy chaotic returns
series for different noise levels in the four-type adaptive belief system. All returns series have close to 0
autocorrelations at all lags. The benchmark case of prediction by the mean 0 is represented by the horizontal
line at the normalized prediction error 1. Nearest-neighbor forecasting applied to the purely deterministic
chaotic series leads to much smaller forecasting errors at all prediction horizons, 1–20 (bottom graph). A noise
level of, say, 10% means that the ratio of the variance of the noise εt and the variance of the deterministic
price series is 1/10. As the noise level increases, the graphs shift upward, indicating that prediction errors
increase. Small dynamic noise thus quickly deteriorates forecasting performance.

This is the average risk premium required by the population of investors to hold the
risky asset. In the special case zs = 0 the risk premium is 0 and on average wealth of
each strategy grows at the risk-free rate.

Figure 4.6 shows the development of prices and wealth of each strategy in the three-
type and four-type examples of Subsections 4.3.2 and 4.3.3. Prices fluctuate around
the fundamental price. For the three-type example, the wealth accumulated by each of
the three strategies—fundamentalists, optimistic biased, and pessimistic biased—grows
over time, at an equal rate. Recall that in the three-type example, for an infinite intensity
of choice β, the system converges to a stable four-cycle with average profits equal for
all three strategies. At each time t, profits of fundamentalists are always between prof-
its of optimists and pessimists, but on average all profits are (almost) equal, and thus
accumulated wealth grows at the same rate.14

14For finite intensity of choice, for example, β = 3000 as in Figure 4.6, wealth of the three-types grows
at almost the same rate. For initial states chosen, as in Figure 4.6, wealth of the optimistic types slightly
dominates the other two types.
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FIGURE 4.6 Time series of prices (a) and accumulated wealth (b) in three-type ABS (top), four-type
ABS (middle), and five-type ABS (bottom). Belief parameters are b = 0.2 for the three-type ABS (see sub-
section 4.3.2) and as in Figure 4.3 in the four-type case. Other parameters are β = 3000 and σε = 0.025
(three-type ABS); g4 = (1 + r)2 = 1.0201, β = 180, ȳ = 0.1, R = 1.01, σε = 0.2 (four-type ABS), and
σε = 0.1; and threshold parameter ϑ = 0.5 for switching strategy (five-type ABS).

In the four-type example, trend-following strategies are profitable during temporary
bubbles. Fundamentalists suffer losses during temporary bubbles, but these losses are
limited. When the bubble bursts, fundamentalists make large profits while trend fol-
lowers suffer from huge losses. On average, accumulated wealth of fundamentalists
increases while wealth of chartists decreases, as illustrated in Figure 4.6.
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The wealth in Eq. 4.29 corresponds to the accumulated wealth of a trader who always
uses strategy h. How would a switching strategy perform in a heterogeneous market?
Figure 4.6 (bottom panel) illustrates an example of an ABS with five strategies, where
a switching strategy has been added to the four-type ABS. The fifth switching strategy
is endogenous in the five-type ABS and thus affects the realized market price in the
same way as the other four strategies. The switching strategy always picks the best
of the other four strategies, according to last period’s realized profits, conditional on
how far the price deviates from the fundamental benchmark. In the simulation, when
the price deviation becomes larger than a threshold parameter (ϑ = 0.5), the switching
strategy switches back to the fundamental strategy to avoid losses when the bubble
collapses.

Figure 4.6 (bottom row) illustrates two features of the five-type ABS. First, due
to the presence of the switching strategy, the amplitude of price fluctuations (bottom
row, left plot) is somewhat smaller than in the four-type ABS. This is caused by the
switching strategy switching back to the fundamental strategy when the price devia-
tion exceeds the threshold. Second, the accumulated wealth of the switching strategy
outperforms all other strategies, including the fundamental strategy—see Figure 4.6,
bottom row, right plot. Notice that the two best strategies, the switching strategy and the
fundamental strategy, also require the most information. The trend-following strategies
only use publically available information on past prices.15 The fundamental strategy
uses fundamental information, whereas the switching strategy uses fundamental infor-
mation as well as information about competing strategies in the market and their
performance.

In the ABS evolutionary framework, agents switch strategies based on short-run real-
ized profits. In the long run, a fundamental strategy often accumulates more wealth than
trend-following rules. However, fundamental strategies suffer from losses during tem-
porary bubbles when prices persistently deviate from fundamentals and may therefore
suffer from “limits of arbitrage” (Shleifer and Vishny, 1997). Fundamentalists can sta-
bilize price fluctuations but only if they are not limited by borrowing constraints or
limits of arbitrage. In the long run, a simple switching strategy may accumulate more
wealth than a fundamental or technical trading strategy. The fact that a simple switch-
ing strategy performs better in a heterogeneous market shows that the ABS model is
behaviorally consistent. Agents have an incentive to keep switching strategies.

The switching strategy is very risky, however, because it requires good knowledge
of the underlying fundamental and good market timing to “get off the bubble before
it bursts.” Interestingly, Zwart et al. (2007) provided empirical evidence, analyzing 15
emerging market currencies over the period from 1995 to 2006, that a combined strat-
egy with time-varying weights may generate economically and statistically significant
returns, after accounting for transaction costs. Their strategy is based on a combination
of fundamental information on the deviation from purchasing power parity and the real
interest rate differential and chartist information from moving average trading rules,
with time-varying weights determined by relative performance over the past year.

15Recall that these strategies can be formulated without knowledge of the fundamental price; see Footnote 4.
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4.3.6. Extensions

Several modifications and extensions of ABSs have been studied. In Brock and Hommes
(1998) the demand for the risky asset is derived from a constant absolute risk aver-
sion (CARA) utility function. Chiarella and He (2001) consider the case with constant
relative risk aversion (CRRA) utility. This is complicated because under CARA util-
ity, investors’ relative wealth affects asset demand and realized asset price, and one
has to keep track of the wealth distribution among the population of agents.16 Anufriev
and Bottazzi (2006) and Anufriev (2008) study wealth and asset price dynamics in a
heterogeneous agents framework and are able to characterize the type of equilibria and
their stability under fairly general behavioral assumptions. Chiarella, Dieci, and Gardini
(2002, 2006) use the CRRA utility in an ABS with a market-maker price-setting rule.
Chiarella and He (2003) and Hommes et al. (2005) investigate an ABS with a market-
maker price-setting rule and find quite similar dynamical behavior as in the case of a
Walrasian market-clearing price. De Fontnouvelle (2000) and Goldbaum (2005) apply
strategy switching to an asset-pricing model with heterogeneous information. Chang
(2007) studies how social interactions affect the dynamics of asset prices in an ABS
with a Walrasian market-clearing price. DeGrauwe and Grimaldi (2005, 2006) applied
the ABS framework to exchange rate modeling. Chiarella et al. (2009) discusses some
of these extensions in more detail.17

4.4. MANY TRADER TYPES

In most heterogeneous agent models (HAMs) in the literature, the number of trader
types is small—usually only two, three, or four types are considered that use simple fun-
damentalist or chartist strategies. Generally, analytical tractability can only be obtained
at the cost of restricting a HAM to just a few types. However, Brock, Hommes, and
Wagener (2005) have developed a theoretical framework to study evolutionary mar-
kets with many different trader types. In this subsection, we discuss their notion of large
type limit (LTL), a simple, low-dimensional approximation of an evolutionary ABS with
many trader types. The LTL can be developed in a fairly general market-clearing set-
ting, but here we focus on its application to the asset-pricing model with heterogeneous
beliefs.

Recall from Eq. 4.1 that in the asset market with H different trader types, the
equilibrium price (in deviations xt from the fundamental benchmark) is given by

xt =
1

1 + r

H∑
h=1

nhtfht (4.31)

16In the artifical market of Levy et al. (1994), asset demand is also derived from CRRA utility.
17Another related stochastic model with heterogeneous agents and endogenous strategy switching similar to
the ABS has been introduced in Föllmer et al. (2005). Scheinkman and Xiong (2004) review related stochastic
financial models with heterogeneous beliefs and short-sale constraints. Macro models with heterogeneous
expectations have been studied, for instance, in Branch and Evans (2006) and Branch and McGough (2008).
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Using the multinomial logit probabilities (Eq. 4.13) for the fractions nht, we get

xt =
1

1 + r

∑H
h=1 e

βUh,t−1fht∑H
h=1 e

βUh,t−1
(4.32)

It is assumed that prediction and fitness functions take the form fht = f (x, λ, ϑh)
and Uht = U (x, λ, ϑh) respectively, where x = (xt−1, xt−2, . . .) is a vector of lagged devi-
ations from the fundamental, λ is a structural parameter vector (e.g., containing the
risk-free interest rate r, the risk-aversion parameter a, the intensity of choice β, etc.),
and ϑh is a multidimensional variable that characterizes the belief type h.

The equilibrium Eq. 4.32 determines the evolution of the system withH trader types;
this information is coded in the evolution map ϕH (x, λ, ϑ):

ϕH (x, λ, ϑ) =
1

1 + r

∑H
h=1 e

βU (x,λ,ϑh)f (x, λ, ϑh)∑H
h=1 e

βU (x,λ,ϑh)
(4.33)

where ϑ = (ϑ1, . . ., ϑH ). At the beginning of the market, a large number H of beliefs ϑh
is sampled from a general distribution of initial beliefs. For example, all forecasting
rules may be drawn from a linear class of rules with L lags,

ft(ϑ0) = ϑ00 + ϑ01xt−1 + ϑ02xt−2 + · · · + ϑ0Lxt−L (4.34)

with ϑ0h, h = 0, . . .,L, drawn from a multivariate normal distribution.
The evolution map ϕH in Eq. 4.33 determines the dynamical system correspond-

ing to an asset market with H different belief types. When the number of trader types
H is large, this dynamical system contains a large number of stochastic variables
ϑ = (ϑ1, . . ., ϑH ), where the ϑh are IID, with distribution function Fμ. At the beginning
of the market, H belief types are drawn from this distribution, and they then compete
against each other. The distribution function of the stochastic belief variable ϑh depends
on a multidimensional parameter μ, called the belief parameter. This setup allows us to
vary the population out of which the individual beliefs are sampled at the beginning of
the market.

Observe that both the denominator and the numerator of the evolution map ϕH in
Eq. 4.33 may be divided by the number of trader types H and thus may be seen as
sample means. The evolution map ψ of the LTL is then obtained by replacing sample
means in the evolution map ϕH by population means:

ψ (x, λ,μ) =
1

1 + r

Eμ
[
eβU (x,λ,ϑ0)f (x, λ, ϑ0)

]
Eμ

[
eβU (x,λ,ϑ0)

]
(4.35)

=
1

1 + r

∫
eβU (x,λ,ϑ0)f (x, λ, ϑ0)dνμ∫

eβU (x,λ,ϑ0)dνμ

where ϑ0 is a stochastic variable, distributed in the same way as the ϑh, with density νμ.
The structural parameter vector λ of the evolution map ϕH and of the LTL evolution
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map ψ coincide. However, whereas the evolution map ϕH in Eq. 4.33 of the heteroge-
neous agent system contains H randomly drawn multidimensional stochastic variables
ϑh, the LTL evolution map ψ in Eq. 4.35 only contains the belief parameter vector
μ describing the joint probability distribution. Taking an LTL thus leads to a huge
reduction in stochastic belief variables.

According to the LTL theorem of Brock et al. (2005), as the number H of trader
types tends to infinity, theH-type evolution map ϕH converges almost surely to the LTL
map ψ . This implies that the corresponding LTL dynamical system is a good approxi-
mation of the dynamical behavior in a heterogeneous asset market when the number of
belief types H is large. In particular, all generic and persistent dynamic properties will
be preserved with high probability. For example, if the LTL map exhibits a bifurcation
route to chaos for one of the structural parameters, then, if the number of trader types
H is large, the H-type system also exhibits such a bifurcation route to chaos with high
probability.

A straightforward computation using moment-generating functions shows that, for
example, in the case of linear forecasting rules (Eq. 4.34) with three lags (L = 3), the
corresponding LTL becomes a 5-D nonlinear system given by

(1 + r)xt = μ0 + μ1xt−1 + μ2xt−2 + μ3xt−3

+ η(xt−1 − Rxt−2 + aσ2zs) (4.36)

(σ2
0 + σ

2
1xt−1xt−3 + σ

2
2xt−2xt−4 + σ

2
3xt−3xt−5)

where η = β/(aσ2). The simplest special case of Eq. 4.36 that still leads to interesting
dynamics is obtained when all ϑ0k = 0, 1 ≤ k ≤ d, that is, when the forecasting function
(Eq. 4.34) is purely biased: ft(ϑ0) = ϑ00. The LTL then simplifies to the linear system

Rxt = μ0 + ησ
2
0

(
xt−1 − Rxt−2 + aσ2zs

)
(4.37)

This simplest case already provides insight into the (in)stability of the (fundamen-
tal) steady state in an evolutionary system with many trader types. When there is no
intrinsic mean bias (i.e., when the mean of the biases ϑ00 equals 0 (i.e., μ0 = 0) and
the risk premium is zero (zs = 0)), the steady state of the LTL (Eq. 4.37) coincides
with the fundamental: x∗ = 0. When the mean bias and risk premium are both positive
(negative), the steady-state deviation x∗ will be positive (negative) so that the steady
state will be above (below) the fundamental. The natural bifurcation parameter tuning
the (in)stability of the system is ησ2

0 = βσ2
0/aσ

2. We see that instability occurs if and
only if η is increased beyond the bifurcation point ηc = 1/σ2

0. Therefore this simple case
already suggests mechanisms that may destabilize the evolutionary system: an increase
in choice intensity β for evolutionary selection, a decrease in risk aversion a, a decrease
in conditional variance of excess returns σ2, or an increase in the diversity of purely
biased beliefs σ2

0. All these forces can push η beyond ηc, thereby triggering instability
of the (fundamental) steady state.

For the LTL in Eq. 4.36, in the case of linear forecasting rules with three lags,
a bifurcation route to chaos, with asset prices fluctuating around the unstable funda-
mental steady state, occurs when η is increased. This shows that a rational route to
randomness can occur in an asset market with many different trader types, when traders
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FIGURE 4.7 Bifurcation diagram in the (η,μ1) parameter plane for LTL (Eq. 4.36), where μ1 represents
the mean of the first-order stochastic trend variable ϑ01 in the forecasting rule (Eq. 4.34). For μ0 = aσ2 = 0,
with μ0 the mean of the constant ϑ00 in the forecasting rule (Eq. 4.34), the LTL is symmetric and thus
nongeneric (dotted curves); when μ0 	= 0, the LTL is nonsymmetric and generic. The diagram shows Hopf
(H), period-doubling (PD), pitchfork (PF), and saddle-node (SN) bifurcation curves in the (η,μ1) parameter
plane, with other parameters fixed at R = 1.01, zs = 0, μ2 = μ3 = 0, σ0 = σ1 = σ2 = 1, and σ3 = 0. Between
the H and PD curves (and the PF curve when μ0 = 0), there is a unique, stable steady state. This steady state
becomes unstable when crossing the H or the PD curve. Above the PF curve or the SN curve, the system has
three steady states. The PF curve is nongeneric and only arises in the symmetric case with mean bias μ0 = 0.
When the symmetry is broken by perturbing the mean bias to μ0 = −0.1, the PF curve “breaks” into generic
Hopf and SN curves.

become increasingly sensitive to differences in fitness (i.e., an increase in the intensity
of choice β) or traders become less risk averse (i.e., a decrease of the coefficient of
risk-aversion a). In general, in a many-trader-type evolutionary world, fundamentalists
will not drive out all other types and asset prices need not converge to their fundamental
values.

Figure 4.7 shows a two-dimensional bifurcation diagram in the (η,μ1) parameter
plane, where μ1 represents the mean of the first-order stochastic trend variable ϑ01 in
the forecasting rule (Eq. 4.34). Recall that μ0 is the mean of the constant term ϑ00 in the
forecasting rule (Eq. 4.34); it models the “mean bias” of the trader type. When μ0 = 0
and aσ2zs = 0 (expressing that the risk premium is zero), the LTL is symmetric with
respect to the fundamental steady state.

In the symmetric case (dotted lines in Figure 4.7), for parameters taking values in
the region enclosed by the Hopf, period-doubling (PD), and pitchfork (PF) bifurcation
curves, the fundamental steady state is unique and stable.18 As the parameters cross
the PF curve, two additional nonfundamental steady states are created, one above and

18See Appendix 4.1 for a brief introduction to bifurcation theory, with Appendix 4.2 providing simple
examples of the saddle-node, period doubling, pitchfork, and Hopf bifurcations.
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one below the fundamental. Another route to instability occurs when crossing the Hopf
curve, where the fundamental steady state becomes unstable and a (stable) invariant
circle with periodic or quasi-periodic dynamics is created. The pitchfork bifurcation
curve is nongeneric and occurs only in the symmetric case. When the symmetry is
broken by a nonzero mean bias μ0 	= 0, as illustrated in Figure 4.7 (bold curves) for μ0 =
−0.1, the PF curve disappears and “breaks” into two generic codimension bifurcation
curves: a Hopf and a saddle-node (SN) bifurcation curve. When crossing the SN curve
from below, two additional steady states are created, one stable and one unstable. Notice
that, as illustrated in Figure 4.7, when the perturbation is small (in the figure, μ0 =
−0.1), the SN and the Hopf curves are close to the PF and the Hopf curves (dotted lines)
in the symmetric case. In this sense the bifurcation diagram depends continuously on
the parameters, and it is useful to consider the symmetric LTL as an “organizing” center
to study bifurcation phenomena in the generic, nonsymmetric LTL.

The most relevant case from an economic viewpoint arises when the mean μ1 of the
first-order coefficient ϑ01 in the forecasting rule (Eq. 4.34) satisfies 0 ≤ μ1 ≤ 1. In that
case, the (fundamental) steady state loses stability in a Hopf bifurcation as η increases.
Figure 4.8 illustrates the dynamical behavior of the LTL as the parameter η further

(a) � 5 1.4 (b) � 5 1.51 (c) � 5 1.52

(d) � 5 1.57 (e) � 5 1.59 (f) � 5 1.6

FIGURE 4.8 Attractors in the phase space for the 5-D LTL with parameters R = 1.01, zs = 0, μ0 = 0,
μ1 = 0, μ2 = μ3 = 0, and σ0 = σ1 = σ2 = σ3 = 1: (a) immediately after the Hopf bifurcation (quasi-)periodic
dynamics on a stable invariant circle occurs; (b–c) after a Hopf bifurcation (quasi-)periodic dynamics on a
stable invariant torus occurs; and (d–f) breaking up of the invariant torus into a strange attractor.
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increases. After the Hopf bifurcation periodic and quasi-periodic dynamics on a stable
invariant circle occur, and for increasing values of η, a bifurcation route to strange attrac-
tors occurs. Figure 4.8 thus presents numerical evidence of the occurrence of a rational
route to randomness, that is, a bifurcation route to strange attractors as the intensity of
choice to switch forecasting strategies increases. If such rational routes to randomness
occur for the LTL, the LTL convergence theorem implies that in evolutionary systems
with many trader types, rational routes to randomness occur with high probability.

Diks and van der Weide (2003, 2005) have generalized the notion of LTL and
introduced so-called continuous belief systems (CBS), where the beliefs of traders are
distributed according to a continuous density function. The beliefs distribution func-
tion and the equilibrium prices coevolve over time. The LTL theory discussed here as
well as its extensions can be used to form a bridge between an analytical approach and
the literature on evolutionary artificial market simulation models reviewed in LeBaron
(2000, 2006). See also Anufriev et al. (2008) for a recent application of a LTL in a
macroeconomic model with heterogeneous expectations.

4.5. EMPIRICAL VALIDATION

In this section we discuss the empirical validity of the asset pricing model with het-
erogeneous beliefs. There is already a large literature on heterogeneous agent models
replicating many of the important stylized facts of financial time series on short time
scales (say, daily or higher frequency), such as fat tails and long memory in the returns
distribution and clustered volatility. Examples of HAMs able to replicate stylized facts
of financial markets include, for example, Brock and LeBaron (1996), Arthur et al.
(1997), Brock and Hommes (1997b), Youssefmir and Huberman (1997), LeBaron
et al. (1999), Lux and Marchesi (1999, 2000), Farmer and Joshi (2002), Kirman
and Teyssière (2002), Hommes (2002), Iori (2002), Cont and Bouchaud (2000), and
Gaunersdorfer and Hommes (2007). The recent survey by Lux (2009) contains an
extensive look at behavioral interacting agent models mimicking the stylized facts of
asset returns. We have already seen examples of simple heterogeneous agent mod-
els mimicking temporary bubbles and crashes. In this section we discuss how these
qualitative features match observed bubbles and crashes in real markets.

Empirical validation and estimation of HAMs on economic or financial data are
still in their infancy. An early attempt has already been made by Shiller (1984) who
presented a HAM with smart money traders having rational expectations versus ordi-
nary investors (whose behavior is in fact not modeled at all). Shiller estimated the
fraction of smart money investors over the period 1900 to 1983 and found consider-
able fluctuations of the fraction over a range between 0% and 50%. Baak (1999) and
Chavas (2000) estimated HAMs on hog and beef market data and found evidence for
heterogeneity of expectations. Winker and Gilli (2001) and Gilli and Winker (2003)
estimated the model of Kirman (1991, 1993) with fundamentalists and chartists, using
the daily DM-US$ exchange rates from 1991 to 2000. Their estimated parameter val-
ues correspond to a bimodal distribution of agents. Westerhoff and Reitz (2003) also
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estimated an HAM with fundamentalists and chartists to exchange rates and found con-
siderable fluctuations of the market impact of fundamentalists. Alfarno et al. (2005)
estimated an agent-based herding model where agents switch between fundamentalist
and chartist strategies. Branch (2004) estimated a model with heterogeneous beliefs
and time-varying fractions, using survey data on inflation expectations. In this section,
we discuss the estimation of a simple two-type asset-pricing model with heterogeneous
beliefs, as discussed in Section 4.2, on yearly S&P 500 data, 1871 to 2003, as done in
Boswijk et al. (2007). As we will see, this simple two-type model can, for example,
explain the dot-com bubble in the late 1990s and the subsequent crash starting at the
end of 2000.19

4.5.1. The Model in Price-to-Cash Flows

In the previous sections, the dividend process of the risky asset has been assumed to be
stationary. To estimate the model using yearly data of more than a century, the dividend
process has to be taken growing over time and thus nonstationary. To estimate a simple
two-type model, Boswijk et al. (2007) therefore reformulated the model in terms of
price-to-cash flows. Recall from Eq. 4.5 that, under the assumption of zero net supply
of the risky asset, the equilibrium pricing equation is

pt =
1

1 + r

H∑
h=1

nh,tEh,t(pt+1 + yt+1) (4.38)

or equivalently

r =
H∑
h=1

nh,t
Eh,t[pt+1 + yt+1 − pt]

pt
(4.39)

In equilibrium the average required rate of return for investors to hold the risky asset
equals the discount rate r. In the estimation of the model, the discount rate r has been set
equal to the sum of the (risk-free) interest rate and the required risk premium on stocks.
A simple, nonstationary process that fits cash flow data (dividends or earnings) well is
a stochastic process with a constant growth rate. More precisely, assume that log yt is a
Gaussian random walk with drift; that is,

log yt+1 = μ + log yt + υt+1 υt+1 ∼ i.i.d. N (0, σ2
υ ) (4.40)

which implies
yt+1

yt
= eμ+υt+1 = eμ+

1
2 σ

2
υ eυt+1− 1

2 σ
2
υ = (1 + g)εt+1 (4.41)

19Van Norden and Schaller (1999) estimate a nonlinear time-series switching model with two regimes, an
explosive and a collapsing bubble regime, with the probability of being in the explosive regime depending
negatively on the relative absolute deviation of the bubble from the fundamental. Brooks and Katsaris (2005)
extend this model to three regimes, adding a third dormant bubble regime where the bubble grows at the
required rate of return without explosive expectations.
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where g = eμ+
1
2 σ

2
υ − 1 and εt+1 = eυt+1+ 1

2 σ
2
υ , so that Et(εt+1) = 1. As before, we assume

that all types have correct beliefs on the cash flow; that is,

Eh,t[yt+1] = Et[yt+1] = (1 + g)ytEt[εt+1] = (1 + g)yt (4.42)

Since the cash flow is an exogenously given stochastic process, it seems natural to
assume that agents have learned the correct beliefs on next period’s cash flow yt+1.
In particular, boundedly rational agents can learn about the constant growth rate by, for
example, running a simple regression of log(yt/yt−1) on a constant.

In contrast, prices are determined endogenously and are affected by expectations
about next period’s price. In a heterogeneous world, agreement about future prices
therefore seems more unlikely than agreement about future cash flows. Therefore we
assume homogeneous beliefs about future cash flow but heterogeneous beliefs about
future prices.20 The pricing Eq. 4.38 can be reformulated in terms of a price-to-cash-
flow (P/Y) ratio, δt = pt/yt, as21

δt =
1
R∗

{
1 +

H∑
h=1

nh,tEh,t[δt+1]

}
R∗ =

1 + r
1 + g

(4.43)

In the special case, when all agents have rational expectations, the equilibrium pric-
ing Eq. 4.38 simplifies to pt = (1/(1 + r))Et(pt+1 + yt+1). It is well known that, in the
case of a constant discount rate r and a constant growth rate g for dividends, according to
the static Gordon growth model (Gordon, 1962), the rational expectations fundamental
price, p∗t , of the risky asset is given by

p∗t =
1 + g
r − g yt r > g (4.44)

Equivalently, in terms of price-to-cash-flow ratios, the fundamental is

δ∗t =
p∗t
yt

=
1 + g
r − g ≡ m (4.45)

We refer to p∗t as the fundamental price and to δ∗t as the fundamental P/Y ratio. When
all agents are rational, the pricing Eq. 4.43 in terms of the P/Y ratio, δt = pt/yt, becomes

δt =
1
R∗

{1 + Et[δt+1]} (4.46)

20Barberis et al. (1998) consider a model in which agents are affected by psychological biases in forming
expectations about future cash flows. In particular, agents may overreact to good news about economic fun-
damentals because they believe that cash flows have moved into another regime with higher growth. Their
model is able to explain continuation and reversal of stock returns.
21In what follows we use either price-to-dividend (P/D) or price-to-earnings (P/E) ratios and use the general
notation P/Y for price-to-cash flows.
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In terms of the deviation from the fundamental ratio, xt = δt − δ∗t = δt − m, this
simplifies to

xt =
1
R∗
Et[xt+1] (4.47)

Under heterogeneity in expectations, the pricing Eq. 4.43 is expressed in terms of xt as

xt =
1
R∗

H∑
h=1

nh,tEh,t[xt+1] (4.48)

Heterogeneous Beliefs

The expectation of belief type h about next period P/Y ratio is expressed as

Eh,t[δt+1] = Et[δ∗t+1] + fh(xt−1, . . ., xt−L) = m + fh(xt−1, . . ., xt−L) (4.49)

where δ∗t represents the fundamental price-to-cash-flow ratio P/Y, Et(δ∗t+1) = m is the
rational expectation of the P/Y ratio available to all agents, xt is the deviation of the
P/Y ratio from its fundamental value, and fh(·) represents the expected transitory devi-
ation of the P/Y ratio from the fundamental value, depending on L past deviations. The
information available to investors at time t includes present and past cash flows and past
prices. In terms of deviations from the fundamental P/Y ratio, xt, we get

Eh,t[xt+1] = fh(xt−1, . . ., xt−L) (4.50)

Note again that the rational expectations fundamental benchmark is nested in the
heterogeneous agent model as a special case when fh ≡ 0 for all types h. We can express
Eq. 4.48 as

R∗xt =
H∑
h=1

nh,tfh(xt−1, . . ., xt−L) (4.51)

From this equilibrium equation it is clear that the adjustment toward the fundamental
P/Y ratio will be slow if a majority of investors has persistent beliefs about it.

Evolutionary Selection of Expectations

In addition to the empirical evidence of persistent deviations from fundamentals there
is also significant evidence of time variation in the sentiment of investors. This has
been documented, for example, by Shiller (1987, 2000) using survey data. In the model
considered here, agents are boundedly rational and switch between different forecasting
strategies according to recently realized profits. We denote by πh,t−1 the realized profits
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of type h at the end of period t − 1, given by (see Eq. 4.14):

πh,t−1 = Rt−1zh,t−2 = Rt−1
Eh,t−2[Rt−1]
aVt−2[Rt−1]

(4.52)

where Rt−1 = pt−1 + yt−1 − (1 + r)pt−2 is the realized excess return at time t − 1 and
zh,t−2 is the demand of the risky asset by belief type h, as given in Eq. 4.3, formed in
period t − 2.

As before, we assume that the beliefs about the conditional variance of excess
returns are the same for all types and equal to fundamentalists beliefs about conditional
variance, that is,

Vh,t−2[Rt−1] = Vt−2[P ∗t−1 + yt−1 − (1 + r)P ∗t−2] = y2
t−2η

2 (4.53)

where η2 = (1 + m)2(1 + g)2Vt−2[εt−1], with εt IID noise driving the cash flow. The
fitness measure can be rewritten in terms of the deviation xt = δt − m of the P/Y ratio
from its fundamental value, with m = (1 + g)/(r − g), as

πh,t−1 =
(1 + g)2

aη2

(
xt−1 − R∗xt−2

) (
Eh,t−2[xt−1] −R∗xt−2

)
(4.54)

This fitness measure has a simple, intuitive explanation in terms of forecasting per-
formance for next period’s deviation from the fundamental. A positive demand zh,t−2

may be seen as a bet that xt−1 would go up more than what was expected on aver-
age from R∗xt−2. (Note that R∗ is the growth rate of rational bubble solutions.) The
realized fitness πh,t−1 of strategy h is the realized profit from that bet and it will be
positive if both the realized deviation xt−1 > R

∗xt−2 and the forecast of the deviation
Eh,t−2[xt−1] > R∗xt−2. More generally, if both the realized absolute deviation |xt−1|
and the absolute predicted deviation |Eh,t−2[xt−1]| to the fundamental value are larger
than R∗ times the absolute deviation |xt−2|, strategy h generates positive realized fit-
ness. In contrast, a strategy that wrongly predicts whether the asset price mean reverts
back toward the fundamental value or moves away from it generates a negative realized
fitness.

At the beginning of period t, investors compare the realized relative performances of
the various strategies and withdraw capital from those that performed poorly and move
it to better strategies. The fractions nh,t evolve according to a discrete choice model with
multinomial logit probabilities, that is (see Eq. 4.13),

nh,t =
exp[βπh,t−1]∑H
k=1 exp[βπk,t−1]

=
1

1 +
∑
k 	=h exp[−βΔπh,k

t−1]
(4.55)

where β > 0 is the intensity of choice as before, and Δπh,k
t−1 = πh,t−1 − πk,t−1 denotes the

difference in realized profits of belief type h compared to type k.



246 Chapter 4 • Complex Evolutionary Systems in Behavioral Finance

4.5.2. Estimation of a Simple Two-Type Example

Consider the case of two types, both predicting next period’s deviation by extrapolating
past realizations in a linear fashion, that is,22

Eh,t[xt+1] = fh(xt−1) = ϕhxt−1 (4.56)

The dynamic asset-pricing model with two types can then be written as

R∗xt = ntϕ1xt−1 + (1 − nt)ϕ2xt−1 + εt (4.57)

where ϕ1 and ϕ2 denote the coefficients of the two belief types, nt represents the fraction
of investors that belong to the first type of traders and εt represents a disturbance term.
The value of the parameter ϕh can be interpreted as follows: If it is positive and smaller
than 1, investors expect the stock price to mean-revert toward the fundamental value.
This type of agent represents fundamentalists because they expect the asset price to
move back toward its fundamental value in the long run. The closer ϕh is to 1, the more
persistent are the expected deviations. If the beliefs parameter ϕh is larger than 1, it
implies that investors believe the deviation of the stock prices will grow over time at a
constant speed. We will refer to this type of agent as a trend follower. Note in particular
that when one group of investors believes in a strong trend, that is, ϕh > R∗, this may
cause asset prices to deviate further from their fundamental value. In the case with two
types with linear beliefs (Eq. 4.56), the fraction of Type 1 investors is

nt =
1

1 + exp{−β∗ [(ϕ1 − ϕ2)xt−3(xt−1 − R∗xt−2)]} (4.58)

where β∗ = β(1 + g)2/(aη2).
The two-type model (Eqs. 4.57 and 4.58) has been estimated using an updated ver-

sion of the dataset described in Shiller (1989), consisting of annual observations of the
S&P 500 index from 1871 to 2003. Here we present the estimation results with earn-
ings as cash flows, but using dividends as cash flows gives similar results. The valuation
ratios are then the P/E ratios.23

Recall that according to the static Gordon growth model, the fundamental price is
given by

p∗t = myt m =
1 + g
r − g (4.59)

The fundamental value of the asset is a multiple m of its cash flow, where m depends
on the discount rate r and the cash-flow growth rate g. The multiple m can also be

22In the estimation of the model, higher-order lags turned out to be insignificant, so we focus on the simplest
case with only one lag in the function fh(·), with ϕh the parameter characterizing the strategy of type h.
23Since earnings data are noisy, to determine the fundamental valuation we follow the practice of Campbell
and Shiller (2005) to smooth earnings by a 10-year moving average.
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interpreted as the P/D or the P/E ratios implied by the present value model. Figure 4.9
shows the (log) of yearly S&P 500 data together with the fundamental benchmark as
well as their P/E ratios. The figure shows a clear long-term comovement of the stock
price and the fundamental value. However, the P/E ratio takes persistent swings away
from the constant value predicted by the present-value model. This suggests that the
fundamental value does not account completely for the dynamics of stock prices, as
was suggested in the early debate on mean reversion by Summers (1986). A survey of
the ongoing debate is given in Campbell and Shiller (2005). Here we use the simple
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FIGURE 4.9 Yearly S&P 500, 1871–2003, and benchmark fundamental p∗t = myt, with m = (1 + g)/
(1 + r). (a) shows logs of S&P 500 and the log of the fundamental p∗t ; (b) shows the P/E-ratio of the S&P
500 around the constant fundamental benchmark p∗t /yt = m.
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constant-growth Gordon model for the fundamental price and estimate the two-type
model on deviations from this benchmark.24

Recall that R∗ = (1 + r)/(1 + g), where g is the constant growth rate of the cash
flow and r is the discount rate equal to the risk-free interest rate plus a risk premium.
We use an estimate of the risk premium—the difference between the expected return on
the market portfolio of common stocks and the risk-free interest rate—to obtain R∗, as
in Fama and French (2002). The risk premium safisfies

RP = g + y/p − i (4.60)

where g is the growth rate of dividends, y/p denotes the average dividend yield yt/pt−1

and i is the risk-free interest rate. For annual data from 1871 to 2003 of the S&P 500,
the estimates are i = 2.57% andRP = 6.56% so that r = 9.13% andR∗ = 1.074.25 The
corresponding average P/E ratio is 13.4, as illustrated in Figure 4.9.

Using yearly data of the S&P 500 index from 1871 to 2003, the parameters
(ϕ′1,ϕ′2, β∗) in the two-type model (Eqs. 4.57 and 4.58) can be estimated by nonlinear
least squares. The estimation results are as follows:

R∗xt = nt{0.80 xt−1}
(0.074)

+ (1 − nt){1.097 xt−1} + ε̂t
(0.052)

(4.61)

nt = {1 + exp[−7.54(−0.29xt−3 )
(4.93)

(xt−1 − R∗xt−2)]}−1

R2 = 0.77, AIC = 2.23, AICAR(1) = 2.29, ϕAR(1) = 0.983,

QLB (4) = 0.94, F boot(p-value) = 10.15 (0.011)

The belief coefficients are highly significant and different from each other. On the
other hand, the intensity of choice β∗ is not significantly different from zero. This
is a common result in nonlinear switching-type regression models, where the param-
eter β∗ in the transition function is difficult to estimate and has a large standard
deviation because relatively large changes in β∗ cause only a small variation of the
fraction nt.

Teräsvirta (1994) argues that this should not be worrying as long as there is signifi-
cant heterogeneity in the estimated regimes. The nonlinear switching model achieves
a lower value for the AIC selection criterion compared to a linear AR(1) model. This
suggests that the model is capturing nonlinearity in the data. This is also confirmed by
the bootstrap F-test for linearity, which strongly rejects the null hypothesis of linearity

24The same approach can be used for more general, time-varying fundamental processes. Manzan (2003)
shows that a dynamic Gordon model for the fundamental price, where the discount rate r and/or the growth
rate g are time varying, does not explain the large fluctuations in price-to-cash-flow ratios and in fact yields
a fundamental price pattern close to that for the static Gordon model. Boswijk et al. (2007) also estimate a
version of the model allowing for time variation in the growth rate of the cash flow and obtain similar results.
25These estimates are slightly different from Fama and French (2002) because, as in Shiller (1989), we use
the CPI index to deflate nominal values.
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in favor of the heterogeneous agent model. The residuals of the regression do not show
significant evidence of autocorrelation at the 5% significance level.

The estimated coefficient of the first regime is 0.80, corresponding to a half-life
of about three years. The first regime can be characterized as fundamentalist beliefs,
expecting the asset price to move back toward its fundamental value. In contrast, the
second regime has an estimated coefficient close to 1.1, implying that in this regime
agents are trend followers, believing the deviation of the stock price to grow over time
at a constant speed larger than R∗ ≈ 1.074. At times when the fraction of investors
using this belief is equal or close to 1, we have explosive behavior in the P/E ratio.
The sentiment of investors switches between a stable fundamentalists regime and a
trend-following regime. In normal periods agents consider the deviation a temporary
phenomenon and expect it to quickly revert to fundamentals. In other periods, a rapid
increase in stock prices not paralleled by improvements in the fundamentals causes
losses for fundamentalists and profits for trend followers. Evolutionary pressure will
then cause more fundamentalists to become trend followers, thus reinforcing the trend
in prices.

Figure 4.10 shows the time series of the fraction of fundamentalists and the average
market sentiment, defined as

ϕt =
ntϕ1 + (1 − nt)ϕ2

R∗
(4.62)

It is clear that the fraction of fundamentalists varies considerably over time, with peri-
ods in which it is close to 0.5 and other periods in which it is close to either of the
extremes 0 or 1. The series of the average market sentiment shows that there is sig-
nificant time variation between periods of strong mean reversion when the market is
dominated by fundamentalist and other periods in which ϕt is close to or exceeds 1
and the market is dominated by trend followers. These plots also offer an explanation
of the events of the late 1990s: For six consecutive years the trend-following strategy
outperformed the fundamentalist strategy and a majority of agents switched to the trend-
following strategy, driving the average market sentiment beyond 1 and thus reinforcing
the strong price trend. However, at the turn of the market in 2000, the fraction of funda-
mentalists increased again, approaching 1 and thus contributing to the reversal toward
the fundamental value in subsequent years.

The estimation results show that there are two different belief strategies: one in
which agents expect continuation of returns and the other in which they expect reversal.
We also find that there are some years in which one type of expectation dominates
the market. It is clear that the expectation of continuation of positive returns domi-
nated the market in the late 1990s, with the average market sentiment coefficient ϕt in
Eq. 4.62 larger than 1 in the late 1990s. Despite the awareness of the mispricing, in this
period investors were aggressively extrapolating the continuation of the extraordinary
performances realized in the previous years. Our approach endogenizes the switching
of agents among beliefs. The evolutionary mechanism that relates predictor choice to
their past performance is supported by the data. It also confirms previous evidence that
pointed in this direction.
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FIGURE 4.10 Estimated fraction nt of fundamentalists (a) and market sentiment factor ϕt (b) in
(Eq. 4.62) in two-type model.

Based on answers to a survey, Shiller (2000) constructed indices of “bubble expec-
tations” and “investor confidence.” In both cases, he found that the time variation in
the indices is well explained by the lagged change in stock prices. Based on a differ-
ent survey, Fisher and Statman (2002) found that in the late 1990s individual investors
had expectations of continuation of recent stock returns while institutional investors
were expecting reversals. This is an interesting approach to identifying heterogeneity of
beliefs based on the type of investors rather than the type of beliefs. In the view of our
model, the bubble in the 1990s was triggered by good news about economic fundamen-
tals (a new Internet technology) and strongly reinforced by trend extrapolating behavior.
The bubble was reversed by bad news about economic fundamentals (excessive growth
cannot last forever and is not supported by earnings), and the crash was accelerated by
switching of beliefs back to fundamentals.



Cars Hommes and Florian Wagener 251

4.5.3. Empirical Implications

In this subsection we discuss some empirical implications of the estimation of our
nonlinear evolutionary switching model with heterogeneous beliefs. First, we investi-
gate the response to a positive shock to fundamentals when the asset is overvalued.
Second, we address the question concerning the probability that a bubble may resume
by considering the evolution of the valuation ratios conditional on data until the end of
2003. These simulation experiments both show the importance of considering nonlinear
effects in the dynamics of stock prices.

Response to a Fundamental Shock

We use the estimated parameters to investigate the response of the market valuation to
good news. Assume that at the beginning of period t the cash flow increases due to
a permanent increase in its growth rate. This implies that the asset has a higher fun-
damental valuation ratio, but what is the effect on the market valuation? We address
this question both for the nonlinear switching model and a linear benchmark. The lin-
ear model may be interpreted as a model with a representative agent believing in an
average mean reversion toward the fundamental.26 Assume that at t − 1 the funda-
mental valuation ratio was 15 and the good news at time t drives it to 17. Assume
also that the equilibrium price at t − 1 was 16. Figure 4.11 shows the valuation ratio
dynamics in response to the good news for both the linear and the nonlinear switching
models.

The figure shows the average price path over 2000 simulations of the estimated
models. There is a clear difference between the linear and the nonlinear models. In the
linear case, the positive shock to the fundamental value leads to an immediate increase
of the price followed by mean-reversion thereafter. In contrast, for the nonlinear het-
erogeneous agent model, the pattern that emerges is consistent with the evidence of
short-run continuation of positive returns and long-term reversal. After good news, the
agents incorporate the news into their expectations and they expect that part of the previ-
ous period overvaluation will persist. One group—the trend followers—overreacts and
expects a further increase of the price, while the other group—the fundamentalists—
expects the price to diminish over time. The equilibrium price at time t overshoots and
almost reaches 18. In the following two periods trend followers continue to buy the
stock and drive its price and its valuation ratio even higher. Finally, the reversal starts
and drives the ratio back to its long-run fundamental value. Initially, the aggressive
investors interpret the positive news as a confirmation that the stock overvaluation was
justified by forthcoming news. However, the lack of further good news convinces most
investors to switch back to the mean-reverting expectations and the stock price is driven
back toward its fundamental value.

26The linear benchmark is, for example, obtained for β = 0 or equivalently when both fractions nt = 1 − nt =
0.5 in Eq. 4.57. Hence, in the linear model there is no strategy switching between different types but rather a
representative agent with a linear forecasting rule.



252 Chapter 4 • Complex Evolutionary Systems in Behavioral Finance

0 5 10 15 20 25 30

15

16

17

18

19

20

FIGURE 4.11 Average response (over 2000 simulations) to a shock to the fundamental for the linear rep-
resentative agent model (dashed line) and the nonlinear two-type switching model (dotted line with circles).
At period 0 there is a permanent shock to the fundamental price from 15 to 17. The simulation uses the esti-
mated parameter values for the P/D ratio, with a representative agent average belief parameter ϕ = 0.968 and
heterogeneous agent parameters ϕ1 = 0.762 and ϕ2 = 1.135 for the two types. The nonlinear heterogeneous
agent model exhibits short-run continuation of positive returns and long-term reversal.

Will the Bubble Resume?

As a model forecasting exercise, we simulate the evolution of the valuation ratios using
the estimated heterogeneous agent model. We then obtain the predicted evolution of
the valuation ratio conditional on the value realized at the end of 2003. Innovations are
obtained by reshuffling the estimated residuals. Instead of focusing our attention only
on the mean or the median of the distribution, we consider the quantiles corresponding
to 10%, 30%, 50%, 70%, and 90% probability over 2000 replications of the estimated
model in Eq. 4.61 for the P/E ratio. In addition to the quantiles predicted by our non-
linear model, we also plot those predicted by the linear representative agent model.
Figure 4.12 shows the 1- to 5-year periods ahead quantiles of the estimated model’s
predictive distribution.

The linear model—Figure 4.12(a)—predicts that the valuation ratio reverts toward
the mean at all quantiles considered. In contrast, the nonlinear switching model predicts
that there is a significant probability that the ratio may increase again as a result of the
activation of the trend-following regime. The 70% and 90% quantiles clearly show that
the PD ratio may increase again to levels close to 35. Stated differently, our heteroge-
neous agent model predicts that with probability over 30% the PD ratio may increase to
more than 30. Note, however, that the median predicts that the ratio should decrease as
implied by the linear mean-reverting model.

Another implication of our model is that if the first (mean-reverting) regime domi-
nates the beliefs of investors, it will enforce a much faster adjustment than predicted
by the linear model. This is clear from the bottom quantiles of the distributions. These
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FIGURE 4.12 Prediction of P/E ratios five years ahead, based on linear representative agent model (a) and nonlinear two-type
switching model (b). The estimated belief parameters are ϕ = 0.983 for the representative agent and ϕ1 = 0.80 and ϕ2 = 1.097 for
the two-type switching model. The quantiles corresponding to 10, 30, 50, 70, and 90% probability over 2000 replications are shown.
The realized P/E ratios, 2004–2006, are also indicated and show that the realized P/E ratio for 2006 falls outside the 10% quantile
of the linear model.

simulations show that predictions from a linear, representative agent model versus a
nonlinear, heterogeneous agent model are quite different. In particular, extreme events
with large deviations from the benchmark fundamental valuation are much more likely
in a nonlinear world.

4.6. LABORATORY EXPERIMENTS

Asset-pricing models with heterogeneous beliefs exhibit interesting dynamics char-
acterized by temporary bubbles and crashes, triggered by news about fundamentals
and reinforced by self-fulfilling expectations and trend-following investment strategies.
The previous section focused on the empirical relevance of such models; this sec-
tion confronts the model with data from laboratory experiments with human subjects.
Laboratory experiments are well suited to discipline the class of behavioral modes
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(or heuristics) boundedly rational subjects may use in economic decision making. Here,
we discuss a number of “learning to forecast experiments” in which subjects must
forecast the price of an asset for which the realized market price is an aggregation of
individual expectations.

In real markets, it is hard to obtain detailed information about investors’ individual
expectations. One approach is to collect survey data on individual expectations, as done
for example by Turnovsky (1970) on expectations about the Consumer Price Index and
the unemployment rate during the post-Korean War period. Frankel and Froot (1987a,b,
1990a,b), Allen and Taylor (1990), Ito (1990), and Taylor and Allen (1992) use a survey
on exchange rate expectations and conclude that financial practitioners use different
forecasting and trading strategies. A consistent finding from survey data is that at short
horizons, investors tend to use extrapolative chartists’ trading rules, whereas at longer
horizons investors tend to use mean-reverting fundamentalists’ trading rules. Shiller
(1987, 1990, 2000) analyzes surveys on expectations about stock market prices and
real estate prices and finds evidence for time variation in investors’ sentiment; see also
Vissing-Jorgensen (2003).

Laboratory experiments with human subjects provide an alternative, complementary
approach to study the interaction of individual expectations and the resulting aggregate
outcomes. An important advantage of the experimental approach is that the experi-
menter has full control over the underlying economic fundamentals. Surprisingly little
experimental work has focused on expectation formation in markets. Williams (1987)
considers expectation formation in an experimental double auction market that varies
from period to period by small shifts in the market-clearing price. Participants predict
the mean contract price for four or five consecutive periods. The participant with the
lowest forecast error earns $1.00.

In Smith, Suchanek, and Williams (1998), expectations and the occurrence of spec-
ulative bubbles are studied in an experimental asset market. In a series of papers,
Marimon, Spear, and Sunder (1993) and Marimon and Sunder (1993, 1994, 1995)
studied expectation formation in inflationary overlapping generations’ economies.
Marimon, Spear, and Sunder (1993) find experimental evidence for expectationally
driven cycles and coordination of beliefs on a sunspot two-cycle equilibrium but only
after agents have been exposed to exogenous shocks of a similar kind. Marimon and
Sunder (1995) present experimental evidence that a “simple” rule, such as a constant
growth of the money supply, can help coordinate agents’ beliefs and help stabilize the
economy. Duffy (2006, 2008) gives stimulating surveys of laboratory experiments in
various macro settings and how individual and aggregate behavior could be explained
by agent-based models.

However, most of these papers cannot be viewed as pure experimental testing of
the expectations hypothesis, everything else being constant, because in the experiments
dynamic market equilibrium is affected not only by expectations feedback but also
by other types of human decisions, such as trading behavior. A number of laboratory
experiments have focused on expectation formation exclusively. Schmalensee (1976)
presented subjects with historical data on wheat prices and asked them to predict the
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mean wheat price for the next five periods. In Dwyer et al. (1993) and Hey (1994),
subjects had to predict a time series generated by a stochastic process such as a random
walk or a simple linear first-order autoregressive process; in the last two papers no
economic context was given. Kelley and Friedman (2002) considered learning in an
orange juice futures price-forecasting experiment, where prices were driven by a lin-
ear stochastic process with two exogenous variables (weather and competing supply).
A drawback common to these papers is that the historical or stochastic price series are
exogenous and there is no feedback from subjects’ forecasting behavior.

4.6.1. Learning to Forecast Experiments

In the remaining part of this section we mainly focus on the learning-to-forecast exper-
iments in Hommes et al. (2005). In these experiments, subjects forecast the price of
a risky asset, which is determined by market clearing with feedback from individ-
ual expectations. Similar experiments have been performed by van de Velden (2001),
Gerber et al. (2002), Sutan and Willinger (2005), Adam (2007), Hommes et al. (2007),
and Heemeijer (2007); see also the recent survey in Duffy (2008). We are particularly
interested in the following questions:

• How do boundedly rational agents form individual expectations, and how do they
learn in a heterogeneous world?

• How do individual forecasting rules interact, and what is the aggregate outcome of
these interactions?

• Will coordination occur, even when there is limited market information?
• Does learning enforce convergence to rational expectations equilibrium?

In real financial markets, traders are involved in two related activities: prediction and
trade. Traders make a prediction concerning the future price of an asset, and given this
prediction, they make a trading decision. In the experiments discussed here, the only
task of the subjects is to forecast prices; asset trading is computerized and derived from
optimal demand (from mean-variance maximization), given the individual forecast. The
experiments can therefore be seen as learning to forecast experiments (Marimon and
Sunder 1994, p. 134), in contrast to learning to solve intertemporal optimization prob-
lems or, more concisely, learning to optimize experiments (Duffy 2006, p. 4), where
participants are asked to submit their decisions (e.g., trading or consumption quantities)
while their private beliefs about future developments remain implicit. Learning to fore-
cast experiments provide us with “clean” data on expectations, which can be used to
test various expectations hypotheses.

In the experiments, each participant is told that he or she is an advisor to a pension
fund, with the only task to predict next period’s price of a risky asset. Earnings are given
by a (truncated) quadratic scoring rule:

eht = max
{

1300 − 1300
49

(
pt − peht

)2
, 0
}

(4.63)
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where 1300 points is equivalent to 0.5 euros, and earnings are 0 in period t when∣∣pt − peht∣∣ ≥ 7. Subjects are informed that their pension fund needs to decide how much
to invest in a risk-free asset paying a risk-free gross rate of return R = 1 + r, where r is
the real interest rate, and how much to invest in shares of an infinitely lived risky asset.
The risky asset pays uncertain IID dividends yt with mean ȳ. The mean dividend ȳ and
the interest rate r are common knowledge, so that the subjects could compute the (con-
stant) fundamental p∗ = ȳ/r = 3/0.05 = 60. Subjects know that the price of the asset is
determined by market clearing. Although they do not know the exact underlying market-
clearing equation, they have qualitative information about the market and are informed
that the higher their forecast, the larger will be the fraction of money of their pension
fund invested in the risky asset and the larger will be the demand for stocks. They do not
know the exact investment strategy of their pension fund and the investment strategies
of the other pension funds. They also do not know the number of pension funds (which
is six) or the identity of the other members of the group.

The experiment lasts for 51 periods. In every period t the participants have to predict
the price pt+1 of the risky asset in period t + 1, given the available information consist-
ing of past prices pt−1, pt−2, . . ., p1 and the participants’ own past individual predictions
peht, p

e
h,t−1, . . ., peh1. Notice that the participants have to make a two-period-ahead forecast

for pt+1, since pt−1 is the latest available price observation. Subjects are told that their
price forecast has to be between 0 and 100 for every period. In periods 1 and 2, no
information about past prices is available. At the end of period t, when all predictions
for period t + 1 have been submitted, the participants are informed about the price in
period t and earnings for that period are revealed. On their computer screens, the sub-
jects are informed about their earnings in the previous period, total earnings, a table of
the last 20 prices, and their corresponding predictions and time series of the prices and
their predictions. Subjects have no information about earnings and predictions of others.

4.6.2. The Price-Generating Mechanism

The asset market is populated by six pension funds and a small fraction of fundamen-
talist robot traders. Each pension fund h is matched with a participant and makes an
investment decision at time t based on this participant’s prediction peh,t+1 of the asset
price. The fundamentalist trader always predicts the fundamental price pf and trades
based on this prediction.

The realized asset price in the experiment is determined by market clearing, with
the pension fund’s asset demand derived from mean-variance maximization, given their
advisor’s forecast, as in the standard asset-pricing model with heterogeneous beliefs
(e.g., Campbell, Lo, and MacKinlay, 1997; Brock and Hommes, 1998; see Section 4.2).
The market-clearing price is given by Eq. 4.5:

pt =
1

1 + r
[(1 − nt) p̄t] (4.64)

where p̄et+1 = 1
6

∑6
h=1 p

e
h,t+1 is the average forecast for period t + 1 of the six partici-

pants, nt is the time-varying weight of the fundamentalist traders, and εt is a noise term,
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representing (small) stochastic demand and supply shocks. Note that the realized asset
price pt at time t is determined by the individual price predictions ph,t+1 for time t + 1.
Therefore, when traders have to make a prediction for the price in period t + 1, they do
not know the price in period t yet, and they can only use information on prices up to
time t − 1.

The weight nt of the fundamental traders in the market is endogenous and depends
positively on the absolute distance between the asset price and the fundamental value
according to:

nt = 1 − exp
(
− 1

200

∣∣pt−1 − pf
∣∣) (4.65)

The greater this distance, the more the fundamentalist trader will buy or short the asset.
The fundamentalist trader therefore acts as a “stabilizing force” pushing prices in the
direction of the fundamental price. Their presence excludes the possibility of everlasting
speculative bubbles in asset prices.27 Also note that nt = 0, if pt−1 = pf.

An important feature of the asset-pricing model is its self-confirming nature or posi-
tive feedback: If all traders make a high (low) prediction, the realized price will also be
high (low). This feature is characteristic for speculative asset markets: If traders expect
a high price, the demand for the risky asset will be high, and as a consequence the
realized market price will be high, assuming that the supply is fixed.

4.6.3. Benchmark Expectations Rules

Figure 4.13 shows the price dynamics under three benchmark expectation rules: rational
expectations, naı̈ve expectations, and a trend extrapolation rule. In the rational expec-
tations’ benchmarks, all agents forecast the price to be equal to its fundamental value
pf = 60.28 Realized prices are then given by

pt = pf +
1

1 + r
εt (4.66)

Therefore, under rational expectations, prices exhibit small random fluctuations around
the fundamental price pf = 60. This outcome of the experiment should probably not
be expected right from the start, but perhaps subjects can learn to coordinate on the
rational, fundamental forecast.

27DeGrauwe et al. (1993) discuss a similar stabilizing force in an exchange rate model with fundamental-
ists and chartists. In the same spirit, Kyle and Xiong (2001) introduce a long-term investor who holds a
risky asset in an amount proportional to the spread between the asset price and its fundamental value. Since
in the experiments the fundamental value is pf = 60, the weight of the fundamentalist traders is bounded
above by n̄ = 1 − exp

(
− 3

10

)
≈ 0.26. The weight of the other traders is the same for each trader and equal to

(1 − nt) /6 ≤ 0.17.
28Recall that participants know the values of ȳ and r and therefore have enough information to compute the
fundamental value and predict it for any period.
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FIGURE 4.13 Realized prices under some benchmark expectation rules. (a) Under rational expecta-
tions, prices remain very close to the fundamental price 60; (b) under naı̈ve expectations, prices converge
monotonically, but slowly, toward the fundamental price; (c) under a simple linear AR-2 rule, pet+1 =
(pt−1 + 60)/2 + (pt−1 − pt−2), which may be interpreted as an anchor and adjustment rule, prices exhibit
persistent oscillations.

Under naı̈ve expectations all participants use the last observed price as their forecast,
that is, peh,t+1 = pt−1. The asset price then converges (almost) monotonically toward the
fundamental price, as illustrated in Figure 4.13. Finally, the figure also illustrates what
happens when all subjects use the simple trend extrapolation rule:

peh,t+1 =
(60 + pt−1)

2
+ pt−1 − pt−2 (4.67)

If all subjects use the forecasting rule (Eq. 4.67), realized market prices will fluctuate
for 50 periods. This simple rule may be viewed as an anchor and adjustment heuristic,
following the terminology of Tversky and Kahneman (1974), since it uses an anchor
(the average of the fundamental price and the last observed price) and extrapolates the
last price change from there. One may wonder how subjects would arrive at this anchor
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if they do not know the fundamental, but quite surprisingly a number of subjects used a
rule very similar to Eq. 4.67.

4.6.4. Aggregate Behavior

Figure 4.14 shows time series of the realized asset prices and individual predictions
in the experiments for five different groups. The first three groups illustrate the three
typical qualitatively different outcomes in the treatment with robot traders:

• Monotonic convergence. The price converges (atmost) monotonically to the funda-
mental price from below.

• Persistent oscillations. The price oscillates with more or less constant amplitude;
there is no convergence of the price to its fundamental value.

• Dampened oscillations. The price oscillates around the fundamental price with
large amplitude initially, but the amplitude decreases over time, indicating (slow)
convergence to the fundamental price.

The last two groups in Figure 4.14 illustrate what happens in a different treatment
of the experiments without fundamental robot traders. When there are no fundamental
robot traders present in the market, persistent price oscillations with large amplitude
typically occur. The difference between these last two groups lies in the upper bound
for price predictions, set to 100 (as in the case with robot traders) and 1000, respectively.
Hommes et al. (2008) ran experiments without robot traders and a high upper bound of
1000 (maintaining the same fundamental price pf = 60) and in six out of their seven
markets long-lasting price bubbles (almost) reaching the upper bound were observed,
with price levels up to 15 times the fundamental value.

Comparing the experimental results in Figure 4.14 with the simulated benchmarks in
Figure 4.13 one observes that realized prices under naı̈ve expectations resemble real-
ized prices in the case with monotonic convergence remarkably well. On the other
hand, the case of persistent oscillatory behavior in the experiment is qualitatively simi-
lar to the asset price behavior when participants use a simple AR (2) prediction strategy.
Clearly, naı̈ve and AR (2) prediction strategies give a qualitatively much better descrip-
tion of aggregate asset price fluctuations in the experiment than does the benchmark
case of rational expectations. Recall from Subsection 4.6.3 that an AR (2) rule has a
simple behavioral interpretation as an anchor and adjustment trend-following forecast-
ing strategy.

4.6.5. Individual Prediction Strategies

In this subsection we discuss some characteristics and estimation of individual
prediction strategies. Some participants try to extrapolate observed trends and by doing
so overreact and predict too high or too low. Other participants are more cautious
when submitting predictions and use adaptive expectations, that is, an average of their
last forecast and the last observed price. An individual degree of overreaction can be
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FIGURE 4.14 Realized prices (a) and individual predictions (b) in five typical asset-pricing experiments. The fundamental
price pf = 60 is indicated by a horizontal line. The first three examples show three different outcomes in the experiments with
robot traders: monotonic convergence, persistent oscillations, and dampened oscillations. The last two examples show experiments
without robot traders for upper bounds of 100 and 1000, respectively. The right panels show a striking coordination of individual
forecasts.

quantified as the average absolute (one-period) change in predictions of participant h:

e
h =

1
41

51∑
t=11

∣∣peht − peh,t−1

∣∣ (4.68)

The average absolute change in the price is given by  = 1
41

∑51
t=11 |pt − pt−1|. We

will say that individual h overreacts if e
h >  and we will say that individual h is
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FIGURE 4.15 Individual degrees of overreactions for 10 different groups, all with a robot trader: the first
seven with a fundamental pf = 60 and the last three with a fundamental pf = 40. The line segments represent
the average absolute price change; the dots represent the average absolute changes in individual forecasts.
Dots above the line segments correspond to individual overreaction.

cautious if e
h ≤ . Figure 4.15 illustrates the individual degree of overreaction for the

different groups. In the case of monotonic convergence (groups 2 and 5), there is no
overreaction; in the case of permanent oscillations (groups 1, 6, 8, and 9) a majority
of subjects shows some overreaction, but it is relatively small. In the case of dampened
oscillations (groups 4, 7, and 10), with large temporary bubbles in the initial phases of
the experiment, a majority of participants strongly overreacts. Oscillatory behavior and
temporary bubbles are thus caused by overreaction of a majority of agents.

Individual prediction strategies have been estimated using a simple linear model:

peh,t+1 = αh +
4∑
i=1

βhipt−i +
3∑
j=0

γhjp
e
ht−j + νt (4.69)

where νt is an IID noise term. This general setup includes several important special
cases: (1) naı̈ve expectations (βh1 = 1, all other coefficients equal to 0); (2) adap-
tive expectations (βh1 + γh0 = 1, all other coefficients equal to 0), and (3) AR (L)
processes (all coefficients equal to 0, except αh, βh1, . . ., βhL). The estimation results
for 60 participants (using observations t = 11 to t = 51) can be summarized as follows:

• For more than 90% of the individuals, the simple linear rule (Eq. 4.69) describes
forecasting behavior well.

• In the monotonically converging markets, a majority of subjects uses a naı̈ve, an
adaptive, or an AR(1) forecasting rule.

• In the dampened and persistently oscillating markets, a majority of subjects uses
simple AR(2) or AR(3) forecasting rules; in particular, a number of subjects use a
simple trend-following rule of the form:

peh,t+1 = pt−1 + δh (pt−1 − pt−2) δh > 0 (4.70)

This forecasting rule corresponds to positive feedback of momentum traders.
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Within each group, participants learn to coordinate on a simple forecasting rule,
which becomes self-fulfilling. If participants coordinate on an adaptive or AR(1) fore-
casting rule, the asset price monotonically converges to the fundamental price. In
contrast, if the participants coordinate on a trend-following rule, transitory or even
permanent price oscillations may arise, with persistent deviations from fundamental
price. Anufriev and Hommes (2008) extended the adaptive belief systems in Section 4.2
and developed an evolutionary heuristics-switching model, matching all three different
observed patterns in the learning to forecasting experiments remarkably well.

4.6.6. Profitability

In the learning-to-forecast experiments, subjects have been rewarded by their forecast-
ing performance. As discussed in Hommes (2001), the fitness measure of (minus)
squared forecasting errors is equivalent to risk-adjusted profits, and therefore it may
be a relevant measure in real markets (see Footnote 6). But it is interesting to inves-
tigate the corresponding realized profits of the pension funds. In this section therefore
we briefly discuss the profitability, that is, the (nonrisk-adjusted) realized profits, of the
investment strategies. Realized profits of a mean-variance investment strategy based on
a price forecast peh,t+1 are given by:

πht = (pt+1 + yt+1 − Rpt)(peh,t+1 + ȳ −Rpt) (4.71)

As a typical example, Figure 4.16 shows the realized profits and the realized accu-
mulated profits in group 4, that is, a group with a robot trader and upperbound 100
exhibiting dampened price oscillations (the third panel in Figure 4.14). Figure 4.16
shows the realized profits corresponding to the six individual forecasts, the realized
profits of the fundamental robot trader, and the realized profits of a hypothetical
switching strategy, together with the realized price series (scaled by a factor of 3).

Clearly there are large fluctuations in the realized profits and all strategies occasion-
ally suffer from large losses. The fundamental strategy starts with positive profits in
periods 1 to 6 as the asset price rises from below the fundamental. When the asset price
rises above its fundamental value and the bubble starts, the fundamental strategy makes
large losses in periods 7 to 13. At the peak of the first bubble, at period 13, the fun-
damental strategy has performed second to last on average, with the second to lowest
accumulated realized profits. During the crash, however, the fundamentalists make huge
profits because they have built a large short position in the risky asset. At the same time,
most other (trend-following) strategies suffer large losses because they hold long posi-
tions. As the crash continues and the asset price falls below its fundamental value, the
fundamental strategy starts making losses again. At the bottom of the market in period
19, fundamentalists make a large loss. Over the full sample of 50 periods, however, on
average the fundamental strategy performs very well and accumulates more profits than
the other six forecasting strategies. Figure 4.16 also shows that the fundamental strategy
is beaten by a switching strategy, always selecting the best (according to last period’s
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FIGURE 4.16 Realized (nonrisk adjusted) profits (top panel) and accumulated profits (bottom panel) for group 4 (see Figure
4.14) with a robot trader and price upper bound 100. The graphs in (a) show periods 1–50; (b) graphs zoom in to periods 1–25;
the realized price series (scaled by a factor of 3) is also shown. The top graphs show the realized profits corresponding to the six
individual forecasting strategies, the fundamental robot trader, and a hypothetical switching strategy using the best (according to
last period’s realized profits) of the other seven strategies. The bottom graphs show the accumulated profits of these eight strategies.
Realized profits exhibit large fluctuations over time, and all strategies at times suffer from large losses. On average and in terms of
accumulated profits, the fundamental strategy performs very well but is beaten by the switching strategy.

realized profit) out of the seven other strategies. Stated differently, the switching strat-
egy always uses the forecast of the advisor whose pension fund generated the highest
realized profit in the previous period. Such a switching strategy beats the fundamental
robot strategy.
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4.7. CONCLUSION

This chapter has reviewed some behavioral finance models with evolutionary selec-
tion of heterogeneous trading strategies and discussed their empirical and experimental
validity. When strategy selection is driven by short-run realized profits, trend-following
strategies may destabilize asset markets. Asset price fluctuations are characterized by
phases in which fundamentalists dominate and prices are close to fundamentals, sud-
denly interrupted by possibly long-lasting phases of price bubbles when trend-following
strategies dominate the market and prices deviate persistently from fundamentals. Even
in simple heterogeneous belief models, asset prices are difficult to predict and market
timing based on the prediction of the start or the collapse of a bubble is extremely diffi-
cult and highly sensitive to noise. Estimation of simple versions of heterogeneous agent
models on yearly S&P 500 data suggests that stock prices are characterized by behav-
ioral heterogeneity. Simple evolutionary models therefore could provide an explanation
of, for example, the dot-com bubble as being triggered by good news about economic
fundamentals and subsequently strongly amplified by trend-following trading strate-
gies. Laboratory experiments using human subjects confirm that coordination on simple
trend-following strategies may arise in asset markets and cause persistent deviations
from fundamentals.

In a heterogeneous beliefs asset-pricing model, as long as prices fluctuate around
their fundamental values, fundamentalist strategies do quite well in terms of accumu-
lated profits. If there are no limits to arbitrage and fundamentalists can survive possibly
long-lasting bubbles during which they suffer large losses, their strategy performs very
well in the long run and may help stabilize markets. However, fundamentalists can
be beaten by a switching strategy based on recent realized profits, thus providing an
incentive for investors to keep switching strategies. It should be noted that the models
discussed here are very stylized, with a well-defined fundamental price. In real markets,
there may be a lot of disagreement about the “correct” fundamental price, and it may
then not be so clear what the fundamental strategy would be. Limits to arbitrage may
also prevent fundamentalists from holding long-lasting positions opposite to the trend
as more and more traders go with the trend based on their recent success.

Most behavioral asset pricing models focus on a single risky asset. Only a few
extensions to a multiasset setting have been made until now. Westerhoff (2004) and
Chiarella et al. (2007) considered multi-asset markets, where chartists can switch their
investments between different markets for risky assets. The interaction between the dif-
ferent markets causes complex asset price dynamics, with different markets exhibiting
comovements as well as clustered volatility and fat tails of asset returns. Böhm and
Wenzelburger (2005) apply random dynamical systems to investigate the performance
of efficient portfolios in a multi-asset market with heterogeneous investors.

Work on complex evolutionary systems in finance is rapidly growing, but little work
has been done on policy implications. The most important difference with a repre-
sentative rational agent framework is probably that, in a heterogeneous, boundedly
rational world, asset price fluctuations exhibit excess volatility. If this is indeed the case,
it has important implications concerning, for example, the debates on whether a Tobin
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tax on financial transactions is desirable or whether financial regulation is desirable.
Westerhoff and Dieci (2006) use a complex evolutionary system to investigate the effec-
tiveness of a Tobin tax. Investors can invest in two different speculative asset markets.
If a Tobin tax is imposed on one market, it is stabilized, while the other market is
destabilized; if a tax is imposed on both markets, price fluctuations in both markets
decrease.

Brock, Hommes, and Wagener (2008) study the effects of financial innovation on
price volatility and welfare. They extend the asset-pricing model with heterogeneous
beliefs in Section 4.2 by introducing hedging instruments in the form of Arrow secu-
rities, that is, state contingent claims to uncertain future events. They show that more
hedging instruments may destabilize markets and decrease welfare when agents are
boundedly rational and choose investment strategies based on reinforcement learning.
The intuition of this result is simple: Optimistic and/or pessimistic traders take larger
positions when they can hedge more risk, and those who happen to be on the right side
of the market will be reinforced more. In a world of bounded rationality and learning
from past success, more hedging instruments may thus lead to more persistent devia-
tions from market fundamentals. Developing a theory of complex multi-asset market
models with heterogeneous interacting trading strategies and empirical and experimen-
tal testing will be an important area of research for years to come. From a practitioner
viewpoint, this kind of research seems highly relevant to gain more insight into the
causes of financial crises, such as the current credit crisis, in order to hopefully avoid
such crises in the future.
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APPENDIX 4.1: BIFURCATION THEORY

The purpose of this appendix is to show how stability loss of a stable steady state
is necessarily connected to one of a small number of standard bifurcations. For this,
the first section sketched how a system at stability loss can be reduced to a one- or
two-dimensional system. The second section presents the most common bifurcation
scenarios: saddle node, period doubling, Hopf, and pitchfork. See Kuznetsov (1995) for
a detailed mathematical treatment of bifurcation theory.

A4.1.1. Basic Concepts from Dynamical Systems

Instead of directly dealing with evolution equations of the form:

xt = ϕ(xt−1, . . ., xt−n) (4.72)

dynamical system theory usually considers first-order vector dynamics:

yt = Φ(yt−1) (4.73)

where yt = (xt, . . ., xt−(n−1)) and where the system map Φ : R
n → R

n is given as:

Φ(yt) =

⎛
⎜⎜⎜⎝
ϕ(xt−1, . . ., xt−n)

xt−1
...

xt−(n−1)

⎞
⎟⎟⎟⎠ (4.74)

Given an initial state y0, the orbit of Φ through y0 is the sequence {yt}∞t=0, satisfying
Eq. 4.73 for every t. For instance, a steady state x̄ of the evolution equation, which
satisfies x̄ = ϕ(x̄, . . ., x̄), corresponds to the constant orbit yt = (x̄, . . ., x̄) for all t of Φ.
Such an orbit is called a fixed point of the dynamical system Φ.

In this appendix we discuss only stability changes of fixed points (but stability
changes of periodic points can be handled similarly). By definition, a fixed point ȳ
is asymptotically stable if for all y0 sufficiently close to ȳ, the orbit of Φ through y0

tends to ȳ as t → ∞. A fixed point ȳ is unstable if arbitrarily close to it there are initial
points y0, the orbits of which do not tend to ȳ as t → ∞.

Let us assume, for simplicity, that y = 0 is a fixed point of Φ. The linearization of
the dynamics of Eq. 4.73 at y = 0 is given as:

yt = Lyt−1 (4.75)

where L = DΦ(0) is the n × n Jacobi matrix of Φ at ȳ = 0. We have this theorem.
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Theorem 4.1. If all eigenvalues λj , j = 1, . . ., n, of L satisfy |λj| < 1, then the fixed
point y = 0 is asymptotically stable. If there is at least one eigenvalue such that |λj| > 1,
then y = 0 is unstable.

In general, a fixed point ȳ is called hyperbolic if no eigenvalue λ of L is on the
complex unit circle, that is, |λ| 	= 1. Note that the stability of a hyperbolic fixed point
can be determined just by looking at the eigenvalues.

A bifurcation of a system is a qualitative change in the orbit structure as a system
parameter is changed. In this appendix, we focus on the simplest kind of bifurcations:
the possibilities of a fixed point to lose stability as a one-dimensional parameter is
varied.

That is, we consider the case that the system map Φμ : R
n → R

n depends on a para-
meter μ ∈ [μ1,μ2]. Let us assume that ȳ1 is an attracting hyperbolic fixed point of the
map Φμ1 . Note that the fixed point equation:

Φμ(y) − y = 0 (4.76)

can be solved for y as a function of μ whenever det(DΦμ(y) − I) 	= 0, that is, when-
ever λ = 1 is not an eigenvalue of DΦμ(y). Consequently, we can find a parametrized
family of fixed points ȳμ such that ȳμ1 = ȳ1, and we can investigate the stability of ȳμ
as μ varies.

The eigenvalues λ1, . . ., λn of Lμ = DΦμ(ȳμ) are continuous functions of μ; by
assumption |λj(μ1)| < 1 for all j. Theorem 4.1 implies that stability changes can occur
only if for some μ0 ∈ (μ1,μ2) the fixed point fails to be hyperbolic; that is, if one of the
eigenvalues, say λ1(μ0), has absolute value 1.

There are three main mechanisms via which a fixed point can fail to be hyperbolic:
the saddle-node bifurcation λ1(μ0) = 1; the period-doubling bifurcation λ1(μ0) = −1;
and the Hopf bifurcation λ1(μ0) = eiα with 0 < α < π. In the last case, there are two
eigenvalues of absolute value equal to 1, since the complex conjugate e−iα is necessarily
an eigenvalue as well. Of course, it could happen that several eigenvalues have absolute
value equal to 1 simultaneously in configurations other than those listed, but it can be
shown that these cases are atypical for one-parameter systems.29

Here we analyze these three bifurcations one by one. The first step in each analysis
is to simplify the system by restricting it to an invariant center manifold. Recall that a
set W is invariant under Φ if Φ(W ) = W .

Theorem 4.2. (center manifold theorem). Let yμ be a fixed point of Φμ that is
nonhyperbolic if μ = μ0. For μ sufficiently close to μ0, there is a family of invariant
manifoldsW c

μ , depending differentially on μ, such thatW c
μ0

is tangent to the eigenspace
associated to the nonhyperbolic eigenvalues at μ = μ0.

The complete complexity of a bifurcation is retained if the map Φμ is resticted to the
center manifold W c

μ .

29These configurations are nonpersistent: They can be removed by making an arbitrarily small change to the
system Φμ.
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APPENDIX 4.2: BIFURCATION SCENARIOS

A4.2.1. The Saddle-Node Bifurcation

At this bifurcation, two fixed points are created or disappear, depending on the direction
of the parameter change.

A saddle-node bifurcation occurs in the case that λ1(μ0) = 1 and a one-dimensional
associated eigenspace. After introducing suitable new variables, the restriction of Φμ to
the associated one-dimensional center manifold takes the form:

Φμ(x) = x + μ − x2 + x3g(x,μ) (4.77)

where g is some differentiable function. In fact, it is sufficient to consider the normal
form:

ΦNF
μ (x) = x + μ − x2 (4.78)

This has to be justified afterward by arguing that the full family Φμ has qualitatively
the same dynamics. This latter step is not hard but rather technical and is therefore
omitted.

Let us analyze the normal form. Note that for μ = 0, the system has a single fixed
point x = 0 and L = DΦNF

0 (0) = 1, so we are indeed in the saddle-node case. For gen-
eral μ, fixed points are the solutions of the equation x = ΦNF

μ (x); for μ ≥ 0 they are
given as:

x̄1 =
√
μ x̄2 = −√μ (4.79)

whereas for μ < 0 no fixed points exist.
The linearizations Lj = DΦNF(x̄j) = 1 − 2x̄j read as:

L1 = 1 + 2
√
μ L2 = 1 − 2

√
μ (4.80)

We conclude that x̄1 is attracting and that x̄2 is repelling.
All this information can be summarized in a bifurcation diagram; see Figure A4.2.1.

In the diagram, the location of the fixed points is plotted as a function of the parameter μ;
the branch of stable fixed points is indicated by the solid curve, whereas the dashed
curve indicates the location of unstable fixed points. At μ = 0, the two branches meet
and there is exactly one fixed point; for μ < 0, there are no fixed points.

A4.2.2. The Period-Doubling Bifurcation

In this bifurcation, an attracting fixed point loses stability, and a period-two orbit is
generated.

A period-doubling bifurcation occurs if λ1(μ0) = −1. The eigenspace and the cor-
responding center manifold are again one-dimensional. The normal form reads in this
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FIGURE A4.2.1 Saddle-node (a) and period-doubling/pitchfork (b) bifurcation diagrams.

case as:

ΦNF
μ (x) = −x − μx + ax3 (4.81)

with a = ±1. We only consider the supercritical case a = 1, which occurs if the fixed
point is globally attracting under Φμ for μ < 0. Note that x̄ = 0 is now a fixed point for
all values of μ; moreover,

L = DΦNF
μ (0) = −1 − μ (4.82)

We conclude that x̄ is attracting for −2 < μ < 0 and repelling for μ > 0 or μ < −2,
implying in particular that the fixed point loses its stability at μ = 0. Moreover, note
that:

|ΦNF(|x|)| = (1 + μ − |x|2)|x| = |x| (4.83)

if |x| = √μ. This implies that the set P = {√μ,−√μ} is invariant. As the points in this
set are not fixed points, necessarily one is mapped to the other by the map ΦNF.

The set P is a so-called periodic orbit, and its elements are period-2 points. In gen-
eral, a period-m point is a point that is mapped to itself after m iterations of the system
map. It can be verified that nearby orbits are attracted to the period-2 orbit P as t → ∞;
the period-2 orbit P is asymptotically stable.

A4.2.3. The Hopf Bifurcation

In a Hopf (or Neimark-Sacker) bifurcation (Figure A4.2.2), a fixed point loses stability
and an invariant circle is generated. The bifurcation occurs if λ1(μ0) = eiα and λ2(μ0) =
e−iα , α ∈ (0,π)\{ π3 , π2 , 2π

3 }; the associated center manifold is two-dimensional. Again
restricting to the supercritical case, the normal form can be expressed as:

ΦNF(x1, x2) = (1 + μ − x2
1 − x

2
2)

(
cos ϑ(x) − sin ϑ(x)
sin ϑ(x) cos ϑ(x)

)(
x1

x2

)
(4.84)
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FIGURE A4.2.2 Hopf bifurcation diagram.

where ϑ(x) = α + β(x2
1 + x

2
2). By introducing polar coordinates x1 = r cosψ , x2 =

r sinψ , the map takes the form:

ΦNF(r,ψ) =
(

(1 + μ)r − r3

ψ + α + βr2

)
(4.85)

As in the case of the period-doubling bifurcation, the origin r = 0 is stable if −2 < μ <
0 and unstable if μ > 0 (or μ < −2). Moreover, for μ > 0 there is a stable invariant
circle:

C = {(r,ψ) : r =
√
μ} (4.86)

That is, as the stable fixed point r = 0 loses stability, a stable invariant circle branches
off. The dynamics on the circle are given as:

ψ �→ ψ + α + βμ mod 2π (4.87)

In the case of the Hopf bifurcation, investigating which properties of the normal form
carry over to the full normal form is a nontrivial problem.

A4.2.4. The Pitchfork Bifurcation

We have described the three simplest typical bifurcations of general systems. Some-
times a system has a special symmetry, like a reflection symmetry: Φ(−x) = −Φ(x).
In the space of such systems, bifurcations that are nontypical for general systems may
become typical. An example is the pitchfork bifurcation, which is typical for systems
with reflection symmetry.

The normal form for a (supercritical) pitchfork bifurcation reads as:

Φ(x) = (1 + μ)x − x3 (4.88)

Note that Φ(−x) = −Φ(x) and that as a consequence the point x = 0 is a fixed point
for all μ, stable if −2 < μ < 0, unstable otherwise. Moreover, for μ > 0, the points x =
±√μ are stable fixed points, branching off the fixed point x = 0 as that point loses
stability.
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Note also that the bifurcation diagram of the pitchfork bifurcation is identical to that
of the period-doubling bifurcation but that the interpretation of the branches is different.
In a (supercritical) pitchfork bifurcation one steady state changes stability while two
new (stable) steady states are created.
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Abstract

This chapter surveys the boundedly rational heterogeneous agent (BRHA) models of
financial markets, to the development of which the authors and several coauthors have
contributed in various papers. We give particular emphasis to the role of the market-
clearing mechanism used, the utility function of the investors, the interaction of price
and wealth dynamics, portfolio implications, the impact of stochastic elements on mar-
ket dynamics, and calibration of this class of models. Due to agents’ behavioral features
and market noise, the BRHA models are both nonlinear and stochastic. We show that
the BRHA models produce both a locally stable fundamental equilibrium corresponding
to that of the standard paradigm as well as instability with a consequent rich range of
possible complex behaviors characterized both indirectly by simulation and directly by
stochastic bifurcations. A calibrated model is able to reproduce quite well the stylized
facts of financial markets. The BRHA framework is thus able to accommodate market
features that seem not easily reconcilable for the standard financial market paradigm,
such as fat tails, volatility clustering, large excursions from the fundamental, and
bubbles.

Keywords: bounded rationality, interacting heterogeneous agents, behavioral finance, nonlinear
economic dynamics, complexity

5.1. INTRODUCTION

One of the main building blocks of the modern theory of finance relies on the paradigm
that asserts that asset prices are the outcome of the market interaction of utility-
maximizing agents who use rational expectations when forming expectations about
future market outcomes. Preferences of agents are assumed to satisfy conditions that
enable the mass of investors to be considered as a single representative agent. Since
agents rationally impound all relevant information into their trading decisions, the
movement of prices is assumed to be perfectly random and hence to exhibit random
walk behavior. This view is important in empirical finance because it is the theoretical
underpinning of the efficient markets hypothesis and asset-pricing theories generally.
It is also the basis of the stochastic price mechanisms assumed in many of the key
theoretical models in finance, such as the optimal portfolio rules that have developed
out of the work of Markowitz (1952) and Merton (1971); the static and intertemporal
capital asset-pricing model of Sharpe (1964), Lintner (1965), Mossin (1966), and
Merton (1974); and models for the pricing of contingent claims, beginning with the
work of Black and Scholes (1973). The impressive statistical evidence in favor of
market efficiency, discussed by, for example, Fama (1976), has been taken as support
for the random walk model, and for a long time financial economists were con-
tented with this view as the explanation of the time series behavior of observed asset
prices.
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A range of empirical studies, however, led to some questioning of the basic tenets of
the efficient markets model, or at least of the view that it suggests for asset price dynam-
ics. For a start, there has been a large number of studies reporting various anomalies
relating excess returns to a variety of factors such as firm size, leverage, the book value
of equity, and earnings/price ratio, to name some of the most widely studied. There
is also empirical evidence that stock prices over- or underreact to earnings announce-
ments (see Bernard, 1993), suggesting that information is not being instantaneously
impounded into prices, as the efficient-markets paradigm would suggest. Much of the
anomalies literature is surveyed by Keim (1988).

A number of authors have carried out so-called volatility tests that basically reveal
that market prices have far more volatility than can be ascribed to the underlying fun-
damentals (supposedly expected future dividends); much of this literature is surveyed
by Cochrane (1991), but see also Shiller (1981). It should be pointed out that some
authors, such as Marsh and Merton (1986), have criticized volatility tests on method-
ological grounds. These results have suggested to some authors that asset prices are not
only the result of rational investors reacting rationally to the shocks impinging on the
market but also contain at least some element of what has come to be called “irrational”
behavior, which in this chapter we prefer to call boundedly rational behavior. This led
to the development of mean-reverting fads models as suggested by Shiller and Perron
(1985) and Summers (1986), though these seem unable to account for the departures
from the random walk model. According to the efficient markets paradigm, large mar-
ket movements should be the result of some large news event. But many large market
movements, in particular the stock market crash of 1987, some of the “crashettes” dur-
ing the 1990s, and the large market movement worldwide in February 2007, seem to
be not at all related to any specific news event. Certainly the 1987 crash has been well
researched, but so far there is no satisfactory explanation of what was the “news event”
that triggered such a large market movement.

Significantly, despite the dominance of the random walk/efficient markets paradigm
in the academic literature and its espousal by business schools, some major investment
institutions continue to devote a considerable amount of valuable resources to tech-
nical analysis, as evidenced, for example, in the surveys of Allen and Taylor (1990),
Frankel and Froot (1987), and Taylor and Allen (1992). Indeed, there is some evi-
dence that such techniques meet with some measure of success; see, for example, Pruitt
and White (1988). From a theoretical perspective there had always been dissatisfaction
with the extreme assumptions of rationality and computational power ascribed to the
rational economic agent of the standard paradigm, going back at least to the writings
of Simon (1997). Furthermore, the concept of the no-trade theorem in efficient mar-
kets, popularized by Milgrom and Stokey (1982), seems to stand in stark contrast to
the incredible volume of trade observed in financial markets. We should also mention
the developments in so-called behavioral finance—see, for example, Stracca (2004)—
that question the efficient markets paradigm more from a behavioral or psychological
perspective.
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As a result of these considerations there developed during the 1990s an alternative
paradigm of asset price dynamics that took into consideration the fact that investors
in the real world can at best be boundedly rational, have limited computational power,
and are heterogeneous with respect to risk preferences and the way they form expecta-
tions. There were in fact some important antecedents to this new literature, in particular
Zeeman (1974), who postulated two groups of investors, fundamentalists and chartists,
and set up the market dynamics within the frameworks of catastrophe theory. Unfor-
tunately, his contribution came at the time that the so-called rational expectations
revolution was beginning to take a very strong grip on the mindset of economists.
Since Zeeman’s model started with the premise that some investors might not be fully
rational (in the sense used by rational expectations economists), his contribution was
completely overlooked. Furthermore, the fact that the dynamics of Zeeman’s model
were expressed in the language of catastrophe theory may also have impeded further
developments. As we now know, the language of the theory of nonlinear dynamical
systems is a far more suitable framework, and the sudden-jump type of behavior in reac-
tion to a smooth change in a parameter observed in catastrophe theory models can be
obtained if certain speeds of adjustment go to infinity (so that relaxation cycles result;
see Chiarella, 1986). This theory only started its modern phase of development in the
late 1970s.

Another important early contribution was that of Beja and Goldman (1980), who
also posited a simple differential equation model of fundamentalists and chartists and
showed that if the chartists were dominant in some sense, the market would tend to insta-
bility and some sort of breakdown. Interestingly enough, this contribution appeared in
the pages of the Journal of Finance, which some regard as the ultimate bastion of the
efficient markets paradigm. Although the Beja and Goldman article found little reso-
nance in the traditional finance literature, not even in the fads literature that developed
later, it certainly had an impact on the development of the boundedly rational heteroge-
neous agent paradigm that we survey here. Frankel and Froot (1990) also developed
a fundamentalist and chartist framework to try to explain the long deviation of the
U.S. dollar from its supposed fundamental value during the 1980s. These authors also
provided some survey evidence of the use of fundamentalism and chartism in foreign
exchange markets.

The boundedly rational heterogeneous agent (BRHA) literature can be considered
to have properly started with a number of contributions in the early 1990s. Day and
Huang (1990) and Chiarella (1992) took the fundamentalist/chartist framework of the
earlier cited literature and added to it some type of behavioral nonlinearity (such as an
asset-demand function) that resulted in the models exhibiting bounded dynamic behav-
ior when the steady state becomes locally unstable. The contribution by Kirman (1992)
was influential in changing the viewpoint about the representative agent. Kirman (1993)
further promoted the idea of agents imitating one another, which led to the contribu-
tions of Lux (1995, 1998), who took the paradigm much further and in the direction of
getting the models to generate the type of return behavior observed in financial markets,
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in particular fat-tail phenomena. In fact, getting the BRHA models to generate the
so-called stylized facts of financial market behavior has become a feature of recent
research, as have attempts to estimate such models. The model of Lux and Marchesi
(1999) contains fundamentalists and pessimistic as well as optimistic trend followers
and allows agents to switch among these groups, depending on the evolution of the
market. The model is able to generate periods of extreme volatility and long devia-
tions from the fundamental, without any strong news event triggering such movements.
Another influential set of contributions has been that of Brock and Hommes (1997,
1998), who developed and analyzed in detail the concept that investors are choosing
from a range of strategies (fundamentalism, pessimistic chartism, optimistic chartism,
and so forth) and switch to the more “fit” one (fitness, being, for instance, measured
by some weighted average of recent returns) as the market evolves. This idea has been
incorporated into many subsequent models.

There have been a number of recent surveys of the BRHA paradigm, most notably
those of Hommes (2006) and LeBaron (2006). In this survey we shall focus on the
paradigm developed by the authors (and several coauthors) in various papers, giving
particular emphasis to the role of the market-clearing mechanism used, the type of util-
ity function of the investors, the interaction of price and wealth dynamics, portfolio
implications, the impact of stochastic elements on the markets dynamics, and calibration
and estimation of this class of models. The important point to stress is that the model of
boundedly rational behavior that we introduce takes the traditional one-period optimiza-
tion model that is the basis of the CAPM and perturbs it in two essential ways. First, we
allow agents to be heterogeneous with respect to their expectations about the distribution
of the future returns of risky assets. Agents’ expectations will be driven by observations
of past returns so that the agents exhibit expectations feedback. This, together with the
fact that the one-period optimization is assumed to be continually repeated, gives the
models their dynamic behavior. Second, we allow one group of agents, usually known
as fundamentalists, to have greater knowledge about the economy. These agents have
some notion of the fundamental price and perhaps also of the strategies of other agents
in the economy.1

This chapter unfolds in the following way: In Section 5.2 we give an overview of
where we feel the standard paradigm needs to be adjusted and so lay out the basic
building blocks of the boundedly rational heterogeneous agent (BRHA) framework,
including portfolio optimization, agents’ utility functions, the market-clearing mech-
anism, and expectations feedback. When agents have constant absolute risk aversion
(CARA) utility functions, the dynamics of the wealth process do not feed back into the
dynamics governing the price process. Although this separation is convenient from a
certain perspective, it has the disadvantage that such models have difficulty in genera-
ting the type of growing price process that we observe in reality. When agents have
constant relative risk aversion (CRRA) utility, the dynamics for price and wealth are
intertwined and growing over time and hence follow a nonstationary dynamical process
(in the dynamical systems sense of not having a steady state). In Sections 5.3 and 5.4 we

1See in particular Wenzelburger (2009).
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consider behavior of the price dynamics under two kinds of market-clearing mechanism,
the Walrasian auctioneer and the market maker, when agents have CARA and CRRA
utility functions, respectively. Section 5.5 reviews the stylized facts of financial markets
and we explore whether these can be reproduced by the characteristics of the returns
processes of the models of Sections 5.3 and 5.4, when perturbed by a noisy funda-
mental and market noise, in particular the power-law behavior in returns and volatility
clustering. In Section 5.6 we expand the framework of Sections 5.3 and 5.4 to the situ-
ation of many risky assets, thus investigating how agent heterogeneity, and in particular
their beliefs about covariance between risky assets, affects portfolio diversification. Sec-
tion 5.7 considers further the issue of the interaction of the bifurcation behavior of a
stochastic continuous time model and outlines recent attempts to approach this issue
using the tools of stochastic bifurcation theory. Section 5.8 will conclude by pointing
out the many unfinished issues in the development of the heterogeneous agent paradigm
of financial markets and points to some future research directions.

5.2. HETEROGENEITY AND MARKET-CLEARING
MECHANISMS

Although there might be agreement that the standard paradigm does not fully explain
what is causing the evolution of speculative asset prices, there may be less agreement
on where to start to build an improved paradigm. By and large the view that has been
adopted in the BRHA literature is to retain expected utility maximization as the goal of
each agent but to allow the agents to have different risk preferences and different expec-
tations, rather than the single homogeneous rational expectation, about future possible
returns. The expectations differ since agents are assumed to have different information
and beliefs. Thus the asset price-modeling framework that we develop in this section is
based on the fact that trading is driven more by differences in expectations than by the
random arrival of news events. Within this framework, a simple market of one risky asset
and one risk-free asset, with agents having different expectations, is considered with two
different types of utility functions and two different market-clearing mechanisms. The
framework provides the basic elements and structure of the various models we discuss in
the following sections. The basic building blocks of this framework are portfolio opti-
mization, agents’ utility functions, the market-clearing mechanism, and expectations
feedback. We shall now discuss the role of each of these elements in determining the
price map driving the price dynamics.

5.2.1. Portfolio Optimization

We take as our starting point the basic problem of agents allocating their wealth in a
market with a risky asset (except Section 5.6, where there are many risky assets) and a
risk-free asset. We assume that each agent optimizes one period ahead and applies the
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resulting optimal investment rule period by period. Let Pt be the risky asset price, yt the
dividend (both at time t), and R = 1 + rf , where rf is the risk-free interest rate. The
asset (proportional) return over the time period (t, t + 1) is defined by rt+1 = (Pt+1 +
yt+1)/Pt − 1. For agent i, let Wi,t be the wealth, zi,t the holding of the amount of the
risky asset, and πi,t the proportion of wealth invested in the risky asset at time t, hence
πi,tWi,t = zi,tPt. Then the wealth dynamics of agent i can be formed either in terms of
the number of shares, zi,t, as

Wi,t+1 = RWi,t + (Pt+1 + yt+1 − RPt)zi,t (5.1)

or in terms of the wealth proportion, πi,t, according to

Wi,t+1 = Wi,t[R + (rt+1 − rf )πi,t] (5.2)

Agent i myopically maximizes Ei,t[Ui(Wi,t+1)] in terms of either the amount of the
asset (zi,t) or the wealth proportion (πi,t), where Ei,t denotes the expectation formed by
agent i conditional on his information up to time t and Ui is the agent’s utility function.
An alternative approach to expected utility maximization is to assume a “reasonable”
asset-demand function, as is done by Beja and Goldman (1980); Day and Huang (1990);
Chiarella (1992); Chiarella, He, and Hommes (2006); and several other authors. It often
turns out that such seemingly ad hoc demand functions can be reconciled with some
underlying expected utility maximizing story (see, for example, Chiarella, Dieci, and
Gardini, 2002).

5.2.2. Utility Functions

The type of utility function employed will determine the nature of the dynamics of the
price and wealth processes, for instance, if they are coupled or separated and growing
or nongrowing processes. Generally, two classes of CARA and CRRA utility functions
have been considered in the literature. We will see that their implications for the price
and wealth dynamics are significantly different.

As a CARA utility function, we consider the utility function for agent i given by

Ui(W ) = −e−αiW (5.3)

where αi is the agent’s absolute risk-aversion coefficient. If the next period wealth is
assumed to be conditionally normal, as we shall assume, then maximizing expected
utility of wealth, maxzi,t Ei,t[Ui(Wi,t+1)], is equivalent to mean-variance optimization of
the certainty equivalent of wealth,2 maxzi,t [Ei,t(Wi,t+1) − (αi/2)Vi,t(Wi,t+1)], where Vi,t

denotes the conditional variance. Consequently, the asset-demand (in quantity terms) is
independent of wealth. It is this important feature that makes the dynamics of equilib-
rium prices evolve independently of the dynamics for wealth in the CARA framework.
This feature has been used to characterize a nongrowing price process, at least for

2Note that if x̃∼N (μ, σ2), then E[ex̃] = eμ+
1
2 σ

2
.
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deterministic models, in the literature. As a result the price dynamics are driven by a
nongrowing process, a fact that has allowed many analytical results to be obtained in
the literature.

Alternatively, we may assume a CRRA utility function for agent i, namely

Ui(W ) =

{
W 1−γi

1−γi γi �= 1

lnW γi = 1
(5.4)

where γi is the agent’s relative risk-aversion coefficient. If the next period return is
assumed to be conditionally normal, as we usually assume for a growing wealth pro-
cess, then maximizing expected utility of wealth maxπi,t Ei,t[Ui(Wi,t+1)] implies that
the optimal wealth proportion πi,t is independent of the wealth. Consequently, when
the market-clearing price is determined by the excess demand, we will see that this
makes the price dynamics much more involved, since the dynamics of the wealth pro-
cess also need to be taken into consideration. This feature of the CRRA utility function
leads to a growing price process, which gives us the realistic feature that both price
and wealth are growing. Levy and Levy (1996) have analyzed numerically a hetero-
geneous agent model with U (W ) = lnW and found that heterogeneous expectations
yield more realistic asset price dynamics, compared to the corresponding homogeneous
expectations.

For both types of utility function, once individual demands are formed, these come
together to form the market aggregate demand, which is most conveniently discussed
in quantity terms. Assume that all the agents in the market can be grouped into I types
according to their beliefs. Let ni,t denote the fraction of type i agents at time t. Then the
average market aggregate demand (in terms of number of shares) zt can be written

zt =
I∑
i=1

ni,tzi,t (5.5)

The fraction of agents ni,t may either be held fixed in each period, or be allowed to vary
(or switch) according to some measure of the fitness of the expectations scheme being
used (see Dieci, Foroni, Gardini, and He, 2006). The most common switching strategies
are those introduced by Brock and Hommes (1997, 1998) and will be discussed in the
next section.

5.2.3. Market-Clearing Mechanisms

These are the mechanisms by which the market price is arrived at. The two most fre-
quently used mechanisms being the Walrasian auctioneer, widely used in economic
theory but which, as O’Hara (1995) points out, is used in only one market (the mar-
ket for silver in London), and the market-maker mechanism, which is close in spirit
to the specialist system. We will see that each mechanism leads to a different formula-
tion of the market equilibrium conditions, which in turn have a different impact on the
market price dynamics.
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In the Walrasian auctioneer scenario, each agent solves her optimization problem
treating the market-clearing price in that period as parametric. The auctioneer announ-
ces a price and receives from all market participants what their demand/supply would
be at that price. The auctioneer then determines the excess demand at that price. The
auctioneer keeps announcing prices until a price is arrived at that sets excess demand
to zero; this price is then set by the auctioneer as the price for trading in the current
period. Via this scenario each agent is effectively giving to the auctioneer her excess
demand schedule. The auctioneer then aggregates these to obtain the market-clearing
price. Thus essentially the auctioneer mechanism finds the market-clearing price Pt at
time period t such that

I∑
i=1

ni,tzi,t = Nt (5.6)

whereNt is the average supply of shares per agent at time t, which can change over time
due, for instance, to either new shares being issued or the splitting of shares. It should
be stressed that in this scenario since, when agents form their demands, neither the price
Pt nor the return rt is known yet, expectations and hence demands of agents are formed
based on information up to time t − 1. Therefore, the market-clearing price Pt is defined
implicitly by Eq. 5.6. It turns out that in the case of CARA utility this procedure leads to
a mathematically well-defined price map; however, in the case of CRRA utility, because
of the dependence of demand on both price and wealth, this might not always be so.

An alternative market-clearing mechanism is that of the market maker. At time period
t, the market maker announces a price Pt based on the excess demand in the previous
period t − 1. Given this price Pt, the agents compute their optimal demands for the asset
for time period t. The aggregation of these demands gives the aggregate market demand,
which, when matched with the supply of assets, yields the excess demand. The market
maker takes an offsetting long or short position in the risky asset so that the excess
demand for period t is zero. The market maker then announces a price Pt+1 for time
period t + 1 that moves the price in the direction of reducing the excess demand. Thus
under this scenario the price map has the general form

Pt+1 = Pt + μ[zt −Nt] = Pt + μ
( I∑
i=1

ni,tzi,t −Nt

)
(5.7)

where μ > 0 measures the market maker’s speed of reaction to the excess demand.3

In contrast to the map obtained under the Walrasian auctioneer scenario, Eq. 5.7 is an
explicit map for Pt+1. Furthermore, since agents know the price Pt when forming their
demands at time t, expectations are based on information up to time t. Thus the price

3In many discussions of this mechanism it is often assumed that the supply of the asset Nt = 0, so that
the excess demand is simply the aggregate demand. As explained in Chiarella, Dieci, and He (2007b), this
amounts to having a risk-neutral fundamental price. Cases with nonzero supply of the asset(s) are discussed
briefly in Sections 5.4.2 and 5.6.1.
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maps that come out of this market-clearing mechanism can be and indeed are quite
different from the ones under the Walrasian mechanism.

A potential problem with this mechanism is that the market maker could end up with
unsustainably large long or short positions, though for most of the models we consider,
the price fluctuations result in the market maker having, over time, a reasonably bal-
anced position overall. Here and in the literature that we review the market maker plays
a very simple role. Much more could (and should) be done to model the behavior and
incentives of the market maker; see, for example, Ho and Stoll (1981), Peck (1990), and
Madhavan (2000). As we shall see in the following analysis, the type of market-clearing
mechanism used does in fact affect the dynamic behavior of the models.

5.2.4. Noise

The framework we’ve developed can also incorporate external noise factors by assum-
ing that as well as the utility maximizing component arising from the optimization
problem of all the agents, there is also some exogenous demand component distributed
around zero. This may be regarded as being due to some exogenous demand compo-
nent for each agent or from the market as a whole, perhaps due to news events whose
impact is not readily incorporated into the expected utility maximizing calculus, or just
so-called noise trader effects. In a great deal of literature this exogenous noisy demand
is called irrational, and if one takes the view that any component of demand not arising
from expected utility maximization is irrational, the label follows by definition. In any
event the aggregate demand would now be written

zt =
I∑
i=1

ni,tzi,t + νε̃t (5.8)

where ε̃t ∼ N (0, 1), the standard normal distribution, measures some exogenous noise
process affecting the market and ν is the standard deviation. Note that additional sources
of noise in Eq. 5.8 could be a noisy fundamental price process and a noisy dividend
process. We specify the exact nature of the external noise in the following discussion.

5.2.5. Expectations Feedback

The important feature of the structure of Eqs. 5.6 and 5.7 is that the price-generating
mechanism is driven by expectations feedback. Observed market prices are used to form
expectations, which in turn feed back to generate prices. It is this feed back mechanism
that allows the BRHA models to generate much greater volatility and long fluctua-
tions from the fundamental than seems possible under rational expectations. In fact, the
dynamics underlying the rational expectations model are not greatly discussed in the
literature, though Wenzelburger (2009) do discuss this case. It is also of interest to note
that Böhm and Chiarella (2005) have shown that the dynamics of a market in which
agents have homogeneous rational expectations with a positive risk-free rate of interest
are divergent.
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5.3. PRICE DYNAMICS IMPLIED BY THE CARA
UTILITY FUNCTION

As we mentioned in the previous section, an important feature of the CARA utility
framework is that the price dynamics constitute a nongrowing process that evolves inde-
pendently of wealth dynamics. In this section, we assume that agents have the CARA
utility function with different risk-aversion coefficients and focus on the different types
of market behavior under the two different market-clearing mechanisms. Among the
many types of possible heterogeneous agents, we focus on two of the most popular
types discussed in the literature: fundamentalists and trend followers. In the following,
we first introduce heterogeneous expectations and a switching mechanism that allows
agents to switch between different strategies based on some fitness measure. We then
examine the price dynamics under the Walrasian auctioneer market-clearing mechanism
by focusing on the impact of different risk-aversion coefficients and extrapolation of the
trend followers. The study of the price dynamics under the market-maker scenario is
then followed by an analysis of the impact of the activities of the market maker and
trend followers. A comparison of the price dynamics under the two different market-
clearing mechanisms and the same strategy for the trend followers is provided at the
end of this section.

5.3.1. Fundamental Price and the Optimal Demand

With the CARA utility function (Eq. 5.3) and the framework in Section 5.2, the optimal
asset-demand (number of shares) for agent i turns out to be given by

zi,t = Ei,t(Rt+1)/(αiVi,t(Rt+1)) (5.9)

where Rt+1 = Pt+1 + yt+1 − RPt denotes the excess (dollar) return on the risky asset.
We are interested in how the market price is related to its fundamental price. There

may be many ways to estimate the fundamental price. In this section, we follow Brock
and Hommes (1998) and assume that there exists a common “fundamental price” P ∗t
that solves

P ∗t =
1
R

Et

(
P ∗t+1 + yt+1

)
if all agents were to hold common beliefs denoted by Et. Here we assume that the
dividend yt follows an IID process.

It will be convenient to define the deviation from the fundamental, xt = Pt − P ∗t , so
that the excess return Rt may be written

Rt+1 = xt+1 − Rxt + ζt+1 (5.10)

where we set ζt+1 = P ∗t+1 + yt+1 − Et(P ∗t+1 + yt+1). We note that this latter quantity
forms a martingale difference sequence, since Et(ζt+1) = 0 for all t. Aggregating Eq. 5.9
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over all agents, we obtain the aggregate demand

zt =
I∑
i=1

ni,t
Ei,t(Rt+1)
αiVi,t(Rt+1)

(5.11)

5.3.2. Formation of Heterogeneous Beliefs

Let us now turn to the question of how agents form their beliefs about conditional means
and variances. The beliefs are assumed to have a common component based on know-
ledge of the fundamental and dividends, and a component particular to each group of
agents. Thus the heterogenous beliefs about the conditional mean and variance of the
price are assumed to be of the form

Ei,t(Pt+1 + yt+1) = Et(P ∗t+1 + yt+1) + fi,t (5.12)

Vi,t(Pt+1 + yt+1) = Vt(P ∗t+1 + yt+1) + gi,t = σ2 + gi,t (5.13)

where fi,t and gi,t are some deterministic functions of a window of the past Li price
deviations. We assume that each agent has a different window length Li (an integer),
and σ2 > 0 is a constant representing the volatility of the fundamental. It follows from
Eqs. 5.12 and 5.13 that

Ei,t(Rt+1) = fi,t − Rxt, Vi,t(Rt+1) = σ2 + gi,t (5.14)

For the various market-clearing mechanisms, the conditional mean and variance
functions can have different forms. In the Walrasian auctioneer scenario, the market-
clearing price Pt at time t is not in the information set of agents at time t. Possible forms
for the function fi,t are

fi,t = ei + dix̄i,t (5.15)

where x̄i,t could have three different forms:

• The moving average process (MAP)

x̄i,t =
1
Li

Li∑
l=1

xt−l (5.16)

• A geometric decay process (GDP)

x̄i,t =

(
Li∑
l=1

δli

)−1 Li∑
l=1

δlixt−l (5.17)

where δi ∈ [0, 1] is the memory decay rate of agent i
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• The limiting geometric decay process (LGDP)

x̄i,t = δix̄i,t−1 + (1 − δi)xt−1 (5.18)

Clearly, LGDP is the limiting situation of GDP asLi→∞, whereas MAP is obtained
from GDP by setting δi = 1. In the market-maker scenario, the market price Pt at time
t is in the information set of agent i at time t. Hence the summations in Eqs. 5.16 and
5.17 run from l = 0 to l = Li − 1, and Eq. 5.18 is replaced by

x̄i,t = δix̄i,t−1 + (1 − δi)xt

A possible form for gi,t is

gi,t = σ2vi(σ2
i,t) (5.19)

where σ2
i,t is the corresponding sample variance to the preceding sample mean process

and vi is a function that bounds the variance belief between some upper and lower
values. This variance belief function is inspired by Franke and Sethi (1998) and operates
in such a way that agents increase (decrease) their belief about variance according to
whether it has recently been high (low). The function vi plays the role of putting upper
and lower bounds on their estimates of future variance. Such an expectations scheme
could be based on a belief in some sort of mean reverting process for volatility, which
is certainly borne out by empirical studies.

Different investor types are characterized by different values of ei, di, and δi
in Eqs. 5.15 and 5.17. Thus we can identify three important groups as follows:
(1) fundamentalists: ei = di = 0; (2) trend followers: ei = 0, di > 0; and (3) contrarians:
ei = 0, di < 0.

5.3.3. Performance Measure and Switching

The quantities that still need to be specified in Eq. 5.11 are the fractions ni,t. The scheme
that has become widely used is the one proposed by Brock and Hommes (1997), who
assume that agents switch strategies based on some measure of the fitness of the various
strategies. The most convenient (but by no means the only) fitness measure is the
realized profit for agents of type i, namely Rtzi,t−1. More generally we could allow
the reaction to realize profits to be lagged and consider the geometrically declining
weighted average of realized profits calculated according to

Mi,t = Rtzi,t−1 + ηiMi,t−1 (5.20)

where the parameter ηi(> 0) represents the memory strength of agent i. Due to space
limitations here we only consider the case ηi = 0, though broadly speaking the effect of
ηi > 0 is to slow the dynamic as it causes agents to react less quickly to the profitability
of a particular strategy.
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Brock and Hommes (1997) propose that the fractions ni,t be calculated on the basis
of the fitness in period t − 1 according to a discrete choice probability model (see
Manski and McFadden, 1981, and Anderson, de Palma, and Thisse, 1993), which under
the Walrasian auctioneer scenario assume the form4

ni,t = exp[βMi,t−1]/Zt, Zt =
I∑
i=1

exp[βMi,t−1] (5.21)

where β(> 0) is the intensity of choice measuring how fast agents switch among differ-
ent prediction strategies. In particular, β = +∞means that in each period the entire mass
of traders switches to the strategy that had the highest fitness in the previous period,
whereas β = 0 means that the mass of traders distributes itself evenly across the set
of available strategies. For 0 < β < ∞, a fraction of each group of traders switches to
the most recently successful strategy. Note that the fraction ni,t is a random process in
general due to the randomness of Rt.

A range of BRHA models can be obtained, depending on how we specify expecta-
tions, the market-clearing mechanism assumed, and whether agent proportions remain
fixed or switch according to some fitness measure. It is also possible to have ver-
sions where part of the agent proportions remain fixed and part are switching (see
Dieci, Foroni, Gardini, and He, 2006 in this regard). In the following two subsections
we will consider both the Walrasian auctioneer and the market-maker price-clearing
mechanisms. We shall analyze the type of equilibria that can arise, the stability prop-
erties and the ensuing dynamic behavior, and how these can differ for the two different
market-clearing mechanisms.

5.3.4. Price Behavior under the Walrasian Auctioneer Mechanism

The Walrasian auctioneer market-clearing mechanism, widely used in economic theory,
has been used in the context of BRHA models by, among others, Brock and Hommes
(1997, 1998), Gaunersdorfer (2000), and Chiarella and He (2002). In this case, assum-
ing zero supply of shares, we then have from zt = 0, Eqs. 5.11, 5.12, 5.13, and 5.14
that

R

[
I∑
i=1

ni,t

αi
(
σ2 + gi,t

)
]
xt =

I∑
i=1

ni,tfi,t

αi
(
σ2 + gi,t

) (5.22)

which is the general form of the price map implicitly expressing Pt as a function of
past prices over a window determined by the largest Li. It then remains to specify the
mean and variance expectation functions fi,t and gi,t to obtain the precise form of the
price map.

4Note that under the market-maker scenario the information set of agents includes Pt so that in this case we
replace Mi,t−1 in Eq. 5.21 by Mi,t.
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An Asset Price Model of the Fundamentalists and Trend Followers

Chiarella and He (2002) consider three types of agents; fundamentalists, trend chasers,
and contrarians. By combining stability and bifurcation analysis and numerical simula-
tion, they examine the market price behavior and various routes to complex dynamics
that can occur. Due to limited space we concentrate here on the case of a market con-
sisting of fundamentalists (i = 1) and trend followers (i = 2). To simplify the analysis,
we also do not take the conditional variance component gi,t into account; that is, we set
gi,t = 0, and refer the reader to Chiarella and He (2002) for a discussion of the general
case. In terms of the conditional mean function we’ve introduced, we assume that

f1,t = 0 and f2,t = dx̄t (5.23)

where x̄t = (1/L)
∑L
i=1 xt−i is the price trend based on the moving average over the

last L price deviations and d > 0 measures the extrapolation rate of the trend followers.
Thus, the fundamentalists believe that the price will return to its fundamental value
and the trend followers form their expectation of next period’s price based on the trend
calculated from the pastL realized prices. As pointed out by Campbell and Kyle (1993),
we would expect the fundamentalists to be more risk averse than the trend followers, so
in the subsequent analysis we assume that a := α2/α1 < 1.

In models with two types of agents, it is convenient to express the fractions n1,t and
n2,t in terms of the variable mt, defined by mt = n1,t − n2,t so that

n1,t = (1 + mt)/2 and n2,t = (1 − mt)/2 (5.24)

With the previous specifications, the use of Eqs. 5.23 and 5.24, we find that the price
map (Eq. 5.22) can be expressed as

xt =
d

R

1 − mt−1

a(1 + mt−1) + (1 − mt−1)
x̄t (5.25)

mt = tanh
[

β

2α1σ2
(Rxt−1 − xt)

(
Rxt−1 +

dx̄t−1 − Rxt−1

a

)
− βC

2

]
(5.26)

Brock and Hommes (1998) consider Eqs. 5.25 and 5.26 in the case when L = 1 and
all agent types have the same risk-aversion coefficient so that a = 1. Here we consider
the case of general L and a �= 1. In the following discussion, we assume that the divi-
dend process yt follows yt = ȳ + εt, where ȳ is the mean and εt is an IID noise, which is
assumed to be uniformly distributed on an interval [−ε, ε]. We first focus on the deter-
ministic dynamics by assuming εt = 0 for all t. We then compare the dynamics with and
without the noise by using numerical simulations.

The Case of L= 1

Chiarella and He (2002) consider first the case L = 1. Depending on the extrapolation
rate of the trend chasers, the system (Eqs. 5.25 and 5.26) may have more than one steady
state with different stability properties.
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Theorem 5.1. For the deterministic system Eqs. 5.25 and 5.26, let meq := tanh(− βC
2 ),

m∗ := 1 − 2aR
d+R(a−1) and x∗ be the positive solution (which exists if and only if

m∗ > meq) of

tanh
[ β

2σ2α1
(R − 1)(R +

d − R
a

)(x∗)2 − βC

2

]
= m∗ (5.27)

• For 0 < d < R, the fundamental steady stateE1 = (0,meq) of the system is globally
asymptotically stable

• For R < d < (1 + a)R
– If m∗ < meq, the fundamental equilibrium E1 is the unique, globally stable

steady state of the system
– If m∗ > meq, the system has three steady states, E1,E2 = (x∗,m∗), and E3 =

(−x∗,m∗), of which E1 is unstable
• For d > (a + 1)R, the system has three steady states, E1,E2 = (x∗,m∗), and E3 =

(−x∗,m∗), of which E1 is unstable

Theorem 5.1 indicates that, when the trend followers extrapolate only weakly (0 <
d < R), the fundamental steady state E1 = (0,meq) is globally stable, no matter what
risk attitudes agents have. However, when d > R, the stability of the fundamental
equilibrium E1 depends on the risk aversion ratio a, which measures the relative risk
attitude between the two groups. When the trend followers extrapolate very strongly
(d > (a + 1)R), the fundamental equilibrium E1 becomes unstable and bifurcates two
additional nonzero steady states, E2 and E3. In the case of R < d < (a + 1)R, the fun-
damental equilibrium E1 is stable when m∗ < meq and unstable when m∗ > meq. One
can see that m∗ > meq when a is small, that is when the trend followers become less
risk averse than the fundamentalists. This point will become clearer in the following
discussion.

To fully understand the impact of the relative risk aversion ratio a on the dynamical
behavior of the model when R < d < (a + 1)R one needs to study how changes in a
affect the bifurcations. Let a∗ satisfy

tanh
(
−βC

2

)
= 1 − 2a∗R

d + (a∗ − 1)R
(5.28)

being the value of a at which meq = m∗. Then we have the following result.

Theorem 5.2. For the deterministic system Eqs. 5.25 and 5.26, m∗ < meq if and only if
a > a∗. In addition,

• A pitchfork bifurcation occurs for a = a∗:
– For a > a∗, E1 is the unique stable equilibrium
– For 0 < a < a∗, there are three equilibria, E1,E2 and E3

• There exists a∗∗ < a∗ such that E2 and E3 are stable for a ∈ (a∗∗, a∗) and unstable
for a < a∗∗. For a = a∗∗, E2 and E3 exhibit Hopf bifurcations.
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We note that for a = 1, Brock and Hommes (1998) obtained similar dynamics by
allowing the switching parameter β to vary. To obtain a better picture of the dynam-
ics, we perform some simulations for the parameter set R = 1.1, d = 1.2,C = 1.0,
β = 3.5, σ2 = 1.0, α1 = 1.0, with initial value (1.2, 0.7, −0.2) and the different values
α2 = a = 0.9, 0.95, 1.0, 1.1, 1.2. Obviously, R < d < (a + 1)R is satisfied. The pitch-
fork bifurcation parameter value turns out to be a∗ = 3.01. Then the fundamental steady
state E1 is globally stable for a > 3.01. Figure 5.1 shows plots of the attractors in the
(xt,mt) plane. There we see that the orbit converges to the positive equilibrium E2 for
a = 1.2 and then to an attracting invariant “circle” surrounding E2 for a = 1.1, which
indicates that the Hopf bifurcation value a∗∗ ∈ (1.1, 1.2). Then as a decreases further,
the “circle” breaks into invariant sets. For a = 1, the prices oscillate about the posi-
tive equilibrium E2 such that mt < 0 for all time t and the market is dominated by the
chartists. As a increases, the prices are stabilized to E2. As a decreases, Chiarella and
He (2002) present time series that show that the price switches between an unstable
phase with an upward trend and a stable phase with prices close to the fundamental
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0.5

1.0
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� 5 1.1

� 5 1.2

FIGURE 5.1 Trend followers versus fundamentalists: phase plot of (x,m) for a := α = α2 = 0.9, 0.95,
1.0, 1.1, 1.2.
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FIGURE 5.2 Trend followers versus fundamentalists: (a) bifurcation diagram and (b) the largest
Lyapunov exponent plot.

value. Figure 5.2a shows a bifurcation diagram with respect to the relative risk ratio
a, suggesting periodic and quasi-periodic dynamics after the primary Hopf bifurcation
as a decreases. Figure 5.2b shows the corresponding largest Lyapunov exponent plot,
the positivity of which indicates chaotic behavior. When the fundamentalists are more
risk averse than trend followers (a < 1), a decrease in a leads to numerical evidence
for weakly chaotic asset price fluctuations with an irregular switching between a point
close to the fundamental price and upward and downward trends.

The preceding numerical simulations suggest that when the trend followers are more
risk averse than the fundamentalists, the market is dominated by the fundamentalists
and the prices converge to the fundamental value. When the fundamentalists are more
risk averse, the market becomes unstable, even chaotic. Further numerical simulations
(not reported here) confirm that when d < R, the fundamental equilibrium is globally
stable, no matter the degree of risk aversion of both groups. When d > (a + 1)R, the
fundamental equilibrium is unstable.

The Case of L ≥ 2

ForL ≥ 2, one can check that the equilibrium of the system is the same as the case when
L = 1. The system has either one unique equilibrium, E1, or three equilibria,E1,E2 and
E3. In this more general case, we are more interested in the stability of the fundamental
equilibrium, about which Chiarella and He (2002) obtain the following result.

Theorem 5.3. The fundamental steady state E1 of the deterministic system (Eqs. 5.25
and 5.26) is locally asymptotically stable if and only if

d

R

1 − meq
a + 1 + (a − 1)meq

< 1 (5.29)
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FIGURE 5.3 Stability region of the fundamental steady state E1: stable in A and B, unstable in C andD.

Note that the condition in Eq. 5.29 is independent of the lag length L. In particular,
when α1 = α2 (so that a = 1), the condition can be written as m∗ := 1 − 2R/d < meq,
which is the same condition derived by Brock and Hommes (1998) . Thus, the preceding
analysis provides a generalization of their result to the situation of different risk-aversion
coefficients. The region of stability of the fundamental steady state in the (a, d/R) plane
is shown in Figure 5.3, where the four regions A,B,C, and D are separated by the lines
d
R = 1, 1 + 1+meq

1−meq a and 1 + a, respectively. The fundamental steady state is locally stable
in regions A and B and unstable in regions C and D. Furthermore, there exist two other
steady states, E2 and E3, in C and D. Let a∗ be the value given by Eq. 5.28; then
we can verify for a given value of d/R(> 1) that a∗ = ( dR − 1) 1−meq

1+meq . Therefore, E1

is locally asymptotically stable for a > a∗, since it will lie in region B.
We also carry out some simulations using the same parameter set as before and,

in addition, set β = 3.8. For the noisy case,5 we choose ε = 0.05. Now, it turns out
that a∗ = 4.06375. Figures 5.4a1, 5.4b1, and 5.4c1 show the phase plots in the (xt,mt)
plane for L = 2, 5 and 10, respectively, for different values of α2 = a when εt = 0.
Figures 5.4a2, 5.4b2, and 5.4c2 plot the corresponding time series for xt without
noise, and Figures 5.4a3, 5.4b3 and 5.4c3 with noise. The numerical simulations
suggest that:

• Just as in the case when L = 1, there exists a second bifurcation value a∗∗ ∈
(1.0, 1.2) for L = 2, 5 and 10.

• When lag length L increases, the attractors on the (xt,mt) plane become more
complicated. Say, for a = 0.5, when L = 2, the prices switch between an unstable
phase with an upward trend and a stable phase with prices close to the fundamental
value (see Figure 5.4a2); when L = 5 and L = 10, the prices fluctuate away from
the fundamental value; the periods of upward trend for L = 10 are longer than
when L = 5 (see Figures 5.4b2 and 5.4c3).

5As before, we assume that the dividend process yt follows yt = ȳ + εt, where ȳ is the mean and εt is IID
noise distributed uniformly on the interval [−ε, ε].
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FIGURE 5.4 Trend followers versus fundamentalists: phase plots (x,m) for L = 2 (a1), L = 5 (b1), and L = 10 (c1) without
noise; time series of xt without noise for L = 2 (a2), L = 5 (b2), and L = 10 (c2); and with noise for L = 2 (a3), L = 5 (b3), and
L = 10 (c3).
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• The external noise has a more significant effect on the dynamical behavior of the
model with short lag length (L = 2 in Figure 5.4a3) than long lag length (L = 5
and 10 in Figures 5.4b3 and 5.4c3). Also, it has more effect for a high-ratio a than
for a low-ratio a. In other words, when the system exhibits complicated behavior
without noise, adding noise has no significant effect on the dynamics (when the
size of the noise is small); however, if the system without noise is stable, adding
noise can lead to significant changes in the dynamics of the system.

The impact of the lag length can be very complicated in general, and we refer the
reader to Chiarella, He, and Hommes (2006) for a discussion on the dynamics of the
moving average.

5.3.5. Price Behavior under the Market-Maker Mechanism

We now examine price behavior when the market price is determined via a market maker
mechanism. In this case, as discussed earlier, with a zero supply of shares and a market
consisting of fundamentalists (i = 1) and trend followers (i = 2), the dynamics for the
price deviation can be expressed as

xt+1 = xt + μ[(1 + mt)z1,t + (1 − mt)z2,t]/2 (5.30)

mt = tanh(βRt[z1,t−1 − z2,t−1]/2 − βC/2) (5.31)

The system (Eqs. 5.30 and 5.31) has been extensively analyzed by Chiarella and He
(2003) in the case when first-moment beliefs are given by Eq. 5.12 with f1,t = 0, f2,t =
dx̄t and second-moment beliefs are constant, so that gi,t = 0 in Eq. 5.14. Different from
the previous case, the price Pt at time t is part of the agents’ information set and hence
appears in the geometric moving average, so that

x̄t =

(
L−1∑
i=0

δi

)−1 L−1∑
i=0

δiixt−i, δ ∈ [0, 1]

Chiarella and He (2003) show that the equilibrium of Eqs. 5.30 and 5.31 is exactly
the same as the corresponding Walrasian auctioneer equilibrium described in the pre-
vious subsection. It is in the dynamic behavior that the two market-clearing scenarios
differ. Here we just give results for the case of the geometric decay process with finite
memory and recall that this includes as a special case the moving average process. We
focus in particular on the impact of the speed of adjustment of the market maker (μ), the
extrapolation rate of the trend followers (d), the decay rate (δ), and the lag length (L).

The Local Stability of the Fundamental Steady State

It turns out that the dynamics of the market-maker scenario depend on the parame-
ter combination μ̄ := μ/4α2σ

2, which is the speed of adjustment of the market maker
weighted (negatively) by the risk aversion of the chartists and the strength of the
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FIGURE 5.5 Unstable region (as indicated by U ) and local stability regions (whose upper bounds are
given by the various curves) of the fundamental steady state for L = 1 (a), L = 2 (b), and L = 3 (c) with
different δ ∈ [0, 1]. Comparison (d) of the local stability regions for L = 1, 2, 3 with fixed δ ∈ (0, 1).

variance. Chiarella and He (2003) find that the local stable and unstable regions of
the fundamental steady state in the (d, μ̄) plane for various δ and L can be depicted as
shown in Figure 5.5 for different lag lengths and different values of the decay rate. With
regard to the (local) stability region of the fundamental steady state in the (d, μ̄) param-
eter space of the extrapolation rates and the adjustment speed of the market maker, we
can see the following:

• For fixed δ, an increase in the lag length L does not necessarily enlarge the stabil-
ity region as illustrated in Figure 5.5d. There does not seem to be any connection
between the lag length and the size of the stability region. This observation contra-
dicts a common belief that the stability regions are enlarged when agents include
more historical data in forecasting rules.

• For fixed lag length L = 2, 3, a decrease in the memory decay rate δ enlarges the
local stability region of the fundamental steady state, as illustrated in Figures 5.5b
and 5.5c.

• The stability region for L = 2, 3 becomes the stability region for L = 1 as the
decay rate δ → 0+, as illustrated in Figures 5.5a–c.
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Chiarella and He (2003) use numerical simulation to determine the effect of the
lag length L. They show that, when the fundamental steady state becomes unstable,
the price series can converge to one of the nonfundamental equilibria for L = 3 but to
(quasi-)periodic orbits for L = 5 and 10 with the phase plots of the prices series being
closed orbits encircling the nonfundamental steady states.

Nonlinear Dynamics Under the Moving Average Process

For the moving average process, unlike the asset price model under the Walrasian
scenario, the stability conditions are much more related to the speed of the adjustment
of the market maker for different lag lengths and, in general, increasing the lag length
does not necessary increase the stability of the fundamental steady state. This is also
confirmed in Chiarella, He, and Hommes (2006). It may or may not be the case that
the stability of the nonfundamental equilibria are improved as the lag length increases.
Chiarella and He (2003) show that, when the steady state becomes unstable, the time
series for L = 1 fluctuates about the fundamental equilibrium initially, is then stabilized
to one of the nonfundamental equilibria for L = 2 and 3, but increasing L further to 5
and 10 leads to some periodic cycles, which can be regarded as bifurcations from the
nonfundamental equilibria.6

Nonlinear Dynamics Under the Geometric Decay Process

For the general geometric decay process, a further important effect is that of the speed
of adjustment of the market maker μ. ForL = 2, Figure 5.6 illustrates the time series for
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FIGURE 5.6 Time series for L = 2 with different values of μ = 0.9, 1.2, 1.5, (a) without noise and
(b) with noise for δ = 0.5.

6Due to space limitations, we do not discuss the stability of the nonfundamental equilibria.
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μ = 0.9, 1.2, 1.5 without and with noise (ε = 0.05). Without noise, the figures indicate
that, when the trend followers extrapolate strongly, a small adjustment from the market
maker leads the price to converge to one of the nonfundamental steady states. However,
as the market maker adjusts more strongly in a way such that both forces from extrapo-
lation of the trend chasers and adjustment of the market maker are balanced, the price
fluctuates periodically or quasi-periodically around one of the nonfundamental steady
states. Large adjustment from the market maker results in the breaking of such balance,
leading the price to fluctuate among the three steady states. Adding the noise amplifies
these effects. In general, large decay rates δ stabilize the price dynamics, whereas small
decay rates destabilize the price dynamics, leading to quasi-periodic cycles.

Comparison of the Two Market-Clearing Mechanisms

By comparing the price dynamics under the Walrasian and market-maker scenarios, we
arrive at the following conclusion concerning BRHA models with agents having CARA
utility functions:

• When the moving average process is used by the trend followers, with the
Walrasian market-clearing scenario, the local stability of the fundamental steady
state is completely characterized by the extrapolation rate of the trend followers
and the ratio of the risk-aversion coefficients of the fundamentalists and the trend
followers but not the lag length. Complicated price dynamics can only be gen-
erated through saddle-node-type bifurcations. However, under the market-maker
scenario, the stability of the fundamental steady state is maintained only when the
speed of adjustment of the market maker is low and balanced with the extrapola-
tion rate of the trend followers. Furthermore, complicated price dynamics can be
generated through different types of bifurcations. An increase in lag length under
the market-maker scenario might not necessarily enlarge the local stability region.
However, different lag lengths can complicate the price dynamics in different ways
under both scenarios.

• The geometric decay rate for the trend followers has more complicated effects
on the price dynamics under the market-maker scenario. When the trend follow-
ers extrapolate weakly, a decrease in the decay rate enlarges the local stability
region of the fundamental steady state. However, when the fundamental steady
state becomes unstable and the trend followers extrapolate strongly, an increase in
the decay rate can stabilize the price to either one of the nonfundamental steady
states or to cyclical attractors.

• When the fundamental steady state becomes unstable, the price can be pushed
either to one of the two nonfundamental steady states or to cycles enclosing them
under the Walrasian scenario. However, under the market-maker scenario, the price
can fluctuate among the three steady states. This is in particular the case when noise
impinges on the system and volatility clustering can be observed.

In summary, the dynamical behavior of the BRHA asset-pricing model under the
market maker scenario is considerably enriched and has some significant differences
from its behavior under the Walrasian auctioneer scenario.
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5.4. PRICE BEHAVIOR AND WEALTH DYNAMICS
IMPLIED BY THE CRRA UTILITY

This section deals with models of asset price dynamics where boundedly rational
heterogeneous agents are characterized by CRRA utility of the type represented by
Eq. 5.4. The BRHA literature has primarily focused on models with CARA investors,
essentially for reasons of analytical tractability. As a matter of fact, it is not possible, in
general, to arrive at an exact solution to the agent’s expected utility maximization prob-
lem in the case of CRRA utility, though of course approximate solutions can be provided
(see, for instance, Campbell and Viceira, 2002). However, a number of models assuming
CRRA preferences have been proposed in recent years, starting with Levy, Levy, and
Solomon (1994, 2000) and Zschischang and Lux (2001), the analysis of which relies
essentially on numerical simulation.

One reason for these developments is that the assumption of CRRA utility is conside-
red more realistic than CARA from a number of standpoints.7 One of the characterizing
features of optimal portfolio allocation under CRRA utility is that the proportion of
wealth to be invested in the risky asset(s) does not depend on the wealth level. There-
fore, the time evolution of the wealth of agent i is conveniently represented by Eq. 5.2,
namely

Wi,t+1 = Wi,t[R + (rt+1 − rf )πi,t]

where the optimal wealth proportion invested in the risky asset, πi,t, turns out to be
independent of Wi,t. As a consequence, unlike the case of CARA utility, the optimal
demand in quantity terms (zi,t = πi,tWi,t/Pt) is proportional, ceteris paribus, to Wi,t.
Since prices depend on aggregate excess demand via the particular price-setting mecha-
nism, the dynamics of prices (and returns) will be affected by the dynamics of the wealth
of each agent, that is, prices and wealth coevolve over time. This results in general in
dynamical systems of higher dimension than in the case of CARA utility. The discus-
sion of this section draws on the two models presented by Chiarella and He (2001) and
Chiarella, Dieci, and Gardini (2006). The models are rather stylized but have the advan-
tage of allowing some analytical tractability. They share a number of common features
related to the formation of optimal portfolios and the evolution of wealth dynamics.

5.4.1. Optimal Portfolio and Wealth Dynamics

As a solution to agent-type i’s maximization problem, maxπi,t Ei,t[Ui(Wi,t+1)], we obtain
the approximation (see Chiarella and He, 2001, for details):

7As reported, for instance, by Levy, Levy, and Solomon (2000), the results of various experiments support
decreasing absolute risk aversion (DARA) rather than CARA preferences, which is consistent with constant
relative risk aversion (CRRA). Moreover, as pointed out by Campbell and Viceira (2002), the absence of long-
term trends in certain financial variables, such as interest rates and risk premia in face of long-run economic
growth, implies that relative risk aversion is almost independent of wealth.
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πi,t =
Ei,t(rt+1) − rf
γiVi,t(rt+1)

(5.32)

It is possible to group the population of heterogeneous traders into different agent types
so that agents within the same group are homogeneous in terms of their beliefs and risk
attitudes: The differences in wealth across agents of the same type have no influence
on the dynamics, because the proportion πt will be the same for all investors within the
same group, so that only total wealth of each group (or equivalently, the average wealth
of each agent type) matters for the time evolution of the system.8

The models formulated in terms of the price, Pt, and the wealth of each group,
Wi,t, may result in dynamical systems where such variables are growing over time.
However, the models can be rewritten in terms of return rt := (Pt − Pt−1 + yt)/Pt−1

(or “price return” κt := (Pt − Pt−1)/Pt−1) and wealth shares ωi,t := Wi,t/Wt, Wt :=∑
i Wi,t, which allows us to deal with “stationary” systems, by which we mean dynamic

models that admit steady-state solutions. In particular, the wealth share of each group
evolves according to the same basic equation:

ωi,t+1 =
ωi,t

[
R + πi,t(rt+1 − rf )

]
∑
j ωj,t

[
R + πj,t(rt+1 − rf )

] (5.33)

which can be immediately obtained from Eq. 5.2 by noticing that

ωi,t+1 =
Wi,t+1

Wt+1
=

Wt

Wt+1
ωi,t

[
R + πi,t(rt+1 − rf )

]
where the quantity Wt+1/Wt can be expressed as

Wt+1

Wt
= R + (rt+1 − rf )

∑
j

ωj,tπj,t (5.34)

The two models in Chiarella and He (2001) and Chiarella, Dieci, and Gardini (2006)
differ in terms of the market-clearing mechanism and scheme for agents’ expectation
formation, which affects the way the quantities πi,t are determined. The difference in
the assumed price-setting rules will determine different laws of motion for the return rt
in the two models, as demonstrated in the following discussion.

5.4.2. Price and Wealth Behavior with a Walrasian Auctioneer

The reader should keep in mind that under the Walrasian mechanism, agents’ informa-
tion set at time t consists of realized returns up to time t − 1. In period t, agents of type i

8Modeling the population of CRRA traders as grouped into different types, which is convenient when the
population proportion of each group is fixed over time, may present some difficulties if agents are allowed to
switch among groups, depending on some fitness measure. The case of time-varying proportions is discussed
in Chiarella and He (2005) and Chiarella and He (2008).
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form their beliefs about the first and second moment of next period’s return according to

Ei,t(rt+1) = fi(rt−1, rt−2, . . . , rt−Li ) (5.35)

Vi,t(rt+1) = gi(rt−1, rt−2, . . . , rt−Li ) (5.36)

where Li are integers and fi, gi are deterministic functions which can differ across
investors. Assuming log-utility, Ui(W ) = lnW , an approximate solution for the opti-
mum investment proportion at time t is given by πi,t =

(
Ei,t(rt+1) − rf

)
/Vi,t(rt+1),

which corresponds to Eq. 5.32 with γi = 1. Such an investment proportion thus turns
out to be determined once the price and dividend history (Pt−1, Pt−2, . . .; yt−1, yt−2, . . .)
up to time t − 1 is known. The dividend yield νt := yt/Pt−1 is assumed to follow an IID
normal process with mean ν and variance σ2

ν . Note that agents are not assumed to form
beliefs about dividends but to look directly at the total return rt+1.

Market-Clearing

Assuming a constant supply N of shares in the market, under a Walrasian auctioneer
scenario the market-clearing condition at time t is

∑
i

zi,t =
∑
i

πi,tWi,t

Pt
= N

from which Pt = 1
N

∑
i πi,tWi,t, and therefore the return satisfies

1 + rt+1 =

∑
i πi,t+1ωi,t+1∑
i πi,tωi,t

Wt+1

Wt
+ νt+1 (5.37)

where Wt+1/Wt is given by Eq. 5.34, whereas the quantity
∑
i πi,t+1ωi,t+1 can be

rewritten as9

∑
i

πi,t+1ωi,t+1 =

∑
i πi,t+1ωi,t

[
R + πi,t(rt+1 − rf )

]
∑
i ωi,t

[
R + πi,t(rt+1 − rf )

] (5.38)

By substituting Eqs. 5.34 and 5.38 into Eq. 5.37 and solving for rt+1, one finally obtains

rt+1 = rf +

∑
i ωi,t

[
R(πi,t+1 − πi,t) + πi,tνt+1

]
∑
i πi,tωi,t(1 − πi,t+1)

(5.39)

Eqs. 5.33 and 5.39 form a stationary dynamical system in terms of return of the risky
asset and wealth shares of each group of traders. The dimension of the system obviously
depends on the number of groups and the way beliefs (Eqs. 5.35 and 5.36) are specified
for each group.

9To obtain this, multiply both sides of Eq. 5.33 by πi,t+1 and sum across agent types.
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Wealth Dynamics

The model (Eqs. 5.33 and 5.39) can be expressed in an equivalent form, which
incorporates explicitly information on the relative size of each group in the market, in
terms of number of traders. The “market fraction” of a group may represent an impor-
tant “bifurcation” parameter for understanding the behavior of BRHA models (see, for
example, He, 2003 and Dieci, Foroni, Gardini, and He, 2006). Moreover, the explicit
consideration of such proportions is required in order to build models (like the ones
developed in Section 5.3) where the popularity of each trading strategy varies over time,
depending on some fitness measure.

Assume that agents can be grouped into I types according to their beliefs. The
parameters that represent the proportions of each group can be incorporated into the
model by assuming that group i consists of by li agents, and by defining W i,t := Wi,t/li
as the average wealth of traders of group i = 1, 2, . . . , I . We then introduce a new
variable which represents the “average” wealth share, ωi,t := W i,t/W t, where W t :=∑I
i=1 W i,t, as well as the new parameters ni := li/

∑
j lj , which represent the relative

sizes of the groups. Simple algebra reveals that ω̄i,t turns out to be related to ωi,t, the
wealth share of group i, according to

ωi,t =
niω̄i,t∑I
j=1 njω̄j,t

As a consequence, the law of motion (Eq. 5.33) for the wealth shares can be equivalently
expressed with respect to the “average” wealth shares, as

ω̄i,t+1 =
ω̄i,t

[
R + πi,t(rt+1 − rf )

]
∑I
j=1 ω̄j,t

[
R + πj,t(rt+1 − rf )

] (5.40)

while the return equation (5.39) is easily converted into

rt+1 = rf +

∑I
i=1 niω̄i,t

[
R(πi,t+1 − πi,t) + πi,tνt+1

]
∑I
i=1 πi,tniω̄i,t(1 − πi,t+1)

(5.41)

where the parameters ni appear explicitly.

Return Behavior

We remind the reader that the dynamical system (Eqs. 5.40 and 5.41) is stochastic since
the dividend yield νt is assumed to be so. Chiarella and He (2001) analyze the “deter-
ministic skeleton” of this noisy model10 in the homogeneous case and in a number of
heterogeneous cases with two agent types (fundamentalists with different risk attitudes,
fundamentalists versus contrarians, fundamentalists versus trend followers, and trend

10Obtained by assuming a constant dividend yield equal to the average.
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followers with different strategies). These types are modeled via different specifications
of Ei,t(rt+1) in Eq. 5.35. For all agent types, the conditional variance Vi,t(rt+1) is an
increasing and bounded concave function of the historical variance, indicating that the
agents are cautious about reacting to large historical volatility. In all these cases, mul-
tiple steady states emerge, but in general no more than one of them can be locally
asymptotically stable. Moreover, bifurcation analysis with respect to extrapolation rates
shows that stability switches across steady states following a “quasi-optimal” selec-
tion principle, in the sense that the steady state having relatively higher return tends to
dominate the market in the long run.11

Another feature of the model is that when agents extrapolate weakly, the return
converges to one of the fixed equilibra, whereas when agents extrapolate strongly,
the fixed equilibria become unstable and can generate periodic cycles, quasi-periodic
orbits, and strange attractors for the return series, leading to rich dynamics for the
returns and wealth proportions among heterogeneous investors. This suggests that a
change of extrapolation rates from time to time might enable the return series to switch
among different asymptotic states, thus providing a simple qualitative explanation of
changes of the “market environment.” Stochastic experiments are then performed to
assess the effect of such changes, by introducing independent Poisson jump processes
in the extrapolation rates, together with a stochastic normally distributed dividend yield.
Simulation results are compared to the statistics of the S&P 500 and demonstrate the
capacity of the model to generate the stylized facts observed in financial markets, such
as volatility clustering and realistic values of skewness and kurtosis.

In Chiarella and He (2008), the basic model (Eqs. 5.33 and 5.39) has been extended
in the direction of allowing the population proportions ni to evolve endogenously
according to a “discrete choice” model similar to the one described by Eq. 5.21. The
analysis of the resulting adaptive model focuses on the profitability and the alternating
popularity of “momentum” and “contrarian” trading strategies.

5.4.3. Price and Wealth Behavior with a Market Maker

The approach under the market-maker market-clearing mechanism in this subsection is
different from the one in the previous subsection. In particular, dividends are expected
to grow at a non-negative rate, which imposes a growth rate on the fundamental price.
All agents are assumed to take account of this growth rate when forming expectations.

The Fundamental Price

Agents are assumed to share common and correct expectations about the dividend pro-
cess {yt}, so that for any agent i, Ei,t(yt+k) = Et(yt+k), for k = 1, 2, . . . . In addition the

11A discussion of selection between multiple steady states is contained in the closely related work of Anufriev,
Bottazzi, and Pancotto (2006), who direcly model the agents’ investment choices as smooth functions of the
beliefs about expected asset returns and variances, within a framework that is consistent with CRRA utility.
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evolution of the dividends is assumed to satisfy

Et(yt+k) = (1 + ϕ)kyt k = 1, 2, . . . (5.42)

where ϕ, 0 ≤ ϕ < rf , represents a non-negative expected dividend growth rate.
A benchmark notion of fundamental price, obtained by discounting the expected stream
of future dividends, is given by

P ∗t =
∞∑
k=1

Et(yt+k)
(1 + rf )k

=
(1 + ϕ)yt
(rf − ϕ)

(5.43)

Eq. 5.43 implies that Et(P ∗t+1) = (1 + ϕ)P ∗t (and therefore ϕ also represents the
expected growth rate of the fundamental), as well as Et(yt+1) = (1 + ϕ)yt =
(rf − ϕ)P ∗t .12 When it comes to simulating the stochastic version of the model, it will
be assumed that dividends evolve according to

yt+1 = (1 + ϕ + σεεt+1)yt (5.44)

so that the fundamental price follows a similar process, P ∗t+1 = (1 + ϕ + σεεt+1)P ∗t ,
where εt ∼ N (0, 1) are IID random shocks and σε > 0 represents the standard deviation
of the dividend (and fundamental) growth rate.13,14

Heterogeneous Beliefs: The Fundamentalists and Trend Followers

Two groups of agents, fundamentalists and trend followers, are considered, together
with a market maker who mediates transactions. Both the fundamentalists and the mar-
ket maker are assumed to form correct expectations about the change in the fundamental
price, P ∗t+1 − P

∗
t , according to

Et

(
P ∗t+1 − P

∗
t

)
= ϕP ∗t

Fundamentalists, believing that prices will revert to the fundamental, form price
expectations according to

Ef ,t(Pt+1 − Pt) = Et(P ∗t+1 − P
∗
t ) + df (P ∗t − Pt)

= ϕP ∗t + df (P ∗t − Pt)
12For ϕ > 0, Eq. 5.43 is known in the finance literature as the Gordon dividend growth model. Such a model
seeks to forecast equity prices on the basis of assumptions about the future dividend growth rate. Despite its
simplicity, the model plays an important role in applied finance for valuing indices and assessing the behavior
of price/earnings and dividend/price ratios (see, for example, Shiller, 2003). Extensions of the basic model
have also been used in the behavioral finance literature (for example, Barsky and De Long, 1993).
13More generally, Eq. 5.42 is consistent with the assumption of dividends following a geometric random walk
of the type ln yt+1 = ln yt + χ + ξt+1, where χ is some constant and {ξt} is IID noise with E(ξt) = 0, provided
that one sets: 1 + ϕ := E

[
exp(χ + ξt+1)

]
.

14Note that with the CRRA utility function it seems natural to have the fundamental price follow a geometric
random walk, due essentially to the fact that a growing wealth process coevolves with the price process in
this framework. This is in contrast to the CARA utility case in Section 5.3, where a stationary process for the
fundamental is more natural.
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where 0 < df < 1 captures the expected speed of mean reversion. It is assumed that
Vf ,t(rt+1) = Vf ,t ((Pt+1 − Pt + yt+1)/Pt) = σ2

f , is constant over time. Given their CRRA
coefficient γ1, the optimal investment proportion (Eq. 5.32) for the fundamentalists then
becomes

πf ,t =
1
Pt

(df + ϕ)P ∗t − (df + rf )Pt + (1 + ϕ)yt

γ1σ
2
f

(5.45)

Trend followers do not rely on the knowledge of the fundamental price but try
to extrapolate past price movements into the future and form expectations about
next period’s relative price change (Pt+1 − Pt)/Pt according to an adaptive scheme.
More precisely, by defining κec,t := Ec,t

[
(Pt+1 − Pt)/Pt

]
and dc ∈ (0, 1) as the chartist

extrapolation parameter, the expectations of trend followers are updated according to
the rule

κec,t = (1 − dc)κec,t−1 + dc
Pt − Pt−1

Pt−1
(5.46)

From the definition of rt+1 and the fact that Et(yt+1) = (1 + ϕ)yt it follows that

Ec,t(rt+1) = κec,t +
(1 + ϕ)yt

Pt

Despite their attempt to exploit price trends for speculative purposes, it is assumed
that trend followers perceive the increasing risk associated with high absolute returns.
This is taken into account by assuming that trend followers have state-dependent beliefs
about the variance of the return. More precisely, at each time step the estimated vari-
ance σ2

c,t := Vc,t(rt+1) depends positively on the magnitude of the expected excess
return,

∣∣Ec,t(rt+1) − rf
∣∣, or put differently, it is a U-shaped function of the quantity(

Ec,t(rt+1) − rf
)
. As a consequence, the chartist investment fraction in the risky asset

turns out to be an increasing and sigmoid-shaped function of the expected excess return,
for which Chiarella, Dieci, and Gardini (2006) choose the following specification

πc,t =
Ec,t(rt+1) − rf

γ2σ
2
c,t

=
1

γ2vcθ
tanh

{
θ

[
κec,t +

(1 + ϕ)yt
Pt

− rf
]}

(5.47)

where the parameter γ2 is the trend followers’ CRRA coefficient, vc represents a
minimum level for variance beliefs, and θ > 0 is a constant.

Market Equilibrium

The desired asset holding for agent type i, in number of shares, is given by zi,t =
πi,tWi,t/Pt. Assuming that the risky asset is in zero net supply,15 the agents’ excess

15A more general case with positive supply is sketched in Chiarella, Dieci, and Gardini (2006). In such a case,
the discount rate in the fundamental price Eq. 5.43 is no longer the risk free rate rf , but it must include a risk
premium that is required by traders to hold a positive amount of the risky asset in equilibrium.
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demand turns out to be given by

zt =
1
Pt

(πf ,tWf ,t + πc,tWc,t)

Under the assumed market-maker scenario, the price adjustment by the market maker
takes into account both the expected change ϕP ∗t of the underlying fundamental, and
the sign and magnitude of the excess demand. A sufficiently general specification of the
price-setting rule can be found in Chiarella, Dieci, and Gardini (2006). For simplicity,
we here assume that the market maker adjusts the market price according to

Pt+1 − Pt
Pt

= ϕ
P ∗t
Pt

+ μ
πf ,tWf ,t + πc,tWc,t

Wt
(5.48)

where μ > 0 and Wt := Wf ,t +Wc,t.
The resulting discrete-time dynamical system consists of the price-setting rule

Eq. 5.48, together with the dynamic Eqs. 5.46 and 5.2 for κec,t and Wi,t, i ∈
{f , c}, respectively. It is possible to reduce the deterministic skeleton16 of the
model to a dynamical system in terms of expected and actual price return, κec,t :=
Ec,t

[
(Pt+1 − Pt)/Pt

]
and κt+1 := (Pt+1 − Pt)/Pt, the fundamental to price ratio λt :=

P ∗t /Pt, and fundamentalist wealth share ωf ,t := Wf ,t/Wt, according to

κt+1 = ϕλt + μ
[
ωf ,tπf ,t + (1 − ωf ,t)πc,t

]
(5.49)

λt+1 = λt
1 + ϕ

1 + κt+1
(5.50)

κec,t+1 = (1 − dc)κec,t + dcκt+1 (5.51)

ωf ,t+1 = ωf ,t
R + πf ,t

[
κt+1 + (rf − ϕ)λt − rf

]
∑
i∈{f ,c} ωi,t

[
R + πi,t

(
κt+1 + (rf − ϕ)λt − rf

)] (5.52)

where

πf ,t =
(df + rf )(λt − 1)

γ1σ
2
f

πc,t =
1

γ2vcθ
tanh[θ(κec,t + (rf − ϕ)λt − rf )]

Note in particular that the wealth Eq. 5.52 is equivalent to Eq. 5.33, because
(in the deterministic skeleton) yt+1 = (rf − ϕ)P ∗t and therefore rt+1 = (Pt+1 − Pt)/
Pt + yt+1/Pt = κt+1 + (rf − ϕ)λt. Note also that Eqs. 5.49–5.52 turns out to be a

16Obtained by assuming that dividends and fundamental price evolve deterministically according to agents’
expectations, that is, P ∗t+1 = (1 + ϕ)P ∗t .
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three-dimensional dynamical system since κt+1 (which appears at the right side of
Eqs. 5.50–5.52) depends on λt, κec,t, ωf ,t, the state variables at time t.

Dynamical Behavior

The model (Eqs. 5.49–5.52) admits two types of steady states, and both can be locally
asymptotically stable for particular configurations of the parameters. They are denoted
as fundamental steady states and nonfundamental steady states, respectively. The for-
mer are characterized by17 λ = 1, κ = κ

e
c = ϕ, any ωf ∈ [0, 1]. Thus, at a fundamental

steady state the price reflects the fundamental and grows at the dividend growth rate,
the excess demand is zero, whereas any long-run wealth distribution among agents is
possible, depending on the initial conditions.

The nonfundamental steady states are characterized by λ = 0, ωf = 0, κ = κ
e
c =

ψ > rf > ϕ, where ψ solves the equation

ψ

μ
=

1
γ2vcθ

tanh
[
θ(ψ − rf )

]
Therefore, at a nonfundamental steady state, the price grows faster than the fundamen-
tal, the market is dominated by trend followers, and there is a permanent positive excess
demand. Such attracting nonfundamental equilibria represent a sort of “deterministic
bubble” that lasts forever. Of course, such an outcome cannot be sustained in the long
run in the real world and is due to the highly simplified setup of the model being con-
sidered here (absence of constraints from the side of market maker’s inventories, no
account of consumption and its effect on wealth dynamics) as well as to its deter-
ministic nature (once noise is added to the system, the behavior of price and wealth
becomes more realistic and often phases of booms alternate with phases of crashes in
an unpredictable way). Nevertheless, the existence and stability of such nonfundamental
equilibria provide the important information that bubbles may arise for particular initial
conditions and under particular sets of parameters.

To provide some examples about the rich behavior of the system, depending on the
key parameter and the initial conditions, we give some plots illustrating the effect of the
risk aversion parameter (Figure 5.7) and the role of initial price and wealth shares in
various situations (Figures 5.8 and 5.9). Figure 5.7 is related to a particular case where
the market is dominated by trend followers (ωf ,0 = 0, and thus ωf ,t = 0 for any t) and
shows the projections in the plane of the variables κ, λ, of different orbits obtained with
the same initial condition (close to fundamental) under decreasing values of the chartist
risk-aversion coefficient γ2. The fundamental steady state (F ) changes from a stable (a)
to an unstable focus (b) through a (supercritical) Neimark-Sacker bifurcation, which
creates a stable closed orbit. The amplitude of the oscillations becomes wider for lower
risk aversion (c) until the attractor “collapses” onto a stable nonfundamental steady state
(NF ), with a permanent deviation of the price away from the fundamental (d). Similar

17An overbar is used here to denote steady-state quantities.
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FIGURE 5.7 CRRA trend followers with a market maker. (a) Stability and (b, c, d) instability of fun-
damental steady state for decreasing values of the risk aversion parameter γ2, and for rf = 0.02, ϕ = 0.01,
μ = 0.05, vc = 0.002, θ = 100, dc = 0.25.

phase-space transitions can be obtained by increasing the extrapolation parameter dc or
the speed of price adjustment μ. Although we have set ωf ,0 = 0 here, the same attractors
of Figure 5.7 can be reached also from initial conditions with positive wealth share of
the fundamentalists, thus suggesting that fundamentalists do not accumulate in general
more wealth than chartists and that chartists may even dominate in the long run.

A related important question concerns the effect of the initial conditions on the
asymptotic behavior of the model. For instance, it can be shown numerically that a
stable nonfundamental steady state may coexist with a continuum of attracting funda-
mental steady states, with the phase space shared between different basins of attractions.
Figure 5.8 reports an example of such basins of attraction, in the (ωf , λ) plane. The
basin structure depends on the particular parameter set used in the simulation. For
instance, higher values of the chartist parameter dc lead to an increase of the size of
the basin of the nonfundamental steady state.

Figure 5.9a reports another situation of coexisting attractors, a fundamental steady
state and a periodic orbit. Different from the examples in Figures 5.7 and 5.8, in this
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FIGURE 5.8 CRRA heterogeneous agents with a market maker. Basins of attraction of fundamental
and nonfundamental steady states for different reaction speeds of chartists—dc = 0.25 (a), dc = 0.75 (b).
Parameters are set as follows: rf = 0.02, ϕ = 0.01, μ = 0.05, σ2

f = vc = 0.002, θ = 100, df = 0.3, and γ1 =
20, γ2 = 6.5.
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FIGURE 5.9 CRRA heterogeneous agents with a market maker for rf = 0.02, ϕ = 0.01, μ = 0.1,
σ2
f = vc = 0.004, θ = 50, df = dc = 0.8, γ1 = 10, and γ2 = 2.5. (a) Coexisting attractors and (b) sensitivity

with respect to initial wealth shares.

case each scenario allows both types of agents to survive in the long run, with dif-
ferent behavior of the wealth shares. As shown in Figure 5.9b, for an initial wealth
share ωf ,0 = 38%, the dynamics converge to a periodic orbit and ωf eventually fluc-
tuate approximately in the range [38%, 47%], whereas for a slightly increased initial
wealth share, ωf ,0 = 40%, the system converges to a stationary state in which the fun-
damentalist wealth proportion is much higher. This example also illustrates the extreme
sensitivity of the dynamic evolution of the model to the initial values.
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The interaction of the nonlinear deterministic dynamics, often characterized by
coexisting attractors with simple external noise processes, is able to generate phases
of booms, where the price grows faster than the fundamental and the fundamentalist
wealth share rapidly declines, followed by crashes, where the price is attracted again
toward the fundamental, and the fundamentalist wealth share returns to higher levels.
This can be seen from the noisy version of the model, where it is assumed that the
dividend and the fundamental price grow at the rate ϕ + σεεt, according to Eq. 5.44.
Furthermore, a stochastic term Ptσξξt, where σξ > 0 and ξt ∼ N (0, 1) are IID random
disturbances representing the influence of noise traders, is added to the price setting
equation. Also, such a noisy model can be reduced to a dynamical system formulated in
price returns and wealth shares (see Chiarella, Dieci, and Gardini, 2006, for details).

Figure 5.10 presents sample paths of the prices (market price Pt and fundamental
price P ∗t ) and of the fundamentalist wealth share (ωf ,t) as a function of time, under
different initial conditions. The parameters are the same as in Figure 5.8a (coexistence
of stable fundamental and nonfundamental steady states). Booms and crashes of the
price, accompanied by jumps in the wealth shares, are observed when the system starts
with a sufficiently small fundamentalist wealth share ωf ,0, as is the case of panels (a)
and (b). On the other hand, more regular price and wealth paths are obtained starting
with a higher fundamentalist wealth proportion, as in the case represented in panels (c)
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FIGURE 5.10 CRRA heterogeneous agents with a market maker. Price, fundamental price, and wealth shares
in a simulation of the noisy model (σε = 0.015, σξ = 0.03). Other parameters are as shown in Figure 5.8a. In (a)
and (b), initial fundamentalist wealth share is low (ωf ,0 = 30%), in (c) and (d), it is higher (ωf ,0 = 60%).
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and (d). These phenomena may be related to the structure of the basins of attraction of
the underlying deterministic model. These simulations give just a glimpse of the effect
of the interaction of noise with the nonlinear dynamic elements of BRHA models; this
issue is further explored in the next two sections.

Summary

The analysis of this section has shown that under both market-clearing mechanisms, the
BRHA framework with agents having CRRA utility exhibits a rich type of dynamics
(compared to CARA utility). This framework more readily yields the growing price
process that we observe in real markets, it also has a rich bifurcation structure with
multiple basins of attraction and switching between fundamental and nonfundamental
equilibria. Furthermore, the CRRA framework seems appropriate to discuss the long-
run survival of competing trading strategies. However, because the price dynamics and
wealth dynamics are intertwined, it is much more difficult to obtain analytical results,
so in this case we need to rely much more on computer simulations.

5.5. EMPIRICAL BEHAVIOR

This section reviews some of the work that has been done on the empirics calibration of
the BRHA class of models. In the formulation of the models in Sections 5.3 and 5.4 we
have indicated that noise could also be incorporated into the modelling framework—
for instance, a noisy fundamental, noisy dividends, general market noise due to news
arrival and/or noise trading activity. It seems reasonable to expect that the real financial
market is the outcome of both nonlinear and stochastic elements. Indeed, simulations
reported in Chiarella, Dieci, and Gardini (2002), Chiarella and He (2002), He and Li
(2008), among other authors, indicate that the said interaction can indeed lead to price
and return distributions that have many of the characteristics of real financial time series.
Furthermore, we know from more recent research (to be discussed in Section 5.7) that
the stochastic version of the BRHA class of models can undergo stochastic bifurcations.
In this section we use a simple market fraction model to show how it is able to reproduce
fairly well many of the main stylized facts of real financial time series such as the
S&P 500. We refer the reader to He and Li (2007, 2008) for more details on the issues
addressed in this section.

5.5.1. Stylized Facts in the S&P 500

As a benchmark, we first briefly review the stylized facts of financial markets based
on the S&P 500. Based on daily S&P 500 data from December 5, 1980, to February
23, 2007, Figure 5.11 displays plots including prices, the returns, and the corre-
sponding density distributions, plus autocorrelation coefficients (ACs) of the returns,
absolute and squared returns. They share some common stylized facts with high-
frequency financial time series, including excess volatility (relative to the dividends
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FIGURE 5.11 The daily S&P 500 data, Dec 5, 1980–Feb 23, 2007: prices (a) and returns (b). Return rt
distribution (compared to the corresponding normal distribution), the ACs for the returnsAC(rt), the absolute
AC(|rt|), and squared AC(r2

t ) returns.

and underlying cash flows), volatility clustering (high/low fluctuations are followed
by high/low fluctuations), skewness (either negative or positive), and excess kurtosis
(compared to normally distributed returns). The returns show (almost) no significant
autocorrelations, but the absolute returns and squared returns show slowly decay-
ing autocorrelations. For a comprehensive discussion of stylized facts characterizing
financial time series, we refer the reader to Pagan (1996).

Among the stylized facts, volatility clustering and power-law behavior (that is,
insignificant ACs of raw returns and hyperbolic decline of ACs of the absolute and squared
returns) have been extensively studied since the seminal paper of Ding, Granger, and
Engle (1993). Recently, a number of universal power laws18 have been found to hold in
financial markets. This finding has spurred attempts at a theoretical explanation and the
search for an understanding of the underlying mechanisms responsible for such power
laws.19 Among which, the herding models (see, for instance, Kirman, 1993; Lux and
Marchesi, 1999; and Alfarano, Lux, and Wagner, 2005) and switching models (such as

18These include cubic power distribution of large returns, hyperbolic decline of the return autocorrelation
function, temporal scaling of trading volume and multiscaling of higher moments of returns.
19We refer the reader to Lux (2004) for a recent survey on empirical evidence, models, and mechanisms of
various financial power laws.
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Brock and Hommes, 1998, and Gaunersdorfer and Hommes, 2000) have shown their
potential to explain power-law behavior. Recently, He and Li (2007) consider the mar-
ket fraction model established in He and Li (2008) and explore the potential of the
model to generate the power-law feature observed in empirical data. The next subsec-
tion reports the empirical characteristics of the market fraction model obtained in He
and Li (2007).

5.5.2. A Market Fraction Model and Its Stylized Behavior

To explain various aspects of financial market behavior and establish the connection
between the stochastic model and its underlying deterministic system, He and Li (2008)
consider a simple stochastic asset-pricing model, involving two types of agents (funda-
mentalists and trend followers) under a market-maker market-clearing scenario. The
model is a simplified version of the models considered in Section 5.3. It is called a mar-
ket fraction model since the market fraction differencem = n1 − n2 ∈ [−1, 1] is assumed
to be a constant parameter, rather than switching dynamically. The market price is deter-
mined by Pt+1 = Pt + (μ/2)[(1 + m)z1,t + (1 − m)z2,t] + δ̃t, where the demand zi,t is
defined by Eq. 5.9 and the IID noise term δ̃t ∼ N (0, σ2

δ ) captures unexpected market
news or the excess demand of noise traders.

The fundamentalists trade on the price deviation from the estimated fundamental
value P ∗t whose relative return follows a normal distribution P ∗t+1/P

∗
t − 1 ∼ N (P̄ , σ2

ε ),
where P̄ = ȳ/r is the expected long-run fundamental value and ȳ is the mean of the div-
idend process yt. Their beliefs are assumed to follow E1,t(Pt+1) = Pt + df [E1,t(P ∗t+1) −
Pt] and V1,t(Pt+1) = σ2

1, where df ∈ [0, 1] is the fundamentalists’ speed of price adjust-
ment toward the fundamental value and σ2

1 is a constant. Without information on the
fundamental value, the trend followers extrapolate the latest observed price change
over a long-run sample mean of the price and adjust their variance estimate according
to E2,t(Pt+1) = Pt + dc(Pt − ut) and V2,t(Pt+1) = σ2

1 + b2vt. Here ut and vt are sample
mean and variance, respectively, which follow the limiting geometric decay processes,
ut = δut−1 + (1 − δ)Pt and vt = δvt−1 + δ(1 − δ)(Pt − ut−1)2, where δ ∈ [0, 1] is the
decay rate, dc > 0 measures the extrapolation rate from the trend followers, and b2 > 0
measures the influence of the sample variance.

By assuming the dividend process yt ∼ N (ȳ, σ2
y ) with σ2

y = r2
fσ

2
1, the market fraction

model is given by a four-dimensional stochastic system in (Pt, ut, vt,P ∗t ) involving two
noise processes, one for the fundamental value and one for the market noise. He and Li
(2008) show that convergence of the market price to the fundamental value, the long-
and short-run profitability of the two trading strategies, the survival of trend followers
and various under- and overreaction autocorrelation patterns of the stochastic model can
be explained by the dynamics, including its stability and bifurcations, of the underlying
deterministic system. The model is also able to generate the stylized facts displayed
by the return distribution. In the following discussion, we focus on an analysis of the
volatility clustering and power-law mechanism of the model.

To understand the mechanism, we first illustrate the different impact of the two
noise processes on the underlying deterministic price dynamics. Using the parameter
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set20 in Table 5.1, we consider the four cases listed in Table 5.2. Case-00 corresponds
to the deterministic case. Case-01 (Case-10) corresponds to the case with noisy funda-
mental price (noisy excess demand) only and both noise processes appear in Case-11.
Figure 5.12 illustrates the price series for the four cases for a typical simulation. The

TABLE 5.1 Parameter Settings and Initial Values

df dc α1 α2 μ m δ b σε σδ P0 P ∗0

0.1 0.3 0.8 0.8 2 0 0.85 1 0.01265 1 100 100

TABLE 5.2 Four Cases of the Noise Effect

Cases Case-00 Case-01 Case-10 Case-11

(σδ , σε ) (0, 0) (0, 0.01265) (1, 0) (1, 0.01265)
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FIGURE 5.12 Time series of prices for the four cases in Table 5.2.

20In choosing the parameter values we have been mindful of the fact that most of the stylized facts are
observed for high-frequency data (for example, daily) rather than for low-frequency (such as yearly) data.
So we have chosen parameter values that are characteristic of daily returns—for instance, the market return
volatility is 20% in annualized terms and the risk-free rate is 5%p.a.
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FIGURE 5.13 Return series and their density distributions (b) for Cases 01, 10, and 11 in Table 5.2.

corresponding return series and their density distributions are given in Figure 5.13 for
the three cases involving noise. Figure 5.14 shows the ACs of returns, absolute returns
and squared returns. For comparison purposes, the same set of noisy demand and fun-
damental processes is used in Case-11. Both Figures 5.13 and 5.14 show significantly
different impacts of the different noise processes on the volatility.

In Case-01, the stochastic fundamental price process is the only external noise
source. The market price displays a strong underreaction AC pattern of returns, which
is characterized by the significantly positive decaying ACs shown in the top left panel
in Figure 5.14. This significant AC pattern is also carried on to the AC patterns for the
absolute and squared returns. In Case-10, the noisy excess demand is the only external
noise source. The market price displays no volatility clustering, which is characterized
by insignificant AC patterns for returns, the absolute and squared returns shown in the
middle row in Figure 5.14. In Case-11, both the noisy excess demand and noisy funda-
mental price processes are present. In this case we observe relatively high kurtosis in
Figure 5.13 and insignificant ACs for returns, but significant ACs for the absolute and
squared returns shown in the bottom panel in Figure 5.14.

These results demonstrate that this simple market fraction model is able to generate
realistic price behavior and appropriate power-law behavior for returns when both noise
processes are present. The analysis indicates that the noisy demand plays a more impor-
tant role on the insignificant AC patterns for the returns, whereas the noisy fundamental
process plays a more important role on the significant AC patterns for the absolute and
squared returns. We refer the reader to He and Li (2007) for an analysis of volatility
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FIGURE 5.14 ACs of returns (a), absolute returns (b), and squared returns (c) for Cases 01, 10, and 11.

clustering and power-law behavior. The discussion in the next section is devoted to an
econometric analysis of the power-law behavior.

5.5.3. Econometric Characterization of the Power-Law Behavior

Ding, Granger, and Engle, 1993 investigate autocorrelations of returns (and their trans-
formations) of the daily S&P 500 index over the period 1928 to 1991 and find that the
absolute returns and the squared returns tend to have very slow decaying autocorrela-
tions and that the sample autocorrelations for the absolute returns are greater than those
for the squared returns at every lag up to at least 100 lags. This AC feature indicates the
long-range dependence or the power-law behavior in volatility. By running 1000 inde-
pendent simulations, we estimate the average autocorrelation coefficients for the market
fraction model with the parameter set of Table 5.2 and plot the ACs and their corre-
sponding confidence intervals in Figure 5.15. We see that the patterns of decay of the
autocorrelation functions of return, the squared return and the absolute return are quite
similar to what we observed for those of the S&P 500. Besides the visual inspection of
autocorrelations of rt, r2

t and |rt|, we can also construct models to estimate the decay
rate d of the autocorrelations of rt, r2

t and |rt|. Based on the estimates given in He and Li
(2007), there is clear evidence of a power law for the squared returns and the absolute
returns, which are comparable to those of the actual data.
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FIGURE 5.15 Autocorrelations of rt (bottom), r2
t (middle), and |rt| (top) for the market function model.

Another striking feature of financial return series is volatility clustering. A number
of econometric models of changing conditional variance have been developed to test
and measure volatility clustering. Engle (1982) suggested a test where the null hypoth-
esis is that the residuals of a regression model are IID and the alternative hypothesis
is that the errors are ARCH(q). For the market fraction model, the null hypothesis is
strongly rejected. For the market fraction model, Table 5.3 reports the estimates of the
GARCH (1, 1) model (see Bollerslev, 1986). The results from the GARCH model are
astonishingly similar to what one usually extracts from real market data: A small influ-
ence of the most recent innovation (α1 < 0.1) is accompanied by strong persistence of
the variance coefficient (β1 > 0.9). It is also interesting to observe that the sum of the
coefficients α1 + β1 = 0.9928 is close to one, which indicates that the process is close to
an integrated GARCH (IGARCH) process. The GARCH implies that shocks to the con-
ditional variance decay exponentially. However the IGARCH implies that the shocks to
the conditional variance persist indefinitely.

In response to the finding that most financial time series are power-law volatility
processes, Baillie, Bollerslev, and Mikkelsen (1996) consider the fractional integrated
GARCH (FIGARCH) process, where a shock to the conditional variance dies out
at a slow hyperbolic rate. Table 5.4 reports the estimates of the FIGARCH models
for the market fraction model. For the estimates of the FIGARCH(1, d, 1), we see that
the estimate of d is significantly different from zero and one. This is consistent with
the well-known findings that the shocks to the conditional variance die out at a slow
hyperbolic rate.
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TABLE 5.3 The GARCH (1, 1) Parameter Estimates
for the Market Fraction Model

a × 103 b α0 × 104 α1 β

0.0740 0.0725 0.0078 0.0260 0.9738

(0.2300) (0.0139) (0.0035) (0.0032) (0.0033)

47 77.1 17.7 100 100

Note: The numbers in parentheses are the standard errors, and
the numbers in the last row are the percentages that the test
statistics are significant at the 5% level over 1000 independent
simulations. This also holds for Table 5.4.

TABLE 5.4 The FIGARCH (1, d, 1) Parameter Estimates
for the Market Fraction Model

a b α0 × 104 d φ1 β

0.0137 0.0769 0.3620 0.3797 0.3439 0.7933

(0.0010) (0.0195) (0.6112) (0.0386) (0.0281) (0.0295)

41.2 72.6 35.6 87.6 83.1 98.5

Overall, we find that the market fraction model does provide a mechanism that can
generate the long-range dependence in volatility observed in actual market data. The
foregoing analysis shows that agent heterogeneity, risk-adjusted trend chasing through
the geometric learning process, and the interplay of noisy fundamental and demand
processes and the underlying nonlinear deterministic dynamics can be the source of
power-law distributed fluctuations. The noisy demand plays an important role in the
generation of insignificant ACs on returns, while the significantly decaying AC patterns
of the absolute returns and squared returns seem to be more influenced by the noisy
fundamental process. The estimates given are clear evidence that the power-law and
(FI)GARCH features can arise even in this simple version of a BRHA model. The
results also indicate the need to pursue more deeply the interaction of stochastic and
nonlinear elements in BRHA models.

5.6. HETEROGENEITY IN A DYNAMIC MULTIASSET
FRAMEWORK

The one risky/one risk-free asset model considered in previous sections is merely a first
step to understanding price dynamics under heterogeneous agent interaction. Within a
multiple risky asset framework, the way agents form and update their beliefs about the
covariance structure also becomes an important factor in determining the dynamics of
prices. A number of recent papers deal with the multiple risky asset decision problem
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in a mean-variance setup, within the BRHA paradigm.21 We cite in particular Böhm
and Chiarella (2005), Böhm and Wenzelburger (2005), and Wenzelburger (2004). Such
models establish an overall framework, and focus on various aspects. In particular,
the setup of Böhm and Chiarella (2005) is that of a multiasset dynamic CAPM with
heterogeneous agents, though the dynamic impact of this heterogeneity has not been
analyzed in detail. In Wenzelburger (2004), this setup has been extended to a model
in which myopic agents are allowed to switch between different trading strategies sim-
ilar to Brock and Hommes (1998). See also Raffaelli and Marsili (2006). Böhm and
Wenzelburger (2005) apply the general setup to investigate the properties of efficient
portfolios under heterogeneous beliefs.

With respect to the existing literature, we here make explicit and more general the
updating rules of agents’ beliefs, especially with regard to second-moment beliefs. The
main point at issue concerns the dynamic effect of the assumed updating mechanism;
namely, the question whether the endogenously varying beliefs about correlations—
together with the dynamic portfolio allocation among multiple risky assets—may
“stabilize” the asset markets, or rather tend to reinforce and to spread the price fluc-
tuations that arise due to the interaction of heterogeneous agents. Put differently,
we aim at understanding to what extent such mechanisms may generate interdepen-
dence between the price dynamics of different risky assets. A further difference with
the existing literature is that a market-maker scenario is used in our setup, instead of
a Walrasian auctioneer scenario. The model presented in the current section closely
follows Chiarella, Dieci, and He (2007b).

5.6.1. Optimization of a Many Risky Asset Portfolio with
Heterogeneous Beliefs

Portfolio Optimization of Many Risky Assets

The asset market is characterized by m risky assets, indexed by j = 1, 2, . . . ,m, and
a risk-free asset, and by I different trader types, indexed by i = 1, 2, . . . , I . For the
risky asset j, the price at time t and the dividend paid in the trading period (t − 1, t)
are denoted by Pj,t and yj,t, respectively. Using m-dimensional column vector nota-
tion, prices and dividends correspond to Pt and yt, respectively, whereas the vector
Rt := (Pt + yt − RPt−1) collects the excess returns (per share) in the time interval
(t − 1, t). The vector zit = (zi1,t, z

i
2,t, . . . , z

i
m,t)

�, where� stands for the transpose, denotes
the portfolio held by agent type i in the trading period (t, t + 1), so that agent’s wealth
(W i

t ) evolves according to

W i
t+1 = RW i

t + (zit)
�Rt+1 = RW i

t

+ (zit)
�(Pt+1 + yt+1 − RPt)

21Further, recent studies consider heterogeneous speculators switching among different risky investment
opportunities and focus on the resulting comovements of asset prices (see Westerhoff, 2004, and Westerhoff
and Dieci, 2006). Such studies do not assume a mean-variance setup explicitly but rather rely on particular
behavioral assumptions.
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We use Covit to denote agent i’s conditional covariance operator. Following the same
steps as in the single-risky-asset case, and under the usual assumption of conditional
multivariate normality of returns (in agents’ beliefs), the maximization of the CARA
expected utility of wealth at t + 1 results, at time t, in the optimal portfolio choice

zit = (V i
t )−1mit/αi (5.53)

where αi is the absolute risk-aversion coefficient of agent type i, mit := E
i
t(Rt+1) is the

vector of conditionally expected excess returns and V i
t :=

[
Covit (Rj,t+1,Rk,t+1)

]
, j, k =

1, 2, . . . ,m, denotes the conditional variance/covariance matrix (assumed to be positive
definite) of the excess returns per share, according to the beliefs of agent type i.

The Fundamentalists and Chartists

We again consider two types of agents, fundamentalists (i = f ), who believe in mean
reversion to the fundamental, and trend followers or chartists (i = c), who rely on
extrapolation of observed price trends. Both agent types are assumed to share common
and correct expectations about dividends, with E

i
t[yt+1] = y, i ∈ {f , c}, though forming

different beliefs about the conditional distribution of asset returns (that is, about Rt+1).
The assumed behavior of the two agent types is basically similar to the previously dis-
cussed one-risky-asset cases. In particular, beliefs are specified similarly to the model
discussed in Section 5.3.5, which incorporates explicitly an adaptive mechanism used
by the chartists to update the variance of prices, based on extrapolation of observed devi-
ations from a sample mean. Such a mechanism is adopted also in the present multiasset
model. The obvious difference with the one-risky-asset setup is that chartist extrap-
olation now also concerns the comovements of prices: The focus is therefore on the
additional effects of this updating rule, by which observed comovements contribute to
determine current and future portfolio allocations and thus affect the joint dynamics of
prices.

To keep matters as simple as possible—and to focus only on the previously described
effect—we assume that agents do not care about dividends explicitly when forming
second moment beliefs about excess returns Rt+1. It is simply assumed that the stan-
dard deviation of the “cum-dividend” prices Pj,t+1 + yj,t+1 is estimated in proportion
to the standard deviation of the price. Namely, for i ∈ {f , c} and j, k = 1, 2, . . . m, we
assume22

V
i
t(Rj,t+1) = q2

jV
i
t(Pj,t+1)

Covit (Rj,t+1,Rk,t+1) = qjqkCov
i
t (Pj,t+1,Pk,t+1)

22For example, agents would set qj = 1 + δaj /K, (j = 1, 2, . . . ,m), where δaj is an estimate of the average
(per annual) dividend yield of asset j, and K is the trading frequency per year; an alternative choice could be
qj = R. Since the parameters used in the numerical simulations at the end of this section have been chosen to
represent daily data (for which rf is of the order of 10−4), in the following discussion we neglect the dividend
component and therefore assume qj = 1, for simplicity.
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where qj > 0 are constants. For simplicity, we take qj = 1 (j = 1, 2, . . . ,m) in the
following discussion.

As usual fundamentalists expect the future prices of the risky assets to evolve
according to

E
f
t [Pt+1] = Pt + (1 − df )(P ∗ − Pt) , (0 ≤ df ≤ 1) (5.54)

where (1 − df ) represents the expected speed of adjustment of the prices toward
their (constant) fundamental values, collected in the vector P ∗.23 Therefore, for the
fundamentalists

m
f
t := E

f
t [Rt+1] = (df − R)Pt + (1 − df )P ∗ + y

The fundamentalists have the same constant beliefs about the variance/covariance
structure of the excess returns, where

V
f
t = V

f
:= [Covft (Pj,t+1,Pk,t+1)] (j, k = 1, 2 . . . ,m)

represents the variance/covariance matrix of the prices.
Chartists expect prices to evolve according to

E
c
t [Pt+1] = Pt + dc(Pt − ut)

where dc ≥ 0 is the price extrapolation parameter of the chartists and ut = [uj,t] (j =
1, 2, . . . ,m) is a vector of sample average prices. As a consequence one obtains

mct := E
c
t [Rt+1] = (1 + dc − R)Pt − dcut + y

With regard to second-moment beliefs, the covariance matrix of excess returns, V c
t , is

specified as

V c
t = V

c
+ Vt (5.55)

which consists of a constant component V
c

and a time-varying component Vt. The lat-
ter is assumed to be updated in each period as a function of deviations of past prices
from the sample means ut. More precisely, the symmetric matrix Vt has the structure
Vt := [νjksjk,t] (j, k = 1, 2, . . . ,m), where νjk ≥ 0 is a sensitivity coefficient, while sjk,t

represents a sample variance/covariance, based on observed data up to time t. We also
denote by Σt := [sjk,t] the matrix of such time-varying sample variances/covariances.

23The fundamental price will be defined explicitly later, see Eq. 5.59. We may consider P ∗ as an exogenous
parameter for the moment.
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Finally, following He (2003) and Chiarella, Dieci, and Gardini (2005), we specify
the learning processes about sample means ut and sample variances/covariances Σt as

ut = δut−1 + (1 − δ)Pt (5.56)

Σt = δΣt−1 + δ(1 − δ)(Pt − ut−1)(Pt − ut−1)� (5.57)

where δ, 0 < δ < 1, represents a “memory” parameter.

Market-Clearing under a Market Maker

To close the model, the price-setting rule needs to be made explicit. Assuming a market-
maker scenario, the price vector adjusts according to

Pt+1 = Pt + μ(nfzft + n
czct − zs)

where μ > 0 is the market maker’s price adjustment parameter, nf and nc(= 1 − nf )
represent the fractions of fundamentalists and chartists, respectively, and zs denotes
the quantities of shares (per agent) available in the market, so that the vector (nfzft +
nczct − zs) represents the average excess demand of each asset per agent. The asset price
dynamics under heterogeneous beliefs are thus expressed by a nonlinear discrete-time
dynamical system, in the state variables Pt, ut, Σt.

To further simplify the model, we assume that agents are homogeneous in their
risk-aversion coefficients (αf = αc := α). We also assume that the constant component
of the variance/covariance matrix of prices is the same for both agent types, and we
denote it by

V
c
= V

f
= V :=

[
ρjkσjσk

]
(j, k = 1, 2, . . . ,m)

where σj and ρjk denote standard deviation of price j and correlation between prices j
and k, respectively. So the dynamics of the model evolve according to⎧⎪⎨

⎪⎩
Pt+1 = Pt + μ[nfzft + (1 − nf )zct − zs]
ut+1 = δut + (1 − δ)Pt+1

Σt+1 = δΣt + δ(1 − δ)(Pt+1 − ut)(Pt+1 − ut)�
(5.58)

where

z
f
t =

1
α

(V )−1[(df − R)Pt + (1 − df )P ∗ + y]

zct =
1
α

(V + Vt)−1[(1 + dc − R)Pt − dcut + y]

and where the symmetric matrix Vt is a function of Σt. For the sake of simplicity,
the fundamental prices are set in such a way that P ∗ turns out to be the steady state
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of the dynamical system (Eq. 5.58),24 which results in

P ∗ =
1

R − 1

[
y − αV zs

]
(5.59)

where the quantity y − αV zs can be interpreted as a vector of “risk-adjusted” divi-
dends.25

An immediate remark about the model Eq. (5.58) is that the dynamics of the m
asset prices will decouple from each other if V and Vt are diagonal matrices, that is,
when prices are not correlated in the “fixed” component of agents’ beliefs and chartist
sensitivity to sample covariances is zero.

5.6.2. An Example of Two Risky Assets and Two Beliefs

To gain some insight into the dynamic behavior of the model and in particular into
the role of anticipated correlations, in the following we consider the case of two risky
assets, m = 2. For simplicity, it is assumed ν11 = ν22 := ν. We also adopt the simplified
notation ν12 := λ, s12,t := st, sjj,t := vj,t (j = 1, 2), ρ12 := ρ, so that the matrices V , Σt
and Vt can be rewritten, respectively, as follows:

V =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
Σt =

[
v1,t st
st v2,t

]
Vt =

[
νv1,t λst
λst νv2,t

]

In this case Eq. (5.58) reduces to a seven-dimensional dynamical system in which
the correlation between prices P1,t+1 and P2,t+1 estimated by chartists at time t, ρ(c)

t

is given by

ρ
(c)
t =

ρσ1σ2 + λst√
(σ2

1 + νv1,t)(σ2
2 + νv2,t)

(5.60)

Despite the high dimension of the system, analytical results about the local asymp-
totic stability of the fundamental steady state are possible in the particular case where
the “exogenous” part ρ of the correlation of the excess returns, which is a commonly
held belief among the agents, is zero. Then the local stability and bifurcation of the
dynamic portfolio model with two risky assets is actually determined by two indepen-
dent dynamic models, each with a single risky asset (and the risk-free asset).26 In this
case it can be shown in general that when the speed of price reaction is not too high, the

24This corresponds to the price that would be obtained under homogeneous beliefs about the first and second
moments of the cum-dividend price processes. This result can be regarded as a special case of Theorem 3.2
in Böhm and Chiarella (2005).
25A similar interpretation is suggested by Brock and Hommes (1998) in the case of one risky asset.
26We stress that this property, relative to the case ρ = 0, concerns only the behavior of the linerized system
around the steady state. In general, the dynamics of the two prices will not decouple, unless Vt is a diagonal
matrix (i.e., λ = 0).
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steady state is locally stable for any fundamentalist fraction nf provided that the chartist
extrapolation rate dc is sufficiently low, whereas for sufficiently high dc the steady state
becomes unstable through a supercritical Neimark-Sacker bifurcation, followed by the
emergence of a stable closed invariant curve in the phase-space, resulting in endogenous
fluctuations of the asset prices.

The correlation structure among different risky assets plays an important role in the
dynamics of the multiperiod setup. Here we present some numerical examples high-
lighting the impact of agents’ beliefs about the covariance structure on the dynamic
behavior of the model (Eq. 5.58). Such beliefs play a role in two different ways. First,
the coefficient ρ here represents an exogenously set (and common) component of the
heterogeneous beliefs about the correlation of the two asset prices. We can interpret
this component as a constant part of the beliefs, related to the dividend processes,
which characterizes a steady-state situation. Second, the extrapolation of observed
price comovements generates endogenously another kind of “perceived” correlation,
the impact of which is governed by the parameter λ (sensitivity to sample covariance).
This may be interpreted as an out-of-equilibrium component, which may result in a
positive or negative correction with respect to the exogenous part ρ.

A natural question concerns the qualitative impact (stabilizing or destabilizing) of
each of the two components, in particular whether the endogenously perceived corre-
lation and its updating mechanism tends to dampen or to amplify the price movements
that arise from the interaction of heterogeneous traders. Obviously, when λ = 0 and in
addition ρ = 0, the demand functions become (for j = 1, 2)

z
f
j,t =

(df − R)Pj,t + (1 − df )P ∗j + yj

ασ2
j

zcj,t =
(1 + dc − R)Pj,t − dcuj,t + yj

α(σ2
j + νvj,t)

which are precisely the demand functions that we would obtain in the case of a sin-
gle risky asset (asset j), that is, for n = 1. In other words, in the case ρ = λ = 0, the
prices of the two risky assets evolve independently from each other, whereas for ρ = 0,
λ = ν, agents care about the observed comovements of prices exactly as they do with
their sample volatility. In general, λ > 0 results in interdependent demand functions of
the two assets and in prices coevolving over time, even in the absence of exogenous
correlation (i.e. when ρ = 0). This can be seen from the following numerical simula-
tions, where parameters are chosen in a way that the two assets have equal fundamental
prices, which makes possible the use of the same (P , u) plane to represent both asset 1
and asset 2 (via projections onto the planes P1, u1 and P2, u2, respectively), using dif-
ferent shading. The common set of parameters used in the numerical simulations is the
following: ν = 0.5, δ = μ = 0.5, nf = 0.25, α = 0.05, R = 1.0002, σ2

1 = 0.9, σ2
2 = 1.6,

zs1 = zs2 = 1, y1 = 0.071, y2 = 0.106.
In Figure 5.16 we set df = 0.75, dc = 0.45. The panels from (a) to (e), where ρ = 0,

represent a case in which a higher sensitivity to sample covariances is able to stabilize
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FIGURE 5.16 A two-asset market. Sensitivity to observed comovements can stabilize asset price 2, from (a,b) to (c,d), or
in general can reduce the amplitude of fluctuations (e). As an effect of exogenous correlation (c,f,g), the two assets evolve with
increasingly similar patterns. Fundamentalist and chartist parameters: df = 0.75, dc = 0.45.

the dynamics to some extent. This effect is quite often detected when the starting
situation with “decoupled” markets (ρ = 0, λ = 0) is one in which the two prices evolve
with regular fluctuations of similar amplitude. In particular, the perceived correlation
is able to stabilize wide fluctuations of asset 2 into convergence to the fundamental
price (compare (a,b) with (c,d)). This is also revealed by the bifurcation diagram (e)
of price 2 versus the parameter λ. The higher the sensitivity to observed comovements,
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the smaller the range of fluctuations of asset 2. Note that the exogenous component ρ
causes in general the opposite effect: Larger values of ρ produce wider fluctuations for
asset price 2 (by leaving price 1 almost unchanged in this case). This can be seen from
the phase plots in Figures 5.16c, 5.16f, and 5.16g, where ρ is increased from 0 to 0.15
and then to 0.3.

We have detected such a destabilizing effect of ρ under several different parame-
ter constellations. In general, the larger is ρ, the more similar is the nature and the
amplitude of the fluctuations of the two prices due to a spillover effect from the mar-
ket, with wider fluctuations to the more tranquil market. In contrast, the qualitative
impact of λ is characterized by a strong dependence on the parameters of the model.
We reported in Figure 5.16 a situation that is stabilized by the “perceived” correla-
tions, but in other cases the effect is that of producing a transition toward less regular
fluctuations and phase plots of increasing complexity. Figure 5.17 (where df = 0.1,
dc = 1.2) shows one such case, which is obtained under a stronger trend extrapolation
and fundamentalist reaction than in Figure 5.16. This suggests that in the presence of
price fluctuations determined by fundamentalist-chartist interaction, the sensitivity to

Parameters: df 5 0.1  dc 5 1.2
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FIGURE 5.17 A two-asset market. Destabilizing effect of the sensitivity to historical covariances: from
cyclical behavior on a periodic orbit (a,b) to intricate fluctuations on a chaotic attractor (c,d). Fundamentalist
and chartist parameters: df = 0.1, dc = 1.2.
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observed comovements is not always able to stabilize the financial market, but it might
even act as a further source of complex behavior.

Summary

Our analysis suggests that combining the BRHA approach with the mean-variance port-
folio model with multiple risky assets may provide a suitable framework to address a
number of issues concerning comovements in stock prices and in particular the way
price fluctuations can propagate themselves across markets as a results of agents’
beliefs. It turns out that second-moment beliefs, which are updated dynamically as a
function of observed volatility and comovements, affect the agents’ portfolio allocation
process and may determine different patterns for the joint dynamics of prices. Such
mechanisms may play a stabilizing role on the asset prices by reducing the amplitude of
fluctuations, but in some cases they may contribute to reinforcing and amplifying price
movements. The outcome depends crucially on some behavioral parameters, among
which are the fundamentalist reaction and the strength of chartist extrapolation.

5.7. THE CONTINUOUS STOCHASTIC DYNAMICS
OF SPECULATIVE BEHAVIOR

As we saw in Section 5.5, an important issue for the BRHA class of models is
the interaction of noise with the underlying nonlinear deterministic market dynamics.
The approach of Section 5.5, referred to as the indirect approach, first considers the cor-
responding deterministic “skeleton” of the stochastic models in which the noise terms
are set to zero and uses stability and bifurcation theory to investigate the dynamics of
this nonlinear deterministic system. It then uses simulation methods to examine the
interplay of various types of noise and the deterministic dynamics. Hommes (2006)
gives many references to this indirect approach. Ideally we would like to deal directly
with the dynamics of the stochastic system. For example, in BRHA models with
stochastic noise, we would like to know how the statistical properties of the model,
which can be characterized by the stationary distribution of the market price process,
change as agents’ behavior changes and how the market price distribution is influenced
by the underlying deterministic dynamics. In particular, we can ask whether there is
a connection between different types of attractors and bifurcations of the underlying
deterministic skeleton and different types of invariant measures of the stochastic system.

5.7.1. Stochastic Models with Heterogeneous Beliefs

A number of stochastic asset pricing models have been constructed in the heteroge-
neous agent literature. Brock, Hommes, and Wagener (2005) study the evolution of a
discrete financial market model with many types of agents by focusing on the limit-
ing distribution over types of agents that is able to generate important stylized facts.
Föllmer, Horst, and Kirman (2005) consider a discrete financial market model with
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adaptive heterogeneous agents and under certain conditions the price process of which
displays fat tails. Rheinlaender and Steinkamp (2004) study a one-dimensional con-
tinuously randomized version of the model of Zeeman (1974) and show a stochastic
stabilization effect and possible sudden trend reversal.

Other related works include Hens and Schenk-Hoppé (2005), who analyze portfolio
selection rules in incomplete markets where the wealth shares of investors are described
by a random discrete dynamical system; Lux and Schornstein (2005), who present an
adaptive model of a two-country foreign exchange market where agents learn by using
genetic algorithms; Böhm and Chiarella (2005), who consider the dynamics of a gen-
eral explicit random price process of many assets in an economy with overlapping
generations of heterogeneous consumers forming optimal portfolios; and Böhm and
Wenzelburger (2005), who provide a simulation analysis of the empirical performance
of portfolios in a competitive financial market with heterogeneous investors and show
that the empirical performance measure may be misleading. Most of the cited papers
focus on the existence and uniqueness of limiting distributions of discrete time models
rather than the existence and stability of multiple limiting distributions of continuous
time models that we consider here.

5.7.2. A Continuous Stochastic Model with Fundamentalists and Chartists

In this section we sketch out a continuous time stochastic version of the most basic
of the models discussed earlier.27 We use a continuous time model since it allows us
to use the concepts and stochastic bifurcation techniques from the theory of random
dynamical systems (see Arnold, 1998) to conduct a quantitative and qualitative analysis
of the stochastic model and examine the existence and stability of invariant measures of
the equilibrium market price. Also, we have chosen this framework as it is a stochastic
extension of the basic early model of Chiarella (1992). We investigate the equilibrium
distribution of the market price through a numerical study of the stochastic bifurcation
and show that the market price can display different forms of equilibrium distribution,
depending on the speculative behavior of the chartists.

As in previous sections, we consider two types of investors, fundamentalists and
chartists. The changes of the risky asset price P (t) are brought about by aggregate
excess demand of fundamentalists (Df

t ) and chartists (Dc
t ) at a finite speed of price

adjustment, so that

dp(t) = [Df
t +Dc

t ]dt (5.61)

where pt = lnP (t) is the logarithm of the risky asset price P (t) at time t. The excess
demand of the fundamentalists is assumed to be given by Df

t (p(t)) = a[F (t) − p(t)],
where F (t) denotes the logarithm of the fundamental price that clears fundamental
demand at time t so that Df

t (F (t)) = 0 and a > 0 is a constant measuring the excess
demand of the fundamentalists brought about by the market price deviation from the

27This section draws on Chiarella, He, and Zheng (2007) and Chiarella, He, Wang, and Zheng (2007).
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fundamental price. The chartists’ excess demand is determined by ψ (t), their assess-
ment of the current trend in p(t). Their excess demand is assumed to be given by
Dc
t (p(t)) = h(ψ (t)), where h is a sigmoid type function. We simply assume that ψ is

taken as an exponentially declining weighted average of past price changes, which can
be expressed as dψ (t) = c[ ṗ(t) − ψ (t)]dt, where c ∈ (0,∞) is the speed with which
chartists adjust their estimate of the trend to past price changes.

We thus obtain the asset price dynamics:{
dp(t) = a[F − p(t)]dt + h(ψ (t))dt
dψ (t) = [−acp(t) − cψ (t) + ch(ψ (t)) + acF ]dt

(5.62)

When the fundamental price F is a constant, the system (Eq. 5.62) has a unique steady
state (p̄,ψ) = (F , 0), which is locally stable if and only if c < c∗ = a/(b − 1), where
b = h′(0) represents the slope of the demand function at ψ = 0 for the chartists. For
c > c∗ the dynamics are characterized by a stable limit cycle. For the rest of this section,
we only consider the case b > 1.

Using the notation of stochastic differential equations, the fundamental value F (t) is
assumed to follow dF = σ ◦ dW , where W is a two-sided Wiener process28 and σ > 0
is the instantaneous standard deviation (volatility) of the fundamental returns. Here the
circle ◦ indicates that the SDE is interpreted in the Stratonovich sense29 rather than the
Itô sense. The dynamics can be expressed as a nonlinear Stratonovich-SDE system in
terms of the variables ψ and φ, namely:{

dψ = φdt

dφ = [−a − c + ch′(ψ)]φdt − acψdt + acσ ◦ dW (5.63)

Once the dynamics of ψ (t) have been obtained, the dynamics of the log price p(t)
can be obtained by integrating the first equation (5.62).

5.7.3. A Random Dynamical System and Stochastic Bifurcations

Using the methods outlined in Schenk-Hoppé (1996b), it can be shown that Eq. 5.63
defines a global random dynamical system (RDS). An RDS consists of two ingredients:
a model describing a dynamical system perturbed by noise and a model of the noise
itself. We use stochastic bifurcation theory to help us understand the stochastic nature
of the random dynamical system Eq. 5.63, in particular, the study of its limiting dis-
tributions. To do so we use numerical tools to analyze the model, largely motivated by
the work of Arnold, Sri Namachchivaya, and Schenk-Hoppé (1996) and Schenk-Hoppé
(1996a) on the noisy Duffing-van der Pol oscillator.

In the analysis of stochastic differential equations, we may consider two types of
bifurcation. This is essentially to do with the fact that SDEs may be considered from

28A two-sided Wiener process is one that evolves both backward and forward in time.
29The Stratonovich stochastic integral is used in the theory of random dynamical systems as the chain rule of
ordinary calculus applies, and this facilitates many of the theoretical developments.
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the pathwise point of view or the probability distribution point of view. The first
approach corresponds to the so-called dynamical (D)-bifurcation, which examines the
simultaneous behavior of paths forward and backward in time and encapsulates all the
stochastic dynamics of the SDEs. The second approach corresponds to the so-called
phenomenological (P)-bifurcation. The stationary measure is a quantity corresponding
to the solution of the corresponding Fokker-Planck equation. As indicated in Schenk-
Hoppé (1996a) and the references cited therein, the difference between P-bifurcation
and D-bifurcation lies in the fact that the P-bifurcation approach focuses on long-run
probability distributions, whereas the D-bifurcation approach is based on the pathwise
viewpoint and focuses on invariant measures, the multiplicative ergodic theorem, and
Lyapunov exponents.

D-Bifurcation

We take c, the speed of adjustment of the chartist toward the trend, as the bifurcation
parameter. A D-bifurcation occurs if a reference invariant measure μc depending on the
parameter c loses its stability at some point cD, and another invariant measure νc �= μc

exists for some c in each neighborhood of cD, with νc converging weakly to μcD as
c → cD. Thus, the D-bifurcation focuses on the loss of stability of invariant measures
and on the occurrence of new invariant measures. The D-bifurcation approach is a nat-
ural generalization of deterministic bifurcation theory, if one adopts the viewpoint that
an invariant measure is the stochastic analogue of an invariant set—for example, a fixed
point—and the multiplicative ergodic theorem is the stochastic equivalent of linear alge-
bra. The D-bifurcation may be examined through the calculation of Lyapunov exponents
and random attractors.

Let μc be an invariant ergodic probability measure for the random dynamical sys-
tem generated by Eq. 5.63 depending on the parameter c. We take h(x) = α tanh(βx),
where α, β (>0) so that b = h′(0) > 1 is satisfied, which corresponds to the appear-
ance of complex phenomena in the deterministic case. By relying on the multiplicative
ergodic theorem, we know that the Lyapunov exponents of the RDS (Eq. 5.63) indicate
the stability of the invariant measure. Below a certain critical value cD the Lyapunov
exponents are negative and are associated with a stable invariant measure (stable in
the sense that it attracts all trajectories starting sufficiently close to it) that we denote by
μc. Above the critical value cD the Lyapunov exponents become positive and a second
pair of negative Lyapunov exponents appears. The original invariant measure μc, asso-
ciated with the positive Lyapunov exponents, now becomes unstable (that is, stable in
reverse time) and a new stable invariant measure, νc, is born and is associated with the
negative Lyapunov exponents.

Figure 5.18 illustrates the Lyapunov exponents for c varying between 0 and 6.5.
Below the critical value cD(� 1) we see the two negative Lyapunov exponents λ1(μc),
λ2(μc) associated with the stable invariant set μc. At around c � 0.25 the two val-
ues come together and at the same time a rotation number κ(μc) appears, indicating
(stochastic) cyclical convergence to the steady state. Above cD the Lyapunov exponent
becomes positive (and still has an associated rotation number). Finally, two Lyapunov
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FIGURE 5.18 Lyapunov exponents and rotation number as a function of c for a = 1, α = 2, β = 1, and
σ = 0.02.

exponents appear above c � 5.8 and the rotation number shrinks to zero. The associated
invariant measure μc becomes unstable as c passes through cD.

When λ1,2(μc) > 0, two other Lyapunov exponents emerge, denoted by λ1,2(νc),
satisfying λ2(νc) < λ1(νc) ≤ 0, which indicates that a new stable invariant measure νc

appears. There is an associated notation number κ(νc) indicating fluctuating conver-
gence to the random attractor. This means that there always exists an invariant measure
μc in the market. However, when the chartists extrapolate the price trend weakly (so that
c < cD), this invariant measure is unique and stable; when the chartists extrapolate the
price trend strongly (so that c > cD), there exists a new invariant measure νc such that
the original invariant measure μc becomes unstable and the new invariant measure νc is
stable. We note that the bifurcation value cD is very close to the bifurcation value c∗ for
the deterministic case discussed.

The Random Attractors

We may characterize the stochastic Hopf bifurcation of the invariant measure using
the concept of random attractors. Changes in the Lyapunov exponents indicate the
changes of invariant measures. To actually give more information about invariant mea-
sures, we still need to examine global random attractors. These are essentially compact
sets that attract the dynamic paths in the long run and are of particular importance,
since on them the long-term behavior of the system takes place. The definition of a
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FIGURE 5.19 The random attractors when a = 1, α = 2, β = 1, and σ = 0.02, where the initial value set D comes from a
uniform distribution.

global random attractor is based on the so-called pullback process, which consists of
simulating from a whole set of initial values moving from time −t to time 0 (and not
from 0 to t). This enables us to study the asymptotic behavior as t → ∞ in the fixed
fiber30 at time 0. By increasing t, the mapping is made to start at successively ear-
lier times, corresponding to a pull back in time. The pullback operation is shown in
Figure 5.19 with a uniform distribution of initial values at different times t and two
values of c, c = 0.5(<cD) and 1.1(>cD).

When c = 0.5, through the pullback process, we can see from Figure 5.19a that all
paths from the initial set shrink to a random fixed point x∗(ω), which is distinct from
zero. Moreover, numerically it is observed that, under time reversion, the solution of the
system→ ∞ for any x0 �= x∗(ω), which implies that there is no other invariant measure.
Linking with the calculation of the Lyapunov exponent in Figure 5.18, we know that
the system is stable, with the largest Lyapunov exponents being negative, and it has a
unique and stable invariant measure, which is a random Dirac measure μω = δx∗(ω) and
the global random attractor is A(ω) = {x∗(ω)}. This is exactly the stochastic analogue
of the corresponding deterministic case discussed earlier.

However, when c = 1.1, we observe from Figure 5.18 the occurrence of positive
Lyapunov exponents. Applying the pullback operation again, we see from Figure 5.19b
that a different behavior emerges, compared to the case of c = 0.5. A random circle
becomes visible (at t = 100 in Figure 5.19b) and further convergence takes place on this
circle. Finally, all trajectories converge to a random point x∗∗(ω). We find that, again,
the invariant measure is a random Dirac measure νω = δx∗∗(ω), which is stable with the
nonpositive largest Lyapunov exponent. However, through the time-reversed solution,

30The fiber is essentially a submanifold of the Euclidean space on which the dynamics evolve.
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FIGURE 5.20 Global random attractor for c = 1.1, a = 1, α = 2, β = 1, and σ = 0.02. μω = unstable
invariant measure, νω = stable invariant measure, ν′ω = additional invariant measure.

we show that the invariant measure μω = δx∗(ω) exists in the interior of the circle, which
is illustrated in Figure 5.20. Also, the invariant measure μω = δx∗(ω) is unstable and has
two Lyapunov exponents that are positive. In addition, under time reversion, x∗∗(ω)
is not attracting. As suggested in Schenk-Hoppé (1996a), another invariant measure,
say, ν′ω, on the random circle exists; see Figure 5.20. This analysis implies that, for
c = 1.1, there exist more than two invariant measures; one is completely stable and
one is completely unstable, and the global random attractor A(ω), which supports all
invariant measures, is a random disc, the boundary of which is the random circle shown
in Figure 5.19b.

In summary, our analysis on the D-bifurcation gives us insights into the significant
impact of the chartists on the market equilibrium distributions. These distributions can
be characterized by the invariant measures of the SDEs. We show that there exists a
unique stable invariant measure in the market. However, the stable invariant measure
changes quantitatively when the chartists change their extrapolation of the trend. The
change can be described by the stochastic Hopf bifurcation. We have observed that the
Hopf bifurcation remains on the level of the invariant measures as the loss of stability
of a measure and occurrence of a new stable measure, and on the level of the global
attractor as the change from a random point to a random disc.

P-Bifurcation

The analysis of D-bifurcation gives us a perspective from a dynamical systems view-
point by focusing on the evolution of the random dynamical system. However, there
is also a probability distribution viewpoint, which is best captured by focusing on the
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FIGURE 5.21 Joint stationary densities of the log price p and the assessment of the price trend ψ and the
corresponding marginal distributions for the log price p.

stationary measure. The P-bifurcation approach to stochastic bifurcation theory exam-
ines the qualitative changes of the stationary measures. The stationary measure P has a
probability density that is the stationary solution of the Fokker-Planck partial differential
equation associated with the random dynamical system. It can be shown that there is a
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one-to-one correspondence between the stationary measure P and the invariant measure
μω (see Arnold, 1998).

The P-bifurcation approach studies qualitative changes of densities of stationary
measures ρc when c varies. Hence, for the P-bifurcation, we are only interested in the
changes of the shape of the stationary density. For a = 1, α = 2, β = 1, and σ = 0.02.
Figure 5.21 shows the joint stationary densities (the left panel) and the marginal densi-
ties (the right panel) for the log price p. We can see from Figure 5.21 that, for c = 0.5,
the joint density in the (p,ψ) planes has one peak and the marginal densities for p is
unimodal, which correspond to the stable Dirac invariant measure μω = δx∗ (ω) with the
global random attractor A(ω) = {x∗(ω)} under the D-bifurcation analysis. However,
for c = 1.1, the joint density in the (p,ψ) plane has a crater-like shape and the marginal
densities for either ψ or p are bimodal. This change is underlined by the stable Dirac
invariant measure νω = δx∗∗ (ω) with the global random attractor of a random disc under
the D-bifurcation analysis. For c = 1, the joint and marginal densities can be regarded
as the transition from single peak to crater-like (from unimodal to bimodal) densities.
Therefore, as the chartists’ adjustment parameter c increases, the qualitative changes of
the stationary density indicate the occurrence of P-bifurcations.

Summary

Our analysis shows that D- and P-bifurcations characterize the stochastic behavior in
different ways. We know that when the chartists extrapolate the trend weakly (so that
c < cD), the system only has one invariant measure δx∗(ω), which is stable. In this case,
x∗(ω) has a stationary measure that has one peak. However, when the chartists extra-
polate the trend strongly (so that c > cD), a new random Dirac measure δx∗∗(ω) appears
and the corresponding stationary measure has a crater-like density. Quantitative changes
under the D-bifurcation can help us obtain a better view of the qualitative changes under
the P-bifurcation, but the combined analysis of both D- and P-bifurcations certainly
gives us a relatively complete picture of the stochastic behavior of the model. Future
research in this area will use the stochastic bifurcation concepts discussed here and
apply them to more enhanced models of the BRHA type discussed in Section 5.3 and
Section 5.4. It will probably also be necessary to introduce market noise as well as
fundamental noise, since we have seen in Section 5.5 that this seems necessary to get
the BRHA models to generate the stylized facts of financial markets.

5.8. CONCLUSION

This chapter has discussed the introduction of agent heterogeneity with regard to risk
preferences and expectations into a repeated one-period optimizing market framework
that underpins the traditional financial market paradigm and its well-established pricing
theories such as CAPM. We have considered the two most common utility functions
(CARA and CRRA) and the two common market-clearing mechanisms (the Walrasian
auctioneer and the market maker). Combinations of these two elements provide a rich
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array of models that are both nonlinear (due to various behavioral features of the agents)
and stochastic (typically due to fundamental and market noise). In all cases we have
seen that application of the tools of deterministic nonlinear dynamical systems and
bifurcation theory enable us to observe that the deterministic skeletons of the mod-
els produce both local stability to a fundamental equilibrium corresponding to that of
the standard paradigm, as well as local instability of the fundamental, with a consequent
rich range of possible complex behaviors involving various types of fluctuations and/or
coexisting attractors.

We have also seen how insights into the nonlinear and stochastic versions of the
models can be obtained both indirectly by simulation and directly by applying the tools
and concepts of stochastic bifurcation theory. Indeed, we have seen that a calibrated
version of such a nonlinear stochastic model is able to reproduce quite well the stylized
facts of financial markets. The BRHA framework is thus able to accommodate market
features that seem not easily reconcilable for the standard financial market paradigm,
such as fat-tail behavior, volatility clustering, large excursions from the fundamental,
and bubbles. We stress again that here these features are due to agent heterogeneity and
the various agent types forming expectations by fairly simple and economically intuitive
rules of thumb.

Research in this area is moving in several directions. First, there is a vast amount
of ongoing research into exploring further the dynamic behavior of the basic one risky
asset/one risk-free asset BRHA model.31 Second, there is the extension from the sin-
gle risky asset to multiple risky asset framework. We alluded to some of this work in
Section 5.6, but much remains to be done, such as the incorporation of stochastic ele-
ments, allowing for switching fractions of agents, and the development of a BRHA
version of CAPM so as to make clear the role of agent heterogeneity on relative pricing
of assets in financial markets. As well as the work already cited on this topic there is
also the work of Chiarella, Dieci, and He (2006, 2007a), which constitutes a prelim-
inary exploration of a BRHA CAPM. We should also cite the work of Li (2007) and
Jouini and Napp (2006) on the same theme.

Third, there is the extension of the stochastic bifurcation analysis illustrated on a
simple model in Section 5.7 to more fully developed BRHA models containing many
of the elements of the models discussed in Sections 5.3 and 5.4. Fourth, much more
needs to be done on the calibration and estimation of BRHA models. We discussed
one such calibration in Section 5.5, but we should also point out the work of Alfarano,
Lux, and Wagner (2005, 2008), who estimate a BRHA model in a number of markets.
Lux (2009) surveys recent literature on this topic. Since the BRHA models are essen-
tially partially observed dynamical systems in nature it should be possible to approach
the estimation problem using nonlinear filtering methodology. This may prove a fruitful
area of research in the near future.

Fifth, the dynamics of the model so far have come from an intertemporal repetition of
the one-period optimization model. There is a need to go beyond this simple dynamic

31We cite, in particular, Chiarella, Gallegati, Leombruni, and Palestrini (2003); Chiarella, He, and Hommes
(2006); Chiarella, He, and Wang (2006); Hommes (2002); Iori (2002); Levy, Levy, and Solomon (1995); and
Lux (1995, 1998).
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framework and consider the heterogeneous agents optimizing over several periods or
over the infinite future—in other words the development of a heterogeneous agent
version of the intertemporal optimizing framework. There have already been contribu-
tions along these lines in the discrete time framework by Hillebrand and Wenzelburger
(2006a, 2006b). There has also been some work within the continuous time framework
that is nicely summarized in Ziegler (2003); however, the focus of this latter work is
usually on heterogeneity of information rather than heterogeneity of expectations. Fur-
thermore, these models largely lack the expectations feedback aspect that is an essential
aspect of the BRHA framework. Work in this area should provide a rich research agenda
over the next few years.

Finally, it would seem worthwhile to incorporate BRHA into macrodynamic models.
The work to date on BRHA models has shown the importance of agent heterogeneity on
financial market behavior. It is also well appreciated that the link between the real and
the financial sector is an important one for modern economies. Also, over the last two
decades the world has witnessed a number of episodes in which trend-chasing behavior
seems to have dominated over rational fundamental behavior, and this behavior in the
financial market has spilled over into the real economy. Thus it seems worthwhile to
incorporate agent heterogeneity into macrodynamic models. A first very simple attempt
in this direction is given by Chiarella, Flaschel, and Hung (2006), but this area still
remains largely unexplored.
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Abstract

This survey reviews a dynamic multiasset framework in which heterogeneous agents
with multiperiod planning horizons interact. The framework distinguishes between tem-
porary equilibrium maps describing the basic market mechanism of an asset market,
forecasting rules that model the way in which expectations are formed, and a model for
exogenous random perturbations. Perfect forecasting rules that provide correct fore-
casts for first and second moments of future prices are introduced. Based on these
perfect forecasting rules, fundamental concepts of the traditional CAPM are extended
to a setting in which beliefs are heterogeneous. We review a multifund separation the-
orem and introduce the notion of a generational portfolio that is held by investors with
homogeneous beliefs and identical planning horizons. It is shown that social interac-
tion among consumers may endogenously create risk, leading to nonergodic behavior
of asset prices. The stochastic dynamics of asset prices, beliefs, portfolio holdings, and
market shares are illustrated with numerical simulations.

Keywords: CAPM, agent heterogeneity, market selection, nonergodicity, price dynamics,
rational expectations, social interaction, systemic risk

6.1. INTRODUCTION

In recent years research in financial economics has increasingly focused on the interac-
tion between heterogeneous agents as a key force that drives the evolution of financial
markets. It is now a widely accepted view that agents in financial markets trade not
only because they differ in their attitudes toward risk or their wealth positions but also
because they disagree on how markets will evolve in the future. This view stands in
contrast to the rational expectations paradigm, which assumes that agents make no
systematic errors in predicting the future.

The rational expectations paradigm is one of the tenets in at least three strands of
literature on financial markets. First, much of the finance literature has used the rational
expectations paradigm to substitute market equilibrium conditions with no-arbitrage
conditions. In this context, asset prices are assumed to follow an exogenously given
stochastic process to which agents’ expectations and their trading activities adjusts
without any feedback on the process (see Merton, 1973). An excellent account on
this approach is Duffie (1996). Second, initiated by Lucas (1978), dynamic general
equilibrium models have used the rational expectations paradigm to reduce the hetero-
geneities of agents to a single infinitely lived representative agent. These models have
been extended in many ways and are applied to a wide range of questions. Early
contributions in this direction are Mehra and Prescott (1980, 1985) and Cox, Inger-
soll, and Ross (1985). The capital asset-pricing model (CAPM), developed by Sharpe
(1964), Lintner (1965), and Mossin (1966), has been extended by Magill and Quinzii
(1996, 2000) to a stochastic dynamic equilibrium setting. Kübler and Schmedders
(2003) explored the role of assets with collateral. The extent to which agents who do
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not learn to make accurate predictions are driven out of the market has been analyzed
by Blume and Easley (1992, 2002), Sandroni (2000), and others. Angeletos and Calvet
(2005, 2006) developed a macroeconomic extension with heterogeneous agents.

Due to the mathematical complexity of these models, however, the diversity of agents
regarding preferences and beliefs is relatively limited. Their basic planning charac-
ter seems to leave relatively little scope for market interaction between heterogeneous
agents. In fact, according to Cox, Ingersoll, and Ross (1985), an interpretation as an
intertemporal market mechanism requires a set of relatively strong economic assump-
tions. Moreover, as noted by Judd, Kübler, and Schmedders (2003), such dynamic
general equilibrium models seem to have difficulties in matching trading activities that
are usually observed in markets.

Third, quite a number of authors have successfully integrated asset markets into mod-
els with overlapping generations. Early contributions are Huberman (1984) and Huff-
man (1985, 1986). More recently, Eckwert (1992), Orosel (1996, 1997, 1998), and
Kübler and Polemarchakis (2004) have investigated a number of aspects of financial
markets in an OLG setting. Agents in these models are described as expected-utility
maximizers. Trade in OLG models occurs naturally, but the assumption of rational
expectations provides no operational description of the way expectations are formed
on the basis of observations.

From a theoretical perspective, the rational expectations paradigm is unsatisfactory.
It ascribes unreasonably strong assumptions on agents’ capabilities to acquire informa-
tion and to foresee the future. Agents in financial markets have different expectations
concerning the future evolution of asset prices, simply because they may have distinct
information on the assets they are trading. If these agents participate on different sides
of the market, the evolution of asset prices cannot be self-confirming for all of them.
Situations in which agents correctly anticipate the distribution of future asset prices
should for this reason be the special, rather than the general, case of a descriptive model.
The assumption of rational expectations, by contrast, offers no insight into the feedback
of erroneous expectations concerning the price process. Indeed, the equilibrium concept
adopted in both classes of intertemporal models is one in which the notion of expec-
tations is reduced to the assumption of mutual consistency between expectations and
realizations. As Lucas puts it: “. . . the system is closed with the assumption of ratio-
nal expectations: the market clearing price function p implied by consumer behavior is
assumed to be the same as the price function p on which consumer decisions are based”
(1978, p. 1431). This precludes a description of the way expectations are formed.

The literature on financial markets has responded to the dissatisfaction with the
rational expectations paradigm with different lines of research, often carried out simul-
taneously. Models with heterogeneous boundedly rational agents generally have three
structural elements in common. First, a temporary equilibrium map determines asset
prices in each period, given the characteristics of investors such as preferences and
subjective beliefs regarding the future evolution of markets. Second, forecasting rules
stipulate the way in which agents form and update these beliefs. Third, a model for
exogenous perturbations captures all influences that are not modeled explicitly, such as
dividend payments, random endowments, or noise-traders’ activities.
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The first two components constitute a deterministic dynamical system in which
agents’ beliefs feed back into the actual evolution of asset prices and portfolio holdings.
Together with the third component, one obtains a deterministic dynamical system in a
random environment. The temporary equilibrium map is most often understood in the
sense of Grandmont (1982) and determines market-clearing prices from an aggregate
excess demand function. This demand function may be derived from expected-utility
maximizing investors as in, for example, Böhm, Deutscher, and Wenzelburger (2000)
and Horst (2005), or from mean-variance preferences as in Brock and Hommes (1997a,
1998), Chiarella and He (2002), Wenzelburger (2004), or Böhm and Chiarella (2005).
The temporary equilibrium map may be replaced by an economic law in the sense of
Böhm and Wenzelburger (1999) to include other price mechanisms such as the “market-
maker” scenarios considered in Chiarella and He (2003), Chiarella, Dieci, and He
(2007), or Horst and Rothe (2008). Some authors take individual demand functions as
primitive objects of the model; see, for example, Evstigneev, Hens, and Schenk-Hoppé
(2002, 2006, 2008).

Most behavioral models use forecasting rules either explicitly or implicitly to model
the way in which agents form and update their beliefs. This behavioral approach is rec-
onciled with the rational expectations paradigm in Wenzelburger (2004) by introducing
perfect forecasting rules, which generate rational expectations for a group of investors
in the sense that the first two moments of the price process are correctly anticipated,
whereas the beliefs of other market participants may be erroneous. It turns out that per-
fect forecasting rules for first and second moments are the key to extending fundamental
concepts of the traditional CAPM to a setting with diverse beliefs.

The concept that investors choose between portfolio strategies according to some
performance indicator has become popular since Brock and Hommes (1997a, 1998).
This choice behavior is mostly modeled by a standard discrete-choice approach, as
described in Anderson, de Palma, and Thisse (1992). It adds an evolutionary feature to
behavioral models, thereby generating a random environment for asset prices. This ran-
dom environment is created by the endogenous process that governs the choice behavior
of agents and exists in addition to the randomness of an exogenous stochastic process
that models the effects of noise trading, dividend payments, or random endowments.
As agents’ choices depend on performance indicators, asset prices feed back into the
random environment. It is this feedback effect that distinguishes this approach from the
models of Evstigneev, Hens, and Schenk-Hoppé (2002, 2006, 2008), Blume and Easley
(1992, 2002), and Sandroni (2000), in which investors never change their portfolio
strategies.

If the rational expectations paradigm is not immediately discarded, it is sensible
to distinguish conceptually between two levels of rationality—first, rationality in the
sense of Sargent (1993), and second, rationality in the sense of Simon (1982). In
Wenzelburger (2004), a stylized fund manager is characterized by a forecasting tech-
nology and carries out portfolio decisions. She is rational in the sense of Sargent and
might want to improve her ability to make accurate predictions of the future. Consumers
are rational in the sense of Simon. They base their investment choice on a performance
indicator that measures the success a fund manager’s investment strategy has had in the
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past. For this setup, Horst and Wenzelburger (2008) show that an asset price process is
ergodic as long as the dependence of agents’ investment decisions on performance indi-
cators is sufficiently weak. This ergodicity disappears if interactive complementarities
between agents are too powerful. Although asset prices still converge, their asymptotic
behavior now becomes path-dependent. This result is consistent with many findings in
the social interaction literature—such as those of Blume (1993), Brock and Durlauf
(2001), or Horst and Scheinkman (2006, 2008), which establish uniqueness of equi-
libria for weak interactions and show that strong interactive complementarities may
generate nonergodic dynamics. The chapter develops a common framework for the
deterministic approach initiated by Brock and Hommes (1997a, 1998), with its rich
dynamics, and the probabilistic approach of Föllmer and Schweizer (1993), Föllmer,
Horst and Kirman (2005), and Horst (2005), who obtain rigorous mathematical results
but use assumptions that preclude many interesting phenomena such as nonergodic
dynamics.

The chapter unfolds as follows: Section 6.2 reviews some classical results from the
static CAPM to provide the foundation for a stochastic overlapping generations model,
which is discussed in Section 6.3. An extension to a model with overlapping cohorts of
investors with multiperiod lives is discussed in Section 6.4. Section 6.5 discusses the
nonergodic behavior of asset prices; Section 6.6 concludes.

6.2. THE CAPM AS A TWO-PERIOD EQUILIBRIUM MODEL

The capital asset-pricing model as developed by Sharpe (1964), Lintner (1965), and
Mossin (1966) is at the center of modern finance. It is an equilibrium theory built
on the foundations of the portfolio theory initiated by Markowitz (1952) and Tobin
(1958). The standard CAPM is a static two-period model that describes how investors
trade infinitely many assets to transfer wealth into the future. Comprehensive trea-
tises of the CAPM with different emphases are presented (e.g., in Cochrane, 2005;
Cuthbertson, 1996; or LeRoy and Werner, 2001). In light of recent developments in
dynamic models with heterogeneous interacting agents, this section reviews some of
its basic properties. Following Nielsen (1987, 1988, 1990a), Dana (1999), Hens, Lait-
enberger, and Löffler (2002), Böhm and Chiarella (2005), and references therein, it is
appropriate to adopt a formulation in terms of prices rather than returns. Mean-variance
behavior of investors can be made consistent with expected utility maximization when
von Neumann–Morgenstern utility functions are combined with the appropriate prob-
ability distributions. As described by Chamberlain (1983) and Owen and Rabinovitch
(1983), these include normal and elliptical distributions. To obtain an analytically
tractable model with multiple risky assets, this survey treats mean-variance behavior
as an alternative rather than a special case of expected-utility maximization.

6.2.1. Portfolio Selection with One Risk-Free Asset

Consider a two-period model in which an investor needs to transfer her initial wealth
from the first into the second period. The investment opportunities are K risky assets
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and one risk-free bond. All prices and payoffs are denominated in a nonstorable
consumption good that serves as the numéraire. The K risky assets are characterized by
stochastic gross returns q̃ = (q̃(1), . . . , q̃(K)) per unit, which take values in R

K
+ . The risk-

free bond pays a constant return Rf = 1 + rf > 0 per unit. A portfolio is represented
by a vector (x, y) ∈ R

K × R. The vector x = (x(1), . . . , x(K)) represents the portfolio of
risky assets, with x(k) denoting the number of shares of the kth risky asset. The scalar
y describes the number of risk-free bonds in the portfolio (x, y). The total amount of
risky assets is xm ∈ R

K
+ and is referred to as the market portfolio of the economy.

Assume, for simplicity, that the investor’s wealth consists of e > 0 units of the con-
sumption good, that he does not consume in the first period, and that there are no
short-sale constraints. If p = (p(1), . . . , p(K)) ∈ R

K denotes the price vector of risky
assets, the investor’s budget constraint is

e = y + 〈p, x〉 = y +
K∑
k=1

p(k)x(k)

where 〈·, ·〉 denotes the scalar product on R
K . Substituting for y, the investor’s second-

period wealth associated with the portfolio x ∈ R
K of risky assets becomes

w(e, p, q̃, x) = Rfe + 〈q̃ − Rfp, x〉

The uncertainty of second-period wealth rests with the random gross return q̃ of risky
assets, when the investor treats the asset price p of the first period as a parameter of
his decision problem. This uncertainty is described by a probability space (RK ,B, ν),
where ν ∈ Prob(RK ) is a probability distribution for q̃ and Prob(RK ) denotes the set of
all Borelian probability measures.

Rather than using the full probability distribution ν, the CAPM assumes that an
investor bases his evaluation of the uncertain return solely on the mean and the variance
of second-period wealth. Denote expected gross returns by

q = E[q̃] :=
∫

RK

q ν(dq) ∈ R
K

and the (variance)-covariance matrix of future returns by

V = V[q̃] :=
∫

RK

[q − q ][q − q ]�ν(dq) ∈ MK

where MK denotes the set of all symmetric and positive definite K ×K matrices. The
klth entry of the V is the covariance Vkl = Cov[q̃(k), q̃(l)] between the gross returns of
the kth and the lth risky asset. The positive definiteness of V ensures that there are
no redundant assets in the market. Based on ν, the expected wealth and its standard
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deviation associated with a portfolio of risky assets x ∈ R
K becomes

μw (e, p, x) := E
[
w(e, p, ·, x)

]
= Rfe + 〈q − Rfp, x〉

and

σw (x) := Var
[
w(e, p, ·, x)

] 1
2 = 〈x,V x〉 1

2

respectively.1 The investment behavior of an investor is now based on the following
assumption.

Assumption 6.1. An investor is characterized by a utility functionU, which is a function
of the mean and the standard deviation of future wealth and a probability distribution ν
for future gross returns. These satisfy the following:

1. The utility function U : R × R+ → R is continuously differentiable, strictly
increasing in μ, strictly decreasing in σ, and strictly concave.2

2. The probability distribution ν ∈ Prob(RK ) is parameterized by a pair (q,V ),
where q ∈ R

K is the mean return and V ∈ MK describes the covariance structure.

With this notation, the decision problem of an investor takes the form

max
x∈RK

U
(
μw (e, p, x), σw (x)

)
(6.1)

Assumption 6.1 implies that the objective function in Eq. 6.1 is strictly concave in x.
To ensure boundedness of the asset demand derived from Eq. 6.1, we need the concept
of a limiting slope of an indifference curve as adopted in Nielsen (1987). Recall that
the slope of any indifference curve in the μ − σ plane is given by the marginal rate of

substitution between risk and return −
∂U
∂σ (μ,σ)
∂U
∂μ (μ,σ)

, which is a measure of the investor’s risk

aversion. Consider the indifference curve through the point (Rfe, 0) and denote by

ρU := sup

{
−

∂U
∂σ (μ, σ)
∂U
∂μ (μ, σ)

: (μ, σ) ∈ R × R+ s.t. U (μ, σ) = U (Rfe, 0)

}

the limiting slope of this indifference curve. From convex analysis it is well known that
ρU is either positive and finite or plus infinity. SinceU is concave, all indifference curves
have the same limiting slope ρU (see Rockafellar, 1970).

6.2.2. Two-Fund Separation

The key property of the asset demand function derived from the optimization problem
(Eq. 6.1) is known as the two-fund separation theorem or the mutual fund theorem. This
theorem and its implications will be reviewed next. Let π := q − Rfp be the vector

1To relate the notation to the one adopted in the incomplete markets literature (e.g., LeRoy and Werner, 2001),
note that each function q �→ w(e, p, q, x) is an element of the Hilbert space L2(ν).
2To include interesting examples, it is sometimes convenient to bound the domain of U from below.
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of expected excess returns and consider the following mean-variance optimization
problem:

max
x∈RK

μw (e, p, x) s.t. σw (x) ≤ σ (6.2)

where σ ≥ 0. Markowitz (1952) found that for π �= 0, the unique portfolio maximizing
Eq. 6.2 is given by

xeff (σ) :=
σ

〈π,V −1π〉 1
2

V −1π

The portfolio xeff (σ) is (mean-variance) efficient because it yields the highest
expected wealth given the upper bound σ on the standard deviation of wealth σw (x)
of any portfolio x. The standard deviation of the wealth associated with xeff (σ) is σ.
Thus, the risk expected wealth characteristics of any portfolio xeff (σ), σ ≥ 0 satisfy the
linear relationship

μw
(
e, p, xeff (σ)

)
= Rfe + ρ σ (6.3)

where ρ := 〈π,V −1π〉 1
2 is called the market price of risk. Observe that Eq. 6.3 is nothing

but the efficient frontier expressed in terms of wealth rather than returns. Indeed, if
r = w(e,p,q,xeff (σ))

e − 1 denotes the return of xeff (σ), then Eq. 6.3 implies the well-known
efficient frontier

μr = rf + ρ σr

stating that the relationship between the expected rate of return μr and the standard
deviation σr of any efficient portfolio is linear.

The efficient frontier (Eq. 6.3), also referred to as the capital market line, is now used
to formulate the (two-fund) separation theorem.

Theorem 6.1. Under the hypotheses of Assumption 6.1, for any e > 0 and any 0 �= π ∈
R
K with 〈π,V −1π〉 1

2 < ρU , the optimization problem (Eq. 6.1) has a unique maximizer
x� ∈ R

K . The corresponding asset demand function Φ takes the form

x� = Φ(e,π,V ) :=
ϕ
(
e, 〈π,V −1π〉 1

2
)

〈π,V −1π〉 1
2

V −1π (6.4)

where for each ρ ∈ [0, ρU ),

ϕ(e, ρ) := argmax
σ≥0

U
(
Rfe + ρ σ, σ

)
(6.5)

is bounded from above.

The separation theorem states that given π and V, the optimal portfolio x� is collinear
to xeff (1) and hence efficient. Thus investors with the same beliefs (q,V ) will invest in
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FIGURE 6.1 Portfolio selection: (a) separation principle; (b) optimality with separable utility.

the same two funds: the risk-free asset and a “mutual fund” with the same mix of risky
assets xeff (1). Since σw (x�) = ϕ(e, ρ), the function ϕ describes the investor’s willing-
ness to take risk. Unlike the portfolio mix xeff (1), this willingness and hence the amount
of the endowment invested into risky assets depends on the investor’s preferences.

The separation theorem is illustrated in Figure 6.1a showing that in an optimum,
the marginal rate of substitution between risk and return has to be equal to the market
price of risk ρ. An intuitive proof of the theorem may be found in any finance textbook
(e.g., see Copeland, Weston, and Shastri, 2005). The theorem was first proved by Tobin
(1958) and then by Lintner (1965) and Merton (1972). The formulation of Theorem 6.1
is, in essence, that of in Böhm and Chiarella (2005, Lemma 2.3). It has been applied by
Rochet (1992) and others to describe the behavior of commercial banks.3 The impor-
tant assumption here is that the investor may short-sell risky assets as well as borrow
and lend at the risk-free rate rf . Short-sale and borrowing constraints are, for example,
investigated in Lintner (1965), Black (1972), and Rochet (1992).

It has long been recognized in the literature that the investor’s decision problem of the
CAPM can be reduced to the problem of finding an optimal allocation of two artificial
commodities: mean return μ and risk σ (e.g., see Dana, 1999; LeRoy and Werner, 2001;
or Hens, Laitenberger, and Löffler, 2002). Using the separation theorem, one may now
apply standard microeconomic consumer theory to the decision problem (Eq. 6.5). For
the special case of separable utility functions of the form U (μ, σ) = u(μ) − v(σ), the
following result summarizes several findings of the literature.

3See also Freixas and Rochet (1997, Chap. 8) and references therein. The fact that the objective function in
Eq. 6.5 has no upper bound for ρ ≥ ρU so that the asset demand Φ is then undefined has been recognized by
Nielsen (1987). See also further references therein. An elementary proof of Theorem 6.1 may be obtained
from a comparison of the first-order conditions of the two maximization problems (Eq. 6.1 and Eq. 6.5; see
Wenzelburger, 2008).
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Proposition 6.1. Under the hypotheses of Theorem 6.1, assume that U is twice
continuously differentiable and of the form

U (μ, σ) = u(μ) − v(σ), μ ∈ R, σ ∈ R+

Let Rfe > 0 be arbitrary but fixed. Then ϕ(e, ·) is differentiable on (0, ρU ) except for
ρ = v′(0)

u′(Rfe)
. Moreover:

1. ϕ(e, ρ) = 0 for all 0 ≤ ρ ≤ v′(0)
u′(Rfe)

.
2. If lim

μ→∞
u′(Rfe + μ)μ = ∞, then for each risk σ ∈ R+, there exists a market price

of risk ρσ ∈ [0, ρU ) such that ϕ(e, ρσ) = σ.
3. ϕ(e, ρ) is strictly increasing for all v′(0)

u′(Rfe)
< ρ < ρU , if and only if the elasticity of

u′(Rfe + μ) satisfies u′′(Rfe+μ)μ
u′(Rfe+μ) > −1 for all μ > 0.

4. ϕ(e, ρ) is decreasing in e for each v′(0)
u′(Rfe)

< ρ < ρU , if u is strictly concave.

The proof is derived from the first-order conditions and illustrated in Figure 6.1b.
Assertion 2 gives a condition under which ϕ is surjective on R+, implying that an
investor is prepared to take any risk, provided that the market price of risk is high
enough. The condition has, in essence, been given in Böhm (2002, Thm. 2.2). It cor-
responds to Dana (1999, Prop. 3.1), who showed that the surjectivity of ϕ is the
crucial property for the existence of asset-market equilibria. The elasticity condition
of Assertion 3 guarantees that ϕ is strictly increasing in ρ and guarantees uniqueness
of asset-market equilibria. This condition is due to Dana (1999, Prop. 3.4). For general
utility functions U (μ, σ), Hens, Laitenberger, and Löffler (2002, Lemma 1) showed that
ϕ is increasing in ρ, if the slope of the indifference curves is non-increasing in means.
Assertion 4 states that risk is an inferior good whenever u is strictly concave and a result
attributed to Lajeri and Nielsen (2000).

Before addressing the issue of existence of equilibria, let us illustrate Proposition 6.1
with three examples. Consider first the ubiquitous and famous case

U (μ, σ) = μ − 1
2aσ

2 (6.6)

where a > 0 denotes risk tolerance. Then ϕ(e, ρ) = aρ is a linear and hence surjective
function with limiting slope ρU = ∞. Moreover, ϕ is independent of e. This is the case
for all quasi-linear functions of the form U (μ, σ) = μ − v(σ) with v′(0) = 0, so that risk
is a normal good.

Second, risk can be decreasing in the market price of risk. This is seen from
considering

U (μ, σ) =
μ

1 + μ
− σ, μ > −1, σ ∈ R+ (6.7)

The limiting slope is ρU = ∞ and the willingness to take risk is given by

ϕ(e, ρ) = max
{

1
ρ

[√
ρ − (Rfe + 1)

]
, 0

}
, ρ ∈ R+
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FIGURE 6.2 Multiplicity and nonexistence of equilibria: (a) two equilibria, ρ�1 and ρ�2,U (i) (μ, σ) =
μ

1+μ
− σ; (b) no equilibrium, U (i) (μ, σ) = lnμ − σ.

For each e > 0, the map ϕ(e, ρ) is unimodal with respect to ρ and attains its maxi-
mum at ρmax = 4(Rfe + 1)2. The maximum risk the investor is willing to take is σmax =
1
4 (Rfe + 1)−1, so that ϕ(e, ·) is not surjective on R+. Observe that both conditions stated
under 2 and 3 of Proposition 6.1 are violated in this case. In the μ − σ plane, the “offer
curve” for risk is backward bending, as in Figure 6.2a.

Third, the limiting slope ρU may be finite. Consider

U (μ, σ) =
√

(μ2 + 2μ) − σ, (μ, σ) ∈ R
2
+ (6.8)

Then ρU = 1 and

ϕ(e, ρ) = max
{

1
ρ

[
1√

1−ρ2
− (Rfe + 1)

]
, 0

}
, ρ ∈ [0, 1)

An investor characterized by Eq. 6.8 is prepared to take any risk σ ∈ R+ as ϕ(e, ·) is
surjective on R+. However, in this case ϕ, and hence the corresponding asset demand
(Eq. 6.4) is undefined for all ρ ≥ 1.

6.2.3. Existence and Uniqueness of Equilibrium

The literature has addressed the existence and uniqueness of asset-market equilibria in
the traditional CAPM and its extensions with great generality (e.g., see Nielsen, 1988,
1990a,b; Allingham, 1991; Dana, 1993, 1999; or Hens, Laitenberger, and Löffler, 2002).
For the case under consideration, we follow a basic line of reasoning in Dana (1999,
Sec. 3), which has been adapted in Böhm (2002).

Consider an asset market with i = 1, . . . , I investors who are all characterized by
Assumption 6.1. Suppose that utility functions and endowments are heterogeneous but
that their expectations regarding future gross returns are identical and given by (q,V ).
Let e(i) denote investor i’s endowment and ϕ(i) be her willingness to take risk derived
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from some U (i) satisfying Assumption 6.1. For fixed endowments e(i), define aggregate
willingness to take risk by

φ(ρ) :=
I∑
i=1

ϕ(i) (e(i), ρ), ρ ∈ [0, ρ) (6.9)

where ρ := min{ρ(i)
U : i = 1, . . . , I} is the minimum of all limiting slopes ρ(i)

U of U (i).
Using Theorem 6.1, the asset-market equilibrium condition takes the form

φ(〈π,V −1π〉 1
2 )

〈π,V −1π〉 1
2

V −1π = xm (6.10)

where π = q − Rfp �= 0 is the vector of excess returns. Computing standard devia-
tions of the wealth associated with xm and with the portfolio on the LHS of Eq. 6.10,
π� is a solution to Eq. 6.10, if ρ� := 〈π�,V −1π�〉 1

2 ∈ (0, ρ) solves

φ(ρ) = 〈xm,V xm〉
1
2 (6.11)

Vice versa, if some ρ� ∈ (0, ρ) solves (6.11), then π� := ρ�

〈xm,V xm〉
1
2
V xm is a solution to

Eq. 6.10. Hence, in equilibrium, aggregate willingness to take risk must be equal to
the aggregate risk of the market 〈xm,V xm〉 1

2 . Define the upperbound bound of risk the
investors are willing to accept by σmax := sup{φ(ρ) : ρ ∈ [0, ρ)}. The existence of ρ�
now follows from the intermediate-value theorem, observing that φ(0) = 0. Summariz-
ing, the following result is a refinement of Böhm and Chiarella (2005, Lemma 2.5) that
includes the case in which the limiting slope ρ is finite.

Theorem 6.2. Let (q,V ) and e(1), . . . , e(I) > 0 be given. Assume that aggregate will-
ingness to take risk φ : [0, ρ) → R+ is a continuous map with respect to ρ. Then the
following holds:

1. For each 0 �= xm ∈ R
K
+ with 〈xm,V xm〉 1

2 < σmax, there exists an asset-market
equilibrium with market-clearing prices:

p� = 1
Rf

[
q − ρ�

〈xm,V xm〉 1
2

V xm

]
(6.12)

where ρ� ∈ (0, ρ) is a solution to Eq. 6.11.
2. If, in addition, φ is strictly increasing with respect to all ρ for which φ(ρ) > 0,

then the asset-market equilibrium (Eq. 6.12) is uniquely determined.

The pricing rule (Eq. 6.12) reveals three features of the CAPM. First, the market
portfolio xm is efficient and in equilibrium any investor will hold a proportion of xm,
that is., a portfolio with the same mix of risky assets as xm. Second, the equilibrium
price of risk ρ� responds to changes in second-moment beliefs V but not to changes
in first-moment beliefs q. As a consequence, any change in first-moment beliefs q
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changes the corresponding market-clearing asset prices in a linear fashion, irrespective
of any nonlinearities in investors’ utility functions. Third, the equilibrium price of risk is
bounded by the lowest limiting slope ρ. This confirms that Nielsen’s earlier requirement
that all limiting slopes be infinite is not necessary.

Theorem 6.2 reduces the existence and uniqueness of an equilibrium inK markets to
an invertibility condition of a one-dimensional demand function Eq. 6.9. It is illustrated
in Figure 6.2 with two panels displaying “aggregate offer curves” for risk. Panel (a)
depicts a backward-bending offer curve implying the existence of multiple equilibria.
Panel (b) depicts a situation in which aggregate willingness to take risk is increasing but
not surjective. Then an asset-market equilibrium does not exist if the aggregate risk of
the market 〈xm,V xm〉 1

2 is above the upper bound of risk σmax that investors are prepared
to accept.

Eq. 6.12 is a vector version of what is known as the certainty equivalent pricing
formula of the CAPM (see Luenberger, 1998). To see this, denote by rm = 〈q, xm〉

〈p�, xm〉 − 1

the return of the market portfolio xm and by σm = 〈xm,V xm〉
1
2

〈p�, xm〉 its standard deviation. Using
the pricing formula (Eq. 6.12), it is readily seen that the expected rate of return μm of xm
satisfies μm = rf + ρ� σm, so that the risk-return characteristics of xm lie on the capital
market line. Thus the equilibrium price of the kth asset (k = 1, . . . ,K) takes the form

p
(k)
� = 1

Rf

[
q

(k) −
(
μm−rf
σ2
m

)
Cov[q(k), rm]

]

The term in the bracket is called the certainty equivalent of the kth asset because this
value may be treated as the certain amount of the asset’s proceeds before discounting it
to obtain p(k)

� .
The next corollary is immediate from Proposition 6.1 and Theorem 6.2 and a refine-

ment of Böhm (2002, Thm. 3.2). Closely related results are Dana (1999, Prop. 3.4) and
Hens, Laitenberger, and Löffler (2002, Thm. 1). The key observation is that aggregate
willingness to take risk φ is invertible with respect to all ρ ∈ (0, ρ), if all individual
demand functions ϕ(i) are nondecreasing in ρ with at least one demand function being
increasing for positive ρ and surjective on R+.

Corollary 6.1. Under the hypotheses of Theorem 6.2, suppose that the willingness to
take risk of all investors is nondecreasing in ρ and that the preferences of at least one
investor satisfy the conditions of Proposition 6.1 stated in 2 and 3. Then, for any market
portfolio 0 �= xm ∈ R

K
+ , there exists a unique asset-market equilibrium.

Although Corollary 6.1 is quite elementary, it reveals that two tasks have to be
tackled when addressing existence and uniqueness issues in more general setups with
heterogeneous beliefs, asset endowments, or both. First, invertibility and surjectivity
of the aggregate asset demand function, given beliefs about future gross returns. Sec-
ond, the specification of preferences that guarantees these two properties. Although
the first task can be addressed using the Global Inverse Function Theorem (e.g., see
Deimling, 1980, Thm. 15.4, p. 153, or Gale and Nikaido, 1965), the second one is sig-
nificantly harder, mainly because the dimensionality of the first problem cannot be
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reduced to one as in Theorem 6.2, if investors have either initial endowments of assets
or heterogeneous beliefs.

6.2.4. Equilibria with Heterogeneous Beliefs

Consider now an economy in which the investors have linear mean-variance preferences
and heterogeneous beliefs regarding future gross returns of assets. If (q(i),V (i)) ∈ R

K ×
MK denotes investor i’s subjective belief, her asset demand function takes the form

Φ(i) (q(i),V (i), p) = a(i)V (i)−1[ q(i) − Rfp], p ∈ R
K (6.13)

The market-clearing condition reads

I∑
i=1

Φ(i) (q(i),V (i), p) = xm (6.14)

Inserting Eq. 6.13, we obtain an explicit market-clearing price vector p�, which solves
Eq. 6.14 as follows. For arbitrary second-moment beliefs V (i) ∈ MK , i = 1, . . . , I , all
K ×K matrices

A := 1
Rf

(
I∑
i=1

a(i)V (i)−1

)−1

and A(i) := a(i)AV (i)−1, i = 1, . . . , I (6.15)

are well defined. Solving Eq. 6.14 for p then yields an explicit equilibrium map

p� = G
(
(q(i),V (i))Ii=1

)
:=

I∑
i=1

A(i) q
(i) − Axm (6.16)

which determines the market-clearing price vector. The functional form4 of G reflects
the fact that asset prices are essentially determined by subjective beliefs of investors
(q(i),V (i)). Note for the sake of completeness that for homogeneous beliefs, that is,
q

(i) = q and V (i) = V for all i = 1, . . . , I , we recover the pricing rule (Eq. 6.12), which
now takes the form

p� = 1
Rf

[
q − 1

a(1)+···+a(I) V xm

]
Despite the existence and uniqueness results for nonlinear mean-variance preferences
in the literature, explicit equilibrium maps G, unfortunately, remain the exception.

4It is relatively straightforward to establish a map for the case in which each investor trades with a different
subset of risky assets.
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6.3. HETEROGENEOUS BELIEFS AND SOCIAL
INTERACTION

A major caveat of the traditional CAPM with homogeneous beliefs is that it cannot
explain trading between investors, because according to the theory investors will hold
a certain proportion of the market portfolio that is constant over time. This unrealistic
property seems to reappear in many representative agent models (see Judd, Kübler, and
Schmedders, 2003). To remedy this caveat, this section adopts a modeling approach of
Böhm, Deutscher, and Wenzelburger (2000). The key idea is to extend a static two-
period model to a dynamic model by linking together an infinite series of two-period
economies. In terms of the CAPM introduced in Section 6.2, this is achieved by first
reinterpreting the static equilibrium map (Eq. 6.16) as a temporary equilibrium map
and then linking prices and allocations of two consecutive periods by specifying the
forecasting rules investors use to form and update their beliefs.

The model presented here was originally built on a structure with overlapping gene-
rations of consumers and developed in Wenzelburger (2004). We can equally well
assume that consumers have infinite lives and maximize wealth myopically as in Horst
and Wenzelburger (2008) because the results regarding the dynamics of asset prices and
allocations are exactly the same. The model includes Böhm and Chiarella (2005) as a
special case with homogeneous beliefs, noting that their temporary equilibrium map is
of the form of Eq. 6.12 and hence linear in first-moment beliefs. The model may be seen
as an extension of Brock and Hommes (1997a, 1998) to multiple types of agents and
multiple risky assets. Multiple risky assets are essential for the investigation of the trade-
off between risk and return, because the concept of a Sharpe ratio is only meaningful
when more than one risky asset can be traded. Recently, more and more research has
been undertaken into the dynamics of markets with multiple assets (e.g., see Chiarella,
Dieci, and He, 2007).

This section adopts the assumption that consumers have no direct access to the asset
markets and instead select a stylized professional financial investor who solves their
individual investment problems. This is done to separate the effects of social interac-
tion among consumers, such as herding and imitation, from the effects of the boundedly
rational behavior of a professional investor who, for example, may want to learn system-
atically about the economic environment in which she lives. For the sake of simplicity,
we consider only one type of consumer and two financial investors. The general case
with multiple types of consumers and investors is found in Wenzelburger (2004).

6.3.1. Temporary Equilibria

Suppose that there are overlapping generations of consumers who live for two periods.
Each consumer receives an initial endowment e > 0 of a nonstorable consumption good
in the first period of life and does not consume. Her risk-taking behavior is character-
ized by linear mean-variance preferences with risk tolerance 1/α as in Eq. 6.16 and
subjective beliefs regarding her future gross return on investment. Assuming that the
consumption good cannot be stored directly, each consumer needs to transfer wealth
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from the first to the second period of life, in which she consumes the proceeds of her
investments.

There exist K + 1 retradeable assets in the economy, indexed by k = 0, 1, . . . ,K.
The first asset k = 0 is a risk-free bond that pays a constant return Rf > 0 per unit
invested in the previous period. The assets k = 1, . . . ,K correspond to risky shares of
firms that are traded at prices pt = (p(1)

t , . . . , p(K)
t ) ∈ R

K
+ of period t. Shareholders in

period t receive a dividend payment of d(k)
t per unit of the kth share. The vector of all

dividend payments in period t is denoted by dt = (d(1)
t , . . . , d(K)

t ) ∈ R
K
+ .

In each period t, a group of noisetraders who demand the random quantity ξt ∈ R
K

of shares is active in the asset market.5 The probabilistic prerequisites on the exogenous
noise and the exogenous dividend process are stipulated in the following assumption.

Assumption 6.2. Let (Ω,F , P) be a probability space and {Ft}t∈N an increasing family
of sub-σ-algebras of F .

1. The dividend payments are described by an {Ft}t∈N-adapted stochastic process
{dt}t∈N on (Ω,F , P) with values in D ⊂ R

K
+ .

2. The noise traders’ transactions are governed by a {Ft}t∈N-adapted stochastic
process {ξt}t∈N on (Ω,F , P) with values in R

K, which is uncorrelated with the
dividend process {dt}t∈N defined in 1.

There are two professional financial investors i = 1, 2, from now on referred to as
mediators, who are characterized by subjective beliefs regarding the future gross returns
of the assets, which are determined by future cum-dividend prices. In each period young
consumers are allowed to select a mediator based on his past performance. For simplic-
ity, we abstract from intermediation costs for consumers and suppress the constants e
whenever possible.

For later purposes it is convenient to express all aggregate quantities in per capita of
young consumers. Denote by ηt ∈ [0, 1] the fraction of consumers who employ Media-
tor 1 in period t and by 1 − ηt the fraction who employ Mediator 2. ThenW (1)

t = ηte and
W

(2)
t = (1 − ηt)e are the respective amounts of resources per capita that the mediators

receive from young consumers before trading takes place in that period. The mediators’
earnings from dividend and interest payments from the per-capita portfolio holding
(x(i)
t−1, y(i)

t−1) ∈ R
K × R obtained after trading in period t − 1 are rfy

(i)
t−1 + 〈dt, x

(i)
t−1〉.

Since aggregate repayment obligations to old consumers are Rfy
(i)
t−1 + 〈pt + dt, x

(i)
t−1〉,

their budget constraints in period t reads W (i)
t = 〈pt, x(i)〉 + y(i).

Let (q(i)
t ,V (i)

t ) be mediator i’s subjective beliefs for the future cum-dividend price
qt+1 = pt+1 + dt+1 in period t. Then the per-capita demand of mediator i is

x
(i)
t = Φ(i) (a(i)

t , q(i)
t ,V (i)

t , p) = a
(i)
t V

(i)−1
t [q(i)

t − Rfpt] (6.17)

5Noise traders will be thought of as traders whose portfolio decisions are not captured by a standard micro-
economic decision model. Alternative interpretations as those of De Long, Shleifer, Summers, and Waldmann
(1990, p. 709) apply as well.
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FIGURE 6.3 Timeline of price formation.

with a
(1)
t := ηt

α and a
(2)
t := 1−ηt

α denoting the mediator’s risk-adjusted market shares,
respectively. The market-clearing condition of the asset markets in period t reads

2∑
i=1

[
Φ(i) (a(i)

t , q(i)
t ,V (i)

t , pt) − x(i)
t−1

]
+ ξt − ξt−1 = 0 (6.18)

where ξt ∈ R
K denotes the per-capita portfolio holdings of the noise traders after trading

in period t.
To solve Eq. 6.18, note that the sum of previous positions

∑2
i=1 x

(i)
t−1 + ξt−1 must be

equal to the total (per-capita) stock of assets xm ∈ R
K
+ in the economy. For each t, let

at = (a(1)
t , a(2)

t ) (6.19)

be period t’s profile of risk-adjusted market shares. Solving the market-clearing condi-
tion (Eq. 6.18) for pt yields a temporary equilibrium map, which for arbitrary beliefs
(q(i)
t ,V (i)

t ) and market shares at takes the form

pt = G
(
ξt, at, (q(i)

t ,V (i)
t )2

i=1

)
:= A

(1)
t q

(1)
t + A(2)

t q
(2)
t − At(xm − ξt) (6.20)

with coefficient matrices

At := 1
Rf

(
a

(1)
t V

(1)−1
t + a(2)

t V
(2)−1
t

)−1
and

A
(i)
t := a

(i)
t AtV

(i)−1
t , i = 1, 2

Due to the positive definiteness of all subjective covariance matrices, all coefficient
matrices in Eq. 6.20 are well defined and invertible.

The map G determines market-clearing prices in each period, given the beliefs of all
investors and the demand of noise traders. It is essentially the same as Eq. 6.16 except
that it allows for varying market shares. The crucial assumption here is that there is no
a priori dependence of beliefs on current asset prices. Although economically desirable,
any such assumption will potentially introduce nonlinearities into the market-clearing
condition (Eq. 6.18). This in turn may easily destroy the existence and uniqueness of
G. The dependence of beliefs on past prices will be introduced in Section 6.3.2 by
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adopting the concept of a forecasting rule. It will then be shown that forecasting rules of
investors who care about the precision of their forecasts will not depend on asset prices
of the current period.

As G does not contain past prices as arguments, the evolution of the asset prices
can only be driven by the forecasting technology of the mediators and the way that
consumers select among mediators. The dating of the beliefs (q(i)

t ,V (i)
t ) relative to the

price pt in the price law (Eq. 6.20) contains an expectational lead; that is, beliefs are one
period ahead of the map G with respect to the realization of prices. This is illustrated in
Figure 6.3.

Since the subjective beliefs (q(i)
t ,V (i)

t ) and the market shares at must be set prior
to trading in period t, they must be based on information observable up to time t − 1.
Mathematically this implies that they are Ft−1 measurable. Under Assumption 6.2, the
conditional mean values and the conditional covariance matrices of the ex-dividend
price6 are

Et−1[pt] = A
(1)
t q

(1)
t + A(2)

t q
(2)
t − At(xm − Et−1[ξt]) (6.21)

and

Vt−1[pt] = AtVt−1[ξt]At (6.22)

respectively. The volatility of ex-dividend prices as well as their correlations between
the ex-dividend prices of various risky assets is exclusively generated by the noise-
trader behavior, the subjective covariance matrices of the mediators, and the choice
behavior of consumers. In particular, this correlation is zero if noise traders are absent
so that Vt−1[ξt] is the zero matrix. In view of Assumption 6.2, the corresponding second
moments of the cum-dividend prices qt = pt + dt are

Vt−1[qt] = Vt−1[pt] + Vt−1[dt] (6.23)

6.3.2. Perfect Forecasting Rules

A complete description of the evolution of asset prices and portfolios requires a specifi-
cation of how investors form their expectations. This is done by adopting the concept of
a forecasting rule in the sense of Grandmont (1982). A priori, there is a great degree of
freedom in specifying such forecasting rules. Many authors, especially those who con-
tributed to this handbook, use this flexibility in search for a better understanding of how
asset markets behave in reality and in search for a better match of empirically observed
price patterns.

This section will complement these contributions with a more normative consid-
eration. Consider to this end a benchmark case in which at least one mediator—say,
Mediator 2—is able to correctly anticipate future asset prices. Because Mediator 2 is
endowed with mean-variance preferences, it suffices to investigate the case in which

6We write Et−1[pt] for the conditional expectations E[pt|Ft−1] and Vt−1[pt] for the conditional second
moments V[pt|Ft−1].
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the first two moments of his subjective probability distributions coincide with the first
two moments of the true distributions. To this end we review the notion of a perfect
forecasting rule for first moments, also referred to as an unbiased forecasting rule, and
a perfect forecasting rule for second moments and provide a brief outline of conditions
guaranteeing existence of such forecasting rules. For brevity we adopt the term rational
expectations to describe the situation in which Mediator 2 is able to correctly predict
the first two moments of the price process, whereas Mediator 1 as well as other market
participants may have nonrational beliefs.

The main informational constraint for an investor to apply a perfect forecasting rule
is the fact that market shares and expectations of other market participants are gener-
ally unobservable. Therefore, we can argue that it is highly unlikely that investors have
rational expectations in real situations. However, as the rational expectations paradigm
is still very popular in economics and finance, perfect forecasting rules is a concept
that allows us to reconcile this traditional view with the recent behavioral approaches
in these disciplines. The concept of accurateness adopted here is relaxed in Böhm and
Wenzelburger (2002) and Wenzelburger (2006) to ε-perfect forecasting rules that allow
for deviations of a prescribed magnitude ε. Wenzelburger (2006) also demonstrates that
in terms of accurate forecasts, successful learning schemes should aim at estimating
perfect forecasting rules.

Suppose for simplicity that the exogenous dividend process is known. Let date t ∈ N

be arbitrary and p(2)
t−1 denote the forecast for the ex-dividend prices pt and q(2)

t−1 = p
(2)
t−1 +

Et−1[dt] be the forecast for the cum-dividend prices qt = pt + dt, both made at date t − 1.
Using Eq. 6.21, the expected cum-dividend price conditional on information available
at date t − 1 is

Et−1[qt] = A
(1)
t q

(1)
t + A(2)

t q
(2)
t − At(xm − Et−1[ξt]) + Et−1[dt] (6.24)

The condition that Mediator 2’s forecast error conditional on information available at
date t − 1 vanishes is

Et−1[qt − q(2)
t−1] = 0 P − a.s. (6.25)

By construction, A(2)
t is invertible. Inserting Eq. 6.24 into Eq. 6.25, one may therefore

solve for the forecast q(2)
t to obtain

q
(2)
t = A

(2)−1
t

(
p

(2)
t−1 − A

(1)
t q

(1)
t + At(xm − Et−1[ξt])

)
Rearranging, one obtains a perfect forecasting rule for first moments

q
(2)
t = Ψ(2)

1�

(
at, Et−1[dt], Et−1[ξt], q

(1)
t ,V (1)

t ,V (2)
t , q(2)

t−1

)
(6.26)

:= Rf p
(2)
t−1 − 1

a
(2)
t

V
(2)
t

(
Φ(1) (a(1)

t , q(1)
t ,V (1)

t , p(2)
t−1) + Et−1[ξt] − xm

)
The term in the parentheses of the right side of Eq. 6.26 is the expected excess

demand of Mediator 1 and noise traders. By construction, the forecasting rule (Eq. 6.26)
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chooses period t’s forecast q(2)
t such that the previous forecast q(2)

t−1 is unbiased in the
sense that Eq. 6.25 is satisfied. Thus Eq. 6.26 provides the best least-squares prediction
for qt+1 conditional on information available at time t. Since each A(2)

t , t ∈ N is invert-
ible, Eq. 6.26 is well defined and thus generates correct conditional first moments for
Mediator 2 along the whole actual price process. The important insight of the functional
form (Eq. 6.26) is that Mediator 2 has to know the expected excess demand of all other
market participants to obtain unbiased forecasts.7

The construction of perfect forecasting rules for second moments is based on the
observation that the subjective covariance matrix V (2)

t in the expression for Eq. 6.26 has
not been specified yet. The idea is analogous to the idea for perfect forecasting rules for
first moments: Choose the matrix V (2)

t such that V (2)
t−1 is the correct forecast for the true

second moments Vt−1[qt].
Note first that in the absence of noise traders, Eq. 6.22 implies Vt−1[pt] ≡ 0. By

Assumption 6.2, Eq. 6.23 then reduces to

Vt−1[qt] = Vt−1[dt] for all t ∈ N

As a consequence, V (2)
t must be equal to Vt[dt+1] in order to be correct. This surprising

result holds even for nonlinear price laws as in Böhm and Chiarella (2005).
If noise traders are operating in the market, matters change. Recall that by Assump-

tion 6.2 (2) ξt and dt are uncorrelated, so that

Vt−1[qt] = AtVt−1[ξt]At + Vt−1[dt] (6.27)

Using Eq. 6.27, the condition that Mediator 2’s forecast errors for second moments of
period t − 1 vanish takes the form

AtVt−1[ξt]At + Vt−1[dt] − V (2)
t−1 = 0 (6.28)

Since At = 1
Rf

(
a

(1)
t V

(1)−1
t + a(2)

t V
(2)−1
t

)−1
, this implies that perfect forecasting rules

for second moments are determined by symmetric, positive definite solutions V (2)
t to

Eq. 6.28: V (2)
t has to be chosen such that the previously determined forecast V (2)

t−1
becomes correct.

Equation 6.28 is a matrix polynomial equation. In the one-asset case K = 1, it
reduces to a scalar quadratic equation that is straightforward to solve. The multi-
asset case requires some linear algebra. The following existence result is found in
Wenzelburger (2004, 2006). For the sake of simplicity assume that the dividend pro-
cess is predictable, that is, Et−1[dt] = dt and Vt−1[dt] = 0 for all t ∈ N. The existence

7An unbiased forecasting rule for ex-dividend prices is obtained from Eq. 6.26 by setting p
(2)
t−1 = q

(2)
t−1 −

Et−1[dt] as a forecast for pt. Then Eq. 6.25 implies that all forecast errors on ex-dividend prices for Mediator
2 vanish in the mean, that is, Et−1[pt − p(2)

t−1] = 0 for all times t.
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proof now consists of two steps. First, find a symmetric positive definite matrix Γt such
that Γ−1

t Vt−1[ξt]Γ
−1
t = V

(2)
t−1. Second, if the matrix

1
Rf

Γt − a(1)
t V

(1)−1
t (6.29)

is positive-definite, the desired second moment is found.

Proposition 6.2. Under the hypotheses of Assumption 6.2, suppose that dividends are
predictable and that each Λt−1 := Vt−1[ξt], t ∈ N is positive-definite. Set8

Γt =
√
Λt−1

√(√
Λt−1 V

(2)
t−1

√
Λt−1

)−1 √
Λt−1, t ∈ N

Then the forecasting rule for second moments Ψ(2)
2� , given by

V
(2)
t = Ψ(2)

2�

(
Λt−1, at,V

(1)
t ,V (2)

t−1

)
:= a

(2)
t

(
1
Rf

Γt − a(1)
t V

(1)−1
t

)−1
(6.30)

provides correct second moments of the price process at date t in the sense that Eq. 6.28
holds whenever Eq. 6.29 is positive-definite and a(2)

t > 0.

When noise traders induce zero correlation between different assets such that

Vt−1[ξt] ≡ σ2
ξ IK , Γt reduces to Γt = σξ

√
V

(2)−1
t−1 . If Eq. 6.29 is not symmetric and

positive-definite, Ψ(2)
2� does not define a covariance matrix and forecasting rules that

predict correct second moments for all times t do not exist.
The following two lemmas establish existence and uniqueness in two special cases.

In the first one, all mediators agree on subjective second moments. In the second case,
Mediator 1 believes in constant covariance matrices. Using Eq. 6.19, note that a(1)

t +
a

(2)
t = 1

α for all t ∈ N, and set a = 1
α for the aggregate risk tolerance of all consumers.

Lemma 6.1. Under the hypotheses of Proposition 6.2, suppose V (1)
t ≡ V (2)

t for all
times t. Then the forecasting rule (Eq. 6.30) takes the form

V
(2)
t =

(
Rfa

)√
Λ−1
t−1

√(√
Λt−1 V

(2)
t−1

√
Λt−1

)√
Λ−1
t−1

If, in addition, Vt−1[ξt] ≡ Λ is constant over time, the constant rule

V
(2)
t ≡ (Rfa)2Λ−1 for all t ∈ N

is perfect for second moments as well.

8Recall the definition of a square root of a symmetric positive definite matrix. It is well known that any
symmetric and positive definite K ×K matrix B can be diagonalized so that B = O�diag(λ1, . . . , λK )O for
real eigenvalues λ1, . . . , λK > 0 and for some orthogonal matrix O, that is, O�O = IK . The square root

√
B

of B is a symmetric positive definite matrix, defined by
√
B := O�diag(

√
λ1, . . . ,

√
λK )O, such that B =√

B
√
B.
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Lemma 6.2. Under the hypotheses of Proposition 6.2, let Vt−1[ξt] ≡ σ2
ξ IK with σξ >

0. Assume that the following hypotheses are satisfied.

1. Mediator 1 uses constant covariance matrices V (1)
t ≡ V (1) for all times t, where

V (1)−1 = O� diag(λ(11), . . . , λ(1K)) O for some orthogonal K ×K matrix O. The
eigenvalues satisfy

max
{
λ(1k) : k = 1, . . . ,K

}
< 1

4

(
σξ
Rfa

)2

2. The initial forecast in period 0 is V (2)
0 := O�diag(λ(21)−1

0 , . . . , λ(2K)−1
0 )O, where O

is given in 1 and λ(21)
0 , . . . , λ(2K)

0 > 0.

If the initial eigenvalues λ
(21)
0 , . . . , λ(2K)

0 are suitably large, the forecasting rule
(Eq. 6.30) is perfect for second moments whenever a(2)

t > 0.

Observe that perfect forecasting rules for second moments are not necessarily
uniquely determined. Mathematically this is due to the natural existence of multiple
solutions to matrix polynomial equations, see Gohberg, Lancaster, and Rodman (1982).
Of course, this multiplicity arises already in the one-asset case.

6.3.3. Systematic and Nonsystematic Risk

In a mean-variance framework it is natural to evaluate investment decisions of bound-
edly rational investors by comparing the Sharpe ratios associated with their portfolios. It
follows from the separation principle discussed in Section 6.2 that the higher the Sharpe
ratio of a portfolio, the higher the expected utility of an investment. Any portfolio x(i)

t

of an investor i with mean-variance preferences is, of course, efficient with respect to
subjective beliefs (q(i)

t ,V (i)
t ). However, such a portfolio will not necessarily be efficient

with respect to the true moments of the actual price process. Moreover, since investors
in an environment with heterogeneous beliefs will most likely not hold a proportion of
the market portfolio, it is a priori unclear which portfolio will attain the highest Sharpe
ratio. A modified market portfolio, which in the sense of Markowitz is efficient with
respect to the true first moments and which attains the highest possible Sharpe ratio,
has been introduced in Wenzelburger (2004). Adopting this concept, the purpose of this
section is to introduce a security market line for heterogeneous beliefs, and to adapt the
CAPM concepts of systematic and nonsystematic risk to the model under consideration.

Assume from now on that all covariance matrices Vt−1[ξt], t ∈ N are positive-definite
so that all Vt[qt+1], t ∈ N are invertible and let πt := Et[qt+1] −Rfpt denote the vector
of expected excess returns in period t. A reference portfolio of period t may then be
defined by

xref
t := Vt[qt+1]−1πt (6.31)

The reference portfolio xref
t of period t is a “fictitious” portfolio because it is not neces-

sarily held by a trader. It is a quantity that can be associated with any price process with
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non-degenerate second moments. From the discussion in Section 6.2.3 it is not hard to
see that the reference portfolio xref

t is collinear to the market portfolio xm if beliefs are
homogeneous and noise trader are absent. It is therefore justified to refer to xref

t as the
modified market portfolio, which accounts for the diversity in investors’ beliefs.

Since the value of this reference portfolio at prices pt is 〈pt, xref
t 〉, its return is

Rref
t+1 =

〈qt+1, xref
t 〉

〈pt, xref
t 〉

− 1

Its conditional variance Vart[Rref
t+1] computes as

Vart[Rref
t+1] =

〈xref
t , Vt[qt+1]xref

t 〉
〈pt, Vt[qt+1]−1πt〉2

=
〈πt, Vt[qt+1]−1πt〉
〈pt, Vt[qt+1]−1πt〉2

(6.32)

and hence is proportional to the squared market price of risk 〈πt, Vt[qt+1]−1πt〉. This
implies that the (conditional) risk premium of the reference portfolio satisfies

Et[Rref
t+1] − rf = 〈πt, Vt[qt+1]−1πt〉

1
2 Vart[Rref

t+1]
1
2 (6.33)

so that its risk-return characteristics lie on the capital-market line of period t.
Let x(i)

t denote the portfolio of risky assets held by mediator i in period t after
investing W (i)

t . Then the realized return R(i)
t+1 on i’s portfolio in period t + 1 is

R
(i)
t+1 = rf + 1

W
(i)
t

〈πt, x(i)
t 〉 (6.34)

The conditional covariance Covt[R
(i)
t+1,Rref

t+1] between R
(i)
t+1 and the return of the

reference portfolio xref
t is

Covt[R
(i)
t+1,Rref

t+1] = 1
W

(i)
t

〈x(i)
t , Vt[qt+1]xref

t 〉 (6.35)

Inserting Eq. 6.31 into Eq. 6.35, we see that the risk premium associated with the
portfolio x(i)

t becomes

Et[R
(i)
t+1] − rf = 〈pt, V[qt+1]−1πt〉Covt[R

(i)
t+1,Rref

t+1] (6.36)

Thus the risk premium of mediator i’s portfolio is proportional to the covariance
between its return and the return of the reference portfolio. Combining Eq. 6.36 with
Eqs. 6.32 and 6.33 yields the following theorem (see Wenzelburger, 2004).

Theorem 6.3. Let i be an arbitrary mediator and assume that preferences and beliefs
of all market participants are such that asset markets clear in each period t ∈ N at
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prices pt. Moreover, assume that Vt[qt+1] is positive definite for all t ∈ N such that the
reference portfolio is well defined. Then for each t ∈ N,

Et[R
(i)
t+1] − rf = β

(i)
t

[
Et[Rref

t+1] − rf
]

where

β
(i)
t :=

Covt[R
(i)
t+1,Rref

t+1]

Vart[Rref
t+1]

Theorem 6.3 is a generalization of the security market line (e.g., see LeRoy and
Werner, 2001, or Luenberger, 1998) to asset markets with heterogeneous beliefs. It states
that the risk premium of a portfolio i depends linearly as its covariance with the refer-
ence portfolio; that is, its β (i)

t . One important observation is that its proof required no
assumption on the preferences of investors and, apart from the covariance structure, no
assumption on the nature of the price process.

Theorem 6.3 provides further insights as to why the conditional beta β (i)
t of a port-

folio x(i)
t is an important measure of risk. First, as in the static case, we may always

choose a random variable ε(i)
t+1 such that the random return of x(i)

t may be written as

R
(i)
t+1 = rf + β

(i)
t [Rref

t+1 − rf ] + ε
(i)
t+1 (6.37)

Taking expectations, Theorem 6.3 implies Et[ε
(i)
t+1] = 0. Taking the conditional covari-

ance between Rref
t+1 and (6.37) and using the definition of the conditional beta, we see

that Covt[ε
(i)
t+1,Rref

t+1] = 0. Thus, the variance of R(i)
t+1 becomes the sum of two parts:

Vart[R
(i)
t+1] = (β (i)

t )2
Vart[Rref

t+1] + Vart[ε
(i)
t+1]

The first part (β (i)
t )2

Vart[Rref
t+1] may be termed systematic risk. This risk is associated

with the market in period t as a whole. If x(i)
t consisted of a single asset, this risk could

not be diversified away, because every asset with a nonzero beta contains this risk. The
second part may be termed nonsystematic or idiosyncratic risk. This risk is uncorre-
lated with the market and could be reduced by diversification, namely, by choosing a
combination of the risk-free asset and the reference portfolio.

Second, Theorem 6.3 states that the risk premium of a portfolio x(i)
t can only be

higher than the risk premium of the reference portfolio xref
t at the expense of higher

risk, that is, Vart[R
(i)
t+1] ≥ Vart[Rref

t+1]. Using the well-known inequality

Covt[R
(i)
t+1,Rref

t+1] ≤
√

Vart[R
(i)
t+1]

√
Vart[Rref

t+1]
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Theorem 6.3 implies that the Sharpe ratio conditional on information at date t of a
portfolio x(i)

t is bounded from above by

Et[R
(i)
t+1] − rf√

Vart[R
(i)
t+1]

≤
Et[Rref

t+1] − rf√
Vart[Rref

t+1]
= 〈πt, Vt[qt+1]−1πt〉

1
2 (6.38)

The upper bounds of the Sharpe ratios (Eq. 6.38) are the market prices of risk that are
generated by the endogenous price process. Since any portfolio of risky assets x̃t = λ xt
with λ > 0 will have the same Sharpe ratio as xt ∈ R

K , only the mix of a portfolio
has an influence on its Sharpe ratio.9 Hence, in a world of heterogeneous investors,
perfect forecasting rules for first and second moments, if they exist, allow us to form
portfolios that are efficient in the the original sense of Markowitz and thus attain the
highest possible conditional Sharpe ratios.

6.3.4. Selecting Mediators

Let us next review a probabilistic framework that allows us to model the decision mak-
ing of consumers who are assumed to be boundedly rational in the sense of Simon
(1982). Adopting a standard assumption in the social interaction literature (e.g., see
Blume, 1993; Brock and Durlauf, 2001; Horst and Scheinkman, 2006) assume that
mediators are randomly selected, where the choice probabilities depend on a certain
performance measure. The general idea is that this performance measure and thus a
mediator’s market shares depend on the empirical distribution of observable quantities
such as asset prices, wealth positions, and returns. There are numerous ways to specify
such performance measures. Since the work of Brock and Hommes (1997a,b, 1998),
most approaches build on the fact that consumers are generally unable to make accurate
forecasts about the future and therefore have to rely on the empirical performance of
an investment strategy. In this section, we follow the intuition that consumers take into
account realized returns of mediators in deciding on where to invest their endowments.

Let Xt ∈ R
d denote the vector of observables at time t and �t its empirical

distribution, that is,

�t :=
1
t

t−1∑
s=0

δXs
with �t(f ) :=

∫
fd�t =

1
t

t−1∑
s=0

f (Xs) (6.39)

where δx denotes the Dirac measure that puts all mass on x, and f : R
d → R is a

bounded, measurable map. A consumer’s willingness to invest through a specific medi-
ator may now be linked to a performance measure of a mediator’s investment strategy
as follows.

9Note that the Sharpe ratio is only a meaningful concept for multiple risky assets, K > 1.



370 Chapter 6 • Perfect Forecasting, Behavioral Heterogeneities, and Asset Prices

Definition 6.1. Let f (l) : R
d → R, l = 1, 2, . . . ,L be a fixed list of bounded,

measurable functions. For any t ∈ N, denote by

zt :=
(
�t(f (1)), . . . , �t(f (L))

)
the list of empirical averages that is relevant in period t. A performance measure for
mediator i is a Lipschitz continuous function Π(i) : R

L → R such that mediator i’s
performance in period t is characterized by π(i)

t = Π(i) (zt).

In this setting the performance of mediator i at time t depends on the entire history
Xs, s < t of the process excluding the realization Xt. The list of performance measures
πt = (π(1)

t ,π(2)
t ) is also referred to as a fitness measure, which consumers observe. Since

the functions f (l), l = 1, . . . ,L are fixed and the same for all mediators, a performance
measure may be interpreted as a real-valued mapping from the set of probability distri-
butions on R

d so that π(i)
t ≡ Π(i) (�t). In a mean-variance frame work, the following two

examples are natural: empirical averages and empirical Sharpe ratios.

EXAMPLE 6.1
Suppose that the performance of mediator i is measured by empirical averages of histor-
ically realized returns {R(i)

s }ts=0 on investment as given by Eq. 6.34. Having invested the
amount W (i)

t−1, her return from selling the portfolio x(i)
t−1 as given in Eq. 6.17 in period t is

R
(i)
t = f (i) (Xt) := rf +

1
α e
〈[qt −Rfpt−1],V (i)−1

t−1 [q(i)
t −Rfpt−1]〉

Here Xt ∈ R
d is a suitably defined vector, f (i) : Rd → R is a suitably defined continuous

function,10 andL = 2. Based on empirical averages of returns, the performance of mediator
i in period t is measured by

π
(i)
t := �t(f (i) ) =

1
t

t−1∑
s=0

R
(i)
s

where Π(i) is the identity mapping.

EXAMPLE 6.2

For each i = 1, 2, set f (i+2) := f (i)2 with f (i) as in Example 6.1 to get

�t(f (i+2)) = 1
t

t−1∑
s=0

R
(i)2
s

10A priori, there is no reason to assume that returns can be represented by bounded functions. Assuming that
consumers do not trust in the validity of extraordinarily high or low returns, one could modify the performance
measure by replacing f (i) (X) with f̃ (i) (X) := max{Rmin, min{f (i) (X),Rmax}}.
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with L = 4. Based on empirical Sharpe ratios, the performance of mediator i in period t is
measured by

π
(i)
t = Π(i) (zt) := �t (f (i) )− rf(

�t (f (i+2) )− �t (f (i) )2
) 1

2

noting that the denumerator of π(i)
t is the empirical standard deviation of mediator i’s

realized returns.

The central assumption in modeling consumers’ choice is that their choice proba-
bilities depend on the current performance measures πt or, equivalently, on the list of
empirical averages zt ∈ R

L. Specifically, let consumers act conditionally independent
of each other given zt so that an individual consumer at time t chooses Mediator 1
with probability F (zt) and Mediator 2 with probability 1 − F (zt), where F : R

L → R

is a uniformly continuous “choice function.” In the limit of an infinite number of con-
sumers, the law of large numbers implies that the fraction of consumers who in fact
choose Mediator 1 is F (zt). Thus Mediator 1’s market share at time t is deterministic
and given by

ηt = F (zt), with zt =
(
�t(f (1)), . . . , �t(f (L))

)
(6.40)

whereas Mediator 2’s market share is 1 − F (zt). A convenient parameterization of a
choice function is provided by a LOGIT model (e.g., see Anderson, de Palma, and
Thisse, 1992), as the following example illustrates.

EXAMPLE 6.3
Suppose the (modified) logit function

ϕ([π(2)
t − π(1)

t ], β) :=
η − η

exp(β[π(2)
t − π(1)

t ]) + 1
+ η (6.41)

describes the probability with which a consumer chooses Mediator 1. The values 0 ≤
η ≤ η ≤ 1 are upper and lower bounds for the choice probabilities, respectively. The
intensity of choice β > 0 specifies the strength of the impact of the mediators’ per-
formance on the choice decision. Based on empirical averages, a choice function
(Eq. 6.40) for Mediator 1 is now defined by setting

ηt = F
(
zt
)

:= ϕ
(
ΔΠ(zt), β

)
, zt ∈ R

L (6.42)

where ΔΠ(zt) := Π(2) (zt) − Π(1) (zt).

6.3.5. Dynamic Stability with Rational Expectations

Let us discuss the evolution of asset prices when, under the hypotheses of Section
6.3.2, Mediator 2 has rational expectations in the sense that the first moments of cum-
dividend prices are correctly predicted for all times t and second moments whenever
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possible. Let Ψ(2)
1� be the unbiased forecasting rule defined in Eq. 6.26 and Ψ(2)

2� be some
forecasting rule for second moments that coincides with Eq. 6.30 whenever Eq. 6.30 is
well defined. Let Mediator 1 use some adaptive forecasting rules Ψ(1)

1 and Ψ(1)
2 to deter-

mine her beliefs regarding the evolution of future asset prices. Inserting all forecasting
rules into the temporary equilibrium map (Eq. 6.20) and assuming the dividend process
to be predictable, we obtain the system of stochastic difference equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qt = q
(2)
t−1 + At(ξt − Et−1[ξt])

q
(1)
t = Ψ(1)

1 (qt−1, . . . , qt−N )

V
(1)
t = Ψ(1)

2 (qt−1, . . . , qt−N )

q
(2)
t = Ψ(2)

1�

(
at, dt, Et−1[ξt], q

(1)
t ,V (1)

t ,V (2)
t , q(2)

t−1

)
V

(2)
t = Ψ(2)

2�

(
at, Vt−1[ξt],V

(1)
t ,V (2)

t−1

)
(6.43)

Recalling that the risk-adjusted market shares are at = ( ηt
α , 1−ηt

α ), Eqs. 6.43 together with
some choice function Eq. 6.40 define a time-one map of a dynamical system in a ran-
dom environment that describes the evolution of prices and forecasts. The map (Eq.
6.43) will, in general, be nonlinear. However, as the following discussion will show,
this nonlinearity is of a very specific form.

Suppose that Mediator 1 is a chartist who uses the simple technical trading rule

q
(1)
t = Ψ(1)

1 (qt−1, . . . , qt−N ) :=
N∑
n=1

D(n) qt−n (6.44)

as a forecasting rule, where D(n), n = 1, . . . ,N are K ×K matrices that describe the
anticipated impact of the past N asset prices. Let her subjective covariance matrix
be constant over time, that is, V (1)

t ≡ V (1). Then, under the hypotheses of Lemma
6.2, Mediator 2 may have correct second moments that are constant over time. If
Xt = (q(2)

t , q(2)
t−1, qt, . . . , qt−N−1) ∈ R

d
+ with d = K(N + 4) denotes the vector consisting

of the last two price forecasts of Mediator 2 and past N realized cum-dividend prices,
Eq. 6.43 takes the form

Xt = A(a(2)
t ,V (2)

t )Xt−1 + B(a(2)
t , ξt, dt,V

(2)
t ) (6.45)

with a coefficient block matrix A(a(2)
t ,Vt) and a vector B(a(2)

t , ξt,Vt). Both are random
and defined as follows. Setting

A(0)
t = A(0) (a(2)

t ,V (2)
t ) := Rf

[
IK + a−a(2)

t

a
(2)
t

V
(2)
t V (1)−1

]
A(n)
t = A(n) (a(2)

t ,V (2)
t ) := − (a−a(2)

t )

a
(2)
t

V
(2)
t V (1)−1D(n), n = 1, . . . ,N
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yields the d × d matrix

A(a(2)
t ,V (2)

t ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(0)
t 0 A(1)

t · · · A(N)
t 0 0

IK 0 · · · · · · · · · · · · 0

IK 0
. . .

...

0 0 IK
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · · · · · · · 0 IK 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.46)

and the vector

B(a(2)
t , ξt, dt,V

(2)
t ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
a

(2)
t

V
(2)
t

(
xm − Et−1[ξt]

)
− A(2) (a(2)

t ,V (2)
t )dt

0
At(ξt − Et−1[ξt])

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

d

The important observation now is that the system of stochastic difference equations
(Eq. 6.45) is (affine-) linear if the market shares and the subjective covariance matri-
ces are constant over time such that a(2)

t = a and V (2)
t = V for all times t. In this case,

the stochastic process generated by Eq. 6.45 is Markovian if the exogenous noise is
Markovian and represents an asset price dynamic with market shares frozen at level a.
The long-run behavior of such sequences is well understood. The process is asymptoti-
cally stable under the condition that all eigenvalues of A(a,V ) lie within the unit circle
(e.g., see Brandt, 1986, and Arnold, 1998, Corollary 5.6.6). For the nonlinear system
(Eq. 6.45) with varying market shares, a slightly stronger condition is needed.

Assumption 6.3.
1. The eigenvalues of all the matrices A(a,V ) with (a,V ) ∈ [a, a ] ×K lie uniformly

within the unit circle.
2. The map

A : [a, a ] ×K → [a, a ] ×K, (a,V ) �→ A(a,V )

is Lipschitz continuous.
3. The map B(·) is bounded and Lipschitz continuous uniformly in ξ and d, that is,

there exists a constant cB independently of ξ and d such that

sup
ξ
‖B(a, ξ, d,V ) − B(a′, ξ, d,V ′)‖ ≤ cB

(|a − a′| + ‖V − V ′‖)
for all a, a′ ∈ [a, a ] and all V ,V ′ ∈ K.
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Assumption 6.3 (1) essentially states that all eigenvalues of each coefficient matrix
(Eq. 6.46) lie uniformly within the unit circle. The other two assumptions are continuity
conditions. The following result, given as Proposition 3.2 in Horst and Wenzelburger
(2008), demonstrates that Assumption 6.3 guarantees boundedness of any sequence
X = {Xt}t∈N generated by Eq. 6.45.

Proposition 6.3. Under Assumption 6.3, the sequence {Xt}t∈N is almost surely
bounded. Specifically, for any initial state x there exists a constant Mx such that

Probx

[
sup
t
‖Xt‖ ≤Mx

]
= 1

Here Probx denotes the probability measure on the canonical path space induced by the
process {Xt}t∈N with initial state x.

Summarizing, Eq. 6.45 describes scenarios with a stable price process for any coeffi-
cient matrix A that satisfies Assumption 6.3. Note that the only crucial assumption here
is the linearity of forecasting rules for first moments. As soon as the coefficient matrix
A has eigenvalues outside the unit disk, the system (Eq. 6.45) may become unstable.
Under the particular case under consideration, it follows immediately from Böhm and
Chiarella (2005, Thm. 3.2) that instability occurs for Rf > 1 and a(2) sufficiently close
to unity. Hence market shares of the nonrational Mediator 1 have to be sufficiently high
to obtain a stable price process with rational expectations for Mediator 2. A nonlinear
stochastic scenario in which consumers switch between mediators will be discussed in
Section 6.5.

6.4. MULTIPERIOD PLANNING HORIZONS

Investors in financial markets will typically have different planning horizons. Investors
with long planning horizons are likely to invest more wealth into risky assets than those
with short planning horizons. Institutional investors, for example, will pursue long-term
strategies rather than trying to follow a momentary trend. Hence, the length of a planning
horizon should have a significant influence on an investor’s risk-taking behavior and thus
their portfolio decisions. The traditional CAPM was first generalized by Stapleton and
Subrahmanyam (1978) to a static model in which investors face a multiperiod planning
horizon. As discussed in the introduction, several extensions to setups with infinitely
lived agents have since been developed (e.g., see Magill and Quinzii, 2000, or Angele-
tos and Calvet, 2005, 2006). These models have in common that beliefs of all agents
are homogeneous and rational. The behavior of agents is described by an essentially
static one-shot optimization problem. All agents have the same infinite planning horizon,
which makes it difficult to describe empirically observed trading activities (see Judd,
Kübler, and Schmedders, 2003). The impact of distinct multiperiod planning horizons
on the dynamics of asset prices, asset returns, and portfolio holdings has been investi-
gated in Hillebrand and Wenzelburger (2006a). Their model is a natural extension of the
approach presented in Section 6.2.4. It allows describing scenarios in which investors
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update subjective beliefs repeatedly and revise previously made portfolio plans accord-
ingly. Hence, an investigation of how distinct planning horizons with heterogeneous
beliefs affect individual portfolio decisions and asset prices is possible.

6.4.1. Overlapping Cohorts of Investors

To facilitate the exposition, we abstract from social interactions between consumers.
As in Section 6.3, these can be incorporated by replacing the risk tolerances with
risk-adjusted market shares. Further details are found in Hillebrand and Wenzelburger
(2006b). Throughout this section, assume that the set of investors is composed of J + 1
different cohorts or generations.11 In each trading period t ∈ N, a new young cohort
enters the market and trades for J + 1 consecutive periods before its members exit the
market to consume terminal wealth in period t + J . Each cohort is identified by its
index j = 0, 1, . . . , J which determines the number of remaining periods in the mar-
ket. In particular, j = J refers to the young and j = 0 to the old cohort. Each cohort
j consists of two types of investors characterized by risk preferences and subjective
beliefs regarding the future evolution of the market. A single investor in an arbitrary
period is thus identified by the pair (i, j) describing her type i ∈ {1, 2} and her cohort
j ∈ {0, 1, . . . , J}.

There is a single consumption good in the economy that serves as numéraire for all
prices and payments. At the beginning of each period, any young investor (i, J ) receives
an initial endowment of e(i) > 0 units of the consumption good that for the sake of
simplicity, are assumed to be constant. Investors (i, j) with j < J receive no additional
endowments. Assuming that the consumption good cannot be stored by consumers, each
investor faces the problem of transferring wealth from the first to the last period of life
in which she consumes the proceeds of her investments. The investment opportunities
are the same as in Section 6.2.4 and consist of K retradeable risky assets and a risk-
free bond that pays a constant return Rf > 0 per unit. For simplicity, we abstract from
dividend payments and assume that the only source of noise in the markets comes from
noise traders, as characterized in Assumption 6.2 (2).

The portfolio choice problem of an investor (i, j) in an arbitrary period t is the fol-
lowing: At the beginning of each period t any investor forms beliefs regarding the future
prices that are relevant for his planning horizon j. These beliefs are given by a subjective
joint probability distribution for the random variables pt+1, . . . , pt+j. Given his beliefs,
the investor’s portfolio decision will depend on current prices as well as on his wealth
position in period t. As in the one-period case, it is assumed that the portfolio problem
in period t is solved prior to trading, that is, before the actual price pt and the noise
traders’ demand ξt has been observed. Current prices will therefore enter the decision
problem as a parameter p ∈ R

K . Let y(i,j+1)
t−1 ∈ R and x(i,j+1)

t−1 ∈ R
K denote the investment

in the risk-free asset k = 0 and in risky assets k = 1, . . . ,K, respectively. Whereas each
young investor’s wealth is equal to his initial endowment e(i), the wealth w(ij)

t of any

11The reader may think of a multiperiod OLG model. As pointed out earlier, this is not essential in the present
context.
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nonyoung investor (i, j) with j < J at time t is determined by the value of her previous
portfolio holding (y(i,j+1)

t−1 , x(i,j+1)
t−1 ) at current prices of period t. Thus

w
(ij)
t =

{
e(i) for j = J

Rfy
(i,j+1)
t−1 + 〈pt, x(i,j+1)

t−1 〉 for j = 0, . . . , J − 1
(6.47)

To obtain explicit demand functions, the following standard assumptions
regarding investors’ preferences and beliefs are made (e.g., see Stapleton and
Subrahmanyam, 1978).

Assumption 6.4. Preferences and beliefs of investors are characterized by the following
assumptions:

1. Each investor of type i has preferences for terminal wealth described by a CARA
utility function

u(i) (w) := − exp
(− w

a(i)

)
, w ∈ R

where a(i) > 0 denotes risk tolerance.
2. The subjective beliefs of investor (i, j) at time t regarding prices pt+1, . . . , pt+j are

given by a normal distribution on R
Kj, described by the first two moments

μ
(ij)
t :=

⎛
⎜⎝
μ

(i)
t,t+1
...

μ
(i)
t,t+j

⎞
⎟⎠ ∈ R

Kj, Σ(ij)
t :=

⎡
⎢⎣
Σ(i)
t,11 . . . Σ

(i)
t,1j

...
. . .

...
Σ(i)
t,j1 . . . Σ

(i)
t,jj

⎤
⎥⎦ ∈ MKj (6.48)

and subjective covariance matrices Σ(ij)
t ∈ MKj for future prices. Here, μ(ij)

t,t+s :=
E

(ij)
t [pt+s] denotes investor (i, j)’s subjective mean value for price vectors pt+s,

s = 1, . . . , j conditional on information available at time t. The matrix

Σ(ij)
t,ss′ := E

(ij)
t

[(
pt+s − E

(ij)
t [pt+s]

)(
pt+s′ − E

(ij)
t [pt+s′ ]

)�]

denotes investor (i, j)’s subjective conditional covariance matrix between the two
price vectors pt+s and pt+s′ , where s, s′ = 1, . . . , j.

Investors (i, j) in Assumption 6.4 are essentially characterized by their risk aversion
and their subjective beliefs, parameterized by subjective means and subjective second
moments. For simplicity, any nonyoung investor (i, j) with a planning horizon j < J is
assumed to hold the same expectations for prices pt+1, . . . , pt+j as the young investor
(i, J ). This means that her beliefs are given by the marginal distributions of the respec-
tive young investor (i, J ), which is known to be normal. Economically, this assumption
may be justified by presuming that all investors of type i employ the same financial
mediator. Notice that all subjective moments (μ(ij)

t ,Σ(ij)
t ) are based on observables up to

period t − 1. Mathematically this implies that they are Ft−1 measurable.
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Assuming that each investor (i, j) maximizes subjectively expected utility of future
terminal wealth using self-financing portfolio strategies, Hillebrand and Wenzelburger
(2006a) show that Assumption 6.4 is sufficient to obtain explicit demand functions for
risky assets.

Theorem 6.4. Let Assumption 6.4 be satisfied. Then investor (i, j)’s asset demand
function for risky assets, given her beliefs (μ(ij)

t ,Σ(ij)
t ) ∈ R

Kj ×MKj in period t, takes
the form:

Φ(ij) (p,μ(ij)
t ,Σ(ij)

t ) := a(i)

R
j
f

Π�j Σ
(ij)−1
t

(
μ

(ij)
t − Πjp

)
, p ∈ R

K (6.49)

where Πj :=
[
RfIK , . . . ,Rj

fIK

]�
∈ R

Kj×K and j = 1, . . . , J .

Note that each investor is allowed to update beliefs and reoptimize previously
planned portfolio decisions throughout her entire life. As in the one-period case, the
demand for risky assets (Eq. 6.49) is independent of the investor’s initial wealth (Eq.
6.47) of period t. For a two-period planning horizon j = 2 and beliefs (μ(i)

t ,Σ(i)
t ) ∈

R
2K ×M2K , the demand function (Eq. 6.49) is

Φ(i2)(p,μ(i)
t ,Σ(i)

t ) = a(i)

R2
f

[
RfIK ,R2

fIK

][Σ(i)
t,11 Σ(i)

t,12

Σ(i)
t,21 Σ(i)

t,22

]−1 (
μ

(i)
t,t+1 − Rfp
μ

(i)
t,t+2 − R2

fp

)

If investors assume future prices to be uncorrelated over time; that is, Σ(i)
t,ss′ = 0 for all

s �= s′, then the demand function is

Φ(ij) (p,μ(i)
t ,Σ(i)

t ) = a(i)
j∑
s=1

1
R
j−s
f

Σ(i)−1
t,ss (μ(i)

t,t+s − Rs
fp) (6.50)

In this case, investor (i, j)’s asset demand function in period t is composed of j mutual
funds

Σ(i)−1
t,ss (μ(i)

t,t+s − Rs
fpt), s = 1, . . . , j

which are discounted by the factors 1
R
j−s
f

, respectively. The number of funds depends

on the length of the planning horizon j. Investors with the same beliefs will use the
same funds, but the total amount invested depends on her risk tolerance. Hence, for
uncorrelated beliefs, Theorem 6.4 is a multifund separation theorem. For a one-period
planning horizon j = 1, the demand function (Eq. 6.13) is retained. Setting

B
(ij)
t =

[
B

(ij)
t,1 , . . . ,B(ij)

t,j

]
:= Π�j Σ

(ij)−1
t ∈ R

K×Kj (6.51)

with B(ij)
t,s ∈ R

K×K and

C
(ij)
t := Π�j Σ

(ij)−1
t Πj ∈ R

K×K (6.52)
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investor (i, j)’s demand function for risky assets at time t takes the more convenient
form

Φ(ij) (p,μ(ij)
t ,Σ(ij)

t ) = a(i)

R
j
f

( j∑
s=1

B
(ij)
t,s μ

(i)
t,t+s − C (ij)

t p
)

, p ∈ R
K (6.53)

6.4.2. Temporary Equilibria

To determine market-clearing prices, let xm ∈ R
K
++ denote the total stock of risky assets.

Market clearing in period t requires the existence of a price vector pt ∈ R
K such that

aggregate demand equals the total stock of risky assets. Given the individual demand
functions (Eq. 6.53) for risky assets and the quantity ξt demanded by noise traders, the
market-clearing condition of period t reads

2∑
i=1

J∑
j=1

Φ(ij) (p,μ(ij)
t ,Σ(ij)

t ) + ξt = xm (6.54)

Solving Eq. 6.53 for p yields the following temporary equilibrium map G, which deter-
mines market-clearing prices at time t from the list of subjective beliefs (μ(iJ )

t ,Σ(iJ )
t )

and the noise traders’ demand ξt as

pt = G
(
ξt,

(
μ

(iJ )
t ,Σ(iJ )

t

)2

i=1

)
:=

2∑
i=1

J∑
j=1

A
(ij)
t μ

(i)
t,t+j − At(xm − ξt) (6.55)

where12

At :=
[ 2∑
i=1

J∑
j=1

a(i)

R
j
f

C
(ij)
t

]−1
and A

(ij)
t := a(i)

R
j
f

At

J∑
n=j

B
(in)
t,j (6.56)

The temporary equilibrium map (Eq. 6.55) defines an economic law in the sense of
Böhm and Wenzelburger (2002) for a multiperiod version of the CAPM, which deter-
mines market-clearing prices in each trading period as a function of agents’ expectations
for future prices. The map G is of the cobweb type since it contains essentially price
forecasts as arguments. Since these expectations refer to future periods t + 1, . . . , t + J ,
the law contains an expectational lead of length J . Notice that all coefficient matrices
A

(ij)
t and At are Ft−1 measurable such that the uncertainty of the price pt rests solely

with the noise trader demand ξt.
Apart from the timing of subjective beliefs, the temporary equilibrium map with a

multiperiod planning horizon is structurally quite similar to the case with one-period
planning horizons. Here, heterogeneity consists of possibly diverse beliefs as well as

12Since all Πj have rank K, all C (ij)
t = Π�j Σ

(ij)−1
t Πj are positive definite and hence invertible. Since the sum

of positive-definite matrices is again positive definite, At and thus all A(ij)
t are well defined.
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different planning horizons of investors. In Section 6.5.4, we will provide evidence that
interesting implications arise from multiperiod planning horizons.

6.4.3. Perfect Forecasting Rules

As in the one-period planning case, stochastic difference equations describing the evo-
lution of asset prices are now obtained by specifying the forecasting rules according
to which investors update their beliefs. Following the reasoning of Section 6.3.2, we
review the case in which at least one type of investor, say of Type 2, is able to correctly
anticipate future asset prices. Since by Assumption 6.4 subjective beliefs are character-
ized by their corresponding first two moments, the analysis is restricted to the case in
which the conditional mean values and the conditional covariance matrices of the price
process induced by Eq. 6.55 are correctly predicted. To this end, the notion of a perfect
forecasting rule introduced in Section 6.3.2 is generalized to the multiperiod case. For
brevity we again adopt the term rational expectations to describe the situation in which
Type-2 investors are able to correctly predict the first two moments of the price process,
whereas other market participants may have erroneous beliefs.

Perfect Forecasting Rules for First Moments

Following Wenzelburger (2006) we assume that investors of Type 2 use a no-updating
forecasting rule. The key characteristics of such a forecasting rule is that in any period
t, the first J − 1 forecasts will not be updated, so that

μ
(2)
t,t+j = μ

(2)
t−1,t+j, j = 1, . . . , J − 1 (6.57)

The intuition of no-updating forecasting rules is as follows: Let Et−1 [·] denote the
expectations operator conditional on information available at date t − 1. Since the coef-
ficient matrices A(ij)

t and At in the price law (Eq. 6.55) are based on information known
at date t − 1, the conditional expectations of pt is

Et−1[pt] =
2∑
i=1

J∑
j=1

A
(ij)
t μ

(i)
t,t+j − At

(
xm − Et−1[ξt]

)

As in the one-period case, the idea now is to choose the most recent forecast μ(2)
t,t+J such

that

Et−1[pt] − μ(2)
t−1,t+1 = 0 P − a.s. (6.58)

Suppose for a moment that μ(2)
t,t+J can be chosen such that Eq. 6.58 holds. Then the

no-updating condition (Eq. 6.57) implies that the conditional forecast errors of all



380 Chapter 6 • Perfect Forecasting, Behavioral Heterogeneities, and Asset Prices

forecasts μ(2)
t−j,t, j = 1, . . . , J for pt vanish, that is,

Et−1[pt] − μ(2)
t−j,t = 0, j = 1, . . . , J , P − a.s. (6.59)

By the law of iterated expectations, for each j = 1, . . . , J ,

Et−j[pt − μ(2)
t−j,t] = Et−j

[
Et−1[pt − μ(2)

t−j,t]
]
= 0 P − a.s.

Hence all forecasts for pt provide unbiased least-squares predictions conditional on the
information of the respective periods as well.

The problem of obtaining unbiased forecasts is thus reduced to solving the linear
Eq. 6.58 for μ(2)

t,t+J . Assuming A(2J )
t to be invertible, we obtain a perfect forecasting rule

for first momonts:

μ
(2)
t,t+J = A

(2J )−1
t

[
μ

(2)
t−1,t −

J∑
j=1

A
(1j)
t μ

(1)
t,t+j −

J−1∑
j=1

A
(2j)
t μ

(2)
t,t+j + At

(
xm − Et−1[ξt]

)]

Define now the expected excess demand of all investors in period t except investor
(2, J ) as

Φex
(
μ

(2)
t−1,t,

(
μ

(iJ )
t ,Σ(iJ )

t

)2

i=1

)
:=

J∑
j=1

Φ(1j)(μ(2)
t−1,t,μ

(1j)
t ,Σ(1j)

t

)
(6.60)

+
J−1∑
j=1

Φ(2j)(μ(2)
t−1,t,μ

(2j)
t ,Σ(2j)

t

)
+ Et−1[ξt] − xm

Using the fact that A(2J )
t = a(2)

RJ
f

AtB
(2J )
t,J , the preceding perfect forecasting rule for first

moments takes the following form.

Proposition 6.4. Let Assumptions 6.2 (2) and 6.4 be satisfied. If B(2J )
t,J as given in

Eq. 6.51 is nonsingular for all t ∈ N, a perfect forecasting rule for first moments Ψ(2)
1� of

Type-2 investors is given by a function

μ
(2J )
t = Ψ(2)

1�

(
μ

(2J )
t−1 ,Σ(2J )

t , ζt
)

(6.61)

such that

⎧⎪⎪⎨
⎪⎪⎩
μ

(2)
t,t+j = μ

(2)
t−1,t+j, j = 1, . . . , J − 1

μ
(2)
t,t+J := B

(2J )−1
t,J

[
C

(2J )
t μ

(2)
t−1,t −

J−1∑
s=1

B
(2J )
t,s μ

(2)
t−1,t+s −

RJ
f

a(2) ζt

]
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where ζt = Φex
(
μ

(2)
t−1,t,

(
μ

(iJ )
t ,Σ(iJ )

t

)2

i=1

)
is the expected excess demand of all investors

except investor (2, J ).

The forecasting rule (Eq. 6.61) is also referred to as an unbiased forecasting rule. It
is a linear function of previously made forecasts and is a priori independent of previous
prices. Since the matrices B(2J )

t,J , t ∈ N depend essentially on second-moment beliefs,
they can be chosen to be invertible. Hence, unbiased forecasting rules exist generi-
cally. From the perspective of an investor of Type 2, the unknown quantity for applying
Eq. 6.61 is essentially the expected excess demand (Eq. 6.60). Inserting Eq. 6.61 into
the price law (Eq. 6.55), the system of equations⎧⎪⎪⎨

⎪⎪⎩
pt = μ

(2)
t−1,t + At

(
ξt − Et−1[ξt]

)
μ

(2J )
t = Ψ(2)

1� (μ(2J )
t−1 ,Σ(2J )

t , ζt)

ζt = Φex
(
μ

(2)
t−1,t,

(
μ

(iJ )
t ,Σ(iJ )

t

)2

i=1

) (6.62)

determines the asset prices of period t under unbiased expectations for investors of Type
2, given arbitrary beliefs of Type-1 investors.

A noticeable fact of an unbiased no-updating forecasting rule is that by Eq. 6.59 all
forecasts μ(2)

t−j,t, j = 1, . . . , J for pt are unbiased least-squares predictions conditional on
information available at date t − 1. In this sense, an unbiased no-updating rule yields
the most precise forecasts as forecast errors vanish conditional on information that is
not available at the stage in which they have been made. This property holds only for
forecasts that feed back into the temporary equilibrium map in a nontrivial manner (see
Wenzelburger, 2006).

Perfect Forecasting Rules for Second Moments

Though perfect forecasting rules for first moments exist generically, more restrictions
are required to ensure the existence of a perfect forecasting rule for second moments.
Let Vt [·] and Covt [·] denote the objective variance and covariance operator conditional
on the σ-algebra Ft. The correctness of second-moment beliefs requires the subjective
(block matrix) entries of the matrices Σ(2J )

t defined in Eq. 6.48 to coincide with the
corresponding objective moments, that is,

Σ(2J )
t, jj′ = Covt

[
pt+j, pt+j′

]
, j, j′ = 1, . . . , J , P − a.s. (6.63)

for all times t. Under the assumption that investors of Type 2 use the unbiased
no-updating forecasting rule (Eq. 6.61), Hillebrand and Wenzelburger (2006a) show
that the covariance structure of the asset prices as given in Eq. 6.62 takes a particularly
simple form.

Lemma 6.3. Under the hypotheses of Proposition 6.4, assume that agents of Type 2
use the unbiased no-updating forecasting rule (Eq. 6.61). Then, for each t ∈ N and
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each j, j′ = 1, . . . , J , the covariance matrices of the associated asset prices (Eq. 6.62)
are given by

Covt
[
pt+j, pt+j′

]
=

{
Et

[
At+jVt+j−1[ξt+j]At+j

]
for j = j′

0 for j �= j′

Lemma 6.3 reveals that under unbiased no-updating, correlations between prices of
distinct periods are zero. Furthermore, it implies that the covariance matrix of prices
within each period t ∈ N satisfies

Vt[pt+1] = At+1Vt[ξt+1]At+1

and

Et−1
[
Vt[pt+j]

]
= Vt−1[pt+j], j = 1, . . . , J − 1 (6.64)

As a consequence, under no-updating, the correct covariance matrices for young
investors of Type 2 must be of the form

Σ(2J )
t =

⎡
⎢⎣
Σ(2)
t,11 · · · 0
...

. . .
...

0 · · · Σ(2)
t,JJ

⎤
⎥⎦ , t ∈ N (6.65)

with Σ(2)
t,jj ∈ Mk. It follows from Eq. 6.64 that the block matrix entries in Eq. 6.65 have

to satisfy the consistency conditions

Et−1
[
Σ(2)
t, jj

]
= Σ(2)

t−1, (j+1)(j+1), j = 1, . . . , J − 1, t ∈ N (6.66)

Under no-updating, a perfect forecasting rule for second moments is now constructed
as follows. In each period t, choose Eq. 6.65 so that

Σ(2)
t, jj′ =

{
Σ(2)
t−1, (j+1)(j+1) for j = j′ < J

0 for j �= j′
(6.67)

implying that the consistency conditions (Eq. 6.66) hold automatically. In view of
Eq. 6.56, the remaining matrix Σ(2)

t,JJ has then to be specified in such a way that the

second-moment belief Σ(2)
t−1,11 formed in period t − 1 is correct, that is,

Vt−1[pt] − Σ(2)
t−1,11 = AtVt−1[ξt]At − Σ(2)

t−1,11 = 0 (6.68)

Clearly, if Eq. 6.68 holds for all times t, it follows from Eq. 6.64, together with the
no-updating condition (Eq. 6.67), that for each j = 1, . . . , J ,

Vt−j[pt] = Et−j
[
Vt−1[pt]

]
= Σ(2)

t−1, 11 = Σ(2)
t−j, jj, t ∈ N (6.69)
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such that all covariance matrices are correct. Thus the existence problem of perfect
forecasting rules for second moments is reduced to finding symmetric and positive
definite solutions Σ(2)

t,JJ to Eq. 6.68.
As in the one-period case, the existence proof is divided into two steps. First, find

a symmetric positive definite matrix Γt such that Γ−1
t Vt−1[ξt]Γ

−1
t = Σ(2)

t−1,11. Second,
setting

Ct :=

[
J∑
j=1

a(1)

R
j
f

C
(1j)
t

]−1

(6.70)

for notational ease, the desired second moment and hence a perfect forecasting rule for
second moments is found if

Γt − Ct − a(2)
J−1∑
j=1

j∑
n=1

R
2n−j
f Σ(2)−1

t,nn (6.71)

is symmetric and positive definite. This result is summarized as follows.

Proposition 6.5. Under the hypotheses of Proposition 6.4, assume that investors of
Type 2 use the unbiased no-updating forecasting rule (6.61). Suppose that each Λt−1 :=
Vt−1[ξt], t ∈ N is positive, set

Γt =
√
Λt−1

√(√
Λt−1 Σ

(2)
t−1,11

√
Λt−1

)−1 √
Λt−1, t ∈ N (6.72)

and Ct, t ∈ N as defined in Eq. 6.70. Then the no-updating forecasting rule for second
moments Ψ(2)

2� , given by

Σ(2J )
t = Ψ(2)

2�

(
Λt−1,Σ(1J )

t ,Σ(2J )
t−1

)
(6.73)

such that

Σ(2)
t, jj′ :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for j �= j′

Σ(2)
t−1, (j+1)(j+1) for j = j′ < J

a(2)RJ
f

[
Γt − Ct − a(2)

J−1∑
j=1

j∑
n=1

R
2n−j
f Σ(2)−1

t−1,(n+1)(n+1)

]−1

for j = j′ = J

provides correct second moments of the price process at date t in the sense that,
Eq. 6.68 holds whenever Eq. 6.71 is positive definite.

As an immediate consequence of Proposition 6.5, Corollary 1 in Hillebrand and
Wenzelburger (2006a) shows that perfect second-moment beliefs under no-updating
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generate zero autocorrelations between all asset prices of different periods within the
planning horizon J . The covariance structure of the resulting asset price process is

Covt
[
pt+j, pt+j′

]
=

{
Covt+j−1[pt+j, pt+j], if j = j′

0, if j �= j′

for each j, j′ = 1, . . . , J and all times t ∈ N.
Note that the matrix Γt as defined previously is the same as for the one-period case

in Proposition 6.2. The key problem again is that a priori the right side of Eq. 6.73
need neither be well defined nor positive definite such that a perfect forecasting rule for
second moments may not exist at all. However, if either all investors agree on constant
subjective second moments or all Type-1 investors believe in constant covariance matri-
ces, existence obtains. Corollary 6.2 establishes existence in the first case, Corollary 6.3
in the second case.

Corollary 6.2. Let the hypotheses of Proposition 6.5 be satisfied and assume, in
addition, that Vt−1[ξt] ≡ Λ is constant over time. Suppose that all investors have
homogeneous and constant second-moment beliefs. Then the constant forecasting rule

Σ(2)
t, jj′ :=

{
(aρ)2Λ−1, if j = j′

0, if j �= j′
for all j, j′ = 1, . . . , J , t ∈ N

with

a := a(1) + a(2) and ρ :=
J∑
j=1

j∑
s=1

R
2s−j
f (6.74)

provides correct second moments for all times t ∈ N.

By Corollary 6.2, perfect homogeneous constant second-moment beliefs are propor-
tional to the inverse of the covariance matrix of the noise-trader transactions, where a is
the aggregate risk tolerance of the economy.

Corollary 6.3. Let the hypotheses of Proposition 6.5 be satisfied and assume, in
addition, that the following holds:

1. The covariance matrix of the noise-trader portfolios is constant over time and of
the form Vt−1[ξt] ≡ Λ for all times t ∈ N.

2. All Type-1 investors use constant second-moment beliefs and the matrix ΛC with
C ≡ Ct as given in Eq. 6.70 is symmetric positive definite such that

ΛC = O�diag(λ1, . . . , λK )O

where all eigenvalues λ1, . . . , λK are sufficiently large such that λk >
2ρ
a(2) with ρ

as defined in (6.74) and O�O = IK .
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Then any constant forecasting rule of the form

Σ(2)
t, jj′ :=

{
C O�diag(κ±1 , . . . , κ±K )O for j = j′

0 for j �= j′

j, j′ = 1, . . . , J , t ∈ N

with eigenvalues κ±k given by

κ±k =
( λk

2 − ρa(2)) ±√( λk
2 − ρa(2)

)2 − (
ρa(2)

)2
, k = 1, . . . ,K

provides correct second moment beliefs for investors of Type 2 for all times t.

Observe again that by Corollary 6.3, perfect forecasting rules for second moments
are not necessarily uniquely determined. The main informational constraint for applying
the perfect forecasting rules given in Eqs. 6.61 and 6.71 is again the fact that the beliefs
of investors are, in general, unobservable quantities.

6.4.4. Portfolio Holdings

The impact of different planning horizons on the portfolio holdings of investors is as
follows. The first result concerns the portfolios of “rational” investors of Type 2 who are
able to correctly predict the first two moments of the price process. Using the representa-
tion (Eq. 6.50) of the asset demand function, an immediate consequence of Propositions
6.4 and 6.5 and their corollaries is the following theorem.

Theorem 6.5. Let the hypotheses of Proposition 6.2 be satisfied. Then the portfo-
lio holding in period t of a rational investor of Type 2 with a planning horizon of
length j is

Φ(2j) (pt,μ
(2j)
t ,Σ(2j)

t ) = a(2)
j∑
s=1

1
R
j−s
f

Σ(2)−1
t,ss (μ(2)

t,t+s − Rs
fpt)

where the beliefs (μ(2j)
t ,Σ(2j)

t ) ∈ R
Kj ×MKj are given by the no-updating forecasting

rules from Propositions 6.4 and 6.5.

Theorem 6.5 states that the period-t portfolios of rational Type-2 investors are
composed of j + 1 mutual funds, j risky funds, and the risk-free asset.

The second result concerns the case in which beliefs of investors are homogeneous.
This finding extracts the impact of different planning horizons on portfolios and prices
as subjective beliefs depend only on the length j of a planning horizon. In particular, all
investors within one cohort hold identical beliefs. Dropping the index i, one may write
(μ(j)

t ,Σ(j)
t ) ∈ R

Kj ×MKj for the beliefs of cohort j, in period t instead of (μ(ij)
t ,Σ(ij)

t ).
If pt is the market-clearing price of period t determined by Eq. 6.55, Hillebrand and
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Wenzelburger (2006a) refer to the portfolio

x
(j)
t :=

2∑
i=1

Φ(ij) (pt,μ
(j)
t ,Σ(j)

t ) = a

R
j
f

Π�j Σ
(j)−1
t (μ(j)

t − Πjpt) (6.75)

as the aggregate generational portfolio of cohort j, where as before a is the aggregate
risk tolerance of the economy. It is straightforward to obtain the following (J + 1)-fund
separation theorem.

Theorem 6.6. Let beliefs be homogeneous. Then the risky portfolio x(ij)
t held by an

investor (i, j) after trading in period t ∈ N is given by a constant share of the aggregate
generational portfolio (Eq. 6.75) of cohort j, such that

x
(ij)
t = a(i)

a
x

(j)
t

This share is determined by the individual risk tolerance a(i) relative to the aggregate
risk tolerance a.

Theorem 6.6 is a generalization of the two-fund separation theorem discussed in
Section 6.2 to the multiperiod planning-horizon case. Under homogeneous beliefs, each
investor will hold a combination of risk-free assets and a portfolio (or mutual fund) of
risky assets that depend on the length of their planning horizon. The portfolio of risky
assets is a multiple of the corresponding generational portfolio rather than of the mar-
ket portfolio xm. In view of Theorem 6.4, the J generational portfolios corresponding
to different planning horizons will, in general, not be collinear. Therefore, even under
homogeneous beliefs, planning horizons of distinct lengths will lead to structurally
distinct portfolio holdings and hence to trade among different cohorts.

In light of the preceding results, the evolution of generational portfolios is illus-
trated in Figure 6.4 by means of an example. The reader is referred to Hillebrand
and Wenzelburger (2006a, b) for further details. Suppose that only one risky asset
(K = 1) is traded between two investors who live for three consecutive periods (J = 2).
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FIGURE 6.4 Risky portfolios of rational investors, J = 2, K = 1: (a) young investors; (b) middle-aged
investors.
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Investors have homogeneous rational expectations in the earlier sense. The evolution of
the generational portfolios illustrated in Figure 6.4 shows the risky portfolios x(j)

t of
young (j = 2) and middle-aged (j = 1) generations. Throughout the whole time span
displayed in the figure, young investors hold more of the risky assets than middle-aged
investors do, confirming the intuition stated earlier in this section that a longer planning
horizon increases the investor’s willingness to take on risk. Moreover, young investors’
portfolios fluctuate more than those of middle-aged ones, indicating that fluctuations
in asset prices are to a large extent absorbed by the members of the young cohort.
Although these phenomena appear to be numerically robust, a theoretical explanation is
still missing.

6.5. NONERGODIC ASSET PRICES

An old conjecture that dates back to Alchian (1950) and Friedman (1953) states that
agents who do not learn to make accurate predictions about the future will be driven out
of the market. This conjecture is a main pillar of the rational expectations paradigm but
has been repeatedly challenged in the recent literature. In a series of papers (e.g., De
Long, Shleifer, Summers, and Waldmann, 1990, 1991) the capability of noise traders to
survive in financial markets has been analyzed. These results cover the static case with
noisy errors only. In the present context of a dynamic CAPM, Alchian and Friedman’s
conjecture suggests that only those investors who hold efficient portfolios in the sense of
Section 6.3.3 will survive in the long run as these attain the highest conditional Sharpe
ratios. A first simulation analysis in Böhm and Wenzelburger (2005), however, suggests
that an expert trader holding efficient portfolios may not be identified by consumers who
select investment strategies on the basis of simple performance indicators.

This section reports on results of Horst and Wenzelburger (2008) regarding the
asset-price dynamics of a variant of Eq. 6.43 in which investors have one-period plan-
ning horizons. They demonstrate that the stochastic difference equation (Eq. 6.43) may
display a path-dependent and hence nonergodic asymptotic behavior, which can be
described by a combination of analytical and numerical methods. The analysis has been
inspired by Blume and Easley (1992, 2002, 2006) and Sandroni (2000), who analyze
the question of whether markets favor accurate predictions. It also relates to a series of
investigations by Evstigneev, Hens, and Schenk-Hoppé (2002, 2006, 2008), who inves-
tigate investment strategies that prevail in a market. In all these models, however, the
portfolio choices of agents do not create a random environment. This feedback is one
of the key features of the following example.

For tractability, the following simplifications are made. There are no dividend pay-
ments, and the noise-trader portfolios {ξt}t∈N are governed by an exogenous IID process
with mean ξ̄ and a nondegenerate covariance matrix Λ. There is one type of consumer
with initial endowment e > 0, risk aversion α > 0, and a choice behavior as described
in Example 6.3. The market is operated by two mediators, a chartist i = 1 and an expert
trader i = 2, with rational expectations in the sense of Section 6.3.2. The profile of

risk-adjusted market shares at =
(
ηt
α , 1−ηt

α

)
at any date t is determined by the chartist’s

market share ηt ∈ [0, 1].
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The chartist is a trend chaser who applies a simple technical trading rule of the form
given in Eq. 6.44. The forecasts of the expert trader are unbiased and determined by an
unbiased forecasting rule Ψ(2)

1� as given in Eq. 6.26. For simplicity, both mediators are
assumed to have correct beliefs on second moments. Since the covariance matrix Λ is
constant over time, these correct second-moment beliefs are given by

V
(i)
t ≡

(
1+rf
α

)2
Λ−1, i = 1, 2 (6.76)

(see Section 6.3.2). Since cum-dividend and ex-dividend prices coincide, the system of
stochastic difference equations (Eq. 6.43) that describes the evolution of asset prices
takes the form ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
pt = q

(2)
t−1 +

1+rf
α Λ−1(ξt − ξ̄)

q
(1)
t =

∑N
n=1 D

(n)pt−n

q
(2)
t = 1+rf

1−ηt q
(2)
t−1 − ηt

1−ηt q
(1)
t + (1+rf )2

(1−ηt)α Λ
−1(xm − ξ̄)

(6.77)

where the last equation is the unbiased forecasting rule (Eq. 6.26). Setting

Xt := (q(2)
t , q(2)

t−1, pt, . . . , pt−N−1) ∈ R
d

with d = K(N + 4), the system of difference equations (Eq. 6.77) takes the form

Xt = A(ηt)Xt−1 + B(ηt, ξt), t ∈ N, (6.78)

where, by abuse of notation, the d × d coefficient matrix A(ηt) and the vector B(ηt, ξt) ∈
R
d corresponding to the representation (Eq. 6.45) are given by

A(0) (η) := 1+rf
1−η IK A(n) (η) := − η

1−ηD
(n), n = 1, . . . ,N

B(0) (η) := (1+rf )2

(1−η)α Λ
−1 (xm − ξ̄) B(1) (ξ) := 1+rf

α Λ−1 (ξ − ξ̄)

To guarantee long-run stability of Eq. 6.78, the chartist’s market share is restricted
to a compact interval [η, η ]. For any fixed market share η ∈ [η, η], the corresponding
process {Xη

t }t∈N with market shares frozen at η is Markovian and defined by the linear
recursive relation

X
η
t = A(η)Xη

t−1 + B(η, ξt), t ∈ N (6.79)

If Assumption 6.3 (1) is satisfied, each sequence {Xη
t }t∈N, η ∈ [η, η ] is bounded and

the difference equation Eq. 6.79 admits a unique stationary solution, that is, a unique
stationary and ergodic process {xηt }t∈N that satisfies Eq. 6.79. For any starting point x,
the distributions τηt of Xη

t converge weakly to the distribution τη of {xηt }t∈N as t → ∞.
The distribution τη is the unique stationary distribution of the Markov process {Xη

t }t∈N.
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6.5.1. Characterization of Long-Run Equilibria

It turns out that the possible long-run equilibria of the market, that is, the possible
limiting distributions of the sequence {Xt}t∈N generated by Eq. 6.78 can be character-
ized by a fixed-point property. Numerical simulations suggest that the long-run market
shares settle down to constant values that depend on initial conditions, the intensity of
choice, and on the chosen random environment. For this reason, it is sensible to start
the analysis from the assumption that the process of market shares {ηt}t∈N converges
almost surely as t → ∞. To this end, let τη(f ) denote the integral of a bounded function
f with respect to the distribution τη.

Theorem 6.7. Suppose that Assumption 6.3 is satisfied and that the process of market
shares {ηt}t∈N converges almost surely to some random variable η∗. Then the sequence
of empirical averages {�t}t∈N as defined in Eq. 6.39 converges almost surely weakly to
a random limiting distribution. Specifically,

Prob
[

lim
t→∞

�t( f ) = τη∗ ( f )
]
= 1

for all bounded, continuous functions f , where τη∗ is the stationary distribution of the
Markov process {Xη∗

t }t∈N.

Theorem 6.7 implies that the distributions of {Xt}t∈N converge weakly to a ran-
dom limiting distribution, provided that the sequence of market shares settles down to
a random limit in the long run. This result imposes the following consistency condition
between long-run market shares and limiting distributions of {Xt}t∈N. Define a map
ζ : [η, η ] → R

L by

ζ(η) :=
(
τη(f (1)), . . . , τη(f (L))

)
(6.80)

which assigns to any fixed market share η the long-run empirical average of the cor-
responding Markov process {Xη

t }t∈N. The question of existence and uniqueness of
limiting distributions of {Xt}t∈N can now be reduced to two equivalent fixed point
conditions, as follows.

Corollary 6.4. Under the assumptions of Theorem 6.7, the random variable η∗ takes
values in the set of fixed points

E :=
{
η ∈ [η, η] : 0 = F ◦ ζ(η) − η}

where F is the choice function defined in Eq. 6.42. The long-run empirical averages of
the process {Xt}t∈N are given by ζ(η∗) and take values in the set of fixed points

S :=
{
z ∈ R

L : 0 = ζ ◦ F (z) − z}
Notice that ζ(η∗) is a random variable so that the possible long-run empirical

averages of {Xt}t∈N are random. It is well known that the map ζ : [η, η ] → R
L is contin-

uous, but typically no analytical expressions are available (see Brandt, 1986). However,
good numerical approximations of ζ may easily be obtained by simulating the bench-
mark processes {Xη

t }t∈N, η ∈ [η, η] as defined in Eq. 6.79. As the choice function F is
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analytically specified, an accurate numerical approximation of the sets E and S and thus
of the possible long-run equilibria of Eq. 6.78 is available.

6.5.2. Convergence to Long-Run Equilibria

Because the characterization result stated in Corollary 6.4 rests on the assumption that
the sequence of market shares {ηt}t∈N converges to some random constant η∗, it remains
to state conditions under which this assumption is satisfied. If the intensity of choice β is
sufficiently small so that consumers are little inclined to switch between mediators, it is
intuitively clear that market shares settle down to a constant limit. It turns out, however,
that this property may be lost and the limit is random if β is sufficiently large, reflecting
strong social interaction between consumers. Social interactions may thus constitute an
endogenous source of randomness.

The evolution of prices, beliefs, and market shares can be analyzed by means of an
approximating ordinary differential equation. Recall that

zt =
(
�t(f (1)), . . . , �t(f (L))

) ∈ R
L

denotes the vector of empirical averages at time t. Using the choice function (Eq. 6.42),
the stochastic difference equation (Eq. 6.78) takes the form{

Xt = A
(
F (zt)

)
Xt−1 + B

(
F (zt), ξt

)
zt = t−1

t zt−1 + 1
t

(
f (1) (Xt−1), . . . , f (L) (Xt−1)

) (6.81)

Define a map g : R
L → R

L by setting

g(z) := ζ ◦ F (z) − z

The zeros of the map g are given by the set S defined in Corollary 6.4, whereas con-
tinuity of F and ζ implies continuity of g. With this notation, a well-known stochastic
approximation result found in Chapter 5 of Kushner and Yin (2003) can be applied to
yield the following result.

Theorem 6.8. Suppose that the map g is Lipschitz continuous such that the ordinary
differential equation

ż = g(z) (6.82)

admits a unique solution. Let S∗ := {z̄1, . . . , z̄N} ⊂ S be the set of asymptotically stable
steady states with corresponding basins of attraction DA(z̄i).

If the sequence {zt}t∈N of empirical averages visits a compact subset of some basin
DA(z̄i) infinitely often with probability p > 0, then the following holds:

1. The sequence {zt}t∈N converges to z̄i with at least probability p, that is,

lim
t→∞

|zt − z̄i| = 0 with at least probability p
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FIGURE 6.5 Empirical distributions of market shares for β = 2 and η0 = 0.355: (a) distribution for
T = 500; (b) distribution for T = 1,000.

2. The process of market shares {ηt}t∈N converges with at least probability p to a
stationary value F (z̄i) ∈ E with E as defined in Corollary 6.4.

Theorem 6.8 reduces the convergence properties of the asset price process to the
asymptotic behavior of a deterministic ordinary differential equation (Eq. 6.82) on the
level of empirical averages. In particular, market shares converge almost surely to some
constant if Eq. 6.82 has a unique, globally asymptotically stable steady state. In this
case the corresponding asset price process is ergodic. If, on the contrary, Eq. 6.82 admits
multiple stable steady states, then ergodicity breaks down and market shares along with
asset prices converge to a random limit, thus endogenously creating uncertainty. This
phenomenon is illustrated in the following section.

6.5.3. Performance of Efficient Portfolios

Common folklore suggests that a rational expert trader who has correct beliefs and
hence holds efficient portfolios as introduced in Section 6.3.3 will attain larger market
shares than a nonrational investor with incorrect beliefs such as a chartist. However, it
is intuitively clear that the expert trader will attract more consumers only if the per-
formance measures point at efficient portfolios. Otherwise, portfolios other than the
efficient portfolio appear to perform better and the nonrational investor attracts more
consumers. One reason that such a scenario could indeed occur is that any performance
measure involves empirical estimators, which need not be consistent. The following
simulation exercise demonstrates that the chartist and the rational expert trader often
coexist in the market.

Setting the risk-free rate to rf = 1%, the stability condition of Eq. 6.78 is satisfied
if the chartist’s market share ηt is bounded from below by η = 6% and from above by
η = 36%. All empirical densities displayed here are calculated using a sample of N =
100,000 independent repetitions. All simulation results were generated by the software
package Macrodyn.

Notice first that empirical distributions converge rather slowly. Figure 6.5 dis-
plays the empirical densities of market shares after T = 500 and T = 1000 periods,
respectively. Hence the application of Theorem 6.8 is worthwhile.
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FIGURE 6.6 Long-run market shares: empirical average returns, η̇ = h(η): (a) Sharpe ratios; (b) β = 0.5
(steep line) and β = 2 (flat line).

Empirical Returns as Performance Measures

In comparing the performance of the two mediators using empirical averages of returns,
it is best to use the difference zt = �t(f (1) − f (2)) with f (i), i = 1, 2 as defined in
Example 6.1. The ODE defining map g is then one-dimensional. It is shown in Horst
and Wenzelburger (2008) that in this case the ODE (Eq. 6.82) is topologically conju-
gate to an ODE η̇ = h(η) in terms of market shares, where h : [η, η] → R is a continuous
function satisfying h(η) = h(η) = 0. The conjugacy of the two ODEs means that their
qualitative behavior is the same (see Arrowsmith and Place, 1994). Thus, the long-run
behavior of empirical averages is precisely described by the long-run behavior of mar-
ket shares. The function h can be approximated using a numerical approximation of
ζ, which is obtained by simulating the benchmark models (Eq. 6.79). As indicated in
Figure 6.6a, h has five steady states for β = 2: three in the interior of the interval [η, η]
along with both of its boundary points.

Using standard arguments of the theory of ODEs, the phase diagram of the ODE in
Figure 6.6a shows that all solutions converge to one of the two asymptotically stable
steady states, which are η1∗ and η3∗. Their respective basins of attraction are simply
separated by the unstable steady state η2∗ in the middle. Translated into the stochas-
tic behavior of Eq. 6.81, Theorems 6.7 and 6.8 guarantee convergence of both market
shares and asset prices. The respective limits, however, are not necessarily unique and
will depend on the random noise-trader transactions as well as on the initial market share
η0. Since the lowest and the highest possible market share of the chartists are unstable
under the dynamics of the ODE, the long-run market share of the chartists will always
lie in the open interval (η, η). Setting aside that η and η have been set by the modelers
to ensure boundedness of the price processes, this may be interpreted as a situation in
which both mediators will prevail in the market.

A simulation study of Eq. 6.81 confirms this intuition, demonstrating that the long-
run market shares are indeed random. The probability with which they converge to the
possible steady states depends both on the initial condition η0 and the intensity of choice
β. Figure 6.7 shows the empirical distribution of market shares after T = 10,000 periods
forN = 100,000 independent samples of ηT when chartists initially have a market share
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FIGURE 6.7 Empirical distributions of market shares for average returns, β = 2: (a) initial market share
η0 = 0.065; (b) initial market share η0 = 0.15.

of 6.5% and 15%, respectively. The densities will be concentrated around the two stable
steady states of the ODE in Figure 6.6a, respectively.

Empirical Sharpe Ratios as Performance Measures

The analysis of asymptotic market shares becomes more involved when the performance
of mediators is judged by comparing historical Sharpe ratios. In this case the choice
function (6.42) is no longer invertible, because the performance measure as defined
in Example 6.2 is based on a four-dimensional vector zt ∈ R

4. As a consequence, the
evolution of the system is described by a four-dimensional ODE. The set of asymptotic
market shares as given in Corollary 6.4 allows the representation

E =
{
η ∈ [η, η ] : ϕ−1(η, β) = ΔΠ ◦ ζ(η)

}
(6.83)

where ϕ−1(·, β) is the inverse of the logit function (Eq. 6.41) and π(2) − π(1) = ΔΠ ◦
ζ(η) describes the stationary difference in Sharpe ratios of the two mediators. Although
ϕ−1(·, β) is analytically available, the map ΔΠ ◦ ζ on the right side must be obtained by
simulating the benchmark models (Eq. 6.79).

The hump-shaped curve in Figure 6.6a represents a numerical approximation of Δ ◦
ζ . Figure 6.6b indicates that the two functions in Eq. 6.83 have three intersection points,
provided that the intensity of choice β is sufficiently large. The leftmost intersection
point (β = 2) is hardly visible but exists because ϕ−1(·, 2) has two vertical asymptotes at
η and η, respectively. These intersection points characterize the possible long-run market
shares of the chartist for β = 2. If, however, the impact of the mediators’ performances
is weak, that is, if β is low enough such that ϕ−1(·, β) is sufficiently steep as for β = 0.5,
the possible limit is uniquely determined.

Simulations of the nonlinear model Eq. 6.81 reveal again that the asymptotic behav-
ior of market shares is random. The long-run market share depends strongly on the
intensity of choice and is sensitive to initial conditions. For β = 1, Figure 6.8 depicts
the empirical densities after T = 10,000 periods, which correspond to an initial market
share of η0 = 6.5% in panel (a) and for η0 = 35.5% in panel (b), respectively.

Similar observations are made for β = 2. In this case, however, the distribution
of market shares may be bimodal. Figure 6.8 shows the empirical distribution for
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FIGURE 6.8 Empirical distributions of market shares for Sharpe ratios.

η0 = 6.5% in panel (c) and for η0 = 35.5% in panel (d). If η0 = 6.5%, the chartist
almost “dies out” in the sense that her long-run market share is pushed to the leftmost
fixed point. For η0 = 35.5% the empirical distribution of asymptotic market shares is
bimodal, with two peaks that are approximately located at the outer intersection points
of the respective functions depicted in Figure 6.6b. If the chartist’s initial market share
is sufficiently high, she will “survive” with positive probability. The bimodality demon-
strates that the long-run market shares depend also on the specific history generated by
the noise-trader transactions.

These two examples show that the long-run market shares of two financial mediators
may strongly depend on the random environment of the market that is created by the
choice behavior of consumers. As a consequence, asset prices may become nonergodic
as the price process converges in distribution, with the limiting distribution being path
dependent. Economically, this result implies that social interaction among consumers
may endogenously create a risk that leads to inefficient portfolio holdings.

6.5.4. A Boom-and-Bust Scenario

The previous scenario can be extended to one in which consumers have a two-period
planning horizon J = 2 and whose investment opportunities consist of one risky (K =
1) and one risk-free asset, as introduced in Section 6.4. Assume, in addition, that young
consumers may select between two mediators, a chartist (i = 1) and an expert trader
(i = 2), who carry out their investment decision. To ensure boundedness of the price
process, let the minimal and maximal market shares of the chartist be η = 0 and η = 0.6,
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FIGURE 6.9 Market shares, trading volume, prices, and forecast errors in a multiperiod case: (a) asset
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(e) asset returns; and (f) chartist’s two-period-ahead forecast errors in %.

respectively. The intensity of choice parameter is β = 0.3. For further details, we refer
to Hillebrand and Wenzelburger (2006b).

Figure 6.9 portrays time windows of the chartist’s market share, the mediators’ fore-
cast errors, asset prices, and asset returns. The most prominent phenomenon observed
in Figure 6.9a is a sudden boom in asset prices within the time window [600, 900], fol-
lowed by a bust, after which the price process continues to fluctuate about its initial
level (≈ 5). The time window displayed in Figure 6.9c shows that the boom in asset
prices is accompanied by a rapid decrease in the chartist’s market share, which reaches
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a minimum at ≈10%. After that, her market share increases again and finally returns to
a constant level of ≈45–48%. Throughout the entire time window in Figure 6.9c, the
chartist’s market share takes values below the 0.5-line and is thus lower than the expert’s
share. Asset returns in Figure 6.9e exhibit the phenomenon of volatility clustering. The
trading volume per capita is depicted in Figure 6.9b, showing that the boom is accom-
panied by a sudden increase in the trading volume, where the trading activity is slightly
delayed with respect to the price boom.

During the boom phase the chartist’s relative forecast errors as displayed in
Figures 6.9d and 6.9f converge rapidly to about 10% and 0%, respectively, which can
be attributed to the increased level of asset prices during the boom. In the bust phase
after the price peak, the forecast errors increase again and eventually fluctuate within
their initial ranges.

Due to the nonlinearity of the system, the long-run behavior of generated processes
is not necessarily ergodic. Hence one has to be careful when inferring results from time
averages rather than from averages over alternative sample paths of the noise process.
Empirical distributions in which the variable of interest is evaluated for a random sample
of 104 paths of the noise process provide some confirmation. Figure 6.10a shows that the
long-run market shares of the chartist in period T = 1500 are below 50% with positive
probability.

Numerical evidence for the boom/bust scenario is obtained by evaluating the random
variable

ΔpT := max
0≤t≤T

{|pt − pT |}
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which is an estimate of the price range until period T . Its empirical distribution for
T = 1500 and 104 sample paths are displayed in Figure 6.10b, where the initial asset
price has been set to p0 = 10. From the shape of the distribution it can be inferred that
the price peak as displayed in Figure 6.10b occurs with positive probability. Finally,
Figures 6.10c and 6.10d display densities of the relative forecast errors of the chartist.
These fluctuate between ±7%, with a 10% bias of the one-period-ahead forecasts.

Hillebrand and Wenzelburger (2006b) provide numerical evidence that market shares
freeze to constant values in the long run, but the relative extreme boom/bust scenario has
not yet been reported for the one-period case. Given the relatively low intensity of choice
and the linearity of the forecasting rules, this leads to the conclusion that heterogenous
planning horizons seem to have a significant potential to amplify booms and busts in
models in which consumers are allowed to switch between mediators. Whether price
booms and busts follow nonergodic patterns remains an interesting research topic for
the future.

6.6. CONCLUSION

Choosing the traditional CAPM as a starting point, we reviewed a fully explicit dynamic
CAPM with interacting heterogeneous agents. We carefully distinguished between a
temporary equilibrium map describing the basic market mechanism of an asset market
and a forecasting rule, which models the way in which an investor forms expectations.
The combination of both components with a model for exogenous perturbations stip-
ulates an explicitly defined deterministic dynamical system in a random environment.
This provides a simple but general framework for the investigation of endogenous pro-
cesses of asset prices and allocations of multiple risky assets that are driven by agents’
characteristics.

Much emphasis was placed on a benchmark case in which one type of investor has
rational expectations while other market participants may have erroneous beliefs. This
was achieved adopting the notion of a perfect forecasting rule, which allowed for a
generalization of some of the fundamental concepts in traditional finance. The most
central one is the notion of a modified market portfolio that accounts for diversity of
beliefs. This portfolio is efficient in the sense of Markowitz and attains the highest
possible conditional Sharpe ratios along any price path. Introducing the concept of a
generational portfolio for a multiperiod setting, we showed that under homogeneous
beliefs investors will hold a constant proportion of distinct generational portfolios that
correspond to the length of their planning horizon. Finally, we also reviewed a multifund
separation theorem.

When agents are allowed to switch between financial mediators, asset prices may
behave in a nonergodic manner if their interactive complementarities are too strong.
In such cases price processes converge in distribution, but the limiting distribution is
path dependent. It was shown that a nonrational investor such as a chartist may attain a
larger market share than a rational expert, who may even be driven out of the market. In
this sense social interaction between agents may endogenously generate the risk to hold
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inefficient portfolios as the efficient ones may not be identified. Long-run market shares
of financial mediators depend significantly on the random environment generated by
the social interaction. Finally, numerical evidence was provided that distinct planning
horizons may be responsible for volatility clustering in time series of returns (as well as
prices) and that they may have an amplifying effect on booms and busts.

While a vast amount of ongoing research explores the dynamic behavior of asset
prices, the insights of this survey point at several potentially fruitful research topics.
The first and perhaps most ambitious one is to extend the setup with multiperiod plan-
ning horizons to a macroeconomic model by incorporating a real sector. This direction is
pursued in Hillebrand (2008), who compares alternative pension systems with produc-
tion in a stochastic multiperiod overlapping generations model. Hillebrand provides the
framework appropriate to address the question of how to safeguard old-age consump-
tion. His approach also allows for utility functions with constant relative risk aversion
and thus for an investigation into how endogenous wealth processes and intertemporal
consumption streams feed back into an asset price process. The sequential nature of
the approach described in this survey should facilitate analytical investigations and help
reduce the complexity of numerical computations that seem to become more and more
popular (e.g., see Kübler and Schmedders, 2005).

A second research issue is to incorporate richer structures of securities such as
futures, derivatives, and securities with collateral as, for example, in Magill and
Quinzii (1996, 2000) or Kübler and Schmedders (2003). Detemple and Selden (1991)
demonstrate that in a static general equilibrium, primary and derivative asset markets,
generically, interact. This result stands in contrast to the arbitrage pricing theory and
seems to have been overlooked by the literature so far. An extension to a dynamic
setup that allows for an investigation of the effects of option markets on asset prices
and allocations remains to be developed. Moreover, research into future markets with
applications to resource markets such as the oil market might prove fruitful. The third
research issue is to incorporate strategic interaction into dynamic models with inter-
acting agents. This should contribute to a better understanding of how asset prices
can be influenced by large investors. An interesting topic, for example, is the ques-
tion of which extent central banks are capable of controlling exchange rates. Finally,
an increasing amount of research is now being undertaken to explore the stability
of banking systems. Pyle (1971) is the first who has linked Markowitz’s portfo-
lio theory to the theory of financial intermediation. However, the models developed
from Pyle’s approach are—as most of the models in the banking theory—static (see
Chapter 8 of Freixas and Rochet, 1997). Dynamic models that describe the interaction
of commercial banks remain to be established.
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Abstract

This chapter surveys asset pricing in dynamic economies with heterogeneous, rational
traders. By rational we mean traders whose decisions can be described by preference
maximization, where preferences are restricted to those that have an subjective expected
utility (SEU) representation. By heterogeneous we mean SEU traders with different
and distinct payoff functions, discount factors, and beliefs about future prices that are
not necessarily correct. We examine whether the market favors traders with particular
characteristics through the redistribution of wealth and the implications of wealth redis-
tribution for asset pricing.

The arguments we discuss on the issues of market selection and asset pricing in this
somewhat limited domain have a broader applicability. We discuss selection dynamics
on Gilboa-Schmeidler preferences and on arbitrarily specified investment and savings
rules to see what discipline, if any, the market wealth redistribution dynamic brings to
this environment. We also clarify the relationship between the competing claims of the
market selection analysis and the noise-trader literature.

Keywords: market selection, subjective expected utility, rational traders, Bayesian learning,
heterogeneous consumers, asset pricing

7.1. INTRODUCTION

In this chapter we survey asset pricing in dynamic economies with heterogeneous, ratio-
nal traders. Rational traders’ decisions can be described by preference maximization,
where preferences are restricted to those that have an SEU representation. However, the
arguments we bring to bear on the issues of market selection and asset pricing in this
somewhat limited domain have a broader applicability, on which we will briefly touch.

7.1.1. Evolution in Biology and Economics

Evolutionary finance is one of the main themes of this book. Our research is not an
attempt to bring models from evolutionary biology to bear on market phenomena. It
is distinctly economic rather than biological. At the outset (which for us was 1981,
when we first began to think about these issues) we observed that the invisible hand
works by steering resource flows away from some choice behaviors and toward others.
This makes a nice analogy with natural selection in natural, that is, biological, systems,
and so we coined the phrase market selection hypothesis to frame the question: Do
markets redirect resources toward “rational” decision makers? And though it is conve-
nient to exploit the analogy further by using such terms as fitness or survival index (as
we do here), our models are distinctly not biological. The metaphor becomes clouded
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when we ask after the analogues of species, genes, and other objects of the evolution-
ary model landscape. It is simply opaque when we look for the analogue of the genetic
transmission mechanism.

The eminent biologist George C. Williams offers what amounts to a critique of
excessively biological thinking when considering cultural evolution (1992, Chapter 2).
Cultural evolution involves the proliferation of packets of information, codices in
Williams’ terminology. Biological analogies for evolution, he suggests, are more likely
to be found in epidemiology than in population genetics, which he defines as “that
branch of epidemiology that deals with infectious elements transmitted exclusively
from parent to offspring.” All but explicit in his discussion is the idea that prolif-
eration is a process of direct social contact, which economists call social learning.
However, markets provide other transmission mechanisms that make the population
genetics metaphor even less successful.

We have chosen to ignore information sharing and instead to uncover the mechanism
of wealth reallocation through the market toward decision rules that generate higher
return. We do this in part because the implications of wealth redistribution stand out
most clearly when they are studied in isolation, but this choice is not simply a mod-
eling tactic. First, as an empirical fact, we note that social learning often happens on
time scales different than the transacting time scale. In small, slow markets, such as
the Ithaca, New York, housing market, transactions occur at a slow rate, and the rate
of social learning may exceed the transaction rate. In this case we expect the long-run
market behavior to be driven in large part by the kinds of epidemiological behavior to
which Williams alludes. In well-developed financial markets, learning may take place
at a rate much slower than the transaction rate, and so we expect wealth-share dynamics
to be the principle driver.

A more important reason for ignoring social learning in markets is that at this point
we believe that there is little to say. There are two modes of exchanging asymmetric
information in markets: learning from prices, the subject of rational expectations; and
learning directly from others, social learning. Blume and Easley (2006) and Sandroni
(2000) ask how traders with rational expectations fare against traders with other beliefs.
This is an obvious question but also an odd one. To understand why, consider what a
rational expectations inference rule must be in an economy with heterogeneous traders
and state variables other than beliefs. The rational expectations inference rule will con-
dition on the state variable as well as on prices. Alternatively, it could use the entire past
history of prices to forecast the current state. The rational expectations traders we and
Sandroni theorize about hold inference rules for state distributions that depend on prices
and the distribution of wealth. Rational expectations traders need either to observe
wealth or have some way of forecasting the wealth distribution from private information
and the past history of prices. This is a bit of a stretch. One could ask a weaker ques-
tion. Suppose rational expectations traders were those who held price-state inference
rules that would be correct were they the only traders in the market but were not nec-
essarily correct for other wealth distributions where traders with other inference rules
had significant sway. Would the other traders be driven out? Can wealth redistribution
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through trading drive the economy to a rational expectations equilibrium(REE)? We do
not know the answer to this question, but in 1982 we asked a similar question about
learning dynamics. Then we learned that rational expectations were locally stable under
learning dynamics, but not globally stable, and that the limit behavior of the economy
could be very different from the predictions of the REE. We do not expect the answer
to be different here.

Another tack is to propose a population of traders with asymmetric information and
different rules and ask which rules and which information sets are selected for. This
path is taken by Mailath and Sandroni (2003), who build a model containing traders
who receive signals about the true state of the world. They ask a simple question: Will
better-informed traders drive out those less well informed? They construct a model in
which equilibrium is a sequence of partially revealing rational expectations equilibria
to answer this question. This is a very difficult task, and the best they (or anyone else
so far) can do is to construct a very elaborate example. The end result is that, under
some conditions, better-informed traders drive out less well-informed traders. This is a
good first step; it is also the state of the art. We look forward to future progress on this
question. However, at the moment there is simply little to say about market selection in
environments with asymmetric information.

The literature that melds social learning to market selection is in much worse
condition. A typical paper will build a single-period market model wherein one’s
gain depends on one’s trading rule and the rule of others, and drive the whole thing
by replicator dynamics. Why replicator dynamics, one might ask? At the very best
it is a simple special case, perhaps having something to do with imitation under
some very special and not very likely assumptions about what is observable; per-
haps more likely, it is chosen simply because it is there and has a tradition in game
theory. We believe, along with Williams, that models of social learning should be
tuned to the social processes at work. On the other hand, we see great promise for
social learning models that are empirically well founded and that are applied to eco-
nomic environments in which physical stocks or wealth are state variables along with
beliefs.

7.1.2. A Short History of the Market Selection Hypothesis

The link between economic forces and natural selection was established at the outset
of the Darwinian revolution. Darwin claimed inspiration from Malthus’s Essay on Pop-
ulation (see Barlow, 1969). Perhaps surprisingly, however, the link was only one way
for more than a century. Although Marshall (1961, p. 772), claimed that economics
“is a branch of biology broadly interpreted,” his analytical work shows scant evidence
of biological thinking. Though we can find traces of evolutionary reasoning in Knight
and Schumpeter, natural selection did not emerge as an analytical argument until after
the war.1

1See Schumpeter (1934) and the rather odd paper of Knight (1923).
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The first sustained application of Darwinian arguments in economics was to the
theory of the firm.2 Critics of the neoclassical theory of the firm argued that man-
agers did not have the information or tools to undertake the marginal calculations
profit-maximization requires. In response, Chicago economists argued that although
firms’ behaviors need not be the product of an optimization exercise, market forces
favored firms that acted most like profit maximizers. Thus, wrote (Enke 1951), “In
these instances the economist can make aggregate predictions as if each and every firm
knew how to secure maximum long-run profits.”3 This view is most notably associated
with Friedman (1953, p. 22):

Whenever this determinant (of business behavior) happens to lead to behavior
consistent with rational and informed maximization of returns, the business will
prosper and acquire resources with which to expand; whenever it does not the
business will tend to lose resources and can be kept in existence only by the
addition of resources from the outside. The process of natural selection thus
helps to validate the hypothesis (of profit maximization) or, rather, given natural
selection, acceptance of the hypothesis can be based largely on the judgment
that it summarizes appropriately the conditions for survival.

The intuition offered by Alchian, Enke, and Friedman is that eventually capital real-
location will drive out firms that do not maximize profits. The first claim comes in two
varieties. One is that nonmaximizing firms will make losses and be driven out of the
market because they cannot continue to fund their operations out of retained earnings
and will not attract investors. Winter (1971) attempts to make the retained-earnings
argument precise by modeling explicitly the a process of innovation, growth, and the
death of firms.

This argument is not without its critics. Koopmans (1957, p. 140) argues that this
is bad modeling strategy. “But if this [natural selection] is the basis for our belief in
profit maximization, then we should postulate that basis itself and not the profit maxi-
mization which it implies in certain circumstances.” Blume and Easley (2002) build a
dynamic equilibrium model wherein firms invest from retained earnings and show that
although only profit-maximizing firms survive, the long-run state of the evolutionary
process is inefficient, so that the conclusions of static welfare analysis are wrong when
applied to the stable steady state. Dutta and Radner (1999) challenge even the survival
of profit maximizers. In a world of uncertainty, they take the normative firm behavior
rule to be one of maximizing the expected discounted sum of dividends. They show
that firms pursuing this strategy will almost surely fail in finite time, whereas other
rules offer a positive probability of long-run survival. These long-run survivors are able

2Samuelson (1985, p. 166) writes, “Reactions within economics against highfalutin borrowings of the
methodology of mathematical physics led Alfred Marshall and a host of later writers to hanker for a
‘biological’ approach to political economy.” In contrast, the evolutionary approaches we are about to describe
are simply models of how markets allocate resources among economic actors with diverse tastes, goals, and
behaviors. Interest in these models is independent of their biological connotations.
3Enke (1951, p. 567), italics in the original. See also Alchian (1950), whose more nuanced view referenced
the problem that profit maximization is ill-defined in a world of uncertainty, and that it was not one’s absolute
profits but relative profitability that determines long-run survival.



Lawrence Blume and David Easley 409

to attract investment funds, and so, if new entrants’ behaviors are sufficiently diverse,
“after a long time practically all of the surviving firms will not have been maximizing
profits” (1999, p. 769; italics in original).

Natural selection arguments have also been offered as a rationale for the (infor-
mationally) efficient pricing of financial assets. It has long been believed, without
any apparent justification, that in dynamic economies in which traders have hetero-
geneous beliefs, structure on asset prices arises in the long run from evolutionary forces
akin to natural selection across traders in markets. Fama (1965, p. 38), for instance,
argues that

. . . dependence in the noise generating process would tend to produce “bubbles”
in the price series . . . If there are many sophisticated traders in the market,
however, they will be able to recognize situations where the price of a common
stock is beginning to run up above its intrinsic value. If there are enough of
these sophisticated traders, they may tend to prevent these “bubbles” from ever
occurring.

According to Fama (p. 40), “A superior analyst is one whose gains over many peri-
ods of time are consistently greater than those of the market.” We call this the market
selection argument for the informational efficiency of prices. Cootner (1964) was an
early, clear proponent of this argument: “Given the uncertainty of the real world, the
many actual and virtual traders will have many, perhaps equally many, forecast . . . If
any group of traders was consistently better than average in forecasting stock prices,
they would accumulate wealth and give their forecasts greater and greater weight. In
this process, they would bring the present price closer to the true value.”

A contrarian view is offered by the so-called noise-trader literature. The term noise
trader was first used in print by Kyle (1985) to refer to uninformed traders who traded
randomly.4 Black (1986) uses the term to refer to traders whose trades are based on
uninformative signals—noise—and argues for their importance to financial markets.
Two related questions are: Can noise traders influence prices, and can noise traders
survive? In two surprisingly influential papers, DeLong et al. (1990, 1991) address
this question. The first paper builds an overlapping generations equilibrium model with
noise and rational traders to show that noise traders can both affect prices and receive
higher expected returns than do the rational traders. The survival question cannot be
asked in this model because the supply of noise traders is exogenously fixed. High
expected returns say nothing about the possibility of survival. Of course, the authors rec-
ognize this, and so the second paper attempts to describe “the survival of noise traders
in financial markets.” We discuss their effort in Section 7.6 and explain its relation to
our own research (Blume and Easley 1992, Blume and Easley 2006).

7.1.3. Scope of This Chapter

We set the stage for our investigation of dynamics by first delineating the restric-
tions on asset prices that arise from rationality alone. Rationality has a variety of

4Kyle attributes the phrase to Sanford Grossman; see Dow and Gorton (2008).
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meanings in the literature. Here we take rationality to mean that traders’ prefer-
ences satisfy the Savage (1951) axioms. Thus traders are subjective expected util-
ity maximizers. The existence of a SEU representation implies that each trader is
a Bayesian, but it does not otherwise restrict traders’ beliefs. In particular, SEU
rationality does not imply that traders have correct beliefs. The restriction to SEU
rationality is unfortunate. The dominance of SEU rationality in economics today
is somewhat of a historical anomaly. The explosion of research in decision theory
over the past 20 years has provided us with a rich class of plausible preferences
and choice functions, and the classification of theoretical economic findings into the
continuum spanned by robust insights versus artifacts of expected utility is a com-
pelling research program that is proceeding at best fitfully. Not surprisingly, the
literature on survival in asset markets is largely dominated by SEU decision mak-
ers, although Blume and Easley (1992) treat decision rules directly. Section 7.7.4
describes Condie’s (2008) recent work on selection with maximin expected utility
traders.

The economies we analyze have traders who live forever and discount streams of
SEU payoffs (except in Sections 7.7.4 and 7.7.5), who have stochastic endowments of
a single consumption good and trade a complete set of Arrow securities in each period.
We do not explicitly consider richer sets of securities, but more complex assets can
be priced by arbitrage from the prices of the Arrow securities. For these economies,
any map from partial histories of the economy into prices of the Arrow securities with
imputed interest rates that assign finite present discounted values to constant wealth
streams is consistent with an equilibrium in which all traders are subjective expected
utility maximizers. So structure on asset prices comes not from the hypothesis of SEU
maximization but from restrictions on traders beliefs and discount factors. These restric-
tions are ancillary to the hypothesis of trader rationality. One such belief restriction
is that of rational expectations—the assumption that beliefs are “correct.” This belief
restriction constrains the set of SEU preferences that can appear in the market, and since
it imposes restrictions on market observables, it requires both theoretical and empirical
justification.

It is important for the rational expectations equilibrium conclusions that belief
restrictions are satisfied by all traders who influence prices. This is surely problem-
atic. How is it that all these traders know the truth or even place positive probability
on it? Where does this knowledge or prior restriction come from? It cannot be derived
from learning, as the rationality model with a prior restriction is itself supposed to be
a model of the learning process. What happens if more realistically we assume that
initially some, but not all, traders know the truth or are able to learn it? Are there forces
that provide structure to long-run asset prices? This requires an analysis of a dynamic
economy with heterogeneous traders.

The market selection argument sounds compelling, but until recently there has been
no formal investigation of its validity. In this article we describe some recent results
on market selection. These results address both the long-run composition of the trader
pool and the consequences of selection for asset prices in the long run. We begin by
describing a class of infinite-horizon heterogeneous trader economies.
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7.2. THE ECONOMY

We suppose that a finite number of infinitely lived agents trade claims on a single
consumption good across dates and states of nature. Time is discrete and is indexed
by t ∈ {0, 1 . . . ,∞}. The possible states at each date form a finite set S = {1, . . . , S},
with cardinality S = |S|. A path is an infinite sequence of states, one for each date. The
set of all paths is denoted by Σ, with members σ = (σ0, . . .). The value of path σ at
date t is denoted σt. The partial history through date t of σ is σt = (σ0, . . . , σt), and Ht

denotes the set of all partial histories through date t.
The set Σ together with its product sigma-field F is the measurable space on which

everything will be built. Let p denote the “true” probability measure on Σ. Expectation
operators without subscripts intend the expectation to be taken with respect to the mea-
sure p. For any probability measure q on Σ, qt(σ) is the (marginal) probability of the
partial history (σ0, . . . , σt). That is, qt(σ) = q({σ0 × · · · × σt} × S × S × · · · ).

In the next few paragraphs we introduce a number of stochastic processes x : Σ →∏∞
t=0 R++. These are sequences of random variables such that each xt is date-t measur-

able; that is, its value depends only on the realization of states through date t. Formally,
Ft is the σ-field of events measurable through date t, and each xt(σ) is assumed to be
Ft-measurable. The assumption of Ft-measurability means that we can take xt to be
defined on Ht, and we will sometimes write xt(σt) to emphasize this.

7.2.1. Traders

An economy contains I traders, each with consumption set R++. A consumption plan
is a stochastic process c : Σ →

∏∞
t=0 R++. Each trader is endowed with a particular

consumption plan ei, called the endowment stream. The continuation plan at t for the
consumption plan c is the process (ct+1, ct+2, . . .).

We assume that each trader’s preferences over consumption plans satisfy the
Savage (1951) axioms and thus each trader is a subjective expected utility maximizer.
We also assume that each traders’ payoff function is time separable and exhibits geo-
metric discounting. Specifically, trader i has beliefs about the evolution of states, which
are represented by a probability distribution pi on Σ. She also has a payoff function
ui : R++ → R on consumptions and a discount factor βi strictly between 0 and 1, so the
utility of a consumption plan is

Ui(c) = Epi
{ ∞∑
t=0

βtiui
(
ct(σ)

)}
(7.1)

We will assume throughout the following properties of payoff functions:

A.7.1. The payoff functions ui are C1, strictly concave, and strictly monotonic and
satisfy an Inada condition at 0.

We also assume that endowments are strictly positive and that the aggregate endowment
is uniformly bounded. Let et(σ) =

∑
i e
i
t(σ) denote the aggregate endowment at date t

on path σ.
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A.7.2. For all traders i, all dates t and all paths σ, eit(σ) > 0. Furthermore, there are
numbers F ≥ f > 0 such that f ≤ inft,σ et(σ) ≤ supt,σ et(σ) < F < ∞.

The bounds are important to the derivation of our results. Our conclusions hold when
F grows slowly enough or f converges to 0 slowly enough but may fail when F grows
too quickly or f converges to 0 too quickly. We will explore this idea in Section 7.7.1.

The following assumption about beliefs will be maintained for convenience through-
out this discussion. Any trader who violates this axiom would not survive, so there is
no cost to discarding them now.

A.7.3. For all traders i, all dates t and all paths σ, pt(σ) > 0 and pit(σ
t) > 0.

7.2.2. Beliefs

Our assumption that traders are subjective expected utility maximizers provides beliefs
p over paths. The representation places no restrictions on beliefs other than the obvious
requirement that they are a probability on (Σ,F ). One important special case is that of
beliefs generated by IID forecasts. If trader i believes that all the σt are IID draws from a
common distribution ρ, then pi is the corresponding distribution on infinite sequences. In
this case, pit(σ) =

∏t
τ=0 ρ

i(στ ). Our belief framework also allows for Bayesian learners
confronting model uncertainty. Suppose that models are parametrized by θ ∈ Θ; that
is, corresponding to every θ ∈ Θ is a probability distribution pθ on (Σ,F ). Suppose
that T is a σ-field on Θ with respect to which the map θ → pθ(A) is measurable for
all A ∈ F . Finally, suppose our trader has prior beliefs on models represented by a
probability distribution μ on (Θ, T ). Then p(A) =

∫
pθ(A)dμ, the predictive distribution,

is the belief that a Bayesian trader would use to evaluate a consumption plan.
SEU maximizers are, by definition, Bayesian learners. Traders revise their beliefs

about future values of σt in light of what they have already seen. To be clear on this,
write the expected utility of a plan c as

Ui(c) = Epi

{ ∞∑
t=0

βtiui
(
ct(σ)

)}

= Epi

{ T∑
t=0

βtiui
(
ct(σ)

)
+

∞∑
t=T+1

βtiui
(
ct(σ)

)}

= EpiT

{ T∑
t=0

βtiui
(
ct(σ)

)}
+ Epi|σT

{ ∞∑
t=T+1

βtiui
(
ct(σ)

)}

Thus continuation plans at t + 1 given partial history σt are evaluated according to
the conditional beliefs pi( · |σt). We denote by pi(s|σt) the conditional probability
pi(σt+1 = s|σt).

Although SEU traders must act as though they update their beliefs about the future
given the past using Bayes rule; this is not in fact restrictive. Suppose that a trader has
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some initial distribution of beliefs p̃0 about σ0. Suppose too that the trader’s beliefs on
states at Time 1 conditional on the realization of the Time 0 state, σ0, are given by a
learning rule p̃1(σ0, ·). Similarly, for each partial history σt, the trader’s beliefs on states
at Time t + 1 are given by a learning rule p̃t+1(σt, ·). A trader who follows this procedure
uses a belief-based learning rule.

It follows immediately from the Kolmogorov Extension Theorem that any belief-
based learning rule can be represented by a belief.

Theorem 7.1. If {p̃t}∞t=0 is a belief-based learning rule, there is a subjective belief p
on Σ such that

1. For all A ⊂ S, p̃0(A) = p(σ0 ∈ A), and
2. For all partial histories σt and A ⊂ S, p̃t+1(σt,A) = p(σt+1 ∈ A|σt).

Thus requiring a trader to satisfy the Savage axioms places no restrictions on his
sequence of one-period forecasts. Restrictions on these forecasts are typically obtained
by placing restrictions on some set of models for the stochastic process that the indi-
vidual considers and by restricting his prior on the model set. It is worth emphasizing
that even if we can observe a trader’s entire sequence of one-period-ahead forecasts,
observations that contradict Bayesian behavior, and thus a subjective expected utility
representation, are not possible unless the observer has some prior knowledge about the
trader’s beliefs.

7.3. EQUILIBRIUM ALLOCATIONS AND PRICES

We characterize equilibrium allocations and prices by examining Pareto optimal con-
sumption paths and the prices that support them. The first welfare theorem applies to
the economies we study, so every competitive path is Pareto optimal. Thus any property
of all optimal paths is a property of any competitive path.

7.3.1. Pareto Optimality

Standard arguments show that in this economy, Pareto optimal consumption allocations
can be characterized as maxima of weighted-average social welfare functions. If c∗ =
(c1∗, . . . , cI∗) is a Pareto optimal allocation of resources, then there is a nonnegative
vector of welfare weights (λ1, . . . , λI ) 
= 0 such that c∗ solves the problem

max
(c1,...,cI )

∑
i

λiUi(ci)

such that
∑
i

ci − e ≤ 0 (7.2)

cit(σ) ≥ 0∀t, σ

where et =
∑
i e
i
t. The first-order conditions for the optimization problem (7.2) are: For

all t there is a positive Ft-measurable random variable ηt such that
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λiβtiu
′
i

(
cit(σ)

)
pit(σ) − ηt(σ) = 0 (7.3)

almost surely, and

∑
i

cit(σ) = et(σ) (7.4)

These equations will be used to characterize the long-run behavior of consumption plans
for individuals with different utility functions, discount factors, and beliefs.

7.3.2. Competitive Equilibrium

A price system is a price for consumption in each state at each date such that the value
of each trader’s endowment is finite.

Definition 7.1. An R++-valued stochastic process π is a present-value price system if
and only if, for all traders i,

∑
t

∑
σt∈Ht

πt(σt) · eit(σt) < ∞.

As is usual, a competitive equilibrium is a price system and a consumption plan for
each trader that is affordable and preference maximal on the budget set such that all the
plans are mutually feasible. The existence of competitive equilibrium price systems and
consumption plans is straightforward to prove (see Peleg and Yarri, 1970).

The standard interpretation of a competitive equilibrium price system is that there are
complete markets in which trade of consumption plans occurs at Date 0. Then as history
unfolds, the mutually feasible consumption plans are realized. An alternative interpreta-
tion is that markets are dynamically complete. According to this interpretation, a limited
collection of assets is traded at each date, but the collection of assets is rich enough that
traders can use them to construct competitive equilibrium consumption plans. The sim-
plest set of assets that are sufficient are called Arrow securities. We assume that at each
partial history σt and for each state s, there is an Arrow security that trades at par-
tial history σt and that pays off one unit of account in partial history (σt, s) and zero
otherwise. The price of the state s Arrow security in units of consumption at partial
history σt is the price of consumption at partial history (σt, s) in terms of consump-
tion at partial history σt, which is q̃st (σ) ≡ πt+1(σt, s)/πt(σt). Under our assumptions,
every equilibrium present-value price system will be strictly positive (because every
partial history is believed to have positive probability and because conditional prefer-
ences for consumption in each possible state are nonsatiated), and so all current value
prices are well defined. We will be particularly interested in normalized current-value
prices: qst (σ) = q̃st (σ)/

∑
ν q̃

ν
t (σ).

Arrow security prices are sometimes called state prices because the current value
price of Arrow security s at time t is the price in partial history σt of one unit account
in state s at time t + 1. Once we have prices for Arrow securities, all other assets can
be priced by arbitrage. So, correct asset pricing reduces to correct pricing for Arrow
securities.
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It is not obvious what it means to price an Arrow security (or any other asset) cor-
rectly. For long-lived assets, it is often asserted that prices should equal the present
discounted value of the dividend stream. But in a world in which traders’ discount fac-
tors are not all identical, it is not intuitively obvious what the discount rate should be;
and to say that the “correct” discount rate is the “market” discount rate is to beg the
question, Is the market discount rate, after all, correct? With Arrow securities, it seems
that prices should be related to the likelihood of the states. But in a market with endow-
ment risk in which attitudes to risk are not all identical, risk premia should matter too,
and again in a market in which not all traders have the same attitude to risk, it is not
obvious what the correct risk premium is. So that we can meaningfully talk about correct
prices, we make the following assumption:

A.7.4. There is an e > 0 such that for all paths σ and dates t, et(σ) ≡ e.

That is, there is no aggregate risk. The only risk in this economy is who gets what, not
how much is to be gotten. The reason for this assumption is the following result:

Theorem 7.2. Assume A.7.1. through A.7.4.

1. If all traders have identical beliefs p′, then for all dates t and paths σ, and
all s, qst (σ) = p′(s|σt).

2. On each path σ at each date t and for all ε > 0 there is a δ > 0 such that if
|cit(σ) − e| < δ, then ||qt(σ) − pi( · |σt)|| < ε.

We know from Theorem 7.1 that the beliefs are arbitrary. So, even in the simple
economy of Theorem 7.2, equilibrium Arrow security prices are arbitrary. Of course,
there are restrictions on prices of securities that can be represented as bundles, over time
or over states, of Arrow securities. Although these redundant securities are not present in
our model, we could easily include them and price them by arbitrage. Inclusion of such
securities would lead to falsifiable restrictions on security prices. But note that rejecting
these restrictions would do far more than reject SEU—it would reject any decision
theory in which individuals recognize and take advantage of arbitrage opportunities.

To obtain restrictions on asset prices in the simple economy of Theorem 7.2 we
would need to have restrictions on traders’ beliefs. A consequence of the first point
is that in a rational expectations equilibrium, the Arrow securities spot prices will be
p(s|σt), the true probabilities of the state realizations given partial history σt. Thus we
now know what it means for assets to be “correctly” priced. The second point asserts
that when one trader is dominant in the sense that her demand is very large relative to
that of the other traders, the equilibrium will primarily reflect her beliefs. The proof of
both points is elementary, in the first case from a calculation and in the second from a
calculation and the upper hemi-continuity of the equilibrium correspondence.

What happens if some traders know the truth, have rational expectations, and others
do not? Will the rational traders drive out the incorrect ones and force prices to converge
to their “correct” values? These questions are addressed in the next section.
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7.4. SELECTION

By selection we mean the idea that markets identify those traders with the most accu-
rate information, and the market prices come to reflect their beliefs. In this section we
discuss the literature that focuses on selection over SEU traders, and we provide an
example showing how selection works in complete markets economies.

7.4.1. Literature

Among the first to formally analyze the selection question were DeLong, Shleifer,
Summers, and Waldmann (1990, 1991). The first paper shows in an overlapping gen-
erations model that traders with incorrect beliefs can earn higher expected returns than
those earned by traders with incorrect beliefs. They do so because they take on extra
risk. But survival is not determined by expected returns, and so this result says nothing
about selection. The later paper argues that traders whose beliefs reflect irrational over-
confidence can eventually dominate an asset market in which prices are set exogenously.
But, as prices are exogenous, these traders are not really trading with each other; if they
were, then were traders with incorrect beliefs to dominate the market, prices would
reflect their beliefs and rational traders might be able to take advantage of them.

In an economy with complete markets and traders with a common discount factor,
the market does select for traders with correct beliefs.5 Sandroni (2000) shows that in a
Lucas trees economy with some traders who have correct expectations, controlling for
discount factors, all traders who survive have rational expectations. Blume and Easley
(2006) show that this result holds in any Pareto optimal allocation in any bounded clas-
sical economy and thus for any complete markets equilibrium. For bounded complete
markets economies there is a survival index that determines which traders survive and
which traders vanish. This index depends only on discount factors, the actual stochastic
process of states, and traders’ beliefs about this stochastic process. Most important, for
these economies, attitudes toward risk do not matter for survival.

The literature also provides various results demonstrating how the market selects
among learning rules. The market selects for traders who learn the true process over
those who do not learn the truth, for Bayesians with the truth in support of their prior
over comparable non-Bayesians, and among Bayesians according to the dimension of
the support of their prior (assuming that the truth is in the support). In the next section
we illustrate how these complete market selection results work in a simple economy.

7.4.2. A Leading Example

Suppose there are two states of the world, S = {A,B}. States are IID draws, and the
probability of state A at any date t is ρ. Arrow securities are traded for each state at each
date, so markets are dynamically complete. Traders have logarithmic utility and have

5In economies with incomplete markets, the market selection hypothesis can fail to be true. See Section 7.7.2
and Blume and Easley (2006).
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identical discount factors, 0 < β < 1. Trader i knows that the state process is IID and
believes that A will occur in any given period with probability ρi. This is basically just
a big Cobb-Douglas economy, and equilibrium is easy to compute.

Since the processes and beliefs are IID, counts will be important. Let the number of
occurrences of state s on path σ by date t be nst (σ

t) = |{τ ≤ t : στ = s}|.
Let wi0 denote the present discounted value of trader i’s endowment stream, and

let wit (σ) denote the amount of wealth that i transfers to partial history σt, mea-
sured in current units. The optimal consumption plan for trader i is to spend fraction

(1 − β)βtρ
nAt (σ)
i (1 − ρi)n

B
t (σ) of wi0 on consumption at date-event σt. This can be

described recursively as follows: In each period, eat fraction 1 − β of beginning wealth,
wit , and invest the residual, βwit , in such a manner that the fraction αit of date-t invest-
ment that is allocated to the asset that pays off in state A is ρi. Let qAt denote the price
of the security that pays out 1 in state A at date t and 0 otherwise; let qBt denote the
corresponding price for the other date-t Arrow security. Given the beginning-of-period
wealth and the market price, trader i’s end-of-period wealth is determined only by that
period’s state:

wit+1(A) =
βρiw

i
t

qAt

wit+1(B) =
β(1 − ρi)wit

qBt

Each unit of Arrow security pays off 1 in its state, and the total payoff in that state must
be the total wealth invested in that asset. Thus in equilibrium,

∑
i

βρiwit
qst

=
∑
j

βw
j
t

and so the price of Arrow security s at date t is

qAt =
∑
i

ρi
wit∑
j w

j
t

=
∑
i

ρirit , and

qBt =
∑
i

(1 − ρi)rit

where rit is the share of date t wealth belonging to trader i.
That is, the price of Arrow security s at date t is the wealth share weighted average

of beliefs. So at any date, the market price is stated by averaging traders’ beliefs. Of
course, there is no reason for this average to be correct, since the initial distribution
of wealth was arbitrary. But the process of allocating the assets and then paying them
off reallocates wealth. The distribution of wealth evolves through time, and the limit
distribution of wealth determines prices in the long run. We can work this out to see
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how the market “learns.” In this example it should be clear what “correct” asset pricing
means. If all traders had rational expectations, the price of the A Arrow security at any
point in the date-event tree would be ρ, and the price of the B Arrow security would
be 1 − ρ.

Let 1A(s) and 1B (s) denote the indicator functions on S for states A and B,
respectively. Along any path σ of states,

wit+1(σ) = β
( ρi

qAt (σ)

)1A(σt+1)(1 − ρi

qBt (σ)

)1B (σt+1)
wit (σ) (7.5)

and so the ratio of i’s wealth share to j’s evolves as follows:

rit+1(σ)

r
j

t+1(σ)
=

( ρi
ρj

)1A(σt+1)( 1 − ρi
1 − ρj

)1B (σt+1) rit (σ)

r
j
t (σ)

This evolution is more readily analyzed in its log form:

log
rit+1(σ)

r
j

t+1(σ)
= 1A(σt+1) log

( ρi
ρj

)
(7.6)

+ 1B (σt+1) log
( 1 − ρi

1 − ρj
)
+ log

rit (σ)

r
j
t (σ)

To understand how the market can learn, consider a Bayesian whose prior beliefs
about state evolution contain I IID models in his support, {ρ1, . . . , ρI}, and let rit
denote the probability he assigns to model i posterior to the first t − 1 observations.
The Bayesian rule for posterior revision is exactly that of Eq. 7.6. Thus, the market is a
Bayesian learner.6 The evolution of the distribution of wealth parallels the evolution of
posterior beliefs. Market prices are wealth share-weighted averages of the traders’ mod-
els, and so the pricing function for assets is identical to the rule that assigns a predictive
distribution on outcomes to any prior beliefs on states. In other words, the price of asset
A in this example is the probability the Bayesian learner would assign to the event that
the next state realization will be A.

From these observations we can draw several conclusions. If exactly one trader holds
correct beliefs, in the long run his wealth share will converge to 1, and prices will
converge to ρ. If several traders have correct beliefs, then the wealth share of this group
of traders will converge to 1, and again prices will converge to ρ. The assets will be
priced correctly in the long run. Second, if no model is correct, the posterior probability
of any model whose Kullback-Leibler distance from the true distribution is not minimal
converges a.s. to 0. In this example, selection cannot make the market do better than
the best-informed trader. In particular, if there is a unique trader whose beliefs ρi are
closest to the truth, prices converge in the long run to ρi almost surely, and so assets are
mispriced.

6This idea is developed more fully in Blume and Easley (1993).
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7.4.3. Selection in Complete IID Markets

For the remainder of this discussion we assume, as in the example of Section 7.4.2,
that the true process and all traders beliefs are IID. A more general analysis appears in
Section 7.4.7 and is elaborated in Blume and Easley (2006).

A.7.5. The true probability p, and all traders beliefs pi, are distributions on sequences
of states consistent with IID draws from probability ρ for the true probability, and ρi for
trader i’s probability.

Traders are characterized by three objects: a payoff function ui, a discount factor βi
and a belief ρi. However, so long as payoff functions satisfy the Inada condition, they
are irrelevant to survival. Only beliefs and discount factors matter. We would expect
that discount factors matter in a straightforward way: Higher discount factors reflect a
greater willingness to trade present for future consumption, and so they should favor
survival. Similarly, traders will be willing to trade consumption on unlikely paths for
consumption on those they think more likely. Those traders who allocate the most to the
highest-probability paths have a survival advantage. This advantage can be measured
by the Kullback-Leibler distance of beliefs from the truth, the relative entropy of ρ with
respect to ρi:

Iρ(ρi) =
∑
s

ρs log
ρs

ρis

The Kullback-Leibler distance is not a true metric. But it is non-negative, and 0 if
and only if ρi = ρ.7 Assumption A.7.3. ensures that Iρ(ρi) < ∞ (and this is its only
role).

Our results will demonstrate several varieties of asymptotic experience for traders
in IID economies. Traders can vanish, they can survive, and the survivors can be
divided into those who are negligible and those who are not. Definitions are as
follows:

Definition 7.2. Trader i vanishes on path σ if limt c
i
t(σ) = 0. She survives on path

σ if lim supt c
i
t(σ) > 0. A survivor i is negligible on path σ if for all 0 < r < 1,

limT→∞(1/T )|{t ≤ T : cit(σ) > ret(σ)}| = 0. Otherwise she is nonnegligible.

In the long run, traders can either vanish or not, in which case they survive. There are
two distinct modes of survival. A negligible trader is someone who consumes a given
positive share of resources infinitely often, but so infrequently that the long-run fraction
of time in which this happens is 0. The definitions of vanishing, surviving, and being
negligible are reminiscent of transience, recurrence, and null recurrence in the theory of
Markov chains.

7In fact, it is jointly convex in (ρ, ρi), but we will not need to make use of this fact.
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7.4.4. The Basic Equations

Our method uses the first-order conditions for Pareto optimality to solve for the optimal
consumption of each trader i in terms of the consumption of some particular trader, say
Trader 1. We then use the feasibility constraint to solve for Trader 1’s consumption. The
fact that we can do this only implicitly is not too much of a bother.

Let κi = λ1/λi. From Eq. 7.3 we get that

u′i
(
cit(σ)

)
u′1
(
c1
t (σ)

) = κi

(
β1

βi

)t∏
s∈S

(
ρ1
s

ρis

)nst (σ)

(7.7)

Sometimes it will be convenient to have this equation in its log form:

log
u′i
(
cit(σ)

)
u′1
(
c1
t (σ)

) = log κi + t log
β1

βi
−
∑
s

nst (σ)
(

log
ρis
ρs
− log

ρ1
s

ρs

)

We can decompose the evolution of the ratio of marginal utilities into two pieces: the
mean direction of motion and a mean-0 stochastic component.

log
u′i
(
cit(σ)

)
u′1
(
c1
t (σ)

) = log κi + t log
β1

βi
− t

∑
s

ρs

(
log

ρis
ρs
− log

ρ1
s

ρs

)

−
∑
s

(
nst (σ) − tρs

)(
log

ρis
ρs
− log

ρ1
s

ρs

)

= log κi + t
(
log β1 − Iρ(ρ1)

)
− t

(
log βi − Iρ(ρi)

)
−
∑
s

(
nst (σ) − tρs

)(
log

ρis
ρs
− log

ρ1
s

ρs

)

The mean term in the preceding equation gives a first-order characterization of traders’
long-run fates.

Definition 7.3. Trader i’s survival index is si = log βi − Iρ(ρi).

Then

log
u′i
(
cit(σ)

)
u′1
(
c1
t (σ)

) = log κi + t(s1− si) −
∑
s

(
nst (σ) − tρs

)(
log

ρis
ρs
− log

ρ1
s

ρs

)
(7.8)
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7.4.5. Who Survives? Necessity

Necessary conditions for survival have been studied before, notably by Blume and
Easley (2006) and Sandroni (2000). In this economy, a sufficient condition guaran-
teeing that Trader i vanishes is that Trader i’s survival index is not maximal among the
survival index of all traders. Consequently, a necessary condition for survival is that the
survival index be maximal.

Theorem 7.3. Assume A.1–5. If si < maxj sj , then Trader i vanishes.

The point of writing down ratios of marginal utilities is to compare two traders. If
one trader never “loses” a comparison, he must be a survivor. The next lemma describes
how ratios of marginal utilities characterize survival.

Lemma 7.1. On the path σ, if u′i
(
cit(σ)

)
/u′1

(
c1
t (σ)

)
→ ∞, then Trader i vanishes.

Proof. If the ratio diverges, either the numerator diverges or the denominator converges
to 0. The latter event cannot happen because no trader can consume more than the aggre-
gate endowment, and the aggregate endowments are uniformly bounded from above
across periods (A.7.2). The former event implies that cit(σ) → 0.

In view of Lemma 7.1, everything to know about selection is captured in the asymp-
totic behavior of the right side of Eq. 7.7. For the IID case, this behavior can be
examined with the strong law of large numbers (SLLN) applied to the log of the left
side. Divide both sides of Eq. 7.8 by t to obtain

1
t

log
u′i
(
cit(σ)

)
u′1
(
c1
t (σ)

) =
1
t

log κi + (s1− si)

− 1
t

∑
s

(
nst (σ) − tρs

)(
log

ρis
ρs
− log

ρ1
s

ρs

)
(7.9)

The first term on the right side converges to 0 and so, by the SLLN, does the last term.
Thus the fate of trader is determined by her survival index.

7.4.6. Selection and Market Equilibrium

The implications for long-run asset pricing are already illustrated in the example that
began this section.

Corollary 7.1. If there is a unique Trader i with maximal survival index si among the
trader population, then market prices converge to ρi almost surely.

This corollary is an immediate consequence of Theorems 7.2 and 7.3. If only Trader i
has maximal survival index, almost surely all other traders vanish and qt converges to ρi.
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The beliefs of the trader with maximal survival index may not be correct, in which case
Arrow securities are incorrectly priced in the long run. This may happen because no
trader has correct beliefs or because a trader’s incorrect beliefs are compensated for by
a higher discount factor. In the latter case, allowing for heterogeneous discount factors,
the prices need not converge to the most accurate beliefs present in the market.

7.4.7. More General Stochastic Processes

The preceding analysis is actually quite general. Although the particular functional
forms that emerge are specific to IID processes, the principles apply in many different
situations and lead to the calculation of related survival indices. A belief for Trader i is
a stochastic process ρi on the finite state space S. For general beliefs, an equation like
Eq. 7.7 can be derived from Eq. 7.3.

u′i
(
cit(σ)

)
u′1
(
c1
t (σ)

) = κi

(β1

βi

)t p1
t (σ

t)

pit(σt)

and, in log form,

log
u′i
(
cit(σ)

)
u′1
(
c1
t (σ)

) = log κi + t log
β1

βi
+ log p1

t (σ
t) − log pit(σ

t) (7.10)

Lemma 7.1 is still valid, of course, and so getting selection results in non-IID environ-
ments depends only on our ability to unpack and compare the log-likelihood functions
of the traders’ beliefs.

A simple extension arises when the true process is an irreducible Markov
chain, and traders beliefs are also (not necessarily irreducible) Markov chains.
Trader 1’s belief term in Eq. 7.10 is

∑
s 1s(σt) log p1(s|σt−1), and the term is∑

s 1s(σt) log pi(s|σt−1) for Trader i. The time average of Trader js term converges
to

∑
s π(s′)p(s|s′)

∑
s log p(s|s′)/pj(s|s′), where π is the invariant distribution for the

Markov chain. The inner sum is Ip(pj|s′) the entropy of the true distribution given
state s′ with respect to Trader js beliefs, and the outer sum gives the average of the
conditional variances with respect to the ergodic distribution of states. The survival
index for Trader i is

Si = log βi − EpIp(pi|s′)

The quality of beliefs is measured by the relative entropy for conditional beliefs given
the past, averaged over the past according to the true ergodic distribution of states.
Because the true process is irreducible, the initial state and the initial distribution of
beliefs do not matter to this calculation, since the limiting time average exists and its
value is independent of the initial conditions.

A more subtle example is the case of Bayesian learners. Suppose that traders are all
Bayesian with identical discount factors. Each Trader i considers a set of models Θi
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which is a bounded open subset of a di-dimensional Euclidean space. The true model,
θ0, is contained in each Θi. Suppose all the processes pθ, θ ∈ Θi are IID, and that the
likelihood functions p(σt|θ) satisfy some regularity conditions at θ0. Suppose, finally,
that each Trader i has prior beliefs that are represented by a density qi that is absolutely
continuous with respect to Lebesgue measure on Θi. Let pi(σt) =

∫
Θi
pθ(σt)q(θ)dθ.

A result well known to statisticians and econometricians is

log
pθ(σt)
pi(σt)

−
(di

2
log

t

2π
+

1
2

log det I (θ) − log qi(θ)
)
→ χ2(di)

where I (θ) is the Fisher information matrix at θ. The result claims that the difference
between the log of the probability ratio and the term in parentheses is finite, converging
in probability to a chi-squared random variable.

The implication of this result for survival is that if d1 < di, then log p1
t (σ

t) −
log pit(σ

t) diverges to +∞, and so trader i-vanishes. Bayesian learners who satisfy our
assumptions learn the true parameter value, but those who have to estimate more para-
meters, higher di, learn slower, and this speed difference is enough for them to be driven
out of the market. We can see from the formula that the rate of divergence is O(log t),
and so this speed difference would not be visible had we taken time averages.

7.5. MULTIPLE SURVIVORS

When a single trader (type) has the highest survival index, market prices converge to his
view of the world. There is no room for balancing different beliefs because, in the long
run, there is only one belief and discount factor present in the market. But if the market
process is more complicated than the world view of any single trader so that no trader
has correct beliefs, or if traders are asymmetrically informed, it is possible that multiple
traders could have maximal survival index. Will all such traders survive, and what are
the implications for sufficiency? We now return to the IID world for the discussion in
this section.

7.5.1. Who Survives? Sufficiency

Theorem 7.3 shows that traders with survival indices that are less than maximal in the
population vanish. This does not imply that all those with maximal survival indices
survive. The right side of Eq. 7.8 is a random walk, and the analysis of the previous
section is based on an analysis of the mean drift of the right side of Eq. 7.8. Theorem
7.3 shows that a nonzero drift has implications for the survival of some trader. When
two traders with maximal survival indices are compared, the drift of the walk is 0, and
further analysis of Eq. 7.7 and Eq. 7.8 is required.

We return to the example of Section 7.4.2 to study this question. However, we sup-
pose now that there are S states, S = {1, . . . , S}, and that each trader has maximal
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survival index. From Eq. 7.5:

log
wit+1

w1
t+1

=
S∏
s=1

(ρis
ρ1
s

)1s(σt+1) wit

w1
t

=
t+1∏
t=1

S∏
s=1

(ρis
ρ1
s

)nst (σ) wi0

w1
0

Taking logs,

log
wit+1

w1
t+1

=
S∑
s=1

(
nst (σ) − tρs

)
log

ρis

ρ1
s

+ t
S∑
s=1

ρs log
ρis

ρ1
s

+ log
wi0

w1
0

The second term on the right is just the difference in survival indices, which is 0 for all
survivors, so

log
wit+1

w1
t+1

=
S∑
s=1

(
nst (σ) − tρs

)
log

ρis

ρ1
s

+ log
wi0

w1
0

(7.11)

Eq. 7.11 suggests studying the processes

S∑
s=1

(
nst (σ) − tρs) log ρis

Since the terms
(
nst (σ) − tρs) are deviations from the drift, they sum over all states to 0,

and the vector of drifts is a random walk in a space of dimension S − 1. Normalizing
with respect to state S, define zt =

(
nst (σ) − tρs)S−1

s=1 and for each Trader i define loi =
(log(ρis/ρ

i
S))S−1

s=1 to be a vector of log-odds ratios of Trader i’s beliefs with respect to
state S. Then

log
wit+1

w1
t+1

= zt · (loi − lo1)

The beliefs of all surviving traders lie on the same relative entropy level set. In
Figure 7.1 the true distribution lies in the center inside the iso-entropy curve.

The fate of consumer A, for instance, requires looking at the inner product of the
random walk zt with the two vectors loB − loA and loC − loA, as shown in Figure 7.1.
The shaded cone in Figure 7.2 is the polar cone to the cone spanned by loC − loA and
loB − loA. Whenever the random walk is far out in this polar cone, zt · loA � zt · loB

and zt · loA � zt · loC , so A has a large wealth share relative to B and C.
For any number of traders, those with maximal survival index must lie on the same

level set of relative entropy. Thus each is extremal in the polyhedron generated by
lo1, . . . , loI . From this one can show that for each Trader i there is an open cone Ci

such that whenever zt ∈ Ci, zt · loi > zt · loj for all j 
= i. Far enough out in this cone,
Trader i’s wealth share will be arbitrarily large. One can conclude that for any Trader i
with maximal survival index, lim sup rit = 1.

When we allow for heterogeneous discount factors, the story changes. Discount
factors become part of the survival index, and traders with maximal survival indices
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FIGURE 7.1 Three beliefs with identical survivor indices.
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C 2 A

FIGURE 7.2 The cone where A survives.
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can have beliefs whose relative entropies with respect to the truth differ. The discount
factor is nonstochastic, and one can easily check that Eq. 7.11 remains unchanged. But
now, since maximal traders’ beliefs can be more or less accurate, it is possible that a
trader could have a log-odds vector inside the polygon generated by the loi. Such a
trader will almost surely vanish if the dimension of the walk zt is large enough. (This
requires S ≥ 4.) A sufficient condition for survival is that a trader be extremal, that his
log-odds vector be an extreme point of the polygon. Any extremal trader’s wealth share
is arbitrarily near 1 infinitely often. The case of traders who are not extremal but also
not interior to the polygon is more complicated. They survive, but their wealth share is
bounded away from 1.

The implication for equilibrium prices from the existence of multiple survivors in
our simple economy is perhaps surprising. If multiple traders have maximal survival
index, then for all extremal traders i and all ε > 0, |qt − ρi| < ε infinitely often. If
S > 3 it is possible that for ε > 0 sufficiently small, the event |qt − ρ| < ε is transient,
even if some survivor has rational expectations. Thus, with multiple survivors, asset
prices are volatile. Furthermore, asset prices need not be approximately right; that is,
approximately right prices may be transient.

7.6. THE LIFE AND DEATH OF NOISE TRADERS

If traders have identical discount factors and markets are complete, the results of
Section 7.4 show that noise traders cannot survive. The exponential increase of their
marginal utility of consumption growth measures the speed at which they disappear
from the market. Yet practitioners of behavioral finance have been fascinated with the
idea of noise traders, attributing to them much responsibility for deviations from ratio-
nal asset pricing. In this section we examine the claims for the survival of noise traders
in financial markets.

The current fascination with noise traders seems to have begun with two papers by
DeLong et al. (1990, 1991). These papers raise the possibility that noise traders survive,
but they do not actually prove it. The early paper observes that, in return for holding
more risk than informed traders, noise traders may earn a higher expected return. They
go on to show that if the size and influence of the noise-trader population is exogenously
pegged, noise traders can influence prices. They point out, however, that larger returns
do not imply the ability to survive when their size and influence are determined by the
market (DeLong et al., 1991, p. 11). Breiman (1961) taught us that the probability of
long-run survival is greatest for those who maximize not expected returns but expected
log returns. The extra exposure to risk that comes from maximizing expected returns
may, in the long run, be devastating.

7.6.1. The Importance of Market Structure

Many convoluted arguments have been made for the survival of noise traders, some
of which (as we will see) are incorrect. But the simplest possible argument seems to
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have been ignored: Incomplete markets may constrain informed traders from betting
against noise traders. Market structure clearly matters for the life and death of noise
traders, but we have no market structure characterizations of the survival of noise traders
except for the mostly negative conclusions of Sections 7.4 and 7.5. Here we demonstrate
the plausibility of the incomplete markets argument by providing an example of an
incomplete market economy in which the noise trader survives at the expense of the
trader with correct beliefs.

Two traders buy an asset from a third trader. The two traders hold different beliefs
about the certain return of the asset. Traders 1 and 3 know the correct return, which
is consistently overestimated by Trader 2. We encode this example in the state prefer-
ence framework by assuming that at each date there are two states: S = {s1, s2}. The
true evolution of states has State 1 surely happening every day. There is a single asset
available at each date and state that pays off in consumption goods in the next period
an amount that depends on next period’s state. The asset available at date t pays off, at
date t + 1,

Rt(σ) =

⎧⎪⎨
⎪⎩

(
1 +

( 1
2

)t)
if σt = s1

2
(

1 +
( 1

2

)t)
if σt = s2

Traders 1 and 2 have CRRA utility with coefficient 1
2 . Trader 3 has logarithmic

utility. Traders 1 and 2 have common discount factor (8)−
1
2 and Trader 3 has discount

factor 1
2 . Traders 1 and 3 believe correctly that state s1 will always occur with Probabil-

ity 1, and Trader 2 incorrectly believes that state s2 will always occur with Probability 1.
All three traders have endowments that vary with time but not state. Traders 1 and 3
know the correct price sequence. Trader 2 believes that at each date, state s2 prices will
equal the (correct) state s1 prices. Traders 1 and 2 have endowment stream (1, 0, 0, . . .).
Trader 3’s endowment stream is (0, 2, 2, . . .).

This model has an equilibrium in which the price of the asset is, for every state,

qt =
3
8

(
1 +

(2
3

)t)
In this equilibrium, at each date Trader 3 supplies 1 unit of asset and Traders 1 and 2
collectively demand 1 unit of asset. Of the total wealth belonging to Traders 1 and 2
(not Trader 3), Trader 1’s share at date t is

αt =
1

1 +
( 3

2

)t−1

which converges to 0 even though he has correct beliefs and Trader 2 has incorrect
beliefs. Although the details of the example are complicated, the intuition is simple. At
each date, Trader 1 believes that the rate of return on the asset is 2, whereas Trader 2
believes it is 3. Trader 2’s excessive optimism causes him to save more at each date, so
in the end he drives out Trader 1.
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It is more enlightening to understand how this example was constructed than it is to
go through the details of verifying the equilibrium claim. In constructing this example,
our idea was to fix some facts that would allow us to solve the traders’ Euler equations
and then to derive parameter values that would generate those facts. Accordingly, we
fixed the gross rates of return on the asset at 2 and 3 in states s1 and s2, respectively.
We also assumed that Traders 1 and 2’s total asset demand would be 1. For an arbitrary
gross return sequence the Euler equations pinned down prices. We then turned to the
supply side and chose an endowment stream for Trader 3 and a gross return sequence
that would cause Trader 3 to supply 1 unit of asset to the market at each date.

The contrived nature of the example does not vitiate its point: that the noise trader
survives because the informed trader cannot bet against him. Were, say, an Arrow secu-
rity to exist at each date that pays off in only one of the two states, such bets would
be possible. In this example that would pose existence problems because of the point-
mass beliefs, but Blume and Easley (2006) contains a more complicated version of this
example wherein the belief supports overlap, and equilibrium with the additional assets
would exist. Since markets would then be complete, Trader 2 would vanish and Traders
1 and 3 would survive.

7.6.2. Laws of Large Numbers

According to DeLong, Shleifer, Summers, and Waldmann, noise traders survive in
financial markets because “idiosyncratic risk reduces the survival probabilities of indi-
vidual noise traders but not of noise traders as a whole. . . ” (DeLong et al., 1991, p. 12).
This argument is perhaps the most compelling of the arguments offered in the literature
for the survival of noise traders. Any individual noise trader is likely to do badly, but
some will, luck of the draw, do quite well, and so noise traders as a group survive. This
argument is an instructive misuse of the strong law of large numbers. In this section we
build a simple incomplete market model to demonstrate the problem with this type of
argument.

The DeLong et al. (1991) model has traders investing in assets whose return contains
a common shock and an asset-specific shock. Traders with correct beliefs can avoid the
idiosyncratic risk, but not the common shock. Noise traders underestimate the variance
of the asset-specific shock; consequently they take on too much risk, which earns them
a higher expected return. Obviously, to make this work one needs some infinities—an
infinity of assets, an infinity of traders, and so forth. We will build a much simpler model
with no common shock in order to clarify ideas.

In our example there is a finite number I of traders. Trader i has an initial endow-
ment of wi0 = 1 unit of wealth, and 0 endowment subsequently. Each trader bets on
IID coin flips of his coin, which can be either H (heads) or T (tails). For each coin,
Pr{sit = H} = p. The return per unit correctly bet is 2. Each trader receives utility ui(cit)
from consumption. We assume that ui(c) = (1 − γ)−1c1−γ with the coefficient of rela-
tive risk aversion γ > 0. Traders discount the future at rate β. Betting is the only way
to move wealth from Date 0 through the date-event tree. At date t on the current path
Trader i must choose a fraction δit to save and eat the rest. Of the wealth to be saved,
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fraction αit is bet on H , the remainder on T . This can be recast as an investment port-
folio of two Arrow securities, one which pays off on H and the other on T . One unit
of each asset for each bet is inelastically supplied. The mean return and variance of i’s
portfolio is

E{wit+1|w
i
t} = 2

(
pαit + (1 − p)(1 − αit )

)
δitw

i
t

and

Var{wit+1|w
i
t} = 4p(1 − p)(1 − 2αit )

2(δitw
i
t )

2

Notice that if αit = 1/2, the variance of tomorrow’s wealth is 0 and the sure return is the
amount saved.

It is not hard to compute the optimal policy. Suppose trader i believes the true
probability of H is qi. The optimal policies are independent of time and wealth:

αi =
q

1/γ
i

q
1/γ
i + (1 − qi)1/γ

δi = 2(1−γ)/γβ1/γi
(
q

1/γ
i + (1 − qi)1/γ)

In the case of log utility, corresponding to γi = 1, αi = qi and δi = β. Computing the
expected return for the optimal rules given beliefs,

E{wt+1|wt} = (2β)1/γ (pq1/γ + (1 − p)(1 − q)1/γ )wt

A computation shows that investors with more extreme beliefs have higher returns.
Compare an investor with belief q to one with belief p. If p > 1/2 the q-investor has a
higher expected return than the p-investor if and only if q > p; if p < 1/2, the q-investor
has a higher expected return if and only if q < p.

Let rt = wit/w
j
t , the ratio of Trader i’s wealth to Trader j’s at date t. Calculations

similar to those of Section 7.4 show that

1
t

log rt →
1

1 − γ
(
Ip(qj) − Ip(qi)

)
(7.12)

almost surely. Suppose i is a p-investor, and j is a q-investor for some q 
= p. Then

1
t

log rt →
Ip(q)
1 − γ

and the long-run wealth share of the q investor converges to 0 almost surely.
Suppose now that there are 2N traders; that is, I = 2N . The first N traders

are informed; they are p-investors. All informed traders have identical initial wealths wi0
and all noise traders have initial wealths wn0. The remaining N investors are q-investors
with extreme beliefs. For the sake of argument, suppose that p > 1/2 and q > p.



430 Chapter 7 • Market Selection and Asset Pricing

We see just by paring off investors of each type that the wealth share of the q-investor
pool converges to 0. Now we would like to carry out calculations in the style of DeLong
et al. (1991). They compute the log of the ratio of the group wealths, which in our
simple model is

lim
N→∞

log

∑N
i=1 w

i
1∑2N

i=N+1 w
i
1

= lim
N→∞

log
1
N

∑N
i=1 w

i
1

1
N

∑2N
i=N+1 w

i
1

= log
pp1/γ + (1 − p)(1 − p)1/γ

pq1/γ + (1 − p)(1 − q)1/γ
+ log

wi0
wn0

If we assume that noise traders are extreme, the first term in the limit, call it r, is
negative. Iterating this relationship, we see that

lim
t→∞

lim
N→∞

1
t

log

∑N
i=1 w

i
1∑2N

i=N+1 w
i
1

= r < 0

so

lim
t→∞

lim
N→∞

∑N
i=1 w

i
1∑2N

i=N+1 w
i
1

= 0

We showed earlier, however, that

lim
t→∞

∑N
i=1 w

i
1∑2N

i=N+1 w
i
1

= +∞

for all N , and so

lim
N→∞

lim
t→∞

∑N
i=1 w

i
1∑2N

i=N+1 w
i
1

= +∞ (7.13)

It should be obvious that the second limit, Eq. 7.13, is the correct one to compute.
Infinities do not exist in real economies. We are interested in the long-run behavior of
many-agent economies. The second limit calculation shows that in any 2N-trader econ-
omy, after a large enough amount of time, the share of wealth belonging to the noise
traders will be nearly 0. The first limit is merely a mathematical artifact. DeLong et al.
(1991, p. 12) state, “the wealth share of a randomly selected noise trader type even-
tually falls with probability one, but the wealth of a small fraction of the noise trader
population is increasing fast enough to give them a rising aggregate share of the econ-
omy’s wealth.” Our calculations show that the wealth share of every noise-trader type
eventually falls with probability 1, and so the noise-trader wealth share ultimately van-
ishes. In our example there is no magic whereby the populations of noise and informed
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traders are fixed; each noise trader’s share of wealth vanishes, and yet the group
thrives.

7.7. ROBUSTNESS

This section briefly describes generalizations and extensions of the market selection
results to other economies.

7.7.1. Unbounded Economies

Several authors (Kogan et al., 2006; Malamud and Trubowitz, 2006; Dumas et al.,
2006; and Yan, 2006) have analyzed economies in which the market does not select
for traders with maximal survival index. The main thrust of these papers is that payoff
functions also matter, so that even in complete markets’ economies with a common dis-
count factor, long-run asset prices can be wrong. These papers differ in several ways
from our analysis, but the key difference is that they have unbounded aggregate endow-
ments. In this section, we construct a simple example to illustrate the role of unbounded
endowments.

Consider an IID economy as in Section 7.4.2 but to make calculation simple (and
comparable to the papers cited here), we assume that all traders have CRRA utility,
ui(c) = δ−1

i c
δ
i , with δi < 1. Suppose that there are just two traders and let αt denote

Trader 2’s consumption share of the aggregate endowment et. Suppose et = wλt. Then,
by the SLLN, Eq. 7.9 implies that, almost surely,

1
t

log

(
α

1−δ2
t

(1 − αt)1−δ1

)
→ (s2 − s1) + (δ2 − δ1)λ log(w)

So the new survival index for Trader i is ŝi = si + δiλ log(w). In the bounded econ-
omy λ = 0 and we again have the old survival index. Suppose that s1 > s2, so that in the
bounded economy Trader 2 would vanish. Now, if δ2 > δ1, and the aggregate endow-
ment grows fast enough, Trader 2 does not vanish and in fact her share of consumption
converges almost surely to 1. Alternatively, if δ1 > δ2, and the aggregate endowment
falls fast enough, Trader 2 does not vanish and in fact her share of consumption con-
verges almost surely to 1. Now discount rates, relative entropy of beliefs, the relative
risk aversion coefficient, and the growth rate of the aggregate endowment all matter.
Note, however, that the same analysis would apply even in a deterministic economy.
So, interpreting the CRRA coefficient on consumption as “risk aversion” is mislead-
ing; instead it matters because of its role in determining intertemporal marginal rates of
substitution. This result was foreshadowed by the calculation summarized in Eq. 7.12.
The observant reader may well have wondered what the (1 − γ) denominator was doing
in the survival indices. There too it arises because of the lack of a uniform bound on
wealth.
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7.7.2. Incomplete Markets

As we saw in Section 7.6.1, the market selection hypothesis can fail to be true in
economies with incomplete markets. Blume and Easley (2006) provides examples that
show that if markets are incomplete, rational traders may choose either savings rates
or portfolio rules that are dominated by those selected by traders with incorrect beliefs.
If some traders are irrationally optimistic about the payoff to assets, the price of those
assets may be high enough so that rational traders choose to consume more now and
less in the future. Their low savings rates are optimal, but as a result of their low savings
rates, the rational traders do not survive.

Beker and Chattopadhyah (2006) analyze a market in which the only assets are
money and one risky asset, so that (with enough states) the market is incomplete. They
give an example in which a trader whose beliefs are correct and whose impatience is
low is driven out of the market. They also show that having some agents driven out of
the market is a robust feature of their incomplete markets’ economies and that beliefs
do not determine which trader is driven out.

7.7.3. Differential Information

If traders’ differences in beliefs are due solely to information asymmetries, the market
selection hypothesis requires that asset markets select for traders with superior informa-
tion. The research discussed previously asks about selection over traders with different,
but exogenously given, beliefs. Alternatively, if traders begin with a common prior and
receive differential information they will have differing beliefs, but now they will care
about each others’ beliefs. In this case, the selection question is difficult because some
of the information that traders have will be reflected in prices. If the economy is in a
fully revealing rational expectations equilibrium, there is no advantage to having supe-
rior information (see Grossman and Stiglitz, 1980). So the question only makes sense in
the more natural, but far more complex, case in which information is not fully revealed
by market statistics.

Figlewski (1979) shows that traders with information that is not fully reflected in
prices have an advantage in terms of expected wealth gain over those whose information
is fully impounded in prices. But, as expected wealth gain does not determine fitness,
this result does not answer the selection question. Mailath and Sandroni (2003) con-
sider a Lucas trees economy with log utility traders and noise traders. They show that
the quality of information affects survival, but so does the level of noise in the economy.
Sciubba (2005) considers a Grossman and Stiglitz (1980) economy in which informed
traders pay for information and shows that in this case uninformed traders do not
vanish.

7.7.4. Selection over Non-EU Traders

To this point we have focused on selection within the class of subjective expected utility
maximizers. But in recent years alternative decision theories have been developed and
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used to interpret various asset market anomalies. The most well known of these alter-
native decision theories is based on ambiguity aversion that is motivated by the famous
experiment of Ellsberg (1961) showing that some decision makers prefer known odds to
unknown odds. Ambiguity aversion has been used to explain the equity premium puzzle,
portfolio home bias, and lack of participation in asset markets. Typically the research
asking about the effect of ambiguity aversion on asset prices considers economies pop-
ulated only by ambiguity-averse traders. But what if some traders are ambiguity averse
and others are expected utility maximizers?

Condie (2008) considers a complete markets economy that is populated by a mixture
of ambiguity-averse traders and expected utility traders. He asks if ambiguity-averse
traders can survive and have persistent effects on asset prices in these economies. He
finds that if there is no aggregate risk in the economy, ambiguity-averse traders can
survive even in the presence of expected utility traders with correct beliefs. Condie
models ambiguity-averse traders using the Gilboa and Schmeidler (1989) representa-
tion of ambiguity aversion in which traders’ beliefs are represented by sets of probability
distributions. Traders choose a portfolio that maximizes the minimum expected utility
over the entire set of distributions. This formalization produces a kink in the trader’s
indifference curve at a risk-free portfolio. To see how the analysis works in an econ-
omy with no aggregate risk suppose, for example, that the economy consists of one
expected utility trader with correct beliefs and one ambiguity-averse trader with a set of
beliefs that contains the truth, and that the endowments of both traders are risk-free.
Then in equilibrium there will be no trade and prices are set by the expected util-
ity trader. These prices are just the (correct) probabilities of the states. So although
the ambiguity-averse trader survives, this trader has no effect on trade or on asset
pricing.

Alternatively, suppose that there is aggregate risk in the economy. In this case,
Condie (2008) shows that ambiguity-averse traders who have a set of beliefs containing
the truth in its interior cannot survive in the presence of expected utility traders with
correct beliefs. In the earlier two-trader example, with aggregate risk, if the ambiguity-
averse trader still holds a risk-free portfolio, the expected utility trader is earning the
return to holding the aggregate risk and will drive the ambiguity-averse trader out of
the market. Alternatively, if the ambiguity-averse trader holds risk in equilibrium, this
trader is behaving as an expected utility trader with incorrect beliefs (those that mini-
mize expected utility for the portfolio), and the analysis of Blume and Easley (2006)
shows that they will vanish. So the conclusion is that either ambiguity-averse traders
vanish or they survive and have no effect on prices. In either case they have no effect on
prices in the long run.

These results have important implications for explanations of market pricing anoma-
lies using non-expected-utility traders. To the extent that these explanations are based
on ambiguity-aversion (of the Gilboa and Schmeidler, 1989, type), either they explain
only short-run phenomena or there are no expected utility traders with correct beliefs in
the economy. It would be interesting to ask whether similar results hold for other types
of non-expected-utility motivated behavior.



434 Chapter 7 • Market Selection and Asset Pricing

7.7.5. Selection over Rules

We have focused on selection over traders whose behavior is motivated by prefer-
ences, but characteristics of preferences matter only through the behaviors they dictate.
Selection analysis is equally relevant to the fate of decision rules (savings rates and
portfolios) that do not arise from maximization. This is analogous to biological selec-
tion, which works not on genotypes (the full description of biological information)
but on phenotypes (the characteristics actually expressed). Behavioral rules, for us, are
phenotypes.

Consider an intertemporal general equilibrium economy with a collection of Arrow
securities and one physical good available at each date. Suppose that traders are char-
acterized by their stochastic processes of endowments of the good and by portfolio
and savings rules. A savings rule describes the fraction of a trader’s wealth she saves
and invests at each date, given any partial history of states. Similarly, a portfolio rule
describes the fraction of her savings the trader allocates to each Arrow security. The
savings and portfolio rules that rational traders could choose form one such class of
rules. But other, nonrationally motivated rules are also possible.

There are two questions to ask about the dynamics of wealth selection in this econ-
omy. First, is there any kind of selection at all? Is it possible to characterize the rules
that win? Second, if selection does take place, does every trader using a rational rule
survive, and in the presence of such a trader do all nonrational traders vanish?

In repeated betting, with exogenous odds, the betting rule that maximizes the
expected growth rate of wealth is known as the Kelly Rule (Kelly, 1956). The use of
this formula in betting with fixed but favorable odds was further analyzed by Breiman
(1961). In asset markets the “odds” are not fixed; instead, they are determined by
equilibrium asset prices, which in turn depend on traders’ portfolio and savings rules.
Nonetheless, the market selects over rules according to the expected growth rate of
wealth share they induce. Blume and Easley (1992) show that if there is a unique trader
using a rule that is globally maximal with respect to this criterion, this trader eventually
controls all the wealth in the economy, and prices are set as if he is the only trader in
the economy. A trader whose savings rate is maximal and whose portfolio rule is, in
each partial history, the conditional probability of states for tomorrow has a maximal
expected growth rate of wealth share. This rule is consistent with the trader having log-
arithmic utility for consumption, rational expectations, and a discount factor that is as
large as any trader’s savings rate. Thus, if this trader exists, he is selected for. However,
rationality alone does not guarantee a maximal expected growth rate of wealth share.
There are rational portfolio rules that do not maximize fitness (even controlling for sav-
ings rates), and traders who use these rules can be driven out of the market by traders
who use rules that are inconsistent with rationality.

The “preference-based” approach to market selection limits the rules it studies to
those generated by particular classes of preferences. Alternatively, one could limit atten-
tion to rules exhibiting particular behaviors. This is the approach of Amir, Evstigneev,
Hens, and Schenk-Hoppé (2005) and Evstigneev, Hens, and Schenk-Hoppé (2006).
They consider general one-period assets and ask if there are simple portfolio rules that
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are selected for, or are evolutionarily stable, when the market is populated by other sim-
ple portfolio rules. A simple rule is one for which the fraction of wealth invested in a
given asset is independent of current asset prices. In this research, either all winnings
are invested, or equivalently, traders are assumed to invest an equal fraction of their
winnings; consumption rates are the same for all traders. So selection operates only
over portfolio rules. Amir et al. (2005) find that a trader who allocates his wealth across
assets according to their conditional expected relative payoffs drives out all other traders
as long as none of the other traders ends up holding the market. This result is consistent
with Blume and Easley (1992) because the log-optimal portfolio rule agrees with the
conditional expected relative payoff rule, when only these two rules exist in the market.
Hence, both of these rules end up holding the market in the limit. Evstigneev, Hens,
and Schenk-Hoppé (2006) show that the expected relative payoffs rule is evolutionarily
stable using notions of stability from evolutionary game theory.

7.8. CONCLUSION

The hypothesis that traders are rational in the sense of Savage has few implications for
asset prices. The power of rationality lies in the framework that makes analyzing beliefs
possible. One approach is to assume that all traders have rational—that is, correct—
expectations. This assumption imposes structure on asset prices, but it is surely too
strong an assumption. Instead, assuming that some traders may have more accurate
beliefs than others is more plausible than the rational expectations assumption. In the
short run, traders with incorrect expectations can influence asset prices. But in the long
run, they may lose out to those with more accurate expectations who choose better
portfolio rules. Expectations also affect savings rates, and traders with incorrect expec-
tations can be induced to over-save, so the conjecture they they are driven out is far
from obvious. The literature shows that if markets are dynamically complete, the econ-
omy is bounded, and traders have a common discount factor, then in fact the market
is dominated in the long run by those with correct expectations. If there is any trader
with correct beliefs, in the long run asset prices converge to their rational expectations
values.

The assumptions that markets are complete, that the economy is bounded, and that
traders have a common discount factor are all important for this selection result. If mar-
kets are incomplete, the selection hypothesis can fail and asset prices need not converge
to their correct values. Traders with high discount factors and incorrect beliefs can drive
out those with correct beliefs and lower discount factors, and this will cause even long-
run asset prices to be incorrect. If there is heterogeneity in discount factors and beliefs
so that multiple traders have maximal survival index, multiple traders can survive. But
we show that having a maximal survival index is not sufficient, and the sufficient con-
dition derived here for the IID economy is new. In this case, long-run price volatility
is possible. Finally, in unbounded economies, discount factors, beliefs, and the curva-
ture of the utility function all matter for survival. We provide new results that show, for
CARA economies, how all these factors enter into a new survival index.
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Abstract

This chapter explores theories that explain market dynamics by using rational but
diverse beliefs and employing mechanisms of endogenous amplification. Noisy Rational
Expectations Asset-Pricing Theory (in which belief diversity arises from diverse private
information) does not offer a satisfactory paradigm, because increased idiosyncratic
private information reduces market volatility. We then focus on models of diverse beliefs
without private information, whereby economic agents do not know the structure of the
complex economy but infer empirical probability from data. A belief is a model of
deviations from this empirical distribution. It is shown that in a world of diverse beliefs,
to be rational, a belief must fluctuate around the empirical frequencies, generating
endogenous amplification. Market belief, which is the distribution of individual beliefs,
is then observable via sampling. We explore an explicitly solvable asset-pricing model
with diverse beliefs to illustrate the central implications of the theory for market dynam-
ics, the nature of uncertainty and risk premia. Simulations are employed to illustrate the
ability of the theory to explain the stylized empirical facts. The results offer a unified
explanation of the key features of market dynamics, such as excess price volatility, the
Equity Premium Puzzle, predictability of asset returns, and stochastic volatility.

Keywords: diverse beliefs, private information, rational beliefs, market beliefs, empirical
probability, stable probability, excess volatility, endogenous uncertainty, volume of trade,
risk premium

8.1. INTRODUCTION

This chapter explores the role of rational diverse beliefs in explaining market dynamics
and volatility. To do that we examine alternative reasons for belief diversity, which
is rational, and review different models of market dynamics that incorporate such
beliefs. The term market dynamics refers to the dynamic characteristics of financial
markets, but we focus on dynamic phenomena that attracted attention in the literature.
Examples include excess volatility of asset returns, high and time-varying equity risk
premia, high volume of trade, and so on. Many examples are termed “anomalies” or
“puzzles” because they contradict predictions of rational expectations equilibria (in
short, REE) with full information. Most studies show that fundamental exogenous fac-
tors cannot explain the observed dynamics, leading Paul Samuelson to quip that “the
stock market predicted nine of the last five recessions.” We aim to explore ideas that
explain the four recessions the market predicted but that did not occur. The problem
of market volatility and the question of whether asset markets exhibit “excess” volatil-
ity relative to fundamental factors have been central in financial economics; thus, the
approach explored here addresses major questions and offers useful ideas for advancing
the scientific study of free markets, for public stabilization policy, and for practitioners
in financial markets.

It is important to note that the idea that allocations and prices are affected by agents’
perceptions of the future is rather old. Diverse expectations are central to Thornton’s
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(1802) views of paper money and financial markets. Expectations are crucial to Keynes
(1936). Chapter 12 of The General Theory examines the “state of confidence” and the
importance of investors’ expectations to asset pricing. Expectations are key to the “cumu-
lative movements” in Pigou (see Pigou, 1941, Chapter VI) and constitute the mechanism
of deviations from a stationary equilibrium in the Swedish school (e.g., see Myrdal’s
1939 views in Myrdal, 1962, Chapter III). Also, “subjective values” based on diverse
agents’ expectations are cornerstones of Lindahl’s (1939) theory of money and capital.

Before turning to recent work, we draw attention to an assumption made in the work
reviewed later. It holds that the distribution of beliefs in the market is an observable
variable that can be deduced from forecast panel data. It would thus be useful to briefly
review some available raw data.

In the post-World War II era, large databases on heterogeneous forecasts of vari-
ous variables have been assembled in Holland, Germany, and Sweden. In the United
States, the Survey of Professional Forecasts, reporting quarterly forecasts of private
forecasters, was started in 1968. It was first conducted by the American Statistical Asso-
ciation’s National Bureau but has since been taken over by the Federal Reserve Bank
of Philadelphia. Since 1980 the Blue Chip Economic Indicators reports monthly fore-
casts of economic variables by over 50 financial institutions. This service was expanded,
under the title of Blue Chip Financial Forecasts, to include forecasts of interest rates and
other variables. To illustrate, Table 8.1 reports forecasts of GDP growth and change in
GDP deflators in May 2000 for the year 2000. Actual GDP growth rate in 2000 was
4.1% and actual inflation rate was 2.3%. Note that in May 2000, five months into the
year, large heterogeneity persisted. Also, almost all GDP growth forecasts were wrong!
To understand this correlated error, place yourself in May 2000 and make a stationary
econometric forecast of GDP growth, but make no special judgment about the unique
conditions in May 2000. An example of such a model was developed by Stock and Wat-
son (2001, 2002, 2005). They estimate it by using a combination of diffusion indexes
and bivariate VAR forecasts and employing a large number of U.S. time series. In May
2000 the nonjudgmental stationary forecast of GDP growth was lower than most private
forecasts.

Repeating the experiment over time, we find that the distribution of forecasts fluc-
tuates in twoways.First, it exhibitschanges in thecross-sectionalvarianceof theforecasts,
reflecting changes in degree of disagreement. Second, it exhibits large fluctuations over
time in relation to thestationary forecasts reflectingcorrelation in forecasters’viewsabout
unusual conditions at the time. Sometimes forecast distributions are below the stationary
forecast, whereas in May 2000 the distribution was above the stationary forecast. Observe
that the noted large data banks of market forecast distributions are publically available
for many variables because forecasters are willing to reveal their forecasts.

We thus note that for any variable, individual forecasts are correlated and the
average market forecast fluctuates around the stationary forecast. This nonjudgmen-
tal forecast is a central yardstick in the work reviewed later. Also, observe that the
cross-sectional variance of forecasts fluctuates over time.

Despite the impact of the rational expectations paradigm, belief heterogeneity has
been used to explain many phenomena such as asset price volatility, risk premia, volume
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TABLE 8.1 May 2000 BLUE Forecasts of Growth and Inflation
Rates for the Full Year 2000

May 2000 Forecasted Percent Change Real GDP
in Forecast for 2000 GDP Growth Price Deflator

First Union Corp. 5.3H 2.0

Turning Points (Micrometrics) 5.2 2.1

J. P. Morgan 5.2 2.1

Evans, Carroll & Assoc. 5.1 2.2

Mortgage Bankers Association 5.1 2.1

Goldman Sachs Group, Inc. 5.1 2.1

U.S. Trust Company 5.1 2.0

U.S. Chamber of Commerce 5.1 2.0

Bank of America Corp. 5.1 2.0

Morgan Stanley Dean Witter 5.1 1.9

Wayne Hummer Investments LLC 5.0 2.3

Bank One Corp. 5.0 2.1

Nomura Securities Co. 5.0 1.9

Merrill Lynch 5.0 1.9

Perna Associates 4.9 2.3

National Assn. of Home Builders 4.9 2.1

Macroeconomic Advisers, LLC 4.9 2.1

Prudential Securities, Inc. 4.9 2.0

LaSalle National Bank 4.8 2.3

Conference Board 4.8 2.3

Wells Capital Management 4.8 2.2

DuPont 4.8 2.1

Northern Trust Company 4.8 2.1

Chicago Capital, Inc. 4.8 2.0

Deutsche Bank Securities 4.8 1.8

Chase Securities, Inc. 4.8 1.8

Credit Suisse First Boston 4.8 1.8

Comerica 4.7 2.4

Moody’s Investors Service 4.7 2.2

Fannie Mae 4.7 2.0

Federal Express Corp. 4.7 2.0

SOM Economics, Inc. 4.7 1.9

National Assn. of Realtors 4.7 1.9

National City Corporation 4.7 1.9

ClearView Economics 4.7 1.9

(Continued)
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TABLE 8.1 (Continued)

May 2000 Forecasted Percent Change Real GDP
in Forecast for 2000 GDP Growth Price Deflator

Eggert Economic Enterprises, Inc. 4.6 2.1

WEFA Group 4.6 1.9

Eaton Corporation 4.6 1.9

Bear Stearns & Co., Inc. 4.6 1.2 L

Ford Motor Company 4.5 1.8

Motorola 4.5 1.7

Standard & Poors Corp. 4.5 1.7

UCLA Business Forecasting Project 4.4 2.1

Inforum–University of Maryland 4.4 2.0

Prudential Insurance Co. 4.4 1.9

Weyerhaeuser Company 4.3 2.2

DaimlerChrysler AG 4.3 2.0

Georgia State University 4.2 2.2

Kellner Economic Advisers 4.2 2.0

Econoclast 4.1 2.0

Naroff Economic Advisors 4.0 L 2.5 H

of trade, and money nonneutrality. There are two general theories of rational behav-
ior motivated by the observed diversity. One follows the Harsanyii doctrine, viewing
people as Bayesians who hold the same prior probability but with asymmetric private
information used in forecasting.

Examples of supporting papers include Grossman and Stiglitz (1980), Phelps (1970),
Lucas (1972), Diamond and Verrecchia (1981), Townsend (1978, 1983), Singleton
(1987), Brown and Jennings (1989), Grundy and McNichols (1989), Wang (1994),
He and Wang (1995), Judd and Bernardo (1996, 2000), Morris and Shin (2002, 2005),
Woodford (2003), Hellwig (2002, 2005), Angeletos and Pavan (2006), Angeletos and
Werning (2006), Allen, Morris, and Shin (2006), and Hellwig, Mukherji, and Tsyvinski
(2006).

An alternative view sees no evidence for the use of private information in forecasts
of market prices or economic aggregates. It finds no justification for a common prior
and insists that diverse beliefs about state variables are inevitable in a complex world.
A sample of papers taking this approach include Harrison and Kreps (1978), Varian
(1985, 1989), Harris and Raviv (1993), Kurz (1994, 1996, 1997a, 1997b, 1997c, 2007)
Detemple and Murthy (1994), Frankel and Rose (1995), Kandel and Pearson (1995),
Cabrales and Hoshi (1996), Kurz and Beltratti (1997), Brock and Hommes (1997,
1998), Kurz and Motolese (2001, 2007), Kurz and Schneider (1996), Kurz and Wu
(1996), Kurz, Jin and Motolese (2005a, 2005b), Nielsen (1996, 2003, 2005, 2006),
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Motolese (2001, 2003), Wu and Guo (2003, 2004), Fan (2006), Acemoglu et al. (2007),
Nakata (2007), and Guo and Wu (2007).

We first clarify the differences between these two theories and examine whether
they solve the problems outlined. Since the range of issues is wide, we concentrate on
rationalized beliefs, and this excludes two types of models. The first type is behavioral
finance and noise trading models, in which belief diversity arises from psychological but
irrational motives. The second is learning models with common information, typically
models of convergence to rational expectations; hence in these models belief diversity
is not persistent. Before turning to an evaluation of the difference between these two
approaches, it is useful to clarify the standards we set for advocating or rejecting a
theory.

Since standard models explain dynamics with exogenous shocks and these are not
sufficient to explain the data, to explain excess volatility we search for mechanisms
of endogenous amplification. In addition, it will become clear that not all belief het-
erogeneity generates market dynamics. Hence, we ask, What must be the structure
of heterogeneity for belief diversity to matter? The data reveal that heterogeneity per-
sists; therefore the two key criteria for effective diversity in any theory are that it has
aggregate effects and that these effects are nonvanishing. The nonvanishing condition
is challenging to models of asymmetric information under rational expectations since
information revelation of prices leads back to a common belief, and hence diversity
cannot persist. Asymmetric private information in a rational expectations equilibrium is
therefore usually supplemented with a “noisy” mechanism to avoid revelation. But then
we must ask whether such a mechanism is natural or is it just an artificial construct? Is
it testable? Requiring diversity to have persistent aggregate effects implies that hetero-
geneity by itself is not sufficient and it must be supplemented with dynamic features. To
understand the importance of this fact, consider two examples:

1. Beliefs are diverse, randomly and independently distributed over agents with a fixed
distribution over time. Here an agent’s belief measured by, say, a density over states,
changes over time but is randomly determined. The IID distribution causes a cancel-
lation of the effects of beliefs; hence there is a constant, typically small, aggregate
effect. Such a distribution implies that diversity is irrelevant.

2. Beliefs are heterogeneous with a fixed distribution of beliefs so that the belief of each
agent is fixed on that distribution. An agent always has the same superior or inferior
information, or else specific agents are always more optimistic or more pessimistic
than others. A fixed belief distribution also implies that prices, volume of trade,
and risk premia fluctuate only in response to exogenous shocks; hence we are back
to a theory, rejected by the data, that publicly observed exogenous shocks are the
only cause of fluctuations. Such distributions of beliefs do not generate the desired
endogenous amplification to explain excess volatility.

These examples show that the dynamics of beliefs over time are essential, and the
question is, what is their source? Under asymmetric private information such dynamics
could be generated by an exogenous flow of private information, which entails a process
of belief updating. How effective or plausible such an assumption is must be carefully
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weighed, and we discuss it in detail in Section 8.2.3. The situation is different under
diverse beliefs with common information, since dynamics and rationality are inherently
interrelated. We explain in Section 8.3.1 that the central principle that drives the theory
of rational heterogeneous beliefs is that rational diversity of correlated beliefs without
private information implies market volatility.

The chapter is organized as follows: Section 8.2 reviews the structure of noisy REE
asset-pricing theory. It shows that although this theory has many useful features, it fails
to deliver a consistent theory of financial market dynamics. Indeed, volatility and vol-
ume of trade decline with belief diversity. Section 8.3 reviews the theory of diverse
beliefs with common information. It shows that the theory delivers a consistent and
plausible model of endogenous amplification and provides a foundation for understand-
ing market dynamics. Section 8.4 reviews simulation models based on the theory in
Section 8.3. It shows that simulations of models with diverse beliefs match the observed
data well. Finally, Section 8.5 reviews some open problems.

8.2. CAN MARKET DYNAMICS BE EXPLAINED
BY ASYMMETRIC PRIVATE INFORMATION?

The literature on asset pricing in “noisy” REE under asymmetric private information is
large, and Brunnermeier (2001) provides a good survey. We discuss it in three stages.
In Section 8.2.1 we present a universally used model with exponential utility. In Sec-
tion 8.2.2 we discuss dynamic versions of the model. In Section 8.2.3 we evaluate the
developed ideas.

8.2.1. A General Model of Asset Pricing under Asymmetric Information

The model reviewed here is an adaptation of the short-lived trader model of Brown and
Jennings (1989). Similar models were used by Grossman and Stiglitz (1980), Diamond
and Verrecchia (1981), Singleton (1987), Grundy and McNichols (1989), Wang (1994),
He and Wang (1995), Bacchetta and van Wincoop (2005, 2006), Allen, Morris, and Shin
(2006), and others.

There is a unit mass of traders, indexed by the [0, 1] interval and a single aggre-
gate asset with unknown intrinsic unit value V. The economy is static with one period
divided into three trading dates (no discounting): At date 1, traders first receive public
information y and private signals xi about the asset value and then they trade. At date 2
they trade again. At date 3 (or end of date 2) uncertainty is resolved, the true liqui-
dation value V is revealed and traders receive it for their holdings. Public information
is that V is distributed in accord with V ∼ N (y, 1

α ). The private signal xi about V is
xi = V + εi, where εi satisfy εi ∼ N (0, 1

β ) independently across i. (α, β) are known.
Since these facts are common knowledge, agents know the true unknown value V is
“in the market,” since by the law of large numbers the mean of all private signals is
the true value V . Trader i starts with Si units of the aggregate asset and can borrow
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at zero interest rate to finance trading. (Di
1,Di

2) are i’s demands in the first and sec-
ond rounds and (p1, p2) are market prices in the two rounds. Ending wealth is thus
W i = Sip1 +D

i
1(p2 − p1) +Di

2(V − p2).
All traders are assumed to have the same utility over wealth u(W i) = −e−(W i/τ), and

they maximize expected utility. Aggregate supplies (S1,S2) of shares, each representing
an asset unit, traded in each of the rounds, are random, unobserved, and independently
normally distributed with mean zero. This noise is crucial to ensure that traders cannot
deduce from prices the true value of V . In a noisy REE traders maximize expected
utility of final wealth while markets clear after traders deduce from prices all possible
information. Indeed, Brown and Jennings (1989) show that equilibrium price at date 1
is of the form

p1 = κ1(λ1y + μ1V − S1) (8.1a)

and since S1 is normally distributed, p1 is also normally distributed. Keep in
mind that V and S1 are unknown, hence Eq. 8.1a shows that prices are not fully
revealing.

Since over trading rounds V remain fixed, more rounds of trading generate more
price data from which traders deduce added information about V . But with additional
supply shocks the inference problem becomes more complicated. That is, at date 2 the
price p2 contains more information about V , but it depends on two unobserved noise
shocks (S1,S2). Hence, the price function is shown to be time dependent and at date 2
takes the form

p2 = κ̂2(λ̂2y + μ̂2V − S2 + ψS1) (8.1b)

Since the realized noise S1 is not observed, traders condition on the known price p1

to infer what they can about S1. They thus use a date 2 price function, which takes an
equivalent form

p2 = κ2(λ2y + μ2V − S2 + ξ21p1) (8.1c)

By Eq. 8.1a, equivalence means κ2 = κ̂2, λ2 = (λ̂2 + λ1ψ),μ2 = (μ̂2 + μ1ψ) and ξ21 =
− ψ
κ1

. Denote by (Hi
1,Hi

2) the information of i in the two rounds. The linearity of the
equilibrium price map implies that the payoff is normally distributed. Brown and Jen-
nings (1989) show in their Appendix A that there exist constants (G1,G2), determined
by the covariance matrix of the model’s random variables and assumed by most writers
to be the same for all agents, such that the demand functions of i are

Di
2(p2) =

τ

Vari(V |Hi
2)

[Ei(V |Hi
2) − p2] (8.2a)

Di
1(p1) =

τ

G1
[Ei(p2|Hi

1) − p1] +
(G2 − G1)

G1
[Ei(Di

2|Hi
1)] (8.2b)
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Most writers assume Vari(V |Hi
2) = σ2

V independent of i. The second term in Eq. 8.2b
is the “hedging demand” arising from a trader’s date 1 perceived risk of price change
between date 1 and date 2. The hedging demand in a noisy REE complicates the infer-
ence problem and raises equilibrium existence problems. As a result, most writers
ignore this demand and study myopic-investor economies, where there are only “short-
lived” traders who live one period only. They first trade in date 1, gain utility from p2,
and leave the economy. They are replaced by new short-lived traders who receive the
information of the first traders but trade in date 2 only and gain utility from the revealed
V . None of them have hedging demands. A “long-lived” trader lives through both peri-
ods, trades in dates 1 and 2, and hence has a hedging demand. For simplicity we follow
here the common practice and ignore the second term in Eq. 8.2b. We now average on
i, equate to supply and conclude that

p2 = E2(V ) − (
1
τ

)σ2
V (S1 + S2), p1 = E1(p2) − G1

τ
S1 (8.3)

E2(V ) is date 2 average market forecast of V and E1(p2) is average market forecast
of p2. In this case G1 = Vari1(p2) and it is assumed this variance is the same for all i.
Hence, the proof of Eqs. 8.1a and 8.1b amounts to exhibiting a closed form solution of
E2(V ) and solving the joint system in Eq. 8.3.

The derivation of Eqs. 8.2a and 8.2b used a general form of conditional expectations
and required only that prices are normally distributed. It is thus a general solution for
any informational structure used in the conditioning and it does not depend on the pri-
vate character of information. Hence, Eqs. 8.2a and 8.2b are applicable to models with
diverse beliefs and common information as long as their implied prices are normally dis-
tributed. Moreover, differences among theories of diverse beliefs are expressed entirely
by differences in their implications to the conditional expectations in Eqs. 8.2a and 8.2b.
In the case of asymmetric private information discussed here, Eq. 8.2a shows that Di

2
depend on date 2 expectations, which are updated based on the information deduced
from p2 and p1. This is different from date 1 information, which consists of a public
signal, private signals, and inference from p1 only. This is why equilibrium price maps
are time dependent. Allen et al. (2006) present in their Appendix A computations of
the closed-form solution. To get an idea of the inference involved, we briefly review the
steps they take.

What does a trader learn in Round 1? Given a prior belief V ∼ N (y, 1
α ), trader

i observes p1 = κ1(λ1y + μ1V − S1). Since S1 ∼ N (0, 1/γ1), all he infers from date
1 price is that

[1/(κ1μ1)](p1 − κ1λ1y) = V − [S1/μ1] ∼ N (V , 1/(μ2
1γ1))

But now his added piece of information is the private signal xi = V + εi, εi ∼ N (0, 1
β ).

Using a standard Bayesian inference from these three sources, his posterior belief
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becomes

Ei
1(V |Hi

1) =
αy + βxi + μ2

1γ1
1

κ1μ1
(p1 − κ1λ1y)

α + β + μ2
1γ1

=
(α − μ1γ1λ1)y + βxi + μ1γ1

κ1
p1

α + β + μ2
1γ1

(8.4a)

with precision

α + β + μ2
1γ1 (8.4b)

Averaging Eq. 8.4a over the population, we can see that the average market forecast at
date 1 is then

E1(V |H1) =
(α − μ1γ1)y + βV + μ1γ1

κ1
p1

α + β + μ2
1γ1

≡ αy + (β + μ2
1γ1)V

α + β + μ2
1γ1

− μ1γ1S1

α + β + μ2
1γ1

In Round 2 a trader observes p2, which, as seen in Eq. 8.1c, is a function of p1. Given
p1 and the fact that S2 ∼ N (0, 1

γ2
), he infers from p2 = κ2(λ2y + μ2V − S2 + ξ21p1) that

[1/(κ2μ2)](p2 − κ2λ2y − κ2ξ21p1) = V − [S2/μ2] ∼ N (V , 1/(μ2
2γ2))

He now updates Eqs. 8.4a and 8.4b. Since supply shocks are IID, the updated posterior
is standard

Ei
2(V |Hi

2) =

[
(α − μ1γ1λ1)y + βxi + μ1γ1

κ1
p1

α + β + μ2
1γ1

]
(α + β + μ2

1γ1) +
1

κ2μ2
(P2 − κ2λ2y − κ2ξ21p1)(μ2

2γ2)

α + β + μ2
1γ1 + μ

2
2γ2

Simplification leads to

Ei
2(V |Hi

2) =
[α − μ1γ1λ1 − μ2γ2λ2]y + βxi + [μ1λ1

κ1
p1 +

μ2γ2
κ2
p2 − μ2γ2ξ21p1]

α + β + μ2
1γ1 + μ

2
2γ2

(8.5a)

Var(V |Hi
2) =

1

α + β + μ2
1γ1 + μ

2
2γ2

(8.5b)

Finally, to compute Eq. 8.1c we average Eq. 8.5a to conclude that

E2(V ) =
[α − μ1γ1λ1 + μ2γ2λ2]y + βV + [ μ1λ1

κ1
p1 +

μ2λ2
κ2
p2 − μ2γ2ξ21p1]

α + β + μ2
1γ1 + μ

2
2γ2

(8.6a)
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E1(p2) = κ2(λ2y + μ2E1(V ) + ξ21p1) (8.6b)

We now solve for prices by inserting Eqs. 8.6a and 8.6b into Eq.8.3. The final step is
to match coefficients of the price functions and identify (κ1, λ1,μ1, κ2, λ2,μ2, ξ21). For
more details of these computations see Allen et al. (2006), Appendix A. This verifies
that prices are indeed normally distributed as in Eqs. 8.1a and 8.1b.

What is the length of memory in prices? Multiple trading rounds provide opportuni-
ties to deduce more information from prices about V. As trading continues, information
on all past prices is used, since prices depend on all past unobserved supply shocks.
In such a case, the price system is not a finite memory Markov process. The model
has been extended to multiperiod trading whereby V is revealed N periods later (see
Brown and Jennings, 1989; Grundy and McNichols, 1989; He and Wang, 1995; and
Allen et al., 2006). In these models the complexity of inference depends on the pres-
ence of a hedging demand of long-lived traders. However, for both long- and short-lived
traders, the number of trading rounds is an arbitrary modeling construct. It would thus
be instructive to examine the limit behavior. In a third round of trading by short-lived
traders, the price map becomes

p3 = κ3(λ3y + μ3V − S3 + ξ31p1 + ξ32p2)

Hence, the independent supply shock leads to an updating rule, which is again standard:

Ei
3(V |Hi

3) =
Ei(V |Hi

2)(α + β + μ2
1γ1 + μ

2
2γ2) +

1
κ3μ3

(P3 − κ3λ3y − κ3ξ31p1 − κ3ξ32P2)(μ3
2γ3)

α + β + μ2
1γ1 + μ

2
2γ2 + μ

2
3γ3

By expressing individual and market forecasts in terms of the unobserved variables,
one can easily extend the above to N rounds of trade, and it can be shown that they take
the general form

Ei
N (V |Hi

N ) =

αy + βxi +
N∑
j=1
μ2
j γjV

α + β +
N∑
j=1
μ2
j γj

−

N∑
j=1
μjγjSj

α + β +
N∑
j=1
μ2
j γj

(8.7)

A standard argument shows the μj converge. For simplicity assume γj = γ. The inde-
pendence of the noise Sj together with Eq. 8.7 and the law of large numbers imply that
with probability 1 the first term converges to V and the second converges to 0. Hence,
in the limit, with probability 1, all forecasts converge to the true V and the effect of the
public signal y disappears. This proves that repeated trading leads to a full revelation of
the true value and that in the limit, p = V and at that time traders do not forecast prices
at all. With repeated trading the effect of y disappears. If the unit of time is short, like
a month, trading rounds are not really limited. Hence this result contradicts the claim
(e.g., see Allen et al., 2006) that the effect of the public signal y on prices lingers on
forever.
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Allen et al. (2006) use the model to explain the Keynes (1936) Beauty Contest. To
see how, recall that E(Si) = 0. Then Eq. 8.3 implies that if there are N rounds of trade,
then

p1 = E1E2 . . . EN (V ) − [Var1(p2)/(τ)]S1 (8.8)

The authors then propose that Eq. 8.8 represents the Beauty Contest metaphor, since the
price is not equal to the market expectations of V but rather to the average expectation
of what the market expects the average expected value of V will be in the future. We
comment on this interpretation in Section 8.3.5.

What have we learned so far? The key conclusions of the private information
paradigm are that equilibrium prices vary with each date’s true intrinsic value of the
asset and with the random supply shock of that date, both of which are fundamental fac-
tors. Private information, as such, has no separate direct effect on price volatility since
the effect of private information is averaged out by the law of large numbers. Hence, the
model does not possess the endogenous amplification we seek. In addition, since supply
shocks are never observed, the repeated inference causes prices to have infinite memory.
In applications such as Brown and Jennings (1989) and Grundy and McNichols (1989),
this property was used to explain the phenomenon of “Technical Analysis” defined as
the traders’ use of past prices, in addition to today’s price, to form their demand. More
broadly, the static model of asymmetric private information was used in widely diverse
applications. One of the more celebrated application in macroeconomics are the Phelps
(1970) and Lucas (1972) island models.

8.2.2. Dynamic Infinite Horizon Models

In the model of Section 8.2.1, trades can occur, but it is not a truly dynamic model.
Extensions to infinite horizon were developed for many applications, and to get a sense
of the issues involved, we review two very different applications. We start with Wang’s
(1994) study of trade volume.

Wang’s (1994) aim is to overcome the no-trade theorems of REE and explain the
volume of trade in asset markets. With REE perspective, his hypothesis is that trade is
the result of asymmetric private information. Using his notation, he assumes that agent
i maximizes expected utility over consumption flows −Ei

t [
∑∞
s=0 β

se−γc
i
t+s|Hi

t ] where
expectations are conditioned on information of i. Wang (1994) assumes that there are
two assets with payoff in consumption units. A riskless asset with infinitely elastic
supply pays a constant rate r and where R = 1 + r. The second asset is a risky stock
with a fixed supply set at 1, which pays a dividend Dt at date t. The law of motion of
dividend is

Dt = Ft + εD,t where Ft = aFFt−1 + εF ,t

(εD,t, εF ,t) are IID normally distributed, zero mean shocks. Here Ft is the persistent
component of the dividend process and εD,t is the transitory component. The structure
of information is intended to ensure that a closed-form solution is possible. To that end
Wang (1994) assumes that there are two types of investors. I-investors have perfect
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private information and observe Ft. The U -investors receive only a noisy signal about
Ft in the form St = Ft + εS,t where εS,t are IID normal, zero mean shocks. Since all
investors observe the dividends, the I-investors observe the persistent as well as the
transitory components of dividends, whereas the U -investors observe neither.

In addition to the public asset, Wang (1994) assumes the I-investors have a private
production technology that is risky and constant returns to scale. If they invest at t the
amount It, they receive at t + 1 the amount It(1 + r + qt+1), where excess return on the
private technology qt+1 follows:

qt+1 = Ξt + εq,t+1 and Ξt+1 = aΞΞt + εΞ,t+1

(εq,t+1, εΞ,t+1) are IID normal, zero mean shocks. Expected excess return Ξt is observed
only by the I-investors. This sharp information structure is called hierarchical since it
requires one class of investors to permanently have inferior information. The economy’s
structure is common knowledge, and all agents are Bayesians with normal priors about
parameters they do not know.

Two forces are used to explain the volume of trade. First, asymmetric information
between the U - and the I-investors is measured by σ2

S = var(εS,t). If St = Ft, infor-
mation about the stock is symmetric and var(εS,t) = 0. When σ2

S > 0 we have St �= Ft
and information is asymmetric. Second, the private technology of the I-investors is
unavailable to the U -investors. The effect of this factor on asset demands operates
via the correlation between private excess returns qt+1 and dividends, measured by
σD,q—the covariance of εD,t+1 with εq,t+1. To understand how this correlation impacts
asset demands and trade, suppose that σD,q �= 0 and Ξt increases leading I-investors to
increase investments in private technology because expected return on such investments
increased. But due to Cov[εD,t+1, εq,t+1] �= 0, such increased investment changes the risk
posture of their portfolio, calling for control of the risk by changing their investments in
the publicly traded stock. If σD,q > 0, control of risk leads to lower investments in the
stock; if σD,q < 0, it leads to increased demand for the stock.

The effect of asymmetric information about the private technology is thus due to
the need of the I-investors to control their risk, whereas the U -investors are unable to
distinguish between changes in Ft and Ξt. It shows that the setup of public and private
technologies is crucial for Wang’s (1994) results. Without private technology, just the
asymmetry St �= Ft does not lead to trade, since in this case the uninformed investors
deduce Ft from prices, so Wang’s (1994) REE becomes fully revealing and we are back
to no trade. With σD,q �= 0 the price is linear in Ft and Ξt, and uninformed investors
are “confused” and cannot deduce either one from the price. This confusion of the
U -investors makes it impossible for them to determine the cause of price changes. The
U -investors now use the history of the process to conduct a Kalman Filtering to form
expectation of their unobserved Ft. In sum, Wang (1994) shows that the model gener-
ates trade due to the exogenous shocks Ft and Ξt, which cause time variability in the
investment composition of the I-investors.

We pause briefly to examine the causes of price and volume volatility in models of
noisy rational expectations equilibria. In the earlier models, equilibrium prices, such as
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Eqs. 8.1a and 8.1b, vary only with exogenous shocks to supply. In Wang (1994) prices
vary only in response to exogenous shocks Ft and Ξt. This result continues to hold in all
other dynamic models of private information, such as He and Wang (1995). What is the
effect of increased diversity of private information? In the earlier models, private infor-
mation was so diverse that the law of large numbers was invoked and, as a result, private
information had no effect on prices. If diverse private information is to be the cause of
trade, we would expect that increased diversity of private information should increase
the volume of trade. The problem is that Wang (1994, page 145) shows the opposite:
Increased diversity of private information decreases the volume of trade. This results
from the fact that rising diversity of private information causes uninformed traders to
have rising difficulties in deducing from prices useful information needed for trade.
We thus conclude that in noisy REE price volatility and volume of trade are caused
by exogenous shocks, whereas diverse private information does not cause or explain
them. We are thus back to the standard model without any endogenous amplification
effect.

A second example is Woodford (2003), who revisits the Lucas (1972) model. It is
motivated by the fact that Lucas (1972) explains transitory effects of monetary policy
but fails to account for the observed fact that monetary disturbances have persistent real
effects. Woodford assumes that agents are Dixit-Stiglitz monopolistic competitive price
setters who select the nominal price of their product but cannot set the real price since
they do not observe the aggregate price level and aggregate output. Although producers
cannot observe the real price, their own output is determined by the real price. Aggregate
nominal GNP is the exogenous state variable (e.g., determined by monetary policy). In
equilibrium date t aggregate price level and aggregate output are functions of date t
nominal GNP and of all higher-order market expectations (i.e., market expectations of
market expectations of . . .) about it. As in Lucas (1972), agents cannot observe nominal
GNP and receive private signals about it. Being rational, they learn from the available
information and, as in Wang (1994), use a Kalman filtering procedure to learn about
the unobserved state variable. With incomplete learning of the persistent exogenous
nominal GNP, Woodford (2003) demonstrates persistent money nonneutrality.

Limited space prevents our discussing other applications. Examples include
Townsend (1978, 1983); Amato and Shin (2006); Hellwig (2002, 2005) and Angele-
tos and Werning (2006), who study business cycles; Morris and Shin (2002, 2005), who
study the transparency of monetary policy; Singleton (1987), who studies bond markets;
Bacchetta and van Wincoop (2006); Hellwig, Mukherji, and Tsyvinski (2006), who
study the volatility of foreign exchange rates; and many other policy-oriented papers
using global coordination games. These applications use persistent belief heterogeneity
to explain the behavior of market aggregates. However, why is it asymmetric private
information that should provide a basis for heterogeneity? With asymmetric private
information agents clearly make different forecasts. Therefore there is the temptation
to assume private information to model diversity, and many authors have done just that.
This is so common that for some, agents with different opinions are synonymous to
agents with different private information. Such identification should be rejected. Pri-
vate information is a very sharp sword that must be used with care. As we have seen,
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deducing information from prices is complicated and should be employed only when
well justified. The virtual equivalence between belief diversity and private information
is particularly wrong in macroeconomic applications when agents are assumed to have
asymmetric private information with respect to aggregate variables such as interest rates
or growth rate of GNP. We have serious doubts about the applicability of the private
information paradigm to study asset market dynamics and will now pause to evaluate
the results derived so far.

8.2.3. Is Asymmetric Information a Satisfactory Theory of Market Dynamics?

In questioning the use of asymmetric private information assumption, we recall that
phenomena studied with private information include the volatility of asset price indices,
interest rates, risk premia, foreign exchange rates, business cycles, and the like. In
such models individual agents forecast aggregate variables. We thus break our query
into two questions. First, does the model of asymmetric private information deliver a
satisfactory mechanism of market volatility? Second, as a modeling device, is it rea-
sonable to assume that economic agents have private information about such aggregate
variables?

Starting with the first question, our answer is no. In all noisy REE with diverse
and independent private signals, asymmetric private information has no impact either
on price volatility or on volume of trade. In general, increased diversity of private
information decreases volatility and volume of trade. In any noisy REE, all dynamic
characteristics are fully determined by either the standard exogenous shocks such as
dividends or exogenous “noise,” which is often questionable if it is unobserved. Since
we aim to explain excess volatility of markets with mechanisms of endogenous amplifi-
cation, it follows that the asymmetric private information paradigm does not offer such
amplification; rather, it leads us simply back to the traditional causes of market dynam-
ics. We examine the second question by outlining five problems raised by models of
noisy rational expectations equilibria:

1. What is the data that constitute “private” information? For the case of individual
firms, the nature of private information is clear, and we discuss it under 2. Now, if
forecasters of GNP growth or future interest rates use private information, one must
specify the data to which a forecaster has an exclusive access. Without it one cannot
interpret a model’s implications, since all empirical implications, are deduced from
restrictions imposed by private information. In reality it is difficult to imagine the
data that constitute private information.

2. Without correlation, private information explains little. Even if some agents have
some private information about some firms, an aggregate model may have no impli-
cations for market dynamics. To deduce any implications, private information has to
be repetitive over time, correlated, and widespread. There is no empirical evidence
for that. Indeed, all models of noisy REE assume private information to be IID dis-
tributed, and in that case private information has no effect on volatility, asset pricing,
or any other dynamic characteristics.
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3. Asymmetric information implies a secretive economy. Forecasters take pride in their
models and are eager to make their forecasts public. Consequently, there are vast
data files on market forecasts of many variables. In discussing public information,
forecasters explain their interpretation of information, which is often framed as “their
thesis.” In contrast, an equilibrium with private information is secretive. Agents do
not divulge their private information, since it would deprive them of the advantage
they have. In such an equilibrium, private forecast data are treated as sources of new
information used by all to update their own forecasts. The fact that forecasters are
willing to reveal their forecasts is not compatible with private information being the
cause of persistent divergence of forecasts.

4. If private signals and noise are unobserved, how could common knowledge of the
structure be attained, and how can we falsify the theory? For us to deduce pri-
vate information from public data, the structure of private signals must be common
knowledge. For example, in Section 8.2.1, xi = V + εi, where εi are pure noise,
independent across i. A simple question arises: If these are not publicly observed
signals, how does common knowledge come about? How does agent i know her own
signal takes the form xi = V + εi and that the signal of k is xk = V + εk? Also, if
the crucial data of a theory are not observable, how can one falsify the theory? What,
then, are the true restrictions of the theory?

5. Why are private signals more informative than audited public statements? Most
results of models with private information are based on the assumption that private
signals are more informative than public information. For example, in the model of
Section 8.2.1, the public signal is y = E(V ), where V is unknown. Knowing y is
inferior to knowing V . The private signals are xi = V + εi with εi IID and there
is a continuum of traders. It is then assumed that “the market” aggregates the pri-
vate xi and learns V ; hence equilibrium price is a function of the unknown V . This
procedure raises two questions:

• Why are private signals more precise than the professionally audited public
statements?

• Who does the aggregation and knows the IID structure needed for aggregation?
If that agent is a neutral agent, why does he not announce V? Or if he is not
neutral, he should be part of the model.

In summary, models with an asymmetric private information paradigm fail to explain
the observed volatility and the assumptions made have questionable empirical basis.
Hence, we must conclude that asymmetric private information is not a persuasive
assumption for modeling market dynamics.

8.3. DIVERSE BELIEFS WITH COMMON INFORMATION:
THE GENERAL THEORY

Rational expectations and behavioral economics have staked out two extreme posi-
tions in contemporary thinking. Under rational expectations people know all structural
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details needed for perfect forecasting, whereas under behavioral economics they are
driven by psychological impulses that lead to irrational behavior. The theory of ratio-
nal belief offers an intermediate concept of rationality that begins with imperfection
of human knowledge, assumes people optimize given the limited knowledge they have,
and concludes with a recognition that with imperfect knowledge rational people make
mistakes. Rational mistakes may be magnified to a point where changing perceptions
dominate public life and asset markets. This is the road to rational diverse beliefs and
endogenous amplification that we explore. Before proceeding, we mention the papers
of Harrison and Kreps (1978), Varian (1985, 1989), Harris and Raviv (1993), Detem-
ple and Murthy (1994), Kandel and Pearson (1995), and Cabrales and Hoshi (1996).
These, together with the early writers mentioned in the Introduction, recognized the
importance of diverse expectations. We do not review them since they did not anchor
the theory with a concept of rationality. In this connection we also note the adaptive
equilibrium model of Brock and Hommes (1997, 1998) in which agents are boundedly
rational.

8.3.1. A Basic Principle: Rational Diversity Implies Volatility

In contrast with asymmetric private information models, we now explain that theories of
rational diverse beliefs provide a mechanism for endogenous amplification of volatility.
Start by noting that any model discussed here assumes that agents do not know a true
probability and hold diverse beliefs about it. This induces two basic questions. First,
why do agents not know what they do not know? Second, what is their common know-
ledge basis? Before proceeding to these questions we clarify our notation. The symbols
Π and m are reserved for special probability measures over infinite sequences to be
defined shortly. Letters such as Q or P describe probabilities over infinite sequences.
However, it is useful to think of a “belief” as a collection of conditional probabilities.
Hence, instead of i’s belief Qi, we also use terms like belief or date t belief in refer-
ence to date t conditional probability Qi(·|Ht), where Ht is date t information. Here
belief, or date t belief, refers to a density, a joint distribution or transition function
at t that is a component of Qi. This abuse of notation avoids multiple definitions of
belief and should not be confusing when the context is clear. We now return to the two
questions.

Starting with the second question, although assumptions about what is common
knowledge vary, one answer is general: It is past data on observed variables. There is a
vector of observable economic variables xt ∈ R

N over time with a data-generating pro-
cess under a true unknown probability Π on infinite sequences. At t, agents have a long
history of past observations (x0, x1, . . . , xt), allowing rich statistical analysis. Given this
data, all agents compute the same finite dimensional distributions of the data; hence all
know the same empirical moments, if they exist. They then deduce from the data an
empirical probability on infinite sequences denoted by m, which is then the empirical
common knowledge of all. It will be seen later that m is stationary. Turning now to the
first question, the basic cause of diverse beliefs is the fact that m and Π are not the same.
We briefly explain why.
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Our economy has undergone changes in technology and institutions, and these have
had deep economic effects, rendering the data process {xt, t = 1, 2, . . .} nonstationary.
Although this means that the distributions of the xts are time dependent1, a simple way
to express it is to say that the data process constitutes a sequence of “regimes.” But each
“regime” is relatively short, with insufficient data to enable agents to learn each of these
regimes with any degree of precision. Just to recall a sample of environments we have
witnessed in recent years, note that before 1973 to 1979 we had never seen oil shocks
and before the 1980s we had never encountered a S&L crisis of the size we had. The
dot-com technology cycle of 1996 to 2001 resulted from the novelty of the Internet and
the market’s failure to predict the timing of its effect: Google was not even a factor then.
Finally, the current subprime mortgage crisis results from the fact that the securitization
it generated has never been seen before. One source of the crisis is the fact that there is
no prior data with which we can predict with accuracy the effect of lower home prices
on the rate of default of these securities. In short, it is impossible to learn the unknown
probability Π. The stationary probability m (if it exists) is then just an average over an
infinite sequence of changing regimes. It reflects long-term frequencies, but it is not the
true probability under which the data are generated. Belief diversity arises when agents
believe that m is not the truth and the past is not adequate to forecast the future. All
surveys of forecasters show that subjective judgment contributes more than 50% to final
forecasts (e.g., Batchelor and Dua, 1991). Individual subjective models are thus the way
agents express their interpretation of the data. Being common knowledge, the stationary
probability m is a reference point for any rationality concepts.

Is it rational to believe that m is the truth? Those who believe that the economy is sta-
tionary hold this belief. The theory of rational beliefs (see Kurz, 1994, 1997a) defines
an agent to be rational if her model cannot be falsified by the data m. The theory then
has a simple implication that addresses the crucial question of dynamics. It says that an
agent’s date t belief cannot be constant or time invariant unless she believes the sta-
tionary probability m is the truth. To see why, consider an agent who holds a constant
belief at date t (e.g., time-invariant transition function), which is different from the one
implied by m. Since it is constant, the time average of his belief is not m. Since m is
the time average in the data, this proves that the agent is irrational. In simple terms, it
is irrational to be permanently optimistic or pessimistic relative to m. By implication, if
a rational agent’s belief persists in disagreeing with m, then such a belief must fluctuate
over time around m. Hence rationality induces dynamic fluctuations on the level of indi-
viduals! Now assume that a population exhibits a persistent diversity of beliefs across
agents. It implies that most hold beliefs that disagree with m. But then, we have seen
that this requires individual beliefs to fluctuate over time. Finally, for an aggregate effect
of beliefs, we only add the empirically established fact (see Section 8.3.4, “Individual
States of Belief”) that individual beliefs are correlated, and this leads to the conclusion
that rational diversity implies aggregate dynamics.

1The technical definition of “nonstationary” that we use requires the process to be time dependent, and this is
the customary terminology in ergodic theory and stochastic processes. It is different from the use of this term
in the time series literature, which requires the process to have infinite variance.
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Diversity of beliefs without private information is often questioned by asking how
agents could be wrong and rational at the same time. The idea that rational agents may
be wrong relative to an unknown truth is a central component of the theory. Indeed,
when rational agents hold diverse beliefs while there is only one true probability law
of motion, then most agents are wrong most of the time. Since agents’ beliefs are
correlated, the average market belief is also often wrong, and this is the source of
endogenous propagation of market risk and volatility, called endogenous uncertainty
by Kurz (1974) and Kurz and Wu (1996). Sections 8.3.2 and 8.3.3 provide a precise
outline of these ideas.

8.3.2. Stability and Rationality in a General Nonstationary
Economy

In a stationary economy, joint probabilities are time invariant and the Ergodic Theo-
rem holds: Time averages equal expected values under the true probability, and this
probability is deduced from relative frequencies of events. In such environments, the
empirical distribution reveals the truth, and since human history is long, agents learn
the structure from the data. The fact is that the real data-generating mechanism is
not stationary, and history, matters. The question is then how can we discuss ratio-
nality and empirical distributions in a complex environment? What is the regularity we
can use for analytical evaluation? The answer leads to a definition of rational beliefs,
which we outline now. The development in this section is based on the material in
Kurz (1994).

Let xt εX ⊆ R
N be a vector of the N observables and let x = (x0, x1, x2, . . .). Let a

future sequence from t on be xt = (xt, xt+1, xt+2, . . .), hence x0 ≡ x. The history to date
t is defined by (x0, x1, x2, . . . , xt). Let X∞ be the space of infinite sequences x, and let
B(X∞) be the Borel σ-field of X∞. Events in B(X∞) are denoted by letters U , S, T ,
and so on. For an event SεB(X∞) define the sets S (k) =

{
x|xkεS, k ≥ 0

}≡ the event
S occurring k periods later. Clearly, S = S (0).

Definition 8.1. A set SεB(X∞) is said to be invariant if S (1) = S.

Definition 8.2. A probability Π on (X∞, B(X∞)) is said to be ergodic if for any
invariant set S we have Π(S) = 1 or Π(S) = 0.

Throughout the discussion we assume ergodicity so as to simplify the exposition.
Under this assumption we develop the basic equivalence theorem, which is the basis of
the theory of rational belief. We start with the concept of statistical stability. For any
finite dimensional set UεB(X∞) define the following time average:

mn(U )(x) =
1
n

n−1∑
k=0

1U (xk) =
{

The relative frequency that U occurred
among n observations since date 0

}
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where

1U (y) =
{

1 if y ∈ U
0 if y ∈ U.

Although the set U is finite dimensional, it can be a complicated set. For example:

U =

{
State 1 today ≤ $1, State 6 next year ≥ 16,
2 ≤ State 14 five years later ≤ 5

}

Definition 8.3. (Property 1) A probability Q on (X∞, B(X∞)) is statistically stable if
for each cylinder (i.e., finite dimensional) set U ∈ B(X∞):

(1) lim mn(U )(x) = mQ(U )(x) exists Q a.e.

Since by ergodicity mQ(U )(x) is Q a.e. independent of x, we add the notation:

(2) mQ(U )(x) = mQ(U ) Q a.e.

The restriction to finite-dimensional sets results from the fact that we have only
finite data; hence we cannot ascertain whether an infinite dimensional event actually
occurred.2 The first property of statistical stability means that the process satisfies the
conclusions of the ergodic theorem, although it does not satisfy the standard condi-
tion of stationarity used to prove it. Hence, data generated by a stable process have the
property that relative frequencies of events converge and all finite moments exist.

The limits in Definition 8.3 might not exist for infinite dimensional sets. Hence the set
function defined by the preceding limits is not a probability. However, standard exten-
sion theorems permit extension of mQ to a probability measure on (X∞, B(X∞)). To
avoid multiple notation, we do not distinguish between these two set functions and
denote the extension mQ as well. We also have:

Theorem 8.1. mQ is unique and stationary. It is thus called the stationary measure
of Q.

We now introduce the concept of weak asymptotic mean stationary probability
measure.

Definition 8.4. (Property 2) A probability Q on (X∞, B(X∞)) is weak asymptotic
mean stationary if for each cylinder set U ∈ B(X∞) the limit

lim
n→∞

1
n

n−1∑
k=0

Q(U (k)) = mQ(U )

exists.

2This in contrast to the theory of checking rules (e.g., Dawid, 1985), which can be effectively implemented
only “at infinity” after one has infinite number of observations.
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Averaging probabilities of future events U (k) is like averaging over date t beliefs over
time. Such average is required to converge. The set function mQ(S) is not a probability,
but by extension one deduces a probability on (X∞, B(X∞)) that is unique and station-
ary. Again, use the same notation for the extension. Thus, if Q is weak and asymptotic
mean stationary, then mQ is the probability on (X∞, B(X∞)) induced by Property 2. A
key result of the theory can now be stated:

Theorem 8.2. Properties 1 and 2 are equivalent and mQ(S) = mQ(S) for all events
S ∈ B(X∞).

Theorem 8.2 says a data-generating process that is statistically stable with probabil-
ity Q has an associated stationary probability mQ = mQ, which can be computed in two
different ways. First, it can be deduced empirically from relative frequencies computed
from the data generated by the process. Second, it can be deduced analytically by aver-
aging probabilities of each event over future dates. How do we use this equivalence to
define the rationality of belief?

The data process under Π is nonstationary and we now assume it is statistically stable
and ergodic. This is a reasonable assumption because in our economy additional data
increase accuracy of statistical analysis and moments exist. Agents do not know Π and
compute empirical frequencies from the data. Using extension, they discover from the
data3 the probability m induced by the dynamics under Π. We reserve the notation m(U )
for the limit of the empirical frequencies under Π; hence, under our convention m ≡ mΠ.
This is the stationary measure of Π and we refer to it as the stationary measure, or the
empirical distribution. Although agents have only finite data, we assume they actually
know the limits m(U ) in Definition 8.3, an assumption made for simplicity.4 All have
the same data; hence there is no disagreement among agents about the probability m.

If the economy was actually stationary, m = Π but agents could not know this fact.
The fact is that m �= Π and we seek a concept of rationality of belief that requires an
agent to hold a belief that is not contradicted by the empirical evidence represented by
the probability m.

3We always have only finite data that enable agents to compute at date t only mt(U )(x). This depends on
the data used and with time mt(U )(x) converges to the limit probability. The assumption made in the text is
that the data sequence is very long and the probability m is simple enough (i.e., Markov with short memory)
that with finite data agents can obtain a good approximation for the limit measure m. The assumption that
agents know the limits is very strong and should not be interpreted to mean we assume that agents have an
infinite sequence of observations, since in that case agents will consider not only limits on sequences but also
limits on all infinitely many possible subsequences. With finite data we can observe only a finite number of
subsequences at all dates; for this reason we do not incorporate restrictions that would be implied by limits
on subsequences. We also note that in the nonergodic case the data requirement is greater, since then we need
data for many alternative sequences x with different starting points, but the basic theory remains unchanged.
For details see Kurz (1994).
4The assumption that the limit in Definition 8.3 is known to the agents is made to avoid the complexity of an
approximation theory. Without this assumption the diversity of beliefs would be increased due to the diverse
opinions about the finite approximations that would be made by different agents. In this context we also
mention that the assumption of ergodicity is also not needed and is not made in Kurz [1994].
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Definition 8.5. A probability belief Q is said to be a rational belief relative to m if

1. Q is a weak asymptotic mean stationary probability on (X∞,B(X∞)),
2. mQ(S) = m(S) for all events S ∈ B(X∞).

A rational agent holds a belief Q that is compatible with the empirical evidence m if:

lim
n→∞

1
n

n−1∑
k=0

Q(S (k)) = mQ(S) = m(S)

for all cylinder sets S ∈ B(X∞).
The first of these conditions is checked analytically by averaging date t beliefs and

these should average to a probability mQ. The second condition requires that mQ = m
where m is common knowledge in the market.

Three implication of Definition 8.5 are notable:

1. Π is a rational belief and hence rational expectations are also rational beliefs.

2. m is a rational belief, although it is not the truth, since m �= Π.

3. A rational belief is generally not equal to Π, showing that agents are wrong and
rational at the same time. Agents holding rational beliefs disagree more about the
short-term forecasts of variables than about forecasts of long-run averages of these
same variables. For example, we expect greater disagreement about the forecast of
one-year inflation or output growth than about averages of these variables over the
next ten years.

Applications of these concepts requires a simplification of the general rationality
conditions in Definition 8.5. We thus start with two examples that use a method due to
Nielsen (1996).

EXAMPLE 8.1
Agents observe a black box generating numbers xt in {0, 1} without long-term serial cor-
relation between xt and xt+k all k > 0. Using a long dataset, they find the mean is 0.5.
The probability m is then the probability measure induced by a sequence of IID random
variables on {0, 1} with probability of 1 being 0.5. If the box contains a single coin, the x
sequence has an empirical distribution of an IID fair coin, which is the truth. What other
processes generate the same empirical measure? As an example, consider a belief in a two-
coin family that uses the realization of an IID sequence of random variables gt, t = 0, 1, . . .
in {1, 2} with probability of 1 being, say, 1/3. A sequence is produced in advance, and is
therefore known to the agent. Pick an infinite sequence g = (g0, g1, g2, . . .). These realiza-
tions of gt = 1 or gt = 2 are treated as fixed parameters of a new process. It is defined by
a process {vt ∈ {0, 1}, t = 0, 1, . . .} with two IID coins in the box that appear at different
times, depending on the g = (g0, g1, . . .). vt is then a sequence of independent random
variables of the form

P{vt = 1} =
{

0.60 if gt = 1 (coin type 1)
0.45 if gt = 2 (coin type 2)

(8.9a)
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Since (1/3)(0.60) + (2/3)(0.45) = 0.50, the empirical distribution is the same as m for
almost all g and v. It is easy to see that instead of two possible “regimes” we could
have an infinite number of regimes. Note that we have not even specified the true
probability Π.

EXAMPLE 8.2
The data x reveal that the empirical probability m is represented by, say, a 10-dimensional
matrix M. Again, select an IID sequence of random variables gt, t = 0, 1, . . . in G = {1, 2}
with a probability of 1 being, say, α. Next, construct a joint probability on infinite
sequences (g, x) on the space ((X × G)∞,B((X × G)∞)), assuming the joint (g, x) pro-
cess is a stationary Markov process on a 2 × 10 transition matrix. Suppose that over these
20 (g, x) states the matrix takes the form

F =
[
αF1 (1 − α)F1

αF2 (1 − α)F2

]
(8.9b)

States in the upper part of F are of g = 1 and in the lower part of g = 2; hence, the
marginal of F on g is the IID distribution (α, (1 − α)). Now, when gt = 1 the probabilities
assigned to xt+1 are given by F1, and when gt = 2 the probabilities of xt+1 are given by F2.
The nonstationary probability we seek is represented by the conditional probability of F
given g. What is the empirical distribution under this conditional probability? Assuming
Theorem 8.2 applies we compute the mean probability. With probability α the matrix F1 is
used, and with probability (1 − α) the matrix F2 is used. Hence the stationary distribution
implied by the conditional probability of F on g is the expected value αF1 + (1 − α)F2. It
follows from Definition 8.5 that F is a rational belief if M = αF1 + (1 − α)F2.

Note that in Example 8.1 we define a rational belief by knowing in advance the
infinite sequence g = (g0, g1, . . .). In Example 8.2 we select only the matrix F so that at
date t our forecaster knows his type gt but is uncertain about gt+1. This approach is the
one we follow in the rest of this chapter.

8.3.3. Belief Rationality and the Conditional Stability Theorem

By its own nature, nonstationarity is difficult to describe since it entails a potential infi-
nite variability. Examples 8.1 and 8.2 reveal a simple method to describe nonstationary
probability of a real system or as an agent’s belief. The question is, how general are such
systems, and is there a general principle that generalizes Examples 8.1 and 8.2 to sta-
ble but nonstationary systems? The conditional stability theorem (Kurz and Schneider,
1996) gives the answer. We explain it now.

Although the theorem holds for general dynamical systems we avoid excessive
formalism and discuss here only stochastic processes with probability measures over
infinite sequences under which the data are generated.5 We characterize a family

5In the language of Ergodic Theory, the theorem applies to general dynamical systems, but we confine our
attention only to dynamical systems under a shift transformation. Since we approach the problem from the
point of view of stochastic processes, we avoid the notation of Ergodic Theory altogether.



462 Chapter 8 • Rational Diverse Beliefs and Market Volatility

of probabilities described by sequences of parameters in G ⊆ R
L. These parameters

represent structural change and could be thought of as a sequence of “regimes” over
time. To do that, consider joint sequences of (xt, gt) ∈ X × G generated under a prob-
ability P over the space ((X × G)∞,B((X × G)∞)). The following theorem is stated
under the assumption that P is stationary, although it is sufficient that it be stable. Now,
let Pg be a regular conditional probability of x given g. That is:

Pg (S) : G∞ × B(X∞) → [0, 1] g ∈ G∞ S ∈ B(X∞) (8.9)

such that for eachS ∈ B(X∞),Pg (S) is a measurable function of g and for each g,Pg (•)
is a probability on (X∞,B(X∞)). We now consider the data (xt, t = 0, 1, 2, . . .) as being
generated under the conditional probability Pg parametrized by g, where we consider gt
as the parameters of the regime in place at date t. The question we ask is, under what
conditions is the data-generating system under the probability Pg (•) stable for almost
all parameter sequences g?

Before proceeding, we pause and ask how we should think of the joint system.
The joint process on data and parameters could be considered in two ways. One is
as a description of the way our world evolves, inducing statistical regularity of the
data-generating process. The joint system is then a true unobserved law of motion of
our economy, the gt ∈ G are unobserved parameters, and the statistical properties of
the parameters are interrelated with the statistical properties of the data. Both arise from
the stability of the joint system. Or else, which is the way we use it here, the joint pro-
cess is a model that a rational agent uses to formulate his belief. The parameter gt then
pins down the state of belief or the agent “type” at date t.

To proceed, we need two technical definitions. Let PX be the marginal measure of P
on (X∞,B(X∞)) and PG be the marginal of P on (G∞,B(G∞)) defined by

PX (S) = P (S × G∞) for all S ∈ B(X∞)

PG(Y ) = P (X∞ × Y ) for all Y ∈ B(G∞)

Our perspective is then simple. The joint is a process on data and parameters under
P , but the data (xt, t = 0, 1, 2, . . .) is generated under the conditional probability Pg
parametrized by g.

Theorem 8.3. Conditional Stability Theorem (Kurz and Schneider 1996)—Suppose G
is countable and the probability P on ((X × G)∞,B((X × G)∞)) is stationary and
ergodic. Then:

• The conditional probability Pg is stable and ergodic for P almost all g. The
stationary measure of Pg is denoted by mPg .

• mPg is independent of g P almost all g.
• mPg = PX .

A sufficient condition for stability and ergodicity of Pg is then the stability and ergod-
icity of P . In addition to the stability of the conditional probability Pg , we also have the
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result that the stationary measure of Pg is the marginal measure PX . It is well known
that for all S ∈ B(X∞) we have

P (S × G∞) =
∫
G∞

Pg (S)PG(dg)

Hence, PX is computed by averaging the conditional probability Pg over frequencies at
which it is used, as is the case in Examples 8.1 and 8.2.

The theorem defines a general family of probabilities that are rational beliefs relative
to a known m. That is, let the data be generated under a stable, ergodic, but unknown
probability Π with a stationary measure m. Now an agent formulates a joint process
of (x, g) under probability P , which induces, with parameters g, a belief Pg on data
sequences x. The question is then under what condition is Pg a stable and ergodic ratio-
nal belief? Theorem 8.3 tells us that if the joint P is stationary and ergodic, then Pg is
stable and ergodic with a stationary measure satisfying mPg = PX . It is a rational belief
if the joint satisfies PX = m. The joint is then a model an agent uses to formulate his
belief. Our development that follows is based on this way of constructing beliefs relative
to a known empirical probability m. But since we also assume Gaussian processes with
a continuum of states, we comment on Theorem 8.3’s condition that G is countable. In
general, Theorem 8.3 is false for continuum state space without more restrictions. For
Gaussian processes the theorem holds and we can give a direct proof. A more general
theorem is given by Nielsen (2007) for Harris processes.

Theorem 8.3 offers a tractable way to describe beliefs about general asset structures.
To simplify exposition, we concentrate in the rest of this chapter on a simple asset
structure. To that end we postulate an exogenous environment in which there is a sin-
gle risky asset or a single risky portfolio of assets paying an exogenous risky payoff
{Dt, t = 1, 2, . . .} with a nonstationary and unknown true probability. We assume that
the available long history of the data reveals that the empirical distribution of the Dt’s
constitute a Markov process with transition

Dt+1 = μ + λd(Dt − μ) + ρdt+1 ρdt+1 ∼ N (0, σ2
d)6

and unconditional mean μ. Let dt = Dt − μ; then the process {dt, t = 1, 2, . . .} is a zero
mean, nonstationary with unknown true probability Π and empirical probability m.
Hence, {dt, t = 1, 2, . . .} has an empirical distribution that implies a transition function
of the first-order Markov process

dt+1 = λddt + ρ
d
t+1 ρdt+1 ∼ N (0, σ2

d) (8.10a)

Since the implied stationary probability is denoted by m, we write Em[dt+1|dt] = λddt.

6As will shortly be explained, in many applications the dividend or payoff Dt grows without bound, does
not have a finite mean, and has growth rates that have an empirical distribution characterized by a stationary
transition of a Markov process. The same applies to other statistically stable processes with trends, in which
case the concept of stability is applied to growth rate data, not to the absolute quantities.
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We also review papers that assume finite state spaces. In simulation work which study
volatility it is assumed Dt+1 = vt+1Dt, where vt is the random growth rate of dividends,
which is a Markov process over a finite state space. In studying the equity risk premium
Mehra and Prescott (1985) assume vt takes two values. They find that the long-term
empirical distribution is represented by a stationary and ergodic Markov process over a
state space that reflects extreme business cycle states of “recession” and “expansion.”
They estimate the transition matrix of the two states to be[

ϕ 1 − ϕ
1 − ϕ ϕ

]
ϕ = 0.43 (8.10b)

Is the stationary model of Eq. 8.10a or 8.10b the true process? Those who believe the
economy is stationary would accept Eq. 8.10a or 8.10b as the truth. Most do not believe
past empirical record is adequate to forecast the future, and this leads to nonstationary
and diverse beliefs. The problem is, then, how do we describe an equilibrium in such an
economy? The belief structure is our next topic.

8.3.4. Describing Individual and Market Beliefs with Markov
State Variables

The approach taken by Theorem 8.3 raises a methodological question. In formul-
ating an asset-pricing theory, do we need to describe in detail each agent’s model? Are
such details needed for a study of price dynamics? Although an intriguing question,
we suggest that such details are not needed. To describe an equilibrium, all we need is
to specify how beliefs affect agents’ perceived stochastic transition of state variables.
Once specified, Euler equations are well defined and market clearing leads to equilib-
rium pricing. Theorem 8.3 leads to this approach by proposing to treat individual beliefs
as state variables, generated within the economy.7 This is the approach we now explain.

Start with the fact that agents who hold heterogeneous beliefs are willing to reveal
their forecasts when surveyed. We thus assume that distributions of individual fore-
casts are publicly observable. An individual’s belief is described with a personal state
of belief that uniquely pins down his perception of the transition to next period’s state
variables. It follows that personal state variables and economy-wide state variables are
not the same. A personal state of belief is the same as any other state variables in an
agent’s decision problem but can also be interpreted as defining the “type” of agent who
is uncertain of her future belief type but knows the dynamics of her belief state. The dis-
tribution of belief states is then an economy-wide state variable. Endogenous variables
depend on the economy’s state variables. Hence, moments of the market distribution

7In using Theorem 8.3 there are two possible approaches that can be taken. The first is based on Nielsen
(1996), who treats the infinite sequence gt of parameters as fixed and known to each agent in advance, as in
Example 8.1. Hence, in Example 8.1 a belief is a Dirichlet distribution in (G∞,B(G∞)). In this chapter we
follow the developments in Kurz and Motolese (2001), Kurz, Jin, and Motolese (2005a, 2005b), and Kurz
and Motolese (2007), who treat the sequence gt as state variables that define the belief of an agent or identify
his type. These papers assume that at date t an agent does not know his own type at date t + 1.
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of beliefs may have an effect on endogenous variables such as prices. Also, in a large
economy, an agent’s anonymity means that a personal state of belief is perceived to have
a negligible effect on prices and is assumed not to be public. Some papers assume an
exponential utility that results in equilibrium endogenous variables depending only on
the mean market belief. Finally, in the following discussion the set of agents is implicit
and not specified: It might be finite or infinite. It is specified when needed.

Individual States of Belief

We introduce agent i’s state of belief at t, git , which pins down his transition functions.
Apart from “anonymity,” we assume that agent � knows his own g�t and the distribution
of the git over the agents for all past dates τ ≤ t. This last assumption is justified by
the fact that an infinite horizon economy consists of a sequence of decision makers. An
agent knows his states of beliefs but does not know the states of belief of all his own
specific predecessors. Past belief distributions are public information, since samples of
git are made public. We specify the dynamics of git by

git+1 = λZg
i
t + ρ

ig

t+1 ρ
ig

t+1 ∼ N (0, σ2
g ) (8.11)

where ρ
ig
t are correlated across agents, reflecting correlation of beliefs across

individuals. The state of belief is a central concept and Eq. 8.11 is taken as a primitive
description of type heterogeneity. One can, however, deduce Eq. 8.11 from more
elementary principles (see the next subsection).

How does git pin down the stochastic transition? In various models agent i’s percep-
tion of date t distribution of dt+1 (denoted by dit+1) is described by using the belief state
as follows:

dit+1 = λddt + λ
g
dg

i
t + ρ

id
t+1 ρidt+1 ∼ N (0, σ̂2

d) (8.12)

The assumption that σ̂2
d is the same for all i is made only for simplicity. An agent

who believes the empirical distribution is the truth expresses it by git = 0. It follows that
given information Ht, the state of belief git measures the deviation of her forecast from
the empirical stationary forecast

Ei[dit+1|Ht, git] − Em[dt+1|Ht] = λ
g
dg

i
t (8.13)

Eq. 8.13 shows how git is measured in practice. For any xt, publicly available
data on i’s forecasts of xt+h, measure Ei[xt+h|Ht, git], where h is the forecast hori-
zon. To estimate the difference in Eq. 8.13 one then uses standard techniques such as
Stock and Watson (2001, 2002, 2005) to compute the stationary forecast Em[xt+h|Ht].
Average market belief is then computed by averaging the left side of Eq. 8.13 over
agents. Fan (2006) and Kurz and Motolese (2007) offer examples of such construction.
Figures 8.1, 8.2, and 8.3 illustrate the time series of average market belief with hori-
zon of six-month for the six-month Treasury Bill rate, for percent change in the GDP
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FIGURE 8.1 Six-month Treasury Bill rate: six-months-ahead market belief.
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FIGURE 8.2 GDP deflator for inflation rate: two-quarters-ahead market belief.
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FIGURE 8.3 Month-over-month, annualized growth rate of industrial production: six-months-ahead
market belief.
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deflator (measuring inflation) and growth rate of industrial production. For each vari-
able, the average forecasts are given by the blue-chip financial forecasts, whereas
Em[xt+h|Ht] is computed by Kurz and Motolese (2007) using methods of Stock and
Watson (2001, 2002, 2005).

In Figures 8.1 and, 8.3, average market belief fluctuates around zero as predicted by
the theory, even during the short period at hand. In Figure 8.2 this pattern is not exactly
maintained by market belief about inflation due to persistent deviations of inflation fore-
casts from the normal pattern during the 1980s and early 1990s. Over a longer horizon,
the pattern of fluctuations around zero is restored. All three figures are compatible with
the Markov property assumed in Eq. 8.11 (and later in Eq. 8.15).

Note that since belief variables arise from structural change, git in 1900 has nothing
to do with the one in 2000: They reflect different social and technological environments.
Also observe that a belief git is not “information” about unknown structural parameter;
rather, it describes the opinion of agent i. Hence, agents do not treat individual beliefs
of others as information, and even if they observed them they do not deduce from them
anything about unknown parameters.

Deducing the Dynamics of Individual Belief from Bayesian Inference

Although Eq. 8.11 is a primitive, we can deduce it from elementary principles. There are
many ways to do this; we review the approach of Kurz (2007). He shows how subjective
interpretation of data arises from public qualitative information, which always accom-
panies the release of quantitative data. To highlight this idea, note first that a Markov
property in Eq. 8.11 is not surprising since Bayesian posteriors have a Markov form.
This is not sufficient, since if agents knew that the dividend process has an unknown
parameter b, which takes the form

dt+1 − λddt = b + ρdt+1 ρdt+1 ∼ N
(

0,
1
β

)

then a Bayesian posterior would be a convergent belief sequence. Hence, the key object
is to explain where the random term in Eq. 8.11 comes from.

From Eqs. 8.16a and 8.16b, agents know λd, and Kurz (2007) assumes they also
know that under the true probability Π the transition of dt is

dt+1 − λddt = bt + ρ
d
t+1 ρdt+1 ∼ N

(
0,

1
β

)
(8.14)

bt are the unknown, exogenous time-varying mean values of dt+1 − λddt and hence git
are beliefs about bt. Since there is no universal method to learn a sequence of param-
eters, Kurz (2007) outlines a Bayesian updating procedure that is supplemented by
subjective estimates of dt+1 − λddt, which are based on qualitative public information.
We start with the qualitative data.

Qualitative data about all aspects of our economy are provided at all times, and finan-
cial markets pay a great deal of attention to them. Profit is just one number in a financial
report that covers many additional issues. Firms may announce new research projects,
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new organizational structures, or new products. Qualitative data are rarely compara-
ble over time. For example, when a firm starts research into a new topic, no past data
exist on it. Qualitative information is modeled by Kurz (2007) in the form of quali-
tative statements that can potentially impact future profits. The list of statements may
change with time and the impact on profits may be positive or negative. For each state-
ment, a realization at t + 1 may be a “success” or “failure” in its effect on profits. Agent
i has subjective maps from the list of potential successes or failures to potential future
value of (dt+1 − λddt). Finally, conditional on the statements, agent i attaches subjective
probabilities to vectors of successes or failures, and by taking expected value she makes
a subjective estimate Ψi

t of (dt+1 − λddt). Ψi
t varies with time since new statements

are made each date. Because the long-term average of (dt+1 − λddt) is zero, rational-
ity requires the Ψi

t to be zero mean random variables. We now examine an alternative
Bayesian updating procedure for estimating the same quantity.

Kurz (2007) starts the updating process by assuming that β in Eq. 8.14 is known. At
first decision date t (say, t = 1), an agent has two pieces of information. He observes dt
and receives public qualitative information with which he assesses Ψi

t. Without Ψi
t his

prior belief at t = 1 is normal with mean b. However, to start the process, he uses both
sources to form a prior belief Ei

t (bt|dt,Ψi
t) about bt (used to forecast dt+1). However, the

changing parameter bt leads to a problem. When dt+1 − λddt is observed, Agent i updates
his belief toEi

t+1(bt|dt+1,Ψi
t)

8 in a standard Bayesian procedure. But he needs an estimate
of bt+1, not of bt. Hence, his problem is how to go from Ei

t+1(bt|dt+1,Ψi
t) to a prior of

bt+1. Without new information, his belief about bt+1 is unchanged and Ei
t+1(bt|dt+1,Ψi

t)
would be the new prior of bt+1. This is his first estimate of bt+1. Next the agent observes
the qualitative information released publicly before trading at t + 1, which provides an
alternate subjective estimate Ψi

t+1 of bt+1. Now the agent has two independent sources
for belief about bt+1: Ei

t+1(bt|dt+1,Ψi
t) and Ψi

t+1. Kurz (2007) now assumes:

Assumption 8.1. Agent i uses a subjective probability τ to form date t + 1 prior belief
defined by

Ei
t+1(bt+1|dt+1,Ψi

t+1) = (1 − τ)Ei
t+1(bt|dt+1,Ψi

t) + τΨ
i
t+1 0 < τ ≤ 1

At t = 1 it was assumed that the initial prior mean is b, hence for consistency, if Ψi
t is

Normal, then

b1 ∼ N
(

(1 − τ)b + τΨi
1,

1
ϑ

)
for some ϑ.

This assumption is the element that permits Ei
t+1(bt|dt+1,Ψi

t) to be upgraded into a
prior belief at date t + 1, Ei

t+1(bt+1|dt+1,Ψi
t+1), before dt+2 is observed. The following

result is then shown:

8We use the notation Eit (bt|dt,Ψi
t) for the prior belief at date t about the unknown parameter bt used

to forecast dt+1. We then use the notation Eit+1(bt|dt+1,Ψi
t) for the posterior belief about bt given the

observation of dt+1. Assumption 8.1 will then use this posterior belief as a building block in the formation
of the new prior Eit+1(bt+1|dt+1,Ψi

t+1).
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Theorem 8.4. (Kurz, 2007): Suppose Ψi
t ∼ N (0, 1

v ), IID and Assumption (8.1) hold.
Then there exists a constant 0 < κ < 1 such that for large t the prior belief Ei

t (bt|dt,Ψi
t)

is a Markov random variable, and by identifying git = Ei
t (bt|dt,Ψi

t) and (1 − τ)κ = λZ
we have that the dynamics of Eq. 8.11 hold: Assumption 8.1 implies Eq. 8.11.

Theorem 8.4 shows that as the length of the data increases with time, nothing new
is learned. The posterior fluctuates forever, but its dynamic law of motion converges.
That is, in the limit Eq. 8.11 holds and any new data alter the conditional probability
of agents but do not change the law of motion of git . If τ = 0, the agent ignores all
qualitative information and the posterior converges. But the results hold no matter how
small τ is, since even the slightest perturbation of the Bayesian updating process cause it
to fluctuate forever. This result is compatible with the work of Freedman (1963, 1965),
who first demonstrated the general nonconvergence of Bayesian posteriors in an IID
context but when the parameter space is countable. The work of Acemoglu et al. (2007)
also relates to the issue of diversity in a setting in which the data do not permit an
identification of the state.

Individual Perceptions, Market Belief, and Endogenous Amplification

We assume that the market is large and anonymous and that the distribution of beliefs
is observable; hence its moments are known. Let Zt =

∫
gitdi be the first moment and

refer to it as average market belief. Due to correlation across agents, averaging over the
agents does not result in a constant, and the average εt =

∫
ρ
ig
t di is a random variable,

not a constant 0. Hence we have

Zt+1 = λZZt + εt+1 (8.15)

Correlation of ρigt across agents may exhibit nonstationarity, and that would be inherited
by the ε process. The empirical distribution of the ε process is denoted by a process ρZ .
If the ε process is stationary, εt = ρZt . Since the Zt are observable, market participants
have data on the joint process (d,Z); hence they know their joint empirical distribution.
We assume that, this distribution is described by the system of equations

(8.16a) dt+1 = λddt + ρ
d
t+1

(8.16b) Zt+1 = λZZt + ρ
Z
t+1

⎛
⎝ρdt+1

ρZt+1

⎞
⎠ ∼ N

((
0

0

)
,

[
σ2
d 0

0 σ2
Z

]
= Σ

)
IID

Eqs. 8.16a–8.16b are the first formal structure to explain the mechanisms of endoge-
nous amplification of volatility. We started with one exogenous shock, and we find that
correlation of beliefs expanded the economy’s state space to include an aggregate mar-
ket belief variable. If this variable affects prices, it causes endogenous amplification
of market dynamics and volatility. Note that Zt does not arise from individual choice;
rather, it is a market externality arising from the correlation of individual beliefs. Indeed,
in the theory reviewed here, the emergence of the distribution of market belief, as an
observable variables that has economic impact, is the single most important develop-
ment. But, to demonstrate that amplification is actually present, we need to show that
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equilibrium prices depend on market beliefs. This suggests a natural definition that is
useful in assessing equilibria:

Definition 8.6. An economy exhibits endogenous uncertainty if an equilibrium price
map is a function of the market belief.9

We now explain agent i’s perception model. In Eq. 8.12, gti pins down agent i’s fore-
cast of dit+1. We now broaden this idea to a perception model of the two state variables
(dit+1,Zi

t+1) given dt and Zt. Following Theorem 8.3, her belief takes the joint form:

(8.17a) dit+1 = λddt + λ
g
dg

i
t + ρ

id
t+1

(8.17b) Zi
t+1 = λZZt + λ

g
Zg

i
t + ρ

iZ
t+1

(8.17c) git+1 = λZg
i
t + ρ

ig

t+1

⎛
⎜⎜⎜⎜⎝
ρidt+1

ρiZt+1

ρ
ig

t+1

⎞
⎟⎟⎟⎟⎠ ∼ N

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝

0

0

0

⎞
⎟⎟⎟⎠,

⎡
⎢⎢⎢⎣
σ̂2
d σ̂2

Zd 0

σ̂2
Zd σ̂

2
Z 0

0 0 σ2
g

⎤
⎥⎥⎥⎦= Σi

⎞
⎟⎟⎟⎠

gt
i defines belief (dt+1,Zt+1), and Eqs. 8.17a and 8.17b show it pins down i’s perceived

transition of (dit+1,Zi
t+1). This simplicity ensures that one state variable pins down agent

i’s subjective belief; hence

Et
i

(
dt+1

Zt+1

)
− Etm

(
dt+1

Zt+1

)
=

(
λ
g
dgt

i

λ
g
Zgt

i

)

We stress two facts. First, market belief is shaped by correlation across individuals,
but such correlation is a market externality with implications to efficiency considera-
tions. Second, from the perspective of agents, Zt is an economy-wide state variable
like any other. But market belief is often wrong: It has forecast more recessions than
actually occurred. In contrast with asymmetric information models, agents do not use
Zt to update beliefs about future exogenous variables: Eq. 8.17a does not depend on
Zt. Agents do not view Zt as information about dt+1, since it is not a “signal” about
unobserved private information. They do consider Zt as crucial “news” about what the
market thinks about dt+1. Since t + 1 prices depend on t + 1 market belief, to forecast
future endogenous variables an agent must forecast Zt+1, which express future beliefs
of other agents.

Rationality Conditions for the Gaussian Model

Theorem 8.3 gives general rationality conditions, and we now explore the specific con-
ditions that must be satisfied by the perception models (Eqs. 8.17a–8.17c). We note first
that some rationality conditions have already been imposed. First, we argued that ratio-
nal agents exhibit fluctuating beliefs, since a constant belief that is not the empirical

9Earlier we stressed the notion of endogenous uncertainty as entailing excess price volatility due to the effect
of beliefs. The precise definition as given here was introduced in Kurz and Wu (1996) in the context of a
General Equilibrium model. Kurz and Wu (1996) define the term as a property of the price map that has
multiple prices for the same exogenous state.
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probability is irrational. Second, gti are required to have an unconditional zero mean
since beliefs are all about deviations from empirical frequencies. Third, any belief is a
conditional probability of a stationary joint system. We now turn to Eqs. 8.17a–8.17c.

For Eqs. 8.17a–8.17c to be a rational belief it needs to induce the same empir-
ical distribution of the observables (dt,Zt) as Eqs. 8.16a and 8.16b. In accord with
Theorem 8.3, we then treat gti symmetrically with other random variables and require
that for Eqs. 8.17a–8.17c to be a rational belief, we must have:

Empirical distribution of the process

⎧⎨
⎩
λ
g
dgt

i + ρidt+1

λ
g
Zgt

i + ρiZt+1

⎫⎬
⎭ =

(8.18)

the distribution of

⎛
⎝ρdt+1

ρZt+1

⎞
⎠ ∼N

⎛
⎝0

0
,

⎡
⎣σ2

d, 0,

0, σ2
Z

⎤
⎦
⎞
⎠, IID

To compute the implied statistics of the model, we first compute the moments of gti.
From Eq. 8.17c, the unconditional variance of gti is Var(gi) = σ2

g/(1 − λ2
Z ). Hence, we

have two sets of rationality conditions that follow from Eq. 8.18. The first arises from
equating the covariance matrix

(i)
(λgd)2σ2

g

1 − λ2
Z

+ σ̂2
d = σ2

d (ii)
(λgZ )2σ2

g

1 − λ2
Z

+ σ̂2
Z = σ2

Z (iii)
λ
g
dλ

g
Zσ

2
g

1 − λ2
Z

+ σ̂Zd = 0

The second set arises from equating the serial correlations of the two systems

(iv)
(λgd)2λZσ

2
g

1 − λ2
Z

+ Cov(ρ̂idt , ρ̂idt+1) = 0 (v)
(λgZ )2λZσ

2
g

1 − λ2
Z

+ Cov(ρ̂iZt , ρ̂iZt+1) = 0

(i) to (iii) fix the covariance matrix in Eqs. 8.17a–8.17c, and (vi)–(v) fix the serial
correlation of (ρ̂idt , σ̂iZt ). An inspection of Eqs. 8.17a–8.17c reveals the choice left for
an agent are the two parameters (λgd, λ

g
Z ). But under the rational belief theory, these are

not free either, since there are natural conditions they must satisfy. First, σ̂2
d > 0, σ̂2

Z > 0
place two strict conditions on (λgd, λ

g
Z ):

|λgd| <
σd
σg

√
1 − λ2

Z |λgZ | <
σZ
σg

√
1 − λ2

Z

Finally, we need to ensure the covariance matrix in Eqs. 8.17a–8.17c is positive definite.
The following is a sufficient condition

1 − λ2
Z

σ2
g

>
(λgZ )2

σ2
Z

+
(λgd)2

σ2
d
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The “free” parameters (λgd, λ
g
Z ) are thus restricted to a narrow range, which is

empirically testable.10

Comments on the Finite State Space Case

Much of the simulation work reported in Section 8.4 uses finite state space economies.11

For example, Kurz (1997c), Kurz and Beltratti (1997), Kurz and Schneider (1996), Kurz
and Motolese (2001, 2007), Motolese (2003), Nielsen (1996, 2003), Nakata (2007), and
Wu and Guo (2003) all use OLG models with two “dynasties” of finite lived agents in
which each agent has, at each date, two belief states. They assume that the sequence
of parameters gti are IID with Qi{gti = 1} = αi, but gt1 and gt2 are correlated. This
marginal distribution is fixed in the following discussion. The empirical distribution
of dividends is typically assumed as Markov on two values (dH , dL) with a transition
matrix as in Eq. 8.10b. We use this matrix together with Example 8.2 to review the main
ideas.

Starting with the endogenous amplification effect, note that although the exogenous
Markov dividend growth rate process takes two values, with two dynasties of agents,
each with two belief states, the economy’s state space is of Dimension 8. That is, the
economy has four market belief states defined by possible values of the pair (g1, g2) and
eight economy-wide states defined by the identification:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2

3

4

5

6

7

8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇔

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d = dH , g1 = 1, g2 = 1

d = dH , g1 = 1, g2 = 2

d = dH , g1 = 2, g2 = 1

d = dH , g1 = 2, g2 = 2

d = dL, g1 = 1, g2 = 1

d = dL, g1 = 1, g2 = 2

d = dL, g1 = 2, g2 = 1

d = dL, g1 = 2, g2 = 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.19)

10It may appear that the empirical evidence consists of more than the moments of the data series as stipulated
in Section 8.3.1 and Definition 8.1; that is, one should look not only at the full data series but also at subse-
quences. Kurz (1994) argues that economic time series have deterministic patterns in seasonal and cyclical
frequencies; hence if these are cleaned out so that we look at seasonally and cyclically and adjusted data,
then under ergodicity, with probability 1 the empirical distribution along any subsequence over dates whose
selection does not depend on the observed data is the same as the distribution along the entire sequence of
data. Also, with finite data there are always an infinite number of unobservable sequences. Hence, there are
no new restrictions that can be deduced from looking at subsequences. See Dawid (1985) for the Calibration
literature view on the question of rationality conditions along subsequences.
11States of belief are described either with finite or continuous state models. Continuous state models tend
to be more complex than discrete state models, which are more tractable, but the simulation results of the
two models are essentially the same. To avoid repetition we report later detailed results deduced only for
the continuous state models. Since a reader may find either one of these two more suitable for his or her
application, we describe in the text the basic structure of both models. Hence, on first reading, one may skip
the sections on finite state modeling and study these only after covering the full development of the continuous
state models together with the numerical results of the simulations described later in Section 8.4.
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The endogenous amplification in Eq. 8.19 induces an expansion of the state space
and explains how beliefs increase price volatility above the “fundamental” volatility
of dividends.

Under the assumptions of marginal Markov and IID distributions, the empiri-
cal distribution of the eight states is characterized by an 8 × 8 stationary transition
matrix M . Hence, this matrix has two important properties: The dividend transition
matrix (Eq. 8.10b) must be one marginal probability and the unconditional belief
probabilities Qi{gti = 1} = αi must be the second marginal probabilities. Denoting the
multiplication α[Mv,u] = [αMv,u], it turns out that M must take the form

M =

[
ϕM (a) (1 − ϕ)M (a)

(1 − ϕ)M (b) ϕM (b)

]
(8.20)

where M (a) and M (b) are 4 × 4 matrices that take the form

M (a) =

⎡
⎢⎢⎢⎣
a1 α1 − a1 α2 − a1 1 + a1 − α1 − α2

a2 α1 − a2 α2 − a2 1 + a2 − α1 − α2

a3 α1 − a3 α2 − a3 1 + a3 − α1 − α2

a4 α1 − a4 α2 − a4 1 + a4 − α1 − α2

⎤
⎥⎥⎥⎦

(8.21)

M (b) =

⎡
⎢⎢⎢⎣
b1 α1 − b1 α2 − b1 1 + b1 − α1 − α2

b2 α1 − b2 α2 − b2 1 + b2 − α1 − α2

b3 α1 − b3 α2 − b3 1 + b3 − α1 − α2

b4 α1 − b4 α2 − b4 1 + b4 − α1 − α2

⎤
⎥⎥⎥⎦

ϕ is due to dividends and (α1, α2) is due to individual beliefs. This leaves open a and
b, which reflect correlation among beliefs and between dividend growth and beliefs.
In an uncorrelated world ai = bi = 0.25 for all i. If beliefs and dividend growth are
uncorrelated a = b. Correlation does not arise by individual choices, hence (a, b) reflect
the externality of beliefs determined by social interaction and communication. It is the
crucial component of endogenous amplification of beliefs.

Now use Theorem 8.3 and Example 8.2 to define a Markov belief as a conditional
probability Qi(s|gti,Ht), s = 1, 2, . . . , 8, on the eight states in Eq. 8.19; implied by a
16 × 16 matrix F which is a joint probability on the eight economy-wide states and the
two individual belief states. By Theorem 8.3 (see also Example 8.2) agent i is using two
transition matrices (F1

i,F2
i), with a conditioning as follows:

Fv
i = Qi(•|gti = v,Ht) if gt

i = v for i = 1, 2, v = 1, 2

and αi is then the unconditional frequencies at which agent i uses matrix F1
i. Since M is

deduced from the data, rationality of belief requires the two pairs of matrices to satisfy
the conditions

M = αiF1
i + (1 − αi)F2

i for i = 1, 2 (8.22)
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Keeping in mind that the empirical distribution is given to an agent, rationality
implies that relative to M agent i can select only F1

i, since Eq. 8.22 implies that F2
i =

1
1−αi (M − αiF1

i). This imposes additional restrictions on F1
i due to the nonnegativity

inequality conditions M ≥ αiF1
i. In sum, we have:

Theorem 8.5. In the case of two types, two states of belief and two state Markov
process of the dividend process the set of all rational beliefs relative to M is character-
ized by the set of (0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1) and pairs of nonnegative transition matrices
(F1

i,F2
i), which satisfy Eq. 8.22.

But what are the matrices of the two agents? Since any two matrices (F1
i,F2

i) of
agent i are perturbations of M , there is a limited choice of matrices satisfying the
inequalities M ≥ αiF1

i. In the simulation models of asset volatility cited previously,
researchers chose a simple formulation that permits an agent to be either optimistic or
pessimistic about the probability of high dividend states tomorrow. To do that, note that
the first four rows and columns of M correspond to the high dividend state and the sec-
ond four rows and columns to the low dividend state. Hence, the 4 × 4 matrix ϕχiM (a)
would express optimism or pessimism by a factor χi, relative to ϕM (a), in transition
probabilities from a high dividend state today to a high dividend state tomorrow. For
F1

i to be a transition matrix one must also adjust the matrix (1 − ϕ)M (a).
For a specified parameter 0 ≤ αi ≤ 1 and subject to the nonnegativity restrictions

specified earlier, the following matrix is a rational belief that expresses optimism (if
χi > 1) or pessimism (if χi < 1) in transition to high dividend state from all states
today:

F i
1 =

[
ϕχiM (a) (1 − ϕχi)M (a)

(1 − ϕ)χiM (b) (1 − (1 − ϕ)χi)M (b)

]
(8.23)

In short, for a given (0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1) the set of rational beliefs of this form is
summed up by one parameter χi, which varies over an interval defined by the inequality
M ≥ αiF1

i. Now, if χi > 1, an agent using F1
i is optimistic about dt+1: his condi-

tional probability of dt+1 = dH is higher than the stationary probability implied by M .
When this agent uses F2

i, his conditional probabilities of dt+1 = dH are lower than the
probability implied by M . The results of these studies are reported later.

8.3.5. Asset Pricing with Heterogeneous Beliefs: An Illustrative
Model and Implications

Having outlined the structure of beliefs, we now return to the infinite horizon model
of Section 8.2.2 and adapt it to an economy with diverse beliefs but common informa-
tion. Assume a continuum of agents on [0, 1] and an exogenous risky payoff process
{dt, t = 1, 2, . . .} with an unknown stable and ergodic probability

∏
and empirical dis-

tribution described by a transition dt+1 = λddt + ρ
d
t+1 and where ρdt+1 ∼ N (0, σ2

d), IID.
The asset structure of the economy consists of an aggregate stock index (think of it
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as the S&P 500) and a risk-free bond. We assume the riskless rate r is constant over
time and positive; hence R = 1 + r > 1 and 0 < 1

R < 1. Agent i borrows the amount
Bt

i at t and receives with certainty Bt
iR at t + 1. At date t, agent i buys θit shares

of stock and receives dividend Dt = dt + μ for each θit−1 held. Consumption is then
standard: cti = θit−1[pt + dt + μ] + Bit−1R − θitpt − Bti. Equivalently, we define wealth
Wt

i = ct
i + θitpt + Bt

i and derive the familiar transition for wealth

W i
t+1 = (Wt

i − cti)R + θitπt+1 πt+1 = pt+1 + (dt+1 + μ) −Rpt (8.24)

πt is excess returns per share. For initial values (θi0,W i
0 ) the agent maximizes the

expected utility

Ei
t

(θi,ci)

[ ∞∑
s=0

−βt+se−(γcit+s)|Ht

]
(8.25)

subject to transitions Eqs. 8.17a–8.17c of the state variables ψit = (1, dt,Zt, gti). Ht is
date t information.

Our assumptions are restrictive. Constant R is not realistic and exponential utility
exhibits no income effects. Nevertheless, these assumptions have the great advantage
of leading to closed form solutions that are helpful vehicles to explain the main ideas.
Hence the term illustrative in this section’s title. To seek a closed-form solution we con-
jecture that prices are linear in the economy’s state variables; hence equilibrium price
pt is conditionally normally distributed. In Theorem 8.4 we confirm this conjecture. For
an optimum (for details, see the Appendix of Kurz and Motolese, 2007) there exists a
constant vector u, so the demand functions for the stock is

θit (pt) =
R

γrσ̂2
π

[Eti(πt+1) + uψit ], u = (u0, u1, u2, u3), ψit = (1, dt,Zt, git ) (8.26)

σ̂2
π is an adjusted conditional variance (the “adjustment” is explained in Section 8.4.3)

of excess stock return πt+1, which is assumed to be constant and the same for all
agents. The term uψit is the intertemporal hedging demand that is linear in agent i’s
state variables.

For an equilibrium to exist, we impose stability conditions on the dynamics of the
economy:

Stability Conditions We require that (i) 0 < λd < 1, (ii) 0 < λZ + λgZ < 1.

(i) requires that {dt, t = 1, 2, . . .} is dynamically stable, and (ii) requires dynamic
stability of belief. It requires the market, on average, to believe that (dt,Zt) is stable.
To see why, look at this definition.

Definition 8.7. The average market belief operator is Et(•) =
∫
Et

i(•)di.
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Now take expectations of Eq. 8.17b, average over the population and recall that Zt

are averages of gti. This implies that

Et[Zt+1] = (λZ + λgZ )Zt

Kurz (2007) and Kurz and Motolese (2007) then demonstrate the following results.

Theorem 8.6. Consider the model with heterogeneous beliefs under the stability con-
ditions specified with supply of shares equal to 1. Then there is a unique equilibrium
price function, which takes the form

pt = addt + azZt + P0 (8.27a)

with coefficients

ad =
λd + u1

R − λd
(8.27b)

az =
(ad + 1)λgd + (u2 + u3)

R − (λZ + λgZ )
(8.27c)

P0 =
(μ + u0)

r
− γσ̂2

π

R
(8.27d)

The linearity of the price thus confirms the earlier conjecture that the price is
conditionally normal.

Now, closed-form solutions for the hedging demand parameters u = (u0, u1, u2, u3)
are not available; hence Kurz and Motolese (2007) compute numerical Monte Carlo
solutions. For all values of the model parameters they find (i) ad > 0, (ii) (ad + 1)λgd +
(u2 + u3) > 0, and (iii) az > 0. These conclusions are reasonable: Today’s asset price
increases if dt or Zt rise.

Our main objective now is to assess the implications of theory to the effects of diverse
rational beliefs on asset market dynamics. We do it in two ways. First, we use the
closed-form solution of the illustrative model as a simple reference. Second, we use
the developments up to now, together with a citation of other papers, to develop results
on the questions at hand. We devote the rest of this section to a discussion of such
implications of the theory.

Endogenous Uncertainty

The most direct implication of the theory is that asset markets are subject to endogenous
uncertainty. To explore Definition 8.6, we examine the price map pt = addt + azZt + P0

and find that endogenous uncertainty is expressed in two ways. First the term Zt says
that the risks of asset returns are, in part, due to the risk of future market belief.
By Eqs. 8.3.4a and 8.3.4b, in the long run σ2

p = a2
dσ

2
d + a

2
zσ

2
Z ; hence price volatility
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is caused by exogenous as well as endogenous forces, and this has far-reaching
implications to market efficiency, risk premia, and public policy. Second, Kurz (2007)
shows that the variance in P0 can be approximated by σ̂2

π  (ad + 1)2σ̂2
d + 2(ad +

1)azσ̂Zd + a2
Zσ̂

2
Z . These are terms from the covariance matrix in the agent belief

Eqs. 8.17a–8.17c; hence they depend on perception rather than on the actual empirical
moments in Eqs. 8.16a–8.16b. But as the perceived volatility of dividend and average
market belief increases, the price declines. We show in the next section that this fact
implies an increased risk premium.

The presence of endogenous uncertainty in asset markets has far-reaching implica-
tions to asset-pricing theory and market dynamics and we note a few of these general
conclusions:

• An asset’s price is not equal to a unique fundamental value determined by the flow
of future payoffs. Moreover, market belief about exogenous states matters since it
is often wrong; hence market belief is an independent and dominant component of
asset price volatility.

• Moral hazard and the large dimension of market belief make it impossible
for markets to trade contracts contingent on market belief; hence markets are
fundamentally incomplete.

• In scales of days or weeks, changes in productivity, growth, and profits are slow.
Hence, it is absolutely clear without much formal analysis that most volume of
trading results from changes in the market distribution of beliefs. Indeed, over the
short run the key function of asset markets is to permit agents to trade their belief
differences.

• Expected individual excess returns and “efficient frontiers” are both subjective con-
cepts. Hence, in markets with diverse beliefs most predictions of CAPM theory do
not hold.

• By anonymity of individuals, the market belief is a public externality and hence
subject to the effect of coordination and public policy. Stabilization policy can
thus have a strong effect on market volatility, and this carries over to monetary
economies as well.

The Endogenous Uncertainty Risk Premium

We now turn to an exploration of the risk premium under heterogeneous beliefs in
the illustrative model of Section 8.3.5, and we review results in Kurz and Motolese
(2007). Recall that the premium on a long position, as a random variable, is
defined by

πt+1

pt
=
pt+1 + dt+1 + μ −Rpt

pt
. (8.28)

We seek a measure of the premium as a known expected quantity recognized by mar-
ket participants, but we have a problem, since with diverse beliefs the premium is
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subjective. From Eqs. 8.27a–8.27d we compute three equilibrium measures to consider.
One is the subjective expected excess returns by i,

Ei
t (πt+1) = (ad + 1)(λddt + λ

g
dg

i
t ) + az(λZZt + λ

g
Zg

i
t ) + μ + P0 − Rpt (8.28a)

Aggregating over i we define the market premium as the average market expected
excess returns. It reflects what the market expects, not necessarily what the market gets:

Et(πt+1) = (ad + 1)(λddt + λ
g
dZt) + az(λZZt + λ

g
ZZt) + μ + P0 − Rpt (8.28b)

Eqs. 8.28a and 8.28b are not necessarily “correct,” and we focus on a third, objective,
measure, which is common to all. Econometricians who study the long-term time vari-
ability of the premium measure it by the empirical distribution of Eq. 8.28, which, by
Eqs. 8.27a–8.27d and Eqs. 8.16a and 8.16b, is

Em
t [πt+1] == (ad + 1)(λddt) + azλZZt + μ + P0 − Rpt (8.28c)

Eq. 8.28c is the common way all researchers cited previously have measured the risk
premium; therefore we refer to it as the risk premium.

We thus arrive at two conclusions. First, the difference between the individual
perceived premium and the market perceived premium is

Ei
t [πt+1] − Et[πt+1] = [(ad + 1)λgd + azλ

g
Z](git −Zt) (8.29a)

From the perspective of trading, all that matters is the difference git −Zt between
individual and market belief. In addition, the following difference is important:

Em
t [πt+1] − Et[πt+1] = −[(ad + 1)λgd + azλ

g
Z]Zt (8.29b)

The risk premium is different from the market perceived premium whenZt �= 0. But the
important conclusion is the analytical expression of the risk premium:

Em
t [πt+1] =

(
γrσ̂2

π

R
− u0 − u1dt

)
− az(R − λZ )Zt (8.30)

Since az > 0, R > 1, and λZ < 1, it follows that the premium per share declines with
Zt. We then have Theorem 8.7.

Theorem 8.7. The risk premium Em
t [πt+1] is increasing in the variance σ̂2

π and
decreasing in the mean market belief Zt.

This theorem exhibits what Kurz and Motolese (2007) call the “Market Belief Risk
Premium.” It shows that the risk premium depends on market belief in two ways:

1. A direct effect on the permanent mean premium γrσ̂2
π

R . We have seen that the variance
is approximately σ̂2

π  (ad + 1)2σ̂2
d + 2(ad + 1)azσ̂Zd + a2

Zσ̂
2
Z ; hence it increases

with the perceived volatility of dividend and the volatility of average market belief.
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2. An effect on the time variability of the risk premium, expressed by −az(R − λZ )Zt

with a negative sign when Zt > 0.

To understand the second result, note that it says if we run a regression of excess returns
on the observable variables, the effect of the market belief on excess return is nega-
tive. From an REE perspective this sign is somewhat surprising, since when Zt > 0
the market expects above-normal future dividends but instead, the risk premium on the
stock declines. When the market holds bearish belief about dividends (Zt < 0), the risk
premium rises. This requires some further explanation.

Why is the effect ofZt on the risk premium negative? The result shows that when the
market holds abnormally favorable belief about future payoffs of an asset, the market
views the long position as less risky and the risk premium on the long position of that
asset falls. Fluctuating market belief implies time variability of risk premia, but fluctua-
tions in risk premia are inversely related to the degree of market optimism about future
prospects of asset payoffs.

To further explore the result, it is important to explain what it does not say. One
might interpret it as confirming a common claim that to maximize excess returns it is
an optimal strategy to be a “contrarian” to the market consensus by betting against it.
To understand why this is a false interpretation, note that when an agent holds a belief
about future payments, the market belief does not offer any new information to alter
the individual’s belief about the exogenous variable. If the agent believes that future
dividends will be abnormally high but Zt < 0, the agent does not change her forecast of
future dividends. She uses the market belief information only to forecast future prices of
an asset. Thus, Zt is a useful input to forecasting returns without changing the forecast
of dt+1. Given the available information, an optimizing agent is already placed on her
demand function defined relative to her own belief; hence it is not optimal for her to just
abandon her demand and adopt a contrarian strategy.

This argument is the same as the one showing why it is not optimal to adopt the log
utility as your own utility, even though it maximizes the growth rate of your wealth.
Yes, it does, but you dislike the sharp expected declines in the values of your assets. By
analogy, following a “contrarian” policy may imply a high long-run average return in
accord with the empirical probability m. However, if you disagree with this probability,
you will dislike being short when your true optimal position is to be long. Indeed, this
argument explains why most people hold positions that are in agreement with the market
belief most of the time instead of betting against it. The crucial observation to make is
that a maximizing agent has his own belief about future events, and he does not select a
new belief when he learns the market belief. From his point of view, the market belief is
an important state variable used to forecast future prices. When it is wrong, the market
may forecast a recession that never arrives.

Theorem 8.7 was derived for an exponential utility function. Kurz and Motolese
(2007) show that this result is more general and depends only on the positive coefficient
az of Zt in the price map. For more general utility functions, they use a linear approxi-
mation to show that the result depends only on the condition that the slope of the stock
price is positive with respect to Zt. This condition requires the current stock price to
increase if the market is more optimistic about the asset’s future payoffs.
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Finally, Kurz and Motolese (2007) use data compiled by the Blue Chip survey of
forecasts to test the theory proposed in Eq. 8.35b. They report that the data support the
theoretical results.

Rational Overconfidence

Evidence from the psychological and behavioral literature (e.g., Svenson, 1981;
Camerer and Lovallo, 1999; and Russo and Schoemaker, 1992) shows a majority of
individuals assess their own probability of success in performing a task (investment,
economic decisions, driving, etc.) above the empirical frequency of success in a popu-
lation. Hence a majority of people often expect to outperform the empirical frequency
measured by the median or mean. In a rational expectations paradigm, individuals know
the true probability of success; hence the observed inconsistency is taken to be a demon-
stration of irrational behavior. Indeed, inconsistency between individual assessments
and empirical frequencies has been cited extensively as a “proof” of irrational behav-
ior and in support of behavioral/psychological impulses for belief and forecasting. This
phenomenon has thus been called overconfidence. We reject this conclusion and show
that it reveals a fundamental flaw.

The work cited previously (and other empirical and experimental work) provides evi-
dence against rational expectations. But rational expectations is an extreme theory in
demanding agents to know the full structure of the economy and make exact probability
assessments. Behavioral economics takes the other extreme view and assumes that peo-
ple are irrational and motivated by psychological impulses. Hence, a rejection of rational
expectations does not imply acceptance of irrationality of agents. Indeed, we may reject
these two extreme perspectives by observing the fact that most people do the best they
can, given the limited knowledge they have. Rational people do not know everything
and make “mistakes” relative to a true model they do not know. The theory of ratio-
nal beliefs rejects both extremes in favor of an intermediate concept of rationality. We
then show that overconfidence is compatible with rational beliefs and, indeed, agents
who hold rational belief will universally exhibit “rational overconfidence.” Hence, the
cited empirical evidence is no proof that people are irrational and motivated by pure
psychological factors.

We explain the preceding by using Example 8.1 (also, see Nielsen, 2006). A group
of gamblers look at the black box in Example 8.1 and form beliefs using different
sequences g = (g0, g1, . . .) as in that example. Each belief is then defined by a sequence
of independent random variables satisfying Eq. 8.9a. Gamblers vary with the sequences
g they use. A survey is taken and the distribution of beliefs is publically announced.
Hence, belief distributions of past gamblers are known but not their individual beliefs.
Since (1/3)(0.60) + (2/3)(0.45) = 0.50, all are rational beliefs for almost all g. In
the rational beliefs literature the ratio 1/3 is referred to as the “frequency” of opti-
mism. When the frequency of bull and bear states is not the same, we have a market
asymmetry between them. The probability 0.60 is the “intensity” of optimism when
optimistic. In defining a rational belief these characteristics are selected separately: For
each frequency there is a range of feasible intensities that are rational.
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The gamblers decide at date t − 1 how they want to bet. They can gamble $1 on
vt = 1 or on vt = 0: They win $1 if they are right and they lose $1 if they are wrong.
Since it’s a small bet, they will all bet. Those who put money on 1 expect to win with
a probability 0.60; those who put their money on 0 expect to win with probability 0.55.
They are all overconfident and rational! The constancy of the high (0.60) and low (0.45)
probabilities is not essential since we can, instead, put in any sequences of parameters
that converge to 0.50 from above and from below and the result will be the same.

Observe that in this example all deviations from empirical frequencies lead to opti-
mal behavior that exhibits universal overconfidence. When a subjective probability is
above the empirical frequency, a long position is optimally taken with overconfidence.
When a probability is below the empirical frequency, a short position is optimally
held with overconfidence. Hence, all agents are then optimally overconfident at all
times.

Generalizing the example is natural. Beliefs are all about deviations from empiri-
cal frequencies on the basis of which economic decisions are made. Optimistic agents
engage in taking the risk of success in an activity, and pessimistic agents engage in
gambles against success. If they cannot gamble against it (e.g., short positions are not
allowed), they refrain from participation. This type of behavior is then natural to the
rational belief paradigm. Moreover, this behavior is natural to any complex environ-
ment in which aggregation of subjective probability beliefs of agents may not be equal
to the empirical frequencies. But then all creative work and all innovative decisions
are based on beliefs that exhibit “overconfidence.” Indeed, one can hardly think of
entrepreneurship, inventive activity, and any speculative behavior without beliefs that
exhibit rational overconfidence.

Properties of Average Market Belief and Higher-Order Beliefs

By Eqs. 8.17a and 8.17b and Definition 8.7 it follows that:

Et

(
dt+1

Zt+1

)
− Em

t

(
dt+1

Zt+1

)
=

(
λ
g
dZt

λ
g
ZZt

)
(8.31)

and Eq. 8.31 exhibits the dynamics of the average market belief operator. However,
Eqs. 8.17a–8.17c also show that properties of conditional probabilities do not apply to
the market belief operator Et(•) since it is not a proper conditional expectation. To see
why, let X = D ×Z be a space where (dt,Zt) take values, and let Gi be the space of
git . Since i conditions on git , his unconditional probability is a measure on the space
((D ×Z × Gi)∞,F i), where F i is a sigma field. The market conditional belief operator
is just an average over conditional probabilities, each conditioned on a different state
variable. Hence, this averaging does not permit one to write a probability space for
the market belief. The market belief is neither a probability nor rational! This is then
formulated (see Kurz, 2007) as Theorem 8.8.
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Theorem 8.8. The market belief operator violates iterated expectations: Et(dt+2) �=
EtEt+1(dt+2).

Our earlier comment about the importance of the treatment of market belief as a state
variable with independent dynamics is now complemented by Theorem 8.8. Market
belief is an externality that does not arise from rational social choice of a collective
agent. It cannot arise in a model of intertemporal choice of a single representative agent.

Turning to higher-order beliefs, we must distinguish between higher-order beliefs
that are temporal and those that are contemporaneous. Eqs. 8.17a–8.17c define agent
i’s belief over future sequences of (dt,Zt, git ) and as is the case for any probability, it
implies i’s temporal higher-order belief with regard to future events. For example, we
deduce from Eqs. 8.17a–8.17c statements such as:

Ei
t (dt+N ) = Ei

tE
i
t+1 . . . E

i
t+N−1(dt+N ), Ei

t (Z
i
t+N ) = Ei

tE
i
t+1 . . . E

i
t+N−1(Zi

t+N ) (8.32)

Properties of temporal higher-order beliefs are thus familiar properties of conditional
expectations.

As to market belief, since Eq. 8.15 is implied by Eq. 8.17c, the average market
belief operator satisfies Et(dt+N+1) = λdEt(dt+N ) + λgdEt(Zt+N ). We deduce perceived
higher-order temporal market beliefs by averaging over i. For example,

λ
g
dλZEt(Zt+N ) = EtEt+N+1(dt+N+2) − EtE

m
t+N+1(dt+N+2) (8.33)

Contemporaneous higher-order beliefs have attracted attention (e.g., Allen, Mor-
ris, and Shin, 2006; Bacchetta and van Wincoop, 2005; and Woodford, 2003) despite
being unobservable. They occur naturally in strategic situations. In a market con-
text they can formally arise in Eqs. 8.17a–8.17c as follows: Let Zt in Eq. 8.15 be
defined as Z1

t . We can argue that agents may form beliefs about the future of this
variable by using a second belief index gi2t about Z1

t+1 whose transition would be
deduced from the transition of gi2t . Now Z2

t =
∫
gi2t di would be a second-order aggre-

gate belief for which a third belief index gi3t could be introduced whose average
would be Z3

t , and so on. Such infinite regress is problematic and leads us to reject
contemporaneous higher-order beliefs in markets for two reasons. First, higher-order
beliefs are degenerate in Eqs. 8.17a–8.17c because the single-belief index git fully
pins down agent i’s belief. Moreover, since agents know the beliefs of others and
all variables in the price map (which embody the beliefs of others), there is nothing
else about which to form beliefs. There is a second and more general reason why,
in markets, all higher-order beliefs Zj

t , for j > 1 are degenerate. This is so since
they are averages of gijt and since for j > 1 the Zj

t are not observable; they can only
exist in the minds of the agents, and hence there is no possible mechanism for indi-
vidual gijt to be correlated as in Eq. 8.15. Hence, higher-order beliefs cannot have
an aggregate effect, since with independent gijt the averages Zj

t for j > 1 are zero
at all t.
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On Beauty Contests

The Keynes Beauty Contest metaphor has been extensively discussed. Some have
associated it with asset-pricing equilibrium, where the price is expressed as iterated
expectations of average market belief of the future fundamental value of the asset. In
Eq. 8.8 we presented the Allen Morris and Shin (2006) example of such pricing with
private information. But this interpretation should be questioned. An examination of
Keynes’ view (see Keynes, 1936, page 156) shows that the crux of Keynes’s conception
is that there is little merit in using fundamental values as a yardstick for market valu-
ation. Hence what matters for the asset demand of an agent is the perception of what
the market believes the future price of that asset will be rather than what the intrin-
sic value is. Keynes insists that future price depends on future market belief and that
may be right or wrong without a necessary relation to an intrinsic fundamental value.
The Beauty Contest parable is thus simple: A price does not depend on an intrinsic
value but on what the market believes future payoffs and valuations will be. Keynes’s
Beauty Contest is thus a statement that to forecast the price in the future, an individual
must forecast the future market state of belief, when such forecasts may be “right” or
“wrong.” We now observe that a rational belief equilibrium captures the essence of the
Keynes Beauty Contest.

To explain, we make two observations. From Eq. 8.27a, equilibrium price is pt =
ad dt + azZt + P0, and this is clearly in accord with the preceding: In any model of
the Beauty Contest, equilibrium price should not depend on a true intrinsic value;
rather, it should depend on market belief. It follows from the rationality conditions
that price/earning ratios exhibit fluctuations with reversion to the long-run stationary
mean, but such long-term value is not an intrinsic fundamental value. Indeed, in a
model with diverse belief there is no such thing as fundamental intrinsic value, since
all prices depend on market belief. Second, to forecast future prices, an agent fore-
casts Zt+1, which is the market belief tomorrow. From Eq. 8.17b, we have Zi

t+1 =
λZZt + λ

g
Zg

i
t + ρ

iZ
t+1, which means that an agent forecasts the future market belief with

his own subjective model. In sum, this equilibrium concept reflects the Beauty Con-
test parable because the price map depends on market beliefs, not on some agreed-on
intrinsic value, and to forecast future prices agents must forecast the belief of others.

Speculation

Although market practitioners have an intuitive idea of what “speculation” is, there is no
scientific consensus on how to define this concept. Keynes (1936) viewed asset markets
as a “beauty contest,” and many writers have interpreted this to be a form of speculation.
A different perspective was proposed by Kaldor (1939), who defined speculation as “the
purchase (or sale) of goods with a view to resale (repurchase) at a later date.” It is clear
that for such asset trades to make sense, prices of assets must regularly deviate from
their fundamental values, and agents must believe that prices, are or will not be equal to
their fundamental values. It is also clear that in a perfect REE world with homogenous
beliefs and complete information, a Kaldor speculation is not possible (e.g., see Tirole,
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1982; Milgrom and Stokey, 1982). Here we explore the perspective of a diverse belief
equilibrium with respect to Kaldor (1939) speculation.

Following the definition of Kaldor (1939), Harrison and Kreps (1978) study the con-
sequences of risk-neutral investors having different beliefs about the dividend process of
a risky asset. At date t, investor i can expect a payment Ei

t (β
kpt+k +

∑k
s=0 β

s(dt+s + μ))
if he chooses to resell k periods later, where {pt} and β denote the stock price pro-
cess and the discount rate. The equilibrium market price, called a consistent price
scheme, is the supremum over all stopping times k and across all investors. That is, this
price is

pt = maxi supk E
i
t

(
βt+kpt+k +

k−1∑
s=0

βt+s(dt+s + μ)

)

Agents hold diverse beliefs and are assumed to have infinite wealth for each class of
investor type. A speculative premium is then defined to be the difference between the
consistent price scheme and the value, maxi Ei

t (
∑∞
s=0 β

t+s(dt+s + μ)), expected when
all investors are obliged to hold the asset forever. Harrison and Kreps (1978) show that
under the assumptions made, there exists a positive speculative premium, or a price
bubble, when short sales are not allowed.

Morris (1996) further examines asset pricing during initial public offerings when
investors have different prior distributions, but the difference of belief disappears as
investors learn from observations. A major weakness of both the works of Harrison and
Kreps (1978) and Morris (1996) is their assumption of the unrestricted heterogeneity
of beliefs.

Wu and Guo (2003) use the theory of rational belief to explain the persistence of
diverse beliefs in the Harrison and Kreps (1978) model and to narrow the equilibrium
results. They adopt the finite state Markov assumption for dividend and the two state of
belief model. Wu and Guo (2003) then show that in contrast with the complex solution
of Harrison and Kreps (1978) a rational belief equilibrium price vector (over states) is
a simple expression that is computed via a finite algorithm. As to dynamics, they show
that speculative bubbles and endogenous uncertainty emerge. They further characterize
how the speculative premium increases with the degree of heterogeneity.

To explore the phenomenon of simultaneous increase in asset prices and trading vol-
ume, Wu and Guo (2004) study a model of heterogeneous rational beliefs held by a
continuum of agents on the unit interval, as in Miller (1977). In contrast with Harrison
and Kreps (1978) and Morris (1996), Wu and Guo (2004) permit limited short sales and
impose a wealth constraint of a finite investment fund. They assume an IID dividends
process over two states and arrange investors in the order of their optimism along the
unit interval. They then derive a steady-state rational belief equilibrium price and show
that in equilibrium optimistic investors hold the entire supply. In this framework, Wu
and Guo (2004) demonstrate the emergence of endogenous uncertainty with a positive
speculative premium that increases with the size of the investment fund and degree of
optimism and decreases with the size of short-sale constraint. Furthermore, the model
generates a positive relationship between trading volume and the directions of price
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changes: Volume is high when prices rise and it is low when prices decline. There is
also a positive relationship between trading volume and price level. These results are
consistent with the empirical evidence (e.g., Karpoff, 1987, and Basci et al., 1996).

8.4. EXPLAINING MARKET DYNAMICS WITH SIMULATION
MODELS OF DIVERSE BELIEFS

Although much of our discussion is analytical, significant results about excess volatility
are deduced from simulation models. Simulations require specification of functions,
parameters, and beliefs and aim to show that a model replicates the statistics of the
economy.

8.4.1. Introduction: On Simulation Methods and the Main Results

Since most models reviewed have only two agent types, the beliefs selected are rep-
resentative of only two classes of agent. Since we might question the validity of such
an approach as too narrow, it is useful to explain the common features of all simula-
tion models reviewed that replicate the dynamics of real markets we observe. Our view
on this issue is simple: a simulation model is a very good tool to explore the impact
of the qualitative features of feasible belief structure on market volatility. The specific
parameter configurations used to attain these qualitative features are less important.

The best way to explain this view is to highlight the central conclusions of the work
we review in this section, and the summation of Kurz et al. (2005a) is useful. This
paper starts from the view that in any non-REE-based asset market theory there are
basically two natural individual states: optimistic (i.e., bull states) and pessimistic (i.e.,
bear states). The authors then explain that given these two basic states, there are three
central characteristics of individual beliefs that fully account for all characteristics of
market volatility and risk premia observed in real markets. These are:

1. Large (i.e., high-intensity) fat tails in the belief densities of agents

2. Asymmetry in the proportion of bull and bear states in the market over time

3. Belief states are correlated, resulting in regular joint dynamics of belief distributions

Large fat tails means that the densities of the agents’ beliefs have very fat tails.
“Intensity” measures size of deviations from stationary probabilities, as in the review of
rational overconfidence. The asymmetry in the time frequency of belief states needed to
reproduce the results is a subtle feature that says that on average, agents are in bear states
at more than 50% of the dates. Equivalently, on average, at more than half the time,
agents do not expect long positions to make above-normal returns on their investments.
Therefore, it follows from the rational belief principle that when agents are in bull states
and expect above-normal returns, their expected excess returns must be very high. We
shall see later that this asymmetry is empirically supported by the fact that major abnor-
mal rises in stock prices occur over a relatively small fraction of time. Hence, when
agents believe a bull market is ahead, they expect to make excess return in relatively
short periods.
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Correlation of beliefs is a market externality, not determined by individual choices,
which regulates the probability of agreement or disagreement of beliefs in the mar-
ket and the transitions among such states. This is central because the distribution of
beliefs determines prices and returns, and the dynamic of the belief distribution is cru-
cially affected by the correlation. It is then natural that asymmetry in the transitions is
important, since it regulates the dynamics of bear vs. bull markets.

Kurz et al. (2005a) then make two observations. First, exactly the same simu-
lation model used to study market volatility is also used to study all other aspects
of market dynamics. In that model, stock prices and returns exhibit a structure of
forecastability observed in the real data. Also, the same model implies that market
returns exhibit stochastic volatility generated by the dynamics of the market beliefs.
Second, examination of alternative configurations of belief shows that no other con-
figuration of qualitative features than the three previously specified yields predictions
that simultaneously replicate the empirical record. Many feasible model parameters
generate volatility of prices and returns, but as we move away from the three features,
the model fails to generate some essential components of the empirical record, fre-
quently the riskless rate and the risk premium. Thus, the main reason the models are
able to explain the empirical record is that they have the needed configuration of quali-
tative factors. In each case they imply a unique parameter structure of the computational
model needed to explain the empirical record, but the specific implied belief is not of
central significance.

8.4.2. Anatomy of Market Volatility

Papers on excess volatility simulate computed equilibria with finite or infinite belief
states. Those with finite belief states are OLG models, whereas those with infinite belief
states are infinite horizon models. This division guides our review.

Understanding the Parametrized Structure of Beliefs

The papers that fall into the first category (that is, OLG) include Nielsen (1996, 2003,
2005, 2006), Kurz (1997b), Black (1997, 2005), Kurz and Beltratti (1997), Kurz and
Motolese (2001), Kurz and Schneider (1996), Motolese (2003), Nakata (2007), and
Wu and Guo (2003). Papers using infinite horizon models with infinite belief states
include Kurz et al. (2005a, 2005b), Kurz (2007), Kurz and Motolese (2007), and Guo
and Wu (2007).

We start by discussing OLG models with finite belief states and use the parametriza-
tion of Kurz and Motolese (2001) as a prototype.12 All models have two assets: a stock
and a riskless bond.

12Here again we present the parametrization of finite state and continuous state models. The empirical results
reported later are all deduced from the continuous state model; hence it may be useful for the reader to skip,
on first reading, material that pertains to finite state models. This material would be especially relevant if the
reader wants to replicate any of these results by visiting the Web pages provided in footnotes 13 and 15 to
download the programs with which to compute the solutions. It will be found that the finite state models are
much easier to handle.
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The stock pays dividends with a two-state growth rate. There are two types of agent,
each living two periods with a power utility function of agent i over consumption:

u(c1
t , c

2
t+1) = [1/(1 − γ)](c1

t )1−γ + [β/(1 − γ)](c2
t+1)1−γ , γ > 0, 0 < β < 1

The belief structure is as in Eqs. 8.20–8.23 with two states; thus there are eight
economy-wide states.

Rational beliefs are represented by the two pairs of matrices (F i
1,F i

2) with frequen-
cies (α1, α2). Since deviations from the long-term mean growth rate of dividends could
be either above it or below it, at each date an agent must be either a bull or a bear about
future growth of dividends. This is expressed by a pair of parameters (χ1,χ2) that mea-
sure the intensity of optimism when in an optimistic state, while (α1, α2) measure the
frequency of each of the two agents being optimistic.

To see the implications, note that χi are revisions of the probabilities of states (1, 2,
3, 4) and (5, 6, 7, 8) relative to M . χi > 1 imply increased probabilities of (1, 2, 3, 4)
in matrices F i

1 when the first four prices occur at dt = dH states. But these are actually
states of high prices as well; hence χi > 1 implies that agent i is optimistic about high
prices at t + 1. In all simulations, χi ≥ 1; hence one interprets git so that git > 0 means
agent i is optimistic (relative to M) at t about high prices at t + 1.

In the transition M, the matrices M (a) and M (b) regulate the correlation across
beliefs and the effect of dividends on that correlation. This is a correlation external-
ity given to agents, which is the same as the correlation among the ρigt across i in
Eq. 8.11, a correlation that gives rise to the dynamics of the aggregate Zt in Eq. 8.15.
The correlation is crucial, but it turns out that it does not need to be complex. The case
χ1 = χ2 = 1, α1 = 0.50, α2 = 0.50, and ai = bi = 0.25 is the case of REE. Kurz and
Motolese (2001) postulate a simple model with M (a) =M (b); hence beliefs are not
correlated with dividends. However, beliefs are correlated with a simple description of
a = b = (.50, .14, .14, .14). This simple parametrization implies that the dynamics of
prices have the feature that bull and bear markets are asymmetric. For the market to
transit from the “crash” state of the lowest price to the states of the highest prices, it
must take several steps: It cannot go directly from the low to the high prices. The oppo-
site is possible, since at the bull market states there is a positive probability of reaching
the crash states in one step. This implies that a bull market that reaches the high prices
must evolve in several steps, but a crash can occur in one step.

To sum up, there are three classes of parameters, and simulation work explores only
regions of the parameter space that are compatible with rationality. Kurz and Motolese
(2001) report a set of parameters under which the model replicates the empirical record
with great accuracy. These are: utility function parameters: 2.00 ≤ γ ≤ 3.00, the com-
mon risk aversion coefficient; 0, 90 ≤ β ≤ 0.95, the common discount rate; correlation
parameters: a1 = 0.50, a2 = a3 = a4 = 0.14; belief parameters: χ1 = χ2 = 1.7542, the
maximal intensity permitted by rationality; and α1 = α2 = 0.57, the frequency with
which an agent is in an optimistic state. The model replicates well the empirical record,
and the results are similar to those of infinite horizon models. Hence there is no point
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repeating the same results twice, and we report the precise numerical results only for
the infinite horizon models13. We thus turn to models with infinite belief states.

Models with infinite horizon and infinite belief states typically have two assets:
A stock paying dividends and a zero net supply bond. The model has a large number of
identical agents of two types with the same utility and endowment. Across types they
differ in their beliefs. For consistency we use a model developed by Kurz et al. (2005a)
to illustrate the belief structure and report results for this simulation model. This has the
merit that all simulation results reported are derived from a single model. These authors
assume Dt+1 = Dte

vt+1 with an empirical distribution of the growth rate

vt+1 = (1 − λv)v∗ + λvvt + ρvt+1 ρdt+1 ∼ N (0, σ2
d)IID

where v∗ is the unconditional mean. Given his belief, agent i maximizes an infinite
horizon expected utility with date t utility of βt[1/1 − γ](cit)

1−γ .
To explain the perception models of the agents, we could have postulated

vit+1 = (1 − λv)v∗ + λvvt + λgvgit + ρ̃v
i

t+1 as in Eq. 8.17a. Such a model is sufficient for
the conceptual needs of the illustrative model, but it would contradict the finite state
model reviewed earlier. The reason is that the belief state git is a symmetric variable
that does not meet two of the three principles advocated earlier, namely the condition
of asymmetry and fat tails in the belief densities. Limited space permits us to present
only a sketch of the complex structure in Kurz et al. (2005a)14. To introduce asymmetry
and fat tails, the procedure we follow is to transform the git into a new random variable
ηi(git ) and define the perception model for the growth rate of dividend to be (8.30)

vit+1 = (1 − λv)v∗ + λvvt + λgvηit+1(git ) + ρ̃
vi

t+1 ρ̃v
i

t+1 ∼ N (0, σ̃2
v )IID

We then look for asymmetry and fat tails in the density of Δi
t+1(git ) = λ

g
vη
i
t+1(git ) + ρ̃

vi

t+1,
conditioned on git . Keep in mind that for a computational model, we must choose a
specific functional form, and this may appear to be too strong a set of assumptions
about beliefs.

13For details of the finite belief state results, see Kurz and Motolese (2001, pp. 530–533). For computational
procedures to reproduce these results, go to www.stanford.edu/∼mordecai/ and click “computable models
with heterogeneous beliefs.” Keep in mind that an OLG model has a unique market-oriented feature not
shared by an infinite horizon model that requires an agent to sell his position when old, regardless of his
beliefs. This feature is important for a model of market volatility, since agents who aim to preserve capital
by holding a portfolio of a riskless asset must sell the asset into the market, regardless of their beliefs. This
fact tends to generate additional volatility that would not be present in an infinite horizon model. This feature
has two results that are not shared by the infinite horizon model. First, the riskless rate has a much larger
standard deviation in simulated OLG equilibria than in the infinite horizon models. Second, to generate a
low average riskless rate, a result needed to replicating the 6–7% equity premium, it is necessary to assume
an asymmetry where the majority of agents are optimists about earning abnormal excess returns and the
frequency of optimism is greater than 50%. In the infinite horizon model, it is necessary to have the pessimists
in the majority, with a frequency of pessimism being more than 50%. We shall comment on this issue again
later, when we discuss the Equity Premium Puzzle.
14Indeed, the main deficiency of the Kurz et al. (2005a) model is its complexity, which, in our view today,
could have been avoided. Both the model itself as well as the computational procedures could have been
drastically simplified, since the basic ideas are rather simple, as explained in Section 8.4.1.
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How do we know that belief densities take these specific forms? We do not. But here
we return to the three qualitative properties discussed in Section 8.4.1. What drives
the results are not the functional forms selected for a computational model but their
qualitative properties. Any other functional form with the same qualitative properties
would generate the same results but, naturally, with different parametrization. Since
ηi(git ) cannot be a simple symmetric variable, Kurz et al. (2005a) specify the conditional
distribution of ηit+1(git ). They define it as a step function:

P (ηit+1|git ) =

⎧⎪⎨
⎪⎩
ϕ1(git )[1/

√
2π]e−

ηi 2
t+1
2 if ηit+1 ≥ 0

ϕ2(git )[1/
√

2π]e−
ηi 2
t+1
2 if ηit+1 < 0

where ηit+1 and ρ̃v
i

t+1 (in Eq. 8.30) are independent. The functions (ϕ1(g),ϕ2(g)) are
defined by a logistic function with two parameters κ and Λ:

ϕ(gi) =
1

1 + eΛ(gi−κ)
, κ < 0,Λ < 0 and ϕ1(gi) =

ϕ(gi)
Egϕ(gi)

,ϕ2(gi) = 2 − ϕ1(gi)

The parameter κ measures asymmetry, and the parameter Λ measures intensity of fat
tails in beliefs. When git > κ, then Ei[ηit+1|git] > 0. Choosing λgv > 0 implies that when
git > κ agent i is in a bull state and is optimistic about t + 1 dividend growth being
above-normal. Since κ < 0, it also implies that bull states occur with frequency higher
than 50%. “Normal” is defined relative to the empirical forecast. In sum, for the basic
case λgv > 0:

• git > κ means that agent j is optimistic about profit growth and excess stock returns
at t + 1.

• git < κ means that agent j is pessimistic about profit growth and excess stock
returns at t + 1.

The parameter κ measures asymmetry and determines the frequency at which agents
are bears, and when κ < 0 the probability of gi > κ is more than 50%. The density of
ηit+1 is exhibited in Figure 8.4 and shows that asymmetry arises from a redistribution of
the probability mass. However, the empirical distribution of ηjt+1(gjt ) averaged over time
and over the git is Normal.

Each component of Δt+1(git ) is a sum of two random variables: one as in Figure 8.4
and the second is normal. In Figure 8.5 we draw two densities of Δt+1(gjt ), each being a
convolution of the two constituent distributions, one density for gi > κ and a second for
gi < κ, showing both have “fat tails.” Since Λ measures intensity by which the positive
portion of the distribution in Figure 8.4 is shifted, it measures the degree of fat tails in
the distributions of Δt+1(gjt ).

The assumption of a power utility βt[1/1 − γ](cit)
1−γ implies that income effects mat-

ter and beliefs do not aggregate. Hence, the state variable in the simulation model is the
actual distribution of beliefs. Since there is a large number of identical agents of two
types, this distribution is a vector (z1

t , z
2
t ). The fact that we denote it by (z1

t , z
2
t ) and
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FIGURE 8.5 Density Δit+1(git ) with fat tails.

not (g1
t , g2

t ) is an important technical issue arising due to the assumption of anonymity.
Agent i knows his own belief as git , which he uses to forecast all state variables in the
economy, whereas (z1

t , z
2
t ) are observed state variables and the agent uses git to fore-

cast vt+1 as in Eq. 8.30 and (z1
t+1, z2

t+1) with a fully developed perception model that
is analogous to Eqs. 8.17a–8.17c in the illustrative model we have developed here. For
technical details of the perception model and the implied rational belief restrictions, see
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Kurz et al. (2005a, pp. 12–19). We now turn to a detailed examination of the simulation
results of the finite and infinite belief state model.

Explaining the Volatility Moments

We report simulation results of models with infinite belief states. All results reported
in this chapter are derived from a single model by Kurz et al. (2005a). In these sim-
ulations Kurz et al. compute various measures of volatility using 20,000 observations.
Raw moment calculations were carried out by Kurz et al. (2005a) for the following
list of long-term volatility measures, which are moments in accord with the stationary
measure:

• q: Average price/dividend ratio
• σq: Standard deviation of the price/dividend ratio qt
• Rq: Average risky return on equity
• σR: Standard deviation of Rq

• r: Average riskless rate of interest
• σr: The standard deviation of r
• ep: Average the equity premium
• ρ(d, Rq): Correlation between the risky rate and dividends’ growth; it is also the

correlation between consumption growth and the risky rate as consumption and
dividends grow at the same rate

• (Shrp): The Sharpe ratio

Table 8.2 reports the results.15 The model matches simultaneously the moments and,
as we see later, it also matches most other features of market dynamics. Kurz et al.
(2005a) further observe that the results in Table 8.2 are not due to the particular beliefs
used or their parameter values. They are due to fat tails in asset returns, to asymmetry,
and to correlation of beliefs as explained in the previous section. Are these three key
characteristics supported by the data?

The fact that the distribution of asset returns exhibits fat tails is well documented
(e.g., see Fama, 1965, and Shiller, 1981). It is natural to ask where these tails come
from. The theory at hand says they come from fat tails in the probability models of
agents’ beliefs. Correlation of beliefs across agents is documented in sources such as
the Blue Chip Financial Forecasts. The evidence in support of the hypothesis that the
frequency of bear states is higher than 50% is more complicated.

The hypothesis is supported by the empirical fact that, on average, most above-
normal stock returns are realized over relatively small proportion of time when asset
prices rally (see Shilling, 1992). It is thus reasonable that, on average, the proportion of
time when agents expect to make above-normal returns is less than 50%16. Additional

15For computational procedures to reproduce the simulation results of the Kurz et al. (2005a) model click on
“computable models with heterogeneous beliefs” at www.stanford.edu/∼mordecai/.
16Shilling (1992) shows that during the 552 months from January 1946 through December 1991, the mean
real annual total return on the Dow Jones Industrials was 6.7%. However, if an investor missed the 50 strongest
months, the real mean annual return over the other 502 months was −0.8%. Hence the financial motivation to
time the market is very strong, as is the case for the agents in the model.
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TABLE 8.2 Simulation Results of Kurz et al. (2005a)
(all moments are annualized)

Moment Simulation Results Empirical Record∗

(1889–1998)

q 25.54 25.00

σq 5.46 7.10

Rq 7.57% 7.00%

σR 18.81% 18.00%

r 1.08% 1.00%

σr 5.44% 5.70%

ep 6.49% 6.00%

ρ(d,R) 0.21 0.10

Shrp 0.34 0.33

∗The main data source for the empirical record is Shiller at
www.econ.vale.edu/∼shiller/data.htm. It was updated by Kurz
et al. (2005a, page 23) to 1998. Since the discussion here does
not aim to evaluate the precision of the estimates, the numbers in
the table were rounded off to indicate orders of magnitude.

indirect support comes from the psychological literature, which suggests that agents
place heavier weight on losses than on gains. In the treatment here, agents fear losses
at majority of dates since on those dates they place higher probabilities of abnormally
lower returns. By the rational belief principle, a higher frequency of bear states implies
that in bull states, an agent’s intensity of optimism is higher than the intensity of pes-
simism. This means that the average positive tail in the belief densities is bigger than the
average negative tail. That is, the asymmetry hypothesis implies that optimistic agents
tend to be intense.

Together with correlation of beliefs across agents, this hypothesis also implies that
we should observe periods of high optimism for a majority of agents. Optimism leads
to agents’ desire to borrow and finance present and future consumption. At such dates
the only way for markets to clear is by exhibiting sharp rises in stock prices together
with high borrowing rates. Hence, this theory predicts that we should expect to observe
rapidly rising stock prices induced by bursts of optimism correlated with high realized
growth rates of dividends. The structure of correlation also implies that we should also
expect to see crashes induced by correlated pessimistic agents together with low realized
growth rates of dividends.

We make one comment with respect to the low riskless rate. Matching many volatility
moments except the riskless rate depend mostly on intensity and correlation. These
moments exhibit relatively low sensitivity to asymmetry. Hence, apart from the riskless
rate, many long-term volatility measures are explained by a broad configuration of the
intensity parameters and correlation across agents’ beliefs. The low riskless rate and a
few others require asymmetry.
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Why Does the Model of Diverse Beliefs Resolve
the Equity Premium Puzzle?

Risk premia are compensations for risk perceived by risk-averse agents. In single-agent
models, the market portfolio is identified with a security for which the payoff is aggre-
gate consumption, mostly taken to be exogenous. The Equity Premium Puzzle is thus
an observation that the small volatility of aggregate consumption growth cannot justify
a 6% equity premium, given the degree of risk aversion. The theory of diverse beliefs
offers a resolution of the puzzle by studying optimal behavior and consumption growth
rate volatility on the individual, not the aggregate, level.

Any theory of diverse beliefs implies that at each date the risk premium perceived
by an agent is subjective. The risk premium required by an investor with a bullish out-
look is smaller than the risk premium required by a bear. Hence to resolve the Equity
Premium Puzzle a theory must explain why some agents are willing to hold a riskless
asset paying a real return of only 1% when the average return on the risky stock is 7%.
The 7% return on the stock is entirely explainable by fundamental factors of growth
and productivity, together with the added high volatility of returns induced by factors
of intensity and correlation of beliefs that generate endogenous uncertainty. The prob-
lem is the low riskless rate. Pessimistic agents who aim to preserve capital are willing
to earn low return on their investment, and with enough of them around, the riskless
rate would indeed fall. But can a desire to preserve capital by those avoiding the risky
stock be compatible with fat tails in returns? This is the role of asymmetry. Symmetry
between bulls and bears generates fat tails only due to intensity and correlation. Agents
are intense when they are bulls and correlation causes the majority sentiment to fluc-
tuate. Fat tails then reflect fluctuations of the majority between bull or bear averages.
After all, when a majority of agents try to sell or buy the stock, the price fluctuates. But
to push the riskless rate down we need the asymmetric persistence of the bear view by
those who expect the stock to deliver low excess returns. Expecting low excess returns,
they would rather avoid the risky stock and hold the bond at lower return. The fact that
bears are in the majority of investors at the majority of dates constitutes the extra factor,
which lowers the riskless rate as well.

We turn to the low volatility of aggregate consumption growth. Diverse beliefs cause
diverse individual consumption growth rates, even if aggregate consumption is exoge-
nous, which is the case in the models here. This is true not only because of idiosyncratic
factors but also because under diverse beliefs markets are inherently incomplete and
the representative agent model does not capture the conditions of individual consumers.
Hence, volatility of individual consumption growth rates is higher than the volatility
of the aggregate rate, an empirical fact supported by household survey data. Since
agents’ perceived volatility of their own consumption growth is different from the aggre-
gate rate, they do not seek to own a portfolio whose payoff is aggregate consumption.
Consequently, we must not focus on the relation between asset returns and aggre-
gate consumption growth but instead on the relation between perceived asset returns
and perceived volatility of individual consumption growth. The key question is, then,
how volatile do individual consumption growth rates need to be to generate an equity
premium of 6% and a riskless rate of 1%? The answer is: not very much. Relative to
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their equilibrium, Kurz et al. (2005a) report that although the standard deviation of the
aggregate consumption growth rate is 0.03256, the standard deviation of individual con-
sumption growth rates supporting the premium in the simulations is only 0.039, and the
required correlation between individual consumption growth rate and the growth rate of
dividends is only 0.83 (compared to 1.00 in a representative household model). Both
figures are compatible with survey data.

Predictability of Stock Returns

The problem of predictability of risky returns generated a large literature in empirical
finance (e.g., Fama and French, 1988a, 1998b; Poterba and Summers, 1988; Campbell
and Shiller, 1988; and Paye and Timmermann, 2003). This debate originates in the the-
oretical observation that under risk aversion asset prices and returns are not martingales
and contain a predictable component. In this context Kurz et al. (2005a) use the model
associated with Table 8.2 to generate simulated data with which they examine the fol-
lowing: (1) variance ratio statistic; (2) autocorrelation of returns and of price/dividend
ratios; and (3) predictive power of the dividend yield. They then apply to simulated
data the standard tests used for market data, and we report their results in the following
subsections. Recalling that vt is the growth rate of dividends and qt is the price dividend
ratio, the standard notation used in this literature is to let �t = log[ (qt+1)evt

qt−1
] be the log

of gross one year stock return, �kt =
∑k−1
i=0 �t−i be the cumulative log-return of k-year

length from t − k + 1 to t, and �kt+k =
∑k
j=1 �t+j be the cumulative log-return over a

k-year horizon from t + 1 to t + k.

Variance Ratio Test The variance-ratio is VR(k) = var(�kt )
(k var(�t))

. If returns are uncor-
related, this ratio converges to 1 as k rises. If returns are negatively autocorrelated
at some lags, the ratio is less than one. Kurz et al. (2005a) show there exists a sig-
nificant higher-order autocorrelation in simulated stock returns and hence a long-run
predictability that is consistent with U.S. data on stock returns, as in Poterba and Sum-
mers (1988). In Table 8.3 Kurz et al. (2005a) report the computed values of the ratios
for k = 1, 2, . . . , 10 and compare them with the ratios in the empirical record reported
by Poterba and Summers (1988, Table 8.2, line 3) for k = 1, 2, . . . , 8. The model’s
prediction is close to the U.S. empirical record.

TABLE 8.3 Variance Ratios for NYSE 1926 to 1985

k 1 2 3 4 5 6 7 8 9 10

VR(k) 1.00 0.85 0.73 0.64 0.57 0.51 0.46 0.41 0.38 0.34

U.S. 1.00 0.96 0.84 0.75 0.64 0.52 0.40 0.35 — —

The Autocorrelation of Log-Returns and Price–Dividend Ratios In Table 8.4 we
report the Kurz et al. (2005a) autocorrelation function of log annual returns. The model
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TABLE 8.4 Autocorrelation of Log-Returns

corr(�t, �t−k ) Model Empirical Record

i = 1 −0.154 0.070

i = 2 −0.094 −0.170

i = 3 −0.069 −0.050

i = 4 −0.035 −0.110

i = 5 −0.040 −0.040

TABLE 8.5 Autocorrelation of Price–Dividend Ratio

corr(qt, qt−k ) Model Empirical Record

i = 1 0.695 0.700

i = 2 0.485 0.500

i = 3 0.336 0.450

i = 4 0.232 0.430

i = 5 0.149 0.400

predicts negatively autocorrelated returns at all lags. This implies a long horizon mean
reversion of the kind documented by Poterba and Summers (1988), Fama and French
(1998a), and Campbell and Shiller (1988). Thus, apart from the very short returns that
exhibit positive autocorrelation, the model reproduces the empirical record.

In Table 8.5 we report the autocorrelation function of the price-dividend ratio
reported by Kurz et al. (2005a). The table shows the model generates a highly autocor-
related price/dividend ratio, which matches reasonably well the behavior of U.S. stock
market data. The empirical record in Tables 8.4 and 8.5 is for NYSE data for 1926–1995
as reported in Barberis et al. (2001).

Dividend Yield as a Predictor of Future Stock Returns The papers cited previously
show that the price–dividend ratio is the best explanatory variable of long returns. To
test this fact Kurz et al. (2005a) consider the following regression model:

�kt+k = ζk + ηk(evt/qt−1) + ϑt, k (8.31)

evt/qt−1 is the dividend yield since it is the ratio between dividend paid at t and the stock
price at t − 1.

Fama and French (1988b) report that the ability of the dividend yield to forecast
stock returns, measured by regression coefficient R2 of Eq. 8.31, increases with the
return horizon. Kurz et al. (2005a) find that the model captures the main features of the
empirical evidence as reported in Table 8.6.
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TABLE 8.6 The Behavior of the Regression Slopes in Eq. 8.31

Time Horizon Model Empirical Record

k ηk R2 ηk R2

1 5.03 0.08 5.32 0.07

2 8.66 0.14 9.08 0.11

3 11.16 0.18 11.73 0.15

4 13.10 0.21 13.44 0.17

To conclude the discussion of predictability, observe that the empirical evidence
reported by Fama and French (1998a, 1998b), Campbell and Shiller (1988), Poterba
and Summers (1998), and others is consistent with asset price theories in which time-
varying expected returns generate predictable, mean-reverting components of prices
(see Summers, 1986). The important question left unresolved by these papers is, what
drives the predictability of returns implied by such mean-reverting components of
prices? Part of the answer is the persistence of the dividend growth rate. Kurz et al.
(2005a) offer a second and stronger persistent mechanism. It shows that these results
are primarily driven by the dynamics of market state of beliefs, which exhibit correlation
across agents and persistence over time. Agents go through bull and bear states, causing
their perception of risk to change and expected returns to vary over time. Equilibrium
asset prices depend on states of belief that then exhibit memory and mean reversion.
Hence returns exhibit these same properties.

GARCH Behavior of the Price–Dividend Ratio and of the Risky Returns

Stochastic volatility in asset prices and returns is well documented (e.g., Bollerslev,
Engle, and Nelson, 1994; Brock and LeBaron, 1996). In partial equilibrium finance it
is virtually standard to model asset prices by stochastic differential equations, assum-
ing an exogenously driven stochastic volatility. But where does stochastic volatility
come from? Dividends certainly do not exhibit stochastic volatility. We now show that
models with diverse beliefs can explain why asset prices and returns exhibit stochastic
volatility.

To formally test the GARCH property of the price–dividend ratio and of the risky
returns, Kurz et al. (2005a) use the 20,000 simulated observations noted in the “Equity
Premium Puzzle” section. With that data they estimate the following econometric model
of the dynamics of the log of the price–dividend ratio:

log(qt+1) = κq + μq log(qt) + ζ
q
t+1

ζ
q
t ∼ N (0, hqt ) (8.32a)

h
q
t = ξ

q
0 + ξ

q
1 (ζqt−1)2 + νq1h

q
t−1
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Since the price–dividend ratio is postulated to be an AR(1) process, the process in
Eq. (8.32a) is GARCH(1,1). Similarly, for the risky rates of return, they postulated
the model

�t+1 = κ� + μ� log(qt+1) + ς�t+1

ς
�
t ∼ N (0, h�t ) (8.32b)

h
�
t = ξ

�

0 + ξ
�

1 (ς�t−1)2 + ν�1h
�

t−1

For a specification of Eqs. 8.32a and 8.32b, they also tested ARCH(1) and
GARCH(2,1) but concluded that the proposed GARCH(1,1) describes best the behav-
ior of the data. Due to the large sample they ignore standard errors and report that
the estimated model for the log of the price–dividend ratio satisfies the GARCH(1,1)
specification:

log(qt+1) = 0.99001 + 0.69384 log(qt) + ς
q
t+1

ς
q
t ∼ N (0, hqt )

h
q
t = 0.00592 + 0.02370(ςqt−1)2 + 0.73920hqt−1,R2 = 0.481

For risky rates of return, the estimated model satisfies the GARCH(1,1) specification

�t = 1.13561 − 0.33355 log(qt) + ς
�
t

ς
�
t ∼ N (0, h�t )

h
�
t = 0.00505 + 0.01714(ς�t−1)2 + 0.77596h�t−1, R2 = 0.180

To explain we observe that stochastic volatility is a direct consequence of the dynam-
ics of beliefs, defined by (z1

t , z
2
t ) in Kurz et al. (2005a). Persistence of beliefs and

correlation across agents introduce these patterns into prices and returns. When agents
disagree (i.e., z1

t z
2
t < 0), they offset the demands of each other and as that pattern per-

sists, prices do not need to change by very much for markets to clear. During such
periods prices exhibit low volatility: persistence of belief states induce persistence of
low volatility. When agents agree (i.e., z1

t z
2
t > 0) they compete for the same assets and

prices are determined by difference in belief intensities. Changes in the levels of bull
or bear states generate high volatility in asset prices and returns. Persistence of beliefs
cause such high-volatility regimes to exhibit persistence. Market volatility is then time
dependent and has a predictable component as in Eqs. 8.32a and 8.32b.

The virtue of the above argument is that it explains stochastic volatility as an endoge-
nous consequence of equilibrium dynamics. Some “fundamental” shocks (i.e., an oil
shock) surely cause market volatility, but it has been empirically established that mar-
ket volatility cannot be explained consistently by “fundamental” exogenous shocks
(e.g., Schwert, 1989; Pesaran and Timmermann, 1995; and Beltratti and Morana, 2006).
The Kurz et al. (2005a) explanation of stochastic volatility is thus consistent with the
empirical evidence.
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8.4.3. Volatility of Foreign Exchange Rates and the Forward Discount Bias

The relevance of foreign exchange markets to our discussion in this chapter is motivated
by the following problem. Estimate a regression of the form

ext+1 − ext
ext

= c + ζ(rDt − rFt ) + εt+1 (8.33)

where (ext+1 − ext) is the change of the exchange rate between t and t + 1 and (rDt − rFt )
is the difference between the short-term nominal interest rates in the domestic and the
foreign economies. Under rational expectations (rDt − rFt ) is an unbiased predictor of
(ext+1 − ext). It is motivated by a standard arbitrage argument: If there is a differential
in nominal rates, agents can borrow in one country and invest in the other and gain
from the difference if the exchange rate does not move against them by the amount of
the differential. In a no-arbitrage REE, a rationally expected change in the exchange rate
must then be equal to the interest rate differential. This means that apart from a technical
correction for risk aversion, the parameter ζ should be close to 1. In 75 empirical studies
ζ was estimated to be significantly less than 1 and in many studies it was estimated to
be negative (see Froot and Frankel, 1989; Frankel and Rose, 1995; and Engel, 1996, for
an extensive survey).

The failure of ζ to exhibit estimated values close to 1 is known as the forward dis-
count bias in foreign exchange markets. The empirical fact is that exchange rates are far
more volatile than can be explained by differentials in nominal interest rates or inflation
rates between countries. But changes in foreign exchange rates are not predictable and
interest rate differentials account only for a small fraction of the movements in foreign
exchange rates. However, it is not surprising that this lack of predictability decreases
with the length of time involved. That is, long-run differentials in nominal interest rates
do exhibit better predictive power of long-run movements in foreign exchange rates,
since long-run differentials in nominal rates reflect differentials in inflation rates. Since
the problem at hand is the nature of market expectations and exchange rate volatility,
it is a natural for us to consider it here, and the model of diverse belief is an obvious
candidate to be used to solve the problem.

Applying the rational belief theory to this problem, Kurz (1997b) and Black (1997),
(2005) developed a model that is similar to the Kurz and Motolese (2001) model except
for treating the second agent as a second country and adding two nominal debt instru-
ments. A similar model was also reformulated by Kurz and Motolese (2001). Limitation
of space makes it impossible to review all technical details of these models here. Instead,
we outline the key points of the model construction and note the results. Hence, the
central model construction elements in these papers are as follows:

• Consider the first agent as the “domestic United States,” which is the home country,
and the second agent as a “foreign economy”

• Introduce a second shock that is associated with productivity in the foreign econ-
omy and is different from the first shock defined for productivity in the domestic
economy
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• Introduce a monetary system for both countries and a second currency
• Introduce two nominal interest rates and two different monetary policies
• There are the two standard financial assets: (1) ownership shares of a domestic firm

with stochastic dividend whose stock trades freely in both currencies across the
countries, and (2) a zero net supply riskless bond that pays a unit of consumption
and that trades in both currencies across the countries

• Introduce a simple production structure for the foreign economy

Note that these models do not aim to simulate the United States or world economies;
they merely aim to explain via simulations why a model with diverse beliefs implies
ζ < 1. And indeed, all models produce estimated parameters ζ, that are significantly less
than 1: In the rational belief equilibrium of Kurz (1997b) the estimated ζ is around 0.25,
in Black (1997, 2005) it is around 0.15, and in Kurz and Motolese (2001) it is around
0.45. More realistic results could be obtained by formulating more realistic models, but
the key result ζ < 1 is virtually independent of the model formulation. We now provide
an explanation for this strong conclusion.

Why do diverse beliefs predict that ζ is less than 1? If ζ < 1 in an REE, agents
can make an expectational arbitrage: They can borrow today in one currency, invest in
the other, and expect that the net return on their investment next period will be larger
than the depreciation of the currency. In such an equilibrium all agents hold the same
self-fulfilling expectations; the expectational arbitrage becomes a real arbitrage and
consequently this implies that ζ < 1 cannot hold in equilibrium.

In a world with diverse beliefs, equilibrium exchange rate depends on the distribution
of beliefs and hence exchange rates exhibit excess volatility, reflecting the variabil-
ity of investors’ beliefs. Indeed, volatility of foreign exchange rates is dominated by
endogenous uncertainty. The implication is that regardless of the information today, to
forecast future exchange rates agents must forecast future market states of belief, render-
ing exchange rates virtually unpredictable. Hence, if a condition of differential nominal
interest rates across countries arises, it can never be the only factor that will determine
the exchange rate next period. With risk-averse agents who are unable to predict the
exchange rate, a condition of differential interest rates will not generate the beliefs of
traders that the exchange rate will, in fact, adjust. Failing to expect the exchange rate
to adjust, they will not undertake such arbitrage and the exchange rate will, in fact, not
adjust. This mechanism ensures that a differential of nominal interest rates between the
two countries is not an unbiased estimate of the rate of depreciation of the exchange rate
one period later, hence ζ < 1. This reasoning does not hold in the long run since a long-
term differential of nominal interest rates will persuade the markets that the exchange
rate must adjust in the long run and this will persuade them to engage in such arbitrage.

8.4.4. Macroeconomic Applications

Although there is a wide range of potential applications in macroeconomics, so far only
limited questions have been studied with the model of diverse beliefs. Motolese (2001,
2003) shows that in an economy with diverse beliefs, money is not neutral. To see why,
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it is important to observe that before rational expectations the case for money neutrality
was based on the quantity theory of money. The main contribution of Lucas (1972) was
to show that money neutrality can be proved only by an exploration of the structure of
expectations. In a model with heterogeneous beliefs, agents hold diverse beliefs about
the relative effects of productivity growth and money shocks; hence they hold diverse
beliefs about future inflation. With diverse expectations money cannot be neutral.

Kurz et al. (2005b) is a comprehensive study of the efficacy of monetary policy in
an economy with diverse beliefs. The authors show that diverse beliefs constitute an
important propagation mechanism of fluctuations, money nonneutrality, and efficacy
of monetary policy. Since expectations affect demand, the theory shows that economic
fluctuations are driven mostly by varying demand, not supply shocks. Using a compet-
itive model with flexible prices in which agents hold rational beliefs, the authors arrive
at six conclusions:

1. The model economy replicates well the empirical record of fluctuations in the United
States.

2. Under monetary rules without discretion, monetary policy has a strong stabilization
effect, and an aggressive anti-inflationary policy can reduce inflation volatility to zero.

3. The statistical Phillips Curve changes substantially with policy instruments, and
activist policy rules render it vertical.

4. Although prices are flexible, money shocks result in less than proportional changes
in inflation; hence the aggregate price level is “sticky” with respect to money shocks.

5. Discretion in monetary policy adds a random element to policy and increases volatil-
ity. The impact of discretion on the efficacy of policy depends on the structure of
market beliefs about future discretionary decisions. The paper studies two rational-
izable beliefs. In one case, market beliefs weaken the effect of policy; in the second,
beliefs bolster policy outcomes. Therefore, in this case, discretion is a desirable
attribute of the policy rule. That is, social gains from discretion arise only under
special structures of belief of the private sector about future bank discretionary
acts, and such requirement complicates the bank’s problem. Hence, the weight of
the argument leads Kurz et al. (2005b) to conclude that a bank’s policy should be
transparent and abandon discretion except for rare and unusual circumstances. This
analysis is in contrast to the recent literature initiated by Morris and Shin (2005)
and others who suggest that due to asymmetric private information, central bank
transparency has inherent cost of failing to retrieve useful private information by the
bank. We have rejected the applicability of the private information model for the
study of economic aggregates such as interest rates, inflation rate, or GDP growth.
Hence, the Morris and Shin (2005) model does not address the real problem asso-
ciated with the objective of central bank transparency, which is the coordination of
expectations.

6. One implication of the model suggests that the present-day policy is only mildly
activist and aims mostly to target inflation.
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8.5. CONCLUSION AND OPEN PROBLEMS

Rational expectations and irrational behavior are extreme hypotheses; with REE one
cannot explain the observed data on market dynamics and with irrational behavior one
can prove anything. We highlight here the merit of an intermediate concept of belief
rationality that emerges from the fact that the economy is a nonstationary system with
time-varying structure. This prevents agents from ever learning true structural relations
and probability laws. All they learn are the empirical frequencies from which emerge
a common knowledge of a stationary probability reflecting the long-term dynamics.
Belief rationality requires agents to hold only beliefs that are not contradicted by the
empirical evidence. But since it is irrational to believe in a fixed deviation from the
stationary probability, such belief rationality implies belief dynamics: Individual beliefs
must be time varying, and correlation across agents generates a new aggregate force in
market dynamics, which is the dynamics of market belief.

The main observation made in this chapter is that the dynamics of market beliefs are a
central market force that is as important to asset pricing and allocation as the dynamics
of productivity or public policy. Indeed, the dynamics of market beliefs explain well
the four recessions Samuelson noted that the market predicted but that did not happen.
It shows that a rational market makes forecasting mistakes and rational investors are
not infallible. They may use wrong forecasting models. Once we recognize that being
rational and being wrong are not incompatible and that no psychological impulses are
needed for this proposition, we are open to a new paradigm of market dynamics. This
paradigm provides a coherent explanation to most dynamical phenomena of interest as
outlined in this chapter. We thus sum up our five central conclusions:

1. Diverse beliefs without any private information are an empirical fact, and such diver-
sity provides a strong motive to trade assets and hedge subjectively perceived risks.

2. Financial markets are the great arena for agents to trade differences in beliefs.

3. The dynamics of market beliefs are a central component of asset price volatility, and
this component of risk has been named endogenous uncertainty. Market belief is
observable.

4. Asset markets exhibit large excess volatility of prices, returns, and high volume of
trade due to the dynamics of beliefs.

5. Risk premia reflect the added market risk due to the dynamics of beliefs and in some
markets the component of risk premia due to the dynamics of market beliefs is very
significant.

Important problems that we have not discussed are still open, some of which are
being researched at this time. Five examples are as follows:

1. Pareto optimality. The concept of ex-ante Pareto optimum is not a satisfactory con-
cept for a market with diverse beliefs. To attain any Pareto improvement, all agents
must believe it is an improvement, and that is not likely. Hence, most stabilization
policies would not be Pareto improving. Following the idea of ex-post Pareto opti-
mality (e.g., Starr, 1973, and Hammond, 1981), progress on this issue was made
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by Nielsen (2003, 2006), who argued that a currency union is superior to multiple
currencies since a union would eliminate endogenous uncertainty inherent in foreign
exchange rates.

2. Stabilization policy. When the problem of Pareto optimality is resolved, the door
will be open to a study of the desirability of stabilization public policies. Some start
has been made by Kurz et al. (2005b) regarding stabilizing monetary policy. But
the question is broader. Should the Fed target the stock market? Should countries
cooperate to avoid an international financial crisis? What is the role of an interna-
tional convention regarding bank reserve requirements? Under REE these types of
questions are set aside since it is often argued that the market solution is best and no
cooperative policy is needed. In a world of diverse beliefs, this is not true and the
question is open.

3. Continuous time reformulation. A continuous time reformulation of the RB theory
would open the door to a study of the decomposition of risk into fundamental and
endogenous components. With such formulation available, we can formulate the
decomposition of the values of derivative securities, using Black Scholes, into the
fundamental and endogenous components. Such a decomposition is likely to provide
an explanation to the Smile Curves in derivative pricing.

4. Destabilizing speculation of futures markets. Could the opening of a future’s market
increase the volatility of a spot market? This is an old question that has not been fully
clarified. Our conjecture is that a proper formulation of the problem will show that
if margin requirements and leverage conditions are sufficiently relaxed in a futures
market, its opening could give rise to endogenous uncertainty, which cannot arise in
the spot market if storage cost are high enough. This could increase the volatility of
a spot market.

5. Volume of trade and speculation. Markets with diverse beliefs are the natural arenas
for agents to trade differences in their beliefs, and we have reviewed recent progress
made by Wu and Guo on this problem. However, the problem of speculation needs to
be solved for economies with risk aversion. Also, a significant amount of empirical
work has been done on patterns of the volume of trade, but much remains to be
explained with formal models.
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Abstract

Evolutionary finance studies the dynamic interaction of investment strategies in
financial markets. This market interaction generates a stochastic wealth dynamic on
a heterogenous population of traders through the fluctuation of asset prices and their
random payoffs. Asset prices are endogenously determined through short-term mar-
ket clearing. Investors’ portfolio choices are characterized by investment strategies that
provide a descriptive model of decision behavior. The mathematical framework of these
models is given by random dynamical systems.

This chapter surveys the recent progress made by the authors in the theory and appli-
cations of evolutionary finance models. An introduction to and the motivation of the
modeling approach is followed by a theoretical part that presents results on the market
selection (and coexistence) of investment strategies, discusses the relation to the Kelly
Rule and implications for asset-pricing theory, and introduces a continuous-time math-
ematical finance version. Applications are concerned with simulation studies of market
dynamics, empirical estimation of asset prices and their dynamics, and evolution of
investment strategies using genetic programming.

Keywords: evolutionary finance, financial markets, investment strategies, dynamic interaction,
market selection, wealth dynamics, asset pricing, market stability, Kelly Rule, simulation,
stochastic dynamics, random dynamical systems

9.1. INTRODUCTION

9.1.1. Motivation and Background

Evolutionary finance aims at improving our understanding of the causes and effects of
the dynamic nature of financial markets through the application of Darwinian ideas.
Market places for risky assets exhibit an unparalleled degree of dynamics and evolution
in the behavior and interaction of its participants. The innovations in investment styles,
products, and the regulatory framework appear to be limitless. All of these changes can
be traced back to human endeavor, which tries to achieve intended aims; however, to
a similar extent, they are caused by the adaptive, self-organizational, and endogenous
dynamics of the decisions and interaction of the market participants, sometimes with
unintended consequences. It is this “life on their own,” which financial markets are
often claimed to possess, that our evolutionary approach strives to capture. This chapter
surveys the progress made during the last seven years by the authors and their collab-
orators in this direction of inquiry within the recently established field of evolutionary
finance.

Our approach is rooted in several (quite diverse) lines of research: evolutionary eco-
nomics, financial economics, economic theory, mathematical finance, and dynamical
systems theory. The application of evolutionary ideas in the social sciences has a long
history. It goes back at least to Malthus, who played an inspirational role for Darwin;
see Hodgeson (1993) for a review of this subject. The 1950s saw a renewed interest
in this approach with the publications of Alchian (1950), Penrose (1952), and others.
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This area experienced tremendous developments through the interdisciplinary research
conducted in the 1980s and 1990s under the auspices of the Santa Fe Institute that
brought together researchers of different backgrounds—economists, mathematicians,
physicists and biologists—to study evolutionary dynamics in biology, economics, and
finance (Arthur et al., 1997; Farmer and Lo, 1999; LeBaron et al., 1999; Blume and
Easley, 1992; Blume and Durlauf, 2005). Their research provided the main source of
inspiration and motivation for our work on evolutionary finance.

Evolutionary finance has two defining characteristics: a descriptive approach to the
specification of investors and a focus on the dynamics of the wealth distribution.
The descriptive modeling of investors shuns any notion of utility and its maximiza-
tion. The dynamics of investors’ wealth is driven by the market interaction of investors
and the randomness of asset payoffs. This approach lets actions speak louder than
intentions and money speak louder than happiness. Financial practitioners at the cutting-
edge of active investment are mainly concerned with beating a benchmark, which is
rewarded a bonus, rather than in pursuing some more elusive goals. Evolutionary finance
attempts to develop models that reflect this hands-on view to financial markets, where
the interaction of the investors plays a major role.

Evolutionary modeling overcomes the need to use sophisticated equilibrium con-
cepts; it dispenses with the assumption of a high degree of rationality on the part of
market participants. Both of these assumptions play an important role in classic finance
and financial economics despite the fact that they have attracted so much criticism from
different quarters over the last century. Evolutionary models of financial markets, in
contrast, rest on a very different view of the behavior of market participants and the
interdependence of investment decisions and their performance and, thus, the interaction
of the traders. The emphasis in this approach is on a descriptive model of investors to
allow for behaviors driven by heuristic reasoning and/or behavioral biases (e.g., myopic
optimization, dependence of decisions on past performance, and other forms of bounded
rationality).

The choice of the equilibrium concept marks another main shift in the paradigm of
how markets work: rather than assuming that all of the investors share the same opinion
about the possible future contingencies (and the price of each asset in every possible
state), market equilibrium is only invoked in the short term through market clearing at
the current date. The advantage of this approach is twofold: computational and con-
ceptual. Heterogeneity of investors represents the diversity of opinions and types of
behavior; short-run goals shift the focus from discounted expected utility to the wealth
of investors and its dynamics. A main object of study is the performance of investment
styles, in particular within a specific set of strategies. Evolutionary finance opens the
door to the study of this line of inquiry without invoking a notion of an equilibrium that
requires the agreement of market participants on future price systems.

The investors populating our models can be viewed as heterogeneous agents pursu-
ing particular investment goals. Agent-based models in finance are, however, typically
restricted to a very narrow set of investment strategies. Usually agent types are defined
through myopic mean-variance optimization—the application of technical trading rules
such as chartists and fundamentalists (see Chiarella et al., 2009; Hommes and Wagener,
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2009; Lux, 2009). Such an approach has the advantage of explicit demand-and-supply
functions derived from standard utility maximization. As demonstrated in this chap-
ter, however, the class of investment strategies considered might be too restrictive
because it ignores better-performing investment strategies. It is our aim to maintain
the largest degree of freedom in the choice of investment strategies without sacrificing
the applicability of random dynamical systems as a modeling framework.

9.1.2. Applications and Real-World Implications

Our research aims to contribute to the portfolio choice of investors and to the valuation
of financial assets. Both are highly relevant topics for practitioners.

The approach to portfolio choice pursued here is quite different from most of those
found in the literature on financial decision making. Rather than offering investment
advice for particular tastes of risk, we seek to select investment strategies through
the optimality of their asymptotic performance. This performance is dependent on the
investors’ market interaction, which describes the price impact of their strategies. Port-
folio choice therefore is informed by objective criteria. The investment recommendation
derived in this fashion is closely related to the Kelly Rule. (The term “generalized Kelly
Rule” will be used in this chapter to honor his original contribution.) As for any good
guide to investment, practitioners have been aware of similar concepts for quite some
time—though typically lacking a theoretical foundation.

The concept of value investment, which goes back at least 75 years to Graham and
Dodd (1934), or stock picking according to relative dividend yield, which even made it
as a book title, share the feature that portfolio choice is guided by fundamentals (divi-
dends). The empirical results of evolutionary portfolio theory presented here lend some
support to the validity of our approach. The ultimate question—whether this investment
recommendation is normative and should guide individual investors’ decisions—is left
to be decided by those who bet their money; we believe the 30-year debate has raged
long enough.

A benchmark for asset prices is obtained through the long-term outcome of mar-
ket interaction—the Kelly Rule. This finding provides a framework for the valuation
of financial assets. The rationale behind this valuation approach is as follows: Only
if the relative prices correspond to the Kelly benchmark, the asymptotically optimal
investment strategy, does not achieve excess growth. Otherwise, a Kelly investor will
reap above-average returns. The economic foundation of the evolutionary finance model
implies that the benchmark is only meaningful for tradeable assets. While our approach
provides a prediction on the price of one asset relative to that of some other, it does
not allow for assessing the “correctness” of the overall valuation of the market. The
model therefore provides relative fundamental values that are of particular interest to
long–short hedges such as in pairs trading.

9.1.3. Structure of Chapter

The introductory part of this chapter, Section 9.1.4, discusses the role of dynamics
and evolution for evolutionary finance. Section 9.1.5 explains and demonstrates the
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basic elements of this approach within Kelly’s famous model of horse-betting markets.
Evolutionary models of financial markets are introduced in detail in Section 9.2. The
theoretical analysis of this class of models is organized in two parts: Section 9.3 covers
models with short-lived assets and Section 9.4 discusses those with long-lived assets. In
both cases the study moves from local dynamics to (more demanding) global dynamics.
Section 9.4.3 briefly discusses the role of the Kelly rule in dynamic general equilibrium
models. A range of applications is presented in Section 9.5. These comprise simula-
tion studies of the wealth dynamics and the evolution of strategies in combination with
genetic programming, as well as an empirical study of evolutionary finance and its asset-
pricing implications. Section 9.6 highlights recent advances in continuous-time models
in evolutionary finance. Section 9.7 summaries this chapter.

Throughout, preference will be given to the heuristic derivation of results. Readers
interested in the technical details will be provided with references to relevant articles.

9.1.4. Dynamics and Evolution

Our evolutionary finance approach employs a mathematical framework tailored to the
description of dynamics in physical and social systems: the theory of random dynamical
systems (Arnold, 1998); see Schenk-Hoppé (2001) for a survey of applications in
economics. The main challenge in the quest for dynamic models of market evolution
and trader interaction is the need to break away from the usage of sophisticated equili-
brium concepts that are prevalent in economic theory. Standard equilibrium approaches,
for instance, rule out disagreements among agents about future events (e.g., it is common
to assume agreement of economic agents about the prices in each future contingency
(Laffont, 1989) and render bankruptcy as the outcome of an agent’s deliberate decision.
A genuine dynamic and evolutionary model will not remove all surprises the future
might hold. These models live from the blunders and unintended consequences of the
actions of the individuals populating the model. Survival in an evolutionary struggle is a
matter of life and death (though, thankfully, traders do not anticipate their demise). The
application of evolutionary reasoning requires careful modeling and analysis if one wants
to avoid the pitfalls of semantics as forcefully demonstrated by Friedman’s argument
(1953) on the price efficiency of markets which was (mistakenly—see De Long et al.,
1990) attributed to the absence of supposedly loss-making irrational traders.

Our aim in advancing evolutionary finance is, in particular, to impose as few restric-
tions as possible on the specification of investors and their behavior while, at the same
time, accommodating markets with several risky assets. Both these goals shall further be
achieved in a truly dynamic model to capture the Darwinian origin of this evolutionary
approach. A brief description of the defining characteristics of our evolutionary finance
models follows.

Heterogeneity

Diversity in individual’s investment behavior is a cornerstone of evolutionary finance.
The variety of participants’ strategies of the market (the ecology of the market) makes
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it possible to analyze the performance of specific investment styles in light of the inter-
dependence of traders through endogenous prices. In the terminology of evolutionary
biology, investment types are associated with different species. Two evolutionary forces
affect the diversity in the population of investors: On the one hand, variety is reduced
by the mechanism of selection; on the other hand, mutation creates novelty in behav-
ior. Since identical behavior in financial markets entails an identical return, it is often
possible to choose a representative agent for every investor type. In a finance context it
is not important who does what but how much capital is behind a particular investment
style. Research aiming at creating descriptive models with heterogeneous agents is, in
a sense, perpendicular to the classic financial economics approach in which a single
representative agent governs the relations of prices through indifference.

Strategies

Our approach builds on a model of investment behavior that is purely descriptive.
This is at odds with the usual approach in economics in which theories abound to
describe the behavior of investors as expressed through their decisions about holding
and trading assets and/or consumption: expectations, beliefs, preferences, heuristic deci-
sion processes, and so. Investment decisions in evolutionary finance are characterized
by investment strategies: budget shares allocated to the wealth invested in the avail-
able assets. As long as an investor’s total funds are nonzero (e.g., if some collateral is
required to borrow) and asset prices are nonzero (e.g., excluding futures), budget shares
correspond to portfolio holdings if asset prices are given. In this respect investment
strategies are a more primitive concept because they can be defined independent of price
systems. Moreover they are easily observable, unlike preferences or behavioral biases.
This modeling approach is flexible enough to capture, for instance, agent-based models,
general equilibrium models (with and without incompleteness of markets), and individ-
ual’s behavioral biases. Investment strategies are widely used in mathematical finance
under the labels “relative portfolio” (Björk, 2004) or “trading strategies” (Pliska, 1997),
and they also appear in monetary economics as “fiscal rules” (Shapley and Shubik,
1977). Their descriptive nature allows for many different interpretations of the behav-
iors exhibited by the investors. Investment strategies can be constant or, more generally,
adapted to some information filtration. They can be governed by a process of selection
and mutation using, for instance, genetic programming (Lensberg and Schenk-Hoppé,
2007).

Dynamic Interaction

The performance of strategies is interdependent through their interaction in the market.
The action of one investor affects the other investors only through its impact on asset
prices. Market-clearing is ensured by a pricing rule that gives investors a price impact
that is proportional to their wealth. This mechanism implies that the market is shaped
to a larger extent by rich rather than poor investors. Two aspects of financial markets
are implicit in our model: the flow of capital between different investment strategies and
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the social interaction of investors. Both can be “accommodated” through the interpreta-
tion of the dynamics of investment strategies, which leaves plenty of scope to address
these issues. For instance, the equilibrium of any general stochastic dynamic equilib-
rium model with incomplete markets can be reproduced by our evolutionary finance
model. This merely requires an appropriate specification of the investment strategies.
In line with Darwinian ideas we rather prefer to view investors as being “hardwired” to
their strategy while the wealth tied to each investment strategy evolves through market
interaction. This perspective highlights the wealth dynamics that act across investment
strategies. The evolutionary finance models discussed in detail in this chapter are like
laboratories populated by investment strategies.

Selection and Stability

The distribution of wealth across investment strategies exhibits stochastic dynamics.
The dynamics of investors’ wealth is endogenous because it is driven by random asset
payoffs, the trade of assets and consumption goods, as well as by the changes that
trade entails in portfolio holdings and investments. The wealth dynamics is the most
prominent feature of evolutionary finance models. Selection, an elementary Darwinian
force, acts through the wealth dynamics in a financial market. Successful investment
strategies are those gathering more wealth while strategies losing wealth are rendered
unsuccessful by the selection pressure. This interpretation relates to the market selec-
tion hypothesis in that the interaction in the market selects strategies through wealth
dynamics. Selection is an asymptotic property of a model (i.e., an outcome that can
only be observed in the long term). Whether selection occurs is a feature related to the
stability of dynamical systems (e.g., in a steady state). If a market is characterized by a
single strategy (in evolutionary terminology: an incumbent), stability refers to the local
dynamics of the wealth distribution when some strategy with little wealth (a mutant)
is introduced. The incumbent would constitute a stable market if the mutant is wiped
out, because the strategy it represents loses all of its wealth. Instability of a market
corresponds to the opposite situation in which the mutant gains wealth.

Evolutionary finance provides a novel approach to asset pricing. The stability of
markets represented by particular investment strategies provides the foundation for an
evolutionary asset-pricing theory. Suppose there is a model with a unique investment
strategy that is stable against any mutant strategy. Then a market in which assets are
priced accordingly exhibits a strong (evolutionary) stability property. Wealth dynam-
ics provide an actual, rather than fictitious, convergence process for the investors’
wealth and therefore for asset prices. In this sense evolutionary finance can provide
an asset-pricing theory with sensible stability features. Empirical applications of evo-
lutionary finance are currently at the cutting edge of research in this field—first results
are presented in this chapter.

In contrast to most research related to agent-based modeling of financial markets,
the pool of permissible strategies is kept as general as possible. The analytic results will
impose different restrictions on the set of investment strategies but simulation studies
are, by and large, free of these constraints. The combination of the wealth dynamics
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with the type-switching behavior of investors is straightforward. The major advantage
to other approaches is that many assets and a richer market ecology can be studied.

In economics the trade-off between immediate and future consumption in intertem-
poral models plays a major role in an agent’s saving–investment decision, while in
finance the main focus is the allocation of wealth across investment opportunities. Our
evolutionary finance models allow for a strict separation of the consumption and the
investment decision through an exogenous (i.e., modeler’s) choice of the investors’ sav-
ing rates. This provides a level playing field for the competition of investors to avoid
artifacts such as oversaving. Saving “too much” (i.e., a disproportional amount rela-
tive to other investors) due to holding consistently wrong beliefs about future returns
is a trait (e.g., of general equilibrium models with incomplete markets; see Blume and
Easley, 2006). We feel a more narrow view will benefit the study of financial invest-
ment. Rather than measuring performance by taking into account consumption amounts,
which would fix this problem, our evolutionary finance approach controls consumption
through an exogenous and common saving rate. This rate determines the proportion of
wealth consumed during each period of time. Every investor spends the same amount
per unit of wealth owned which in turn entails a level playing field.

9.1.5. Horse Races and the Kelly Rule

The main model components and concepts of our evolutionary approach to the study
view to financial markets are best introduced and illustrated in a simple betting market
model. These considerations can be traced back to Kelly (1956) who, among other
things, studied optimal investment in pari-mutuel betting markets in which players
repeatedly reinvest their wealth over an infinite time horizon in win-only bets. The ideas
for this line of inquiry on optimal investment were developed by Claude Shannon, the
founder of information theory (Cover, 1998).

Consider a race ofK ≥ 2 horses. The odds of the bet “horse k win” are given by 1:αk
(i.e., every $1 bet on horse k pays $αk if this horse wins, and nothing otherwise). The
odds correspond to the market’s estimate of horse k’s chances to win. In a pari-mutuel
betting market without track-take, one has

1
α1

+ · · · + 1
αK

= 1 (9.1)

A risk-free payoff in this betting market is obtained by betting the fraction 1/αk of one’s
wealth on horse k—k = 1, . . . ,K. According to Eq. 9.1, the total expenditure is given
by w/α1 + · · · + w/αK = w—the bettor’s wealth. If, say, horse k wins, the payoff is
αk · w/αk = w, which is equal to the invested fortune.

In a financial market setting, betting corresponds to the holding of assets. The
preceding model can be rephrased as follows. There are K ≥ 2 assets with prices
p1, . . . , pK . Each asset’s payoff Ak(s) ≥ 0 (per unit of the asset) depends on the state
of the world, s = 1, . . . ,S, which is revealed after all asset purchases are carried
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out. In a betting market, assets correspond to bets on win and, therefore, S = K and
Ak(s) > 0 if and only if s = k. In other words, these assets are Arrow securities.
The odds are given by pk :Ak(k) or, equivalently, 1 : (Ak(k)/pk); this shows that
αk = Ak(k)/pk. The relation (9.1) holds if, in each state, the total payoff is equal
to the total amount invested. Denoting by qk, the number of asset k held, this
condition means that for all k, qkAk(k) = q1p1 + · · · + qKpK =: A > 0. This relation
implies Eq. 9.1.

Consider an infinite sequence of horse races in which, for simplicity, the outcome of
each race is independent of the previous one. (Horses can have different probabilities
of winning a race, though.) Denote the probability of the event that horse k wins by πk
and let π = (π1, . . . ,πK ). The outcome of race t is denoted by st, where st ∈ {1, . . . ,K}
has a probability distribution π for every t = 1, 2, . . .. Consider a bettor who fixes (once
and for all) the share of her wealth to be placed on each particular bet and, moreover,
always invests all payoffs received in the previous race. This investment strategy can be
formally described by a vector λ = (λ1, . . . , λK ) with λk ≥ 0 and

∑K
k=1 λk = 1. (λ is a

vector of portfolio weights.) Starting with initial wealth w0 > 0, the wealth of the bettor
after race t is given by

wt =
(
αstλst

)
. . .

(
αs1λs1

)
w0 (9.2)

The average logarithmic growth rate over t periods therefore is

1
t

ln
(
wt
w0

)
=

1
t

t∑
u=1

ln
(
αsuλsu

)
(9.3)

The strong law of large numbers implies that, as t → ∞, the t-period growth rate
(9.3) converges almost surely to

E ln (αsλs) =
K∑
s=1

πs ln (αsλs) (9.4)

The highest logarithmic growth rate is achieved by the vector of portfolio weights
for which E ln (αsλs) is maximal. The Lagrange approach implies that λ∗k = πk
for all k.

The vector of portfolio weights λ∗ = π is called the Kelly Rule. Remarkably, this
optimal betting rule does not depend on the odds of the bets. It is clear from (Eq. 9.3)
that, in the case of independent outcomes, the Kelly Rule also maximizes the expected
value of all average logarithmic growth rates. The Kelly investor’s wealth will expe-
rience a strictly positive growth rate if the odds do not coincide with the probabilities
of paying off (i.e., 1/αk �= πk for some k). In this case betting with the Kelly port-
folio weights yields excess growth because this investor’s wealth growth was faster
than the average investor, who has a growth rate of 0. This effect does not occur only
if all market’s estimates are equal to the objective probabilities (i.e., if 1/αk = πk for
all k).
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That the expected logarithmic growth rate is a sensible measure of success can be
seen as follows. Consider two bettors with portfolio weights λ1 and λ2, respectively.
Then the wealth of bettor 1 relative to that of bettor 2 evolves as

1
t

ln

(
w1
t

w1
0

/
w2
t

w2
0

)
=

1
t

t∑
u=1

ln

(
αsuλ

1
su

αsuλ
2
su

)
=

1
t

t∑
u=1

ln

(
λ1
su

λ2
su

)

−−−→
t→∞

E ln
(
λ1
s

λ2
s

)
=: Iλ2 (λ1)

(9.5)

The term Iλ2 (λ1) is called the relative entropy of λ1 with respect to λ2. If Iλ2 (λ1) > 0,
bettor 1’s wealth grows exponentially faster than that of bettor 2. In particular, one finds
that w1

t /w
2
t → ∞ (almost surely) as t → ∞ (i.e., bettor 1 overtakes bettor 2).

Eq. 9.5 tells the intriguing lesson that the odds (or, equivalently asset prices and
payoffs) do not matter for optimal long-term investment. Regardless of the particu-
lar odds, the advantage (in terms of the growth rate) of one investor over the other
is given by Iλ2 (λ1). Only objective probabilities and the investors’ portfolio rules
matter. Moreover, whether one investment strategy is superior to some other one can be
judged by a pairwise comparison. The total number of active bettors does not play any
role.

Interpretation

The Kelly Rule has several remarkable properties that allow for the interpretation of the
result in different contexts.

Equilibrium Asset Pricing If the odds of at least one bet do not coincide with the
objective probability, there are excess returns (i.e., a strictly positive growth rate) for
an investor using the Kelly Rule. That is, this investor’s wealth will, in the long term,
overtake that of any other investor who does not employ the rule. The equilibrium prices
are those that equate the odds and the true probabilities of this event. At these “fair
prices” there is no excess return. Every investor who employs the Kelly Rule has a
growth rate of wealth equal to zero, and any other investor experiences a negative growth
rate.

Market Selection The wealth dynamics of investors provides a mechanism for com-
parison of their performance in the market. An investor with a higher growth rate than
a competitor is selected by the market in the sense that the relative wealth of investors
with lower growth rates tends to zero. The market selects for investors employing the
Kelly Rule. The analysis here is greatly facilitated because the interaction of investors
through prices does not play any role: performance can be quantified solely by using
the objective probabilities (see the relation in Eq. 9.5).
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Betting Your Beliefs The best decision of an investor, who strives to maximize his
growth rate but is not informed about the true probabilities, is to choose a portfolio rule
according to his estimate (or partial knowledge) of the true probabilities (i.e., to “bet
his beliefs”). An investor with a better estimate or knowledge of the vector π (in terms
of the entropy) than other investors will achieve a higher growth rate and thus overtake
the investor with inferior estimates. In the preceding model, Bayesian updating presents
the optimal way of learning about the true probabilities.

Log-Optimum Investment The fact that the Kelly Rule maximizes the expected log-
arithmic growth rate, as well as any expected average logarithmic growth rate, can be
used to characterize the rule as the one that maximizes, at any point in time, the log-
arithmic growth rate. We will see later that this trait is specific to win-only betting
markets (i.e., a financial market consisting only of Arrow securities). A general math-
ematical theory on log-optimum investment has been developed by Breiman (1961),
Thorp (1971), Algoet and Cover (1988), Browne (1998), and Hakansson and Ziemba
(1995).

Generalizations

Consumption, as a share of wealth, is easily accommodated. Suppose bettor i reinvests
the constant fraction 0 < δi ≤ 1 of her wealth in every one race. Then considerations
completely analogous to the previous model show that bettor 1 overtakes bettor 2 if
and only if Iδ2λ2 (δ1λ1) = E ln

(
δ1λ1

s/δ
2λ2

s

)
> 0. Even if λ1 is closer to λ∗ than λ2, a

too-small δ1 (relative to δ2) can ensure that bettor 2 overtakes bettor 1. It is clear that
more economic content can be added to the specification of investors in the model (e.g.,
econometric learning models). The simple link between the absolute performance of
an investment strategy and the consumption rate, as well the closeness to the Kelly
Rule, enables a study of the market-selection hypothesis in this framework. A detailed
coverage is given by Blume and Easley (2009).

Kelly’s contribution to portfolio choice has stirred an amazing controversy within
financial economics. The main adversary in this debate is Samuelson (1979) who ques-
tioned the value of the Kelly Rule as an investment advice on the grounds that “we
should not make mean log of wealth big though years to act are long.” In essence, the
critique is that you should maximize your utility function rather than base your invest-
ment decision on some other criterion. This is certainly correct, but it fails to appreciate
that Kelly’s results are not necessarily normative but rather descriptive. This is true
in particular if the issue of selection of investment strategies (in connection with the
market-selection hypothesis) is discussed. In this view, the Kelly Rule, as well as the
growth rates, provides a benchmark that is available to an outside observer.

9.2. EVOLUTIONARY MODELS OF FINANCIAL MARKETS

There are two main classes of models, both with proven potential. This section provides
an outline of them by introducing their principal components, followed by a thorough
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discussion of the underlying assumptions. The section concludes with an outline of
wealth and price dynamics.

The fundamental difference between these two model classes is the life span of the
assets: assets either live for one period (short-lived assets) or infinitely many periods
(long-lived assets). Short-lived assets are entitlements to a random payoff. They are
issued at some point in time, pay out at the beginning of the subsequent period, and
then become worthless (i.e., disappear and are issued again). Examples are bets at the
horse track or options with a one-period maturity. A detailed discussion of this model
with Arrow-type securities is provided in Section 9.5. Long-lived assets produce a ran-
dom payoff stream from the day of issue that lasts until eternity. Since these assets
do not expire or disappear, their (future) value is positive, and they are traded among
the investors. The classic example is that of dividend-bearing stocks. In the first case
an investor’s income is only from asset payoffs, while for long-lived assets investors
receive dividend income as well as capital gains (or losses) from price changes in the
assets.

9.2.1. Components of the Models

Both types of evolutionary finance models (short- and long-lived assets) use the same
components, which are explained in detail in the following subsections.

Time

All models discussed here are placed within a discrete-time framework. Time is indexed
with t = 0, 1, 2, . . . , with t = 0 being the initial time period.

Randomness

The randomness of asset payoffs is modeled through a sequence of random variables—
st , t = 0, 1, . . .—with a finite state space S. st = 1, . . . , S describes the “state of the
world” at time t. It is convenient (and without loss of generality) to assume that there is
an infinite past as well (i.e., states of the world st are also defined for t = −1,−2, . . .).
The state is either an (IID). (independent and identically distributed) process with dis-
tribution π(s) = P{st = s} > 0 or, more generally, a time-homogenous Markov process
with transition probabilities π(s|ŝ) = P{st+1 = s|st = ŝ} ≥ 0. The state st should be
seen as a proxy of a rather complex set of variables characterizing investors’ infor-
mation. At each point in time t, the vector st = (. . . , st−1, st) denotes the history of
events.

Assets

There areK ≥ 1 assets, each in unit supply. Asset k’s payoff at time t is given byAk(st).
The asset payoff is in terms of a (perishable) consumption good—just as in Lucas
(1978). This assumption in particular ensures that the assets are the only store of value.
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The dependence on st is responsible for the randomness of the payoff. Throughout the
remainder of this chapter we will assume that

Ak(s) ≥ 0 and
K∑
k=1

Ak(s) > 0 (9.6)

for all k and all s. It is further convenient (and customary) to assume the absence of
redundant assets.

This condition ensures that different portfolios have different payoff streams and
thus a unique relationship. The functions A1(·), . . . ,AK (·) restricted to the set {s ∈ S :
π(s) > 0} are linearly independent. Since π(s) > 0 for all s = 1, . . . ,S, there are no
redundant assets if and only if matrix (A1(·), . . . ,AK (·)) has full rank.

Assets are called short-lived if they pay off only once and then become worthless.
They are called long-lived if they produce a payoff stream that, during each period in
time, has a strictly positive probability of being strictly positive.

Strategies and Investors

There are I ≥ 1 investors who can trade in the K assets at every point in time t. Investor
i’s wealth at time t is denoted by wit , the initial endowment being wi0 ≥ 0. An investor’s
wealth can change because of (1) receipts of asset payoffs, (2) changes in asset prices,
and (3) expenditures for consumption. Each investor is characterized by an invest-
ment strategy—a time- and history-dependent vector of portfolio weights. Investor i’s
investment strategy is denoted by

λit = (λi1,t, . . . , λ
i
K,t), λ

i
t = λit(s

t), t ≥ 0, (9.7)

with

λik,t > 0 and
K∑
k=1

λik,t = 1 (9.8)

The value of λik,t is investor i’s budget share allocated to the investment in asset k
(obtained either through purchases or reduction of a position). Non-negativity of budget
shares means that short-selling is not permitted.

It will be assumed throughout the following that the “pool” of the I strategies only
contains strategies that are different from each other. As usual in evolutionary theory,
the focus is on parts of a population pursuing a particular type of behavior rather than on
the individual. In a finance context this identification is straightforward. All individuals
who follow the same investment strategy are considered owners of an investment fund
pursuing that strategy. Each individual’s wealth is equal to a fraction (the person’s share
of an initial contribution) of the fund’s current wealth.
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Budget

The budget of investor i available for the purchase of assets at time t is denoted by
bit. This budget depends on the investor’s income and consumption. If investor i has
a saving rate 0 ≤ ρi ≤ 1, her budget is bit = ρiwit . The expenditure on consumption is
(1 − ρi)wit . It will be assumed that there is a common (constant) saving rate ρ for all
investors. The endowment is in wealth.

Prices

Asset prices pk,t at any point in time t are determined by market-clearing. Given every
investor’s portfolio weights λit and the vector bt = (b1

t , . . . , b
I
t ) of the budget of investors

that is available for investment, the price of asset k is

pk,t = 〈λk,t, bt〉 :=
I∑
i=1

λik,tb
i
t (9.9)

where λk,t = (λ1
k,t, . . . , λ

I
k,t). Given a common saving rate ρ, the price of asset k at time

t is given by pk,t = ρ〈λk,t,wt〉.

Portfolios

After transaction at prices pk,t > 0, investor i’s portfolio is given by

θik,t =
λik,tb

i
t

〈λk,t, bt〉
(9.10)

(i.e., θik,t is equal to the budget of investor i for the purchase of asset k divided
by the price of asset k). Aggregating Eq. 9.10 over investors can verify that the
total demand is equal to the total supply:

∑
i θ

i
k,t = 1. With a common saving rate ρ,

θik,t = ρλik,tw
i
t/〈λk,t, ρwt〉 = λik,tw

i
t/〈λk,t,wt〉.

9.2.2. Discussion of the Assumptions

A few comments relating these definitions to the literature are in order.
Investment strategies are specified as non-negative budget shares. This precludes

short-selling of assets. The assumption is necessary to rule out bankruptcy as well
as undefined asset prices. In particular, bankruptcy (i.e., negative net worth) would
be prevalent in a dynamic model in which perfect foresight is absent (see also
De Giorgi, 2008). The absence of demand functions further prevents the usual mech-
anism that yields strictly positive asset prices. This assumption can therefore be
seen as a necessary limitation when considering a behavioral model in a dynamical
systems setting.

Asset prices are determined with a market-clearing mechanism that, surprisingly
perhaps, does not require demand functions. Remarkably, this pricing rule simultane-
ously clears any number of markets. This is in stark contrast to general equilibrium
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models and even to most agent-based models. An economic interpretation of this
market-clearing approach is that of fiscal rules as introduced by Shapley and Shubik
(1977). In financial mathematics, the relation (Eq. 9.9) between prices and strategies is
a consequence of the self-financing constraint on portfolios.1 Prices are linear combina-
tions of the investors’ strategies with weights determined by the their wealth. The prices
will therefore resemble rich investors’ strategies rather than those of the poor ones. In
the extreme case in which all investors but one have no wealth, prices will be deter-
mined by the single investor with capital. The price rule (Eq. 9.9) governs the market
interaction of investors. Each investor has an impact on the price proportional to her
wealth.

Trade between agents takes place as an exchange of assets and the consumption
good. An investor will therefore become richer if he has above-average dividend income
and capital gains or if the superior performance in one source of income outweighs
inferiority in the other.

The absence of a market-clearing mechanism for the consumption good is explained
by Walras’s Law: All asset markets clear, investors exhaust their budgets, and thus the
remaining market for the consumption good also clears. It will be convenient to use the
price of the consumption good as the numeraire (and thus set it equal to one).

Asset payoffs are made in a perishable consumption good, an assumption common
in financial economics (Lucas, 1978). Its main advantages in the present context are
that only the assets can be used for the intertemporal transfer of wealth and that there
is no growing stock of money that could inflate prices. In agent-based models with one
stock and money, an increase in the money supply does not affect the return on the stock
because of agents’ CARA utility functions. This specification of preference ensures the
independence of investors’ appetite for risk from the level of wealth; see, for example,
Hommes and Wagener (2009).

The careful treatment of dividends as consumption good is inspired by economics.
There is a clear preference for closed models in the sense that every good is accounted
for (and equations balance). Assets can be interpreted as firms endowed with an initial
capital stock that is worked to produce goods. Here the produce is a generic consump-
tion good. Each asset could be viewed as a sector of the economy, with the aggregate
payoff being the economy’s gross domestic product. Our analysis will focus on the case
in which the relative payoffs possess some degree of stationarity.

Whether the assets are short- or long-lived has a substantial impact for the wealth
dynamics in evolutionary finance models. Since the agents are boundedly rational,
capital and dividend gains play different roles. The presence of capital gains (or
losses) strengthens the link between market dynamics and individual investor’s per-
formance. Both models therefore display different dynamics. In general equilibrium
models in which economic agents have perfect foresight (Laffont, 1989), these two
cases essentially coincide. PayoffsAk,t+1(st+1) and prices pk,t+1(st+1) can be replaced, in

1See, for example, Section 6.2 in Björk (2004) and Sections 2.5 and 5.6 in Pliska (1997) as well as the
discussion in Section 9.6 of this chapter.
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equilibrium, by cum-dividend prices (long-lived assets) or cum-price dividends (short-
lived assets): pk,t+1(st+1) + Ak,t+1(st+1). Then the same allocation can be obtained after
appropriate change of the agents’ portfolios. What matters for the equilibrium dynamics
is the span of the dividend matrix.

9.2.3. Outline of the Dynamics

A brief description of the dynamics in the two models (short- and long-lived assets) fol-
lows. The purpose of this section is to provide some intuition for this modeling approach
without going into technical detail—this is reserved for later.

If assets are short-lived, investment income only consists of dividends. The wealth
dynamics of investor i can be written as

wit+1 =
K∑
k=1

Ak,t+1(st+1) θik,t (9.11)

For long-lived assets, changes in asset prices will affect the investor’s wealth, in
addition, through capital gains and losses. One has the dynamics

wit+1 =
K∑
k=1

(
Ak,t+1(st+1) + pk,t+1

)
θik,t (9.12)

Clearly, if assets do not have a resale value (i.e., pk,t+1 = 0), then Eq. 9.12 is identical
to Eq. 9.11.

The market interaction of all the investors is via their impact on asset prices. Accord-
ing to Eq. 9.9, pk,t = 〈λk,t, bt〉, where bit denotes investor i’s budget. If there is a common
saving rate ρ, one has pk,t = ρ〈λk,t,wt〉. The price of each asset therefore depends on the
wealth distribution wt = (w1

t , . . . ,wIt ). In fact the price represents a wealth-weighted
strategy. When adjusting the portfolio, the number of shares held (relative to wealth)
by an investor will depend linearly on the person’s strategy. If the budget share of the
strategy exceeds the price, the investor will have a higher exposure to that asset than to
those assigned a smaller share.

Let us assume for the time being that both dynamics (9.11) and (9.12) are well
defined. (Details are left for later.) Then, for a given set of strategies, a wealth distribu-
tion wt = (w1

t , . . . ,wIt ) is mapped into a new distribution of wealth across the investors
wt+1 = (w1

t+1, . . . ,wIt+1) simply by drawing a state of nature st+1 and applying Eq. 9.11
(respectively Eq. 9.12). The evolution of the wealth distribution is defined by a dynam-
ical system with a random component (the state of nature) outside the control of the
economic agents. In mathematical terms, each of these equations defines a random
dynamical system (Arnold, 1998).

Selection, survival, and stability will all be defined in terms of this wealth dynamic.
Evolutionary stability will, in addition, allow for the enlargement of the number of
investors. The concept of incumbents and mutants is embedded, for instance, as follows.
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With two investors with wealth (w1
t ,w2

t ), the incumbent–mutant situation corresponds
to the case in which w1

t /w
2
t is either very large (investor 1 being the incumbent) or very

small (investor 1 being the mutant). Stability refers to the convergence of the wealth
distribution after a small perturbation of the wealth distribution that moves it away from
a steady state.

9.3. AN EVOLUTIONARY MODEL WITH SHORT-LIVED
ASSETS

This section introduces an evolutionary finance model with short-lived assets. It is a
direct generalization of the Kelly model of a pari-mutuel betting market discussed in
Section 9.1.5. The presentation draws on Amir et al. (2005), Evstigneev et al. (2002),
and Hens and Schenk-Hoppé (2005b).

The main innovation is the introduction of incomplete markets in this framework. In
contrast to the preceding, it turns out that the growth rate of an investor’s wealth depends
on asset prices. Since prices matter in this setting, the issue of market interaction (and
the price dynamics it entails) becomes important. The distinctive property of short-lived
assets is the absence of a resale value. Each asset pays off one period after its issue and
then becomes worthless. This requires, at every period in time t, the (re-)issue of new
assets. These assets are just like lottery tickets or, as discussed in detail earlier, bets on
win. After the winners received their payoff, the tickets are worthless.

The approach is incremental, with the most simple version of the evolutionary model
with short-lived assets presented first. This basic setting already provides a good intu-
ition for evolutionary finance models without burdening the reader with too much
notation and technicalities. Section 9.3.5 discusses a much more general case with
adapted investment strategies and the state of the world following a Markov process.
The assumptions introduced in Section 9.2.1 are assumed to hold.

9.3.1. The Model

Suppose the state of the world follows an IID process. Asset payoffs depend only on the
current state of nature; that is, one unit of asset k bought at time t pays outAk(st+1) with
st+1 being the state of nature revealed after all trade is completed in period t. Investors
employ constant proportions strategies (i.e., portfolio weights are fixed once and for
all, λi = (λi1, . . . , λiK ), i = 1, . . . , I). There is no consumption but investors reinvest all
receipts in any one period.

The wealth in period t + 1 of investor i is determined by the portfolio purchased in
period t and the realization of the random asset payoffs. The relation between portfolio
θik,t and wealth wit+1 is given by

wit+1 =
K∑
k=1

Ak(st+1) θik,t (9.13)
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Inserting the definition of the portfolio (9.10), one obtains the random dynamics of the
wealth of investor i as

wit+1 =
K∑
k=1

Ak(st+1)
λikw

i
t

〈λk,wt〉
(9.14)

These dynamics exhibit the market interaction of investors. The right side of
Eq. 9.14 depends on the distribution of wealth, wt = (w1

t , . . . ,wIt ), across investors
as well as every investor’s strategy. The evolution of investors’ wealth is therefore
interdependent, with the dependence being caused by each investor’s impact on asset
prices.

The particular circumstances under which analysis for the Kelly Rule applies is
apparent from Eq. 9.14. Testing for overtaking by calculating wit+1/w

j

t+1 yields the
expression

wit+1

w
j

t+1

=

∑K
k=1 Ak(st+1)λik/pk,t∑K
k=1 Ak(st+1)λjk/pk,t

wit

w
j
t

(9.15)

The asset prices only cancel if, in every state of the world, exactly one asset has a strictly
positive payoff (and all the others have zero); in other words, if the market consists
only of Arrow securities which, in particular, implies completeness of the market. In
this sense, incomplete market prices matter (for relative growth and thus for survival).
The study of the long-term dynamics will be more involved. Let us first transform the
problem into one that is more convenient to analyze.

An investor with initial wealth wi0 > 0 has, by our assumption on strictly positive
budget shares, Eq. 9.8, strictly positive wealth at every point in time (i.e., wit > 0 for all
t ≥ 0; see Eq. 9.14). Further, since the aggregate supply of each asset is equal to one,
the aggregate, or total, wealth of investors is

Wt+1 =
I∑
i=1

wit+1 =
K∑
k=1

Ak(st+1) (9.16)

To this end we obtain the dynamics of relative wealth rit = wit/Wt as

rit+1 =
K∑
k=1

Rk(st+1)
λikr

i
t

〈λk, rt〉
(9.17)

where

Rk(s) =
Ak(s)∑K
n=1 An(s)

The random functions Rk(s), the relative asset payoff, inherit all properties from the
original payoff process Ak(s) and thus satisfy our assumptions. In addition, one has



526 Chapter 9 • Evolutionary Finance

∑
k Rk(s) = 1 for all s = 1, . . . ,S. In matrix notation this is

R =

⎛
⎜⎝
R1(1) . . . RK (1)

... . . .
...

R1(S) . . . RK (S)

⎞
⎟⎠ (9.18)

The dynamics (Eq. 9.17) lives on the simplex

ΔI =

{
x = (x1, . . . , xI ) ∈ R

I : xi ≥ 0,
I∑
i=1

xi = 1

}

The initial state r0 = (r1
0, . . . , rI0 ) ∈ ΔI

+ is given by ri0 = wi0/W0. The vector of wealth
shares rt = (r1

t , . . . , rIt ) at time t depends on the entire history of states of the world; that
is, rt = rt(st)—see Eq. 9.14. As explained before, r0 ∈ ΔI

+ implies rt ∈ ΔI
+ for all t and

st. Indeed, Eq. 9.14 defines a random dynamical system (Arnold, 1998) on a simplex.
Illustrations are provided in Figures 9.1 and 9.2.

Each vertex of the simplex corresponds to a state in which all but one component
of the vector of wealth shares is equal to zero. An investment strategy λi is therefore
associated with the corresponding vertex ei of the simplex. It is straightforward from
Eq. 9.17 that every vertex is a fixed point because ri0 = 0 implies rit = 0 for all t. In
the steady state ei only investor i has positive wealth and asset prices coincide with her
portfolio shares. The fixed points of these dynamics are of central interest because they
correspond to particular investment strategies. The absence of redundant assets ensures
that there are no fixed points in the interior of the simplex—that is, the dynamics cannot
“get stuck” (Hens and Schenk-Hoppé, 2005b, Proposition 1). The same considerations
show that every face of the simplex ΔI is invariant under the dynamics in Eq. 9.14.
A face of the simplex corresponds to a situation in which certain investors have no
wealth and do not impact prices. There is, however, a (nontrivial) wealth dynamic
among the remaining investors.

FIGURE 9.1 Graphical representation of the map defined in Eq. 9.17 for I = 3. The state rt+1 depends
on the realization of the state of the world st+1. The simplex on the right shows all possible future states rt+1
for a given vector of wealth shares rt; the actual state rt+1 observed depends on the realization of the random
event st+1.
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�3

�1 �2

FIGURE 9.2 Random dynamics of the relative wealth rt in Eq. 9.17 with I = 3. The vertices correspond
to steady states in which the respective investment strategy’s wealth share is equal to 1.

Selection

The criterion of overtaking, where investor i’s wealth grows faster than that of investor
j (wit/w

j
t → ∞ as t → ∞), translates into the convergence of the vector of wealth shares

rt toward a face of the simplex or a vertex. For instance, if w1
t /w

j
t → ∞ for every j �=

1, then rt → (1, 0, . . . , 0) = e1. As a formal definition, one says investment strategy λi

(represented by investor i) is selected if limt→∞ rt → ei almost surely, where ei is the ith
vertex (i.e., the vector with all components equal to zero except for the ith component
which is one). The qualifier “almost surely” is mostly dropped in the following.

Selection and the stability of fixed points are closely linked. In essence, a fixed point
is stable if the wealth shares converge back to the steady state after a small perturbation.
This small displacement of the fixed point is used as the initial state. Selection will often
happen exponentially fast. In this case stability can be detected through linearization at
the fixed point.

Our analysis of the model considered in Kelly (1956), Section 9.1.5, revealed that a
pairwise comparison of investors suffices to analyze the issue of selection. This might
not be appropriate in the general case in which the pool of investors matters for the
wealth dynamics of each market participant. A notion of stability of strategies (i.e., the
vertex that it represents) in markets with a different number of investors being present
is required. Such a market will be referred to as a “pool of strategies.”

Definition of Stability

An investment strategy λi is called:

• Globally stable in a given pool of strategies if the fixed point ei is globally stable:
for every r0 ∈ Δ with ri0 > 0, limt→∞ rt = ei.

• (Locally) stable in a given pool of strategies if the fixed point ei is (locally) stable:
there exists a (random) neighborhood of ei such that limt→∞ rt = ei for each initial
r0 in this neighborhood.

• Globally evolutionary stable if λi is globally stable in any pool of investment strate-
gies. In line with our assumptions, all investment strategies in this pool have to be
different to λi. (Local) evolutionary stability is defined analogously.
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All of these notions relate to the idea of mutant strategies entering the market. Local
concepts correspond to mutants possessing little wealth initially, while global refers to
a perturbation of the wealth distribution that is not necessarily small. Market selection,
often referred to in contexts similar to the one considered here, can be interpreted as
both a local or a global property of wealth dynamics. The most demanding requirement
is the globally evolutionary stability of an investment strategy.

9.3.2. Analysis of Local Dynamics

A mathematical analysis of the local stability properties of investment strategies
requires advanced methods from random dynamical systems theory (Hens and Schenk-
Hoppé, 2005b). The local stability of a fixed point can be derived, under certain
assumptions, from the linearization of a random dynamical system at this point (analo-
gous to deterministic dynamical systems). The linearization allows one to infer (local)
logarithmic growth rates, called Lyapunov exponents (or eigenvalues for deterministic
systems), of the original system. If all Lyapunov exponents of the linearized system are
strictly negative, local dynamics drives the state back to the fixed point. But if at least
one Lyapunov exponent is strictly positive, the dynamics do not provide this pull—the
fixed point is unstable.

Fortunately a heuristic derivation of the local stability analysis is available. It is
presented in the following. To derive a criterion for the local stability of a constant
investment strategy λi, suppose that rt is close to ei. Then the (relative) price of asset k
is given by

qk,t = 〈λk, rt〉 =
I∑
j=1

λ
j
kr
j
t ≈ λik

Inserting this approximation into Eq. 9.17, one finds

r
j

t+1 ≈
K∑
k=1

Rk(st+1)
λ
j
kr
j
t

λik
=

(
K∑
k=1

Rk(st+1)
λ
j
k

λik

)
r
j
t (9.19)

for every j = 1, . . . , I . Arranging these approximations in the form of a linear equa-
tion (with vector rt) gives the variational equation, which is stochastic. The logarithmic
growth rate of investor j’s wealth share is therefore approximated by

1
t

ln
(
r
j
t /r

j

0

)
=

1
t

t−1∑
u=0

ln

(
r
j

u+1

r
j
u

)
≈ 1
t

t−1∑
u=0

ln

(
K∑
k=1

Rk(su+1)
λ
j
k

λik

)
(9.20)

−→
t→∞

E ln

(
K∑
k=1

Rk(s)
λ
j
k

λik

)
=: gλi (λj)

The growth rate has a straightforward interpretation. Any mutant competes in a mar-
ket in which the prices are determined by the incumbent’s strategy. From the perspective
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of a potential entrant to the market, the person will act in a market in which the dividend
yields, which correspond to the asset returns here, are given, and not influenced by
his actions. The application of this finding to the evolutionary stability of strategies is
detailed next.

The analysis also led us full circle back to the pairwise comparison of investment
strategies. This finding is surprising because, as already pointed out, a direct attack
using the overtaking criterion fails to work. Indeed the considerations show that locally
the impact of mutants on the price is negligible (a second-order effect, in economic
terms). Close to a steady state—where selection happens, if it does—a one-to-one com-
parison of strategies suffices to gauge the dynamics of a multiple-investor setting. In
mathematical terms, the dynamics is locally decoupled; that is, the growth rate gλi (λj)
depends only on the strategies of investors i and j. This is a consequence of the fact that
the matrix appearing in the variational equation (the dynamics of the linearization) is
diagonal.

The information contained in Eq. 9.20 is easy to extract. If the growth rate is strictly
negative, investor j’s wealth share declines and eventually goes to zero. On the other
hand, if the equation is strictly positive for some j, investor j’s wealth share increases.
From the perspective of investor i, if there is one j �= i such that Eq. 9.20 is strictly
positive, then investor i’s wealth share decreases (i.e., it does not converge to one).
A potential shortcoming of this approach is that it only measures speed at an exponential
scale. Slower convergence and divergence speeds will not be detected. For our purpose,
however, this plays no role.

The following proposition summarizes our discussion (see Hens and Schenk-
Hoppé, 2005b, Proposition 2).

Theorem 9.1. Consider the growth rate

gλi (λj) = E ln

(
K∑
k=1

Rk(s)
λ
j
k

λik

)
(9.21)

The investment strategy λi is

(i) stable, if gλi (λj) < 0 for all j �= i;
(ii) unstable, if gλi (λj) > 0 for some j �= i.

A criterion for the local evolutionary stability of an investment strategy is a direct
application of Theorem 9.1. The investment strategy λ is locally evolutionary stable if

E ln

(
K∑
k=1

Rk(s)
μk
λk

)
< 0 for all μ �= λ (9.22)

where μ is an investment strategy satisfying the assumptions in Eq. 9.8.
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Stability of Markets

The preceding result provides a simple criterion to test for the stability (or instability)
of a market characterized by particular asset prices. Using that, any price system can be
represented by a situation in which just one investment strategy owns all of the wealth,
the stability properties of the corresponding fixed point reflect that of the system of asset
prices.

Coexistence of Strategies

The coexistence of strategies corresponds to a situation with the feature that, in a given
pool of strategies, all of the investment strategies are locally unstable. Then selection
fails to hold and no strategy can wipe out (or be wiped out by) its competitors. As
Theorem 9.1 asserts, coexistence of investment strategies is linked to the growth rates
in the neighborhood of steady states. A negative growth rate of investor i close to the
steady state ei means that prices turn against the richest investor’s strategy. The person’s
wealth cannot grow at the prices induced by her investment strategy.

The particular role played by the price mechanism in the interaction of investors is
made explicit by Theorem 9.1. Whether an investor (a mutant) can increase his wealth
at the expense of the incumbent depends on how well the person’s strategy performs
at the prices induced by the incumbent’s strategy. Interestingly perhaps, the concept of
evolutionary spite does not have any “bite” here because the total payoff is independent
of investors’ decisions.

9.3.3. An Example

An illustration of the selection and coexistence of strategies is provided. This simple
example also highlights the feature that prices “can turn against you.”

Let the payoff matrix be given by

A =

⎛
⎝ 1 1

2 2
0 3

⎞
⎠ ⇒ R =

⎛
⎝ 1/2 1/2

1/2 1/2
0 1

⎞
⎠

The market is incomplete with two assets and three states. States of the world are
IID with π(s) = 1/3 for s = 1, 2, 3. Consider two scenarios with two versus three
investment strategies. The strategies are constant and given by

λ1 = (1/2, 1/2), λ2 = (1/4, 3/4), λ3 = (1/3, 2/3) (9.23)

In Scenario 1, λ1 and λ2 are present in the market—both endowed with equal initial
wealth shares. In Scenario 2, the strategy λ3 is added to this set of investment strate-
gies; the initial wealth share of the new strategy is 10% while the two others share the
remainder equally. A typical simulation run is depicted in Figure 9.3. The left panels
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FIGURE 9.3 Dynamics of the evolutionary finance model with short-lived assets defined in Section 9.3.3. Strategies are defined
in Eq. 9.23. Panel (a): Scenario 1. Two strategies (λ1 and λ2), time periods 0–300. Panel (b): Scenario 2. Three strategies (λ1, λ2

and λ3), time periods 0–700. Both simulation runs use the same time series of states st, t = 0, . . . , 700.

show all strategies’ wealth shares and the right panels the relative prices of both assets
for each case.

Coexistence of investment strategies occurs in Scenario 1 with just two strategies.
The addition of the investment strategy λ3 leads to a very different outcome: λ3 is
selected because the wealth of the two other strategies tends to zero.

The growth rates of investment strategies in Scenario 1 can be equated as

gλ1 (λ2) =
1
3

[
2 ln

(
1
2

1/4
1/2

+
1
2

3/4
1/2

)
+ ln

(
0

1/4
1/2

+ 1
3/4
1/2

)]
≈ 0.13515 > 0

gλ2 (λ1) =
1
3

[
2 ln

(
1
2

1/2
1/4

+
1
2

1/2
3/4

)
+ ln

(
0

1/2
1/4

+ 1
1/2
3/4

)]
≈ 0.056633 > 0
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Both investment strategies λ1 and λ2 are locally unstable; selection cannot work and
these two strategies coexist, as illustrated in Figure 9.3(a, left panel). The underlying
cause for these dynamics can be traced to price dynamics.

If the investment strategy λ1 owns almost all wealth, the price of asset 2 becomes
too low, which is to the advantage of strategy λ2 that places more wealth on asset 2.
In the opposite situation in which λ2 owns almost all of the wealth, asset 1 becomes
too cheap. The investment strategy λ1 benefits from this price system because it puts a
higher share on that asset. This line of reasoning is confirmed by price dynamics. In the
time period 150 to 225, during which strategy λ1 is relatively poor, the price for asset
1 is lower than at any other point in time. One also observes consistent price fluctua-
tions in Figure 9.3(a, right panel). These findings highlight the dynamic interaction of
investment strategies—an interaction solely through the price system.

In the second scenario with the additional investment strategy λ3 = (1/3, 2/3)
present, the dynamic is quite different. Since the initial wealth share of this strat-
egy is small, the dynamic is very similar to the preceding case up to about period
250—see Figure 9.3(b, left panel). At that time period, the new strategy has gathered
about half of the wealth and starts to impact prices. Over the remaining time horizon,
first λ1 quickly loses wealth to λ3 and finally strategy λ2 is wiped out. The dynamics of
prices, Figure 9.3(b, right panel), differs from the preceding case: the fluctuations die
out around time period 400 and prices converge to the values prescribed by strategy λ3.
The investment strategy λ3 is selected by the market dynamics. Simulations with any
number of constant strategies—and the strategy λ3 being present in the pool—display
the same selection outcome in every case tested. This leads to the conjecture of λ3 being
the unique locally evolutionary stable investment strategy in this example.

9.3.4. The Generalized Kelly Rule

The task of finding an analogue of the Kelly Rule in the case of short-lived assets
and incomplete markets is closely related to the search for locally evolutionary stable
investment strategies. Of course any such strategy is only a candidate for a globally evo-
lutionary stable strategy, but it can be expected that the list of candidates will be short.
The previous example provides a good motivation and further leads to the conjecture
that there is indeed only one such candidate. This claim can be verified as follows.

Suppose there is some strategy λ satisfying Eq. 9.22; then

gλ(μ) = E ln

(
K∑
k=1

Rk(s)
λk
μk

)
≥ E ln

(
K∑
k=1

Rk(s)
μk
λk

)−1

> 0

by the Jensen inequality because, for every s, Rk(s) is a probability measure on
{1, . . . ,K}. This finding implies that there is at most one candidate for a locally
(and therefore globally) evolutionary stable strategy (Hens and Schenk-Hoppé, 2005b,
Corollary 1).

Key to the problem of finding the locally evolutionary stable strategy is to achieve an
understanding of the properties of the function μ → gλ(μ) with gλ(·) :ΔK → R, defined
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in Eq. 9.20. The function gλ(μ) is well defined for every μ ∈ ΔK because all components
of λ are strictly positive by our assumptions in Section 9.2.1.

Obviously gλ(·) is a concave function (on R
K ) and, by the absence of redundant

assets, it is even strictly concave. Therefore for every given λ, there is a unique μ that
maximizes gλ(μ) on the set ΔK . The quest for a locally evolutionary strategy is the
search for a fixed point on this map. The first-order condition for a maximum, which is
necessary and sufficient, is given by

K∑
n=1

E
Rn(s)/λn∑K
k=1 Rk(s) μkλk

αn = 0

for every α ∈ R
K with

∑K
n=1 αn = 0 (because the maximization is over the elements of

a simplex). Any fixed-point λ∗ of the argmax problem therefore solves

K∑
n=1

E
Rn(s)
λ∗n

αn = 0

because
∑K
k=1 Rk(s) = 1 for each s = 1, . . . ,S. This condition implies

λ∗k = ERk(s) =
S∑
s=1

π(s)Rk(s), k = 1, . . . ,K (9.24)

The investment strategy (9.24) is the only candidate for a locally (and, thus, globally)
evolutionary stable strategy. λ∗k > 0 by the assumptions π(s) > 0 for s = 1, . . . ,S and
(9.6). Our analysis shows that λ∗ is locally stable against every other constant strategy.
With some more work, it can be shown that this result holds true for any stationary strat-
egy. The restriction to strategies that are stationary processes in ΔK can be justified on
grounds of the stationarity of asset payoffs. A more general class would be investment
strategies that are adapted—that is, functions of the (entire) history.

Summarizing the analysis, one can state (Hens and Schenk-Hoppé, 2005b, Theorem
2) the following.

Theorem 9.2. Suppose the state of the world st follows an IID process. Then the strat-
egy λ∗ defined in Eq. 9.24 is locally evolutionary stable in every pool of stationary
investment strategies.

If the state of the world follows a Markov process, considerations analogous to the
preceding show that λ∗k(ŝ) =

∑S
s=1 π(s|ŝ)Rk(s) is the only locally evolutionary stable

strategy. In the Markov case, this strategy depends on the current state of nature, and the
expectation of the relative payoff Rk(s) is calculated under the transition probabilities
(i.e., conditional on the current event). Similar to Theorem 9.2, one needs to impose
assumptions on the payoffs and transition probabilities to ensure strict positivity of λ∗k(ŝ)
for all k = 1, . . . ,K.
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Interpretation

The interpretation of this result is similar to that of the Kelly Rule as supplied in
Section 9.1.5. There are some notable exceptions however.

The most striking observation is that the investment strategy λ∗ is given by the (con-
ditional) expected value of the relative asset payoffs. This recipe is similar to the Kelly
principle of “betting your beliefs” as detailed in Section 9.1.5. Only the (objective)
probabilities and the relative payoffs are needed in the calculation of λ∗. Moreover, if
the assets are Arrow securities, Rk(s) ∈ {0, 1} and Rk(s) = 1 if and only if k = s. In
this case λ∗k=s = π(s) coincides with the original Kelly Rule.

The locally evolutionary stable investment strategy λ∗ derived in Theorem 9.2 yields
a superior growth rate at its own prices, and it is the only strategy with this property.
The result holds in complete as well as in incomplete asset markets, which is remark-
able given that a simple analysis using the overtaking criteria does not apply in the
latter case. In general, however, this rule will not maximize the one-period logarithmic
growth rate because, away from a steady state, the composition of the market matters.
The wealth distribution and the particular strategies employed by all investors impact
the price and thus the log-optimum investment. For Arrow securities λ∗ possesses the
previously discussed optimality properties. In light of these properties, it is appropri-
ate to call λ∗ the (generalized) Kelly Rule for the short-lived asset market model with
incomplete markets.

It might be of interest to inquire whether the Kelly Rule λ∗ can be linked to utility
maximization. Indeed there is a strong connection to logarithmic utility functions in
a competitive equilibrium. Suppose prices are given by λ∗ and an investor maximizes
log utility given these prices (such as in a competitive equilibrium). Then the person’s
optimal strategy is λ∗. This is actually part of the reasoning in the proof of Theorem 9.2,
which studies a strategy’s logarithmic growth rate at given prices.

The result can also be interpreted in light of market selection. If a λ∗ investor is
present in the market, this strategy is the only one that can be selected by the market
dynamics. No other investment strategy can gather all the wealth in the market. As
explained before, whether selection can occur is related to the performance of a “mutant
strategy” against that of an incumbent: The incumbent’s strategy “sets” prices and the
mutant has to play against these prices. This interaction highlights the role of the price
mechanism.

9.3.5. Global Dynamics with Adaptive Strategies

The previous result leaves open two questions. The first is whether the Kelly Rule
λ∗ is globally evolutionarily stable in a pool of stationary strategies as well as for
more general payoff matrices. Second, whether this demanding stability property holds
true if general, adaptive strategies are permitted. This case is studied in Amir et al.
(2005).

In what follows we consider a more general specification of assets, where asset k’s
payoff at time t is given by Ak(st, st−1). As before, the dependence on st is respon-
sible for the randomness of the payoff while the entry st−1, which is observed at the
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time of decision making, allows for changes in the asset’s payoff structure. The latter
might be caused, for instance, by the issuer’s exposure of the business cycle or through
other macroeconomic events. Throughout the remainder of the chapter we assume
that

Ak(s, ŝ) ≥ 0 and
K∑
k=1

Ak(s, ŝ) > 0 (9.25)

for all k and all s, ŝ. It is further convenient (and customary) to assume the absence of
(conditionally) redundant assets. This condition ensures that different portfolios have
different payoff streams and thus a unique relationship. For each ŝ = 1, . . . ,S, the
functions A1(·, ŝ), . . . ,AK (·, ŝ) restricted to the set {s ∈ S : π(s | ŝ) > 0} are linearly
independent.

We will impose two additional assumptions. First, the functions

R∗k(ŝ) :=
S∑
s=1

π(s|ŝ)Rk(s, ŝ) = E[Rk(st+1, st) | st = ŝ] (9.26)

k = 1, 2, . . . ,K, take on strictly positive values for each ŝ = 1, . . . ,S. Eq. 9.26 is the
conditional expectation of the relative payoff of every asset k given st = ŝ. Second, the
condition in Eq. 9.8 is tightened. The coordinates λk,t(st) of every investment strategy
are bounded away from zero by a nonrandom constant γ > 0 (i.e., infi,k,t,st λ

i
k,t(s

t) ≥
γ > 0). The constant γ might depend on the strategy λ, but not on k, t, and st.

As for payoff functions A(s), the condition on the absence of redundant assets for
A(s, ŝ) implies the same property for the relative payoff functionsR(s, ŝ). Therefore the
assumption in Amir et al. (2005, A.2) is satisfied.

The Kelly Rule is defined as a function of the conditional expectation of the relative
payoffs (Eq. 9.26):

λ∗k,t(st) = R∗k(st) (9.27)

The dynamics of relative wealth of investment strategies is given by

rit+1 =
K∑
k=1

Rk(st+1, st)
λik,t(s

t)rit
〈λk,t(st), rt〉

(9.28)

where (see Eq. 9.17),

Rk(s, ŝ) =
Ak(s, ŝ)∑K
n=1 An(s, ŝ)

The availability of general adaptive strategies enables investors to buy the market
portfolio which, in the model (9.28), entails a payoff equal to the invested wealth. An
investment strategy always buying the market portfolio will therefore possess a constant
wealth share (equal to its initial fortune).



536 Chapter 9 • Evolutionary Finance

Suppose investment strategies λit(s
t), i = 2, . . . , I are given. We can then define an

adapted investment strategy for investor 1 by

λ1
k,t =

1

1 − r1
t

I∑
j=2

λ
j
k,t r

j
t (9.29)

This strategy’s portfolio shares are equal to the price of each asset because

λ1
k,t =

I∑
j=1

λ
j
k,t r

j
t = qk, t

According to Eq. 9.28, the wealth dynamics of the investment strategy λ1
k,t is

r1
t+1 =

K∑
k=1

Rk(st+1, st)
λ1
k,tr

1
t

〈λk,t, rt〉
=

K∑
k=1

Rk(st+1, st) r1
t = r1

t (9.30)

Investor 1’s wealth share remains constant over time (regardless of the states of the
world revealed). The portfolio positions can be equated as

θ1
k,t =

λ1
k,tr

1
t∑I

j=1 λ
j
k,t r

j
t

= r1
t (9.31)

which means the portfolio θ1
t is proportional to the market portfolio (or, equivalently,

the total supply) given by (1, . . . , 1).
These considerations highlight the importance of the market portfolio in this mod-

eling framework. It also follows that market selection can only occur if none of the
investment strategies (asymptotically) coincides with the market portfolio. The portfolio
in this model provides protection against extinction.

A “virtual” investment strategy ζt = (ζ1,t, . . . , ζK,t), which would lead to the market
portfolio, can be defined through Eq. 9.29:

ζk,t =
1

1 − r1
t

I∑
j=2

λ
j
k,t r

j
t (9.32)

The surprising result (Amir et al., 2005, Theorem 1) is that the Kelly strategy is selected
by the market dynamics if it stays asymptotically distinct from the market portfolio. In
other words, if investor 1 uses the Kelly Rule, while all the others use strategies distinct
from the rule and the Kelly Rule does not converge to the market portfolio, investor 1 is
almost surely the single survivor in the market selection process.
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Theorem 9.3. Let investor 1 use the Kelly strategy λ1 = λ∗ defined by Eq. 9.27.
Suppose with probability 1, one has

lim inf
t→∞

|λ∗(st) − ζt| > 0 (9.33)

Then Kelly investor 1 is a single survivor. Moreover,

lim inf
t→∞

1
t

ln
r1
t

1 − r1
t

> 0 (9.34)

almost surely.

The symbol | · | denotes the sum of the absolute values of the coordinates of a
finite-dimensional vector. The convergence property of the Kelly investor’s wealth
share means that it tends to one at an exponential rate, while the wealth share of the
other investors vanishes at the same rate. The strategy λ∗ dominates the other investors
exponentially.

In the case of constant strategies, payoffs R(st+1) and IID states of the world,
Theorem 9.3 makes the identical statement as the result (Evstigneev et al., 2002, Theo-
rem 3.1), which says that if investor 1 uses the Kelly Rule, λ1 = λ∗ =

∑S
s=1 π(s)Rk(s),

while all the other investors j ≥ 2 use constant strategies λJ �= λ∗. Then investor 1 is
the single survivor. The proof relies on the (nontrivial) observation that

E ln
K∑
k=1

Rk(s)
λ∗k

λ∗k r + μk (1 − r)
> E ln

K∑
k=1

Rk(s)
μk

λ∗k r + μk (1 − r)

for any μ ∈ ΔK with μ > 0 and λ∗ �= μ, and any r ∈ [0, 1] (see Evstigneev et al., 2002,
Lemma 3.1). This result asserts the superiority of the Kelly investor’s growth rate per
unit invested.

The general case covered in Theorem 9.3 rests on a similar property for the
conditional expected value.

9.4. AN EVOLUTIONARY STOCK MARKET MODEL

This section introduces an evolutionary finance model of a stock market. This frame-
work overcomes the main shortcoming of the model with short-lived assets discussed
in the preceding sections. Whereas short-lived assets pay off and disappear and new
assets have to be issued during each period, a stock in a company entitles its holder to
a (risky) payoff stream. Stocks can experience capital gains and/or losses. The avail-
ability of such a model is of particular importance for applications to real markets. The
following is based on Evstigneev et al. (2006, 2008). This model has been used to study
Tobin’s liquidity preference argument from an evolutionary perspective in Hens and
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Schenk-Hoppé (2006). An application to insurance markets (in which liquidity shocks
are present) is discussed in De Giorgi (2008).

The main difference to the previous model is that assets are issued at time zero and
“live” forever. In each period of time, these long-lived assets have a market price and
can be traded among all investment strategies. While short-lived assets paid in terms of
wealth spent on new assets, long-lived assets require a different approach. The idea of
Lucas (1978) is applied: the asset pays off in units of a perishable consumption good
(whose price is also taken as the numeraire). Consumption will be modeled through a
common consumption rate to provide a level playing field for the investment strategies
as they separate investment and consumption decisions. In the context of stocks, these
payoffs can be interpreted as dividend payments. This specification of asset payoffs
implies that investment strategies with above average dividend income (relative to their
wealth) will sell dividends in exchange for assets to the underperforming investment
strategies. It turns out that the model with short-lived assets can be accommodated by a
particular choice of the consumption rate.

The model is derived step by step. We start with a simple accounting identity link-
ing two successive periods in time. An investment strategy’s wealth in period t + 1 is
derived from this strategy’s portfolio holdings θik,t, the realized asset payoffs Ak(st+1),
and the resale prices of assets pk, t + 1. One has

wit+1 =
K∑
k=1

(
Ak(st+1) + pk,t+1

)
θik,t (9.35)

For shortness, the notation λt = λt(st) is used in the following. Inserting Eqs. 9.9 and
9.10 into Eq. 9.35, one obtains the dynamics

wit+1 =
K∑
k=1

(
Ak(st+1) + 〈λk,t+1, bt+1〉

) λik,t b
i
t

〈λk,t, bt〉
(9.36)

where the budget bit is defined by a strategy’s saving rate and current wealth.
If all the investment strategies have a common saving rate ρ, the budgets are given

by bit = ρwit . Then Eq. 9.36 takes the form

wit+1 =
K∑
k=1

(
Ak(st+1) + ρ〈λk,t+1,wt+1〉

) λik,t w
i
t

〈λk,t,wt〉
(9.37)

The aggregate wealthWt+1 =
∑
i w

i
t+1 can be equated as (summation of Eq. 9.36 over i)

Wt+1 =
K∑
k=1

(
Ak(st+1) + 〈λk,t+1, bt+1〉

)[ I∑
i=1

λik,t b
i
t

〈λk,t, bt〉

]

= At+1 + ρ
I∑
j=1

[
K∑
k=1

λ
j

k,t+1

]
w
j

t+1 = At+1 + ρWt+1

(9.38)
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with At+1 =
∑K
k=1 Ak(st+1). One finds

Wt+1 =
At+1

1 − ρ (9.39)

This finding in particular implies that the aggregate expenditure (demand) for the
consumption good is equal to the value of the aggregate supply, (1 − ρ)Wt+1 = At+1.
This is Walras’s Law: the market for each asset clears, investors exhaust their budgets,
and thus the market for the consumption good clears as well. This consideration shows
that the price of a consumption good is set to one; no price variable is placed in front of
the payoffs Ak in Eq. 9.36.

Employing Eq. 9.39, a relation for the investor’s wealth shares rit = wit/Wt can be
obtained

rit+1 =
K∑
k=1

(
(1 − ρ)Rk(st+1) + ρ〈λk,t+1, rt+1〉

) λik,t r
i
t

〈λk,t, rt〉
(9.40)

i = 1, . . . , I . Recall that

Rk(s) =
Ak(s)∑K
n=1 An(s)

The system in Eq. 9.40 is linear in the vector rt and can be written in matrix
notation. Let λk,t = (λ1

k,t, . . . , λ
I
k,t) and denote by ΛT

t = (λT1,t, . . . , λ
T
K,t) ∈ R

I×K the
matrix of investment strategies. Θt ∈ R

I×K is the matrix of portfolios and R(st)T =
(R1(st), . . . ,RI (st)) ∈ R

I is the vector of dividend payments in period t. Then Eq. 9.40
can be written as

rt+1 = (1 − ρ)ΘtR(st+1) + ρΘtΛt+1rt+1 (9.41)

This equation is equivalent to

rt+1 = (1 − ρ) [Id − ρΘtΛt+1]−1 ΘtR(st+1) (9.42)

The last step requires the existence of the inverse of the matrix Id − ρΘtΛt+1. This is
ensured by the fact that the matrix is a contraction for every 0 ≤ ρ < 1 (see Evstigneev
et al., 2008, Proposition 1).

Remark Setting the saving rate ρ = 0, one obtains the evolutionary finance model
with short-lived assets (see Eq. 9.28). This observation leads to a comprehensive inter-
pretation of the components of Eq. 9.42. ΘtR(st+1) gives the investment strategies’
dividend gains (i.e., income from asset payoffs), while [Id − ρΘtΛt+1]−1 are the cap-
ital gains (i.e., changes in book value of asset holdings due to changes in asset prices).
The factor (1 − ρ) stems from the normalization to express wealth in terms of investors’
shares of the total wealth.
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An alternative and computationally efficient method to solve (Eq. 9.40) is to
determine the prices qt+1,k = 〈λt+1,k, rt+1〉 first. Then these prices are inserted on the
right side and the vector of wealth shares rt+1 can be easily calculated. Rather than deriv-
ing the inverse of a matrix with dimension I × I , one only needs to invert a (typically
much smaller) K ×K matrix. Eq. 9.40 gives

qt+1 = (1 − ρ) [Id − ρΛt+1Θt]−1 Λt+1ΘtR(st+1) (9.43)

where Id is the K ×K-dimensional identity matrix.
The dynamics of the investment strategies’ wealth shares has several features in com-

mon with those of the evolutionary finance model with short-lived assets. Every vertex
of the simplex ΔK is a fixed point, the faces are invariant, the interior of the simplex
(and each face) is invariant, and there are no deterministic fixed points in the interior
of ΔK.

9.4.1. Local Dynamics

The analysis of the long-term dynamics of the evolutionary finance model with long-
lived assets is similar to the case of short-lived assets considered in Section 9.3.2. There
are, however, several interesting features that are unique to this model. These properties
will only surface for strategies that are stationary and time-variant rather than constant.
In this section it is assumed that strategies can depend on the past; that is, for each i,
λit = λi(st). Again we provide a heuristic analysis of an investment strategy’s growth
rate close to a fixed point; see Evstigneev et al. (2006) for a mathematically precise
derivation.

Suppose rt ≈ ei for all t. Then the price qk,t ≈ λik and the dynamics of strategy j’s
wealth share can be approximated (see Eq. 9.40) by

r
j

t+1 ≈
[

K∑
k=1

(1 − ρ)Rk(st+1) + ρλik,t+1

λik,t

λ
j
k,t

]
r
j
t (9.44)

which implies an approximate logarithmic growth rate

1
t

ln
(
r
j
t /r

j

0

)
−→
t→∞

E ln

(
K∑
k=1

(1 − ρ)Rk(s1) + ρλik(s1)

λik(s0)
λ
j
k(s0)

)
=: gλi (λj) (9.45)

Suppose the state of the world follows an IID process. Then a constant strategy of
incumbent i will induce an IID returns process and additionally there are no capital
gains. This case can be studied completely analogous to Section 9.3.2. Define λ∗k =∑S
s=1 π(s)Rk(s) as in Eq. 9.24. Then Eq. 9.45 gives
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gλ∗ (λj) = E ln

(
ρ + (1 − ρ)

K∑
k=1

Rk(s1)
λ∗k

λ
j
k

(
s0))

=
∫
SN

S∑
s=1

π(s) ln

(
ρ + (1 − ρ)

K∑
k=1

Rk(s)
λ∗k

λ
j
k

(
s0)) dP 0 (s0)

where P 0 denotes the probability distribution for the histories s0. For each fixed history
s0, the inner term is strictly negative if λj(s0) �= λ∗ and zero if both coincide, (see Sec-
tion 9.3.2). Therefore λ∗ is locally evolutionary stable against all stationary investment
strategies.

If the state of the world follows a Markov process with transition probability π(·|·),
then Eq. 9.45 can be written as

gλi (λj) =
∫
SN
g̃λi (λj , s0)dP 0 (s0) (9.46)

with

g̃λi (λj , s0) =
S∑
s=1

π(s0|s1) ln

(
K∑
k=1

(1 − ρ)Rk(s1) + ρλik(s1)

λik(s0)
λ
j
k

(
s0))

being the expected logarithmic growth rate of strategy λj at λi prices for a given
history s0.

Even if the incumbent’s strategy is constant, returns will follow a Markov process
and evolutionary stability will fail. On the other hand, if the incumbent has a Markov
strategy, then the returns are Markov as well. Indeed, it turns out locally evolutionary
stable strategies are Markov.

For the analysis of local stability of a stationary strategy μ in a market with λ-price
system, it suffices to study the integrant g̃λ(μ, s0) in Eq. 9.45. If this term is non-negative
and strictly negative on a set of histories of positive measure, gλ(μ) < 0. A maximum is
obtained at μ = λ if the first-order condition holds

K∑
n=1

(
∂g̃λ(μ, s0)
∂μn

∣∣∣∣
μ=λ

)
αn =

K∑
n=1

S∑
s=1

π(s0|s1)
(1 − ρ)Rn(s1) + ρλn(s1)

λn(s0)
αn = 0

for every α ∈ R
K with

∑K
n=1 αn = 0. This implies that the conditional expected return of

each asset must be constant; that is,

S∑
s=1

π(s0|s1)
(1 − ρ)Rn(s1) + ρλn(s1)

λn(s0)
= constant
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It is not too difficult to see that the only investment strategy with this property is
given by the function λ∗ : S ×K → [0, 1], defined as

λ∗ =
1 − ρ
ρ

∞∑
t=1

ρtπtR, (9.47)

where πt = π . . . π denotes the t-period transition probability with πss̃ = π(s|s̃). The
investment strategy (9.47) will be referred to as the Kelly Rule for reasons explained in
detail later.

The local stability versus instability of an investment strategy might not be deter-
mined by the first-order condition if this strategy is stationary rather than just constant.
The condition is only sufficient if the rank of the K × S-dimensional matrix of returns,
with elements (1 − ρ)Rk(s) + ρλ∗k(s), is equal to K.

That the strategy λ∗ is locally stable against all stationary investment strategies (i.e.,
gλ∗ (μ) < 0 for all μ such that μ(s0) �= λ∗(s0) on a set of positive measure) can be seen
as follows. At the prices λ∗ given by Eq. 9.47, the return matrix has full rank. One has

(1 − ρ)R + ρλ∗ = (1 − ρ)R + (1 − ρ)
∞∑
t=1

ρtπtR

= (1 − ρ)
∞∑
t=0

ρtπtR = (1 − ρ)[Id − ρπ]−1R

The inverse of Id − ρπ is well defined because [Id − ρπ]x = 0 ⇐⇒ x = ρπx and ρπ is
a contraction. Since R has full rank by assumption, the preceding relation implies that
the matrix of returns has full rank.

If the incumbent pursues a strategy different from the Kelly Rule (9.47), we can
construct strategies that have a strictly positive growth rate.

Summarizing, one has from Theorem 1 from Evstigneev et al. (2006).

Theorem 9.4. The investment strategy λ∗ defined in Eq. 9.47 is the only locally stable
investment strategy. That is, for each stationary strategy μ �= λ∗ one has (1) gλ∗ (μ) < 0,
and (2) there exists a stationary investment strategy λ such that gλ(μ) > 0.

Interpretation

The investment strategy defined in Eq. 9.47 derives its portfolio shares from the fun-
damental value assets. For a given state of the world, the term on the right side of the
equation is the discounted expected relative payoff of each asset. The discount factor is
given by the saving rate and the expected value is calculated with respect to the condi-
tional expectation. As in the case of short-lived assets, the relative payoff of an asset is
important, not the absolute payoff.

The investment strategy (9.47) merits the term Kelly Rule because it is a natural
extension of “betting your beliefs” to the framework of long-lived assets with Markov
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state of the world. All that is needed in the calculation of Eq. 9.47 are the transition
probabilities and the asset payoffs. If the state of the world is an IID process, then
πt = π and therefore the equation collapses to

∑
s π(s)Rk(s). For Arrow securities, this

investment strategy coincides with the Kelly Rule in betting markets: λ∗k = π(k) (see
Section 9.1.5).

The result shows that the only locally evolutionary stable investment strategy is the
Kelly Rule (9.45). A market in which a Kelly investor is the incumbent, relative asset
prices are given by their fundamental value in terms of their relative payoffs. The robust-
ness of this market against any stationary mutant strategy implies that deviations from
the fundamental relative valuation are corrected over time. This finding provides a novel
asset-pricing hypothesis for dividend-bearing assets such as stocks traded on security
exchanges (see Section 9.5.3).

9.4.2. Global Dynamics with Constant Strategies

The global dynamics of the evolutionary finance model with long-lived assets is consid-
erably more demanding to analyze than the short-lived asset case. At present, the wealth
dynamics of a market in which a Kelly investor is present is only fully understood when
all investment strategies are constant and the state of the world is governed by an IID
process. The following briefly summarizes the main findings obtained in Evstigneev
et al. (2008).

Define the constant investment strategy λ∗ = (λ∗1, . . . , λ∗K ) by

λ∗k = ERk(s) =
S∑
s=1

π(s)Rk(s) (9.48)

for k = 1, . . . ,K. Each budget share λ∗k is the expected relative dividend of the
respective asset.

To formulate the main result, a couple of definitions are required. An investment
strategy λi = (λi1, . . . , λiK ) survives with probability one if limt→∞ r

i
t > 0 almost surely.

It becomes extinct with probability one if limt→∞ r
i
t = 0 almost surely. The invest-

ment strategy λ = (λ1, . . . , λK ) is called globally evolutionary stable if the following
condition holds. Suppose investor 1 uses the strategy λ, while all the other investors
j = 2, . . . , I use portfolio rules λ̂j distinct from λ; then investor 1 survives with prob-
ability one, whereas all the other investors become extinct with probability one. Thus,
we have Theorem 1 from Evstigneev et al. (2008).

Theorem 9.5. The Kelly investment strategy λ∗ defined in Eq. 9.48 is globally evolu-
tionary stable in the pool of constant strategies.

The strategy λ∗ can be interpreted as a generalization of the Kelly Rule because, in
the case of Arrow securities, the portfolio shares λ∗k are equal to the probability of the
corresponding state of the world. The presence of a price dynamic which implies the
potential for capital gains and losses however highlights the quite remarkable nature of
the result in Theorem 9.5. Details are given after a brief discussion of the proof.
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The proof of this result relies on the observation that the Kelly investor’s wealth
share has a positive expected logarithmic return. This growth rate is strictly positive if
and only if current prices do not coincide with the Kelly Rule. In formal notation this
statement can be expressed as follows. Let r be the distribution of wealth shares across
investment strategies at some period in time t. Then the asset prices in period t are given
by pk = 〈λk, r〉. The solution to

F i(s, r) =
K∑
k=1

(
ρ〈λk,F (s, r)〉 + (1 − ρ)Rk(s)

)λikri
pk

, i = 1, . . . , I (9.49)

which corresponds to Eq. 9.40, defines the asset prices in the subsequent period in time

qk(s) = 〈λk,F (s, r)〉

Theorem 3 in Evstigneev et al. (2008) asserts that for each r ∈ ΔI one has

E ln

(
K∑
k=1

ρqk(s) + (1 − ρ)Rk(s)
pk

λ∗k

)
≥ 0 (9.50)

with strict inequality if and only if pk �= λ∗k for at least one k = 1, . . . ,K.
A related result is employed in the analysis of the global dynamics of constant

investment strategies for short-lived assets (see the discussion toward the end of Sec-
tion 9.3.5). The impact of price dynamics, which stem from the appearance of the prices
qk(s) in Eq. 9.50, considerably raises the level of difficulty in studying the growth rates
of investment strategies.

The case of adapted investment strategies and a Markovian dividend process is
still open.

Interpretation

The preceding result has the following interpretation and reveals several interesting
implications.

Theorem 9.5 states that if all investors are constrained by being required to choose
constant investment strategies, there is exactly one strategy that will do best in the long
term. It is the rule that divides an investor’s wealth in proportions given by the expected
relative dividends. The same investment strategy was discovered in the case of short-
lived assets (see Section 9.3.5). In the present case however assets are long lived and
there is a price dynamic. The variations in the asset prices entails capital gains (and
losses) in the investor’s portfolio holdings, which is absent for short-lived assets. It is
therefore not obvious whether a constant investment strategy can be globally evolu-
tionary stable. Convergence of wealth dynamics moreover implies nonstationary prices.
These observations show the depths of the finding in Theorem 9.5.

Referring to λ∗ as a generalization of the Kelly Rule has some justification, as
explained earlier. Most of the features the rule possesses in betting markets though do
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not carry over to the stock market model. Indeed only two features are preserved: the
form (dividend payoffs and expected value) and the property of gathering all the wealth
in the long run.

This investment strategy λ∗ does not match the growth-optimal portfolio in general.
The former is constant while the latter would depend on the price process and thus vary
over time. The important exception is the case in which asset prices are constant and
equal λ∗k. Then the investment strategy λ∗ maximizes the expected logarithmic growth
rate (see Eq. 9.50). This implies that all strategies different from λ∗k will have negative
growth rates.

The growth optimality of λ∗ at its “own” prices has been observed as well in the local
analysis (see Section 9.4.1). Indeed this observation confirms that the linearized and the
actual dynamics have the same qualitative properties close to the steady state in which
the λ∗ investor owns all wealth.

The long-term success of strategy λ∗ is rooted in another property as well. If prices
are not equal to vector λ∗, the prices dynamic is not trivial because it is driven by
the wealth dynamics in the pool of strategies present in the market. In these circum-
stances it is the (expected logarithmic) growth rate of a λ∗ investor’s wealth share
that matters for the long-term dynamics. This property is at the heart of the proof
of Theorem 9.5. Eq. 9.50 ensures that the λ∗ investor’s relative wealth will, on aver-
age, grow: The investor’s logarithmic growth rate is strictly positive if the current
asset prices do not match λ∗. A positive growth rate can be interpreted as experienc-
ing faster growth than the “average investor.” It is straightforward from Eq. 9.50 that
an investment strategy equal to current prices has a growth rate equal to zero because∑K
k=1 ρqk(s) + (1 − ρ)Rk(s) = 1 for every state of nature and every price vector q(s).

The positive growth rate of a λ∗ investor’s wealth is surprising because prices do vary
over time.

Theorem 9.5 is a deep result in that it shows that the price dynamics induced in a
pool of constant investment strategies (and IID dividend payoffs) favors a λ∗ investor
for every distribution of wealth shares. The above-average expected growth of the λ∗

investor’s wealth holds in every time period and for every current price system. The
asset prices in the subsequent period in time, however, are tied down by the wealth
dynamics; and, due to the investment strategies being constant, the possible outcomes
of the price vector are linked to the random payoffs of the assets. It is important to
emphasize that these price dynamics are nonstationary since prices converge.

The mechanism behind this growth stems from the fact that a λ∗ investor holds more
of those assets with a price lower than their expected relative dividend and fewer of
those with prices exceeding λ∗k. Viewing λ∗k as benchmark, these positions can be char-
acterized as being long versus short in relative terms. The potential capital gains and/or
losses caused by the other investors’ strategies and wealth dynamics do not have a sys-
tematically negative effect. The positivity of the λ∗ investor’s growth rate means she has
excess returns; that is, her logarithmic return is higher than the market average given
by the prices. The asset prices eventually converge to the λ∗ benchmark because the
λ∗ investor will gradually increase her share of the total wealth because the expected
logarithmic growth rate of relative wealth is positive.
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It is obvious how to leverage this result. Identifying assets that are underpriced
(or overpriced) relative to the λ∗ benchmark, one could construct a self-financing port-
folio by going long (respectively) short in these assets. This should potentially boost the
growth rate, but, on the other hand, it increases the risk. Bankruptcy, which is absent in
our framework because the λ∗ investor only has long positions, becomes a real risk.

Surprisingly, perhaps, this investment advice is not new. It can be traced back
at least to Graham and Dodd (1934) who claimed that excess returns can be
reaped from the tendency of markets to converge toward fundamental values. Our
approach provides a formal model to support this claim that is derived from empirical
observations.

9.4.3. Kelly Rule in General Equilibrium

This section describes the Kelly Rule as an outcome of optimal investment and con-
sumption behavior within a dynamic general equilibrium model in which agents have
perfect foresight. This result is of interest because this framework is standard in the
asset-pricing literature (as well as being the foundation for most of dynamic macroe-
conomics). The equilibrium concept goes back to Radner (1972) who called it an
equilibrium in plans, prices, and price expectations. In such an equilibrium, every cur-
rent decision requires knowledge of the result of all decisions in the future. This is
the exact opposite of the approach followed in our evolutionary models. In evolution-
ary finance only historical observations influence current behavior; no agreement about
future events is required. Time moves forward—in the sense of dynamical systems—in
contrast to the simultaneity of past, present, and future in general equilibrium.

Assume the state of the world follows an IID process and asset payoffs at time t
are given by Ak(st), k = 1, . . . ,K. The stochastic structure modeling uncertainty about
future states is identical to that in evolutionary models.

The plan of agent i is given by a consumption–investment process (ρi, λi) with a
saving rate process ρi = (ρit) and an investment strategy λi = (λit), t ≥ 0. A price system
is a process p = (pt), t ≥ 0, with pt(st) ∈ R

K
++. All processes have to be adapted to the

filtration generated by the IID state of the world. Given a price system p and a plan
(ρi, λi), the wealth wit of agent i evolves (see Eq. 9.12) as

wit+1 =

(
K∑
k=1

Ak(st+1) + pk,t+1

pk,t
λik,t

)
ρitw

i
t (9.51)

Each agent maximizes, for a given price process p, the expected discounted logarithmic
utility from consumption

Ui = E

∞∑
t=0

(βi)t ln(cit) (9.52)

with consumption given by cit = (1 − ρit)wit . The discount factor is 0 < βi < 1.
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An equilibrium is given by a price process p and plans (ρi, λi), i = 1, . . . , I such
that (1) the plans are optimal for the price process p (i.e., maximize, Eq. 9.52) and (2)
markets clear; that is,

pk,t =
∑
i

λik,t(1 − ρ
i
t)w

i
t

for the plans (ρi, λi), i = 1, . . . , I . Thus, we have the result in Theorem 9.6.

Theorem 9.6. The preceding dynamic general equilibrium model has a competitive
equilibrium in which each agent’s optimal investment strategy is given by λ∗.

Let us give some insight for the proof of this result that is related to Gerber et al.
(2007). They consider a version with more general utility functions but in a model with
finite-time horizon. Rewrite Eq. 9.51 as

wit+1 = wi0

t∏
u=0

ρiu

K∑
k=1

Ak(su+1) + pk,u+1

pk,u
λik,u (9.53)

for t ≥ 1.
The first-order conditions for the saving-rate process shows that ρit ≡ βi. Optimality

of the investment strategy is derived from the first-order condition for λin,t:

Et

∞∑
u=t+1

(βi)u
[An(su+1) + pn,u+1]/pn,u∑K

k=1[Ak(su+1) + pk,u+1]λik,u/pk,u

= ξit (9.54)

where ξit is the Lagrange multiplier corresponding to the constraint
∑
k λ

i
k,t = 1.

The equilibrium specification in Theorem 9.6 gives pk,u = λ∗k
∑
i(1 − βi)wiu and

λik,u ≡ λ
∗
k = E[Ak(s)/

∑
n An(s)]. Since all agents follow the same strategy, one fur-

ther has wiu = (βi/β1)u(wi0/w
1
0 )w1

u . With these observations, one can prove that the left
side of Eq. 9.54 is independent of n, which shows optimality of the Kelly Rule in this
equilibrium.

Finally, the transversality condition needs to be verified. Logarithmic utility makes
this a straightforward task:

lim
t→∞

(βi)t
∂ ln(cit)/∂c

i
t

∂ ln(ci0)/∂ci0
cit = lim

t→∞
(βi)tci0 = 0

The proof of Theorem 9.6 implies a certain uniqueness property of the equilibrium:
If all investors pursue the same strategy λ and if this strategy is constant, then λ = λ∗.

9.5. APPLICATIONS

This section discusses a range of applications of evolutionary finance theory. Numeric
simulations of the evolutionary finance models introduced in Sections 9.3 and 9.4 allow
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the study of a variety of applied issues: dynamics of asset prices, long-term asset-pricing
benchmarks, performance of agent-based portfolio choice, and coexistence of invest-
ment strategies.

All of the following studies use the same set of dividend data. The asset payoffs
are modeled by the (annualized) dividends paid by firms in the Dow Jones Industrial
Average (DJIA) index during the 26-year period 1981 to 2006. The data are obtained
from the CRSP database. Each year is associated with a particular state of the world
drawn according to an IID process distributed uniformly across the 26 potential out-
comes. Related studies are Hens and Schenk-Hoppé (2004) and Hens et al. (2002). The
following subsections present three topics.

• A simulation analysis of the wealth dynamics of a large set of common investment
strategies (and the Kelly Rule)—Section 9.5.1.

• The possibility of the evolution of the Kelly Rule, rather than being present in
a market from the beginning, in a framework in which the set of strategies is
not a priori fixed but their evolution is modeled by genetic programming with
tournament selection—Section 9.5.2.

• An empirical test of the predictions of evolutionary finance on asset pricing and
the convergence of prices, closely related to the value premium puzzle—Section
9.5.3.

9.5.1. Simulation Studies

The numerical study is based on the dividend data of all firms that have been listed in
the DJIA, without interruption, during the period 1981 to 2006. There are K = 16 firms
with this property. Denote by D(s) ∈ RK

+ the vector of firms’ total dividend payment
in year s + 1980, s = 1, . . . , 26 is the state of the world. Define the relative dividend of
firm k paid in state s by

dk(s) =
Dk(s)∑K
n=1 Dn(s)

Sample paths of firms’ relative dividend payments are obtained by random draws
from the set {1, . . . , 26} using a uniformly distributed IID process. This generates
samples of infinite length by “randomizing the years.”

Myopic Mean–Variance Optimization

Agent-based models often assume investors who plan just one period ahead and
maximize a CARA utility function. This specification is prominent in the noise
trader literature (De Long et al., 1990)—see also Hommes (2001) and Hommes and
Wagener (2009). The evolutionary finance framework enables an assessment of the
robustness of markets (with real-world background) in which myopic mean–variance
traders are present. The dynamic is described by the evolutionary finance model
with long-lived assets in Section 9.4. Only two investment strategies are present in
the market: (1) A mean–variance optimizer that takes into account the statistics of
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the dividend process as well as the prices that will prevail in the long-term; (2) an
investment strategy that corresponds to an investor who is a victim of illusionary diver-
sification and distributes his wealth equally across assets. In both cases, all investors
have constant strategies. Two cases of mean–variance maximizers are considered: the
global minimum-variance portfolio (Figure 9.4) and the tangency portfolio with net
interest rate set to zero (Figure 9.5).

The wealth dynamics depicted in Figures 9.4 and 9.5 illustrate the surprisingly
poor performance of mean–variance optimization in competition with a rather unso-
phisticated investment strategy. The simple-minded investor, following the illusionary
diversification rule, drives out a globally minimum mean–variance investor as well as
the holder of the tangent portfolio. The figures show typical runs of the disadvantaged
λIllu-investor who is only endowed with 10% of the wealth. These findings highlight the
importance of studying financial market dynamics outside a mean–variance framework.
We consider the simulation results as a major challenge to the literature on agent-based
modeling with mean–variance investors.

Performance of Adaptive Strategies

The preceding study can be placed in a much broader context by increasing the pool of
competing strategies in the market. To this end we consider a range of adaptive strategies
to assess performance against the λ∗ investment strategy. These competing strategies are
time-invariant because they process observations on prices and dividends. Precursors to

1
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FIGURE 9.4 Dynamics of wealth shares in a market with an illusionary diversification strategy λIllu and
the globally minimum mean-variance rule λGMV.
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FIGURE 9.5 Dynamics of wealth shares in a market with an illusionary diversification strategy λIllu and
the tangency mean-variance rule λTan.

the numerical study presented here are Hens and Schenk-Hoppé (2004) and Hens et al.
(2002).

The strategies considered in this simulation are defined as follows.
First, we have the usual suspects:

1. The Kelly strategy λ∗k = Edk(s) = 1
26

∑26
s=1 dk(s)

2. An illusionary diversification strategy λIllu

k = 1/K

3. The weighted sample mean of the dividend payments λSMean

k,t ∼ d̂k,t :=
∑t
τ=1 β

t−τdk(sτ )
with β = 0.95

4. A strategy with behavioral bias in the sense of Kahneman and Tversky λCPT

k ∼∑26
s=1 h(dk(s)), where the function h(x) is defined, as in Tversky and Kahneman

(1992, Eq. 6, p. 309), with both parameters set to 0.65

Second, there are three “technical trading” strategies representing investors betting
on the trend, or its reversal (contrarian strategy), as well as on the mean reversion of
prices. The definition takes into account that short-selling is not permitted:

λTrend

k,t+1 ∼
[
pk,t

pk,t−1
− 1

]+
, λContr

k,t+1 ∼
[

1 −
pk,t

pk,t−1

]+
, and λMRev

k,t+1 ∼
[

1 −
pk,t

p̂k,t

]+

If any of the right side is identical to zero for all assets, the strategy is set to
(1/K, . . . , 1/K). p̂k,t denotes the sum of discounted realized prices with the discount
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parameter set to 0.95. Let the weighted sample mean gross return R̂eturnk,t be defined
analogously.

Finally, there are four adaptive investment strategies based on the solution of more-
demanding optimization problems. Their initialization uses the annual returns of the
1986 to 2006 observation period. The optimization is under the constraint of no short-
selling and subject to the “minimum required return” constraint

∑
k

(λkR̂eturnk,t) ≥ 3/4 max
k

R̂eturnk,t (9.55)

A mean–variance maximization investment strategy λμ−σt+1 is defined as the solution
to minλ∈ΔI λ Ĉt λ

T, where Ĉk,j
t is the weighted sample covariance. A growth-optimal

investment strategy that maximizes the discounted logarithmic return is based on all
realized returns. A “conditional value-at-risk” portfolio optimization as suggested by
Rockafeller and Uryasev (2000) with the confidence level set to 5%. A mean–absolute
deviation investment strategy as proposed by Konno and Yamuzaki (1991).

The simulation result presented in Figure 9.6 gives a clear message. The constant
investment strategy λ∗ prevails in the dynamics of wealth shares. The closest com-
petitors are the adaptive strategy λSMean—based on past dividend payments—and the
behavioral investment strategy λCPT—a “distorted” version of λ∗. The poor perfor-
mance of the chartist strategies, as well as the quite sophisticated dynamic strategies, is
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FIGURE 9.6 Typical realization of a sample path of the relative wealth of competing investment
strategies. All strategies are endowed with the same wealth at time zero.
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FIGURE 9.7 Price dynamics corresponding to Figure 9.6.

surprising. Another unexpected result is the excellent performance of the illusionary
diversification strategy λIllu. The convergence is considerably slower than in the
two-investor case studied earlier.

The (relative) asset price dynamics corresponding to the sample path of the dividend
payments underlying Figure 9.6 is depicted in Figure 9.7. Asset prices converge but are
more volatile than one might expect because the sample paths of the wealth dynamics
are quite smooth. This observation is explained by the time variation of the adaptive
strategy λSMean, which discounts dividend payments rather than just calculates the sample
mean of the relative dividend—an unbiased estimator of λ∗.

These findings highlight the need for more simulation studies within this class of
dynamic models. Despite extensive numerical work on agent-based models, we see this
line of inquiry as a promising area for future research.

9.5.2. Dynamics of Strategies: Genetic Programming

The dynamics of investment strategies’ wealth shares is the main focus in the preced-
ing study. The strategies themselves played a rather static role that is at odds with,
for instance, agent-based models. It is important to recall that strategies in the evo-
lutionary finance models face no restrictions beside the absence of short selling and
adaptiveness. Stationarity of strategies is useful in the local stability analysis because
mathematical apparatus is tailored to this framework. The global convergence result for
the model with short-lived assets, however, demonstrates that adapted strategies are a
class of investment strategies for which wealth dynamics can be fully understood.
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This leaves open the behavior of models in which the strategies and the dynamics
of wealth shares coevolve. The study of this issue requires an explicit specification of
the adaption and innovation of investment behavior and the entry of new strategies.
Lensberg and Schenk-Hoppé (2007) pursue a Darwinian approach to the study of the
evolution of investment strategies in the model with short-lived assets (which has the
advantage of a relatively simple computation of the Kelly Rule). It adds the other main
evolutionary process—reproduction—to the selection mechanism. The framework is
that of genetic programming, which offers flexibility as well as full control on the data
available to investment strategies. The latter is extremely useful in the interpretation of
results.

In a genetic programming approach, the center stage is occupied by the popula-
tion that embodies the investment skills of many individual strategies. The investors
are simple-minded and unsophisticated in the sense that they follow preprogrammed
behavior rules that are the result of mutations and crossovers. While the change in
investment behavior is covered by the standard evolutionary finance model, the inflow
of new investors requires an extension that is however straightforward.

Two questions are of particular interest. First, is the Kelly Rule—as the long-term
equilibrium prediction of asset price—valid in a model that imposes much weaker
assumptions on the market dynamics? The process of mutation generates a constant
inflow of new traders, which generates a considerable amount of “noise” not present in
the theoretical studies. Second, will the Kelly Rule emerge in the population of traders
without strong assumptions on individuals’ rationality or learning behavior and despite
its absence in the initial population of investors? For instance, Bayesian learning is not
an option available to the investors in this genetic programming approach.

Brief Description of Model

Lensberg and Schenk-Hoppé (2007) analyze four cases: complete/incomplete market
and IID/Markov states of the world. In each case two different information scenarios
are considered as specified next. The total number of investment strategies is limited
to 2000. Each strategy is represented by a computer program that outputs numbers λ̃ :
S × {1, . . . ,K} → R where the set of inputs S either contains the information on the
current state (S = {1, . . . ,S}) or, additionally, the last observed price corresponding
to this state (S = {1, . . . ,S} × R

K ). The output is transformed to ensure that budget
shares meet the conditions in Section 9.2.1. A computer program consists of up to 128
lines of instructions; see, for example, Lensberg and Schenk-Hoppé (2007, Table I).

The evolution of the strategies is driven by a tournament-selection process. In any
one period in time, the following procedure is applied 20 times. Four randomly chosen
programs are ranked according to their wealth (tournament). Then the two poorest pro-
grams are replaced by the two richest in this sample (reproduction). These two clones
have, with some probability, a randomly selected instruction replaced by some ran-
dom code (mutation). Finally, again with some probability, a randomly selected set
of instructions is swapped between (crossover). Completely new behavior is intro-
duced by adding a random draw that decides whether the programs are filled with
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random instructions (noise). All the investors in a tournament retain their wealth, except
if it is zero, entitling the respective investor to an endowment of 1% of the total
wealth. The simulations reveal a substantial number of investment strategies without
wealth.

Consider a market consisting of Arrow-type securities in which the state of the world
is Markovian and programs only have access to the current state of the world (Lensberg
and Schenk-Hoppé, 2007, Section 3.2):

A =

⎛
⎝1 0 0

0 2 0
0 0 3

⎞
⎠, (π(s|ŝ))s,ŝ=1,2,3 =

⎛
⎝ .7 .2 .1
.1 .7 .2
.2 .1 .7

⎞
⎠

If the only information given to the programs representing the investment strategies
consists of the current state of the world, strategies’ behavior is mainly a “bet their
beliefs” style. For price-dependent strategies a more realistic scenario is obtained when
providing programs with additional information about the last observed price system
corresponding to the current state of the world. This in particular enables the purchase
of an approximate market portfolio. The latter is achieved simply by outputting the
prices as budget shares.

Results

The results for these two different specifications of the information set are summarized
in Figure 9.8. The two top panels—(a) and (b)—illustrate the convergence to the Kelly
Rule of both market and wealthiest investment strategy. The two middle panels—(c)
and (d)—give the times series of asset prices. The bottom panels—(e) and (f)—provide
some insight into the distribution of “investment skills” within the population. The
graphs show how close investment strategies are to the Kelly Rule in the population
of traders. g∗ is the exponential of the expected logarithmic growth rate at λ∗ prices.

For state-dependent strategies the distinctive features are almost monotone conver-
gence, leapfrogging of the distance, and the observation that the market leads relative to
the wealthiest investment strategy—determined in each period. The population quickly
moves toward investment strategies that are quite close to the Kelly Rule. The emer-
gence of nearly perfect matches however takes comparatively long. The effect of the
noise (i.e., the continuing introduction of randomly generated strategies) is clearly
documented by the persistence of a large number of poorly performing strategies
(Figure 9.8(e)).

When strategies have access to the last-observed price system, which corresponds to
the current state of the world, convergence still occurs but the pattern exhibits much
more volatility. The long-term outcome is again the Kelly Rule for both wealthiest
investment strategy and market prices. An analysis of wealthy investment strategies
reveals a new type of behavior: almost all successful strategies use the (proxy) mar-
ket portfolio. The fraction of wealth invested in the market portfolio, as well as the
closeness of the budget shares to the market portfolio, vary with the difference between
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FIGURE 9.8 State-dependent strategies (left graphs) and price-dependent strategies (right graphs): (a) Distance between market
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population relative to the Kelly Rule; and (f) distribution of growth rates in the population relative to the Kelly Rule.
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market prices and the Kelly Rule as well as specific prices. Figure 9.8(d) illustrates the
composition of the pool of investment strategies. Strategies can be classified by their
deviation from the market portfolio: active (always deviate), hybrid (deviate only for
some asset prices), and passive (never deviate). For a particular run, the number of
hybrid strategies currently deviating from the market portfolio varies.

Anatomy of Successful Strategies

Let us “dissect” the wealthiest strategy at the end of the simulation period, λLW . The
behavior of this strategy in state s = 3 is summarized in Figure 9.9. The triangle is the
set of all possible price vectors (q1, q2, q3). The darker an area, the larger the distance of
the budget shares to the market portfolio. White areas correspond to prices at which the
strategy’s portfolio is identical to the market portfolio.

The strategy λLW is hybrid and has a trigger that switches from active to passive
investment. If the price of asset 1 is low, the market portfolio is played. This also hap-
pens if the price of asset 2 coincides with the Kelly Rule. For all other prices, the strategy
deviates from the market portfolio. Its functional form in the active mode is given by

λLW (q) = (1 − λ∗2 − ε(q2))
(

q1

q1 + q3
,

λ∗2 + ε(q2)

1 − λ∗2 − ε(q2)
,

q3

q1 + q3

)

with a convex function ε(p2), with values ε(0) ≈ 0.008, ε(λ∗2) ≈ 0.0 and ε(1) ≈ −0.016.
Strategy λLW makes bets on a reversal of the price of asset 2 to the Kelly Rule. The

Passive

q351

Active
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q251q151

FIGURE 9.9 Price-dependent strategies. Contour plot of δ(q) := ‖λLW (q) − q‖ for relative prices q =
(q1, q2, q3) in the unit simplex. δ(q) is the Euclidean distance between the market portfolio p and the portfolio
weights of strategy λLW in state 3. Darker areas represent larger values of δ(q); and white areas represent
those prices for which λLW is in perfect agreement with the market portfolio, (i.e., δ(q) = 0). Kelly prices
and Kelly portfolio weights are given by λ∗ = (0.2, 0.1, 0.7).
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remaining wealth is invested in a market portfolio consisting only of the two assets,
1 and 3. The behavior leads to a convergence of the price of asset 2 to the Kelly bench-
mark if λLW becomes wealthy. Other strategies are specialized in very similar fashions
but for different assets and states.

The optimality properties of investing part of the wealth so as to reduce the risk
associated with the volatility of the portfolio return (the “fractional Kelly Rule”) are
discussed, for example, in MacLean et al. (1992).

Conclusion

The simulation results of the genetic programming approach to the dynamics and muta-
tion of investment strategy confirms the pivotal role of the Kelly Rule. The long-term
outcome of the market dynamics is fully described by the rule; this outcome is also
robust against noise. The numerical study also highlights the importance of the market
portfolio in this class of models. The market portfolio, even if it is only a proxy, pro-
vides insurance against severe losses. In the present genetic programming framework,
volatility of returns that is too high is punished by the tournament process that anni-
hilates poor strategies. Surprisingly, perhaps, typical trader types, assumed to populate
the market in noise-trader or agent-based models, do not enter the stage.

9.5.3. Empirical Tests of Evolutionary Asset Pricing

In this section two of the theoretical evolutionary finance results are tested empirically.
First, the prediction of asset prices derived from the long-term dynamics of the mar-
ket: the Kelly Rule as a benchmark for the (relative) fundamental valuation of assets.
Second, the market dynamics that, in the presence of a Kelly investor, describe the
convergence of relative asset prices to the Kelly benchmark. The latter highlights the
strength of evolutionary finance models that overcome the shortcomings of equilib-
rium models in which these convergence dynamics are mainly an exercise in semantics
because this dynamic simply is not modeled.

Empirical support for this dynamic approach and its predictions has interesting impli-
cations. In this case evolutionary finance can shed light on the issue of excess returns
in financial markets, a hot topic ever since these markets came into existence. A promi-
nent example is excess returns from value investment (i.e., bets on the reversal of prices
to some fundamental value such as price-to-book ratio or dividend yield). Graham and
Dodd (1934), who were the main proponents of this investment advice, conjectured that
excess returns from value investment originate from a tendency of markets to converge
toward fundamental values. A simple approach to profit from this price dynamic is to
go short in overvalued assets (the price of which falls) and long in undervalued assets
(the price of which increases). This line of thought is explored in the empirical study of
the value-premium puzzle by Hens et al. (2008).

The empirical test employs the evolutionary finance model with long-lived assets—
Section 9.4. Each time period is interpreted as one year, and the asset payoffs are given
by the vector with each firm’s total dividend payment in that year. The data sample
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consists of all 16 firms listed in DJIA index during the time period 1981 to 2006. The
data are taken from CRSP.

Hypothesis 1—Relative Asset Prices Determined by λ∗

Our results state that the relative market capitalization of an asset is (asymptotically)
given by the expected value of its discounted relative payoffs. The relative market cap-
italization of a firm (denoted by qk,t) is simply calculated from the stock prices and the
number of shares issued for all firms in the sample. How to determine the relative funda-
mental value, however, is less straightforward and obviously leaves the econometrician
with many options. We take the current relative dividend of each firm (denoted by Rk,t,
k, the firm index) as a proxy for the relative fundamental value (the Kelly Rule λ∗k,t).

Our (joint) hypothesis is that in the linear cross-sectional regression

qk,t = a0(t)Rk,t + a1(t) + εt, k = 1, . . . , 16 (9.56)

a0(t) > 0 and a1(t) = 0 for t = 1981, . . . , 2006. If this relation holds, then in each
year, the relative market capitalization of a firm depends linearly on its current relative
dividend payment.

Hypothesis 2—Convergence of Relative Asset Prices to λ∗

The convergence of prices to the Kelly prices λ∗ is a consequence of market dynamics.
If the previous hypothesis has sufficient empirical support, one can study the dynamics
of small deviations from the benchmark λ∗k,t. This empirical benchmark will be defined
as the valuation derived in the study of Hypothesis 1. Suppose there is one λ∗k,t investor
and a mutant investment strategy μk,t representing all the other investors in the mar-
ket. Exponentially fast convergence of the Kelly investor’s wealth share r∗t → 1 can be
expressed as [1 − r∗t+1] = αt[1 − r∗t ] with some variable αt, 0 < αt < 1. The mean value
of this parameter is determined by the exponential of the logarithmic growth rate gλ∗ (μ)
as defined in Eq. 9.45. Since

qk,t = λ∗k,tr
∗
t + μk,t(1 − r∗t )

one obtains (after some elementary calculations) the relation

[λ∗k,t+1 − qk,t+1] = αt
λ∗k,t+1 − μk,t+1

λ∗k,t − μk,t
[λ∗k,t − qk,t] (9.57)

Our hypothesis is formalized as follows. Between any two consecutive years, t and
t + 1, t = 1981, . . . , 2005, the linear regression

[λ∗k,t+1 − qk,t+1] = a(t) [λ∗k,t − qk,t] + εt, k = 1, . . . ,K (9.58)

has a least-squares estimator 0 < a(t) < 1 and εt is a noise term with mean zero.
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TABLE 9.1 Empirical Findings on the Two Hypotheses Derived from Evolutionary Finance

Coefficients, probabilities, and R2 of the regression
(Eq. 9.56) testing the asset pricing Hypothesis 1.

Year t a0(t) P-value a1(t) P-value R2 adj.

1981 0.550 0.000 0.028 0.011 0.671

1982 0.584 0.000 0.026 0.001 0.835

1983 0.613 0.000 0.024 0.005 0.799

1984 0.643 0.000 0.022 0.036 0.710

1985 0.622 0.000 0.024 0.027 0.713

1986 0.609 0.000 0.025 0.058 0.577

1987 0.474 0.000 0.033 0.009 0.485

1988 0.515 0.000 0.030 0.012 0.516

1989 0.549 0.000 0.028 0.013 0.561

1990 0.243 0.030 0.047 0.001 0.145

1991 0.280 0.030 0.045 0.002 0.146

1992 0.328 0.031 0.042 0.006 0.141

1993 0.508 0.003 0.031 0.026 0.315

1994 0.496 0.001 0.032 0.014 0.364

1995 0.575 0.000 0.027 0.020 0.474

1996 0.606 0.000 0.025 0.039 0.442

1997 0.596 0.000 0.025 0.041 0.421

1998 0.743 0.000 0.016 0.125 0.556

1999 0.795 0.000 0.013 0.212 0.518

2000 0.707 0.001 0.018 0.171 0.376

2001 0.891 0.000 0.007 0.154 0.917

2002 0.776 0.000 0.014 0.077 0.816

2003 0.692 0.000 0.019 0.009 0.832

2004 0.674 0.000 0.020 0.004 0.842

2005 0.803 0.000 0.012 0.061 0.873

2006 0.822 0.000 0.011 0.078 0.877

Coefficient, probabilities, and adjusted R2

of the regression (Eq. 9.58) testing the
convergence Hypothesis 2.

Year t a(t) P-value R2 adj.

1981 0.529 0.000 0.677

1982 0.865 0.000 0.524

1983 1.185 0.000 0.833

1984 0.973 0.000 0.943

1985 1.233 0.000 0.970

1986 0.814 0.000 0.852

1987 0.871 0.000 0.875

1988 0.907 0.000 0.967

1989 1.031 0.000 0.757

1990 1.049 0.000 0.945

1991 0.862 0.000 0.752

1992 0.716 0.000 0.673

1993 0.784 0.000 0.731

1994 0.815 0.000 0.886

1995 0.982 0.000 0.903

1996 1.002 0.000 0.885

1997 0.847 0.000 0.776

1998 1.076 0.000 0.901

1999 1.080 0.000 0.733

2000 0.115 0.113 0.089

2001 0.875 0.003 0.329

2002 0.612 0.000 0.546

2003 0.857 0.000 0.814

2004 0.884 0.000 0.748

2005 0.854 0.000 0.772

(a) (b)

(a) Results on comparison of asset prices with the Kelly benchmark in cross-sections (last trading day in a
given year t). (b) Results on the convergence of asset prices to the Kelly benchmark from year t to t + 1.

The empirical results are summarized in Table 9.1. Hypothesis 1 on the relevance
of the Kelly Rule as a pricing benchmark (for the relative valuation of firms) is
strongly supported. In every year of the sample, the coefficient a0(t) is signifi-
cantly positive. In addition, the coefficient a1(t) is not significantly different from
zero. The adjusted R2 values indicate that a considerable amount of the variation
in the data is explained by the model (see Table 9.1(a)). Hypothesis 2 on the
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convergence of relative market capitalization toward the benchmark is supported by
the empirical findings. Most of the coefficients a(t) (see Table 9.1(b)), are between zero
and one.

This finding is statistically significant on the 1% significance level. The adjusted
R2 values are quite high, indicating that the model has strong explanatory power. In
seven of the 25 years of observation, the coefficient a(t) is larger than one, implying
divergence from the benchmark from the current to the next year. The hypothesis that
the coefficient is less than one cannot, however, be rejected at the 1% level. In summary,
both hypotheses are strongly supported by the empirical results.

The empirical analysis presented here is certainly not more than a preliminary
assessment of the potential of evolutionary finance in explaining asset prices and their
dynamics. This topic merits additional (and more thorough) inquiry.

9.6. CONTINUOUS-TIME EVOLUTIONARY FINANCE

This section presents recent progress in the advancement of the evolutionary finance
approach in the direction of continuous-time financial mathematics. The development
of such an approach is of interest because it builds on the workhorse model of financial
mathematics, and it allows for different time scales for trading and changes in dividend
payments. The main conceptual innovation is the introduction of the market interaction
of heterogenous investors with self-financing investment strategies—and thus endoge-
nous prices—in this framework. The model accommodates, for example, different time
scales for the frequency and intensity of trades and dividend payments. This offers an
alternative approach to the study of the price impact of large trades. The mathemati-
cal theory used to formulate the continuous-time evolutionary finance model is that of
random dynamical systems with continuous time (Arnold, 1998).

The analysis focuses, as in the discrete-time model, on the asymptotic dynamics of
wealth distribution and asset prices. The derivation of convergence results, however,
requires the application of very different mathematical techniques. For simplicity of
presentation, only the continuous case (without jumps) is considered here. Details and
proofs can be found in Palczewski and Schenk-Hoppé (2008b).

There are K assets (stocks), each with a constant supply of one. Denote the price
process, which will be described later, by S(t) = (S1(t), . . . ,SK (t)) and the cumulative
dividend payment byD(t) = (D1(t), . . . ,DK (t)), t ≥ 0. There are I investors. The port-
folio of investor i is denoted by θi(t) = (θi1(t), . . . , θiK (t)), and the person’s cumulative
consumption process is given by Ci(t).

For a self-financing portfolio-consumption process (θi(t),Ci(t)), the dynamics of
investor i’s wealth, V i(t) =

∑K
k=1 θ

i
k(t)Sk(t), is given by

dV i(t) =
K∑
k=1

θik(t)
(
dSk(t) + dDk(t)

)
− dCi(t) (9.59)
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Self-financing means that changes in value can be attributed either to changes in
asset prices, dividend income, or consumption expenditure. An investor’s portfo-
lio can be written as θik(t) = λik(t)V i(t)/Sk(t) with a real-valued process λi(t) =
(λi1(t), . . . , λiK (t)) as investment strategy. Since assets have a net supply of one,
market-clearing implies

Sk(t) = λ1
k(t) V 1(t) + · · · + λIk(t) V I (t) = 〈λk(t),V (t)〉 (9.60)

that is, every asset’s market value is equal to the aggregate investment in that asset, (see
Eq. 9.9). This defines a market-clearing price for given investment strategies and wealth
distribution. One obtains

dV i(t) =
K∑
k=1

λik(t)V i(t)

〈λk(t),V (t)〉
(
d〈λk(t),V (t)〉 + dDk(t)

)
− dCi(t) (9.61)

for all i = 1, . . . , I . Indeed, continuous-time dynamics describes the limit of the
discrete-time model, Eq. 9.37, when the length of the time step tends to zero (Palczewski
and Schenk-Hoppé, 2008a).

Suppose there are I = 2 investors with time-invariant investment strategies (i.e.,
λik(t) ≡ λik) and consumption process dCi(t) = c V i(t)dt. The constant c > 0 is the con-
sumption rate; it is assumed to be the same for all investment strategies. Assume that
the cumulative dividend process of each asset can be written using an intensity process
(i.e., dDk(t) = δk(t)dtwith δk(t) ≥ 0) and that δ̄(t) =

∑K
k=1 δk(t) > 0. Then the dynam-

ics of the relative wealth of the investment strategy λ1, w1(t) = V 1(t)/[V 1(t) + V 2(t)],
is given by

dw1(t) = cw1(t)

∑K
k=1

λ1
k

[λ1
k−λ

2
k]w1(t)+λ2

k

ρk − 1

∑K
k=1

λ1
kλ

2
k

[λ1
k−λ

2
k]w1(t)+λ2

k

dt (9.62)

with ρk(t) = δk(t)/[δ1(t) + δ2(t)], k = 1, 2—the relative dividend intensity. The
dynamics (Eq. 9.62) is well-defined if ρ1(t)—and thus ρ2(t)—is locally integrable (see
Palczewski and Schenk-Hoppé, 2008b, Lemma 2). (The relative wealth of the other
investment strategy is given by w2(t) = 1 − w1(t).)

Suppose further that there are K = 2 assets. Then Eq. 9.62 can be factorized as
(provided λ1 �= λ2)

dw1(t) = c
−w1(t)

(
1 − w1(t)

)(
(λ2

1 − λ
1
1)2w1(t) + (λ2

1 − λ
1
1)(ρ1(t) − λ2

1)
)

(
λ1

1λ
1
2 − λ

2
1λ

2
2

)
w1(t) + λ2

1λ
2
2

dt (9.63)

We finally assume that

λ∗1 = lim
t→∞

1
t

∫ t
0
ρ1(u)du (9.64)
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is well-defined (λ∗2 = 1 − λ∗1). Then one has Theorems 1 and 2, from Palczewski and
Schenk-Hoppé (2008b).

Theorem 9.7. Let λ2 = λ∗, and assume that λ1 �= λ2. Fix any initial value w1(0) ∈
(0, 1).

(a) limt→∞
1
t

∫ t
0 w1(u) du = 0

(b) Suppose there is a real number γ such that

lim sup
t→∞

1
t

∫ t
0

1(−∞,γ)

(
sgn(λ∗1 − λ

1
1)

∫ t
s

(ρ1(u) − λ∗1) du
)
ds > 0 (9.65)

Then the relative wealth of investor 1 converges to 0 (while that of investor 2 converges
to 1); that is,

lim
t→∞

w1(t) = 0 and lim
t→∞

w2(t) = 1

Theorem 9.7 states that wealth dynamics selects the investor who divides wealth
according to the time average of the relative dividend intensity. This finding is in line
with our previous analysis. Part (a) asserts convergence in the Cesàro sense. Counter
examples show that the stronger convergence in part (b) cannot be obtained without
additional conditions.

It is of interest to note that the speed of convergence of w1(t) → 0 in Theorem 9.7 is
not exponentially fast. This is at odds with the corresponding models in discrete time
(see Sections 9.3.2 and 9.4.1). Suppose ρ(t) is a stationary ergodic process with the
stationary measure μ; then λ∗ = Eμρ. The linearization at the steady state w1(t) = 0
gives the variational equation

dv(t) = c
λ1

1 − λ
2
1

λ2
1λ

2
2

(
ρ1(t) − λ2

1

)
v(t)dt

which shows that the exponential growth rate of v(t) is equal to

c
λ1

1 − λ
2
1

λ2
1λ

2
2

(
Eμρ1 − λ2

1

)

If λ2 = λ∗, the exponential growth rate is equal to zero for every investment strategy
λ1. For any time-invariant investment strategy λ2 �= λ∗, however, there is an invest-
ment strategy λ1 such that the growth rate is strictly positive (i.e., v(t) diverges from
0 exponentially fast). If λ2

1 < λ
∗
1, take any λ1

1 ∈ (λ2
1, 1); otherwise, take λ1

1 ∈ (0, λ2
1).

The condition Eq. 9.65 is satisfied for a large class of processes. Assume for instance
that the dividend-intensity process ρ1(t) is a positively recurrent Markov process on a
countable subset of [0, 1]. Denote the unique invariant probability measure by μ. Then,
in Eq. 9.64, λ∗1 = ρ̄ = Eμρ1(0) is well defined. Let Pμ denote the probability measure
under which the distribution of ρ1(0) is given by μ.
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Theorem 3 in Palczewski and Schenk-Hoppé (2008b) ensures that if

lim
t→∞

1
t

∫ t
0
Pμ

(1
s

∫ s
0
ρ1(u)du < ρ̄

)
ds > 0

lim
t→∞

1
t

∫ t
0
Pμ

(1
s

∫ s
0
ρ1(u)du > ρ̄

)
ds > 0

(9.66)

then Eq. 9.65 holds for γ = 0. Therefore, limt→∞ w
1(t) = 0. For instance, if the process

ρ1(t) has initial distribution μ and is symmetric around its expected value (and takes
on at least two different values), then Eq. 9.66 is satisfied. It is also sufficient if the
first return time is square integrable for at least one element of the state space E (see
Palczewski and Schenk-Hoppé 2008b, Section 4).

An interesting topic for future research on evolutionary finance models in continuous
time is the study of Eq. 9.61 with adapted, time-variant investment strategies (possi-
bly more investors and more assets). Another line of inquiry is concerned with the
corresponding diffusion-type model that requires the use of stochastic analysis.

9.7. CONCLUSION

This chapter surveyed current research on and applications of evolutionary finance
inspired by Darwinian ideas and random dynamical systems theory. This approach
studies the market interaction of investment strategies—and the wealth dynamics it
entails—in financial markets. We were particularly interested in the long-term dynam-
ics of the wealth distribution with the goal of identifying surviving investment strategies
and the corresponding asset-price system. The emphasis in this survey was on the moti-
vation and the heuristic justification of the results; technical details were avoided as
much as possible. In contrast to the current standard paradigm in economic model-
ing, we pursued an approach based on random dynamical systems. Equilibrium holds
only in the short term, which reflects the model of investment behavior explored in our
evolutionary finance approach.

The motivation was derived in the context of a model of betting markets that goes
back to Kelly’s paper (1956). The modeling approach and its main components and
assumptions were explained in detail in Section 9.2. The main part of the chapter was
devoted to the two main modeling frameworks: models with short-lived assets (bets) and
those with long-lived assets (stocks). In each case, the analysis moved from (relatively)
simple to more demanding settings in which more advanced mathematical techniques
were required and the proofs became more involved. In the simplest case considered
here, investment strategies are constant vectors and asset payoffs are driven by an IID
process. In the most advanced case, the first were adapted processes while the latter
were governed by Markov processes.

Models with short-lived assets were covered in Section 9.3. Both local and global
dynamics were studied, and some numerical simulations were presented. This model is
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a generalization of the betting market setting considered by Kelly. Surprisingly, results
do not depend on whether the asset market is complete or incomplete (more states than
assets). An evolutionary stock market model (with long-lived assets) was the subject of
Section 9.4. In this class of models, investors are exposed to capital gains and losses
induced by the price dynamics of the assets. This feature has a considerable impact on
wealth dynamics and its quantitative study. All results obtained in this framework were
presented and explained in detail.

Applications of evolutionary finance models for both short- and long-lived assets
were presented in Section 9.5, which contains simulation and empirical studies. The
numerical studies explored dynamics beyond the setting in which the analytical results
were obtained. We simulated wealth and asset-price dynamics in scenarios with dif-
ferent types of investment strategies—and in the absence of the generalized Kelly
Rule. The evolution (or mutation) of strategies, rather than just wealth dynamics of
prespecified investment strategies, was numerically analyzed by combining the stan-
dard evolutionary finance model with genetic programming and tournament selection.
The section closed with the presentation of recent empirical results on the explanatory
power of evolutionary finance in real markets.

Continuous-time evolutionary finance models, presented in Section 9.6, are the latest
development in this field. This approach can be seen as a generalization of the workhorse
model of continuous-time financial mathematics. We introduced endogenous prices via
short-term market clearing in this model using the same ideas as in discrete time. One
advantage of this model is the flexibility to have different trade frequencies and changes
of dividend payments.

Several proposals for future research topics within evolutionary finance were made
throughout this chapter. One main task will be to study the game-theoretic perspective
of evolutionary finance, which has not been satisfactorily explored yet—though a first
step is taken in Amir et al. (2008). Among the challenging (as well as the most reward-
ing) subjects we highlighted is the need for additional empirical studies and the further
development of continuous-time evolutionary finance.
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Evstigneev, I. V., T. Hens, and K. R. Schenk-Hoppé, Market selection of financial trading strategies: Global

stability, Mathematical Finance, 2002, 12, 329–339.
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Löffler, A., 349, 353, 354, 355, 357
Longin, F., 172
Lovallo, D., 480
Lovo, S., 32n32
Lowry, M., 36
Lucas, R. E., 218, 346, 347, 443, 450,

452, 500, 522, 538
Luckock, H., 132
Luenberger, D. G., 357, 368
Lundholm, R., 10n
Lux, T., 17, 125, 171, 172, 177, 184,

190, 191, 194, 199n, 200, 200n, 203,
204, 205, 206, 207, 208, 219, 241,
281, 282, 302, 315, 315n, 331, 339,
339n, 511

Lynch, A., 17, 39
Lyons, R. K., 66, 73, 76, 79, 87, 129,

149n

M
MacKinlay, A. C., 86, 256
MacLean, L. C., 557
Macy, M., 36
Madhavan, A., 86, 94, 111, 287
Madrian, B., 25
Maggitti, P. G., 42n
Magill, M., 346, 374, 398
Mahoney, J. M., 23
Mailath, G., 407, 432
Malamud, S., 431
Malloy, C. J., 16n
Mandelbrot, B. B., 79, 125, 168, 170,

171, 177
Manski, C. F., 25, 224, 291
Mantegna, R. N., 125
Manzan, S., 248n
Marchesi, M., 200, 200n, 203, 204,

205, 206, 207, 241, 282, 315
Marimon, R., 254, 255
Markowitz, H. M., 279, 349, 352
Marsh, T., 280
Marshall, A., 407
Marsili, M., 69, 322
Martin, G. S., 24
Maslov, S., 137n
Mason, J. R., 28
Massa, M., 16n
McFadden, D., 224, 291
McGough, A., 236n



Author Index 571

McGoun, E., 162
McKelvey, R., 17
McNichols, M., 443, 445, 449, 450
Mehra, R., 346, 464
Mei, J., 37n
Mendelson, H., 137n
Mendoza, E., 12
Merton, R. C., 33, 279, 280, 346, 353
Michaely, R., 24n
Mike, S., 101, 123, 124, 129, 132, 134,

137n, 141
Mikhail, M. B., 22
Mikkelsen, H., 174, 320
Milaković, M., 208
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