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PREFACE 

This text has been written for an introductory course in probability 
and statistics. A central theme throughout is the introduction of 
theoretical ideas in probability and statistics by means of examples. 
Generally it is difficult to obtain "real-world" data quickly and 
inexpensively enough to motivate and illustrate such ideas. Here the 
strengths of an interactive computing language (BASIC) are exploited 
to illustrate probabilistic and statistical ideas. However, no great 
background in computing is required; all that is needed can be learned 
within a short period of time. Appendix A gives a description of 
the BASIC language adequate for the use of the reader. The aim is 
to present the basic ideas in probability and statistics generally 
included in a first course. It is the author's belief that inter-
active computing can provide a bridge between statistical theory and 
practice, yielding better insight into both. 

The author sees several ways in which the strength of computing 
can be used in an introductory course. The ability of the computer 
to simulate rapidly a large number of repetitions of a random ex-
periment and to summarize quickly and present succinctly the results 
of these experiments is useful in illustrating a wide range of 
probabilistic and statistical ideas. The computer, additionally, can 
be utilized to carry out routine but tedious computations, allowing 
concentration upon ideas and not upon calculations. Furthermore, 
extensive use of computing provides a valuable introduction to modern 

ix 
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methods of data analysis. A magnetic tape of the computer programs 
in the text may be obtained at the cost of reproduction and mailing 
from the author at Iowa State University. 

A word here about the audience to whom this text is addressed 
and the background assumed is appropriate. The author sees this 
text as addressed to students who have had a two-quarter introductory 
sequence in the differential and integral calculus of functions of 
a single variable (or the equivalent). The author believes that 
many students who are introduced to the calculus are not given an 
opportunity to take a course demonstrating the power of this mathe-
matics at a sufficiently early stage. Those with interests outside 
the physical sciences o~en become impatient with applications in 
these areas and do not pursue additional work in mathematics. The 
text includes those topics described by the Committee on the Under-
graduate Program in Mathematics (CUPM) Report of 1965 for Mathematics 
2P. However, much more of the text is devoted to statistics than 
is suggested there. On the one hand, it is intended that this text 
contain sufficient mathematical rigor that a reader may appreciate 
probability theory. A coequal aim is to provide a.n adequate back-
ground in statistics to serve as a basis for additional study of 
statistical methods in a chosen field of application or for addition-
al study of statistical theory. In the larger sense, the text re-
presents an attempt to blend mathematical theory with statistical 
practice. The author believes that such a background will become 
increasingly important for the understanding of a complex technologi-
cal society. 

I am indebted to the Biometrika Trustees for permission to in-
clude Tables B.I, B.III, and B.V, which are abridgments and adapta-
tions of tables published in Biometrika Tables for Statisticians. 

am also grateful to the Literary Executor of the late Sir Ronald 
A. Fisher, F.R.S., to Dr. Frank Yates, F.R.S., and to the Longman 
Group Ltd., London, for permission to use Table III from their 
book Statistical Tables for Biological, Agricultural, and Medical 
Research (6th Ed., 1974), reproduced as Table B.II. 

I 
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INTRODUCTION 

In this text we shall pursue an understanding of the basic ideas in 
the disciplines of probability and statistics. It is clear from the 
most casual reading of the morning's newspaper that crucial social 
decisions are based upon the results of the sampling of public opinion 
and statistical estimates. For example, estimates of the rate of 
unemployment and inflation, obtained by statistical means, are cited 
as a basis for the fiscal and monetary policies of the government. 
Sampling of public opinion on questions of public policy is often 
used as the basis for governmental action. At the very least, such 
samplings are carefully considered in questions of public policy. 

Evidence for the importance of statistics in a modern techno-
logical society confronts us constantly. Due to the importance of 
statistics in understanding a modern society one is naturally led to 
the consideration of the mathematical basis of statistics. We shall 
be interested in questions of how to describe, mathematically, in-
stances of "chance." Additionally, we shall ·study some of the basic 
concepts of statistics with the aim of understanding in what sense 
statistical methods may be considered "valid." There is no universal 
agreement on these questions, but here we shall adopt the long-run 
frequency interpretation of probability, which will be defined more 
explicitly in the succeeding chapters. Let us first consider some 
basic definitions and the role the computer will play in this text. 

l 



2 Introduction 

1.1 PROBABILITY AND STATISTICS 

It is important to distinguish between the disciplines of probability 
and statistics. Probability is a mathematical discipline which aims 
at describing the outcomes of chance experiments. In probability 
theory one defines probability models, which are mathematical struc-
tures. We believe that these models describe the essentially im-
portant characteristics of certain chance situations. One defines 
the basic elements of a model, and axioms are stated concerning re-
lationships between these elements. The implications of the model, 
often called theorems, are deduced from the basic definitions and 
axioms. The reasoning here is essentially deductive. One hopes, 
of course, that a probability model used gives a reasonably good 
description of the chance experiment, so that the mathematical 
properties, often summarized as theorems, will have "real-world" 
application. 

The discipline of statistics is essentially a body of knowledge 
for reasoning inductively, i.e., from the part to the whole. A much 
quoted definition of statistics is given in the text The Nature of 

Statistics by Wallis and Roberts: "Statistics is a body of methods 
for making wise decisions in the face of uncertainty." The types 
of decisions with which we are concerned are to be based on available 
numerical values, which give valuable but incomplete information 
needed to make the decision. We are used to making decisions of this 
kind every day. We know from previous experiences how long the 
telephone conversations of the other party on a two-party line have 
lasted. If the other party is on the line when we wish to make a 
call, we use the data from previous similar situations to help decide 
how long to wait before attempting to place the call again. In such 
a case, common sense and patience may suffice, but in other more 
complicated situations formal rules of inference are required. 
Statistics, using the mathematics of probability, is the study of 
formal rules of inference, with the intention of providing proce-
dures of inference which are scientifically justifiable and useful. 
The relationship between probability and statistics may not at the 
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moment be completely clear. We shall pursue the relationship and 
distinction between the two disciplines in more detail in the fol-
lowing chapters to improve our understanding as we proceed. 

1.2 THE USE OF BASIC PROGRAMS 

As mentioned above, there has been an effort to capitalize on the 
strengths of the time-sharing system in the introduction and expla-
nation of concepts and in the carrying out of routine but tedious 
computations. A student will be expected to have a working knowledge 
of the elementary commands in BASIC. Experience has shown that it 
takes students a very small a.mount of time to acquire this competence. 
Appendix A has been included to give a brief description of the BASIC 
language. All the essentials of the grammar and content of BASIC 
required for the text are included in Appendix A and this section. 

Each of the chapters here is made up of several numbered sub-
sections. In most sections there are references to particular 
programs written in BASIC. The first time a program is referred to 
in a section, a listing of the program and a sample run will appear 
near the end of the section in which it is first referenced. The 
program is only listed once, so that later references to the program 
may refer to a listing appearing in a previous section. Additional 
runs of a program introduced in an earlier section will often appear. 
Some exercises call for running a program made available with this 
text. Other exercises require writing simple programs to show an 
understanding of a particular idea or computation. 

The BASIC language provides a statement which allows the selec-
tion of a psuedorandom number from the interval 0 < x < 1. The 
function is RND which is used in conjunction with the LET statement. 
RND does not require an argument. We illustrate the use of this 
command in several examples. 

Suppose a trial is made of a chance event which has two 
outcomes: A and B. For example, in matching two coins, let A 
represent getting two heads and B any other outcome. Assume the 
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true relative frequencies of A and B are 1/4 and 3/4. The following 
program will simulate 100 such trials and compute the relative fre-
quencies observed. 

10 FOR I = 1 TO 100 
20 LET X = RND 
30 IF X > 0.25 THEN 60 
40 LET A = A + 1 
50 GO TO 70 
60 LET B = B + 1 

70 NEXT I 
80 PRINT "FREQ A= "· A/100, "FREQ B = "· B/100' ' 
90 END 

The following command will select a random number from the 
interval (A, B): 

10 LET X = A + (B - A)*RND 

The following command will select a random integer from K to L for 
K < L. 

20 LET X = K + INT(RND*(L - K + 1)) 

The command RND will cause the same sequence of random numbers to be 
selected each time a program is run. This is useful for debugging 
programs and for checking homework assignments. However, rmy- true 
simulation requires a different set of random numbers for each run. 
This will occur if the command RANDOMIZE appears at the beginning of 
a program, i.e., 

1 RANDOMIZE 

is the first statement. Substantial use of the simulation capacity 
of the BASIC language will be made in the succeeding chapters. 



2 

ELEMENTARY PROBABILITY 

2.1 RANDOM EXPERIMENTS 

We are all aware that the world in which we live is an unpredictable 
one. The outcomes of many of our actions cannot be predicted in 
advance. A couple has a child; they do not know the child's sex 
until birth. An individual makes a visit to a drive-in bank; the 
number of cars in line, including his own, upon arrival at the bank 
cannot be predicted. A battery is purchased for an automobile; the 
number of years that it will function until failure is unknown. 
Nevertheless, actions like those described above are taken daily. 
Such actions are more formally called random experiments, i.e., 
those for which the outcome is not predictable in advance through 
knowledge of the conditions under which the experiment is made. 

It is the desire to have some kind of reasonable knowledge 
about the outcomes of such trials which has led to the development 
of the mathematical discipline of probability. We shall concentrate 
initially on the empirical basis for probability models. A proba-
bility model is a mathematical (or axiomatic) description of a 
situation involving random experiments. In the model the salient 
features of the real-world situation are abstracted and defined 
mathematically. Such a model, of course, only can be an approxima-
tion of the real situation. There is, for example, probably no 
real-world coin which shows heads or tails with exactly equal 

5 



6 Elementary Probability 

likelihood. Nevertheless, the assumption of the existence of such 
a theoretical coin permits a mathematical description which has had 
many useful real-world applications. The development of formal 
probability models, which aim at describing the outcomes of differ-
ent types of random experiments, has its basis in man's desire to 
better understand his uncertain world and to predict the outcome of 
his actions. 

The first step in coming to an acceptable description of a 
random experiment is to concede that one should not concentrate on 
the outcome of a particular trial of a random experiment. Rather, 
one should first consider the set of possible outcomes or results 
associated with such an experiment. We will denote such sets of 
outcomes by capital letters. For the examples given in the first 
paragraph we might define the following outcome sets for the three 
experiments described: 

A = {male, female} 
B {l, 2, 3, ..• , 10} 
C = {O, 1, 2, ••• , 8} 

The outcome set B indicates that a maximum of 10 cars may be in line 
at the drive-in bank, perhaps due to PhYSical limitations of the 
parking lane. The integer n in outcome set C means that the battery 
has lasted for a least n years, but not n + 1. Hence n = O implies 
failure during the first year of operation. Operation for 9 or more 
years is not considered possible. 

Of course it is clear that such outcome sets alone are insuffi-
cient to provide an idea of the relative likelihood of the individual 
outcomes. We make our first use of the computer here to simulate 
outcomes of our first experiment, having a child. The program BIRTH 
simulates the birth of N children with the true proportion of male 
births assumed to be p. The values of N and p are read from the 
DATA statement in line 370. The simulation is repeated 20 times and 
the output prints the proportion of female and male births in each 
of the 20 simulations. In addition, the graph of the relative 
frequency of male births is plotted. The axes will occur in their 
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traditional orientation if the output is turned 90 degrees in the 
counterclockwise direction. The vertical a.xis represents relative 
frequency with X indicating 0.5, and the horizontal axis represents 
the trial numbers for the 20 simulations. 

In the two runs displayed we have chosen N = 40 and N = 400 

with p = 0.5. It is immediately clear that, although it is rare 
that a particular sample of N births has exactly one-half of the 
births of each sex, the relative frequency of male births does tend 
to cluster near 0.5 in both simulations. Additionally, it is appar-
ent from comparison of the two graphs that these relative frequencies 
cluster more closely about 0.5 for samples of 400 births than for 
samples of 40 births. 

In our second program, entitled CARS, we simulate N visits to 
the drive-in bank described above. In this case we make the rather 
unrealistic assumption that the number of cars in line has an equal 
chance of being any integer from 1 to 10. The program simulates 
N = 1000 visits and the frequencies of 1, 2, ••. , 10 cars in line 
are printed, along with the sum of these relative frequencies and 
the average number of cars in line in the 1000 visits. The relative 
frequencies cluster about the theoretical value of 0.1 for each of 
the possible number of cars in line. In addition, the sum of the 
frequencies is one, as a little thought convinces us that it must 
be. The properties of relative frequencies which we observe will 
lead us to the mathematical definition of a probability model. In 
particular, if the relative frequencies of the outcomes of a random 
experiment are defined to be f., for i = 1, 2, ... ' k (k possible 

1 k 
outcomes), we must have O ~ fi ~ 1 and Ei=l fi = 1. 

For example on September 30, 1976, the results of a Gallup poll 
on the first Carter-Ford debate were published. In response to the 
question, "In your opinion, which man did a better job in the 
debate?" the following was reported: 

Ford Carter No opinion 
32% 25% 43% 
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In relative frequency terms, we have f 1 = 0.32, f 2 = 0.25, and f 3 
0.43. Clearly these relative frequencies satisfy the properties 
stated in the last paragraph. 

Exercises 2.1 

1. Assume that a batter is a "300 hitter," and that he comes to bat 
400 times in each year. Use BIRTH to simulate the batter's 
average in the 20 seasons, relabeling the output "HIT" and "NO 
HIT." Alter the program to calculate his (her) 20-year average. 
What were his (her) best and worst season averages? 

2. The actual frequency of male birth in the United States is about 
0.513. Use BIRTH to simulate 1000 births in each of 20 years. 
Use the program altered to calculate the frequency of male birth 
for the 20,000 births. Compare this value with p = 0.513. 

3. Assume that there is space for 16 cars in line at the drive-in 
bank described by CARS. Alter CARS to simulate 3000 visits to 
the bank, printing out the frequency of 1 to 16 cars in line. 
(You will need a dimension statement.) 

4. The statement LET Y = 1 + INT(6*RND) will simulate the roll of a 
die. Using this, write a program to simulate the sum attained 
on 2500 tosses of two dice. Compute the relative frequencies of 
the sums 2 through 12. Which outcome is most frequent and with 
what frequency was it observed? What do you believe to be the 
theoretical frequency of this outcome? 

2.2 DEFINITION OF A PROBABILITY MODEL IN THE DISCRETE CASE 

The stability of the relative frequency of the occurrence of a 
particular event, when a particular random experiment is repeated a 
large number of times, serves as motivation for the formal defini-
tion of a probability model. The properties of relative frequencies 
which we have observed previously will be reflected in the defini-
tions which we make. 
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BIRTH 

10 DIM MC20),FC20> 
20 FOR I = 1 TO 20 
30 LET MC I >=0 
40 LET FC I >=0 
50 NEXT I 
60 PRINT "FEM.ALE", "MALE" 
70 READ N,P 
80 FOR I = 1 TO 20 
90 FOR J = 1 TO N 
100 LET Z = RND 
110 IF Z <=P THEN 140 
120 LET FCI>=FCI>+l 
130 GO TO 150 
140 LET MCI>= MCI>+l 
150 NEXT J 
160 LET MCI>= MCl)/N 
170 LET FCI>= FCI>/N 
180 PRINT FCI>,MCI> 
190 NEXT I 
200 PRINT 
210 FOR J = 1 TO 29 
220 PRINT "+"; 
230 NEXT J 
?..40 PRINT "X "; 
250 FOR J = 1 TO 30 
260 PRINT "+"J 
270 NEXT J 
280 PRINT "FREQ" 
290 FOR I = 1 TO 20 
300 LET T = INTC60*MCI>>-1 
310 PRINT "+"J 
320 FOR J = 1 TO T 
330 PRINT " "J 
340 NEXT J 
350 PRINT "*" 
360 NEXT I 
370 DATA 40, • 5 
380 END 

READY 
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370 DATA 1100... 5 
RUN 
FEMALE MALE 
0·425 0.575 
0·525 0.475 
0·675 0.325 
0.475 0.525 
0.55 0.45 
0.55 0.45 
0.525 0.475 
0·6 0.4 
0.1125 0.575 
0.4 0·6 
0.575 0.425 
0.45 0.55 
0.475 0.525 
0.475 0.525 
0.4 0·6 
0.55 0.45 
0.5 0.5 
0.45 0.55 
0.575 0·425 
0.375 0·625 

+++++++++++++++++++++++++++++X+++++++++++++++++++++++++++++++FREQ 
+ * + * + * + * + * + * + * + 
+ "' "' + 
+ "' "' + * + "' + 
+ "' * + 
+ "' "' + * + * + "' 
"' 
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370 DATA 400•• s 
Rtl~ 
FDIAL.E !'fAL.E 
o.sss 0· 48S 
o. 4825 0·5175 
o. S525 o. 4475 
0· 4715 o.sa25 
o. 517 s 0· 482S 
o. 52S o. 475 
o. S2 0·48 
Oo53 o. 111 
o. s o.s 
o. 111 o. 53 
0·48 0.52 
o. sos 0·495 
o. S27S o. 4725 
o. S32S 0· 1161 s 
Oo 1185 o. SI 5 
o. S2 o. 48 
o. 1145 Oo55S 
o. 11825 0· 5175 
Oo495 0· sos 
Oo 1182S O·S17S 

+++++++++++++++++++++++++++++X++++++++++++++++++++++++++++++FREQ 
+ • 

•+ 
+ •+ • 
+ • 
+ •* + 
+ •+ * 

••+ 
+ 
+ 
+ •

* + * + 

• * + 
+ • 
+ * + 
+ *• 
• 
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CARS 

10 J;OR I • 1 TO 10 
20 LET F<l>•O 
30 NEXT I 
llJ READ N 
SO FOR I • 1 TO 111 
60 LET T • l + nnc IO•R!11D> 
70 LET F<T>•F<T>+l 
80 NEXT I 
90 PRINT "CARS"• "RE. FREQ" 
JOO LET A • 0 
110 LET B •O 
I 20 FOR I a l TO I 0 
130 LET JiC I >•F< l>l'N 
140 LET B • B+l•F<J> 
ISO PRINT l•F<l> 
160 LET A • A+F<I> 
170 NEXT I 
180 PRll'JT 
190 PRINT "TOTAL FREQ• "J A 
aoo PRINT "A\IERAG Eto"J B 
210 DATA 1000 
220 END 
•RlN 
CARS RE. FREQ 

1 0·102 
2 0· 103 
3 0.095 

Oe.093 
0·103 

6 0·106 
7 0.102 
8 0·106 
9 0·107 
10 0·083 

"5 

TOTAL F'JjEQ• I 
AVERAG Ea S• Ji7 l 

• 
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We think of an idealized experiment with either a finite or a 
countable number of outcomes. Countable means that the outcomes 
can be put into a one-to-one correspondence with the positive inte-
gers. The set of all possible outcomes, called the outcome (or 
sample space), will be denoted S. The points in S correspond to the 
outcomes of a real-life experiment and will be denoted as ei, where 
the subscript i = 1, 2, ••• , n if there are a finite number of out-
comes and i = 1, 2, ••. in the case of a countable outcome space. 
Such an outcome space is called discrete. Corresponding to the 
long-run relative frequency in a random experiment will be a number 
P(e.) called the probability associated with the point e .• In order 

1 1 
that these probabilities reflect the properties of relative frequen-
cies we require that 

O<P(e.)<l (2.2.1)
- 1 -

and 
E P(e.)=l (2.2.2)

1all i 

Thus a formal probability model is asserted by defining S and the 
probabilities of the points of S so that (2.2.1) and (2.2.2) are 
satisfied. 

Suppose that we consider a theoretical battery purchase in the 
previous section with life length described as before so that 

S = {O, 1, .•. , 8} 

One possible assignment of values to the points of Sis P(e.) = 1/9
1 

for i = 1, 2, ••• , 9, where e1 = O, e2 = 1, ••. , e9 = 8. Certainly 
the requirements (2.2.1) and (2.2.2) are met. This corresponds to 
the assumption of equal likelihood of failure during each of the 
first 9 years of life. However, this is not the only possibility 
by any means. We may define 

( ) i-1 
P(e.) = 1 - g g i = 1, 2, ••• , 9 

1 1 - q 9 

for any q satisfying 0 < q < 1. As 
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9 (1 - q)(l + q + q2 + •.• + q8)
I: P(e.) 

i=l l. 1 - q9 
_1-.d_ 
- 9 - 1 

1 - q 

and the P(ei) are clearly nonnegative. Again (2.2.1) and (2.2.2) 
are satisfied. It is now clear that, because a different probability 
assignment occurs for every q, there are an infinity of ways in which 
the sample space S may be assigned probabilities. This latter 
assignment has the important property that 

= q i 1, 2, ... ' 8 

so that the probabilities decline geometrically. 
The program BATTERY simulates N battery lives assuming this 

latter model. The values of N and q are determined by the DATA 
statement at line 270. The output from one run assumes 1000 batter-
ies have lives described by this model with q = 0.5. The relative 
frequency of the 1000 battery life lengths and the probabilities 
predicted by the model are printed out. As the output demonstrates, 
both the frequencies and probabilities sum to 1. 

If we change the outcome space of the previous example to 

S = {O, 1, 2, 3, ••• } 

we now consider that batteries may have an arbitrarily long life. 
Although, of course, this is only theoretically possible, the re-
sulting probability model may nevertheless provide a useful approx-
imation to reality. Suppose we continue to assume that the prob-
abilities decline geometrically, that is, 

= q for 0 < q < 1 

Then P(e2 ) = qP(e1 ), P(e3 ) 
q3P(e1 ), and in general, 
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i 1, 2, 

00 00 i
·As Ei=l P(ei) = P(e1 ) Ei=O q = P(e1 )/(l q) (where the expression 
for the sum of a geometric series has been used), we must have 

P(e1 ) 
--=l
1 - q 

Hence P(e1 ) = 1 - q and P(e.) = (1 - q)qi-l, i 1, 2, •••• As a 
l. • 

function of i (instead of e.), we have P(i) = (1 - q)q1 for i = O,
]. 

1, 2, •••• This is referred to as the geometric distribution on 
the set s. 

Slight changes in the program BATTERY, yield the program GEOM 
which simulates N observations from this population. Of course the 
computer cannot provide an infinite number of probabilities, so that 
the output is terminated when the cumulative probability exceeds 
0.999, One run of GEOM is shown with N = 1000 and q = 1/2. A com-
parison of the frequencies observed and the probabilities computed 
under the assumption of the geometric model suggests how such a 
theoretical model may be useful in describing actual random experi-
ments. 

Problems 2.2 

1. Assume 0 < p < 1 and let q = 1 - p. If P(e1 ) = p3 , P(e2 ) = 
2 2 33p q, P(e3 ) = 3Pq , and P(e4) q prove that this represents 

a valid probability model for S = {e1 , e2 , e3 , e4} for any such 
value of p. 

2. Assume that the probability a batter gets i hits in 5 "at bats" 
is inversely proportional to i. (Assume the batter gets at 

least 1 hit.) Find P(ei), i = 1, 2, 3, 4, 5, where ei represents 
getting i hits. 

3. Let the probability an animal is successful for the first time 
on the ith trial of a learning experiment be proportional to the 



16 Elementary Probability 

trial number, that is, P(ei) = ip1 for i = 1, 2, ••• , n. (We 
assume success on or before trial n.) Find P(e.), i = 1, 2,

]. 

•.. ' n. 

4. Prove that P(i) = l/i(i + 1) is a valid probability model for 
the positive integers. 

5. Let P(e.)
]. 

= k/(i - l)! for i = 1, 2, Find the constant k. 

6. Find at least two probability models to describe the outcome on 
the toss of a die, that is, S = {l, 2, 3, 4, 5, 6}. 

7. The National Center for Health Statistics published the following 
information on the cause of death in the United States for 1972. 

Diseases of heart and blood vessels 1,036,560 
Cancer 346,930 
Accidents 113,670 
Pneumonia and influenza 61,160 
Diabetes 39,070 
All other 364,610 
Total 1,962,000 

Describe a sample space and an appropriate probability assignment 
for the causes of death in the United States. 

Exercises 2.2 

1. Assume that a battery lasts at most 5 years. Using the model 
P(ei) = (1 - q)qi-l/(l - qk), where ei represents a life length 

of i - 1 but less than i years for i = 1, 2, ••• , k. Simulate 
the life lengths of 1000 batteries with q = 0.5 using the appro-
priate value of k. Only slight modifications of the program 
BATTERY are required. 

2. Simulate the life length of 1000 batteries using the geometric 
distribution with q = 1/3. 

3. Consider, as in Problem 2.2.3, an animal which is successful for 
the first time on trial i of an experiment with probability 
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BATTERY' 

10 FOR I • 1 TO 9 
20 LFT FCI >•O 
30 N.l!XT I 
40 READ N1 P 
SO FOR J • 1 TO N 
EO LET Z • RND 
70 LET C • 0 
80 FOR I • 0 TO 8 
90 LETT• Cl•P>•Ptl/Cl•Pt9> 
100 LET C • C+T 
110 IF Z > C 'l'HEN 130 
120 GO TO UO 
130 l'IEXT I 
140 LET I • I + 1 
150 LET F<I>•F<I>+l 
160 NEXT J 
170 LET C • 0 
180 PRINT "LI FE LENG'l'H"• "RE. nu:Q", "P~OBABil..l TY", "CU'IU.ATI VE PROB·· 
190 FOR I • 1 TO 9 
200 LET T • Cl•P>•Pt CI• I>-'< 1·Pt9) 
210 LET C • T +C 
220 PRINT I• 1• FC I )/N.1 T.1 C 
230 LET A• FCI>/N +A 
240 Nl!XT I 
250 PRINT 
260 PRINT "TO TAI. FREQ• "I A1 "TOTAL PROS- "IC 
270 MTA 10001 • 5 
280 END 

•RUii 
I.. I FE l. ENG 1H RfL FREQ PROBABIL I TY ClMtLATI VE PROB 

0 O• 1197 o. 500978 o. 500978 
1 O• 2611 O• 250.llA9 Oo7Slllf8 
2 0·134 o. 1252115 0·876712 
3 0·056 6026223 E•2 0·939335 
11 0·022 3· 13112 E'•2 0·970646 
s 0·016 lo 56556 E•2 0·986301 
6 0·007 1• 82779 E· 3 00994129 
7 Oo003 3•91389 E· 3 009980113 
8 0.001 1·9569 5 E• 3 1· 

TOTAL FREQ• 1 TOTAL PROS- 1 • 

* 
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GEOM 

5 DIM FC 51> 
10 FOR I • I TO 50 
20 l. ET l'C l >•O 
30 NEXT I 
40 READ N•P 
50 FOR J • 1 TO N 
60 L.ET Z • RND 
70 l.ET C • 0 
80 FOR I • 0 TO 8 
90 l.ET T • < l•P>•Pt I 
100 l.ET C • C+T 
tlO IF Z > C TKEIJ 130 
120 GO TO 140 
130 lllEICT I 
140 l.ET I • I + 1 
150 l. ET F< I > • F< I >+ 1 
160 NEXT J 
170 LET C • 0 
180 PRINT "L. I FE l. EIJG TK... "RE.. FREQ"• "PRO BAB IL I TY"• "ClMtLATI VE PROB,. 
190 FOR I • 1 TO 50 
200 LET T • <l•P>•Pt<I•l> 
210 LET C • T +C 
220 PRINT 1-1.FCl>IN.T.C 
230 LET A • Jl'<I>.flll +A 
235 IF c > 0.999 nnN 260 
2.illO NEIC T I 
250 PRINT 
260 PRINT "TOTAL. FJ'IEQlo"J A• "TOTAL. PROS-"J C 
27 0 DATA I 000• • 5 
280 IND 

•RUI 
t.1 FE L ll\IG 'llf RE.. FREQ PROBABILITY ClMtLATI VE PROB 

0 o. 496 0.5 0.5 
1 Oo263 Oo25 Oe75 
2 0·135 Ool25 Oo875 
3 Oo055 000625 0.9375 
4 0.022 0003125 0·96875 
5 0·018 00015625 0·984375 
6 0·007 7•8125 E• 3 Oe992187 
7 0.002 3090625 E• 3 00996094 
8 0.002 le95312 E•3 009980.117 
9 0 9076562 E•4 00999023 

10TAL. FHEQ• l • TOTAL PROB• Oe999023 

• 
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proportional to the trial number. Assume the first success 
occurs on or before trial 10. Write a program to simulate the 
trial numbers of the first success for 1000 animals. Print out 
the frequencies of first success on trial numbers 1-10 and the 
corresponding probabilities. 

2.3 PROBABILITIES OF EVENTS IN THE DISCRETE CASE 

Often we are interested in the probability associated with a subset 
of the sample space S. We make the following formal definition: 

DEFINITION 2.3.l. An event A is a subset of the sample S. 

It is quite natural to assign to the event A the sum of the proba-
bilities of the points in A. Formally, we state 

DEFINITION 2.3.2. The probability of an event A is P(A) L: c-AP(e.),e. ~ l. 
where ei E: A means ei is an element of A. ]. 

Suppose we consider, as in our waiting line example, selecting 
a random integer from 1 to 10, where, as before, we assume equal 
probability of selection of each such integer. A driver might be 
interested in one of the following events: 

A: {l} (He is alone.) 
B: {l, 2, 3, 4, 5} (Five or fewer cars in line.) 
C: {8, 9, 10} (Eight or more cars in line.) 

It is clear that the probabilities of these events are given by 
P(A) = 0.1, P(B) =0.5, and P(C) = 0.3 using the definitions above. 
Referring to the output of the program CARS of Sec. 2.1, we see 
that the output yields relative frequencies of 0.102, 0.496, and 
0.296, respectively, for the corresponding sets of outcomes in the 
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simulation for N = 1000. Thus the probability of an event can be 
thought of, as in the case of the assignment of probabilities to the 
points of S, as an abstraction of the idea of relative frequency in 
a large number of trials. 

In the case in which we consider the geometric assignment of 
probabilities to the set 

S = {O, 1, 2, ••• } 
that is 

P(i) = (1 - q)qi i = 0, 1, 2, ••• 

[where P(i) stands for the probability of the integer i], we may be 
interested in events such as 

A= O, 1, 2, 3 (A battery lasts less than 4 years.) 
B = 4, 5, (A battery lasts at least 4 years.) 

Here we see that 

P(A) (1 - q)(l +q+ q2 + q3) = (1 - gJ ~1 - Sl4 
~ 

(1 - q)
41 - q 

For B, we have 

44 00 (1 - g)gP(B) (1 q)q ( I: qi) 
1 - qi=O 

4 = q 

Of course, the fact that P(A) + P(B) = 1 is evident here, so that 
the latter calculation would be unnecessary. We will next consider 
the relationships between the probabilities of various events 
(subsets) of S. 

Problems 2.3 

1. What is the probability of an even outcome in the toss of a fair 
die? An odd outcome? An outcome less than 5? 
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2. Suppose for an unbalanced die, P(e1 ) = P(e2 ) = P(e3) = P(e4 ) = 
0.15 and P(e5 ) = P(e6 ) = 0.20, where ei represents the outcome 
i. Answer the questions in Problem 2.3.1. 

3. In Problem 2.2.2 find the probability of more than two hits by 
the batter in the 5 "at bats." 

4. Let p = 1/2 in Problem 2.2.1. Let A= {e1}, B = {e1 , e4}, and 
C = {e2 , e3 , e4}. Find P(A), P(B), and P(C). 

5. Let P(i) = l/i(i + 1) represent the probability integer i is 
selected from the positive integers. Find the probability the 
integer selected is between 4 and 6 inclusive. 

6. A card is selected at random from a standard bridge deck. What 
is the probability of a deuce? A heart? A red card? 

7. In Problem 2.2.3 find the probability the first success occurs 
on or before trial k. For n = 10, what is the smallest value 
of k for which this probability is at least 0.5? 

8. Let the geometric distribution given by P(i) = (1 - q)qi for 
i = O, 1, 2, ••• describe life lengths of batteries as before. 
What is the probability the life length is an odd number? If 
p = 1/2, what is the value of this probability? If O < q < 1, 
show that the probability of an odd number is less than 0.5. 

2.4 PROBABILITIES OF COMPOSITE EVENTS IN A DISCRETE 
SAMPLE SPACE S 

We will assume that the reader has had an introduction to the algebra 
of subsets of a given set. The references Kemeny et al. (1974) and 
Scheid (1962) contain good introductions. We will, however, review 
here briefly the basic definitions and some important theorems con-
cerning the events or subsets of S. 

DEFINITION 2.4.1. If A and B are events in S, then A is called a 

subset of B if for any point e E: A we have e E: B. We write AC B. 
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DEFINITION 2.4.2. Two events A and B in S are equivalent or equal 
if AC B and BC A. We write A = B 

DEFINITION 2.4.3. If A and B are subsets of S, then the union of A 
and B is the set containing thos~ points in A or B including those 
points common to A and B. We write the union as A + B. 

DEFINITION 2.4.4. If A and B are two events in S, then the inter-

section of A and B is the event containing those points in both A 
and B. We write the intersection as AB. 

DEFINITION 2.4.5. If A is an event of S, then the complement of A 
is the set of those points of S not in A. We write the complement 
as A. 

DEFINITION 2.4.6. The empty set is the subset of S without any 
points. We write the empty set as</). From Definition 2.4.1, 
0cA for any A since the conditions of Definition 2.4.1 are met 
vacuously. 

We are interested in finding formulas for the probabilities of A + B, 
AB, A, andQ). In words, A+ Bis the event that A or B occurs, AB 
is the event that A and B occur, and Ais the event that A does not 
occur. 

There are numerous theorems concerning the algebra of subsets 
which can be proved using the preceding definitions. We state a 
number of these without proof in the following theorem. 
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THEOREM 2.4.1. For a:ny events A, B, and C in S, 

(a) A+ B = B +A (j) A+C/>=A 
(b) AB = BA (k) A =¢ 
(c) (A + B) + C = A + (B + C) (1) A+A= s 
(d) (AB)C = A(BC) (m) AA.=¢ 
(e) (A + B)C = AC + BC (n) AS= A 
(f) A(B + C) = AB + AC (o) A + S = s 
(g) A + BC = (A + B)(A + C) (p) AA= A 
(h) (A + ii) = Aii (q) A+A=A 
(i) Aii=A+ii 

These theorems can be proved by direct arguments from the above 
definitions or demonstrated convincingly using Venn diagrams. We 
refer the reader to references on finite mathematics in the bibliog-
raphy. 

Let us consider a list of 100,000 registered voters who are 
partitioned according to three dichotomous classifications: male or 
female, married or unmarried, and Democrat or Republican. We will 
use the following notation: A represents the set of males, B the 
married individuals, and C the set of Democrats. There are eight 
categories into which individuals may be classified. These are dis-
played in Fig. 2.4.la. 

A 

ABC ABC 

B 
10,000 4,000 A 

ABC ABC AB AB 
30,000 

ABC 

36,000 

ABC 
c 

B 40,000 

AB 

40,000 

AB 
6,000 3,000 B,000 12,000 

ABC ABC 
2,000 9,000 

(3) <bl 

Fig. 2.4.1 
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The event ABC, for example, contains married male Republicans, 
ABC contains married male Democrats, ABC contains married female 
Democrats, and so forth. In Fig. 2.4.lb, the 100,000 individuals 
have been classified into four categories: married males, married 
females, unmarried males, and unmarried females, that is, AB, AB, 
AB, and AB. The numbers in both diagrams of course represent the 
number of individuals in each category. We shall use this example 
to illustrate some of the elementary theorems of probability, where 
we assume each person has an associated probability of 1/100,000. 

We shall first require a definition. 

DEFINITION 2.4.7. Events A and Bare called disjoint if AB =0, 
i.e., there are no points common to A and B. 

In our example the set of females A and the set of married males AB 
are disjoint. The events A + B (married or male) and AB (unmarried 
females) are disjoint. This is, of course, clear from the diagrams 
in Fig. 2.4.1 but can be formally shown by using Theorem 2.4.1. For 
example, A(AB) = (AA)B ={l>B = 0 using appropriate parts of the 
theorem. Similarly, 

AB(A + B) = (AB)A + (AB)B = (BA)A + A(BB) 
B(AA) + A(BB) = B$+ A0 
0+(/)=(/) 

We now turn to some basic theorems of elementary probability. 

THEOREM 2.4.2 If A and Bare disjoint, then P(A + B) = P(A) + P(B). 

Proof: The statement of the theorem is equivalent to 

E P(e.)=
1e.EA+B 

1 
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Because AB =;I, the points in A+ Ba.re separated into those in A 
and those in B, where there are no points common to A and B. Hence 
both sides represent the sum of the same probabilities and must 
therefore be equal. 

COROLLARY 1. P(A) + P(A) = l. 

Proof: From Theorem 2.4.l(l) and (m), A + A = S and AA = 0. 
Hence the current theorem implies that P(A) + P(A) = P(A + A) = 

P(S) = l. 

COROLLARY 2. If~· A2 , ... ,~are pairwise disjoint (that is, 
k kAiAj =0 for i ~ j), then P(Ei=l Ai)= Ei=l P(Ai). 

Proof: This follows from a straightforward mathematical induc-
tion from the theorem. [Scheid (1962) contains a good discussion of 
mathematical induction.] 

We have seen that in our example (and in general) A and AB are 
disjoint. Hence P(A + AB) = P(A) + P(AB) = 0.52 + 0.40 = 0.92. In 
words, 92% of the individuals on our list are female or married 
males. We have seen that A + B and AB are disjoint. However Theo-
rem 2.4.l(h) implies that these events are complements. Hence 
P(A + B) + P(AB) = l by Corollary l. Thus, P(A + B) = l - P(AB), 
or P(A + B) = l - 0.12 = 0.88. In words, 88% of the individuals 
a.re male or married. 

COROLLARY 3. P(0) = 0. 

Proof: By Theorem 2.4.l(j) and (k), we have S +¢=Sand 
Sl2l=l2l • Thus from the current theorem, P(S) + P(!l)) = P(S) or 
l + P(IZ)) = l. Canceling l from each side yields P(0) = O. 
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THEOREM 2. 4. 3. For any events A and B, 

P(A + B) = P(A) + P(B) - P(AB) 

From Fig. 2.4.lb it is clear that A = AB + AB, B = AB + AB, and A + 

B = AB + AB + AB, where each right-hand side is a 1.Ulion of disjoint 
sets. Hence we can write 

P(A + B) = P(AB) + P(AB) + P(AB) 

However P(A) = P(AB) + P(AB) and P(B) = P(AB) + P(AB). Thus 

P(A + B) = P(AB) + P(AB) + P(AB) + P(AB) - P(AB) 
= P(A) + P(B) - P(AB) 

using the expressions for P(A) and P(B). 

COROLLARY 1. For any three events A, B, and C, 

P(A + B + C) = P(A) + P(B) + P(C) - P(AB) - P(AC) 
- P(BC) + P(ABC) 

Proof: Using A+ B and C as two events, the theorem yields 

P((A + B) + C) = P(A + B) + P(C) - P((A + B)C) 
= P(A + B) + P(C) - P(AC + BC) 
= P(A) + P(B) - P(AB) + P(C) - [P(AC) 

+ P(BC) - P(ACBC)] 
= P(A) + P(B) + P(C) - P(AB) - P(AC) 

- P(BC) + P(ABC) 

In our example P(A + B + C) represents the probability of a male or 
a married person or a Democrat. This probability is 

P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC) 

which from Fig. 2.4.la is given by 

o.48 + 0.80 + 0.75 - o.4o - 0.36 - o.66 + 0.30 = 0.91 
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COROLLARY 2. If A1 , A2 , ••• ,~are a:ny k events in S, then 

k 
L P(A.) - L P(AiAJ.) + L P(AiAjAm)

1i=l ifj ifj,jfm,
ifm 

This corollary is proved by a straightforward mathematical induction 
from the main theorem. We leave the proof as a problem, but note 
that Corollary 1 is a special case of Corollary 2 with k = 3, A1 
A, A2 = B, and A3 = C. 

The program VOTERS simulates the selection of N individuals 
from the population of 100,000 voters described above. In the out-
put of the program the proportion of sampled voters in the eight 
categories is printed. The categories are identified by a symbolic 
binary string of length 3. The integer 1 in such a sequence indi-
cates that a letter is present in the product representing the event 
and a 0 indicates that its complement is present. For example, 101 
corresponds to ABC, 000 to ABC, and so forth. The frequencies of 
these outcomes can be compared with the probabilities of the corre-
sponding events in Fig. 2.4.1. The probability of any composite 
event such as A + B can be compared with the corresponding frequency 
which results in a sample of size N. The probability of A + B, for 
example, was found to be 0.88. Its frequency in the output of 
VOTERS using N = 1000 is 0.897. The frequency of the outcomes male, 
married, and Democrat are printed and may be compared with the corre-
sponding probabilities of o.48, o.80, and 0.75, respectively. The 
remaining output concerns conditional outcomes which we discuss in 
the next section. 

Problems 2.4 

1. In the example given in the section find the probability of the 
following events: AC, A+ C, A+ C, AC. 
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VOTERS 

10 FOR I • 1 TO 8 
20 I.ET Fe I >•O 
30 NEXT I 
1.10 FOR K • 1 TO 7 
SO READ NCK> 
60 NEXT K 
70 READ NI 
80 FOP. J • 1 TO Nl 
90 LET C • 0 
100 LET V • 1 + INT< lOt S•RND> 
110 FOR K • 1 TO 7 
120 LET C • C + 1 
130 IF V > !UK> THEN 1 SO 
ll.IOGO TO 170 
1 SO NEXT K 
160 LET C • 8 
170 LET FCC>• FCC>+ I 
180 NEXT J 
190 PRH~T "FREQUl!l\JCI ES IN"J,. SA-.Pt.E OF SIZ:E"J Nl 
200 PRINT 
210 PRINT "111 "• "110"• "101 "• "011" 
eeo PRINT f( 1> .ll'U• F< 2) .IN 1. 1'( 3> .IN t. F< 4) .IN l 
230 PRINT 
21.10 PRINT "100"• "010"• "001"• "000" 
250 PRINT FC 5>.IN1• FC 6>11"1• FC7>.l~H• FC!!l)/Nl 
260 PRINT 
270 PRINT "mEQUl!l\JCY OF"• ''MALE"• "MARRIED"• "D!MOCRAT" 
280 LET A• F<l>+F<2>+F<3>+F<S> 
290 LET B • F<l>+F<2>+F<l.l>+F<6> 
300 I.ET C • F'<1>+1'<3>+F<4>+F<7> 
310 PRINT ""•A.IN1. B/!111• C/N I 
320 PRINT "CONDITIONAL "J "FREQUENCIES" 
330 LET A3• FCl>+F<2> 
340 I.ET Al• Fe l>+FC 3> 
350 LET A2• F< 1)+ F< 4> 
360 PRINT 
370 PRINT "MARR! ED/'.'IALE"• ''r'IARRI EDIFEMAl..F" 
3!!10 PRINT A3/A• CB•A3).ICN1·A> 
390 PRINT "MAR'RI ED/DEM"• ''MARRIED/REP" 
400 PRINT A21C.<B·A2>1<Nl·C> 
1.110 PRINT "MAI.EIDEM"• ''MALI/REP" 
420 PRINT Al/C.CA•Al>.ICl'-Jl·C> 
1.130 DATA 30000• 1.10000• 1.16000•82000•84000•!!!!1000.91000 
41.10 DATA 1000 
450 ENI: 

* 
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FREQUENCIES rn SA."IPL. E OF 

l ll 
0.3 

100 
0·025 

FREQUFN CY 0 F 

COl'llDITIOi'lAL. 

MARRI ED/l'fAL. E 
0·810309 

MARRI EDI DEM 
0·88079 5 

MAL.EIDEM 
o.118 609 3 

* 

110 
0·093 

010 
0·047 

'.VIAL. E 
0· /18 5 

F"REQUEl'llCIES 

SI~ F 1000 

101 
o. 067 

001 
0·023 

MARRIED 
0·605 

MARRI EDIFEMAL.E 
0·8 

MARRIED/REP 
O• 571429 

MALE/REP 
0·481633 

011 
o. 3E-5 

000 
o.os 

DEMOCRAT 
0.755 
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2. Assume that S represents the set of students at a college. Let 
A represent the set of students taking at least one mathematics 
course and B represent the set of students taking at least one 
language course. Suppose P(A) = 0.7, P(B) = 0.6, and P(AB) = 
0.5. Find 

(a) P(A+B) (e) P(AB) 
(b) P(A) (f) P(AB) 
(c) P(B) (g) P(AB) 
(d) P(A + B) (h) P(AB + AB) 

Interpret these events in words. 

3, Assume we select at random a three-digit number from 001 to 400. 
Call the selected number N. Find the following probabilities: 

(a) P(N ~ 390) 
(b) P(N is odd) 
(c) P(N is odd or N ~ 390) 
(d) P(Le~-hand digit of N is odd) 
(e) P(Middle digit of N is odd) 
(f) P( (d) or (e) is true) 

4. Using Theorem 2.4.1, prove that for any events A, B, and C in S, 

A+B+C=ABC and ABC = A + B + c 
Interpret the events ABC and ABC in words for the example given 
in Fig. 2.4.la. 

5. Prove that for A1 , A2, ••• ,~mutually disjoint events, that 
is, AiAj = 0 for i :f j, 

k k 
P( E A. ) = E P(A. ) 

1 1i=l i=l 

Use mathematical induction. 

6. Use Theorem 2.4.3 to prove that P(A + B) ~P(A) + P(B). By 
mathematical induction, prove that for any events A1 , A2 , ... , 

~· we have 
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k k 
P( r A.) < r P(A.)

i=l - i=l1 1 

7. Use mathematical induction to prove that for any events A1 , A2 , 

.•• ,~·we have 

k 
r P(A. ) - r P(A.A.) + ••• 

i=l i<j J1 1 

+ (-l)k-lP(A A •••A )1 2 -1t 

8. Assume three events A, B, and C are given such that P(A) = 0.5, 
P(B) = o.6, P(C) = o.4, P(AB) 0.3, P(AC) = 0.1, P(BC) = 0.2, 
and P(ABC) = 0.05. Find 

(a) P(ABC) (e) P(ABC) 

(b) P(ABC) (f) P(ABC) 

(c) P(ABC) (g) P(ABC) 
(d) P(ABC) (h) P(A + B + C) 

Draw a diagram similar to Fig. 2.4.la labeling the eight basic 
events with the appropriate probabilities. 

Exercises 2. 4 

1. Use Nl = 2000 in the program VOTERS (line 440) to sample this 
number of voters from the population of 100,000 voters. Indi-
cate which of the eight frequencies are added.together to give 
the relative frequency of the male, married, and Democratic 
individuals selected. Indicate the set equality which describes 
the events A, B, and C, in terms of the eight basic sets (e.g., 
AB = ABC + ABC) • 

2. In Problem 2.4.8 let A represent the set of homeowners, B the 
set of Democrats, and C the set of dog owners among 100,000 heads 
of household. Use the probabilities of Problem 2.4.8 as the true 
proportions in each of the eight basic events in S. Alter the 
program VOTERS at line 430 to represent this population. Delete 
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lines 320-420 and change the PRINT statement in line 270 appro-
priately to sample 1000 individuals from this population. What 
frequencies are observed for Democratic home owners, Democratic 
dog owners, and dog-owning home owners. Compare these with the 
corresponding probabilities. 

3. Write a program to simulate the sum on the toss of two dice 2000 
times (as in Exercise 2.1.3). What is the observed frequency of 
an odd sum? What is the observed frequency of 7 or 11? What is 
the observed frequency of a sum less than 6? Assuming the 36 
outcomes (i, j), i = 1, 2, ••• , 6 and j = 1, 2, ••• , 6, have 
equal probability, find the theoretical probabilities correspond-
ing to these events. 

2.5 CONDITIONAL FREQUENCY AND CONDITIONAL PROBABILITY 

In the example given in the preceding section we might be interested 
in comparing the proportion of married persons among females to the 
proportion of married persons among males for the population of 
100,000 persons. In sampling from the population we would, of course, 
take the proportion of married males among the sampled females as 
estimates of the population proportions. If we take a sample of size 
N, we would estimate the proportion of males who are married as 

F ( . d/mal ) number of married males requency marrie e = number of males 

Dividing the numerator and denominator by N, we can express this 
conditional frequency as 

sa.mple frequency of married malesFrequency (married/male) sample frequency of males 

Similarly the conditional frequency of married given a female is 
given by the ratio of the frequency of married females to the fre-
quency of females. The program VOTERS prints out these particular 
conditional frequencies as well as several others for a sample of 
size N = 1000. 
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We are naturally led by consideration of conditional frequencies 
to the idea of conditional probability. If we replace sample fre-
quency by probability in the foregoing, we are led to the following 
definition. 

DEFINITION 2.5.1. For any two events A and B for which P(A) > O, 
we define the conditional probability of B given A by 

P(AB)IP(B A) = P(A) 

The requirement that P(A) > 0 ensures that division by zero does not 
occur. As we have AB + AB = A and P(AB) + P(AB) = P(A), we see that 
P(AB) ~ P(A) or 0 ~ P(AB)/P(A) ~ 1, so that a conditional probability 
is a true probability. Using the definitions of A: males, B : 
married individuals, and C : Democrats in our example, with equal 
probability assignment as before, we find 

P(AB) 0.40IP(B A) =P(A) = 0. 48 = 0.833 

and 

I- _ P(AB) _ o.40 _
P(B A) - P(A) - 0. 52 - 0.769 

These conditional probabilities are not equal, but also are not 
very different, so that it is not surprising that the sample estimates 
of 0.810309 and 0.8, respectively, from the program VOTERS do not 
differ greatly. However, 

P(B!C) =P(B)) = o.66 =o 88P(C 0.75 . 
and 

P(BjC) =P~BC) = 0.14 = 0 56P C) 0.25 . 

The sample estimates of these conditional probabilities given by the 
program VOTERS are 0.881 and 0.571. These are reasonable estimates 
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of the corresponding conditional probabilities. It is clear that the 
conditional probability of an event (being married in this case) can 
be altered greatly by a conditioning event (Democrat or Republican in 
this case). 

The conditional probabilities of the points of S with respect 
to a fixed event A for which P(A) > 0 define a new probability as-
sigrunent to S. Clearly, if e. E:A, then P(e. IA)= P(e. )/P(A) < 1,

l. l. l. -

and if e. ¢.A, P(e. IA)= O. Hence,
l. l. 

P(ei) !1& 
E P(e. IA) = E P(e. IA) e .~A P(A) = P(A) = l1 1e.ES e.EA 

l. l. l. 

Thus we have 

0 ~ P(eilA) ~l for e. E s (2.5.1)
l. 

and 
E P(e. IA) = 1 (2.5.2)

1e.ES 
l. 

for a:n:y event A for which P(A) > O. This can be also thought of as 
an assigrunent of probabilities to the event A by itself [as if eij/ A, 
P(e. IA) = 0), consistent with the original assigrunent of probabilities

l. 
to S. It is o~en useful to consider a conditional probability assign-
ment to S with respect to a fixed set A. 

Let us recall the battery example in which we assumed the geo-
metric distribution, that is, P(i) = (1 - q)qi for i = O, 1, 2, •••• 
Let p = 1/2, so that P(i) = (l/2)i+l for i = 0, 1, 2, •••• Suppose 
we consider the conditioning event that the life length is less than 
x years. The probability that the life length is x or more years is 

CX> 

E 
i=x 

Hence the conditional probability of a life of i years given a life 
length less than x years is 

-- (l/2)i+lf(ilx) = P(illife length< x years) - - -
1 - (l/2)x 



2.5 Conditional Frequency and Probability 35 

Table 2.5.1 Probabilities for Life Lengths Less Than x Years 

Life length P{q P{i j2} P{ij4} P{ij8} 
0 0.5 0.666667 0.533333 0.501961 
1 0.25 0.333333 0.266667 0.250980 
2 0.125 0.133333 0.125490 
3 0.0625 0.066667 0.062745 
4 0.03125 0.031373 
5 0.015625 0.015686 
6 0.007813 0.007843 
7 0.003906 0.003922 

for i = 0, 1, 2, ••• , x - 1. Table 2.5.1 indicates how the proba-
bilities of the various life lengths are affected by knowledge of 
the fact that the life length is less than x years. 

If the maximum life length is very short, the conditional probabili-
ties differ markedly from those of the geometric distribution. If. 
the maximum life length is fairly long (as in the case x = 8), the 
conditional probabilities and the probabilities given by the geometric 
distribution are quite similar, indicating again that a model with an 
infinite simple space may be useful in describing real-world phenomena. 

The equality expressed in Definition 2.5.1 is often written in 
the form 

P(AB) = P(A)P(BjA) 

and referred to as the multiplication law. It also follows that 

P(ABC) = P(AB)P(CjAB) = P(A)P(BiA)P(CjAB) 

Similarly, it can be shown by mathematical induction that for any 

events A1 , A2 , ••• , ~· 

For example, suppose that an individual is asked to perform a task 
three times. Assume that the probability he succeeds increases with 
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the trial number. For example, let p1 = 1/4, p2 = 1/2, and p3 = 3/4 
be the probabilities of success on trials 1, 2, and 3, respectively. 
Let Si represent success on trial i and Fi represent failure on trial 
i. The probability of success on the first two trials is given by 
P(s1s 2 ) = P(S1 )P(s2 js1 ) = (1/4)(1/2) = 1/8. The probability of at 
least two successes in the three trials would be given by P((s1s 2 ) + 

F1s2s 3 + S1F2s 3 ) = P(S1s 2 ) + P(F1s 2s 3 ) + P(S1F2s 3 ) as these events 
are mutually disjoint. In turn we may write this expression as 

P(SlS2) + P(Fl)P(s2IF1)P(S3IF1S2) + P(Sl)P(F2ls1)P(S3IS1F2) = 1/8 + 
(3/4)(1/2)(3/4) + (1/4)(1/2)(3/4) = 1/2. 

As another example of conditional probability let us assume 
that the probability that a program runs correctly a~er n debugging 
efforts is given by n/(n + 1). The probability that the program 
runs correctly, of course, approaches 1 as the number of debugging 
efforts n becomes large. The probability that one trial is required 
is, of course, 1/2. The probability that two trials are required 
until success in the notation of the previous paragraph is P(F1s 2 ) = 
(1/2)(2/3) = 1/3. The probab_ility that three trials are required is 
P(F1F2s3) = (1/2)(1/3)(3/4) = 1/8. The probability of n required 
trials is given by 

P(F F • • ·F S ) = (1.)(1.) .. • (1.)(_n_) = ..,..---=n___,._
1 2 n-1 n 2 3 n n + 1 (n + 1) ! 

It seems reasonable that E:=l n/(n + l)! = 1, i.e., that the proba-
bility of a successful run at some trial is 1. This is, in fact, 
the case. Can you show that it is true? 

Problems 2.5 

1. Suppose that a fair die is tossed twice and the sum recorded. 
If the events (i, j), i = 1, 2, ••• , 6 and j = 1, 2, ••• , 6 
are equally likely, find 

(a) The probability the sum is 7. 
(b) The probability the sum is 7 given the sum is odd. 
(c) The probability the sum is 7 given the sum is odd but not 11. 
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2. Two selections are made from a standard bridge deck without 
replacement. Find the probability of 

(a) Two spades in the two draws. 
(b) Two cards of the same suit. 
(c) Two cards of the same denomination. 
(d) No spades in the two draws. 

3. Suppose a basketball player shoots three foul shots with prob-
ability of success on trial 1 equal to 1/4, on trial 2 equal to 
1/2, and on trial 3 equal to 3/4. Find the probability the 
player makes 0, 1, 2, or 3 shots in the three attempts. 

4. Suppose one of four similar appearing keys opens a lock. The 
keys are chosen successively until the correct one is found. 
If a key fails, it is put aside. What is the probability that 
1, 2, 3, or 4 trials are required? 

Consider the case of n keys, one of which opens a lock. 
What is the probability of 1, 2, ••• ,or n required trials 
until success? 

5. Suppose we have the situation described in Problem 2.4.2. Find 

(a) P(AiB) (c) P(BiA) 
(b) P(AiB) (d) P(BIAl 

6. Prove that for any two events A and B in a sample space S, 
P(AiB) + P(AiB) = 1, assuming P(B) > o. 

7. Given the geometric distribution with 

P(i) (1 - p)pi i = O, 1, 2, 

prove that 

P(i ~ (x + y)li ~ x) = P(i ~y) 

where x and y are nonnegative integers. Interpret this in terms 
of the length of life of a battery. 

8. Consider S = {l, 2, 3, ..• , 20}. Let A represent the set of 
prime numbers in S, B represent the set of odd numbers in S, 
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and C represent the set of nUlllbers evenly divisible by 3. 
AssUllling each integer is assigned probability 1/20, find 

(a) P(AIB) (c) P(AIC) 
(b) P(B jA) (d) P(BiC) 

9. Suppose that we make successive trials which result in success 
or failure and that the probability the first success occurs on 

or after the nth trial is l/n for n = 1, 2, 

(a) Find an expression for the probability that the first 
success occurs on trial n. 

(b) What is the conditional probability that the first 
success occurs on trial n given at least n trials are 
required? 

Exercises 2. 5 

1. Alter the program. VOTERS in lines 330 through 420 to print out 
the conditional frequencies of Democrat/married and Democrat/ 
unmarried, Democrat/male and Republican/male, and Democrat/female 
and Republican/female. Run the program. using N = 1000. What is 
the sum of the last two frequencies? Why? 

2. Expand the program. written for Exercise 2.4.3 to print out the 
conditional frequency of a sum of 7, the conditional frequency 
of a sum of 7 given an odd outcome, and the conditional frequency 
of a sum of 7 given an odd outcome not equal to 11. Compare with 
the probabilities in Problem 2.5.1. 

2.6 INDEPENDENT EVENTS 

An important idea in probability is that of independence. We shall 
again use the output of the program VOTERS to introduce this concept. 
If we consider again the outcomes male, married, or Democrat, we see 
that the conditional frequency of married individuals is considerably 
larger among Democrats than among Republicans. On the other hand, 
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the conditional frequency of males among Democrats is almost the 
same as for Republicans. Thus the conditional frequency of males 
among Democrats in the sample of 1000 (0.486) is almost the same as 
the frequency of males among all of the 1000 sampled individuals 
(0.485). Thus we have 

Frequency (males)= frequency{maleslDemocrat) 
: frequency{maleslRepublicans) 

In short the frequency of males does not seem to depend upon party 
preference. 

The probabilistic counterpart of the approximate equalities 
given above for the events A=male and C=Republican would be 

P(A) = P(AIC) = P(AIC) 

In fact, if we compute these probabilities using equal probability 
assignment as before, we find 

P(A!C) = P~AC) = 0.36 = O 48P C) 0.75 . 

P(AIC) = PfAC) = 0.12 = 0 48P C) 0.25 . 

and P(A) = o.48. The three probabilities are equal. On the other 
hand, we have previously found P(Bjc) = o.88, P(Bjc) = 0.56, and 
P(B) = 0.80. The conditional probabilities are not equal in this 
case. Thus we are led to the following provisional: 

DEFINITION 2.6.1'. In a sample space S, two events A and Bare 
said to be independent if P(AIB) = P(A). 

Notice that this implies P(AB)/P(B) = P(A) or P(AB) = P(A)P(B), 
where we have tacitly assumed P(B) > O. Conversely, for any event 
B for which P(B) > O, P(AB) = P(A)P(B) implies P(AIB) = P(A). We 
would like our definition of independence to include the case 
P(B) = 0 and to assert that A is independent of B when P(B) = o. 
The equation P(A)P(B) = P(AB) holds if P(B) = O. The left side is 
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clearly O, and as 0 ~ P(AB) ~ P(AB) + P(AB) + P(AB) = P(B) = 0, the 
right side is 0 also. Hence the generally accepted definition of 
independence is 

DEFINITION 2.6.1. In a sample space S, two events A and B are 
independent if P(AB) = P(A)P(B). 

If P(A) > O, P(B) > O, and A and'B are independent, then 
P(AB)/P(A) = P(BjA) = P(B) and P(AB)/P(B) = P(AjB) = P(A). The 
conditional probability of B given A does not depend on A, and the 
conditional probability of A does not depend on B. Hence the defi-
nition treats A and B symmetrically. 

To illustrate this idea once more let us consider the following 
example. Suppose we consider two baseball players, who we number 1 

and 2. Let the event labeled Ai mean that batter i gets a hit and 
B. mean that there are men on base when he is credited with an "at 

J. 
bat. 11 Suppose that both men are eredited with 450 at bats during 
the year with the following results 

Batter I Batter 2 
A1 A2 

50 100 150 60 90 150B1 B2 
100 200 300 90 210 300 

150 300 450 150 300 450 

If we consider these to be two theoretical outcome spaces and assign 
equal probability to each at bat, we obtain 

P(A ) = P(A ) = -1 P(B ) = P(B ) = -1 
1 2 3 1 2 3 

However, P(A1 jB1 ) = P(A1B1 )/P(B1 ) = (1/9)/(1/3) = 1/3, but P(A2 1B2) = 
P(A2B2)/P(B2) = (2/15)/(1/3) = 2/5. The events A1 and B1 are inde-
pendent [note P(A1 )P(B1 ) = 1/9 = P(A1B1 )], while the events A2 and B2 
are not. Apparently batter 2 does better with men on base. 

The idea of independence for three events A, B, and C is 
contained in the following: 
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DEFINITION 2.6.2 In a sample space S, three events A, B, and C are 
said to be mutually independent if 

P(AB) P(A)P(B) 
P(AC) P(A)P(C) 
P(BC) = P(B)P(C) 

and 
P(ABC) P(A)P(B)P(C) 

It is possible for the first three of these conditions to hold but 
the last to fail. This would mean that A and B, A and C, and B and 
C are pairwise independent but not mutually independent. For events 
~· A2 , ••• ,Ar to be mutually independent, we require that the prob-
ability of the intersection of any combination of these events equal 
the product of the probabilities of the events in the intersection. 
The most useful of these equalities is 

P(A A ···A)=P(A )P(A )···P(A)1 2 r 1 2 r 

Consider a batter who gets a hit with probability 1/3 (i.e., his 
batting average is 0.333). If he is charged with three at bats the 
following eight outcomes can occur: HHH, HHO, HOH, OHH, HOO, OHO, 
OOH, and 000, where H indicates a hit and 0, no hit with the position 
of the letter indicating the first, second, or third at bat. If the 
trials are considered independent, we obtain 

P(HHH) = (1.)3 = J:... 
3 27 

P(HHO) P(HOH) = P(OHH) (.?.)(1.)2 =-2 
3 3 27 

4P(OOH) P(OHO) = P(HOO) = (.?_)2(1.) =-3 3 27 

P(OOO) = (~) 3 =-27 
8 

Hence the probability of x hits in the three trials is given by 
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P(x)x 

0 8/27 
1 12/27 
2 6/27 

1/273 

where E3 0 P(x) = 1. This is an example of an important distributionx= 
in probability, called the binomial distribution, which will be de-
scribed in detail in the next chapter. 

Problems 2.6 

1. Assume that in two-child families, male and female births occur 
independently with probability 1/2. What is the probability 
such a family has 

(a) Two male children? 
(b) Two children of the same sex? 
(c) At least one male child? 

2. Assume that an outcome space S describes the blood types of 
individuals with the types O, A, B, and AB occurring with 
probabilities 0.55, 0.25, 0.15, and 0.05, respectively. 
Assuming independence find the following probabilities for 
two randomly selected individuals. 

(a) The individuals have blood type o. 
(b) The individuals have the same blood type. 
(c) Neither has blood type AB. 
(d) The individuals have different blood types. 

3. A machine performs an operation (sizy- multiplication) correctly, 
with probability 0.9. The machine performs three successive 
multiplications. Assuming independence, find the probability 
of 

(a) Three correct multiplications 
(b) Exactly one failure in the three multiplications 
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(c) No correct multiplications 
(d) Exactly one success in the three multiplications 

What is the sum of the probabilities in (a) through (d)? Why? 

4. In a triangle test one individual is asked to taste three simi-
lar appearing items and to choose the one with a different taste 
than the other two. One of the three items has a different 
composition from the other two. It may contain a preservative, 
for example, but the other two items do not. Assume that three 
individuals make their choices, which we assume to be independ-
ent, but the preservative cannot be detected by taste. 

(a) What is the probability an individual correctly identifies 
the item with the preservative by chance? 

(b) What is the probability that at least two of the three 
individuals identify the item with the preservative? 

(c) If five individuals make a selection, what is the proba-
bility at least one will select correctly? 

5. The statement LET T = l + INT(lO*RND) selects an integer from 
1 to 10 with equal probability. If two integers are selected 
independently, what is the probability that 

(a) The integers will both be odd? 
(b) The integers will both be even? 
(c) Of the two integers, one will be odd, and the other even? 
(d) The two integers will be the same? 
(e) The second integer will be larger than the first? 

6. If P(A) > 0 and P(A) > O, show that A and A cannot be indepen-
dent. Note the distinction between disjoint events and inde-
pendent events. 

7. Prove that if A is independent of B, then A is independent of 
B. Use the fact that P(AB) = P(A + B) and the definition of 
independence. 
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8. Let a sample space S consist of binary sequences as indicated: 
S = {100, 010, 001, 111}. A sequence is selected at random. 
The following events are defined: 

A - the first digit in the sequence is 1. 
B - the second digit in the sequence is 1. 
C - the third digit in the sequence is 1. 

Show that A, B, and C are pairwise independent but not mutually 
independent. 

9. (a) Let three independent trials of an experiment be made in 
which the probability of success is 2/3. What is the 
probability of three successes? 

(b) Let five independent trials of an experiment be made in 
which the probability of a success is 4/5. What is the 
probability of five successes? 

(c) Let n independent trials be made with success probability 
(n - l)/n. What is the limiting value of the probability 
of n successes as n + ~? 

10. Consider tossing a "fair" coin until a head occurs. The outcome 
space S = {l, 2, 3, ••• }. Assuming the outcomes of the tosses 
to be independent, find the probability of 

(a) One required toss. 
(b) Two required tosses. 
(c) x required tosses. 
(d) Assume the probability the coin shows heads is 0 < p < 1 

with q = 1 - p, find the probability of x required tosses. 
Show that these probabilities sum to 1. 

Exercises 2. 6 

1. Run the program VOTERS as altered in Exercise 2.5.1. What are 
the frequencies of Democrat, Democrat/male, and Democrat/female? 
Compare these frequencies with the corresponding probabilities 
implied by Fig. 2.4.la. 
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2. Write a program which selects pairs of integers randomly from 
the set of integers from 0 to 9. Use a loop so that 1000 pairs 
are selected. Compute the frequency of the following outcomes: 

(a) The first integer of the pair is odd. 
(b) The second integer of the pair is odd. 
(c) Both integers in the pair are odd. 

Do the outcomes described by items (a) and (b) appear to be 
independent? 

3. Write a program which simulates the number of trials required to 
obtain a head on the toss of a fair coin. Repeat this simulation 
1000 times and compare the frequency of i required tosses with the 
probabilities in Problem 2.6.10. Calculate the average number of 
tosses required. The program must allow only a finite number of 
tosses, of course. Let the maximum number be 20. 

4. Write a program as in Exercise 2.6.3 for a coin which shows heads 
with probability p. Run the program using p = 1/3. What is the 
average number of tosses required. Can you guess the theoretical 
average as a function of p? 
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3.1 DISCRETE RANDOM VARIABLES 

It is often the case that we naturally associate a number with each 
outcome of a random experiment. This idea was illustrated in our 
examples of Sec. 2.1.1. The outcomes of the trip to the drive-in 
bank were naturally identified with the number of cars in line at 
the bank, and the outcomes of the battery purchase were identified 
by the number of full years the battery functioned. It was not as 
traditional to assign numerical values to the outcome set {male, 
female}, but it is clearly equivalent to code a male birth as 1 and 
a female birth as 2 and speak of the frequency of the outcome 1 as 
the frequency of a male birth. Such an assignment of a number to 
each outcome of a theoretical sample space S is called a random 
variable. In this chapter we will again consider discrete sample 
spaces only. Formally we give the definition of a random variable 
as 

DEFINITION 3.l.l. A random variable X is a function which assigns 
to every point e., in a sample space S, a numerical value X(e.).

1 1 

A random variable is o~en referred to by the letter X alone, but 
it is important to remember that X, contrary to notation often 

46 
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used in mathematics, is a real-valued function defined on S. Much 
of formal probability theory is concerned with the properties of 
random variables. 

As an example, let us consider the theoretical sample space 
associated with the "at bats" in three trials of a batter who gets 
a hit 1/3 of the time. Using the notation of Sec. 2.6, the sample 
space describing the outcome of the three at bats is 

S = {HHH, HHO, HOH, OHH, HOO, OHO, 000} 

The random variable X giving the number of hits in the three trials 
has values X(HHH) = 3, X(HHO) = X(HOH) = X(OHH) = 2, X(HOO) = X(OHO) 
= X(OOH) = 1, and X(OOO) = O. Notice that by defining Y to be the 
number of outs made in the three at bats we would obtain Y(HHH) = O, 
Y(HHO) = 1, etc., and in general, Y(e.) = 3 - X(e.) for each e. E:s. 

i i i 

Hence more than one random variable may be defined on the same sample 
space S, so that one cannot speak of the random variable associated 
with S. As a second example, consider the 95 Justices of the Supreme 
Court who have completed their service on the bench through 1976 as 
a theoretical outcome space. A random variable, sa;y L, assigns to 
each Justice his length of service on the court in years. For 
example, the first Chief Justice would be assigned the value 5, as 
he served for 5 years. 

Recalling the assignment of probabilities to the sample space 
associated with three at bats of the 0.333 hitter, we have seen that 
an assignment of probabilities to S implies an assignment of proba-
bilities to the values of the random variable X defined on S. Under 
the assumption of independence of the three at bats, the probabilities 
of x hits for x = 0, 1, 2, 3 were found to be 8/27, 12/27, 6/27, and 
1/27, respectively. In order to find the probability assigned to any 

x we use the rule P(X = x) = E P(e.) for those e. for which X(e.) = x. 
i i i 

The function P(X = x), often written as f(x), gives the proba-
bility the random variable X achieves the value x. From the proper-
ties of the probabilities assigned to the points of S, we see that 
Eall xf(x) = 1, as is easily checked in the baseball example. 
Formally, we state the following. 



48 Properties of Discrete Random Variables 

DEFINITION 3.1.2. The probability function f(x) of a random variable 
X gives P(X = x) for all values x which the random variable X may 

attain. Such a probability function satisfies 

1. 0 < f(x) ~ 1 for all x. 
2. Lall xf(x) = 1. 

The probability function for the random variable L is given below: 

1 f(l) 1 f(l) 1 f(l) 1 f(l) 

1 3/95 9 3/95 18 3/95 28 3/95 
2 2/95 10 4/95 19 3/95 29 1/95 
3 2/95 11 2/95 20 4/95 30 1/95 
4 5/95 12 1/95 21 2/95 31 1/95 
5 8/95 13 3/95 22 2/95 32 2/95 
6 5/95 14 3/95 23 3/95 33 1/95 
7 4/95 15 5/95 26 3/95 34 4/95 
8 4/95 16 6/95 27 1/95 37 1/95 

We see for example that one Justice, William O. Douglas, served for 
37 years, while a proportion of 20/95 = 0.210 served 5 or fewer 
years. Simple addition yields Lall 1f(l) = 1 

Let us consider random variables associated with the countably 
infinite sample space S = {O, 1, 2, ... }. The geometric distribu-
tion, as given in Sec. 2.3, defines such a random variable with 
probability :function f(k) = (1 - q)qk fork= O, 1, 2, ••.• There 
is a different probability function defined for each value of q, 
0 < q < 1, with the class of distributions referred to as the geo-
metric family. We can obtain another family by using the fact that 
for any t > 0, 

t co tk 
e = L I

k=O k. 

so that 

co -t k 
l= E ~ 

k=O k. 
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If t > O, each term in this last infinite series is positive, and it 
is possible to define a probability function for a random variable 
on S by f(k) = e-ttk/k!, k = O, 1, 2, .•• ,for any value oft> O. 
Again there is a family of distributions, one for each value of 
t > O. Finally, we might consider a random variable on S for which 
X(e.) = 1 if e. is an even integer and X(e.) = 0 if e. is an odd 

1 1 1 1 
integer. This is an example in which S is infinite, but X takes on 
only two values. If S is assigned geometric probabilities with 
q = 1/2, then the probability function for this random variable is 
given by f(l) = 2/3 and f(O) = 1/3. 

We consider lastly one additional function which is used to 
describe a random variable. 

DEFINITION 3.1.3. The cumulative distribution function of the random 
variable X is given by 

F(x) = E f(t) 
t~x 

where f(x) is the probability function for X. 

In words, F(x) is the probability that the random variable X has a 
value of x or less. For discrete random variables the cumulative 
distribution function has a graph given by a step function which 
jumps at x by the amount f(x). For the random variable X giving the 
number of hits in the three trials above, we have 

F(x) = 0 for -oo < x < 0 

8F(x) =- for 0 < x < 127 
20F(x) =- for l~x < 227 
26F(x) =- for 2~x< 327 

and 
F(x) = 1 for 3~x 
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0•of0.5 
----0 

I I 

0 2 3 

Fig. 3.1.1 

The graph of this function is given in Fig. 3.1.1. 
It is apparent that the cumulative distribution function of a 

random variable X satisfies the following properties: 

1. F(x1 ) ~ F(x2 ) for x1 < x2 
2. lim F(x) = 1.x + Q) 

3. lim F(x) = O. x + -"' 

The first property states that for x1 < x2 the probability of X 
achieving a value of x1 or less is not greater than the probability 
of X achieving a value of x2 or less. The reader is invited to make 
similar probabilistic interpretations for the other two properties. 
We turn next to properties of discrete random variables. 

Problems 3.1 

1. Assume a fair die has one face numbered 1, two faces numbered 
2, and three faces numbered 3. Find the probability function 
f(x) and cumulative distribution function F(x) for the random 
variable X which gives the number observed on the toss of such 
a die. 

2. Suppose a lot of 10 items has three defectives. Three items 
are chosen randomly with replacement of the item before another 
selection. Find the probability function f(x) for the random 
variable X giving the number of defectives in the three 
selections. 
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3, Answer Problem 3.1.2 if the items drawn are not replaced after 
each selection. 

4. Suppose that S consists of all half-open intervals on (0, 1) of 
form [(k - 1)/1000, k/1000) fork= 1, 2, ••• , 1000. Label the 
kth interval ask and define f(k) = 1/1000 fork= 1, 2, ••• , 
1000. 

(a) 

(b) 

What probability does f(k) assign to the intervals 
with union (0, 0.230)? [O, 0.500)? 
What probability does f(k) assign to the intervals 
with union (0, 0.250)? (0.250, 0.500)? (0.75, 1.00)? 

5, Assume that a girl has written letters to four boyfriends and 
has addressed four envelopes with their names. In haste she 
places the letters into the envelopes in random order. Consider 
the addressed envelopes to be in positions 1, 2, 3, 4, and let 
the order of the letters placed into the envelopes be given by 
a listing of the letters A, B, C, D. For example, ACBD means 
that boy 2 gets the letter for 3 and boy 3, the letter for 2, 
while the others receive the correct letters. 

(a) 
(b) 

How many listings are possible? 
Let X be a random variable giving the number of boys who 
receive their letter. Find f(x), the probability function 
for X. 

6. Suppose a fair coin is tossed until a head appears. 

(a) Find the sample space S and a probability function defin-
ing the random variable X which gives the number of tosses 
until the first head. 

(b) Answer part (a) for the random variable Y giving the number 
of tosses until a 6 occurs on repeated tosses of a fair die. 

7. An employee is twice as likely to be absent on Monday and Friday 
as on the other 3 days of a 5-day work week. Let f(x), x = 1, 
2, 3, 4, 5, give the probability of absence on Monday through 
Friday. Find and graph f(x) and F(x). 
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00 2 2 28. It is known that Ek=l l/k = n /6. Find c so that f(k) = c/k 
is a probability function on {l, 2, 3, ••• }. 

9. Suppose f(k)/f(k - 1) = l/k fork= 2, 3, ••• ,and that f(k) 
is a probability function on the positive integers. 

(a) Find f(l). 
(b) Find f(k) for k ~ 1. 

10. For what value or values of x can a probability function satis.fy 
f(k) = kxk for all positive integers k. 

Exercises 3.1 

1. Write a program to simulate the outcome of tossing the die 
described in Problem 3.1.1. Find the frequency of a 1, 2, or 
a 3 in 1000 repetitions. Compare these frequencies with the 
probabilities calculated in Problem 3.1.1. 

2. Write a program which simulates the situation described in 
Problem 3.1.5 by programming a method to produce a random order-
ing of the integers 1, 2, 3, 4. Compare the ordering with the 
natural ordering 1 2 3 4, and count the number of matches. Run 
the simulation 1000 times and find the frequency of 1, 2, 3, or 
4 matches. Compare these frequencies with the probabilities 
calculated in Problem 3.i.5. 

3.2 THE MOMENTS OF A DISCRETE RANDOM VARIABLE 

In this section we wish to consider some important parameters of a 
discrete random variable with distribution given by the probability 
function f(x). The parameters serve to describe important character-
istics of the random variable x. The first moment of a random vari-
able, called the expected value of X, written E(X), gives information 
about an average value of the random variable. 

https://satis.fy
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DEFINITION 3.2.1. The expected value of a discrete random variable 
with probability f'unction f(x) is given by 

E(X) = I: xf(x), if I: jxjf(x) converges 
all x all x 

For example the expected number of hits in three at bats by the 
batter described in Sec. 2.6 would be given by 

3 
I: xf(x) 

x=O 

Similarly, we find E(L) 14.7 in the Supreme Court Justice example. 
As another example, let a random variable X have probability function 
f(x) = l/n for x = 1, 2, ••• , n. This is referred to as the discrete 

uniform random variable. We find 

~ ~ = n(n + 1) =E(X) = 
x=l n 2n 

The expected value is often denoted byµ= E(X). 
In order to indicate that this definition of E(X) is not arbi-

trary, let us consider the random experiment described in the program 
CARS. The program simulates 1000 visits to a drive-in bank, assuming 
the number of cars in line is equally likely to be any integer from 
1 to 10. The program prints the average number of cars in line in 
the 1000 trials, which is given by 

ln1 + 2n2 + 3n3 + ·•· + 10n10Total number of cars in line = ~=-~~~~~~~~~~~~-
1000 1000 

lfl + 2f2 + 3f3 + ••• + 10f10 

Here n. is the number of times that i cars are observed in line in 
l. 

the 1000 trials and f. = n./1000 is the frequency of i cars in line. 
l. l. 

The last line states that the average number of cars is a weighted 
average of the values 1 through 10, where the weights are the fre-
quencies of these numbers. As the theoretical counterpart of fre-
quency is probability, it is reasonable to define E(X) as a weighted 
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CARSl 

5 FOR R = 1 TO 10 
10 FOR I = 1 TO 10 
20 LET FC I >=0 
30 l\JEXT I 
40 LE1 N = 1000 
50 FOR I • 1 TO N 
60 LE'I T • 1 + INT< lOi<R~D> 
70 LET F<'I'>=F<1>+1 
80 ~EXT I 
100 LET A = 0 
110 LE1 B =O 
120 FOR I = 1 TO 10 
1 30 L ET F< I >= FC I )1)1 
140 L. FT B • B+ 1* F'C I > 
160 LET A = A+ FC I > 
170 NEXT I 
200 PRIN1' "AVERAGF,a,.J B 
210 NEXT R 
220 :END 

* 
RU~ 

AVERAGE= 50471 
AVERAGE:a So 487 
AVERAGE- 5• 543 
AVERAGE= 5o 563 
AVERAGE• 5• 517 
AVERAGE= 5o 542 
AVERAGE= 5o ll07 
AVERAGE= 5o 475 
AVERAGF.a 5o 509 
AVERAGE:a 5• 57 5 

* 
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average of the values that the random variable X achieves, where the 
weights are the probabilities assigned to these values by f(x). This 
is the definition of E(X) given in the preceding paragraph. Ten runs 
of the simulation CARS gave the following averages: 5.471, 5.487, 
5.543, 5.563, 5.517, 5.542, 5.407, 5.475, 5.509, and 5.575. These 
approximations to the theoretical expectation given in the paragraph 
above for n = 10, that is (10 + 1)/2 = 5.5. The output of CARSl 
shows these approximations. 

Let us consider the geometric distribution defined by the 
probability function 

.f(x) = pqx x = O, 1, 2, ••• 

for 0 < q < 1 and p = 1 - q. In this case we compute 

00 00 

E(X) = E xpqx = pq E xqx-l 
x=O x=l 

pq ..£_ (-±._J = N = _q
dql-qj 2 pp 

We have used the fact that 

..£. (-1-) = ..£. (1 + q + q2 + ••• ) = l + 2q + 3q2 + •••dq 1-q dq 

By a slight alteration in the program GEOM we can compute the average 
life length of 1000 batteries assuming the geometric distribution. 
The averages obtained in 10 runs using q = 0.5 were 0.948, 0.949, 
0.978, 1.027, 0.98, l.027, 0.956, 0.99, 1.0008, and 1.047. The 
theoretical expectation is, of course, 1 in this case. We shall 
later return to the statistical question of how good such an approx-
imation of µ by a calculated average may be. 

It is quite natural to define the expected value of a function 
of a random variable X, say g(X), by 

DEFINITION 3.2.2. The expected value of a function g{X) of discrete 
random variable with probability function f(x) is given by 
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E(g(X)) E g(x)f(x) 
all x 

if the latter converges absolutely. 

There are two sets of functions of a random variable which have 
particularly important expected values. These are ..J!-, k = 1, 2, 3, 
••• , and (X - µ)k, k = 1, 2, .... The parameters 

x k f(x) 

and 
~ = E(X - µ)k = E (x - µ)k f(x)

all x 

are called the kth moments and kth central moments, respectively, of 
the random variable X if they exist. It is clear that~= µ = E(X) 
and 

µ1 = E(X - µ) = E xf(x) - E µf(x) = µ - µ 0 
all x all x 

when E(X) exists. While we shall not continue to repeat this last 
proviso, it is not an empty one in the case of a random variable 
with an infinite n'l.llllber of values. For example, if f(x) = l/x(x + 1) 
for x = 1, 2, ••• , it can be shown that 1:00 1 f(x) = 1, but in attempt-

+ 00 x= 
ting to compute E(X), we obtain E 1 l/(x + 1) which diverges. Onx= 
the other hand, the expectation of a real-valued function of a random 
variable with a finite n'l.llllber of values will always exist. 

The importance of the moments of a random variable X lies in 
the information Which these parameters convey about the distribution 
of the random variable. The expectation E(X) clearly contains infor-
mation about an average value of a random variable. The second 
central moment µ2 = E(X - µ) 2 conveys information about the varia-
bility of a random variable about µ. 
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DEFINITION 3.2.3. The variance of a random variable X is µ2 = 

E(X - µ) 2, the second central moment of X, o~en denoted as cr2 or 
Var(X). 

Suppose we assume the error X in prediction of the size of a crowd 
(actual-predicted) is equally likely to achieve any of the values 
-k, -k + 1, .•. , -1, O, 1, 2, ... , k. It is apparent that E(X) = O, 
whatever the value of k. On the other hand, it seems clear that the 
variation of this random variable will be larger for larger values 
of k, the assumed maximum absolute error. This is reflected in the 
following computation of the variance: 

2 1 k 2j2 = k(k + 1)cr2 = E(X - µ) 2 E(X ) = 2k + l E 3j=l 

which clearly increases with k. It may appear that the choice of 
(X - µ) 2 is quite arbitrary and that Ix - µI or some other increasing 
function of IX - µI would be equally appropriate. However, the vari-
ance has proven to be tractable mathematically and to be useful in 
applications. 

Let us consider three random variables ~· x2. x3 defined on 
the integers -k, -k + 1, ••. , -1, O, 1, 2, ••• , k. Let these be 
defined by the probability functions 

1
fl (x) = 2k + 1 

( ) _ lxl 
f2 x - k(k + 1) 

f (x) = (k + 1) - lxl 
3 (k + 1)2 

on the specified set of integers. Graphs of these probability 
functions are given below in the case k = 2. 
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1/3 1/3 1/3 
1/5 1/5 

21 2/91/6 1/6 
II 1/9 

-2 -I 0 I 2 -2 -I 0 2 -2 -I 0 2 
f1( x) f2 (x) f3(x) 

The variance of x1 has been found to be k(k + 1)/3 previously. It 
would appear that the variance of x2 would exceed the variance of 
x1 , while the variance of x3 would be less, for the same value of k. 
Calculations yield 

k x3cl = E(X22) 2 E k{k 
2 
+ ll 

x2 x=l k(k + 1) 

k 22 (k + 1 - x)x = k(k + 2)
x E(X32) = 2 ECJ 

3 x=l (k + 1)2 6 

It is easy to check that for k ~ 1, 

k(k + 2) < k(k + 1) < k(k + 1)
6 3 2 

or 

Thus the variance reflects the relative spread of the values of a 
random variable with respect to µ. Greater probability assigned to 
large deviations from µ will tend to increase the variance. While 
other moments of a random variable X can be important , the expecta-
tion and variance of X are the most important in applications, so 
we shall not pursue the properties of the higher-order moments here. 

We now discuss some properties of the expectation operator 
which are implied in Definition 3.2.2. We state these properties 
in the form of a theorem, leaving most of the proofs as exercises. 



3.2 Moments of a Discrete Random Variable 59 

THEOREM 3.2.1. If X is a discrete random variable defined on a 
sample space S, then if E(g(X)) and E((h(X)) exist, it follows that 

1. E(kg(X)) = kE(g(X)) for any constant k. 

2. E(g(X) + h(X)) = E(g(X)) + E(h(X)). 

COROLLARY 1. For random variables x1 , x2 , ... ,~defined on a 

sample space S, for which E(X.) exist, i = 1, 2, ... , k,
J. 

= E(X.)
i=l J. i=l J. 

E[ ~ x.) ~ 

Proof: This follows by induction using part 2 of Theorem 3.2.1. 

COROLLARY 2. For any constant k, E(k) = k. 

Proof: 

E(k) E kf(x) = k E f(x) = k 
all x all x 

COROLLARY 3. For any constant k, Var(k) O. 

Proof: 

2 2 2Var(k) E(X - k) = E(k - k) = E(O) = 0 

COROLLARY 4. Var(kX) k2var(X). 

COROLLARY 5. Var(X) E(X2 ) - µ2 , forµ= E(X). 

The last expression is sometimes helpful in computing the variance 

of a random variable. For example, if f(x) = l/n for x = 1, 2, ... , 

n, we have seen that E(X) = (n + 1)/2, and we find 
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x2~ = (n + 1)(2n + 1) 
x=l n 6 

Hence 

Var(X) 

2n - 1=12 
To conclude this section we consider an important expectation 

associated with a discrete random variable X. 

DEFINITION 3.2.4. The moment generating function (mgf) of a random 
variable X is defined by E(eXt) = ~(t) when this expectation exists. 

Note that the mgf is a function of the real variable t. To see that 
the name is appropriate, consider derivatives of ~(t) at t = O. 

m 1 (t) E(XeXt ) and hence m'(O) = E(X).
2 Xt 2m"(t) E(X e ) and hence m"(o) = E(X ). 

In general, m(k) (0) = E(Xk), that is, the kth derivative of the 
mgf at t = 0 is the kth moment of X. To obtain these derivatives, 
we have assumed that the operations expectation and differentiation 
could be interchanged and that the required derivatives actually 
exist. This will be true for the cases in which the mgf is used in 
this text. 

Consider the geometric random variable with f(k) = pqk, k O, 
1, 2, ••• ,where p = 1,- q. 

00 
t k p~(t) = I: p(qe ) = jqetl < 1 

k=O 1 - qet 

0 pgem'x(O) = ,9. = E(X)0 2 p(1 - qe ) 
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agreeing with the previous result. Moreover, we find 

~(O) = q(l ; q) = E(X2 ) 
p 

Thus the variance of the geometric random variable is given by 

2q(l + q) - .9.._ = _q_
2 2 2 p p p 

We note here two properties of the moment generating function 
in the following theorem. 

THEOREM 3.2.2. 

1. M(a+X)(t) = eatMx(t) for any constant a. 
2. M(kX)(t) =~(kt) for any constant k. 

We prove part 2 and leave part 1 as an exercise. 

Proof of part 2: 

M(kX)(t) = E(e(kt)X) = Mx(kt) 

We will make use of these properties of the mgf in Chap. 5. 

Problems 3.2 

1. Consider the fair die with one face numbered 1, two faces 
numbered 2, and three faces numbered 3. Let X be a random 
variable representing the outcome of a toss of such a die. 
Find E(X) and Var(X). 

2. Find E(X) for Problems 3.1.2 and 3.1.3. 
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3, Find the expected number of boys who receive their own letter 
in Problem 3.1.5. 

4. Suppose f(x) = kx for x =1, 2, ..• , N is a probability function 
for a random variable X. 

(a) Find k, E(X). 
(b) Find Var(X). 

5. Suppose that visits are made to the drive-in bank with the dis-
tribution of the number of cars in line given by f(x) = 1/10, 
x = 1, 2, .•• , 10. 

(a) What is the variance of the number of cars 
(b) What is the expected total number of cars 

two visits and in k visits? 

6. Let a fair die be tossed until a head appears. 
expected number of tosses? 

in line? 
in line in 

What is the 

7. Let f(x) = l/(e - l)x! for x = 1, 2, ••. be the probability 
function for a random variable X. Find E(X). 

8. Let f(x) = 6/(xir)2 for x = 1, 2, .•• be the probability function 
for a random variable X. What can be said about E(X) and Var(X)? 

9. Prove that if X is a discrete random variable defined on a 
sample space S, then if E(g(X)) and E(h(X)) exist, 

(a) E(kg(X)) = kE(g(X)) for a constant k. 
(b) E(g(X) + h(X)) = E(g(X)) + E(h(X)). 

10. Using Theorem 3.2.1 prove that 

(a) Var(X) = E(X2 ) - E2(x). 
(b) Var(kX) = k2var(X) for a constant k. 

11. Assume that Var(X) exists for a random variable X. 

(a) Prove that Var(-X) = Var(X). 
(b) Prove that Var(X) ~ O. 

12. Show by example that in general, E(g(X)) f g{E(X)) for a 
function g. 
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13. Assume that E(X) and E(Y) exist. By considering E(X + tY) 2 

show that E2(XY) ~ E(X2 )E(Y2 ), assuming these expectations 
exist. 

14. The covariance of two random variables X and Y is defined as 
Cov(X, Y) = E((X - !Jx)(Y - µy)). 

(a) Prove Cov(X, Y) = E(XY) - E(X)E(Y). 
(b) Prove that if Cov(X, Y) O, then Var(X + Y) = Var(X) + 

Var(Y). 

15. A fair coin is tossed until head appears. Let X represent the 
number of tosses required. Find Ir]c(t) and use it to find E(X). 

16. (a) Find the moment generating function of the discrete uniform 
distribution, that is f(x) = l/n, k = 1, 2, .•. , n. 

(b) Use the result in part (a) to find the expected value and 
variance of the number showing on the toss of a fair die. 

17. Prove part 1 of Theorem 3.2.2. 

18. If X is a random variable with a moment generating function 
Ir]c(t), show that m(O) = 1. 

-a(l-et )19. Suppose a random variable X has ~(t) = a > O.e ' 
Find E(X) and Var(X). 

Exercises 3.2 

1. Write a program to simulate the selection of an observation from 
the distribution described by the probability function 

f(x) = l19 for x = 1, 2, ••• , 19 

Find the average of 1000 selections and compare this with the 
theoretical value. 

2. Write a program to simulate the tossing of a coin until a head 
occurs. Find the average number of tosses required in 1000 
such trials. Compare this average with the expectation found 
in Problem 3.2.5. 
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3.3 THE BINOMIAL RANDOM VARIABLE 

Let us consider the arrivals of flights of Omega Airlines at O'Hara 
Airport. An arrival is considered to be on time if the plane arrives 
at its designated gate within 10 min. of its scheduled time. Suppose 
that experience has shown that three of four flights arrive on time. 
On a given weekday 12 Omega flights are scheduled to arrive at O'Hara. 
What can be said about the likelihood of 0, 1, 2, •.. , 12 of the 
flights arriving on time. We use the program FLIGHTS to simulate the 
flight arrivals on 1000 weekdays. The program prints out the frequency 
of O, 1, 2, ••• ,Non-time flights with the theoretical population 
of on-time flights equal to p for the 1000 days. The program has 
been run for N = 12 and p 0.75. Although it is perhaps not sur-
prising, the frequency of on-time arrivals is largest for nine 
arrivals (0.263 in the sample run). Additionally, the frequency of 
six or more on-time arrivals is quite large (0.985 in the example). 
Apparently the number of days with less than six on-time arrivals is 
small under the assumptions made here. 

The situation described above is a simulation of a probability 
model called the binomial trials model. We say that n trials are 
binomial trials if 

1. Each trial results either in a success or a failure. 
2. The probability of success at any trial is the constant p, 

and hence of failure is 1 - p. 
3. The trials are independent. 

The sample space for this theoretical experiment is all sequences of 
S's and F's of length n. For example, in the case of n = 3, the 
sequences are FFF, SFF, FSF, FFS, SSF, SFS, FSS, and SSS. The bi-
nomial random variable B which counts the number of successes in 
the three trials has values 

B(FFF) = 0, B(SFF) 1, ... ' B(SSS) = 3 

Due to the independence of the trials, the probability of any out-
come is a product of p's and q's in which the number of p's is equal 
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FLIGHTS 

10 DIM F< 50> 
20 FOR I = 1 TO 50 
30 LET F< I>= 0 
"40 NEXT I 
50 READ '.\!, P 
60 FOR J = 1 TO 1000 
7 0 LET X: = 0 
80 FOR I = 1 TO N 
90 LET T = RND 
100 IF T > P 1HEN 120 
11 0 LET X = X + 1 
120 NEXT I 
1 30 LET Y = X + 1 
140 LET FCY>=F<Y>+l 
150 NEXT J 
160 PRINT "NlM O'.\J TIN!E", "FREQUENCY" 
170 FOR I • 1 TO '.\J+l 
180 LET A= A+<I- 1'* FC I> /1000 
190 PRINT I-1,FCI>/1000 
200 NEXT I 
210 PRINT 
220 PRINT "AVERAGE= "JA 
230 DATA 12, .75 
240 END 

* Rl.N 
Nl.M ON lIME FREQUE'\JCY 

0 0 
1 0 
2 0 
3 0.001 
4 0·003 
5 0.011 
6 O• 038 
7 0·097 
8 o.1s9 
9 0·263 
10 o. 238 
11 0.126 
12 0•034 

AVERAGE= 9·03 

* 
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to the number of S's and the number of q's is equal to the number of 
F's in the particular sequence. Hence for n = 3, 

P(FFF) = q3 

P(SFF) P(FSF) P(FFS) pq 2 

P(SSF) = P(SFS) P(SSF) = p 2 q 
P(SSS) = p3 

Thus in this case the probability function for B is given by f(0;3,p) = 
3 2 2 3 q , f(l;3,p) 3Pq , f(2;3,p) = 3P q, and f(3;3,p) = p • Here f(x;n,p) 

represents the probability of x successes in n trials with success 
probability p at each trial. 

In the general case of n trials, we seek the probability function 
for the random variable B which counts the number of successes in n 
independent trials. We consider all sequences of length n of S's 
and F's with exactly x successes. For example, 

x n - x 
~ 

is such a sequence in which the successes come first. Each such 
sequence has probability pxqn-x, and every sequence with x S's and 
n - x F's will have the same probability. To find the probability 
of x successes we need only count the number of ways in which x S's 
can be placed in then locations (123...n)• and multiply this number 
times pxqn-x. The answer to this question is given by the binomial 
coefficient (n) = n!/x!(n - x)!, where O! = l [see Kemeny et al.x 
(1974)]. Hence the probability function for the random variable B 
is given by 

x = 0, l, 2, ••• , n 

If n = 3 and p = l/3 as in our baseball player example of Sec. 2.6, 
we obtain 

f(O; 3, 1.) (3)(1.)0(_g_)3 = JL 
3 0 3 3 27 

f(l; 3. 1) = (3)(1)1(£)2 = l2 
3 l 3 3 27 

f(2; 3, 1.) (3)(1.)2(_g_) = _§_
3 2 3 3 27 
lf(3; 3, 3) (3)(1)3(_g_)o = i. 

3 3 3 27 
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Let us consider some properties of the binomial distribution. 
Note that the sum of the binomial probabilities is 1 as 

n 
E f(x;n,p)

x=O 

by the binomial theorem. From the definition of f(x;n,p), we 
obtain 

f(x;n,p) = (n}px(l _ p)n-x = ( n )(l _ p)n-xpx
x n-x 

f(n - x; n, 1 - p) 

This expresses the equality of the probability of x successes in n 
independent trials with success probability p, with the probability 
of n - x failures in n independent trials with failure probability 
1 - p. This allows the calculation of binomial probabilities using 
values of p on the interval [O, 0. 5] only. We find the formula for 
E(X) when X has the binomial distribution [we write X - B(n,p)] in 
the following theorem. 

THEOREM·3.3.l. If x - B(n,p), then E(X) np. 

Proof: 

n n xn! x n-xE(X) E xf(x;n,p) E x! (n - x) ! p q
x=O x=l 

n (n - l)! x-1 n-x 
np ~l (x - l)!(n - x)! p q 

n-1
" (n-1) y n-1-ynp ,_, y p q where y = x - 1 

y=O 
n-1 

= np E f(y; n - 1, p) np
y=O 

The latter summation is 1 because it is the sum of all binomial prob-
abilities in the case of n - 1 trials with success probability p. 
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The variance of X - B(n,p) can be obtained from the definition 
of Var(X) as E(X) has been obtained here, but the calculation is 
tedious. Another method which is useful here is based on the idea 
of indicator random variables. 

DEFINITION 3.3.1. An indicator random variable I takes on only the 
values 1 and 0. The indicator variable is 1 when the event "indicated" 
occurs and 0 otherwise. We define n indicator random variables as 
follows fork= 1, 2, ..• , n. 

1 if the kth binomial trial is a success. 
I = k 

0 if the kth binomial trial is a failure. 

Here P(~ = 1) = p and P(Ik = 0) q for all k. Thus if X - B(n,p), 

we see that 

X = 
n 
I: 1it 

k=l 

Hence 

n n 
= E( I: ~) 2 = I: E(Ik2 ) + I: E(IkIJ.).

k=l k=l k~j 

Clearly Ik2 and ~Ij are also indicator variables with E(Ik2 )
2

P(~ = 1) = P(~ = 1) = p. Also, E(Ikij) = P(Ikij = 1) = 
P(Ik = l)P(I. = 1) = p2 , where the independence of the trials has 

J 2 2been used. Hence, E(X ) = np + n(n - l)p , and thus 

2 2 2 2Var(X) = E(X ) - (np) = np + n(n - l)p - (np) 
2 = np - np = np(l - p) = npq 

The program BINOM calculates the values of f(x;n,p) and the 
values of the cumulative distribution function F(x;n,p) = 
Z~=Of(t;n,p) for values of n and p requested by the program. It 
is necessary o~ to run the program and supply the requested values 
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BINOl_llJ 

10 PRINT "BINOMIAL";" DISiRIRUTIO\J" 
20 PRIL\JT 
30 PRINT "WHAT IS THE "J "VALUE OF '\1" 
l.10 INPUT N 
50 PRINT 
60 PRINT "WHAT IS THE";" VALUE OF P" 
70 INPUT P 
80 PRINT 
90 ?RINT " X: SUCCESSES"• "PROB OF X"• "CU:"! PROB OF X" 
100 LET Q = 1-P 
1 1 0 L ET Q 1= Q t '\1 
120 LET C = Ql 

150 PRINT I-l1Gl1C 

180 LET Ql=<N-I+l)/1*Ql 
190 LET Ql = Ql*P/Q 
200 LET C = C + Q_l 

220 END 

1 30 FOR I = 1 TO N+ 1 
1 l.10 I F Q1 < 1 0 E- 6 TH EN 180 

160 IF ABSCC-l><lOE-10 THEN 220 
170 IF I > !'J THE'J 210 

210 NEXT I 

* RU'\T 
sINOMIAL DI STRIBUTIO\J 

WHAT IS THE VALUE OF N 
7 12 

WHAT IS IBE VALUE OF P 
1 • 7 5 

X SUCCESSES PROB OF X CU"! PROB OF X 
2 3· 54052 E- 5 3. 76105 E- 5 
3 3·54052 E-4 3·91662 F-4 
ii 2· 3898 5 E- 3 2·78151 E-3 
5 l • l l.171 3 E- 2 l • 42528 E- 2 
6 4• 0149 5 E-2 5. 44022 E-2 
7 o. 103241 o. 157644 
8 0· 193578 0·351221 
9 o. 258104 o. 609325 
10 0·232293 o.841618 
11 o. 126705 0·968324 
12 3.tf.764 E-2 1 

* 
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of n and p. The values of p should be chosen from the interval 
[O, 0.5] using the relationship f(n - x; n, 1 - p) = f(x;n,p) 
for cases for which n > 25 and p > 0.5. Table 3,3.1 compares the 
simulated frequency of on-time arrivals in 1000 days with the prob-
ability function for X - B(l2, 0.75) (accurate to three decimal 
places). The frequencies approximate the probabilities quite well. 
The program FLIGHTS also computes the average number of flights 
which are on time in the 1000.da.ys. Ten runs of the program yielded 

the values 9.03, 8.914, 9.023, 9.03, 8.99, 8.995, 8.976, 8.989, 
9.009, and 8.944, which are approximations to the expected value 
np =12(3/4) = 9, 

The binomial probability model has proven to be satisfactory 
in a wide variety of situations. One example is the triangle test 
which is used to determine whether individuals can detect which of 

Table 3.3.l Simulated Frequency and Probability Function 

x Freguenc;y: f~Xi 121 O.:r:n 
0 0 0.000 
1 0 o.ooo 
2 0 o.ooo 
3 0.001 0.000 
4 0.003 0.002 

5 0.011 0.011 
6 0.038 0.040 

7 0.097 0.103 
8 0.189 0.194 

9 0.263 0.258 
10 0.238 0.232 
11 0.126 0.127 
12 0.034 0.032 

https://1000.da.ys
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three similar appearing items has a distinctive feature. For example, 
a cheese manufacturer ~ wish to know if a preservative can be tasted. 
Each of n individuals is given three pieces of cheese, only one of 
which has the preservative. Each individual is asked to indicate 
which of the three pieces of cheese tastes unlike the other two. If 
we suppose the trials are independent, then the number of persons out 
of n who correctly identif'y the item with the distinctive feature is 
binomially distributed, that is X - B(n,p). Here p is the proba-
bility an individual can correctly identif'y the distinctive item. 
If the preservative actually cannot be detected, then this proba-
bility is 1/3. Hence, in this case, X - B(n,1/3). 

The program BINOM has been run to yield the binomial distribu-
tion for the triangle test situation assuming p = 1/3 with n = 18 
and n = 32, respectively. As the reader will note, for n = 18, no 
probabilities are printed out for x > 16. The program is written 
so that any value of f(x;n,p) less t~an 10-6 will not be printed 
in the output. This prevents the listing of large numbers of very 
small probabilities in the case of large n. In order to suggest 
how the binomial distribution might be used to decide whether the 
preservative can be tasted, consider the case n = 32. If the choices 
are random, then we expect n/3 = 10.67 correct decisions. Suppose 
in fact the number of successes is 16. If p 1/3, the probability 
of 16 or more correct decisions would be 1 - P(X ~ 15) = 0.047653. 
One is presented with the choice of accepting p = 1/3 and concluding 
that a rather unusual event has occurred or deciding that p > 1/3. 
A reasonable decision might be for the latter. This discussion is 
an example of statistical reasoning, which will be discussed in 
detail in the later chapters. 

The two runs of BINOM for the triangle test give examples of a 
property of binomial probabilities. In the case n = 18, there is a 
single maximum probability at x = 6, while for n = 32, the binomial 
distribution has two values for which a maximum is attained, namely 
x = 10 and x = 11. It can be shown that if p + np is not an integer, 
then the binomial probabilities increase to a single maximum at 
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RllN 
BINOl"tIAL I:I STRIBUTIO~ 

WHAT IS 1HE VALUE OF N 
? 18 

WHAT IS 1HE VALUE OF P 
? • 333333 

X SUCCESSES PROB OF X 
0 6076646 E-4 
1 6o089R F-3 
2 2· 58816 E-2 
3 60 90 1 7 5 F.- 2 
4 o. 129 l!OB 
5 0·18117 
6 o. 196266 
7 o. 168229 
B Oo 11 5657 
9 0·064254 
10 !?.089143 E-2 
11 1·05143 E-2 
12 3·06666 E- 3 
13 7 • 07 689 E-4 
14 lo26373 E-4 
15 lo 68497 E- 5 

* 

Cl.M PROB 0 F l< 
6076646 F•4 
60 76645 E- 3 
3. 26481 F-2 
00101666 
00231073 
00412244 
o. 608 512 
o. 776741 
o.892398 
Oo 9 56652 
00985567 
0·996081 
Oo999147 
0·999855 
o.9999a1 
00999998 
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Rt.N 
BIN0)11 AL DI STRI BUTI ON 

WHAT IS THE VALUE OF N 
? 32 

WHAl IS 1HE VALUE OF p 
? • 33333333 

x SUCCE:SSES PROS OF X: 
0 2031782 E-6 
1 3. 708 51 E-5 
2 2. 87 41 E-4 
3 lo 43705 E- 3 
4 5• 2093 F- 3 
5 0·014586 
6 3• 28186 E-2 
7 60 09488 E-2 
8 9• 52325 E-2 
9 O• 126977 
10 00146023 
l l o. 146023 
12 0·12777 
13 9082848 E-2 
14 60 66933 E-2 
15 00040016 
16 2012585 E-2 
17 00010004 
18 4o 16833 E- 3 
19 l • 5357 E-3 
20 4·99103 E-4 
21 1oll2601 E- ll 
22 3o 56502 E- 5 
23 7o 75004 E- 6 
24 l • 45313 E- 6 
25 2o 32501 E-7 

* 

CU1 PROB OF X 
2. 31782 E-6 
3094029 E- 5 
3. 26813 F- 4 
1·76386 F-3 
(-. 97316 F-3 
2. l 5592 E-2 
5. 43778 E-2 
o. l 1 5327 
o. 210559 
0·337536 
o. 483559 
o. 629582 
o. 757353 
o. 8 55637 
00922331 
00962347 
00983605 
o. 993609 
0.997777 
00999313 
00999812 
00999955 
00999991 
0.999990 
lo 
lo 
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RUN 
BINOMIAL DI SlRIBUTIOl\J 

WHAT IS 1HE VAl..UE OF N 
1 10 

WHAT IS 1HF. VALUE OF p 
? .5 

x: SUCCESSES PROB OF X: CU.'1 PROB OF X: 
0 9. 76562 E- II 9. 7 f562 E-4 
1 9. 7 6562 F.- 3 1·07422 E•2 
2 4. 39453 E-2 5. 46875 E•2 
3 0·117187 o. 171875 
4 o. 205078 o. 376953 
5 O• 246094 o. 623047 
6 o. 20 5076 0·828125 
7 O.J17187 0.945312 
6 /Jo 39453 E-2 o.989258 
9 9·76562 E-3 00999023 
10 9. 76562 E.- 4 1 

* 
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RUii 
BINQ,'-UAL DI S1FHBUTION 

wHAT IS THE VALUE OF 
'"'? 20 

WHAT IS THE VALUE OF p 
? • 5 

X SUCCESSES PROB OF X C™ PPOB 01' X 
0 9• 53674 E-7 9053674 E-7 
1 l • 907 35 E- 5 2000272 E- 5 
2 1. 8 1198 E.'- 4 2o 0 122 5 E- Li 
3 1·08719 E-3 l • 28841 E- 3 
4 4062055 E-3 5090897 E-3 
5 l • 478 58 E- 2 2006947 E-2 
6 3·69644 E-2 5o 7 6591 E-2 
7 7• 39288 E-2 Oo l 31588 
8 0·120134 Oo 251722 
9 O• 160179 Oo 41190 l 
10 00176197 Oo 588099 
11 0·160179 00748278 
12 0·120134 00868412 
13 7• 39288 E-2 00942341 
14 3·69644 E-2 00979305 
1 5 l • 478 SR E- P. 00994091 
16 4• 62055 E- 3 00998712 
17 l • 08719 E- 3 00999799 
18 1·81198 E- 4 0099998 
19 1·90735 E-5 00999999 
20 9· 53674 E-7 l 

* 
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[p + np] = x0 , where [x] represents the greatest integer in x, and 
then decrease. If p + np = x0 is an integer, then the binomial 
probabilities increase to two adjacent maximum values at x0 - 1 and 
x0 and then decrease. 

We describe here several additional examples of real-world 
situations for which the binomial distribution has proved to be a 
successful model. In certain circumstances it is possible to employ 
the model even though one or more of the assumptions are violated. 

1. Hybrid Crosses in Genetics 

If we assume that there are two types of genes, G (dominant) and 
g (recessive), controlling a certain trait, then a hybrid {Gg) 
carries one of each. In a hybrid cross the offspring are assumed 
to acquire one gene at random from each parent. Hence the geno-
types GG, Gg, and gg among the offspring of such crosses are 
ta.ken to have probabilities 1/4, 1/2, and 1/4, respectively. As 
both GG and Gg types display the dominant trait, we expect that 
the number of offspring X displaying the dominant trait among n 
such crosses will have a B(n,3/4) distribution. 

2. True-False Test 

A true-false test with n questions can be considered as an 
example of n binomial trials. The probability of getting a 
question correct would be ta.ken as the parameter p. The assump-
tion of independence of the trials and the equality of the 
probability of a correct answer for each question might be 
suspect. However, if a person knows nothing whatever about the 
questions and arbitrarily answers them true or false, the binomial 
model with X - B(n,1/2) would be appropriate. We have run BINOM 
for p = 0.5 and n = 10 and n = 20. In the case of a 10-question 
test with 70% representing passing, there is a not insignificant 
probability of 0.172 of such a respondent passing. If the 

number of questions is increased to 20, the probability of 70% 
or more correct answers is a more tolerable 0.058. Ma.king the 
test longer would :f'urther reduce.the probability of passing 
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"by guessing." Note, however, that the expected number of 

correct answers by guessing is n/2 or 50%. 

3. Roulette Wheels 

A standard roulette wheel has 38 slots. Thirty-six of these 

are numbered randomly with the integers 1, 2, ••• , 36, while the 
remaining two are numbered 0 and 00. Eighteen of the numbered 
slots are colored red and 18 are colored black. If a ball ends 
up on a number, then those betting on that number and its color 

win the amount they have bet. The other bettors lose to the 

house. If the ball ends up in 0 or 00, the house wins. Suppose 
we make n $1 bets on a color. The number of wins in the n trials 

has a binomial distribution with p = 18/38 = 9/19. Note that in 

n trials the expected winnings are (9/19)n, but the expected 
losings are (10/19)n. Hence the average advantage to the house 

is n/19. 

4. Defectives in a Lot 

In order to determine the quality of a large lot of N items a 

sample of size n is o~en taken. The items selected are either 
classified as defectives or good. Let X denote the number of 
defectives in the lot. A decision to accept the lot or to reject 
it may be based on the quality of the sample. (An alternative 
to rejecting the lot might be a complete evaluation of the 
quality of all items in the lot.) The random variable Xis o~en 
considered to be B(n,p) with p representing the proportion defec-
tive in the lot. 

A decision rule might be to accept the lot if X ~ d for d a 
fixed constant. Note that we can find the probabilities of accept-

ing a lot as a function of p for any such plan. For example, if 

n = 25 and d = 3, we find P(B(25,p) ~ 3). The values of certain of 
these probabilities are tabulated in Table 3.3.2. We see that using 

this decision rule the probability of accepting a lot with 5% defec-

tives is 0.9659. The probability of accepting a lot with 25% or 
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Table 3.3.2 Probability as a function of p 

P(B(25,p) < 3E 
0.05 0.9659 
0.10 0.7636 
0.15 o.4711 
0.20 0.2340 
0.25 0.0962 
0.30 0.0332 
0.35 0.0097 
o.4o 0.0024 
o.45 0.0005 
0.50 0.0001 
0.55 + 1.0 0.0000 

more defectives is less than 0.0962. The properties of decision 
rules is an important aspect of the subject of statistics which we 

study in detail in the second half of this text. 
In this example the assumptions of the binomial model do not 

hold exactly. If one item is removed from a lot, it alters the 
probability of obtaining a defective for the next selected item. 
Hence the trials are not truly independent. However if N is very 
large in relation to n, this dependence will be slight and thus have 
little effect upon the distribution of x. We consider this situa-
tion in more detail in the next section. 

Problems 3.3 

1. Assume 10% of the income tax forms received by t~e IRS are 
audited. Let X represent the number of forms out of the next 
100 processed which will be audited. Assuming independence, 
find E(X) and Var(X). 
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2. Which is more probable, three heads in six tosses of a fair 
coin or two heads in four tosses of a fair coin. 

3. Assume a fair coin is tossed 2n times. Find f(n;2n,l/2), the 
probability of exactly n heads. Find f(n + l; 2n + 2, 1/2) 
and show that this probability is less than f(n;2n,l/2). 

4. A basketball pla;yer makes 80% of his foul shots. Assuming 
independence, find the probability of x successes in his next 
four shots for x = O, 1, 2, 3, 4. 

5. Show that f(n - x; n, 1/2) = f(x;n,1/2) and interpret this 
equality in terms of tossing a coin. 

6. Suppose animals undergoing a particular experimental procedure 
survive with probability o.8. What is the smallest number of 
animals with Which to start in order to ensure a probability 
of at least 0.9 that at least five animals survive. 

7. Show that the variance of X - B(n,p) is greatest for fixed n 
when p = 1/2. 

8. Use the fact that X - B(n,p) can be written as a sum of indi-
cator variables to prove that E(X) = np. 

9. If X - B(n,p), show that Z = (X - np)//np(l - p) satisfies 
E(Z) = 0 and Var(Z) = 1. 

10. Prove that f(X;n,p)/f(x - l; n, p) (n - x + l)p/x(l - p). 
Using this fact show that 

(a) If np + p = 1, then f(O;n,p) f(l;n,p) > f(2;n,p) > 
... > f(n;n,p). 

(b) If np + p = k an integer greater than 1, then f(O;n,p) < 

••• < f(k - l; n, p) ~ f(k;n,p) > ••• > f(n;n,p). 
(c) If np +pis not an integer, show that for k0 = [np + p], 

f(O;n,p) < ••• < f(k0 ; n, p) > f(k0 + l; n, p) > ••• > 
f(n;n,p). 



80 Properties of Discrete Random Variables 

11. (a) Show that the moment generating function of the binomial 
random variable is (pet + q)n. 

(b) Verify that E(X) np and VAR(X) = npq for X - B(n,p) 
using the result in part (a). 

Exercises 3.3 

1. Run the program FLIGHTS to simulate the number of daily on-time 
arrivals of an airline over a 1000-d.ay period at an airport. 
Assume an on-time arrival rate of o.80 and 15 flights a da;y 
arrive at the airport. 

2. Run BINOM with the values of n = 15 and p = 0.8. Compare the 
frequencies observed in the previous exercise with the theoret-
ical probabilities. Compare the average number of daily arrivals 
in the simulation with the expected number of on-time arrivals. 

3. [Answer part (a) before computations.] 
(a) If n =16 and p = 3/8 in the binomial distribution, for 

what value or values of x will f(x;l6,3/8) be greatest. 
If n = 29 and p = 1/2, for what value or values of x will 
f(x;29,l/2) be maximum. 

(b) Verify your answers in part (a) by running BINOM with the 
appropriate values of n and p. 

4. An assembly line is shut down for repairs if a sample of size 
20 contains two or more defectives. Assume that the sample can 
be treated as 20 independent trials. If g(p) is the probability 
of two or more defective items, when the assembly line is actu-
ally producing lOOp% defectives, find g(0.05), and g(p) for 
p = k/10, k = 1, 2, ••• , 10. Plot g(p) as a function of p. 

3.4 THE HYPERGEOMETRIC DISTRIBUTION 
Let us consider a finite population of N persons of whom R are 
Republicans and N - R are Democrats. Suppose that a sample of size 
n is taken from this population in such a way that each individual 

https://1000-d.ay
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has equal probability of selection, but once an individual is chosen 
he is not considered again. This is called random sampling without 
replacement. We define the random variable H to be the number of 
Republicans in the sample of n. If we consider that there are (N)n 
combinations of size n of the N persons, it is clear that each such 
combination has equal probability of selection. In order to compute 
the probability of x Republicans, we must find the number of differ-
ent combinations having exactly x Republicans. This number is 
(R)(N-R) because the first factor counts the number of combinations x n-x 
of x Republicans and the second factor counts the number of combina-
tions of n - x Democrats. Hence the probability of exactly x 
Republicans is given by 

This is an example of the hypergeometric random variable. The proba-
bility function for the hypergeometric random variable is defined in 
the following. 

DEFINITION 3.4.1. From a finite population of size N of which R 
elements have a property and N - R do not, we select a random sample 
of size n without replacement. The probability f'unction for the 
number of elements in the sample with a property is given by 

h(x;N,R,n ) = (R)(N-R)/(N)
x n-x n 

where 

max(O, n - N + R) ~ x ~ min(R,n) 

The program HYPER generates the probabilities for the hyper-
geometric distribution with values of N, R, and n provided in a DATA 
statement. An example run illustrates the sampling of 10 individuals 
from a finite population of 50 Republicans and 50 Democrats. The 
probabilities h(x;l00,50,10) are printed out as well as the values 
of the cumulative distribution function 
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x 
H(x) E h(t;l00,50,10) for x = O, 1, 2, ••• , 10 

t=O 

It seems intuitively clear that, if the population size N is large 
in relation to the sample size n, then sampling without replacement 
should not be very different from sampling with replacement. However, 
the number of Republicans obtained in a sample of size n, if we sample 
with replacement from a population with a proportion of R/N Republi-
cans, will just be an example of n binomial trials with probability 
of success R/N at each trial. In fact it can be shown that if N + oo 

and R + oo in such a way that R/N = p, then for fixed n, 

lim h(x;N,R,n) = f(x;n,R/N) 
N--

R/N=p 

where f(x;n,R/N) is the probability function for the binomial distri-
bution. The proof of this is sketched in Problem 3.4.4. 

To illustrate this idea we compare the hypergeometric probabil-
ities for N = 100, 200, 1000 with R = 50, 100, 500, respectively, 
with the binomial probabilities in the case of 10 trials with p = 

x h(x;l00,50,10) h(x;200 ,100 ,10) h(x;l000,500,10) f(x;l0,0.5) 

0 0.00059 0.00077 0.00093 0.00098 
1 0.00724 0.00847 0.00953 0.00977 
2 0.03799 0.04103 0.04337 0.04395 
3 0.11310 0.11529 0.11683 0.11719 
4 0.21141 0.20820 0.20570 0.20508 

5 0.24933 0.25247 0.24733 0.24609 

The probabilities for x > 5 need not be compared as both distribu-
tions are symmetric about x = 5. While it may be observed that the 
hypergeometric probabilities are approaching the binomial probabil-
ities, the approximation is not very satisfactory until the ratio 
N/n, the population size to sample size, is quite large. In our 
example the ratio of N/n = 100 provides reasonable accuracy. 
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HYPER 

10 READ N1R1Nl 
20 DIM FC 100> 
30 PRINT ''HYPERGEOMETRIC";" DISTRIBUTION" 
40 PRINT 
50 PRir\JT "X"., "PJWB OF X"1 "Ct.M PROB OF X" 
60 LET C = 1 
70 FOR I= 0 TO CNl-1> 
80 LET C = C*CN-I>ICNl-I> 

100 LET C = l/C 

160 FOR J = 0 TO <Nl-1> 
170 LETH = H*CN-R-J)/CN1-J) 
180 NEXT J 

200 FOR J = 0 TO Nl-N+R-1 
210 LETH = H*CR-J)/C:-11-N+R-J> 
220 NEXT J 
230 LET F'<Nl-N+R>=H*C 
240 FOR K=Nl-N+R TO R 

260 LET FCK+l>=F<K>*CR-K>*CNl-K>ICCK+l>*CllJ-R-Nl+K+l>> 
270 LET L = L+FCK> 
280 PRINT K1 FCK>1L 

300 NEXT K 

320 LET F<O>=H*C 

350 LET FCK+l>=FCK>*CR-K>*CNl-K>ICCK+l>*CN-R-Nl+K+t>> 
360 NEXT K 
370 FOR K= 0 TO R 

90 NEXT I 

110 LET T = 1 
120 IF Nl<N-R 'lHEN 150 
30 LET H = 1 
140 GO TO 200 
150 LET H = 1 

190 GO TO 320 

250 I F K>N l 'lH EN 440 

290 IF' ABSCL-1 >< lOE-8 THEN 440 

310 GO TO 440 

330 FOR K=O TO R-1 
340 IF K>N 1 'lHEN 370 

380 IF K >NI 'lHEN 440 
3 90 LET L= L+ FCK> 
400 PRINT K1 FCK>1L 
410 IF ABSCL-l><lOE-8 THEN 440 
420 NEXT K 
430 DATA 101 81 8 
.440 END 

* 
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430 DATA 100• 50• 10 
RtN 
HYPERG F.OM ETRI C DI S TRI BUTI ON 

x PROB OF X 
0 5.9342 E.•4 
1 7• 2368 3 E- 3 
2 3.79933 E-2 
3 o. 113096 
4 0·211413 
5 0·259334 
6 0·211413 
7 o. 11309 6 
8 3.79933 E-2 
9 7 • 2368 3 E- 3 
10 5·9342 E-4 

* 

ClM PROB OF X 
5·9342 E-4 
7083024 E-3 
i!.58236 E-2 
o. 15892 
o. 370333 
o. 629667 
0084108 
00954176 
0·99217 
0·999407 
1 
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Let us consider the expected value and variance of the hyper-
geometric random variable. It is again helpful to use the idea of 
indicator random variables. We define n indicator random variables 
as follows: 

1 if a Republican is chosen on the kth trial 

I = k 
0 if a Democrat is chosen on the kth trial 

fork= 1, 2, ••. , n. We write the hypergeometric random variable 
as 

H =I +I + ••• +I1 2 n 

Consider P(Ik = 1). As there are n elements selected without replace-
ment, the number of distinct sequences of n elements chosen from N is 
given by N(N - l)··•(N - n + 1), which is denoted as (N) • This is n 
because the first element can be chosen in N ways, the second in 
N - 1 ways once the first is chosen, and so forth until the nth choice. 
We count the number of such sequences ,with a Republican in the kth 
place by considering that there are R ways that the kth place may be 
filled and then (N - 1) 1 ways of filling the remaining n - 1 places.n-
Hence P(Ik = 1) = R(N - 1) 1 /(N) = R/N. This probability is not n- n 
dependent on k. Hence 

n n 
E(H) I: E(Ik) = I: P(Ik = 1) = nRNk=l k=l 

Although the algebra is more extensive, it is straightforward to 
show, using indicator variables, that 

( ) R ( R) N - nVar H = n - 1 - - ~~-
N N N - 1 

Again we see the close correspondence with binomial distribution 
X - B(n,p), for if we write p = R/N, we obtain 

E(H) = np and Var(H) = np(l - p) N - n
N - 1 
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The expectation matches the expectation of the binomial distribution, 
and if N is very much larger than n, we have Va.r(H) ~ np(l - p) the 
binomial variance. The factor (N - n)/(N - 1) is referred to as the 
finite population correction factor. 

That binomial probabilities can be used as good approximations 
to the corresponding hypergeometric probabilities is of much more 
than theoretical interest. We often sample from a large population, 
taking a small fraction of it in a sample of size n. Common examples 
are polls such as the Gallup Poll, sampling plans used to decide to 
accept or reject a large lot of items, and catches of fish. In each 
case we may be interested in the distribution of the number of ele-
ments in the sample which have a certain characteristic. For the 
preceding examples the characteristics could be having voted at the 
last presidential election, being a defective item, and belonging to 
the bass family, respectively. N, the population size, is almost 
never actually kno'Wil, so hypergeometric probabilities cannot be used. 
However the sample size n is kno'W?l, and using an approximation for p, 
probabilistic statements can be made about X, the number of elements 
in the sample possessing the characteristic in question. 

As another example of the hypergeometric distribution let us 
consider a college class of size 500 of whom 150 are women. We take 
a random sample of size 20. If we sample without replacement, the 
expected number of women in the sample is E(H) = 20(150/500) = 6 and 
the Var(H) = 20(0.3)(0.7)(480/499) = 4.040. If we sample with re-
placement, the expected number of women is given by np = 20(0.3) = 6 
and variance np(l - p) = 20(0.3)(0.7) = 4.2, using the expectation 
and variance of the binomial distribution. The programs HYPER and 
BINOM have been run to obtain the hypergeometric distribution with 
N = 500, R = 150, and n = 20 and the binomial distribution B(20,0.3). 
Again these should be compared to get an idea of the accuracy of the 
binomial approximation to the hypergeometric probabilities. 
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430 DA 1 A 500, 1 501 20 

RU~ 

HYPERGE0'1E1RI C DI STRI BUTI O'l 

){ PROB OF X 
0 6a74398 E-ll 
1 6all:?.3'/ F-3 
2 2 a 60 60 LI E- 2 
3 6a949ll5 E-2 
4 Oal2999 
5 Oa HH 2~8 
6 0 a 19 558 6 
7 Oa 1671 Ll7 
8 Oall491LI 
9 Oa 0_6ll18 
10 2a9277LI E-2 
11 la 0927 3 E-2 
12 3a 33091 E- 3 
13 8 a 2469'3 E- Li 
14 la 6422 E- 4 
1 5 2a 589lJ5 E- 5 
16 3al5729 E-6 
17 2a868'3 F-7 

* 

Cli'l PROB 1 F X 
6a7.4398 F-ll 
6a78677 E-3 

Oa776352 
Oa891l?66 
Oa955L/'-l6 
Oa98.472LI 

Oa9989R2 
0·999806 
Oa999971 
Oa999997 
1 a 

3a 28.472 F-2 
Oal023LJ2 
Oa 232332 
Oall13619 
Oa 609205 

Oa 995651 

I a 
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RU:\! 
BINOMIAL J:I SlRI BU1I Oi-J 

WHAT IS THE VALUE. OF ·:\) 

? 20 

WHAT IS THE VALUE OF p 
? .3 

x SUCCESSES PROB OF X 
0 7·97923 E-4 
1 6·83934 E- 3 
2 2· 78459 E-2 
3 7. 16037 E-2 
4 0·130421 
5 0·178863 
6 o. 191639 
7 Oo 16il262 
B O·llll397 
9 6• 53696 E-2 
10 3·08171 E-2 
11 1. 20067 E-2 
12 3·85928 E.- 3 
13 1·01763 E._3 
14 2·18107 E-4 
15 3· 73898 E-5 
16 5. 007 56 E-6 
17 5.0496.ll E-7 

* 

Ct.M PROB OF X 
7.97923 E- ll 
7063726 E-3 
3. 548 31 F'-2 
o.107087 
o. 237508 
o. ii 1 6371 
o. 6080 l 
0.112212 
0·886669 
0.9 5~038 
0·9828 55 
o.994862 
009913721 
0.999739 
0.999957 
0.999995 
1 • 
1 • 
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Problems 3.4 

1. Assume that a group consists of 10 persons of whom seven are men 
and three are women. A committee of three persons is chosen 
without replacement. Find the probability of x women on the 
committee for x = O, 1, 2, 3. 

2. The number of registered voters in a city is 100,000. Of these 
32% are Republicans, 56% are Democrats, and 12% are independents. 
If a random sample of 50 is taken without replacement from the 
list of registered voters, find the expected number E(X) of 
Republicans and Var(X). 

3. (a) If n ~ N/2 for even N, show that h(x;N,N/2,n) 
h(n - x; N, N/2, n) for x = O, 1, 2, ••• , n. 

(b) If X - h(x;N,N/2,n), find E(X) and Var(X). 

4. If N and R are very much larger than n, show that 

(a) h(x·,N,R,n) = (n)R (R - 1) (R - x + 1) (N - R) ••• 
x NN - 1) 000 (N - x + 1) (N - x) 

(N - R - n + x + 1)
(N - n + 1) 

00(b) If R + and N + 00 , so that R/N = p, show that 

lim h(x;N,R,n) = (n)px(l - p)n-x
N-- x 
R--

for x = O, 1, 2, ••• , n. 

5. (a) If X - B(l0,1/2), find crX. 
(b) If Y has the hypergeometric distribution, find cry/ox for X 

in part (a) when n = 10 and (1) R = N/2 = 10, (2) R = N/2 = 
20, and (3) R = N/2 =100. 

6. (a) Prove directly that 

by comparing the coefficients of the polynomials 



- -

- -

90 Properties of Discrete Random Variables 

Assume n < R and n < N - R. 
(b) What is the importance of this equality? 

Exercises 3.4 

1. Suppose that a college class of 400 has 300 men and 100 women. 
In a sample taken without replacement of 20 persons from this 
class, find the distribution of the number of women. 

2. Compare the probabilities in Exercise 3.4.1 with the appropriate 
binomial probabilities. 

3.5 THE POISSON DISTRIBUTION 

Another probability distribution of importance related to the binomial 
distribution is the Poisson distribution which assigns probabilities 
to the set S = O, 1, 2, 3, •••• We consider the binomial trials model 
in the case that the number of trials n + while the probability of00 

success p + 0 in such a wa:y that np = µ is held constant. The bi-
nomial probability function is written 

f(x;n,p) = (n)px(l - p)n-x x = o, 1, 2, ••• , n x 
= n(n l)•••(n X + 1) (l!.)X (l _ l!.)n(l

x! n n 

x l!. -(~)(-µ) n n - 1 n - x + l)(l _ l!.)-x=lLx! (1 n) (~ -n--•• • n n 

For fixed x, if n + 00 , the last two terms have limit equal to 1, 
while the second term has limit e-µ as limz+O(l + z)l/z = e. This 
fact has been used with z = -µ/n. Hence 

-µ x 
lim f(x;n,p) = T x = o, 1, 2, ... 
n~ 

p.+() 

We have already seen in Sec. 3.1 that E:=o e-µµx/x? =1 for any 
fixed µ > O. Hence we can make the following definition: 
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DEFINITION 3.5.1. The probability function for the Poisson random 
variable X with parameterµ> 0 is given by f(x;µ) = e-µµx/x!, x = 

O, l, 2, If X has the Poisson distribution with parameter µ, 
we write X - P(µ). 

The expectation and variance of X - P(µ) can be obtained by 
direct computations using the definitions of expectation and 
variance. 

00 00-µ x -µ x-1 e 1!E(X) E x~= Ex! - l) !x=O x=l (x 

and letting y = x - l, we have 

00 -µ y 
E(X) µ E ~=µ

y=O y. 

This result is very plausible because the expectations of each of 
the binomial distributions having the Poisson as the limiting distri-
bution were np = µ. To find the variance we find 

00 -µ x oo -µ (x-2)
E(X(X - l)) E x( x - l) ~ - µ2 E ....,e__.1!'--....--

x ! - x=2 (x - 2) !x=2 

and letting y = x - 2, we have 

00 -µ -y 
E(X(X - 1) 2 E ~- µ2µ y' -

y=O • 

As Var(X) = E(X(X - 1)) + E(X) E2(X), we find the variance of 
X - P(µ) as Var(X) = µ2 + µ - µ2 = µ. This result is also plausible 
as the variances of the binomial distributions with the Poisson 
limit are np(l - p) which has limit µ = np as p -+ 0 and n -+ oo with 
np = µ. 

The Poisson distribution should be a good approximation to the 
binomial distribution when the number of trials n is large and p is 
small. There are many situations in which this is the case. Consider 
sending a message which consists of a binary string of n zeros and 
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ones. We assume that the message received mizy be altered by noise 
in the transmission system, so that one or more of the numbers 
received is altered from a 0 to a l or a l to a O. We assume that 
the frequency of such a transposition is given by p. The program 
MESSAGE simulates the sending of 1000 messages of length n. The 
proportion of these messages with O, l, 2, ••• errors is calculated. 
The program has been run for n = 100 for two values of p (0.02 and 
0.025). The distribution of the number of errors should be well 
approximated by the Poisson distribution with µ = 2 andµ = 2.5. It 
is only necessary to run the program and supply the values of n and 
p as requested. 

The program POISSON calculates the probabilities for the Poisson 
distribution with expectation µ. Again it is only necessary to supply 
the requested value of the expectation µ. The program has been run 
for values ofµ= 2 and 2.5 to permit comparison with the simulations 
of the previous paragraph. It can be shown that the Poisson proba-
bilities increase to a maximum value of (µ] if µ is not an integer 
and then decrease. If µ is a positive integer the Poisson probabil-
ities increase to adjacent maximum values at x = µ - l and x = µ and 
then decrease. These properties are illustrated by the two runs of 
POISSON for µ = 2 andµ= 2.5 given below. 

The program BIPO has been written to compare the binomial prob-
abilities with their corresponding Poisson approximations. It is 
only necessary to run the program and answer the questions requiring 
the input of p and n. The program prints the binomial probabilities 
and the corresponding Poisson probabilities using µ = np. The example 
run uses the parameters n = 80 and p = 0.025. As can be seen from 
the output, the agreement of the binomial and Poisson probabilities 
is excellent. 

The Poisson distribution is widely applied as a probability model 
to describe the number of "events" of a certain type occurring in a 
time period of length t, when the events occur "randomly" during the 
time interval. Examples are arrivals of phone calls at a switchboard 
during a fixed period of time, arrivals of individuals at a queue for 
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MESSAGE 

10 DIM FC101> 
20 PRINT ••WHAT IS 1HE ";"ERROR FREQUENCY" 
30 INPUT P 
40 PRINT "WHAT IS THE "J ''MESSAGE LENGTH" 
50 INPUT N 
60 PRINT "BE PATIENT" 
70 FOR I = 1 TO 1000 
B 0 LET C = 1 
90 FOR J = 1 TO N 
100 LET Z = RND 
110 l F Z > P THEN 130 
120 LET C = C + 1 
130 NEXT J 
140 LET FC C>•F< C>+ 1 
150 NEXT I 
160 LET Fl =O 
170 PRINT "ERRORS"• "FREQUENCY"• "CJ.M FREQ" 
180 FOR I = 1 TO 100 
190 LET F • FCI>/1000 
2 00 l F F • 0 THEN 230 
U?I LET Fl=Fl+F 
220 PRINT I- l.1 F.1 Fl 
230 NEXT I 
240 END 

* 
RU\J 

WHAT IS THE ERROR FREQUENCY 
? ·02 
WHAT IS THE MESSAGE LENG1H 
? 100 
BE PATIENT 
ERRORS FREQUENCY ClM FflEQ 

0 Ool43 O• 143 
1 Oo269 O• 412 
2 o. 267 O• 679 
3 Oo 185 Oo 66il 
4 Oo094 Oo95B 
5 0.031 0·989 
6 Oo006 Oo995 
7 o. 00'4 0·999 
9 0.001 1 

* 
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RUN 
WHAT IS 1HE ERROR FREQUENCY 
? ·025 
WHAT IS 1HE MESSAGE 1..ENG1H 
? 100 

BE PATIENT 
ERRORS FREQUENCY CtM F?.EQ 

0 0·094 o. 09 Li 
1 o. 191 o. 285 
2 0·266 o. 551 
3 0.213 0·764 
4 0·142 0·906 
5 0·063 0·969 
6 0.022 Oa991 
7 0.001 Oa998 
8 0.001 0.999 
9 0.001 1 

* 



POISSON 

10 PRINT "POISSON ";"DISTRIBUTION" 
20 PRINT "WHAT IS THE "J"\iALUI!'. OFMU" 
30 INPUT U 
40 PRINT 
50 Ir· U > 1 THEN 80 
60 LET T = 8 
70 GO TO 90 
80 LET T=INTC 3*U+U> 
9 0 LET V = EXPC-U> 
1 00 PRINT "X",, "PROB OF· X",, "ClJ'l'I PROB OF· X" 
110 FOR I = 0 TO T 
120 LET C = V + C 
130 PRINT I,, V,, C 
1 40 LET V = ~ U/ CI+ 1> 
1 50 NEXT I 
160 
170 END 

* 
RUN 

POISSON DI STRI BUTI ON 
WHAT IS THE VALUE OF MU 
? 2 

x PROB OF X CtM Pf!OB OF X 
0 0.135335 0.135335 
1 o. 270671 o • .l!06006 
2 0.210611 o. 676676 
3 o. 180447 0·857123 
4 9·02235 E-2 o. 9.l!7347 
5 3· 60894 E-2 0·983436 
6 l • 20298 E-2 0·995466 
7 3. 43709 E-3 0·998903 
8 8·59272 E-4 0·999763 

*RU\1 
pOI SSON DISTRIBUTION 
WHAT IS THE VALUE OF MU 
? 2· 5 

x PROB OF X ClM PROB OF X 
0 0·082085 o. 08208 5 
1 o. 205212 o. 287297 
2 0.256516 o. 543813 
3 o. 213763 Q.757576 
4 o. 133602 o. 891178 
5 6• 68009 E- 2 0.957979 
6 2•78337 E-2 o.985813 
7 9·94062 E- 3 o. 99 57 53 
8 3·10644 E-3 0·99866 
9 8• 62901 E- 4 0.999723 
10 2.J 5725 E- 4 0·999938 

* 
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BIPO 

10 REM THIS PROGRAM COMPARES THE PROBABILITIES OF THE 
20 REM BINOMIAL DISTRIBUTION WITH THOSE OF THE POISSON DISTRIBUTION 
30 REM TYl'E "RUN" TO EXECUTE THE PROGRAM 
40 PRINT "WHAf IS THE";" VALUE OF P?" 
50 INPUT P 
60 PRINT "WHAT IS THE"; " VALUE OF N?" 
70 I:!IPUT N 
80 PRINT "HOW MANY";" POISSON";" PROBABILITIES DO"; " YOU WANT?" 
90 I:iPUT C 
100 LET Q • 1-P 
110 LET Ql=Q-N 
120 LET M•N*P 
130 LET Q2•EXP(-M) 
140 PRINT " X '',"BINOllIAL PROB'',"POISSON PROB" 
150 FOR I = l TO C+l 
160 PRINT I-l,Ql,Q2 
170 IF I> N THEN 210 
180 LET Ql•(N-I+l)/I*Ql 
190 LET Ql•Ql*(P/Q) 
200 GO TO 220 
210 LET Ql•O 
220 LET Q2=Q2*M/I 
230 NEXT I 
240 END 

* RUN 
WHAT IS THE VALUE OF P? 

?.025 
WHAI IS THE VALUE OF N? 

180 
HOW MANY POISSON PROBABILITIES DO YOU WANT? 

?10 
x B U!O!IIAL PROB POISSON PROB 

0 0.13194 o.13534 
l 0.27064 0.21061 
2 0.21411 0.27067 
3 0.182 74 0.18045 
4 9.0l990E-2 9.02235E-2 
5 3.51545E-2 3.60894E-2 
6 l. l 2675E-2 l.20298E-2 
7 3.05418E-3 3.43709E-3 
8 7.14601E-4 B.59272E-4 
9 l.46585E-4 l.90949E-4 
10 2.66859E-5 3.81898E-5 

* 
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a bus in a fixed time interval, the number of suicides in a city 
during a week, and other similar situations. The following axioms 
are sufficient to guarantee that the number of events in a time 
period have a Poisson distribution. We write Pk(t) to mean the 
probability of k events in a time period of length t. 

1. The number of arrivals of events in two nonoverlapping time 
periods are independent. 

2. The probability of the arrival of one event in a short period 
of time is proportional to the length of the time interval. We 
write P1 (h) =Ah+ o(h), where o(h) is a function with the prop-

erty li~-+Oo(h)/h = o. 
3. The arrival of more than one event in a short time interval is 

essentially zero: Pk(h) = o(h) for k ~ 2. 

These properties are sufficient to guarantee that Pk(t) = 
-At k e (At) /k!, k = 0, 1, 2, The parameterµ= At is the average 

number of events in a time period of length t. Hence if calls arrive 
at the rate of 2 per minute, the probability of no calls in 2 min. 
. -4is e The probability of one call in a 2-min period would be 
4e -4 • 

Problems 3.5 

1. Assume that a typist makes a keyboard error once every 1000 times 
she strikes the keyboard. If a page consists of 25 lines of 80 
characters each, find the expected number of errors per page. 
Find the probability of O, 1, 2, 3, or 4 errors per page. 

2. Assume that customers arrive in a queue at the rate of one every 
5 min. 
(a) What is the probability of zero arrivals in a 5-min period? 
(b) What is the probability of more than four arrivals in a 

5-min period? 

3. A good outfielder has a fielding percentage of 0.99. What is the 
probability he handles his next five chances without an error? 
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4. Suppose that the probability a calculator makes ~numerical error 
is lo-10 . What distribution can be used to describe the number 
of errors in 1010 calculations? What is the probability of more 
than five errors in 1010 calculations? 

5. Find the moment generating function for the random variable 
X - P(µ). 

6. Use the result in Problem 3.5.5 to verify that E(X) Var(X) µ 

for the Poisson distribution. 

7. (a) Using the axioms 1 through 3 concerning Pk(t) show that 
(P0(t + h) - P0(t))/h = (-A+ o(h)/h)P0(t). 

(b) Using the assumption that P0(o) = 1, prove that P0(t) = 

e-At 

8. If X - P(µ), show that f(x;µ)/f(x - l; µ) µ/x for x ~ 1. Let 
[µ] = n. 
(a) If n = O, show that f(O;µ) > f(l;µ) > ••• > f(x;µ) > 
(b) If µ 1, show that f(O;µ) f(l;µ) > f(2;µ) > ••• > 

f(x;µ) > •••. 

(c) If µ is an integer greater than 1, show that f(O;µ) < 
f(l;µ) < ••• < f(µ - l; µ) = f(µ;µ) > f(µ + l; µ) > 

(d) If [µ] = n > 1 but [µ] # µ, then show that f(O;µ) < f(l;µ) 
< ••• < f(n;µ) > f(n + l; µ) > 

Exercises 3.5 

1. Using an error proportion of p = 0.01 run the program MESSAGE to 
simulate the frequency of errors in 1000 messages of 100 charac-
ters each. 

2. Run the program POISSON with the appropriate value of µ to compare 
the frequences observed in Exercise 3.5.1 with the theoretical 
probabilities given by the POISSON model. 

3. Use the program BIPO to compare the binomial and Poisson proba-
bilities in the case that n = 100 and p = 0.01, n = 20 and p 
0.05, n = 10 and p = 0.1, and n = 5 and p = 0.2. For which 
values of n and p is the Poisson approximation best? worst? 
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3.6 THE STANDARD DEVIATION AND THE CHEBYSHEV INEQUALITY 

We expand upon the meaning of the variance of a random variable as 
a measure of the spread or variability of a random variable. Notice 
that as Var(X) = E(X - µ) 2 , the units of Var(X) will be in terms of 
squared units of those used to measure the observations of the random 
variable. For example, we used the Poisson random variable to rep-
resent the distribution of errors in the transmission of binary 
strings of length N. Suppose that E(X) =µ = 2, i.e., the expected 
number of errors is 2. We have seen before that Var(X) = µ for the 

2variance is 2(errors) • In order to obtain a measure of variability 
in the same units as those used to measure X, we state the following: 

DEFINITION 3. 6 .1. The standard deviation of a random variable X is 
IVar(X), when the variance exists. The standard deviation is denoted 
crX or cr alone if it is clear which random variable is involved. 

A theorem due to Chebyshev has great theoretical importance in 
probability theory and also importance in giving meaning to the con-
cept of the standard deviation of a random variable X. 

2THEOREM 3.6.1. If a discrete random variable X has variance cr , 
then the following inequality holds for any E > O. 

Before proving the theorem, let us consider its consequences. If we 
let E = kcr fork> O, we obtain the inequality P(!X - µ! ~ kcr) ~ l/k2• 
The following table gives a short list of these bounds. 
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k l/k2 

1 1 
2 1/4 

3 1/9 
4 1/16 

5 1/25 

Thus the probability that an observation of a random variable is 3 
or more standard deviations from µ cannot exceed 1/9. Hence the 
probability is at least 8/9 that an observation will be within 3 
standard deviations of µ. In general the probability is at least 
1 - l/k2 that an observation is within k standard deviations of µ. 

O~en the Chebyshev bounds are quite conservative. For example, 
for the Poisson distribution with µ 1, we find 

k P( Ix - i I ~ kJ 2l/k {upper bound) 

1 0.6321 1.0000 

2 0.0803 0.2500 

3 0.0190 0.1111 

4 0.0037 0.0625 

5 0.0006 o.o4oo 

Hence the probability of obtaining an observation at least 3 standard 
deviations from µ = 1 is 0.0190, considerably smaller than the upper 
bound 0.1111. The strength of the Chebyshev bound lies in the fact 
that it applies to all random variables which have a variance. The 
bound cannot be improved upon in general, for if X has distribution 
P(X = .:!:_l) = 1/2, then E(X) = O, Var(X) = 1, and P(IXI ~ 1) = 1. 
Hence the Chebyshev bound holds as an equality in this case for 

k = 1. 

A proof of Theorem 3.6.1 proceeds as follows. Let X have vari-
ance cl and let E > 0. Then 
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2 2 2 2CJ = E(X - µ) = r (x - µ) f(x) + (x - µ) f(x) 
lx-µl<e: 

> r (x - µ)f(x) > e:2 r f(x) 
lx-µl>e: lx-µl~e: 

Hence 

using the first and last expression in this string. Thus 

2 
P(lx - µI~ e:) ~ CJ2 

e: 

As one further example to illustrate the meaning of the Chebyshev 
inequality, we consider again the random variable with probability 
:f'u.nction f(x) = l/N for x = 1, 2, ••• , N. We have seen that E(X) = 
(N + 1)/2 and Var(X) = (N2 - 1)/12. Consider 

N + 1 + ./3CJ = N + 1 + l(N - l)(N + 1)
2 - x 2 - 2 

We have 

N+l+./3cr >N+l+!....=....l=N 
2 x 2 2 

and 

Hence the open interval (N + 1)/2 + /3CJ contains all the integers- x 
1, 2, ••• , N, so that P(IX - µI~ 13CJx) = O, while the Chebyshev 
bound would yield 1/3 as an upper bo'lllld for this probability. The 
Chebyshev bound is useful in providing a general interpretation for 
the meaning of the standard deviation CJ and for many theoretical 
purposes, but it is not useful for calculating probabilities for 
any particular distribution. 
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Problems 3.6 

1. Suppose a fair coin is tossed 400 times. Find upper bounds for 
the following probabilities, where H represents the number of 
heads in the 400 tosses. 

(a) P(IH - 2001~10) 

(b) P( IH - 2001 ~ 20) 
(c) P(IH - 2001~30) 

2. Let f = X/n represent the proportion of heads in n tosses of a 
fair coin. Use the Chebyshev inequality to show that 

lim P( Ir - ~I ~ E) = o for any E > 0 
n--

3. Let X be a Poisson random variable with µ = 4. Compare 
P(IX - 41~2k) with the Chebyshev bounds fork= 1, 2, 3. 

4. If X is a random variable with P(X = +t) = P(X = -t) = 1/2 for 
t # 0, show that 
(a) P(IX-E(X)l~cr)=l. 

(b) P(IX - E(X)I ~kcrx) = O fork> 1. 
(c) What does part (a) imply about the Chebyshev inequality? 
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CONTINUOUS OUTCOME SPACES 

4.l INTRODUCTION TO CONTINUOUS OUTCOME SPACES 

Until now we have considered outcome spaces which contained at most 
a countable number of points. In turn, the random variables defined 
on these spaces could have at most a countable number of values. 
Many random experiments, however, can be considered to have as out-
comes, all possible values on an interval of the real number line. 
For example, we may measure the length of time that an individual 
takes to respond to a stimulus. For instance, the length of time 
it takes a child to answer an arithmetic problem. The response time 
is generally assumed to be a real number in an interval of possible 
times. Similarly, the net weight of a package of breakfast food 
labeled 16 oz net weight may be thought of as a value on an interval 
centered at 16. The error made in rounding off a number to the 
nearest integer (calculated as actual-integer) can be thought of as 
any number on the interval (-0.5, 0.5], where we round down if the 
observed number is an integer plus l/2. Appropriate sample spaces 
for these experiments can be taken to be, respectively, 

s1 {tlo < t ~ 20}, t measured in minutes. 
s2 = {wll4 ~ w ~ 18}, w measured in ounces. 

{xl-0.5 < x ~ 0.5}.s3 

103 
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Measurements such as length, weight, voltage, speed, and many others 
can be thought of as attaining values on an interval of the real-
number line. 

The outcome spaces for measurements such as those described in 
the previous paragraph are called continuous. Formally, we state 

DEFINITION 4.1.1. An outcome space Sofa random experiment is 
called continuous if it is composed of an interval or a union of a 
countable number of intervals of the real line. 

Often the interval is taken to have infinite length, for example, 
(-00,00) or (O,oo), even though in reality there is a limit to the size 
measurements can realistically attain. For example, the length of 
time that a light bulb will burn if it is run until failure is often 
considered to have an outcome space S = {tit > O}, although physically 
we know that the bulb cannot function for more than some maximum time 
(sa.y 100,000 hr). Nevertheless such outcome spaces are useful in 
describing the outcomes of real-world experiments. 

The program ANSWER simulates times required by N children to 
complete an arithmetic problem. The program requires the average 
time of completion M, and the maximum time allowed which is denoted 
as T. In the case considered here, we assume an average time M = 4 
and a maximum time of T = 20. The program has been run for N = 1000. 
ANSWER prints out the relative frequency of times in the intervals 
(k, k + l] fork= O, 1, 2, ••• , 19. As one can see from the output 
these relative frequencies are not equal. An idea of the distribu-
tion of these times can be gotten by considering the graph of the 
histogram which indicates the relative frequency for each interval. 
For example, the height of the bar associated with the first interval 
is 0.223, with the second is 0.160, and with the last is 0.005. The 
graph of the histogram is shown in Fig. 4.1.1. The average time for 
the 1000 trials was 3.89. However the distribution of times has a 
long tail to the right. The relative frequency of a time of 4 min 
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ANSWER 

10 om F(25) 
20 FOR I = l TO 20 
30 LET F(I)=O 
40 NEXT I 
SO PRINT "HOW l-IANY";" SIMULATED ";"TIMES" 
60 INPUT N 
70 PRINT "WHAf IS MAX ";"TIME" 
BO INPUT T 
90 PRl.llT "WHAf IS AVERAGE"; " TI~E?" 

100 HIPUT Ii 
110 FOR I = l ION 
120 LET Z • RNI> 
130 LET X =-LOG(l-Z)*M 
140 FOR J = l IO 20 
150 IF X > J*T/20 THEN 170 
160 GO TO 180 
170NEXTJ 
180 LET F(J)=F(J)+l 
190 NEXT I 
200 LET A•O 
210 LET B=O 
220 PRINT "FREQUENCY"; " COUNTS ~'OR ";"INTERVALS" 
2 30 PRINT 
240 PRINT "INTERVAL NO,","LOWER ENO","UPPER END","REL FREQ","CUM FREQ" 
250 FOR J = l TO 20 
260 LET A =A+F(J)*(J-l/2)*T/(20*N) 
270 LET B = B+F(J)/N 
280 PRINT J,(J-l)*T/20,J*I/20,F(J)/N,B 
290 NEXT J 
300 PRINT 
310 PRINT "AVERAGE•";A 
320 END 
* 
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RUM 
mw MAMY SIMULATED TIMES 
1 1000 
WHAT IS MAX TIME 
1 20 
WHAT IS AVERAGE TIME? 
1 4 
FREQUEMCY COUMTS FOR IMTERVALS 

IMTERVAL NO• LOW ER EMD 
1 0 
2 1 
3 2 
4 3 
5 4 
6 5 
7 6 
8 7 
9 8 
10 9 
11 10 
12 11 
13 12 
14 13 
15 14 
16 15 
17 16 
18 17 
19 18 
20 19 

AVERAGEa 30889 

* 

UPPER 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

EMD REL FREQ CUM FREQ 
0·223 00223 
0o16 00383 
00138 00521 
0.111 00632 
0.093 00725 
00063 00788 
00046 0·834 
00047 00881 
0.033 0·914 
111.022 lllo936 
0.012 00948 
0.008 00956 
0.008 00964 
0.008 00972 
0.005 0.977 
00007 00984 
0.005 00989 
0. 00989 
00006 0.995 
00005 1 
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0.2 

0.1 

0 4 8 12 16 20 

Fig. 4.1.1 

or less is 0.632, but a substantial number of children require a long 
time to answer the question. Note that the total area of the histo-
gram is 1 as the base of each bar is 1 and the height is the relative 
frequency of that interval. Hence the total area is the relative 
frequency of all the intervals which is 1. 

The program NETWT simulates the net weights of 1000 packages of 
a breakfast food. Here the input to the program is the number of 
packages N, the true average weight M, and a measure of variation, 
the standard deviation. The program prints out the relative frequen-
cies of 17 intervals with the central interval having a midpoint of M. 
The program has been run for N = 1000, M = 16, and a standard devia-
tion of 0.5. The intervals all have length 0.25, so that the histogram 
of these relative frequencies would have a total area of 0.25. In 
order to make the graph comparable with the previous one, we should 
have a total area of 1. To accomplish this, each bar of the histo-
gram has a height four times the corresponding relative frequency. 
Proceeding in this way the area of the bar of the histogram gives 
the relative frequency for the interval. Note that the height is no 
longer a relative frequency. This histogram appears in Fig. 4.1.2, 
which indicates symmetry of the distribution about a central value. 
The program also points out the average net weight, which in this 
case was 15.9822. This shows close correspondence with the theoret-
ical value, which we would expect for a large number of observations. 

The program ERRORS simulates a sample of N rounding errors as 
in the first paragraph. The program described has been run for 
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NEIWT 

10 REM SAMPLE FROM NORMAL 
ZO DD! F( 20) 
30 FOR I = l TO 18 
40 LEI F(I)•O
50 NEXT I 
60 PRINT "WHAT IS SAMPLE";" SIZE?" 
70 INPUT N 
80 PRINT "WHAT IS TRUE";" MEAN?" 
90 I!!IPUI M 
100 PRINT "WHAT IS ";"SID DEV?" 
110 INPUT S 
lZO FOR I = l TO N 
l 30 GOSUll 340 
140 LET X • M+S*Z 
150 FOR J= l IO 17 
160 IF X > M+(2*J-l)/4*S-4*S THEN 180 
170 GO TO 190 
180 NEXT J 
190 LET F(J)•F(J)+l 
200 NEXT I 
ZlO LET A = 0 
220 LET II • 0 
Z 30 PRINT "FREQUENCY ";"COUNTS FOR "; "UITERVALS" 
240 PRINT 
250 PRINT "INTERVAL NO.","LOWER ENl>","UPPER END","FREQENCY","CUM FREQ" 
260 FOR J• l TO 17 
270 LET A= A+(F(J)/N)*(M+(J-l)/2*S-4*S)
280 LET B • B+F(J)/N
290 LET L=M+(2*J-3)/4*S-4*S 
300 LET R•L+S/2
310 PRINT J,L,R,F(J)/N,B 
320 NEXT J 
325 PRINT "AVERAGE=";A 
330 GO IO 380 
340 LET Zl•SQR(-Z*LOG(RND)) 
350 LET Z2•6.2831853*RND 
360 LET Z•Zl*COS(Z2) 
370 RETURN 
380 ENI> 
* 
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RUN 

WHAT IS SAMPLE SIZE? 
? 1000 
\\HAT IS TRUE MEAN? 
? 16 
WHAT IS STD DEV? 
? • s 
FREQUENCY COUNTS FOR INTERVALS 

INTERVAL NOo LOWER END UPPER END 
1 13.875 14·125 
2 140125 14.375 
3 140375 14·625 
4 14· 625 140875 
5 14.875 15·125 
6 150125 150375 
7 15· 375 15·625 
8 15·625 15·875 
9 15·875 160125 
10 16.125 160375 
11 160375 160625 
12 16. 625 16·875 
13 16·875 17·125 
14 17 o 125 17·375 
15 17. 375 170625 
16 17·625 170875 
17 170875 180125 

AVERAGE= 1509822 

* 

FREQUENCY CUM FREQ 
0 0 
0.002 0.002 
l!lo 001 0.003 
0.009 0.012 
00036 00048 
0.055 0.103 
0.121 0·224 
0.198 00422 
00188 0o61 
0.181 00791 
0.118 00909 
00055 00964 
0.022 0·986 
0.011 00997 
0.003 1 
0 1 
0 1 
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Fig. 4.1.2 

N = 1000. ERRORS prints out the relative frequency of observations 
in the intervals (-0.5 + k/10, -0.5 + (k + 1)/10] for k = O, 1, 2, 
... , 9. As can be seen from the output, in this case the relative 
frequency of observations in each of the intervals is close to 0.100 
for each interval. In order to have a histogram with total area 
equal to 1 we must use a height of ten times the relative frequency 
for each interval as the length of each interval is 1/10. Again the 
area of a bar of the histogram represents the relative frequency 
associated with each interval. A graph of this histogram appears in 
Fig. 4.1.3. Note again that the height of a bar of the histogram is 
not a relative frequency but a relative frequency multiplied by 10. 

It is the properties of the histograms representing relative 
frequencies which is mirrored in the formal definition of a probabil-
ity distribution on an interval of the real line. The first property 
is that the relative frequency associated with an interval is given 

10 

-

-0.5 0 0.5 x 

Fig. 4.1.3 
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ERRORS 

10 Dllt F(25)
20 FOR I • l TO 20 
30 LET F(I)•O 
40 NEXT I 
50 PRINT "HOW MANY ";"SI~ULATEO ";"ERRORS?" 
60 I:.PUT N 
70 FOR I • l TO N 
80 LET Z •RND-.5 
90 FOR J• l TO 10 
100 IF Z>-.S+J/10 THEN 120 
110 GO TO 130 
120 NEXT J 
130 LET F(J)•F(J)+l 
140 NEXT I 
150 LET A•-.5 
160 LET T•l 
170 LET B•O 
180 PRINT "FREQUENCY"; " COUNTS FOR ";"INTERVALS" 
190 PRINT 
200 PRINT "INTERVAL NO.","LOWER END","Ul'PER ENU'',"REL FREQ","CUM FREQ" 
210 FOR J• l TO 10 
220 LET A•A+F(J)*(J-l/2)*T/(lO*N)
230 LET R • B+F(J)/N 
240 PRINT J,-.5+(J-l)*T/l0,-.5+J*T/lO,F(J)/N,B
250 NEXT J 
260 PRINT 
270 PRINT "AVERAGE•";A 
280 END 

* 
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by the area of the histogram above the interval. The second property 
is that the total area under the histogram describing relative fre-
quencies is 1 because the total of the relative frequencies is 1. 
In the next section we will define continuous probability distribu-
tions. The concept of probability will be expressed by area under 
a curve. The area under a curve and above an interval will define 
the probability associated with the interval. The total area under 
the curve, as the total area of the histogram, will be 1. 

Exercises 4.1 

1. Run the program ANSWER with M = 2, T = 10, and N = 1000, thus 
simulating 1000 times. Plot a histogram by hand for your obser-
vations so that the area under the histogram is 1. 

2. Write a program to simulate N selections of a real number on the 
interval [O, 2) in such a way that intervals of equal length have 
the same probability. Run the program with N = 1000, and plot a 
histogram using intervals of length 0.2 so that the area under 
the histogram is 1. 

4.2 CONTINUOUS PROBABILITY MEASURES AND RANDOM VARIABLES 

A continuous probability distribution will assign probabilities to a 
continuous outcome space S as defined in Sec. 4.1. It is not possible 
to proceed as in the case of a discrete outcome space. If an assign-
ment of positive probabilities were made to every point of an interval 

I = {xla ~ x ~ b} for b > a, it can be shown that 

L P(x) = co 

x I 

The interval would be assigned a probability which would be arbitrar-
ily large. Instead we assign probabilities to intervals of the real 
number line by means of a nonnegative function f(x). Areas under 
f(x) above an interval will represent the probability associated with 
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the interval. The total area under f(x) must be l so that the total 
probability assigned to the real line is 1. Formally, we state 

DEFINITION 4.2.1. A probability model for a continuous outcome space 
S is defined by a real-valued function f (x) satisfying 

1. f(x) ~ O, for all real x. 
2. The function f(x) has at most a finite number of discontinuities 

on any finite interval of the real line. 

3. 1.:=, f(x) dx =JS f(x) dx = 1. 

The function f(x) is called a probability density function (abbrevi-
ated as pdf) and f(x) is not a probability. 

If f(x) ~ 0 is defined only on S satisfying ls f(x) dx = 1 and also 
property 2, the definition of f(x) can be extended to the whole real 
line by defining f(x) = 0 on the complement of S. Hence one can 
always think of defining f(x) on the whole real line although f(x) 
may only be positive on a finite interval. Finally, the probability 
associated with any interval of the real line is defined by 
lb f(x) dx, the area under f(x) above the interval [a, b].a 

As an example of a class of probability density functions assign-
ing probability to the interval [O, l], we may consider 

(k + l)xk 
f(x) =l

0 elsewhere 

where we assume that k = O, 1, 2, •••• For each such integer k, a 
different probability measure is assigned. For k = 0 and k = 1, the 
graphs of these density functions appear in Fig. 4.2.1. In the case 
that k = O, we see that intervals on [O, l] are assigned a probability 
equal to the length of the interval as lb 1 dx = b - a. For instance,a 
the probability associated with I = [1/2, 3/4] is 1/4. On the other 
hand, fork= l, that is, f(x) = 2x on [O, l], the probability 



114 

1.0 

Continuous Outcome Spaces 

1.0 1.0 

Fig. 4.2.l 

associated with the interval I is l ij~ 2x dx = x2 jij~ = 5/16. 
Another point to note is that for any x0 E [O, 1). we have P(x0 ) = 
l Xo f(x) dx = O. The property that points have zero probabilityxo 
holds for any continuous space S assigned a probability measure by 
a probability density function as described in Definition 4.2.1. 
Hence for such a probability assignment the intervals (a, b), (a, b], 
[a, b), and [a, b] are all assigned the same probability, because 
the probability contributed by the endpoints is zero. 

As in the discrete case, a random variable is a function "Which 
assigns a numerical value to points in S. If S is a continuous out-
come space, then the points of S are real values, so that the function 
is a real-valued function of a real variable. Perhaps unfortunately, 
this function is widely denoted as X(w) for w E S. Although not 
every real-valued function may define a random variable, the excep-
tions are rarely encountered in practice. The most common function 
is X(w) = w, the identity function. As before the probabilities 
associated with the random variable X are inherited from the proba-
bility assignment to S. If X(w) = w, then 

P(a ~ X(w) ~ b) = P8(a ~ w ~ b) ,,,; 1! f(x) dx 

where f(x) is the probability density function assigning probabilities 
to the continuous outcome space s. In this case we say that f (x) is 
the probability density function for the random variable X and write 
P(a < X < b) = lb f(x) dx for any interval [a, b]. For example, the - - a 
density function f(x) = 1 for [-0.5, +0.5] and f(x) = 0 elsewhere 
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would be the natural pdf for the random variable X representing the 
error made in rounding a real number to the nearest integer. 

Another important function associated with a probability assign-
ment to a continuous outcome space S is the function 

F(x) = l 
-"" 

x f(x) dx 

where f(x) is a pdf. F(x) represents the probability of the event 
{wlw ~ x} a subset of S. F(x) = P(X ~ x) and F(x) is called the 
cumulative distribution function (cdf) for X as in the discrete case. 
Except at the points of discontinuity of f(x), the fundamental 
theorem of the calculus yields the relationship 

F' (x) = f(x) 

For example, if 

1 in [O, l] 
f(x) 

0 elsewhere 

the graph of F(x) is given in Fig. 4.2.2. We see that F(x) = 0 for 
x < O, F(x) = x for 0 ~ x ~ 1, and F(x) = 1 for x < 1. We see that 
F' (x) = 0 for x < O, F' (x) = 1 for 0 < x < 1, and F'(x) = 0 for 

x > 1, while the derivative is not defined at x = 0 and x = 1. 
Hence the density function is given by F'(x) except at the points 
of discontinuity of f(x), namely x = O and x = 1. 

Let us consider the waiting time T until the first Poisson event 
from a time point which we label t = O. The corresponding·outcome 
space is 

LO~L ,.., 
1.0 

Fig. 4.2.2 
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s = {tit > o} 

If the rate of occurrence of Poisson events is A per unit of time, 
we know that the number of events in a time period of length t has 
the Poisson distribution with parameter At. Let F(t) represent the 
cumulative distribution function for the random variable T. We see 
that 

P(T > t) P(no Poisson events in [O, t]) 

or 

-At1 - F(t) e for t > O 

Also F(t) = 0 for t < O. Hence we can obtain the pdf for T by dif-
ferentiating F(t) except at t = 0. We find 

for t > 0 

f(t) = 
O for t < 0 

where the function has arbitrarily been assigned the value of 0 at 
t = O. That f(t) is a density function can be inunediately checked 
by simple integration. Graphs of the cdf and pdf for T appear in 
Fig. 4.2.3. 

As in the case of a discrete random variable, it is clear that 
the cumulative distribution function of a continuous random variable 
satisfies the following properties: 

1. F(x1 ) ~ F(x2 ) for x1 < x2 • 

2. lim F(x) = 1.x + 00 

3. lim F(x) = O. x + -"" 

Fig. 4.2.3 
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These properties are demonstrated by the graphs of the cumulative 
distribution functions which appear in Figs. 4.2.2 and 4.2.3. Proofs 
of these properties are left to the problems. We also remark that 
if two continuous random variables have the same distribution function, 
then the corresponding random variables are said to have the same 
distribution. 

Problems 4.2 

1. The probability density function of a random variable X is 
defined as follows: 

cx2 on [-1, l] 
f(x) 

0 elsewhere 

(a) Find the constant c. 
(b) Find the cumulative distribution function F(x) of X. 
(c) Find P(-0.5 ~x ~ 0.5). 

2. The cumulative distribution function of the random variable 
X is given by 

0 for x < 1 

F(x) = 
1 1 

- x3 for x ~ 1 

(a) Find the pdf for X. 
(b) Find P(X ~ 2). 
(c) Graph f(x) and F(x). 

3. The time required for an individual to complete a task is a 
random variable T (measured in minutes). The pdf for T is 
f(t) = (l/3)e-t/3 fort > 0 and f(t) = 0 elsewhere. 
(a) Show that l~ (l/3)e-t/3 dt = 1. 

(b) Find P[T ~ 3]. 
(c) What is the probability that at least one of two individuals 

chosen at random will complete the task in 3 min or less. 
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4. Show that the following are probability density functions for 
random variables on the indicated intervals. The functions are 
O outside these intervals. 
(a) f(x) = sin x on (0, n/2] 
(b) f(x) l/(nil-x2 ) on (-1, 1) 

(c) f(x) = 6x(l - x) on [O, l] 

5. Find the cumulative distribution functions for the random vari-
ables of Problem 4.2.4. 

6. Assume that a continuous random variable is defined on (-00 , 00 ) 

by the pdf f(x). Prove the following: 
(a) lim ~ F(x) = 1, and interpret this statement probabilist-x ~ 00 

ically. 
(b) The requirements on the pdf of a random variable X as defined 

in this section imply that li~ ..,.. -fXJP(X ~ b) = O. Interpret 
this statement probabilistically. 

7. The family of exponential distributions is defined by the proba-
bility density functions: 

J..e-Ax for x ~ 0 and fixed A > 0 

f(x;>..) = 
0 for x < 0 

(a) Find P(X > b) for a constant b. 
(b) Find P(X >a+ bjX >a). 
(c) What family of discrete random variables has the property 

analogous to that in part (b)? 

8. Consider two independent selections from the distribution 
described by density function f(x) = 1 on [O, l]. Such a selec-
tion can be thought of as the selection of a point in the square 
0 ~ x ~ 1, 0 ~ y ~ 1, where the x coordinate represents the 
first selection and the y coordinate the second selection. The 
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y 

(0, I) 1------.. (I, I) 

Fig. 4.2.4 

area of a subset of this unit square gives the probability of 
the subset. We wish to find the pdf for Z = X + Y. The graph 
below shows that for 0 < z < 1, P[Z ~ z] = z2/2 as the area of 
the shaded triangle is z2/2. 

(a) Find the cdf for Z for z < O, z > 2, and 1 < z < 2. 
[Note: The cdf is not z2/2 on (1, 2).] 

(b) Find the pdf for z. 

4.3 MOMENTS OF A CONTINUOUS RANDOM VARIABLE 

In the case in which one has a large number of measurements of a 
continuous variable, it is customary to classify these observations 
in a tabular format called a frequency table. The frequency table 
is a device for summarizing a large number of observations into a 
concise readable format. The interval on which the observations may 
fall is divided into nonoverlapping subintervals generally of equal 
length. The number of observations in each subinterval and the rela-
tive frequency of observations is displayed. The output of the 
program ERRORS gives an example of a frequency table. In this example 
1000 simulated round-off errors are classified into 10 subintervals 
of (-0.5, 0.5]. These intervals, (-0.5 + (k - 1)/10, -0.5 + k/10] 
fork= 1, 2, ••• , 10, each have a length of 0.1 and are nonoverlap-
ping. The corresponding frequency table appears below: 



120 Continuous Outcome Spaces 

Interval Boundaries Class mark n. 
l. 

f. 
l. 

l -0.5, -o.4 -0.45 102 0.102 
2 -o.4, -0.3 -0.35 103 0.103 
3 -0.3, -0.2 -0.25 95 0.095 
4 -0.2, -0.l -0.15 93 0.093 
5 -0.l, o.o -0.05 103 0.103 
6 o.o, 0.1 0.05 106 0.106 
7 0.1, 0.2 0.15 102 0.102 
8 0.2, 0.3 0.25 106 0.106 
9 0.3, o.4 0.35 107 0.107 

10 o.4, 0.5 o.45 83 0.083 

The average value of the 1000 observations is computed from the 
frequency table as 

The value xi is the midpoint of the ith subinterval. This value is 
referred to as the class mark. In computing this average all obser-
vations in the ith interval are treated as if their true value 
equaled xi. If we denote the height of the ith bar of the histogram 
in Fig. 4.1.3 as hi and the length as 6ti, recall that fi hi 6ti. 
Hence we can write 

It is this form of the computation of x which is mirrored in the 
definition of the expectation of a continuous random variable X. If 
we consider observing a very large number of round-off errors, the 
number of subintervals k can be made large as well. At the same 
time 6t. = l/k will become small. Hence the expression given above 

J. 

for xwill be an approximation to the integral of a function with 
ordinate at x. of x.h(x.). As the probability density function in 

J. J. J. 

the theoretical model corresponds to the height of the histogram, 
it is natural to make the following definition: 
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DEFINITION 4.5.1. The expected value of the continuous random 
variable X with probability density function f(x) is given by 

J00E(X) = xf(x) dx 
-00 

Technically, we require J:00 lxlf(x) dx < 00 , which will be true in the 
text except when specifically mentioned. In those other cases the 
expectation is said not to exist. 

Let us consider the example given in Sec. 4.2 of the family of 
random variables ~ defined by the probability density functions 

on [O, l] 

0 elsewhere 

where a different random variable is defined for each positive 
integer k 

=1
2 J~ x•2x dx =~ 

and in general, 

E(X ) = J1 kxk dx = _k_-x. 0 k+l 

Before considering another example we introduce a famous integral. 
The following integral 

Joo0 a.-le-x dx = r(a.)x 

can be shown to converge for a. > 0 and is called the gamma function 

of the real variable a.. An important property of the gamma function 
a.-l -xcan be demonstrated by letting u = x and dv = e dx and then 

integrating by parts. 

00r(a.) =Jou dv = -xa.-le-x1 00 

0 + (a. - l ) Joo0 xa.-2e-x dx 

(a. - l)r(a. - l) if a. - l > 0 
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It is easy to compute the value of the gamma function for positive 
l oo -X -x,oointegers. First f (1 ) = O e dx = -e O = 1. Secondly, by 

repeated integration by parts 

r(n) = (n - l)f(n - 1) = (n - l)(n 2)f(n - 2) 
(n - l)(n - 2)•••(2)(l)f(l) (n - l)! 

Hence the gamma function can be thought of interpolating through the 
values 

(l,O!), (2,1!), (3,2!), ... , (k, (k - l)!), ... 

As another example of an expected value computation, consider the 
random variable T of Sec. 4.2 giving the time until the first Poisson 
event , where the event s have arriv· al rat e A.' The pdf i·s f(t) -- A'e-At 
for t > 0 and f(t) = 0 for t ~ O. Hence 

00 -At 1 00 -u I.lgl 1
E(T) = f 0 A.te dt =If0 ue du = A = I 

The fact that the expected waiting time until the first event is the 
reciprocal of the arrival rate coincides with what intuition would 
suggest. 

DEFINITION 4.3.2. If g(X) is a function of the continuous random 
variable X with pdf given by f(x), then 

E(g(X)) = /~(x)f(x) dx 

Again we assume the latter integral converges absolutely. As in the 
discrete case the kth moments and kth central moments are defined, 
respectively, as 

and 

00 k 
µ

k 
= E(X - µ)k = !_00 (x - µ) f(x) dx 
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if these integrals are absolutely convergent. As an example of a 
variable for which the expectation is not defined, consider X to 
have pdf given by f(x) = l/x2 for x ~ 1 and f(x) = 0 for x < 1. We 
see that 

1 
x 1 

- 11"" 
but when we try to compute E(X), we obtain l~ (l/x) dx which diverges. 
The variance of a continuous variable X is defined by: 

DEFINITION 4.3.3. The variance of a random variable X is 
2= E(X - µ) the second central moment of X.µ2 

The properties of random variables given in Theorem 3.2.1 carry 
over to the continuous case, almost word for word. The proof is 
omitted. 

THEOREM 4.3.1. If Xis a continuous random variable defined on a 
continuous s~le space S, then if E(g(X)) and E(h(X)) exist, 

1. E(kg(X)) = kE(g(X)) for any constant k. 
2. E(g(X) + h(X)) = E(g(X)) + E(h(X)). 

COROLLARY 1. For any constant k, E(k) O. 

COROLLARY 2. For any constant k, Var(k) O. 

COROLLARY 3. Var(kX) k2var(X). 

COROLLARY 4. Var(X) 
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The definition of the standard deviation of a continuous random 
variable X is analogous to the definition in the discrete case: 

DEFINITION 4.3.4. If a continuous random variable X has variance 
cr2X' the standard deviation of xis defined to be IVar(X) = crx. 

The Chebyshev inequality and its implications carry over in a 
straightforward manner from the discrete case. It is stated in the 
following: 

THEOREM 4.3.2. If a continuous random variable X has variance, then 
for any £ > 0, the following inequality holds: 

cr2 
P( Ix - µI ~ £) ~ 2 

£ 

Again we obtain the result that P(IX - µI~ kcr) ~ l/k2 , yielding 
a bound on the probability of an observation k or more standard 
deviations from the theoretical expectation. The proof of the 
theorem is exactly analogous to the discrete case, with integration 
replacing summation and is left as an exercise. 

As examples of variance calculations let us consider again the 
family of random variables with density f'unctions fk(x) = kxk-l on 

[O, l] and fk(x) = 0 elsewhere. We find 

J1 kE(X2 ) = =---k 0 k + 2 

Hence, cr2Xk k/{k + 2) - (k/(k + 1))2 k/(k + 2)(k + 1)2• In the 
particular case k =1, that is, f(x) = 1 on [O, 1), we obtain 

2 cr x = 1/12.
1 

For the example of the random variable T representing the wait-
ing time until the first Poisson event, we found 
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for t > 0 and E(T) = I1 

where A represented the arrival rate of the Poisson events. We find 

using the substitution u =At as before. Hence cr2T = 2/A2 - l/A2 = 
l/A2• The standard deviation of the first arrival time is l/A which 
is also the expected waiting time. This could not be predicted by 
intuition. 

The response times in the program ANSWER have been generated 
from a continuous distribution with a probability density function 

f(t) Ae-At for t > O 

The value of E(t) = l/A is available as input in response to the 
request for the average response time. The value of E(T) = 4 has 
been used in the sample run of ANSWER. In the output of this sample 
run let us observe the frequency of observations of times equal to 
or greater than 16 = E(T) + .30"T. We see that this frequency is 
0.016. This is far less than the Chebyshev upper bound given by 

P( IT - E(T) I ~ .30"T) ~ ~ = 0.111 

However, using the knowledge that f(t) = (l/4)e-t/4 fort > O, we 
co ( -t/4 -t/4 loofind P( IT - 4 I ~ 12) = P(T ~ 16) = J16 l/4)e dt = -e 16 = 

e-4 = 0.0183. This is in substantial agreement with the observed 
frequency of 0.016. Again it should be noted that the Chebyshev 
inequality, although a correct probability statement, is of little 
value for calculating probabilities. For this, knowledge of the 
probabilistic law generating the observations is required. The 
question of which probability law has generated a set of numerical 
observations is a statistical one, which will be addressed in the 
sequel. 



126 Continuous Outcome Spaces 

Problems 4.3 

1. Find E(X) for random variables with the following pdf's. 
(a) f(x) = 1/4 on [O, 4], and f(x) = 0 elsewhere. 
(b) f(x) = 6x(l - x) on [O, l], and f(x) = 0 elsewhere. 
(c) f(x) = 2e-x2/lir for x ~ 0, and f(x) = 0 elsewhere. 

2. Find the Var(X) for the random variables with the pdf's given 
in parts (a) and (b) of Problem 4.3.1. 

3. If X is a continuous random variable for which E(X) exists and 
the pdf of Xis symmetric about 0 (that is, f(-x) = f(x) for 

0 IX>all x). prove E(X) = o. Hint: E(X) = J_00 xf(x) dx + J0 xf(x) dx. 

4. Let X have pdf f(x) = 1 on [O, l] and f(x) = O elsewhere. Find 
(a) E(sin1Tx) . 

lbJ ~ for k = 1, 2, 3, 
(c) µk for k = 1, 2, 3, 

5. Prove Corollaries 1-4 of Theorem 4.3.1. 

6. Let X have pdf f(x) = x on [O, l] and f(x) = 2 - x on [l, 2]. 
Find E(X) and Var(X). 

7. Let X have pdf f(x) = e-x for x ~ 0 and f(x) = 0 elsewhere. 
E(X) =ax= 1. Find P(jx - µj ~ kcrx) fork= 1, 2, 3, 4 and 
compare these probabilities With the Chebyshev upper bounds. 

8. Let X have pdf f(x) = l/1T(l + x2). 
(a) Find F(O), where F is the cdf for X. 
(b) What can be said about E(X)? (See note to Definition 

4.5.i.) 

9. If the pdf of a random variable X is f(x) = 2/x3 for x ~ 1 and 
f(x) = 0 for x < 1, show that E(X) exists and that Var(X) does 
not exist. Find E(X). 

10. Prove the Chebyshev inequality for a continuous random variable 

with variance cr2 • Hint: cr2 = JI I< (x - µ) 2f(x) dx +x-µ E2 
Jlx-µl~E(x - µ) f(x) dx. 



4.4 Special Continuous Random Variables 127 

4.4 SPECIAL CONTINUOUS RANDOM VARIABLES 

In this section we consider several cases of particular families of 
random variables which have important applications in theory and 
practice. 

4.4.1 The Uniform Random Variable 

The uniform random variable takes on values on an interval [a, b] of 
the real line in such a way that each interval of [a, b] is assigned 
a probability in proportion to the length of the interval. The prob-
ability density function for this class of random variables is defined 
to be 

_l_ for x on [a, b] 
f(x) =I : - a 

elsewhere 

By integration we find the cumulative distribution function to be 
given by 

F(x) x - a on [a, b]= b - a 

for x < a 

for x > b 

In Fig. 4.4.1 graphs of f(x) and F(x) are presented. The expectation 
of this random variable is obtained in a straightforward manner by 
integration. 

b x a + bE(X) = f -- dx = - -2a b - a 

Similarly we find Var(X) = (b - a) 2/12. The uniform distribution is 
important in describing observations which occur "randomly" on an 
interval of the real line, such as errors in rounding numbers, the 
value in radians of an angle selected "at random" on [O, 1T/2], the 
value of a real number selected by a "spinner" on a circle of unit 
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f (x) 

a b a b 

Fig. 4.4.1 

circumference, and other similar selections. The uniform distribu-
tion on [O, l] has particular practical importance which we shall 
see subsequently. 

4.4.2 The Gamma Distribution 

The probability density function for the family of gamma distribu-
tions is given by 

a.-1 -x/ax e for x > 0, a > 0, and a > 0 

f(x;a,al 
0 elsewhere 

By letting v = x/a, we see that 

1 a.-1 -v !:..illl00 

Jo
00 

f(x;a,al dx = r(a) Jo v e dv = r(a) =1 

The expectation and variance of the gamma distribution are easy to 
calculate. 

( ) 1 oo a -x/a ___@_ oo a -v 
E X = r(a) JO x e dx = r(a) JO v e dv 

= arf(a) l) = a.a~~~~ =a.a 

Similarly the variance can be shown to be a.a 2 • The family of expo-
nential distributions are gamma distributions with 
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a. = 1 and 13 

and hence pdf 

>.e-h for x > O 
f(x;>.) 

0 otherwise 

As an example of the usefulness of the gamma distribution let us 
consider the waiting time T until the second Poisson event, when the 
events occur with arrival rate >.. 

P(T > t) P(O or 1 events in [O, t]) 

1 - F(t) e-At + (>.t)e->.t 

and hence 

-At -AtF(t) = 1 - e - (>.t)e 

By differentiation we find 

This is the pdf for a gamma random variable with 13 = l/A and ex = 2. 

Hence the expected waiting time until the second Poisson event is 
exl3 = 2/A, which coincides with intuition. It can be shown that the 
pdf of the waiting time Tk until the kth Poisson event is 

k k-1 -At>. t e( ) for t > 0fT t = r(k)
k 

Hence Tk has the gamma distribution with ex = k and 13 = l/A. 
The program WAIT simulates N times until the kth Poisson event 

in the case that the Poisson events occur with arrival rate >.. The 
number of times N, the arrival rate >., the value of k, and an upper 
bound on the interval on which the times are recorded are input in 
response to questions asked by the program. The program outputs the 
frequency table of the resulting times. It is only necessary to run 
the program and to answer the questions asked. A sample run is shown 
in the case that ). =1, k =2, and N =1000. The actual distribution 
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WAIT 

10 DIM F(25) 
20 FOR I • l TO 20 
30 LET F(l)=O 
40 NEXT I 
50 PRINT "HOW MANY ";"WAITING Tl'IES?" 
60 INPUT N 
70 PRINT "WHAT IS THE";" ARRIVAL RATE?" 
80 INPUT L 
90 LET l'I • l/L 
100 PRINT "WAIT UNTIL KTH "; "EVENT."'; " WHAT IS K?" 
110 lllPUT K 
120 PRINT "WHAT IS "; "MAX WAIT?" 
130 lllPUT T 
140 FOR I • l TO N 
150 LET X • 0 
160 FOR J = l TO K 
170 LET Z • RND 
180 LET X • -LOG(l-Z)*M +X 
190 NEXT J 
200 FOR J - l TO 20 
210 IF X > J*T/20 THEN 230 
220 GO TO 240 
230 NEXT J 
240 LET F(J)=F(J)+l 
250 NEXT I 
260 L~:T A •O 
270 LET B•O 
280 PRINT "FREQUENCY ";"COUNTS FOR ";"INTERVALS" 
290 PRINT 
300 PRINT ''INTERVAL NO.","LOWER END","UPPER END","REL FREQ","CUM FREQ" 
310 FOR J • l TO 20 
320 LET A • A +F(J)*(J-l/2)*T/(20*N)
330 LET B • B +F(J)/N 
340 PRINT J,(J-l)*T/20,J*f/20,F(J)/N,B 
350 NEXT J 
360 PRln 
370 PRINT "AVERAGE•",A 
380 END 
* 
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RJN 
HJW MANY WAITING TIMES? 
1 1000 
WHAT IS THE ARRIVAL RATE? 
1 1 
WAIT UNTIL KTH EVENT• WHAT IS K? 
1 2 
WHAT IS MAX WAIT? 
1 20 
FREQUENCY COUNTS FOR INTERVALS 

INTERVAL NO• LOWER END 
1 0 
2 1 
3 2 
4 3 
5 4 
6 5 
7 6 
8 7 
9 8 
10 9 
11 10 
12 11 
13 12 
14 13 
15 14 
16 15 
17 16 
18 17 
19 18 
20 19 

AVERAGE= 10916 

* 

UPPER END 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

REL FREQ CUM FREQ 
0.271 00271 
0.349 0o62 
00198 00818 
0ol06 0.924 
00046 0.97 
0.02 0.99 
00006 00996 
0.002 00998 
0.001 00999 
0 0.999 
0 00999 
0.001 1 
0 1 
Ill 1 
0 1 
0 1 
0 1 
0 1 
0 1 
0 1 
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6 8 10 

Fig. 4.4.2 

is a gamma distribution with ~ = 2 and S =1. A histogram of the 
resulting times appears in Fig. 4.4.2. The corresponding probability 
density function for the gamma distribution f(t) = te-t for t > 0 is 
also graphed in Fig. 4.4.2. The correspondence between the histogram, 
which has area 1, and the probability density function f(t;2,l) for 
the gamma distribution is evident from the figure. 

4.4.3 The Normal Distribution 

A very important distribution, widely used in practice, is the normal 
distribution. The normal distribution is not a single distribution, 
but a two-parameter family of distributions. The probability density 
function for the normal random variable is 

2 1 -(x-µ) 2/2cr2 
~~ -00f(x;µ,o ) = e < x < oo, a > o 
l21rcr 

In order to show that the area under this curve is 1, the transforma-
tion z = (x - µ)/cr is made and one obtains 

2 1 -z2/2f(x;µ,cr ) dx = - f 00 e dzl21T -CO 

The latter integral can be shown to be 1, but the proof requires the 
calculus of more than a single variable. We shall accept this fact 
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here (while including the method of proof in the problems). To 
compute E(X), the transformation above is made yielding 

E(X) = f 00 xf(x;µ,a2) dx = -1 /00 (µ + crz)e-z2/2dz 
-00 -00h1f 

2 e-z /2 
µ - a---

h:rr 

Similarly the variance is calculated as 

200 2 0"2 00 2 -z /2dVar(X) !_~ (x - µ) f(x;µ,cr) dx = - f z e z- h1f -00 

-z2/2Letting u = z and dv = ze , we obtain 

2
2 -z /2d 2 e-z2/2100 co e-z2/2 lz e z a [-z-~- + f -~- dz/ZIT l21T-00 

-00 

The first term in parentheses in the last expression is 0 and the 
last term is 1. Thus Var(X) = cr2 . The choice of the letters µ and 
a 2 as the names of the parameters is thus justified. 

The moment generating function of the normal random variable 
with parameters µ and o2 is given by 

2 2 
~(t) = etµ + t o /2 

We leave the proof of this fact to the problems. The particular 
normal distribution for which µ = 0 and o2 = 1 is known as the 
standard normal variable. It is denoted by Z and has pdf 

21 -z /2f(z) = -- e -00<z<oo 
l2IT" 

and 
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The following theorem indicates the reason for the importance of the 
standard normal variable. 

2THEOREM 4.4.1. If X is normal with expectation µ and variance a , 
then (X - µ)/cr is a standard normal variable. 

Proof: Using the properties of the moment generating function, 
we have 

-µt/cr µt/cr + t 2 /2e e 

Hence (X - µ)/cr has the mgf of a standard normal variable and there-
fore is distributed as a standard normal variable. We write 

(X - µ)/cr - Z. 

The importance of the standard normal distribution lies in the 
fact that the probabilities associated with any normal distribution 
may be computed from the probabilities given by the standard normal 
distribution. For example, if X - N(µ,cr2 ) (X is normally distributed 
with parametersµ and cr2 ), consider the probability that X has a 
value on [a, b]: 

If we make the transformation Z = (X - µ)/cr, we find 

(b-µ) 2 
a e-z /2

P(a5._X5._b) I --- dz 
(a-µ) hiT 

a 

Here FZ(z) = !~00 f(z;O,l) dz is the cumulative distribution function 
of the standard normal variable. Thus probabilities concerning any 

normal distribution can be reduced to corresponding probabilities 
associated with the standard normal distribution. 
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-3.0 -2.0 -1.0 0 1.0 2.0 3.0 

Fig. 4.4.3 

The values of FZ(z), the cumulative distribution function for 
the standard normal distribution, are available in App. B.I. or 
can be obtained by using the program Z-PROB. It is only necessary 
to input the value of z requested and the computer will calculate 
FZ(z). There is no expression for FZ(z) in terms of elementary 
functions, but this fact does not make the interpretation of the 
normal distribution more difficult than any other continuous distri-
bution. Figure 4.4.3 gives the graph of the probability density 
function for the standard normal variable. The area under this 
curve as a function of z, that is, 

-z 2/2!z _e___ dz 
-CO .f2i 

provides a geometric interpretation of FZ(z). 
As an example of the use of the normal distribution, let us 

assume that scores on the Scholastic Aptitude Test (SAT) are normally 
distributed with µ = 500 and a = 100. What proportion of the popula-
tion ta.king this exam have scores of 630 or less? We write 

P((X - µ) < 630 - 500)P(X ~ 630) a - 100 
P(Z ~ 1.3) = Fz(l.3) 

The value Fz(l.3) = 0.9032, and hence 630 is roughly at the 90th 
percentile of scores on this exam. Suppose we wish to know the score 
x* corresponding to the 67th percentile on this exam. 
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Z-PROB 

10 REM PROGRAM GIVES LOWER TAILED NORMAL PROBABILITY FOR 
20 REM Z VALUE INPUT BY USER 
30 PRINT "WHAT IS THE ";"VALUE OF Z" 
40 UPUT Z 
50 LET Zl= ABS(Z) 
60 LET C•l/SQR(2) 
70 LET Cl• .14112821 
80 LET CZ• .08864027 
90 LET C3•.02743349 
100 LET C4= -.00039446 
110 LET C5=.00328975 
120 DEF FNZ(X)=l-l/(l+Cl*X+cz•x-z+C3*X-3+C4*X-4+C5*x-s)-8 
130 LET P • ,5+,5*FNZ(Zl*C) 
140 LET P = lE-4*(INT(lE4*P))
150 IF Z > 0 THEN 170 
160 LET P • 1-P 
170 PRINT "Z","PROB < Z ";"IN STANDARD ";"NORMAL DIST" 
180 PRINT Z,P 
190 END 
*RUN 
WHAT IS THE VALUE OF Z 

? l 
z PROB < Z IN STANDARD NORMAL DIST 

l 0.8413 

*RUN 
WHAT IS THE VALUE OF z 

?2 
z PROB < z I 11 STANDARD NORMAL DIST 

2 o. 9772 

*RUN 
WHAT IS THE VALUE OF z 

?O 
z PROB < z IN STANDARD NORMAL DIST 

0 o.s 

* 
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P((X - 500) < (x* - 500))0.67 = P(X ~ x*) 100 100 

P(Z < (x* - 500) = F ((x* - 500)) = O 67 - 100 z 100 • 

However as FZ(0.44) = 0.67 (from App. B.I.) we must have 
(x* - 500)/100 = o.44 or x* = 544. 

Another important property of the normal distribution is given 
2by the following equality for X - N(µ,o ). 

P(jx - µj ~ ko) = P(jzj ~ k) for any k ~ 0 

Hence the probability of an observation of a normal variable falling 
within k standard deviations of µ is the same for all normal distri-
butions. Table 4.4.1 gives these probabilities for X - N(µ,o2 ) for 
several values of k and the corresponding Chebyshev (lower) bounds. 

An observation in a normal distribution will be outside the 
interval (µ - 30, µ + 3o] with probability only 0.0026. Such events 
are unusual. The program NORSAMP samples observations from a normal 
distribution with values of µ and o requested by the program. A run 
with N = 10,000 observations (with µ = O and o = 1) produced 44 or a 
frequency of 0.0044 observations outside the interval [-2.75, 2.75). 
This compares with a theoretical probability of 0.0066. This is 
additional evidence that observations more than 30 units from µ are 

Table 4.4.l Probabilities for X - N(µ,o2 ) 

k P(jx - µj ~ko) 2Bound (1 - l/k ) 

1 0.6826 0.0000 

2 0.9544 0.7500 

3 0.9974 0.8889 

0.99994 0.9375 4 
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NORSAMP 

10 REM SAMPLE FROM NORMAL 
20 DUI F(20)
30 FOR I • l TO 18 
40 LET F(I)=O 
50 NEXT I 
60 PRINT "WHAT IS SAttPLE";" SIZE?" 
70 UIPUT N 
80 PRINT "WHAT IS TRUE";" MEAN?" 
90 INPUT M 
100 PRINT "WHAT IS ";"STD DEV?" 
110 I'IPUT S 
120 FOR I • l TO N 
130 GOSUB 340 
140 LET X • M+S*Z 
150 FOR J• l TO 17 
160 IF X > M+(2*J-l)/4*S-4*S THEN 180 
170 GO TO 190 
180 NEXT J 
190 LET F(J)•F(J)+l 
200 NEXT I 
210 LET A • 0 
220 LET II • 0 
230 PRINT "FREQUENCY ";"COUNTS FOR ";"OITERVALS" 
240 PRINT 
250 PRINT "INTERVAL NO.","LOWER END","UPPER END","FREQENCY","CUM FREQ" 
260 FOR J• l TO 17 
270 LET ~- A+(F(J)/N)*(M+(J-l)/2*S-4*S) 
280 LET B • B+F(J)/N 
290 LET L•M+(2*J-3)/4*S-4*S
300 LET R•L+S/2 
310 PRINT J,L,R,F(J)/N,B 
320 NEXT J 
325 PRINT "AVERAGE•";A 
330 GO TO 380 
340 LET Zl=SQR(-2*LOG(RND))
350 LET Z2•6.2831853*RND 
360 LET Z•Zl*COS(Z2) 
370 RETURN 
380 ENO 
* 
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RUN 
WHAT IS. SAMPLE SIZE? 
? 10000 
\fiAT IS TRUE MEAN? 
? 0 
WHAT IS STD DEV? 
? l 
FREQUENCY COUNTS FOR INTERVALS 

INTERVAL NO• LOWER END UPPER 
l -4·25 -3.75 
2 -3.75 -3.25 
3 -3.25 -2.75 
4 -2·75 -2.25 
5 -2.25 -1.75 
6 -1.75 -1.25 
7 -1.25 -0.75 
8 -0.75 -0.25 
9 -0.25 0.25 
10 0.25 0.75 
11 0.75 1.25 
le l ·25 le75 
13 lo 75 2.25 
14 2.25 2·75 
15 2·75 3.25 
16 3o25 3.75 
17 3.75 4.25 

AVERAGE• -0.00275 

* 

END FREQUENCY CUM FREQ 
0 0 
0·0004 0.0004 
0.0015 0·0019 
0.0091 0.011 
000295 0·0405 
000642 0·1047 
0·1248 lh2295 
0.1751 0·4046 
0.1931 0·5977 
001766 0·7743 
0.1214 0·8957 
0·0642 009599 
0·0284 009883 
0.0092 0.9975 
0.0021 009996 
0. flJ003 0.9999 
0.0001 l • 
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unusual in normal populations and observations more than 4cr units 
fromµ are very rare indeed. (The probability is 0.00006.) 

The importance of the normal distribution lies in the fact that 
many measurements of continuous random variables, such as crop yields, 
lengths, heights, and voltages, can be considered to be approximately 
normally distributed. Secondly, it is often possible to apply a 
real-valued transformation to measurements so that the resulting 
transformed values have a normal distribution. Additionally, the 
mathematical theory of the normal random variable has been highly 
developed, so that the properties of normal random variables are 
well understood. Also, as we shall see, averages of measurements of 
random variable can o~en be thought of as normal random variables, 
even though the measurements themselves are not normally distributed. 

Problems 4.4 

1. Prove that for X uniformly distributed on [a, b], Var(X) 
(b - a)2/12. 

2. Suppose that 0 is uniformly distributed on [O, n/4]. Find 
E(cos 0). 

3. Show that the variance of a gamma random variable is aS2 . 
Hint: Find E(X2 ). 

4. A particular example of the gamma distribution is the chi-square 
distribution with parameter n. The parameters a = n/2 and B= 2. 
Find the expectation and variance of a chi-square variable with 
parameter n (called the degrees of freedom). 

5. Graph the pdf for the gamma distribution for a = 1 and B= 1, 

2, 3 on the same axes. 
00 ~ r r6. Use the fact that 10 e dv = vn/2 to show that f(l/2) = vn. 

7. Using the fact that f(l/2) = ./lf, show that 100 (e-z2/ 2/2:rr) dz 1. -oo 
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8. Show that the moment generating function of X - N(µ,cr2 ) is 
given by eµt + (crt) 2/ 2 . 

9. Verify that E(X) = µ and Var(X) = cr 2 for the normal distribution 
using the result in Problem 4.4.8. 

10. For the standard normal variable Z, find the following proba-
bilities: (a) P(Z .S.. 1.22), (b) P(l.00 .S.. Z .S.. 2.00), (c) 
P(-0.25 ~ Z ~ Q.5), and (d) P(Z ~ 1.28). 

11. Assume that heights of men are distributed as X - N(70,cr2 4). 
(a) What proportion of male heights exceed 6 ft? 
(b) What proportion of male heights are less than 66 in.? 
(c) What height is at the 80th percentile of these heights? 

12. In the standard normal distribution find the values c satisfying 
{a) P(Z ~ c) = 0.025 
(b) P(-c ~ Z .S.. c) = 0.95 
(c) P(Z ~ c) = 0.05 

13. If IQ scores X are considered to be normally distributed with 
µ = 100 and cr = 15, find the following probabilities: 
(a) P(85~x~115) 

(b) P(lOO ~ X ~ 130) 
(c) P(X ~ 100) 
(d) P(X ~ 137-5) 

14. Consider the integral 

2 2 
f~ f~ e-(x +y )/2 dx dy = I 2 

oo -x2/2where I= !0 e dx. Change the integral to polar coordinates 
to evaluate I 2• Prove that 

1 J"" -x2/2-- e dx=l12-IT -oo 

(This problem requires the multivariate calculus.) 
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Exercises 4.4 

1. Use the program NORSAMP to select a sample of the ages of legis-
lators which are assumed to be normally distributed with µ = 50 
and cr = 4. Use N = 2000 and plot a relative frequency histogram 
for the sample obtained. 

2. Write a program to sample N observations from the uniform distri-
bution on [a, b]. The values of a, b, and N should be requested 
by the program as input. The output should include a frequency 
table of the sample. The number of classes should also be input 
by the user. The critical command is LET X = A + (B - A)*RND· 

3. Run the program WAIT with data A = 1, k = 3, and N = 1000 to 
simulate the waiting times until the third Poisson event which 
occur with a rate of 1 per time period. Use a maximum wait of 
20. Construct a histogram of these times. What pdf describes 
the distribution of these waiting times? 

4.5 TRANSFORMATIONS OF CONTINUOUS RANDOM VARIABLES 

Suppose we consider a continuous random variable X defined on a 
sample space S by the probability density function f(x). Consider 
Y ~ rlX), a continuous real-valued function defined on the range of 
X. Let us take Ry to be the range of Y = r(X(s)). It is clear that 
Y is a random variable defined on S with values in Ry given by Y = 
r(X(s)), which is again a real-valued function on S. If [c, d] is 
an interval contained in Ry, then 

P(c ~ Y ~ d) P(c ~ r(X) ~ d) 
= P(wlc ~ r(X(w)) ~ d) for w E S 

so that the probability distribution of the random variable Y is 
defined via the original probability distribution on S. For example, 
if X is the random length of the edge of a cube, then Y = r(X) = x3 

is a random variable giving the volume of the cube. We shall general-
ly be interested in obtaining the probability density function and 
cumulative distribution function of Y from a knowledge of the pdf and 
cdf of X. 
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As an example, suppose that a cube has a side of length X, where 
X is a random variable with probability density function 

1 on [O, 1) 
f(x) 

0 elsewhere 

It is clear that the pdf of Y = x3 is positive only on [O, l]. The 
cdf for X is 

0 for x > 0 
F(x) 

1 for x > 1 

and 

F(x) = x for O ~ x ~ 1 

Hence the cdf for Y may be written as G(y) = P(Y ~y) = P(X3 ~ y) = 
P(X < yl/3) = y113 , on (0, 1), as the function x3 is an increasing 
one-to-one function mapping [O, l] onto [O, 1). Hence 

0 for y < O 
G(y) 

1 for y > 0 

and 

G(y) = yl/3 furO~y~l 

By differentiation we obtain the pdf g(y) for Y. G'(y) = g(y) = 0 
if y < 0 or y > 1, and G'(y) = g(y) = (l/3)y-2/ 3 for 0 < y < 1. Note 
that E(Y) = 1/3 1; y1/ 3dy = i/4. This is not equal to (E(X)) 3 = 

(!~ x dx) 3 = 1/8. 
In order to emphasize this example, let us consider the program 

CUBE which simulates the selection of N cubes with edge X, where X 
is assumed to be uniformly distributed on [O, 1). The program com-
putes the edge x and volume x3 of each cube. The average length of 
an edge and average volume of the N cubes is calculated. Notice 
that these values are close to 0.5 and 0.25 in the example for which 
N = 10,000. This coincides with our previous theoretical results. 
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CUBE 

10 REM SIMULATES THE SELECTION OF N CUBES WITH EDGE UNIFORMLY 
20 REM DISTRIBUTED (0,1) 
25 PRINT "HOW MANY CUBES?" 
30 INPUT N 
40 LET A • 0 
50 LET B =O 
60 FOR I • l TO N 
70 LET S ,. RND 
80 LET V • s-3 
90 LET A • A +S 
100 LET B = B +V 
105 NEXT I 
110 PRINT "NO. OF CUBES","AVERAGE SIDE","AVERAGE VOL." 
130 PRINT N,A/N,B/N 
200 END
• 

RUN 
HOW MANY CUBES? 

?1000 
NO. OF CUBES AVERAGE SIDE AVERAGE VOL. 

1000 0.49247 0.24788 

•RUN 
HOW MANY CUBES? 

?10000 
NO. OF CUBES AVERAGE SIDE AVERAGE VOL. 

10000 o.49555 0.24795 

• 
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The method used in this example can be used to find the pdf of 
the random variable Y = r(X) which is a continuous increasing function 
of X, where we suppose f(x) > 0 on a < x < b. The method is stated 
in the following theorem which is stated without proof. 

THEOREM 4.5.1. Suppose a continuous random variable X has a pdf f(x) 
which is positive on a < x < b and that r(x) is strictly increasing 
(or decreasing) on a ~ x ~ b. If the function r(x) is differentiable 
on a < x < b, then the pdf for Y = r(X) is given by 

1 dr-1 ( ) dx
g(y) = f(r- (y)) I ay Y I = f(x(y)) layl 

for r(a) < y < r(b) [or for r(a) > y > r(b)]. 

As an example, consider the radius of a sphere to be uniformly 
distributed on [O, a]. We find the cdf and pdf of the surface area 
of the sphere. The radius X has pdf f(x) = l/a on [O, a]. The 
surface area Y = r(X) = 4nx2 , an increasing function on (0, a]. 
Hence the pdf of Y is f(x(y)) d(./Y/2./Tr)/ay on (0, 4na2 ], that is, 

(l/a)(l/411fY) on (0, 4na2]. To see that this is a density function 
we integrate g(y) on (0, 4na2 ]: 

We find 

2 2 
E(Y) = _1_ 14na /i ay = 4na 

4a!if O 3 

Note that E(Y) ; 4n(E(X)) 2 = 4n(a/2) 2 = na2• However we can use the 
pdf of X to obtain E(Y) = 4nE(X2 ) = (4n/a) /~ x2 dx = 4na2/3. We 
shall now turn to a general statement in this regard. 
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Suppose the random variable X is defined on a continuous sample 
space S. We have seen that Y = r(X) for a continuous real-valued 
function is again a random variable. In several situations we have 
seen that the probability density function of Y, g(y), can be obtained 
from the pdf of X, say f(x). We can then calculate 

E(Y) = JR yg(y) dy 
y 

if this expectation exists. It is also possible to calculate E(r(X)) 
using the density function f(x): 

E(r(X)) = J:a, r(x)f(x) dx 

For example, in the case of a cube with edge uniformly distributed 
on [O, l] with volume Y = x3 we have found E(Y) = 1/4. If we calcu-

3 1 3 4 11 .late E(X ) = J0 x dx = x /4 0 =1/4, so we obtain the same result. 
In general we have the following statement. If X has a pdf f(x) and 
Y = r(X) is any function of the type met in practice, then E(Y) = 
J00 

...m r(x)f(x) dx = E(r(X)). This result is often useful because it 
means that the pdf of Y need not be found in order to calculate E(Y). 
For example, the cube described above has surface area 6x2 and thus 
the expected surface area is 

Problems 4.5 

1. Assume that the edge of a square has side X uniformly distributed 
on [O, l]. Find the pdf for Y = x2 • the area of the square. 
Evaluate E(Y) using the pdf of Y and also by finding E(X2 ) using 
the pdf of X. 

2. Assume that an angle Xis uniformly distributed on [O, 1T/2]. 
Find the pdf for Y = sin X on the interval O < y < 1. Show 
that this pdf integrates to 1. 
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3. Let a circle have radius X, uniformly distributed on [O, a]. 
Find the pdf for Y = nx2 , the area of this circle. Find E(Y) 
and Var(Y). 

4. If Xis uniformly distributed on [a, b], show that Y = 

(X - a)/(b - a) is uniformly distributed on [O, l]. Using the 
fact that X = a + (b - a)Y and the expectation and variance of 
a uniformly distributed variable on [O, l], show that E(X) = 

(a + b)/2 and Var(X) = (b - a) 2/12. 

5. If Xis uniformly distributed on [O, l], show that Y = -ln X 
has the exponential distribution with A = 1. 

6. Assume X has a pdf satisfying f(x) = f(-x) for all X. Consider 
the transformation y = x2 (which is not strictly decreasing or 
increasing). Using the equality 

P(Y ~ y) = P(X2 ~y) = P(-v';V ~X ~ ./Y) 
show that g(y) = f(v';V)/l;V for 0 < y < where g(y) is the pdf00 , 

of Y. 

7. Using the result of Problem 4.5.6 show that if Z is standard 
2normal, then Z has the gamma distribution with a = 1/2 and 

S = 2. (Note: This distribution is also the chi-square distri-
bution with n = 1.) 

8. Assume X has pdf f(x) for all x and E(X) and Var(X) exist. 
Show that Y = aX + b for a> 0 has pdf f((y - b)/a)/a. Show 
E(Y) = aE(X) +band Var(Y) = a2var(X). 

9. If X has a pdf such that f(x) = f(-x) for all x, show that 
Y = lxl has pdf 2f(y) for y > 0. 

10. Using Problem 4.5.9 show that if Z - N(O,l) then for Y = lzl 
we obtain g(y) = /2/n e-y2/ 2 for y > O. Find E(IZI). 
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Exercise 4.5 

L Write a program which simulates the edge and the area of 2000 

squares with edge X uniformly distributed on [0. 1]. Find the 
average length of an edge of the squares and the average area. 
Do these results correspond to the theoretical expectations 
found in Problem 4.5.1? 

4.6 GENERATING RANDOM SAMPLES FROM CONTINUOUS DISTRIBUTIONS 

It is often desirable to generate a large number of observations 
from a particular continuous distribution. A number of the programs 
mentioned in the chapter, e.g., ANSWER, ERRORS, and WAIT perform 
exactly this function. It is an interesting fact that this can be 
accomplished numerically in a large number of cases by sampling from 
the uniform distribution on [O, l] and then transforming these obser-
vations by a particular function. This is based on the following: 

THEOREM 4.6.l. Assume X is a continuous random variable with a 
strictly increasing cumulative distribution function F(x) on an 
interval [a, b], (-"''. oo), [a, oo), or (-oo, b]. Assume Uhas the 
uniform distribuiton on [O, l]. Then F-1 (u) has the cumulative 
distribution function F(x) on the appropriate interval. 

Proof: We must show that P(F-1 (u) ~ x) = F(x). As Fis strictly 
increasing, it has an inverse, say F-1 , on its range. On the one 
hand, as U is uniform P(U ~ F(x)) = F(x). On the other hand, as F 
has an inverse, P(U ~F(x)) = P(F-1 (u) ~ F-1 (F(x))) = P(F-1 (u) ~x). 
Hence 

P(F-1 (u) ~ x) = F(x) 

and F-1 (u) has the specified cdf. 
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Thus in order to take a random sample of size n from a distribu-
tion with strictly increasing cumulative distribution function, it is 
only necessary to sample n observations from the uniform distribution 
on (0, l] and then obtain x. = F-1 (u.), i = 1, 2, ••. , n. The values 

l l 

xi will be a random sample of size n from the distribution with cdf 
F(x). As an example, consider sampling from the distribution with 
pM 

1f(x) = -00 < x < 00 

n(l + x2) 

We find 

F(x) = Joo 1 ~=larctan xi~-00 nn(l + x2) 

l=if arctan x + 0.5 

The program CAUCHY samples n observations from this distribution by 
finding x1• =tan n(u. - 0.5), where the u. are uniformly distributed 

l l 

on (0, l]. The ui are easily obtained by using the function RND in 
BASIC. 

Exercises 4.6 

1. Write a program to sample N observations from an exponential 
distribution with expectation l/A. The values of N and the 
expectation should be input in response to questions in the 
program. The output should contain a frequency table of the N 

observations and the observed average value, but not the obser-
vations themselves. 

2. Run the program NORSAMP for the standard normal distribution 
with N = 100, N = 1000, and N 2000. Delete lines 230, 240, 
250, and 310 (which supresses the frequency table). Do the 
averages seem to approach 0 as N increases? 



150 Continuous Outcome Spaces 

CAUCHY 

10 REM SMIPLES N OBSERVATIONS FROM CAUCHY ~ISTRIBUTION 

20 PRINT "HOii ~!ANY ";"OBSERVATIONS ";"FROll CAUCHY ";"DISTRIBUTION" 
30 I~PUT N 
40 LET s = 0 
so FOR l - l TO N 
60 LET z - RND 
70 LET x • TAN(3.14159263*(Z-.5)) 
80 PRINT x, 
90 LET s -s + x 
100 N1"XT I 
105 PRUT 
110 PRINT "AVERAGE = "; S/ N 
120 END 
* 

RUN 
HOW MANY OBSERVATIONS FROM CAUCHY DISTRIBUTION 

?20 
-2.53199 -0.63602 -3.18786 -0.70455 2.58189 
-1.54645 -4.23989 -0.70455 -0.2422 -1.35782 
-0.83008 -0.40191 -0.69468 -0.37868 -0.49694 

o.64787 1.4014 2. 76477E-2 0.56724 0.89034 
AVERAGE • -o.59186 

* 
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3. Run the program CAUCHY for values of N = 100, N = 1000, and 
N = 2000. Delete the PRINT statement at line 80. Do these 
averages seem to approach the true median value of O? Can you 
explain this? 

4. Write a program to calculate the average of N observations from 
the distribution with pdf f(x) 3x2 on [O, l] in response to a 
program question. What is the theoretical expectation of this 
distribution? What average values do you obtain for N = 100, 
1000, and 2000? 
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SAMPLING 

5.1 INTRODUCTION 

In the previous chapters we have examined the mathematical properties 
of certain probability models, which have been assumed to be appro-
priate to describe particular real-world situations. Random variables 
such as the binomial, Poisson, hypergeometric, normal, and gamma 
families are examples of such probability models. A user is generally 
faced with several questions as he proceeds to use such probability 
models. Each of the probability models depends upon a parameter 
(such as p in the binomial case) or parameters (µ and cr2 in the normal 
case). Values have to be assigned to these parameters before proba-
bilities can be computed. In the use of these models, how should the 
values of the parameters be assigned? Secondly, it may not be clear 
which probability model is appropriate to describe the situation at 
hand. A user knows that a model will not exactly reflect reality, 
but does the model provide a sufficiently close description of observed 
data to permit its use? Additionally, if two models might possibly 
be appropriate, then how is a choice made between the two? 

The information available to answer such questions is almost 
invariably incomplete. The value of parameters of a probability model 
have to be estimated from a sample from the relevant population. For 
example, a hospital association may wish to estimate the true propor-
tion p of a state's population with blood type 0. This value can 
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then be used in the binomial distribution to compute probabilities 
of interest to a hospital in the administration of its blood trans-
fusions. As a second example, the normal distribution may be appro-
priate to describe the distribution of the yield (in bushels per acre) 
of corn within a certain state. However, estimates of µ and cr2 will 
be required in order to use the normal distribution. As a third 
example, the Poisson distribution may be appropriate to describe the 
number of serious accidents in a large factory in a month. How can 
we decide from the accident history at the factory whether the Poisson 
distribution should be used? 

Questions such as those posed in the previous paragraphs require 
inferential reasoning. In order to estimate parameters of a distri-
bution we must take a sample from the population in question and, 
based on the properties of the sample, infer to properties of the 
population from which the sample was taken. It is never possible to 
be absolutely certain concerning the characteristics of a population 
by observing only a part of it. For example, the true proportion of 
individuals with type 0 blood can only be found with certainty by 
typing the blood of all the state's residents. This process would 
clearly be too costly, time consuming, and impractical to implement. 
Nevertheless, by selecting a sample of the state's population, an 
estimate of the true proportion p can be obtained. It is with prop-
erties of such inferential methods that statistics is concerned. 

Before proceeding, let us define what is meant here by a popu-
lation. 

DEFINITION 5.1.1. A population is the aggregate or set of possible 
observations of interest. 

Although this idea seems simple enough, it is known from experience 
that many studies are made without adequate definition of the popula-
tion to which the study is directed. This is most glaringly pointed 
out when inference is made to a population, based on the results of 
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a sample of a particular subset of the population. A classic example 
was the 1936 poll of the Literary Digest, aimed at predicting the 
winner of the Roosevelt-Landon presidential race of that year. The 
poll obtained several million responses and the conclusion was made 
that Landon would win easily. In that year Landon won in Maine and 
Vermont "While Roosevelt won in the other 46 states. The poll sampled 
telephone directories and lists of magazine subscribers. This sub-
group of the electorate favored Landon, while those without telephones 
and magazine subscriptions were strongly for Roosevelt. At the end 
of a long period of depression, this latter group was a substantial 
proportion of the electorate. It was not represented in the sampling 
technique employed by the Literary Digest. This became very clear 
in November 1936. 

We also remark here that Definition 5.1.1 in no way requires 
that a population be animate or that it be possible to observe all 
elements of a population. For example, the following may all be 
cons°idered to be populations: 

1. The tires produced on a given line at a particular factory 
during the year 1976. 

2. The male undergraduate population at a large state university 
on a given date. 

3. The form 1040 income tax returns received by the U. S. Government 
prior to a specific cutoff date in a given year. 

4. All possible samples of a cubic centimeter of a liquid in a tank. 

In general terms the population of interest corresponds to the 

outcome space S which is defined in Chap. 2 as a basic component of 
a probability model. With each element of the population we associate 
a characteristic or characteristics, to which a numerical value is 
assigned. For example, for the populations in the preceding paragraph, 
the following characteristics might be appropriate: 

1. A measurement of the quality of the tire: 1 if the tire is 
acceptable according to manufacturing standards, 2 i~ it is 
safe but has other production defects, and 3 if it is defective. 
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2. The IQ scores of the students. 
3. The gross reported income on each 1040 form. 
4. The density measured in g/cm3 of a cubic centimeter of the 

liquid. 

Such measurements correspond to observations of a random variable X, 
which assigns a numerical value to each element of S. It is for this 
reason that the distributions of random variables are so important, 
and why we have devoted substantial effort toward understanding the 
properties of random variables. 

It is clear that one would like to have a method of sampling 
from a population which will yield samples representative of the 
population being sampled. It is also clear'that for large populations 
it is impossible to guarantee that a sample will reflect the popula-
tion characteristic or characteristics being measured. Unusual 
samples, e.g., samples of an electorate evenly balanced between 
Democrats and non-Democrats, may include either a high or low per-
centage of Democrats. We wish to design a method of sampling which 
will make small the probability of samples unrepresentative of the 
sampled population. The basic idea of the sampling process called 
random sampling is to avoid bias in favor or against any particular 
sample of a given size. For a finite population we give the follow-
ing definition of random sample. 

DEFINITION 5.l.2a. Suppose a finite population has N elements. A 

random sample of size n with replacement is one obtained in such a 
way that each element of the population has probability l/N of selec-
tion at each of the n selections. A random sample of size n without 
replacement is a selection of n items in such a wa:y that at each 
selection, the elements not already chosen have equal chance of 
selection. 

The notation employed to describe a random sample is a vector 
of n random variables (X1 , x2 , ••• , Xn)' where Xi is a random variable 
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which describes the possible values that the ith sampled observation 
may have. A random sample is then a vector of random variables. A 
particular observation of size five from the population of IQ scores 
described above might be (120, 118, 125, 138, 110). The first student 
selected has IQ 120, the second has IQ 118, and the last has an IQ 
of 110. Notice that if a random sample is taken with replacement, 
the random variables x1 , x2 , ..• , Xn will be independent and have the 
same distribution. This is because the item selected at each step 
is replaced, so that the next selection does not depend on the previous 
ones and the distribution of the random variable X. is the same at 

J. 
each step, as the population is the same. It can be shown that in 
random sampling without replacement the distribution of each Xi is 
the same, but the random variables are not independent. For example, 
suppose a population contains N = 5 elements {l, 2, 3, 4, 5} and a 
random sample of size n = 2 is taken without replacement. For x1 , 
we have P(X1 = i) = 1/5 for i = 1, 2, 3, 4, 5. Let us find 
P(X2 = 1) = P((2,l) + (3,1) + (4,1) + (5,1)) 4/20 = 1/5 because 
each of the 20 outcomes (X1 i, x2 = j) for i ~ j, i = 1, 2, 3, 4, 
5 and j = l, 2, 3, 4, 5 has equal probability under random sampling 
without replacement. Similarly P(X2 = j) = 1/5 for j = 1, 2, 3, 4, 
5. However it is clear that x1 and x2 are not independent, for if 
X1 = l, x2 cannot be equal to 1. Hence P(X1 = 1, x2 = 1) 0 ~ 
P(X1 = l)P(X2 = 1) = 1/25, showing clearly that x1 and x2 are not 
independent. 

The idea of a random sample from a infinite population follows 
from the properties of random sampling with replacement for a finite 
population. 

DEFINITION 5.l.2b. Suppose an infinite population has a character-
istic described by a random variable X. A random sample from this 
population is a vector of random variables (X1 , x2 , ••• , Xn) where 
the Xi are independent random variables with the common distribution 
of X, called the parent distribution. 
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In a sense, the removal of an element from an infinite population 
corresponds to sampling with replacement, as the removal does not 
affect the distribution of the remaining population. A realization 
of such a random sample might be (1.02, 0.98, 1.10, 1.03, 1.04), 
where the values are the densities of 5 cm3 of the liquid described 
in preceding example (4). In the sequel we will use the word random 

sample to refer to a vector of random variables (X1 , x2 , ••. , Xn) 
which are independently and identically distributed. If the sampling 
involves random samples from a finite population without replacement, 
it will be specifically called random sampling without replacement. 

In the case of a finite population in which each of the elements 
may be numbered from 1 to N, it is easy to use the RND command to 
take a random sample of size M with or without replacement. The 
program RANSAM prints out M random integers from the set {1, 2, 3, 
••• , N}. The elements in the population labeled with the M numbers 
selected would constitute the random sample with replacement. If 
random sampling without replacement is required, the program RANDSAMO 
can be used to obtain a random sample without replacement. This means 
that no two of the M integers selected will be the same. Both pro-
grams can be utilized by running the program and answering the ques-
tions concerning the values of N and M. RANSAM and RANSAMO have been 
run for N = 1000 and M = 50, and the associated output appears follow-
ing the program listing. 

Table 5.1.1 gives the number of days required by 1000 students 
in a self-paced course to complete the required examinations. We 
can use the output of RANSAM to take a random sample of size 50 from 
this population. In this case 120 corresponds to 50, 320 to 62, and 
finally, 724 to 54. The 50 observations are 

50 62 51 49 73 52 50 49 67 50 
46 45 46 48 60 57 55 65 56 49 

57 44 43 54 60 40 56 52 54 37 
68 54 44 56 52 62 52 56 53 42 

55 43 59 45 60 42 53 53 61 54 
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RAND SAM 

10 REM RANDOM SAMPLE FROM FINITE POPULATION WITH REPLACEMENT 
20 PRINT "WHAr IS ";"THE POPULATION ";"SIZE?" 
30 INPUT N 
40 PRINT "WHAT IS ";"THE SM!PLE ";"SIZE?" 
SO INPUT ~I 

60 PRUIT 
70 PRINT 'I;" RANDOM NUMBERS";" 'FROM POPULATION";" OF SIZE ";N 
80 PRI'.'IT 
90 FOR I • l TO M 
100 LET K • l+INT(RND*N) 
110 PRINT K, 
120 NEXT I 
130 END 
* 

RUN 
WHAT IS THE POPULATION SIZE? 

?1000 
WHAT IS THE SAMPLE SIZE? 

? so 

so RANDOM NUMBERS FROM POPULATION OF SIZE 1000 

120 320 97 30S 
183 74 305 42S 
280 379 307 38S 
683 803 S09 66S 
110 894 18 41S 
619 SSS 749 644 
576 164 284 262 
32S 928 774 645 
608 189 844 970 
963 489 4S7 577 

* 

863 
203 
3S4 
732 
S3S 
Sl2 
70 
488 
S3S 
724 
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RANDS AMO 

5 DU F(lOO) 
10 REM RANDOM SAMPLE FROM FINITE POPULATION WITHOUT REPLACEMENT 
20 PRINT "WHAT IS ";"THE POPULATION ";"SIZE?" 
30 UPUT N 
40 PRINT "WHAT IS ";"THE SAttPLE ";"SIZE?" 
50 INPUT .'t 
60 PRINT 
70 PRI:-lT M;" RANDOM NUMBERS";" FRO)! POPULATION";" OF SIZE ";N 
80 PRINT 
90 FOR I • l TO M 
100 LET K = l+INT(RND*N) 
110 LET F(I )•K 
120 FOR J= l TO I-1 
130 IF F(J)• K THEN 100 
140 NEXT J 
l'>O PRBT K, 
160 NEXT I 
170 END 
* 

RUN 
WHAT IS THE POPULATION SIZE? 

?1000 
WHAT IS THE SAMPLE SIZE? 

?50 

50 RAN DOH NUMBERS FROM POPULATION OF SIZE 1000 

120 320 97 305 883 
183 74 425 203 280 
379 307 385 354 683 
803 509 665 732 110 
894 18 415 535 619 
558 749 644 512 576 
164 284 262 70 325 
928 774 645 488 608 
189 844 970 963 489 
457 577 724 807 458 

* 
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Table 5.1.l Number of Days Required by 1000 Students 

Row Column number 
number 1 2 3 4 2 6 1 8 2 10 

00 
01 
02 
03 
04 

61 
25 
38 
59 
46 

51 
32 
62 
52 
47 

45 
54 
59 
67 
52 

53 
44 
60 
48 
46 

54 
26 
44 
54 
50 

52 
42 
57 
38 
35 

54 
47 
46 
47 
40 

41 
43 
53 
42 
47 

51 
35 
51 
47 
38 

51 
49 
50 
50 
35 

05 45 57 45 53 32 48 51 54 57 47 
06 
07 
08 

53 
52 
62 

59 
63 
50 

55 
56 
50 

50 
50 
54 

44 
50 
53 

45 
58 
54 

38 
64 
66 

54 
57 
58 

49 
52 
52 

52 
49 
55 

09 
10 

42 
53 

55 
59 

51 
49 

50 
50 

38 
56 

41 
49 

51
66. 

53 
49 

58 
46 

49 
57 

11 
12 

46 
54 

65 
38 

63 
36 

51 
44 

47 
25 

56 
25 

59 
29 

37 
32 

50 
40 

50 
35 

13 
14 

60 
50 

57 
59 

53 
51 

57 
52 

42 
53 

45 
51 

55 
48 

50 
47 

55 
56 

57 
47 

15 49 48 59 50 51 35 38 41 46 49 
16 
17 
18 
19 
20 

46 
46 
50 
51 
39 

67 
53 
61 
44 
50 

48 
54 
52 
50 
50 

54 
45 
45 
44 
54 

55 
49 
40 
51 
36 

51 
48 
45 
59 
50 

68 
52 
60 
54 
38 

61 
54 
40 
53 
43 

51 
55 
43 
52 
46 

56 
54 
46 
49 
48 

21 
22 
23 
24 

60 
59 
52 
46 

52 
64 
58 
42 

50 
53 
57
60 

50 
63 
49 
40 

48 
50 
49 
48 

53 
58 
46 
42 

52 
50 
49 
45 

50 
44 
48 
49 

45 
45 
59 
56 

54 
55 
45 
46 

25 50 56 53 54 41 48 54 51 61 52 
26 52 56 46 47 44 51 47 50 48 52 
27 
28 
29 
30 

41 
4o 
54 
55 

56 
53 
54 
54 

55 
50 
50 
47 

54 
44 
52 
68 

49 
50 
42 
49 

46 
52 
54 
50 

40 
43 
58 
46 

56 
55 
53 
41 

60 
43 
55 
49 

46 
56 
46 
55 

31 45 48 58 56 52 47 61 42 54 62 
32 
33 
34 
35 

53 
56 
56 
50 

69 
56 
53 
53 

56 
53 
43 
54 

50 
48 
44 
60 

62 
41 
56 
31 

51 
50 
54 
36 

60 
57 
57 
49 

52 
54 
49 
57 

52 
57 
46 
58 

55 
54 
47 
45 

36 44 61 50 43 58 45 34 26 48 49 
37 
38 

46 
54 

37 
49 

38 
49 

37 
41 

40 
48 

43 
48 

41 
50 

46 
50 

45 
56 

52 
60 

39 
40 

44 
47 

41 
54 

51 
53 

47 
51 

55 
44 

44 
48 

49 
51 

49 
52 

61 
51 

49 
53 
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Row Column number 
number 1 2 3 4 5 6 1 8 9 lQ. 

41 
42 

55 
54 

47 
43 

55 
56 

40 
63 

54 
67 

46 
53 

42 
58 

48 
59 

65 
55 

61 
53 

43 
44 

56 
58 

55 
53 

58 
56 

57 
65 

57 
55 

57 
61 

53 
54 

49 
52 

51 
61 

58 
58 

45 43 52 53 52 51 47 53 55 55 49 
46 60 50 57 49 51 49 47 53 51 52 
47 55 59 54 48 53 47 51 48 54 47 
48 42 32 39 48 48 53 47 42 53 44 
49 52 57 55 49 54 53 60 48 50 53 
50 48 48 50 48 47 48 37 51 65 50 
51 43 37 44 35 54 46 36 28 43 46 
52 
53 
54 

57 
57 
46 

52 
51 
59 

58 
58 
54 

48 
49 
56 

51 
60 
54 

57 
55 
61 

61 
61 
52 

55 
62 
60 

50 
49 
48 

57 
47 
53 

55 58 61 56 61 57 63 72 56 57 58 
56 
57 

64 
61 

50 
48 

52 
50 

50 
55 

57 
64 

65 
68 

57 
61 

65 
57 

55 
63 

57 
52 

58 59 66 61 59 61 61 51 70 52 62 
59 52 50 50 52 50 54 44 49 50 47 
60 52 48 44 40 50 56 49 55 57 46 
61 50 48 47 45 40 52 51 51 40 44 
62 49 48 41 49 44 48 46 41 46 40 
63 
64 
65 

57 
60 
61 

57 
59 
50 

51 
52 
50 

46 
54 
52 

49 
53 
56 

59 
53 
51 

50 
50 
55 

58 
49 
59 

53 
45 
55 

48 
55 
43 

66 
67 
68 

55 
56 
48 

57 
49 
49 

55 
50 
57 

57 
49 
56 

56 
52 
46 

58 
48 
49 

59 
50 
49 

55 
47 
63 

55 
57 
51 

52 
54 
51 

69 50 48 44 51 47 47 39 52 47 50 
70 45 44 39 45 45 41 45 37 41 41 
71 
72 

61 
41 

53 
53 

49 
57 

53 
54 

51 
50 

49 
51 

51 
48 

54 
48 

55 
48 

48 
42 

73 
74 

58 
60 

49 
56 

52 
55 

55 
52 

52 
57 

48 
56 

47 
54 

49 
49 

55 
52 

57 
45 

75 57 55 48 52 46 49 43 55 36 45 
76 53 61 55 53 49 43 53 45 47 45 
77 
78 

55 
44 

51 
53 

53 
49 

56 
44 

50 
50 

49 
59 

48 
53 

54 
42 

51 
50 

43 
38 

79
Bo 

63 
57 

54 
51 

45 
55 

51 
56 

57 
60 

48 
56 

59 
52 

57 
53 

53 
49 

44 
43 

81 
82 
83 
84 
85 

48 
49 
55 
74 
53 

55 
50 
57 
55 
48 

44 
48 
56 
45 
47 

55 
55 
43 
59 
43 

53 
58 
40 
53 
45 

46 
53 
54 
53 
48 

50 
46 
59 
53 
59 

49 
50 
47 
57 
53 

48 
49 
55 
56 
52 

43 
58 
44 
47 
39 
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Column numberRow 
number 1 2 3 4 5 6 7 8 9 10 

86 45 45 31 46 61 52 41 30 36 45 
87 51 41 55 58 58 45 53 45 47 33 
88 55 58 73 55 65 50 48 46 54 43 
89 68 68 51 44 51 57 52 55 54 39 
90 58 49 71 51 54 57 55 58 55 40 
91 45 45 52 57 56 53 52 50 61 45 
92 50 56 49 49 53 49 57 52 55 41 
93 55 53 40 48 57 51 50 48 56 59 
94 56 50 51 63 52 51 60 46 52 47 
95 53 46 61 51 49 50 48 55 45 37 
96 50 50 42 54 51 55 47 ~8 48 45 
97 48 53 57 53 53 49 52 49 66 46 
98 56 54 49 51 58 46 50 50 51 4o 
99 46 46 51 45 61 54 50 48 58 51 

'!Y1licaJ.ly we wish to estimate the true average of the population. 

The average of the 50 sampled vaJ.ues is 52.82 days. The true average 
of the population is 50.87. We shall presently investigate the 
properties of such estimates. 

We consider, in somewhat more detail, sampling without replace-
ment from a finite population of size N. Assume that the N vaJ.ues 
are v1 , v2 , ... , vN and define 

N v. N (v. - E(V)) 2 

E(V) = I: .....!. and crv 2 = I: 1. 
Ni=l N i=l 

Assume that a random sample of size n is ta.ken from this population 
without replacement. It can be shown that 

n n 
Var( ~ x.) = I: Var(X.) + I: Cov(X.,Xj)

i=l 1. i=l 1. i#j 1. 

where 

Cov(Xi,xj) = E(XiXj) - E(Xi)E(Xj) 

As aJ.l X. have the same distribution Var(X.) = aV2 for aJ.l i. It is 
1. 1. 

aJ.so true that aJ.l the covariances are equal, although this is not 
so apparent. Hence 

https://Y1licaJ.ly
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where y is the common covariance. Setting n = N yields 

No/ + N(N - 1) = Var( ~ x.) 0 
i=l J. 

The latter equation follows because the sum of all the population 
values is a constant. Hence y = -ov 2/(N - 1). Substitution in Eq. 
(5.1.1) and simplification yields 

2 
n ) _ nov (N - n)

Var ( E X. - N _ l (5.1.2)
i=l J. 

Furthermore we have 

E( ~ nE(V)x.) = 
i=l J. 

These yield 

( n X.)E E ....!. E(V)
i=l n 

and 
2 

ov( n X.) (N -Var E ....!. =-- n) 
n N - l.i=l n 

Thus the sample average has expectation equal to E(V) and variance 
(oV2/n)((N - n)/(n - 1)). If the sampling is done with replacement, 
the corresponding values are E(V) and oV2/n. As the factor (N - n)/ 
(N - 1), referred to as the finite population correction factor, 
will be close to 1 when the sample size n is very much smaller than 
N, we have a strong indication that in this situation, sampling 
either with or without replacement will permit similar inferential 
statements about the population. 



164 Sampling 

Problem 5.1 

1. Using the result in the last paragraph, show that the variance of 
H, the hypergeometric random variable with finite population of 
size N, with R special items, from which a sample of size n is 
taken without replacement is given by 

( ) R ( R) N - nVar H = n- 1 - - ~~-N N N - 1 

Exercises 5.1 

1. Suppose that 10,000 lottery tickets numbered 1 to 10,000 are sold. 
Take a random sample of 25 such numbers without replacement using 
the appropriate program. What population is being sampled? What 
is the expected value and variance of the random variable Xi which 
gives the number on the lottery ticket drawn on the ith draw? 
Use RANDSAMO. 

2. Write a program to compute the probability that for a sample of 
size n, at least two persons have the same birthday. Find this 
probability for n = 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50. 
Use the program RANDSAM to select 40 birthdays at random from the 
365 birth dates. Are there any two birth dates alike? 

3. The following is a list of the ages of 500 legislators. Take a 
sample of size 25 from this population without replacement. 
Average the ages of these 25 sampled individuals. Compare this 
average with 48 which is the average age of the population from 

which the 500 were chosen. 
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46 44 45 40 46 52 47 48 42 44 
57 36 53 34 63 24 62 46 61 43 
50 48 45 62 56 46 46 40 44 52 
43 39 49 47 42 53 53 43 41 47 
46 34 38 44 43 48 48 45 41 61 
42 56 40 49 52 44 49 48 46 61 
61 39 48 54 49 46 51 65 51 42 
47 42 56 45 42 35 48 51 SB 37 
45 55 36 49 59 51 52 43 40 43 
43 43 46 47 48 57 50 44 54 44 
39 45 47 44 45 56 49 43 38 43 
36 45 56 60 46 43 38 47 43 40 
51 59 45 45 41 43 35 47 43 40 
55 52 59 42 46 46 44 53 48 47 
53 58 47 49 52 47 53 46 43 39 
50 54 47 47 37 48 52 43 54 50 
56 35 57 42 49 44 51 43 55 43 
37 52 40 51 40 45 Ml 49 41 56 
47 37 56 49 53 38 52 57 42 38 
33 56 42 44 37 42 63 50 50 44 
52 46 40 45 39 47 45 32 33 44 
58 44 52 48 38 48 56 53 42 43 
59 68 41 39 55 56 51 54 45 50 
46 43 43 5 1 46 58 58 57 52 44 
49 50 41 57 39 50 41 54 35 41 
63 53 52 47 51 35 55 34 44 44 
33 54 47 36 40 65 40 68 53 35 
43 56 54 43 54 45 55 46 46 33 
48 51 58 45 53 34 44 28 51 50 
64 31 54 40 32 38 54 50 56 45 
5111 46 38 40 45 43 24 47 46 58 
44 50 46 51 47 48 55 46 48 51 
50 52 51 48 58 54 48 55 42 33 
47 46 54 48 53 48 50 50 65 51 
41 30 48 48 51 51 57 49 43 48 
44 55 51 42 34 51 44 37 38 40 
46 45 44 41 35 53 46 60 44 47 
49 39 56 44 43 36 46 52 58 49 
45 49 51 43 40 50 46 48 39 54 
47 49 49 49 42 36 49 45 44 42 
54 48 46 39 50 53 43 52 49 49 
41 31 46 30 30 46 33 47 33 43 
49 52 46 59 40 45 50 38 49 51 
52 48 51 39 49 52 51 52 37 61 
65 49 46 42 42 58 60 50 44 52 
48 50 41 41 30 51 51 43 54 55 
41 45 48 54 54 49 46 52 56 45 
45 50 35 52 49 44 45 50 52 52 
45 47 45 60 48 49 32 50 52 47 
57 42 48 41 40 48 39 39 53 45 

* 
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5.2 STATISTICS ESTIMATING LOCATION 

We have seen in Chap. 4 that it is useful to employ some means of 
summarizing th0 information in a random sample from a population. 
In Sec. 4.1 random samples of size 1000 were ta.ken from three popula-
tions. The populations sampled denoted s1 , s2 , and s3 were response 
times, net weights of a breakfast food, and the values of round-off 
errors in rounding a number to the nearest integer, respectively. 
The samples were summarized by means of relative frequency histograms 
displayed in Figs. 4.1.1, 4.1.2, and 4.1.3. It is clear that the 
ordinate measurement could be changed to frequency by multiplication 
by n = 1000. Each bar would then represent the number of observations 
for the appropriate interval. Histograms which display the properties 
of a sample are a useful graphical means of summarizing data. In 
Sec. 4.1 a frequency table was used to summarize the information in 
the sample of round-off errors in tabular form. Such a frequency 
table is often used to display the properties of a sample. In 
statistics, however, we are mainly interested in algebraic or mathe-

matical ways of summarizing the information in a sample. The sample 
characteristics will in turn be used inferentially to describe 
characteristics of the population from which the sample was ta.ken. 
The first characteristic which we consider is "location." An import-
ant inferential question is how to estimate the parameterµ= E(X), 
the expectation of the random variable X, which describes the 
"location" of a population, using the information in a sample. We 
will use certain statistics based on a random sample of size n from 
the population. We now define the word statistic in this usage and 
differentiate it from the body of knowledge referred to as statistics. 

DEFINITION 5.2.1. A statistic is a calculation based on the values 
of a random sample. More precisely, a statistic is a real-valued 
function of the observations (X1 , x2 , ••• , Xn) in a random sample of 
size n from a population. 
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The statistic is to be used to describe a characteristic of the random 
variable X, the parent distribution. 

5.2.1 The Sample Mean 

The sample mean is given by the statistic X = (X1 + x2 + ••• + Xn)/n. 
Notice that this is a real-valued :function which, in a sense, summar-
izes certain information about the sample in a single number. Note 
also that since x1 , x2 , ... , Xn are random variables, Xis a random 
variable also. For different random samples of a fixed size n, X 
will have different values. In general, we observe only one realiza-
tion of this random variable X and denote it as i. On the other hand, 
X seems a reasonable statistic to use as an estimate of µ = E(X) for 
several reasons. The first is due to the fact that 

n E(Xi){ n x.)E(X) E I: ....!. I: ---= El!. = µn ni=l n i=l 

because E(X. ) = µ for all i in a random sample. In words, the expec-
1 

tation of the sample mean is the expected value of x. We also have 

x.) n Var(X.) na2 a2( n 1Var(X) Var I: ....!. = I: --= 2 2 ni=l n i=l n n 

where cl is Var(X). This follows from the fact that Var(U + W) = 
Var(U) + Var(W), if U and Ware independent random variables. The 
importance of the relation Var(X) = a2/n lies in the fact that as n 
increases the variance of X decreases, so roughly the probability 
that the sample mean X differs fromµ becomes small as n increases. 
In fact, using the Chebyshev inequality in the form expressed in 
Theorem 4.3.2, we have 

2 
P( IX - µJ ~ e:) < a 2 

ne: 

for any e: > O. Hence 

limP(Jx- µj ~e:) o 
n-+oo 
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In words, the probability that the random variable X differs fromµ 
by more than any E > 0 approaches 0 as the sample size increases. 

With the aid of the computer we now illustrate the properties 
of the random variable Xby taking all possible samples of size 3 
with replacement from the integer population {l, 2, 3, ••• , 10}. We 
have seen before that if P(X = i) = 1/10 for i = 1, 2, ••• , 10, then 
E(X) = 5.5. There are 103 = 1000 samples of size 3 from this popu-
lation. The program MVAL3 calculates the expected value of the 
averages of these 1000 samples of size 3 by assigning each a proba-
bility of 1/1000. In addition the probability distribution of these 
averages is printed out. This gives the probability of an average 
falling into the intervals [i - 0.5, i + 0.5) for i = 1, 2, ••• , 10. 
The probability histograms for the original population and the popu-
lation of means (n = 3) appear in Fig. 5.2.1. We see that although 
E(X) = E(X) = 5.5, the averages have a distribution with much smaller 
variance. In fact, Var(X) = 99/12 = 33/4 and Var(X) = Var(X)/n = 
11/4. 

0.2 

0.1 

5.5 5.5 
Histogram for X Histogram for X 

Fig. 5.2.1 

5.2.2 The Population and Sample Median 

We shall often use E(X) = µ as a measure of the population location. 
The statistic X will generally be used as the appropriate calculation 
from the sample data to estimateµ= E(X). In the next chapter we 



169 5.2 Statistics Estimating Location 

llVAL3 

10 REM MEANS OF SIZE 3 FROM INTEGER POPULATION 1-10 
20 LET T=O 
30 FOR I = TO 10 
40 FOR J = TO 10 
50 FOR K = l TO 10 
60 LET S (I+J+K)/3 
70 FOR N• l TO 10 
80 IF S > (N+.5) THEN 110 
90 LET F(N)=F(N)+l 
100 GO TO 120 
110 NEXT N 
120 LET T • T+S/1000 
130 NEXT K 
140 NEXT J 
150 NEXT I 
160 PRINT "PROBABILITY ";"DISTIBUTION ";"FOR MEANS" 
l 70 PRINT 
180 PRINT "LOWEK BOUNDARY","UPPER BOUNDARY","PROBABILITY" 
190 PRINT 
200 FOR I = l TO 10 
210 PRINT I-.5,I+.5,F(I)/1000
220 NEXT I 
230 PRINT "AVERAGE MEAN = ";T 
240 END 

" 

RUN 
PROBARILIIY DISTIBUTION FOR MEANS 

LOWER BOUNDARY UPPER BOUNDARY PROBABILITY 

o.5 1. 5 4.00000E-3 
1. 5 2.5 3.lOOOOE-2 
2.5 3.5 8.50000E-2 
3.5 4.5 0.163 
4.5 5.5 0.217 
5.5 6.5 0.211 
6.5 7.5 0.163 
7.5 8.5 8.50000E-2 
8.5 9.5 3.lOOOOE-2 
9.5 10.5 4.00000E-3 

AVERAGE MEAN = 5.5 
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shall note several properties of Xwhich suggest that it is an effi-
cient statistic. There are, on the other hand, populations for which 
a measure other than E{X), would be appropriate as a measure of the 
population location. In highly skewed populations such as that 
described by the probability density function f(t) = te-t, t > O, 
presented in Fig. 5.2.2, the population median may be a more meaning-
ful measure of location. 

0 .,,2 3 4 5 

Fig. 5.2.2 

DEFINITION 5.2.2. The population median for a continuous random 
variable defined by the cdf F(x) is a value of x, say n, for which 
F(n) = 1/2. 

The population median is then a value for which P(X ~ n) = 1/2 and 
P(X > n) = 1/2. In the probability sense, it divides the population 
into two equal parts. Figure 5.2.2 shows the values of E(T) 
/"

0 
t 2e-t dt = 2 and n 1.678 which satisfies the equation 

[as F{t) = 1 - e-t te-t fort> 0) 

If the random variable T is thought of as describing response times 
to a stimulus in minutes, then one-half of the population has a 
response time of 1.678 min or less, while the expected response time 
is E(T) = 2 min, which exceeds n because a sizable proportion of the 
population requires a rather long time to respond. 
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The appropriate estimate of the population median based on a 
random sample of size µ from a population is the sample median, which 
is calculated as follows: 

DEFINITION 5.2.3. Let X(l)' X( 2 )' ••. , X(n) represent the values of 
a random sample (X1 , x2 , ••• , Xn) ordered by magnitude (that is, 

X(l) ~ X( 2 ) ~ ••• ~X(n)). The sample median Mis defined to be 

if n is oddx(n + 1)/2 

M= 
if n is even(X(n/2) + X(n/2 + 1))/2 

Suppose we observe a random sample of five response times (3.5, 1.6, 
2.3, 1.5, 1.7). Then the sample median is denoted m = x( 3 ) = 1.7. 
As in the case of the sample mean, the sample median M is a random 
variable. We generally have only one sample of size n and observe 
a single value of the median, denoted by m. However, we understand 
that different samples of size n from the same population will pro-
duce different sample medians and hence there is a distribution of 
such values. Generally the sample mean is preferred as a measure of 
location when the population can be thought of as symmetrically dis-
tributed about its expected value. For skewed populations such as 
incomes, response times, and city sizes, the sample median is often 
more acceptable as a measure of location. 

Problems 5.2 

1. Suppose that the following is a random sample of 10 heights of 
female students in inches: 64.5, 63.0, 67.5, 62.25, 64.o, 69.25, 
62.0, 65.25, 66.0, 61.0. Find xand m for this sample. 

2. Suppose that in Problem 5.2.1 that 69.25 is replaced by 78.0. 
What is the new value of xfor the sample? The new value of m? 
Which of these measures of location is more sensitive to extreme 
observations. 
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3. Prove the following for any real numbers x1 , x2 , ... , xn. 

n 
(a) L xi nx 

i=l 

n 
(b) L (x. - x) 0 

i=l J. 

4. Show that xminimizes 

n 2 
f(a) L (x. - a)

i=l J. 

Hint : Expand 

n 
f(a) L (x. x + x - a) 2 

i=l J. 

5. (a) Assume that E(X) = µ exists for a continuous random variable 
X. Show that if the probability density function for X satisfies 

f(a - x) = f(a + x) for all X then E(X) = a and the median of X 
is also a. 

(b) For the density function 

2 
f(z) = ....1_ e-z / 2 

rzrr 
for what value of a does the relation f(a - z) f(a + z) hold 
for all real z? 
(c) What are the expected value and theoretical median of the 
standard normal distribution? 

6. Given f(x) = (l/n)l/(l + x2 ) is the density function of a random 
variable X what can be said about E(X). Why does this not con-

tradict Problem 5.2.5(a). What is the median of the random 

variable X? 

7. Let a population have values x = l, 2, 3 with probabilities 
f(x) = 1/3 for x = l, 2, 3. 
(a) Find E(X) and Var(X). 
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(b) Find the probability function for X, the average of two 
observations taken from this population with replacement. 
(c) Find E(X) and Var(X) from the probability function in part 
(b) and show that E(X) = E(X) and Var(X) = Var(X)/2. 

8. For the exponential function with pdf f(x) = e-x for x > 0 and 
f(x) = 0 elsewhere, find E(X) and the median of X. Which is 
larger? Give a qualitative reason why this is plausible. 

9. If all observations in a sample, x1 , x2 , .•• , xn' are replaced 
by Yi = axi + b show that 
(a) y = a.X + b. 

(b) If x(l)' x( 2 )' ••• , x(n) are the ordered xi values with 
median m = x((n+l)/2 ) (n assumed odd), then the median of the 

y(i) values is ax((n+l)/2 ) + b. 

10. Let p* be the true probability a theoretical tack falls "point 
u;pward." Let f be the relative frequency of such a tack falling

n 
point upward in n tosses. Show that for any E > O, 

lim P(lfn - p*I ~ E) = 0 
n--

Exercises 5.2 

1. Use the program MEANS to sample 400 means of samples of size 1, 
9, 25, and 100 each from the exponential distribution with E(X) 
E(X) = 4. Draw relative frequency histograms for each of the 
400 means with boundaries O, 1, 2, ..• , 20. 

2. Write a program to calculate the mean xand median m for a sample 
of size n ~ 50. Find mean and median of the following heights: 

72.1 70.0 67.1 69.2 71.3 72.4 74.1 74.o 71.0 67.5 
67.8 70.1 71.8 72.1 74.5 74.1 73.2 71.5 70.3 68.o 
68.8 70.3 71.4 73.8 74.o 75.0 73.7 72.6 70.4 69.1 
69.1 71.6 72.8 73,1 75.8 76.5 74.o 72.5 71.7 69.4 
69.2 71.4 72.3 74.8 77.1 78.0 74.3 72.1 71.0 69.5 



174 Sampling 

MEANS 

10 REM FREQUENCY DISTRIBUTION FOR K MEANS FROM EXPONENTIAL 
20 REM DISTRIBUTION (TRUE EXPECTATION 4). SAMPLE SIZE N 
30 PRINT "HOW HAN! MEANS?" 
40 UPUT K 
50 PRINT "WHAT SAMPLE SIZE?" 
60 INPUT N 
70 PRINT "CLASS NO.","LOWER","UPPER","REL FREQ" 
so om FC 251 
90 FOR J • l TO K 
100 FOR I - l ro N 
110 LET Z • Z-4*(LOG(l-RND)) 
120 NEXT I 
130 LET A• Z/N 
140 LET Z•O 
150 FOR I • l TO 20 
160 IF A>I THEN 210 
170 LET F(I)•F(I)+l/K 
180 GO TO 220 
190 IF 1<20 THEN 210 
200 LET F(20)•F(20)+1/K 
210 NEXT I 
220 NEXT J 
230 FOR I • l TO 20 
240 PRINT I,I-1,I,F(I) 
250 LET V=(I-.5)*F(I)+V 
260 LETT• F(I)+T 
270 IF T>.999999 THEN 290 
280 NEXT l 
290 PRINT "AVERAGE MEAN= ";V 
300 PRINT "TOTAL FREQ ";I 
310 END 
* 

RUN 
HOW MANY flEANS? 

?1000 
WHAT SAMPLE SIZE? 

?25 
CLASS NO. LOWER UPPER REL FREQ 

l 0 l 0 
2 l 2 l.OOOOOE-3 
3 2 3 9.60000E-2 
4 3 4 0.451 
5 4 5 0.347 
6 5 6 9.30000E-2 
7 6 7 l.lOOOOE-2 
8 7 8 l.OOOOOE-3 

AVERAGE MEAN• 3.972 
TOTAL FREQ l. 

* 
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Plot a histogram for these data with a class interval of 1. 
Would you call these data symmetric or skewed? 

3. Use the program written in Exercise 5.2.2 to find the mean and 
median of the following incomes in thousands of dollars. Which 
measure of location would be preferred? Why? 

11.2 13.6 14.7 11.8 14.7 
10.3 11.2 11.1 11.8 11.2 
20.6 13.5 17.3 13.2 21.2 
12.7 10.1 14.6 18.2 11.8 
10.9 15.8 14.9 10.1 10 
11.2 15.2 13.6 12.1 10.1 
13.8 13.7 16.2 11.1 11.9 
19.6 16.9 12.4 12.3 15.4 
13.5 13.3 13 14.7 12.9 
17.4 15.7 14.8 12.1 20 

5.3 STATISTICS ESTIMATING VARIABILITY 

The parameter o 2 , the variance of the random variable X, is a measure 
of variability of a population described by X. We often are able to 
assume that the observations which we sample come from a normal dis-
tribution, but the variance o2 is not known. The value of o2 must 
then be estimated before the normal model can be used. A statistic 
often used to estimate o2 is the sample variance, which we define as 
follows: 

DEFINITION 5.3.1. The sample variance based on a random sample of 
size n is defined by 

n - :i()2(Xi
s2 = L: n - 1i=l 
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We note here that 82 , like X, is a random variable which will have 
different values for different random samples from a population. 
The value of a single observation of 82 is denoted 

2 n (x.
l. 

- i)2 
s l: n - 1i=l 

The population variance cr2 = E(X - µ) 2 is the expected squared 
difference between the values of X andµ= E(X), the population 
expectation. The sample variance is almost an average of the squared 
differences of the sample values from the sample mean, but the 
divisor n - 1 is used instead of n. The reason for this is that 

E(82 ) = cr2 , while 

n (X. - x) 2 
E( l: l. ) 

i=l n 

If we write 

n 2 n 
l: (X. - µ) l: (X.

i=l l. i=l 1 

n - 2 - n - - 2 = l: (X. - X) + 2(X - µ) l: (X. - X) + n(X - µ)
i=l l. i=l l. 

n n 
= l: (x. x)2 + n(X - µ)2 as l: (X. - X) 0 

i=l l. i=l l. 

we have 

n 2 n 
E( l: (X. - µ) ) = E( l: (X. - X) 2 ) + E(n(X - µ) 2 )

i=l l. i=l l. 

or 

ncr2 = E((n - 1)82 ) +no 
2 

n 

Thus E((n - 1)82 ) = (n - l)cr2• Division by n - 1 yields E(S2 ) = cr2 , 
and division by n yields E((n - l)S2/n) = cr2(n - l)/n. The property 

2 2 2that E(S) =a, i.e., the expected value of 8 is equal to the 
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parameter being estimated, seems to be a reasonable requirement for 
an estimate. The statistic (n - 1)82/n would be an under estimate 
of o 2 on the average because the factor (n - l)/n < 1. For large n, 
clearly there would be little difference between the two statistics. 

The program VARSAMP has been written to give an idea of the 
distribution of sample variances, taken from the standard normal 
distribution. In this case, of course, o2 = 1. For samples of size 
N = 5, 10, and 25, the program computes 1000 sample variances. A 
frequency table of the 1000 sample variances is printed out for N = 5, 
10, and 25. As can be seen from these frequency tables, these vari-
ances cluster more closely about the population variance o2 = 1 as 
n increases. In fact, it may be shown that for a population for 
which E(X4 ) exists, 

lim P(js2 - o2 J > £) 0 for any £ > 0 
n~ 

This property corresponds to the analogous property of X, namely 
that 

lim P( Jx - µI ~ £) o 
n~ 

and is also proved using the Chebyshev inequality. 
We give an example of two samples of size 5 with the same mean 

- 2x = 9 to illustrate the calculation of s • 

Sample 1 Sample 2 
-i x. x.

J. 
- x (xi - xl2 x. x. - x (xi - xl2 

J. J. J. 

1 7 -2 4 1 -8 64 
2 8 -1 1 8 -1 1 
3 9 0 0 9 0 0 
4 10 1 1 11 2 4 

5 11 2 4 16 7 49 

Totals 45 0 10 45 0 118 
2 2

xl 9 sl 2.5 x2 9 s2 29.5 
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VARSAtlP 

10 REH FREQUENCY TABLE OF K VARIANCES OF SAMPLES 
20 REH FROM NORMAL DISTRIBUTION 
30 om F{ 35) 
40 FOK I • l TO 35 
50 LET F(I}=O 
60 NEXT I 
70 PRINT "WHAT IS SAr1PLE";" SIZE?" 
80 INPUT N 
90 PRINT "HOW MANY";" REPETITIONS?" 
l 00 INPUT K 
110 FOR J = l TOK 
120 FOR I • l TO N 
130 GOSUB 410 
140 LET S = S +Z 
150 LET S2• s2+z-2 
160 NEXT I 
170 LET Xl•S/N 
180 LET V •(S2-N*Xl-2)/(N-l) 
190 FOR C • l TO 30 
200 IF V>C/5 THEN 230 
210 LET F(C}=F(C)+l/K 
220 GO TO 260 
230 IF C <30 THEN 250 
240 LET F(C)=F(C)+l/K 
250 NEXT C 
260 LET S•O 
270 LET SZ•O 
280 NEXT J 
290 PRINT 
300 PRINT "FREQUENCY "; ''DISTKIBUTION OF";" VARIANCES" 
310 PRINT 
320 PRINT ''LOWER END","UPPER END","REL FKEQ" 
330 FOR C = l TO 30 
340 PRINT {C-1)/5,C/S,F(C) 
350 LET T • T+F(C) 
360 IF T >= Q,999999 THEN 380 
370 NEXT C 
380 PRINT 
390 PRINT "TOTAL FREQ• ";T 
400 GO TO 450 
410 LET Zl=SQR{-2*LOG(RND)) 
420 LET Z2•6,2831853*RND 
430 LET Z•Zl*COS{Z2) 
440 RETURN 
450 END 
* 
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RUN 
WHAT IS SAMPLE SIZE? 

? 5 
HOW MANY REPETITIONS? 

?1000 

FREQUENCY IHSTRIBUTION OF VARIANCES 

LOWER ENO UPPER ENO REL FREQ 
0 0.2 4.90000E-2 
0.2 0.4 0. 126 
0.4 0.6 0. 1 6 
o.6 0.8 0. 119 
0.8 1 0. 11 9 
1 1. 2 0. 11 2 
1 • 2 1. 4 8.40000E-2 
1.4 1. 6 6.50000E-2 
1.6 1. 8 3.40000E-2 
1. 8 2 2.60000E-2 
2 2.2 2.20000E-2 
2. 2 2.4 2.00000E-2 
2.4 2.6 2.00000E-2 
2.6 2.8 l.OOOOOE-2 
2.8 3 l.40000E-2 
3 3.2 2.oooooE-3 
3.2 3.4 6.00000E-3 
3.4 3. 6 6.00000E-3 
3.6 3.8 l.OOOOOE-3 
3.8 4 2.00000E-3 
4 4.2 l.OOOOOE-3 
4.2 4.4 0 
4.4 4.6 0 
4.6 4.8 0 
4.8 5 0 
5 s.2 0 
s.2 S.4 0 
S.4 5.6 l.OOOOOE-3 
S.6 S.B 0 
S.B 6 l.OOOOOE-3 

TOTAL FREQ= 1 • 

* 



180 Sampling 

RUN 
WHAT IS SAMPLE SIZE? 
?lo 

HOW MANY REPETITIONS? 
?1000 

FREQUENCY DISTRIBUTION OF 

LOWER END UPPER END 
0 0.2 
0.2 0.4 
0.4 0.6 
o.6 0.8 
o.8 1 
l 1. 2 
1 • 2 1 • 4 
l. 4 l. 6 
1 • 6 1 • 8 
1.8 2 
2 2.2 
2.2 2. 4 
2.4 2.6 
2.6 2.8 
2. 8 3 
3 3.2 
3.2 3.4 
3.4 3.6 
3.6 3.8 
3.8 4 
4 4.2 
4.2 4.4 

TOTAL FREQ= 1. 

*RUN 
WHAT IS SAMPLE SIZE? 

? 2 5 
HOW MANY REPETITIONS? 

?1000 

FREQUENCY DISTRIBUTION OF 

LOI/ER END UPPER END 
0 0.2 
0.2 0.4 
0.4 0 •. 6 
o.6 0.8 
o.8 l 
1 l. 2 
1 • 2 1.4 
1.4 1 • 6 
1 • 6 l. 8 
1.8 2 
2 2.2 
2. 2 2.4 
2.4 2.6 
2.6 2.8 

TOTAL FREQ= 1. 

VARIANCES 

REL FREQ 
3.00000E-3 
4.80000E-2 
0. 15 5 
0. 16 2 
0.1 77 
0. l 49 
0. l 
8.SOOOOE-2 
4.60000E-2 
2.90000E-2 
2.lOOOOE-2 
7.00000E-3 
4.00000E-3 
4.00000E-3 
2.00000E-3 
2.oooooE-3 
l.OOOOOE-3 
l.OOOOOE-3 
0 
0 
0 
l.OOOOOE-3 

VARIANCES 

REL FREQ 
0 
l.OOOOOE-3 
5.20000E-2 
0.209 
0.273 
0.234 
0.142 
5.20000E-2 
2.50000E-2 
5.00000E-3 
3.00000E-3 
2.00000E-3 
l.OOOOOE-3 
l.OOOOOE-3 
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RUN 
WHAT IS SAMPLE SIZE? 

?40 
HOW MANY REPETITIONS? 

?1000 

FREQUENCY DISTRIBUTION OF VARIANCES 

LOWER END UPPER ENO REL FREQ 
0 0.2 0 
0.2 o.4 3.00000E-3 
0.4 0.6 l.70000E-2 
0.6 o.s 0.16 
o.s l 0.344 
l 1. 2 0.275 
1. 2 1.4 0.139 
1. 4 l. 6 4.SOOOOE-2 
1. 6 l. 8 9.00000E-3 
1.8 2 4.00000E-3 
2 2.2 l.OOOOOE-3 

TOTAL FREQ= l. 

* 
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Although both samples have the same mean of 9, it is clear that the 
variability of the first sample is less than that of the second. 

2 2This is reflected in the values of and s2 •sl 
Another measure of variation of a population is the population 

standard deviation cr = /C?Z. Similarly the sample standard deviation 
is defined as S = ~. or for an individual sample s = /;2. Hence 
the sample standard deviations for the two samples given above would 

be s1 = 12":5 = 1.58 and s2 = /29.5 = 5.43. A useful property of the 
standard deviation is that its units are the same as the units of 
the measurements of the sample values x1 , x2 , ... , xn. 

The units of s 2 , on the other hand, are in terms of these units 
squared. It is not true that E(S) = cr, but it is true for normal 
populations that E(S) = k(n)cr, where k(n) is a function of n for 
which lim k(n) = l; so for large n, E(S) - cr. For these reasons n..-
the sample standard deviation is generally used to estimate cr, 
although other statistics are also used. 

Problems 5.3 

1. Using the heights of the 10 students given in Problem 5.2.1 find 
2s , the sample variance and the sample standard deviation s. 

2. Suppose that in Problem 5.3.1 69.25 is replaced by 78.0. What 
are the values of s 2 and s? Does the variance seem sensitive 
to the extreme observation? 

3. Suppose, as in Problem 5.2.9, that all observations x1 , x2 , ••• , 

xn are replaced by yi = axi + b. 
(a) Show that if a = 1, then 

2 2 s = s y x 
This implies that if the same constant is added to a set of n 
observations, then the variance is not changed. 
(b) Show that if a is any real value, then 

2 2 2 s = a s and s la lsy x y x 
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4. The average of 20 Fahrenheit temperatures is 77 with a standard 
deviation of 9. Using the relationship C = (5/9)(F - 32) find 
the values of the mean, standard deviation and variance of these 
temperatures in degrees Celsius. 

5. Suppose 10 "yardsticks" have a mean of x = 37.2 in. and a standard 
deviation of s = 1.44 in. What is the mean and standard deviation 
of these measurements in yards? 

6. The uniform distribution on the set S = {O, 1, 2, ••• , 9} has 
E(X) = 4.5 and Var(X) = 8.25. The following is a sample of 25 
observations from this distribution (i.e., a sample of random 
digits): 6, 0, 6, 7, 0, 2, O, 7, 7, 7, 3, 7, 7, 4, 1, 1, 1, 6, 
O, 0, 1, 4, 4, 4, O. Find the value of s 2 for this sample. 
Does it seem a reasonable estimate of Var(X)? 

7. The coefficient of variation, defined as s/x (or lOOs/x in per-
centage terms), gives a measure of variability of the sample as 
a proportion or percentage of the observed mean. This measure 
is used for measurements which are naturally measured in positive 
units (such as heights). Find s/x for the heights in Problem 
5.3.i. 

8. Prove that 

n 2 n 2 
(a) l: (x. - i) l: x. 

i=l ]. i=l ]. 

n 2 
l: x. 

i=l ]. 

(b) Use the data of Sample 2 of this section to illustrate the 
equalities in part (a). 

(c) Show that 

9. Use the Chebyshev inequality to show that in any sample of size 

n, P( lxi - xi ~ks) ~ (n - l)/nk2 , for any observation xi in the 
sample. 
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Exercises 5.3 

1. Use the program VARSAMP to sample 1000 variances from the standard 
normal distribution with sample sizes 5, 10, and 40. Draw rela-
tive frequency histograms for each set of observations. 

2. Expand the program written in Exercise 5.2.2 to calculate the 
sample variance and standard deviation. Use the height data of 
that exercise to calculate s2 , s, and s/x. -

3. Use the program in Exercise 5.3.2 together with the data of 
Exercise 5.2.3 to find the variance, standard deviation, and 
coefficient of variation of the income data given there. Which 
of the two data sets is more variable, this income data or the 
height data of the previous exercise? 

5.4 THE CENTRAL LIMIT THEOREM 

A crucial theorem in probability and statistics concerns the distri-
bution of means, which have been calculated from random samples from 
a population. As mentioned above such means, X, are random variables. 

- 2 2We have seen that E(X) = µ and Var(X) = a /n, where µ and a are the 
population expectation and variance. In order to give an example, 
to suggest the behavior of sample means, let us again look at the 
histograms in Fig. 5.2.1. Here the underlying distribution is the 
discrete uniform distribution, assigning equal probabilities to the 
integers 1, 2, ••• , 10. The distribution of means for n = 3 again 
takes on values on the interval [l, 10], but we notice that the 
histogram reflects a "bell-shaped" appearance, with small probability 
in the tails and substantial probability near the center. 

We shall pursue this example further, but first we consider 
standardizing a random variable X. If E(X) =µand Var(X) = cr2 , 
the standardized random variable 

x - 11z = ::.:...___r::. 
a 
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has two important properties. First, E(Z) = E((X - µ)/o) = 
E(X - µ)/cr = (µ - µ)/o = O. Secondly, it is straightforward to show 
that Var(Z) = 1. Thus, as we have found the expectation and variance 
of Xto equalµ and o2/n, respectively, we see that 

x - 11z = .::.:..-...c:. 

cr//ll 

has expectation zero and variance one. Although we shall not prove 
it here, the variable Z = (X - µ)/o//ll "behaves" like the standard 
normal variable for large n, regardless of the distribution from 

which the means are sampled, providing only E(X) = µ and Var(X) o2 

exist. This is formally stated in the following: 

THEOREM 5.4.1. (The Central Limit Theorem). If X1 , X2 , ••• , Xn are 
independently and identically distributed random variables, with 
common distribution given by the random variable X, for which E(X) = 
µand Var(X) = o2 , then 

lim P(x - µ < t) = F (t)/"" - zn-+<x> oI rn 

for all t, where FZ(t) is the cdf for the standard normal distribu-
tion. We say X is asymptotically normally distributed, with mean µ 

and variance o2/n. 

We use the program CLT to simulate 10,000 means of samples of 
size n = 5, 10, and 50 from the discrete uniform distribution on 
1, 2, ••• , 10. These means are transformed by the standardizing 
transformation 

x - 5.5 
./99/12n 

A histogram for the case of n = 10 and the corresponding histogram 
for the standard normal distribution are displayed in Fig. 5.4.1. 
The close relationship between the two histograms is apparent. For 
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CLT 

10 REM COMPUTES K STANDARDIZED MEANS OF SAMPLES OF SIZE R 
20 REM FROM DISCRETE UNIFORM DISTRIRUTION ON 1,2,,,,,N 
30 PRINT "WHAT VALUE OF N";" FOR DISCRETE";" UNIFORM DIST?" 
40 INPUT N 
50 DP! Z(l8),F(l8) 
60 PRnT "HOii ~!ANY 'IEANS?" 
70 UPUT K 
80 PRINT "WHAT SAMPLE SIZE?" 
90 INPUT R 
100 FOR I = 1 TO 16 
llOREADZ(l) 
1 20 NEXT I 
130 FOR L = l TO K 
140 FOR J= l TO R 
150 LET M = l +INT(RND*N) 
160 LET T =T+tl/R 
170 NEXT .J 
180 LETT= T-(N+l)/2 
190 LETT •T/SQR((N-2-l)/(12*R)) 
200 FOR I = 1 TO 16 
210 IF T>-4+1/2 THEN 240 
220 LET F(I)=F(I)+l/K 
230 GO TO 270 
240 IF 1<16 THEN 260 
250 LF.T F(I)=F(I)+l/K 
260 NEXT I 
270 LET T=O 
280 NEXT L 
290 PRINT "FREQUl':NCY TABLE";" FOR TRANSFORMED";" MEANS" 
300 PRINT 
310 PRINT "LOWER END", "UPPER END", "FREQUENCY", "NOR~IAL PROB" 
320 PRINT 
330 FOR 1 = 1 TO 16 
340 PRINT -4+(I-l)/2,-4+I/2,F(I),Z(l) 
350 LET A •(-4,25+I/2)*F(l)+A 
360 LET B = B +F(I) 
370 NEXT I 
380 PRINT "AVERAGE ";"TRANSfORMED ";"MEAN =";A 
390 PRINT "TOTAL FREQ= ";B 
400 DATA .0002,.ooll,.0049,.0l66,.0440,.0919,.1498,.1915 
410 DATA , 1915,.1498,.0919 ,.0440,.0l66,.0049,.001 l ,.0002 
420 END 
* 
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RUN 
WHAT VALUE OF N FOR DISCRETE UNIFORM DIST? 
? 10 
If)W MANY MEANS? 
? 10001/J
WHAT SAMPLE SIZE? 
? 5 
FREQUENCY TABLE FOR TRANSFORMED MEANS 

LOWER END UPPER END FREQUENCY 
-4 -3·5 0 
-3.5 -3 l/J.1/1004
-3 -2.5 0.0037 
-2.5 -2 0el/ll59
-2 -1.5 0e04ll 
-1.5 -1 l/lell66
-1 -0.5 0.1442 
-0.5 0 0·1783 
0 0.5 0el823 
0.5 l 0el423 
l 1. 5 0ell66 

2 0e0387l • 5 
2 2.5 0.0154 
2.5 3 0.0044 
3 3.5 0.1/Jl/Jl/Jl
3.5 4 Ill 

AVERAGE TRANSFORMED MEAN •-4·79999 E-3 
10TAL FREQ• 0.999999 

* 

NORMAL PROB 
0.0002 
0. 1/11/Jl l 
0e01/l49
0e0l66 
0·044 
0e0919 
0el498 
0el915 
0el915 
l/Je 1498 
0.0919 
0.01.11.1 
0el/ll66
0.0049 
l/lel/l01 l 
0.0002 
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RUN 
WHAT VALUE OF N FOR DISCRETE UNIFORM DIST? 
? 10 
mw MANY MEANS? 
? 10000 
WHAT SAMPLE SIZE? 
? 10 
FREQUENCY TABLE FOR TRANSFORMED MEANS 

1.DWER END UPPER END FREQUENCY 
-4 -3·5 0 
-3.5 -3 0.0003 
-3 -2.5 0e0061 
-2.5 -2 0.0143 
-2 -1.5 0·0489
-1.s -1 a.47999 E-2 
-1 -0·5 0.1593 
-0·5 0 0.2039 

0 0.5 0.174 
0.5 1 0el6 
l a.15999 E-2l • 5 
i.5 2 lh0458 
2 2·5 0.0156 
2.5 3 0e0044 
3 3.5 0.001 
3.5 4 0 

AVERAGE TRANSFORMED MEAN a-0.01585 
TOTAL FREQ• 0.999999 

* 

NORMAL PROB 
0.0002 
0.0011 
0e0049 
0·0166 
0.044 
0. 0919 
0el498 
0.1915 
0.1915 
0el498 
0. 0919 
f1Je044 
f1Je0166 
0e0049 
lh0011 
0.0002 
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RUN 
i'1HAT VALUF. OF l'J FOR DISCRETE 
? 10 
OOW MANY MF.ANS? 
? 10000 
WHAT SAMPLE SIZF.? 
? 50 

UNIFOH..'1 DIST? 

FREQUENCY TABLE FOR TRANSFORMED MEANS 

LOWER END UPPER END FREQUENCY NORMAL PBOB 

-4 -3.5 
-3.5 -3 
-3 -2.5 
-2.5 -2 
-2 -1.5 
-1. 5 - 1 
-1 -0.5 
-0. 5 0 

0 0.5 
0.5 1 
1 1. 5 
lo 5 2 
2 2.5 
2.5 3 
3 3.5 
3.5 4 

AVERAGE THAN SFORMF.D MEAN 
IDTAL FREQ= 0.999999 

0.0002 
0.0014 
000051 
000184 
0.0437 
9010999 
001461 
0.2074 
0.1947 
001416 
8063999 
0.0437 
000147 
filo0043 
0.001 
0.00002 

=-0.02425 

E-2 

E-2 

0.0002 
0.0011 
000049 
000166 
0o 04Ll 
000919 
001498 
001915 
001915 
001498 
000919 
0o04l! 
000166 
000049 
0.0011 
0.0002 

* 
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l'.ZJ Standardized 
Means 

Fig. 5.4.1 

n =50, the simulation of the program CLT indicates that the standard 
normal distribution and that of Xare practically identical. 

The central limit theorem has many important practical conse-
quences in statistics. As the distribution of means of "large samples" 
can be considered to be approximately normally distributed, questions 
of inference concerning µ may be reduced to questions of inference 
concerning µ in the case of a normal distribution. Additionally, as 
many statistics and random variables can be thought of as sums of 
independent and identically distributed (iid) random variables, the 
distribution of such sums or an average of such sums can be approxi-
mated using the normal distribution. 

As an example of this we shall consider x1 , x2 , ... , Xn to be 
iid random variables, each with the exponential distribution. Thus 
the random variable X, representing the conunon distribution has pdf 
f(x) = e-x for x ~ O. However, Y = x1 + x2 + ••• + Xn would repre-
sent the waiting time until the nth Poisson event, when the events 
have arrival rate l/A = 1. As stated in Sec. 4.4, this random vari-
able has the ganuna distribution with a = n and $ = 1. Hence the pdf 
for Y is 

n-1 
( L_ -y

fy y) = r(n) e for y > O 

As the average waiting time for n arrivals is given by Y/n =Xwe 
can use Theorem 4.5.1 to show that the pdf for X is given by 
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f ( ) _ n (xn )~ -nx e for x > 0x x - r(n)
n 

The probability density functions for X are plotted in Fig. 5.4.2 n 
for n = 1, 4, and 16. As is readily apparent, the exponential pdf 
is neither symmetric nor bell-shaped in appearance. However the 
averages of 16 independent observations from this population have a 
distribution which is decidedly bell-shaped in appearance. The 
expectations for each of these distributions is one, while the vari-
ance is l/n. The approach to normality for fairly small n is quite 
remarkable, considering the shape of the parent distribution. 

As a practical example of the use of the central limit theorem, 
let us assume that the dollar amount of losses due to theft at a 
clothing store per week is a uniformly distributed random variable 
on (50, 150] with the measurements made in dollars. Assuming inde-
pendence, the total loss in a 50-week period is 

Fig. 5.4.2 Probability density functions for the average of 
n = 1, 4, and 16 observations. 
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50 
L = E X. 

1i=l 

where X. is the loss in the ith week. We find E(X) = 100 and Var(X)
1 

Var(X) = (100) 2/12, where Xis the common distribution of the X.• 
1 

Thus E(L) = 5000 and Var(L) = 50(100) 2/12. Standardizing 1, we find 
that 

1 - 5000 - z 
100150/12 

i.e., is approximately a standard normal variable. We may be inter-
ested in the probability L does not exceed $6000. This is found as 

P(L ~ 6000) = P(Z ~ 1000/100/50/12) = P(Z ~ 4.90) 
= 1 

Similarly the upper 95th percentile of the distribution of losses 
over the 50-week period is 5000 + (1ool50/12)z0 •05 = 5335,78. The 
central limit theorem has allowed us to state that the sum of 50 iid 
uniform variables, when properly standardized, has approximately a 
standard normal distribution. 

Problems 5.4 

1. Assume that n = 25 observations are taken from a normal distri-
bution X with E(X) = 500 and crX = 100. Find the expectation 
and standard deviation of x. 

2. Assume that the length of telephone calls T in minutes is described 
by the distribution with pdf 

~ e-t/2 t > 0 
{f(t) = 

0 t < 0 

(a) Find E(T) and Var(T). 
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(b) Let S = T1 + T2 + ••• + Tn' where the Ti are independent 
random variables with the distribution given by f(t). Find 
E(S) and Var(S). (These will be functions of n.) 

(c) Find the probability that the total length of 100 calls 
does not exceed 4 hr (T is assumed to be measured in minutes). 
Note that (S - E(S))/11/ar(S) is approximately a standard 
normal variable. 

3. Assume that Xis uniformly distributed on [-0.5, 0.5]. 
(a) Find E(X) and Var(X). 
(b) Find E(X) and Var(X) for n = 48. 
(c) Approximate the probability that an average of 48 indepen-

dent observations from X satisfies 

-1/8 < x < 1/8 

(d) What is P(-1/8 < X < 1/8). 

4. Assume X has pdf given by 

6x(l - x) on [O, l] 
f(x) = { 

0 elsewhere 

(a) Find P(0.25 < X < 0.75). 
(b) Approximate P(0.25 < X < 0.75) for n = 30. 

Exercises 5.4 

1. Use CLT to sample 1000 means of sample size 20 from the discrete 
uniform distribution on the integers 1, 2, 3, 4, 5. Construct 
a relative frequency histogram for the transformed means. How 
does this compare with the histogram for the uniform variable? 

2. Use the DEF FNF(X) command in BASIC to evaluate the pdf of the 
average of 20 exponential random variables with A= 1. Print 
the values for X = (k - 1)/20 for k = 1, 2, ... ' 41. Plot a 
graph of this function. What general shape does the curve have? 
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3. Write a program to compute the averages of n 100 observations 
from the distribution with cdf 

F(x) = 1 - 1. for x ~ 1x 

Find 1000 such means and plot a relative frequency histogram of 
these means. Does the resulting histogram appear symmetric? 
How can you explain this? 

5.5 ESTIMATION OF µ USING LARGE SAMPLES 

To illustrate the usefulness of the central limit theorem in questions 
of inference, we consider here the problem of estimating the expecta-
tionµ of a population with variance cr2 , using large samples. Ques-
tions of this type are common in practice, as we indicate in the 
following examples. What is the average net weight of packages of a 
breakfast food? What is the true average time required for a 6-year-
old child to answer an arithmetic problem correctly? What is the 
average age of adult male voters in a city? To provide answers to 
such questions we assume that a random sample of size n is taken 
from a population described by the random variable X with E(X) = µ 
and Var(X) = cr2• We assume for the moment that µ is unknown, but 
that cr2 is known. 

- n IThe random variable X = Ei=lxi n is, as mentioned above, a 
reasonable estimate for µ. However, this provides only a single 
number as an estimate of µ and gives no indication of the error 
associated with the estimate. Assuming large n, the asymptotic norm-
ality of Xcan be used to provide information of this kind. We denote 
by Za the value of Z in the standard normal distribution satisfying 
P(Z > Z ) =a, as indicated by the tail area in Fig. 5.5.1. By the- a 
symmetry of the normal distribution we see that 

or, approximately, for large n 
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z 

Fig. 5.5.1 The standard normal pdf 

1 - a 

or equivalently, 

Hence for any preassigned probability a, the random interval 
[X - (cr/ID.)Za/2 ' X+ (cr/ID.)Za/2 ] covers µ with probability 1 - a. 
This means, in frequency terms, that if a large number of random 
samples of n are taken from a population and the interval centered 
at Xof length 2(cr/ID.)Za/2 is marked off on the real-number axis, 
then (1 - a)lOO% of these intervals will contain µ. Of course, we 
generally only obtain one such interval from a single sample. The 
interval is referred to as a confidence interval for µ with confi-
dence coefficient (1 - a)lOO%. The probability 1 - a is associated 
with the procedure which has led to the construction of the interval 
and not with the particular interval itself. 

Suppose that we wish to obtain a confidence interval for the 
reaction time to a stimulus. We will assume that we have n = 100 
individuals and that a = 2. The sample yields an average reaction 
time x= 5.1 min. A 95% confidence interval for µ is obtained as 
follows: 

(1 - a)lOO = 95 yields a = 0.05 

Za;2 = z0•025 = 1.96 (from App. B. I) 
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The interval is 

x.!. ~a/ 2 = 5.1 .!. 0.2(1.96) 
In = 5.1 .!. 0.392 or [4.708, 5.492] 

Although we call this interval a 95% confidence interval for µ, in 
fact the probability that [4.708, 5.492] contains µis either 1 or 
0 (as µ is in or not in this interval). However, it is the case that 
approximately 95% of intervals constructed in this way will contain 
µ. 

To illustrate this point further we consider the program CONFINT 
which computes K 95% confidence intervals for samples of size N taken 
from the exponential distribution with mean µ. The program has been 
run for µ = 5, K =1000, and N = 20, 40, and 80. In each case the 
first 10 intervals are printed out. For N = 40, for example, all 
but the 10th interval contain the para.meter µ = 5. The program cal-
culates the interval X.!. (s//Ii.)z0 •025 , using s as an estimate of a, 
assuming a large sample size. The proportions of intervals contain-
ing µ in the 1000 samples are found to be 0.924, 0.94, and 0.928 for 
n = 20, 40, and 80, respectively. For large n, these confidence in-
tervals become better for several reasons. First, the estimate s of 
a improves. Second, the approximation to normality becomes better 
for larger n. Thirdly, the length of confidence intervals becomes 
shorter, on the average. This is most clearly seen by observing that 
if a is known the length of the confidence interval is given by 

2(cr/./n)Za/2 ' which clearly decreases with n. 

Problems 5.5 

1. A sample of n = 64 college students yielded on average IQ score 
of x=121.5 withs = 18. 
(a) Find a 95% confidence interval for µ for the population 

from which these students were selected, assuming the popu-
lation standard deviation is a = 15. 

(b) Find a 95% confidence interval as in part (a) assuming a is 
unknown. 

https://0.2(1.96
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CONFINT 

10 REM 95 PERCENT CONFIDENCE INTERVALS FOR MU FOR EXPONENTIAL 
20 PRINT "WHAT IS SAMPLE";" SIZE?" 
30 INPUT N 
40 PRINT "WHAT IS TRUE";" MEAN?" 
50 I~PUT ~ 
60 PRL~T "HOW l!ANY ";"CONFIDENCE";" INTE,RVALS?" 
70 I:'lPUT K 
80 PRINT ''ENDPOINTS OF ";"FIRST 10 INTERVALS" 
90 PRINT "L","U" 
100 FOR J = l TO K 
110 FOR I = 1 TON 
120 LET X =-M*LOG(l-RNO) 
130 LET Xl=X+Xl 
140 LET x2=x-2+x2 
150 NEXT I 
160 LET A = Xl/N 
170 LET B =SQR((X2-N*A-2)/(N-l)) 
180 LET B=B/SQR(N) 
190 LET L = A-l.96*B 
200 LET U = A+l.96*B 
210 IF J>lO THEN 230 
220 PRI'H L,U 
230 IF M<L THEN 270 
240 IF M>U THEN 270 
250 LET F(l)=F(l)+l/K 
260 GO TO 280 
270 LET F(2)=F(2)+1/K 
280 LET Xl=O 
290 LET X2=0 
300 NEXT J 
310 PlUNT 
320 PRINT "PROPORTION COVERI~G", "PROP NOT COVERUIG" 
330 PRINT F(l),"",F(Z) 
340 GO TO 350 
350 ENO 
* 
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RUN 
WHAT IS SAMPLE SIZE? 
? 20 
WHAT IS TRUE MEAN? 
? 5 
KJW MANY CONFIDENCE INTERVALS? 
? 1000 
ENDPOINTS OF FIRST 10 INTERVALS 
L u 

2·28229 4. 56973 
2e48621 6·51059 
2·07132 4. 67738 
4·1221 6· 66326 
3·68824 8.5829 
4·19414 9. 57308 
2·46434 5. 62246 
3·44853 7. 69141 
2e69294 6. 59116 
2·90931 7.04533 

PROPORTION COVERING PROP NOT COVERING 
0.924 0e076 

*RUN 
WHAT IS SAMPLE SIZE? 
? 40 
WHAT IS TRUE MEAN? 
? 5 
HOW MANY CONFIDENCE INTERVALS? 
1001110--
ENDPOINTS OF FIRST 10 INTERVALS 
L u 

2·80755 5. 11686 
3·43107 5. 33596 
4. 71107 8·30811 
3. 47965 6· 13373 
3·40615 6·21323 
3·5967 6·80164 
3·52781 5. 79695 
4·65295 8. 68237 
2.91102 5·59845 
2·61319 4. 58944 

PROPORTION COVERING PROP NOT COVERING 
0.94 0e06 

* 
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RUN 
WHAT IS SAMPLE SIZE? 
1 80 
WHAT IS TRUE MEAN? 
1 5 
HOW MANY CONFIDENCE INTERVALS? 
1 1000 
ENDPOINTS OF FIRST 10 INTERVALS 
L u 

3042777 4091795 
4053192 60 78436 
3094521 60 06365 
4049517 6083487 
3009623 4o 75982 
3085123 6010175 
3o 23937 500517 
4005192 6058775 
3099525 5098547 
3055178 5032257 

PROPORTION COVERING PROP NOT COVERING 
00928 0.072 

* 
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(c) Find a 99% confidence interval as in part (b). 

2. The average GPA (grade point average) of 225 randomly selected 
students from a university was 3.12 with s = 0.31. Find 95 and 
99% confidence intervals for the true average GPA of students at 
this university. 

3. Weight losses of 81 individuals on the first 30 days on a diet 
averaged 8.2 lb with sample variance of 4 lb2 • 
(a) Find a 99% confidence interval for µ, the true average loss 

of individuals on this diet. 
(b) The diet orginator claims that the true average weight loss 

in the first 30 days is 10 lb. Do the data support this 
assertion? Why or why not? 

4. Suppose we wish to have a probability of at least 1 - a that the 
error in estimating µ by Xis no more than d in magnitude. For 
large n, we have 

P(]x - µl/(cr/fii) < za/2) ~ 1 - a 

We wish the statement P(IX - µ] < d) = 1 - a to be true. 
(a) Assuming a, d, and a are known, show that a sample of size 

n = ((cr/d)Za/2 )2 will satisf'y the requirements. 
(b) Suppose IQ scores have a = 15 and we wish to estimate the 

true average IQ of a large group using X. If we wish a 
maximum absolute error of 3 with probability 0.95, what 
sample size is required? 

(c) If we wish the maximum error to be 1.5 with probability 
0.95, what sample size is required? 

5. An assembly-line process is used to fill packages with flour. 
It is desired to estimate the true average net weight. Long 
experience indicates that the true variance of the net weight is 

20.25 oz • What sample size should be used in order to ensure 
the estimate X differs from µ by no more than 0.05 oz with prob-
ability of 0.95? (Use Problem 5.5.4.) 
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Exercises 5.5 

1. Use the program CONFINT with true mean µ = 4, n = 25, and k = 
100. Omit statement 210 so that the endpoints of the 100 inter-
vals are printed out. Identify those which fail to cover µ. 

2. Use the program written in Exercise 5.3.2 to find a 95% confidence 
interval for the true average height µ of the population from 
which the data of Exercise 5.2.2 were sampled. 

3. Use the program in Exercise 5.5.2 to find a 95% confidence inter-
val for µ for the income data in Exercise 5.2.3. 

4. Alter CONFINT to provide 80, 90, 95, or 99% confidence intervals, 
where the program requests the confidence coefficient 1 - a. 

5.6 APPROXIMATION OF BINOMIAL PROBABILITIES BY THE NORMAL 
DISTRIBUTION 

As another example of the importance of the central limit theorem 
we condider approximating binomial probabilities in the case that the 
number of trials n is large. We have seen before that the Poisson 
distribution is a good approximation to the binomial distribution for 
large n and small p. The Poisson approximation to the binomial dis-
tribution has been described as satisfactory if n ~ 20 and p ~ 0.05 
in several texts. It is very good for n ~ 100 and p ~ 0.1. However, 
for large values of n and 0.1~p~0.9, it is often very tedious to 
compute binomial probabilities, and the Poisson approximation does 
not apply. However, in Sec. 3.3 we have seen that the binomial vari-

able X could be written as X = E~=lik, where the Ik were independently 
and identically distributed indicator variables with P[Ik = 0) = 1 - p 

and P[~ = 1) = p. 
The central limit theorem allows us to assert that for X ~ B(n,p), 

X - np x - p 

lp(l - p)/n 

has approximately the standard normal distribution. This allows use 
of the.normal distribution to approximate binomial probabilities for 
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large n. Suppose a basketball player makes 80% of his foul shots. 
What is the probability he makes between 75 and 85 of his next 100 
shots. 

We have 

This is an impossible calculation by hand, and even a somewhat annoy-
ing calculation using the computer. However, we can use the normal 
approximation as follows: 

P(75 ~ X ~ 85) = P(75 - np ~ X - np ~ 85 - np) 

= P( 75 - np < X - np < 85 - np ~ 
lnp(l - p) - /np(l - p) - /np(l - p)) 

= p(75 :_80 ~ z ~ 85 - 80) 
v'l6 116 ) 

= P(-1.25 ~ Z ~ 1.25) 

where Z has the standard normal distribution. From Table B.I in 
Appendix B, we find P(Z ~ 1.25) = o. 7888. 

0.2 

/N(6,.,.2=4) 

0.1 

4 6 

Fig. 5.6.l 
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In order to see how this approximation may be improved, we 
consider the case n = 18 and p = 1/3. Hence E(X) = np = 6 and 
Var(X) = 4. In Fig. 5.6.1 the probability histogram for this binomial 
distribution and the normal density function with µ = 6 and cr2 = 4 
are graphed. We are estimating the area under the histogram, by the 
area under the corresponding normal probability density function. 
If we consider finding P(3 ~X ~ 8), we can run the program BINOM 
and find the exact probability to be 0.859750. The normal approxi-
mation yields 

P[3; 6 ~ Z ~ 8 ; 6) = P(-1.5 ~ Z ~ 1) 

= Fz(1) - Fz(-1.5) 

o.8413 - 0.0668 = 0.7745 

It is clear from Fig. 5.6.1 that the approximation would be improved 
if we find the area under the normal density function from 2.5 to 
8.5, as this will give a better approximation to the area under the 
histogram. The shaded area has not been approximated. Hence we 
apply a "continuity correction" and find 

p(2.5 - 6 < z < 8.5 - 6) Fz(1.25) - Fz(-1.75)2 - - 2 

= 0.8944 - 0.0401 = o.8543 

This result is much closer to the true probability. 
In general, if we approximate P(k1 ~X ~k2 ), we use the follow-

ing approximation: 

kl - 0.5 - np k2 + 0.5 - np] 
p [ < z < -=-----

l/np(l - p) - - /np(l - p) 

= F [k2 + 0.5 - np] _ F [k1 - 0.5 - np] 
Z /np(l - p) Z I np(l - p) 

Hence for the basketball player we would estimate P(75 ~X ~ 85) 
as 

0.8310 

https://Fz(-1.75
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This will be an improvement over the previous estimate. If we wish 
to estimate P(X = k), say P(X = 6) for n = 18, and p = 1/3, we use 
the estimate 

Fz (5. 5 - 6) - Fz (5. 5 - 6) = Fz (0.25 ) - Fz (-0.25 ) = 0.19742 2 

The actual probability is 0.1963. This is quite a good approximation 
considering that n is only 18. We turn to a more detailed discussion 
of the question of the estimation of parameters in the next chapter. 

Problems 5. 6 

1. Genetic theory predicts that certain flowers will be white with 
probability 1/4 and yellow with probability 3/4. Approximate 
the probability that of 300 such flowers between 210 and 240 
flowers inclusive will be yellow. (Make two calculations with-
out and with the continuity correction.) 

2. In a triangle test, persons unable to detect the specified char-
acteristic will be correct by chance with probability 1/3. For 
n = 72 persons, find the probability that between 20 and 30 will 
identify the characteristic correctly. Again approximate this 
probability without and with the continuity correction. 

3. A fair coin is tossed n times. 
(a) If n = 16, find the exact probability of 8 heads and the 

corresponding normal approximation. 
(b) If n = 100, use the normal approximation to estimate the 

probability of exactly 50 heads. 
(c) For even n, find an approximate expression for exactly n/2 

heads inn tosses. 
(d) What is the limit of the probability in [part (c)] as n -+ co? 

4. An operation is successful with probability 0.9. What is the 
probability that in the next 100 operations, 
(a) Ninety-three or more will be successful. 
(b) Eighty-five or more will be successful. 
(Use the continuity correction.) 
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5. A batter gets a hit with probability p = 1/4. Compute his prob-
ability of exactly 4 hits in his next 12 at bats. 
(a) Using the binomial distribution with n = 12. 
(b) Using the normal approximation to the binomial distribution 

with the continuity correction. 

6. For large n, assume we estimate an unknown probability p by the 
estimator p defined as the frequency of the event inn trials. 
(a) Show that 

P( Ip"- Pl< 2/p(l - p) - 0.9544 
n 

and 

P(lp - Pl< _1_) > 0.9544- rn -
(Note: p(l - p) ~ 1/4.) 

(b) Show that by choosing n = l/d2 we can achieve, for a pre-
determined value of d, the result that the estimate p will 
not differ in magnitude from p by more than d with probabil-
ity at least 0.9544. 

7. In order to estimate the percent of an electorate who prefer the 
Republican candidate to all others, how large a sample size should 
be used in order to have a probability at least 0.95 that the 
error of the estimate will not exceed 2.5 percentage points? 
What sample size is required if the error is not to exceed 2 per-
centage points? Use Problem 5.6.6. 

8. (a) We wish to estimate the proportion of the registered voters 
in a city in favor of a bond issue. How large a sample of 
these voters do we require in order that the probability is 
at least 0.95 that the error in the estimate of this propor-
tion does not exceed 5 percentage points? 

(b) If the allowable error is cut in half (2.5 percentage points), 
what happens to the sample size? 

(c) If the allowable error is divided by k (5/k), what happens 
to the result in parts (a)? 
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Exercise 5.6 

1. Write a BASIC program to evaluate the probability density function 
of the normal density function used to approximate the binomial 
probabilities for n = 25 and p = 1/2. Evaluate the pdf on the 
interval [O, 25) with step size 0.5. Plot this function and the 
probability histogram for B(25,o.5) using the same axes. 
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ESTIMATION OF PARAMETERS 

6.1 INTRODUCTION AND DEFINITIONS 

As has been mentioned in the previous chapter, one of the important 
inferential questions considered in statistics is the estimation of 
parameters of a theoretical distribution. Here we shall consider 
some important properties of statistical estimators. It is conven-
tional to denote an estimator of the parameter 9 by S . We recall n 
that e is a real-valued function of the observations in a random n 
sample of size n. The statistics Xand s2 are particular examples 
of such estimators (of the parametersµ and cr2 , respectively). The 
estimator e is called a point estimate of e because a random samplen 
provides a single real number estimating e. On the other hand, it 
should be kept clearly in mind that e is a random variable, as dif-n 
ferent random samples of size n will yield different values of e . 

n 
We next define certain properties of an estimator e of a 

n 
parameter e, which are considered to be important. 

DEFINITION 6.1.l. The estimator e is an unbiased estimator of e 
n 

if E(e ) = e. 
n 

In words, the expected value of the random variable S is equal to 
n 

the parameter being estimated. We have seen in the previous chapter 

207 
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that X is an unbiased estimator of µ, the expectation of the popula-
tion from which the sample has been taken, as E(X) = µ. More 
colloquially, a statistic § is an unbiased estimator of a parametern 
a if it is equal to a "on the average." We have seen that 

s2 n 
E* i=l 

is not an unbiased estimator of cr2 as E(s;) ((n - l)/n)cr2 , while 
s2 is an unbiased estimator of cr2 . 

The next property of an estimator concerns the behavior of the 
estimator B as n becomes large. Such a property is called an 
asymptotic 

n 
property of " an. 

DEFINITION 6.1.2. As estimator B is called a consistent estimator 
n 

of a if for any E > 0• 

lim P(IB - al> E) o. 
n-+<x> n 

This property means that the probability that a has a value more 
n 

than E away from a becomes small (approaches zero) as the sample size 
n is increased. Using the Chebyshev inequality, we have seen in the 
previous chapter that X is a consistent estimator of µ if the popu-
lation from which we are sampling has a finite theoretical variance 

2a . 
If we write 

E(e - a) 2 = E(e - E(a ) + E(s ) _ a) 2 
n n n n 

= E(B - E(B )) 2 + (a - E(B )) 2 
n n n 

we see that the expression E(a " - a) 2 , called the expected mean square
n 

(EMS) error, can be written as 

" " " 2EMS(a ) = Var(a ) + (Bias(a )) (6.1.1)n n n 
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where 8 - E(§ ) is called the bias of e . It is straightforward
n n 

to show that if var(e ) -+ 0 and Bias(S ) -+ 0 asn-+ 00 , then e n 
is a consistent estimator of e. For example consider X = 
(X + X + ••• + X )/(n - 1) as an estimate ofµ for a population 

n n -
1 2 n 

with theoretical variance cr2 . 
var(x) = var[~- 1) = [n ~ 1rvar(x) 

[n ~ lrcr: 
and 

_lliL_Bias(X) µ - E(X) µ n - 1 

___l!_ 
n - 1 

Clearly Var(X) -+ 0 and Bias(X) -+ 0 as n -+ 00 , so that X'. is a consistent 

estimator of µ but not an unbiased estimator of µ. 

A third property of 
A 

en which we shall consider is the efficiency 

of one estimator e with respect to another estimator a ' both esti-
n n 

mating e. The efficiency is measured in terms of the variance of an 

estimator when it is unbiased for e. It is clear that for two un-

biased estimators, the one with the smaller variance is to be pre-

ferred, as roughly, the smaller the variance the higher the probabil-

ity that an estimator will have a value close toe. (See Fig. 6.1.1.) 

Fig. 6.1.l 

0 
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DEFINITION 6.1.3. Let @ and S be two estimators of 9. The 
n n 

efficiency of e with respect to 6 is given by
n n 

The efficiency equals Var(S )/Var(S ) if both estimators are unbiased. 
n n 

DEFINITION 6.1.4. The asymptotic efficiency of S with respect to 
ne is given by

n 

EMS(S ) 
e = lim EMs(tt)

n-- n 

if this limit exists. 

For example consider Xand X mentioned above. From Fig. 6.1.1 we see 
that EMS(X) = (n/(n - l))2o2/n + (µ/(n - 1))2 and EMS(X) o2/n. 
Hence the efficiency e(X,X) is always less than 1 as it is equal to 
the ratio of the latter expected mean square to the former. The 
limit e is clearly l here. 

Let us consider finding the best linear unbiased estimator 
(BLUE) of µ, based on a random sample of size n from a population 
with expectation µ and variance o2 The term linear refers to re-
stricting our attention to estimates of the form 

n 
E a.X. 

i=l l. l. 

where (X1 , x2 , ... , Xn) represents th~ observations in the random 
sample. As E(X.) =µand Var(X.) = o for all i and the observations 

l. l. 

are independent, we find 

n n n 
E(Ea.X.) ( E a. )µ and Var( E a.X.)

i=l l. l. i=l l. i=l l. l. 



211 6.1 Introduction and Definitions 

As the estimate is to be unbiased, E~ 1a. = 1, and as the best esti-
i= 1. 

mate has the smallest variance, we must minimize E~ 1a. 2 subject to
i= 1. 

nthis condition. Let us write ai = l/n + ei, where from Ei=lai 1, 
it follows that E~ 1e. 0. Then 

i= 1. 

n 
E a. 2 ~ (1+e.)2=1 + ~ e.2 

i=l 1. i=l n 1 n i=l 1 

Clearly this expression is minimized by setting ei = 0 for all i, so 
- nthat ai = l/n for i = 1, 2, .•. , n. Thus X = Ei=lXi/n is the best 

linear unbiased estimator (BLUE) for µ. 

Problems 6.1 

1. Assume (X1 , x2 , •.• , Xn) represents a random sample of size n 
from a population X with E(X) =µand Var(X) = o2• Assume also 
that n is even. Consider the estimators x* and Xwhere 

n/2 X.
E _i_X* 

i=l n/2 

and Xis the sample mean. 
(a) Show that x* is an unbiased estimator of µ 
(b) Find Var(X*). 
(c) Show that the efficiency e(X*, X) is 1/2 for any even 

integer n. 

2. Parallel the proof of Theorem 3.6.1 (the Chebyshev inequality) 
to show that 
(a) P(l§n - 0] ~ E) ~ EMS(§n)/E2 for any E > 0, in both the 

discrete and continuous cases, assuming EMS(§ ) exists. n 
(b) Using Eq. (6.1.1) show that if lim Var(§ ) = 0 andn-+<><> n 

lim Bias(§ ) = 0, then S is a consistent estimator of 0.n-+<><> n n 
3. Let (X1 , x2 , ••• , Xn) be a random example of size n from the 

population described in Problem 6.1.1 
(a) Find Bias(s*2 ). 
(b) Assuming Var(s*2 ) + 0 as n + oo, show that s*2 is a 

consistent estimator of o2• 
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4. Assume that a random variable X is defined by the pdf 
1 -x/S for x > 0 ~ 

f(x;S) 
0 elsewhere 

(a) Prove that X is an unbiased estimator of S for a sample of 
size n. 

(b) Find Var(X) for a sample of size n. 

5. Assume that a random variable X is defined by the pdf 
1e on [o. e] 

f(x;e) 
0 elsewhere 

(a) Show that 2X is an unbiased estimator of 6 for a sample of 
size n. 

(b) Find Var(2X) for a sample of size n. 
(c) Show that 2X is a consistent estimator of e. 

6. (Continuation of Problem 6.1.5.) Let X(n) = maxi(X1 , X2 , ···• 
X ), the maximum of a sample of size n from the distribution n 
described in Problem 6.1.5. 
(a) Show that P(X(n) ~ x) = (x/6)n for x [O, 6). 

( ) n-1 n(b) Show that fX(n) x = nx /6 on [O, 6) and 0 elsewhere. 
(c) Find Var(X(n)) and Bias (X(n)). 
(d) Use Problem 6.1.2 to demonstrate that X(n) is a consistent 

estimator of e. 
(e) Find e(2X, X(n)) and the limit of this efficiency as n ~ oo. 

7. Consider random sampling from a population with probability 
function 

x = O, 1 

In other words, we observe 1 with probability p and 0 with prob-
ability 1 - p. These are called Bernoulli trials. 

(a) What is the distribution of X = E~=lXi? 
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(b) Find an unbiased estimate of p and the variance of this 
estimate. 

(c) Is your estimate in part (b) BLUE for p? Why or why not? 

8. Assume that we are sampling from a population of tobacco seed-
lings, of which a proportion p have green stems and a proportion 
1 - p have white stems. Out of 110 germinated seedlings 76 have 
green stems. What is an estimate of p? Is the estimator which 
you have used unbiased and consistent? (Use Problem 6.1.7.) 

6.2 ESTIMATION OF LOCATION IN SMALL SAMPLES 

In the previous chapter we have considered the estimation of µ = E(X) 
in the case that a large sample is taken from a population. Via the 
central limit theorem, we have been able to find confidence intervals 
for µ, based on the normal approximation for the distribution of X 

• in large samples. ot course, it is often the case that for reasons 
of cost, time, or ethical considerations that sample sizes cannot be 
large. For example, medical experiments using primates to discover 
characteristics which may be useful in the practice of medicine are 
very expensive. Consideration of humane treatment of animals encour-
ages the practice of seeking the most information from "small" samples. 

We consider first the estimation of the median n of a continuous 
random variable. We recall that n satisfies F(n) = 0.5, where F(x) 
is the cumulative distribution function of a random variable X. We 
assume here that X has a unique median n. The natural point estimate 
of n is given by the sample median M given in Definition 5.2.3. It 
can be show that 

lim P( IM - n J ~ £) o 
n-+<x> 

for any £ > O, so that M is a consistent estimator of n. Here we are 
interested in finding a confidence interval for n based on the order 

statistics X(l)' x( 2)' ••• , X(n} of a random sample of size n. A 
natural confidence interval forµ is given by [X(l)' X(n)]. The 
corresponding confidence coefficient is 
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However P(X(l) > n) is the probability that all observations in the 
sample exceed the population median. As the probability that any 
observation in a random sample exceeds n is 1/2, the probability that 
n independent observations exceed n is the binomial probability (l/2)n. 
Similarly P(X(n) < n) is the probability that all observations are 
less than the population median, whi,ch is also (l/2)n. Hence the 

confidence coefficient associated with [X(l)' X(n)] is 1 - 2(1/2)n. 
The confidence interval which we shall use for n is given by 

[X(r)' X(n-r+l)], i.e., the closed interval having the rth smallest 
and the rth largest observations in the random sample as endpoints. 
Again the corresponding confidence coefficient may be found from the 
binomial distribution by observing that 

P(X(r) .:5.. n s.x(n-r+l)) = 1 - 2P(X(r) > n) 

where P(X(r) > n) is the probability that exactly O, 1, 2, ••• ,or 
r - 1 observations of the sample of size n are less than n, which is 
given by the indicated binomial probability. 

The program MEDIAN produces a confidence interval for the true 
population median based on a sample of size n. The number of obser-
vations n, followed by the n observations should be typed in DATA 
statements beginning at line 500. The program requests the value of 

r in response to an INPUT statement and then prints X(r)' X(n-r+l) 
and the corresponding confidence coefficient. The observations need 
not be typed in order of magnitude, as the program will order them. 
Consider the batters in the National League who had the most hits in 
the years 1952-1971. These are listed in Table 6.2.1. Find a con-
fidence interval for n, the theoretical median winning number of hits 
per year. As indicated by the output from the program MEDIAN, [200, 
218] is a confidence interval with confidence coefficient 0.988, 
while [204, 215] is a confidence interval with coefficient 0.959. 
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MEDIAN 

10 REM COMPUTES A CONFIDENCE I~TERVAL FOR THE MEDIAN OF A 
20 REM CONTINUOUS POPULATION OF FORM X(R),X(N-R+l) WHERE 
30 REM X(I) IS THE ITH ORDER STATISTIC OF A RANDOM SAMPLE 
40 REM OF SIZE N. THE CONFIDENCE COEFFICIENT IS ALSO PRINTED. 
50 REM FIRST DATA POINT IS N, THE SAMPLE SIZE, FOLLOWED BY THE 
60 REM OBSERVATIONS THEMSELVES BEGINNING AT LINE 500 
70 REH THE SAMPLE SIZE IS LIMITED TO 100 OBSERVATIONS 
80 DI~! X( l 00) 
90 READ N 
100 FOR 1 = l TO N 
110 READ X(l) 
l 20 NEXT 1 
130 FOR J • TO N-1 
140 FOR I = l TO N-J 
150 IF X(I) <= X(I+l) THEN 190 
160 LET T•X(l+l) 
170 LET X(l+l)•X(l) 
180 LET X(I )=T 
190 NEXT I 
200 NEXT J 
210 PRINT "WHAT IS THE ";"VALUE OF R?" 
2 20 INPUT R 
230 LET Q= (0.5)-N 
240 LET C=Q 
250 FOR I • l TO R-1 
260 LET Q•(N-I+l)/I*Q 
270 LET C • C+Q 
280 NEXT I 
290 PRINT "THE ENDPOINTS ";"OF THE CONFIDENCE";" INTERVAL ARE" 
300 PRINT "X(R)=";X(R),"X(N-R+l)=";X(N-R+l) 
310 PRINT "THE CONFIDENCE ";"COEFFICIENT=";(l-2*C)
500 DATA 20, 194, 205, 212, 192, 200, 200, 215, 223, 190, 208 
510 DATA 230, 204, 211, 209, 218, 209, 210, 231, 205, 230 
1000 END 
*RUN 
WHAT IS THE VALUE OF R? 

? 5 
THE ENDPOINTS OF THE CONFIDENCE INTERVAL ARE 
X(R)= 200 X(N-R+l )= 218 
THE CONFIDENCE COEFFICIENT= 0.98818 

*RUN 
WHAT IS THE VALUE OF R? 

?6 
THE ENDPOINTS OF THE CONFIDENCE I~TERVAL ARE 
X(R)• 204 X(N-R+l )= 215' 
THE CONFIDENCE COEFFICIENT= 0.95861 

* 
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LIST 490-520 

00490 DATA 25 
00500 DATA 42.52,41.82,41.94,40.25,42.37,44.6,42.74,43.14,41.17,41.9,46.2 
00510 DATA 38.89,45.02,38.1,48.59,34.54,48.07,42.45,47.97,41.5,43 0 9,43.2 
00520 DATA 42.02,48.3,45.9 

*RUN 
WHAT IS THE VALUE OF R? 

?8 
THE ENDPOINTS OF THE CONFIDENCE INTERVAL ARE 
X(R)• 41.9 X(N-R+l)= 44.6 
THE CONFIDENCE COEFFICIENT= 0.95671 

*RUN 
WHAT IS THE VALUE OF R? 

? 7 
THE ENDPOINTS OF THE CONFIDENCE INTERVAL ARE 
X(R)• 41.82 X(N-R+l)= 45.02 
THE CONFIDENCE COEFFICIENT• 0.98537 

* 
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Table 6.2.1 Total Number of Hits for the National League Leadersa 

Year Na.me Hits Year Na.me Hits 
1952 Musial 194 1962 Davis, H. 230 

1953 Ashburn 205 1963 Pinson 204 

1954 Mueller 212 1964 Clemente/Flood 211 

1955 Kluszewski 192 1965 Rose 209 
1956 Aaron 200 1966 Alou, F. 218 

1957 Schoendienst 200 1967 Clemente 209 

1958 Ashburn 215 1968 Rose 210 

1959 Aaron 223 1969 Alou, M. 231 
1960 Mays 190 1970 Rose/Williams 205 
1961 Pinson 208 1971 Torre 230 

~he Official Encyclopedia of Baseball, 6th Ed. (revised). 

If it is known that a population is normally distributed, then 
a substantial improvement can be made in estimating µ in small samples 
by using a point estimate based on X. It can be shown that the 
asymptotic efficiency of the median M in relation to Xis given by 
e = 2/~ = 0.64. The asymptotic efficiency of M is thus rather low 
if the population is normally distributed, but it may exceed 1 for 
other distributions. Additionally, in skewed populations the popu-
lation median n may be a more informative measure of location. 

The determination of the endpoints of confidence intervals for 
µ in small samples from a population assumed to be normally distri-
buted [X - N(µ,cr2 )] with cr2 unknown is based on the knowledge of the 
distribution of the random variable 

x - µt=-- (6.2.1)
S/./Il 

The distribution of this random variable was found by Gosset who 
published his work under the pseudonym of Student in 1908. The ran-
dom variable is referred to as Student's t distribution. The 
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-4 3 4 
Student's t5 and the normal Z 

Fig. 6.2.l 

distribution depends upon the sample size n. If the sample is of 
size n the corresponding random variable t is said to have v = n - 1 
degrees of freedom. In Fig. 6.2.1 we present the density functions 
for the t distribution with v = 5 degrees of freedom and that of the 
standard normal variable. Note that the t statistic in Eq. (6.2.1) 
is similar to a standardized mean, where the unknown parameter a 

has been replaced by the estimator S. Roughly one can say that the 
t distribution has greater probability in the "tails" than the stan-
dard normal Z, but less probability near zero. The probability 
density function is symmetric about O, as in the case of the standard 
normal variable z. As the sample size becomes arbitrarily large 
(n ~ 00 ), the percentiles of the Student t distribution approach those 
of the standard normal distribution. This is not surprising as S is 
a consistent estimator of a. 

We will denote by t the number exceeded with probability a.a.,v 
in the t distribution with v degrees of freedom. From Table B.II we 

see that t 0 •05 , 4 = 2.132 [that is, P(t4 > 2.132) = 0.05), t 0 •05 ,10 = 
1.812, and t 0 •05 ,00 = = 1.645. The t distribution is used toz_ 05 
find the endpoints of confidence intervals in the same way that was 
described in Sec. 5.5 for large samples, where the standard normal 
distribution was used. We assume that we observe n independent 
observations (x1 , x2 , ••• , Xn) from a parent population X - N(µ,cr2). 
Then 
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or 
P( I(X - µ)/S/lii.J < t I ) = 1 - Cla 2,n-1 

This statement can be rewritten as 

P(X - (s/lii.)ta/2 ,n-l < µ < X+ (s/lii.)ta/2 ,n_1 ) = 1 - a 

Hence a confidence interval for µ is given by the interval 

(X - (S//"n)t / 2 1, X+ (S//"n)t / 2 1 )a ,n- a ,n-

Again the probability 1 - Cl is associated with the method of con-
structing the interval and not with a single observed interval. Note 
that the length of the interval 2(S/lii.)t 12 1 is a random variablea ,n-
since S is random, so that two intervals with the same confidence 
coefficient and the same sample size will not have the same length 
as in Sec. 5,5, 

The program TCONFINF produces a confidence interval for µ, where 
it is assumed that one obtains a random sample of size n from a popu-
lation X - N(µ,o2 ). It is assumed that o2 is not known. The sample 
observations are placed in DATA statements in line 600 and following. 
The program requests the sample size N as input and the value of the 
confidence coefficient (90, 95, or 99%). The program prints as out-
put the endpoints of the confidence interval, the mean of the sample 
data, and the standard deviation of the sample data. The maximum 
sample size is 50. For larger sample sizes, the program CONFINT may 
be used. 

As an example, suppose that the following are 25 measurements of 
the heights in inches of kindergarten boys in September of the school 
year: 42.52, 41.82, 41.94, 40.25, 42.37, 44.6, 42.74, 43.14, 41.17, 
41.9, 46.2, 38.89, 45.02, 38.1, 48.59, 34.54, 48.07, 42.45, 47.97, 
41.5, 43.9, 43.2, 42.02, 48.3, 45.9, The program TCONFINT has been 
run to find a 95% confidence interval for µ, the true average height 
of the population of such boys. The interval is found to be (41.71, 
44.46), with x= 43.09 ands 3,34. The actual normal population 
sampled had a true mean of µ = 43 and o = 2.5. The program MEDIAN 
has also been run to find an approximate 95% confidence interval for 
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TCONFINT 

10 REM PROGRAM CALCULATES A 90,95 OR 99 PERCENT CONFIDENCE 
20 REM INTERVAL FOR THE TRUE MEAN OF A NORMAL DISTRIBUTION 
30 REM ASSUMING THAT THE VARIANCE OF THE POPULATION IS 
40 REM UNKNOWN. PUT DATA IN 600 AND FOLLOWING. THE MAXl~UM 
50 REM NUMBER OF OBSERVATIONS IS 50. OTHERWISE USE CONFINT. 
60 PRINT "WHAT IS THE ";"VALUE OF N?" 
70 INPUT N 
80 PRINT "WHAT IS CONFIDENCE";" COEFFICIENT? ";"90,95 OR 99?" 
90 INPUT C 
92 If C • 90 THEN 105 

98 PRINT "INCOREECT FORMAT";" TRY ACAIN" 

110 DIM X(50),T(50),U(50),V(50) 
120 FOR I • 1 TO N 
130 READ X(I) 
140 LET S • S+X(I) 
150 LET Sl•Sl+X(I)-2 

170 LET Xl•S/N 
180 LET S2=SQR((Sl-N*Xl-2)/(N-l)) 
190 PRINT "A ";C;" PERCENT CONFIDENCE";" INTERVAL ";"FOR MU IS" 

230 LET L •Xl-S2/SQR(N)*T(N-l) 
232 LET U • Xl+S2/SQR(N)*T(N-l)
234 PRINT "L= ";L,"U= ";O 
236 PRINT "SAMPLE MEAN= ";Xl,"SAM~LE STD DEV = ";S2 

240 LET L•Xl-S2/SQR(N)*U(N-l) 
242 LET U•Xl+S2/SQR(N)*U(N-l) 

94 IF C • 95 THEN 105 
96 IF C • 99 THEN 105 

100 GO TO 90 
105 GOSUB 300 

160 NEXT I 

200 IF C •90 THEN 230 
210 IF C•95 THEN 240 
220 IF C=99 THEN 250 

238 GO TO 1000 

11244 PRINT 11 L• 11 ;L, 11 U• ;U 
246 PRINT "SAMPLE MEAN= ";Xl,"SAMPLE STD DEV • ";S2 
248 GO TO 1000 
250 LET L=Xl-S2/SQR(N)*V(N-l)
252 LET U=Xl+S2/SQR(N)*V(N-l) 

11254 PRINT 11 L• ;L,'1 U• '';U 
256 PRINT "SAMPLE MEAN= ";Xl,"SAMPLE STD DEV • ";S2 
258 GO TO 1000 

310 READ T(I) 

3 4 0 READ U ( I ) 

300 FOR I = 1 TO 50 

320 NEXT I 
330 FOR I = l TO 50 

350 NEXT I 
360 FOR I • 1 
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LIS 360-1000 

00360FOR I = l TO 50 
00370READ V(I)
00380NEXT I 
00390RETURN 
00400DATA 6.3138,2.9200,2,3534,2.1318,2,0l50 
00405DATA l.9432,l.8946,l.8595,l,8331,l,8125 
00410DATA l.7959,1.7823,l.7709,l,7613,l.7531 
00415DATA l,7459,l.7396,l.7341,l,7291,l,7247 
00420DATA l.7202,l.7171,l.7139,1,7109,l,7081 
00425DATA l.7056,l,7033,l,7011,1,6991,l,6973 
00430DATA l,6955,l,6939,l.6924,l,6909,1,6896 
00435DATA l,6883,l,6871,l,6860,1,6849,l,6839 
00440DATA l.6829,1.6820,l.6811,l.6802,l,6794 
00445DATA l,6787,1.6779,l.6772,l,6766,l,6759 
00450DATA 12,7062,4.3027,3.1824,2.7764,2.5706 
00455DATA 2,4469,2.3646,2,3060,2,2622,2,2281 
00460DATA 2.2010,2.1788,2,1604,2,1448,2,1315 
00465DATA 2.1199,2,1098,2,l009,2,0930,2.0860 
00470DATA 2.0796,2,0739,2.0687,2.0639,2.0595 
oo47SDATA 2.0555,2.0518,2.0484,2.o452,2.0423 
00480DATA 2,0395,2.0369,2.0345,2,0322,2,0301 
00485DATA 2,0281,2,0262,2.0244,2.0227,2,02ll 
00490DATA 2.0l95,2,0l81,2.0l67,2.0l54,2.0l41 
00495DATA 2.0l29,2.0li7,2,0l06,2.0096,2.0086 
00500DATA 63.6574,9.9248,5.8409,4.6041,4.0322 
00505DATA 3.7074,3.4995,3.3554,3.2498,3.1693 
00510DATA 3.l058,3.0545,3.0l23,2.9768,2.9467 
005150ATA 2.9208,2,8982,2.8784,2.8609,2,8453 
00520DATA 2,8314,2,8188,2.8073,2.7969,2.7874
00525DATA 2.7787,2.7707,2,7633,2.7564,2.7500 
005300ATA 2.7440,2.7385,2.7333,2.7284,2,7238 
005350ATA 2.7195,2.7154,2.7116,2.7079,2,7045
005400ATA 2,7012,2.6981,2.6951,2,6923,2.6896 
00545DATA 2.6870,2.6846,2,6822,2.6800,2.6778 
00600DATA 42,58,41.82,41.94,40.25,42.37,44,6,42.74,43.l4,41,17,41.9,46.2 
00610DATA 38.89,45.02,38,l,48,59,34.54,48.07,42.45,47.97,41.5,43,9,43.2 
00620DATA 42,02,48.3,45.9 
OlOOOEND 

*RUN 
WHAT IS THE VALUE OF N? 

?25 
WHAT IS CONFIDENCE COEFFICIENT? 90,95 OR 99? 

?95 
A 95 PERCENT CONFIDENCE INTERVAL FOR MU IS 
L= 41.7097 U= 44.4631 
SAMPLE MEAN= 43.0864 SAKPLE STD DEV = 3.33531 

* 
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n = µ. The interval is found to be [41.9, 44.6] with confidence 
coefficient 0.957. In this case, this interval compares favorably 
with that obtained from TCONFINT. Its length is 2.7 compared with 
2.75 for the interval based on the t distribution. 

Problems 6. 2 

1. (a) Verify that for X - B(n;l/2) that P(X < r - 1) 
P(X > n - r + 1). 

(b) For a random sample of size 25 from a continuous population, 
find the confidence coefficient associated with the interval 

[X(B)' X(lB)] used as a confidence interval for n 
2. The following is a random sample of the March kilowatt usage of 

10 households in Florida: 780, 820, 960, 750, 850, 1040, 620, 
930, 2400, Boo. 
(a) Find a 97.86% confidence interval for the true median house-

hold power consumption. 
(b) Find a 89.06% confidence interval for this median. 

3. Find the values of the following: 

(a) to.05,17' to.95,16' to.01,5' to.01,20' to.01,00 

(b) P(t 9 ~1.833), P(t3 ~ -3.182), P(t11 ~ 2.718), 
P(t00 ~ 1.960), P(t00 ~ 1.282), P(t00 ~ 1.645) 

4. The homerun leaders in the National League over a 20-year period 
are given in Table 6.2.2. 
(a) Find a 95.9% confidence interval for n, the true median 

winning number of homeruns. 
(b) Assuming normality of these observations find a 95% confi-

dence interval for µ, the true average winning number. 
(c) Which of these intervals do you prefer. Why? 
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Table 6.2.2 Homerun Leaders 1952-197la 

Year Name Number Year Name Number 
1952 Kiner/Sauer 37 1962 Mays 49 
1953 Mathews 47 1963 Aaron/Mc Covey 44 
1954 Kluszewski 49 1964 Mays 47 
1955 Mays 51 1965 Mays 52 
1956 Snider 43 1966 Aaron 44 
1957 Aaron 44 1967 Aaron 39 
1958 Banks 47 1968 Mc Covey 36 
1959 Mathews 46 1969 McCovey 45 
1960 Banks 41 1970 Bench 45 
1961 Cepeda 46 1971 Stargell 48 

aThe Official Encyclopedia of Baseball, 6th Ed. (revised). 

5. The average hourly earnings of production workers in manufactur-
ing industries in 15 eastern and southeastern states as of 
November 1975 are given below*: 

State Earnings State Earnings 

Connecticut 4.89 New Jersey 5.06 
Deleware 5.40 New York 4.99 
Florida 4.11 North Carolina 3.62 
Georgia 4.oo Pennsylvania 5.10 
Maine 3,95 Rhode Island 3.90 
Maryland 5.16 South Carolina 3.72 
Massachusetts 4.59 Vermont 4.18 
New Hampshire 4.05 

(a) Find a 90% confidence interval for µ, the true average 
hourly earnings in these states assuming normality. 

*Source: The Handbook of Economic Statistics, January 1976. 
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(b) Find an approximate 90% confidence interval for n, the true 
median hourly earnings in these states. 

(c) Which interval would you prefer. Why? 

6. Suppose that the IQ scores of a large group of children can be 
considered to be normally distributed. A sample of 25 such 
children yielded a sample IQ of 114.2 and a sample standard de-
viation of 12.1. 
(a) Find 95 and 99% confidence intervals for the true average 

IQ of children in this group. 
(b) Is it reasonable to suppose that the true average IQ of this 

group of children is 100? 

7. The following data give per capita income in 12 north central 
states in 1972*: 

State Income State Income 

Illinois 5140 Missouri 4293 
Indiana 4366 Nebraska 4355 
Iowa 4300 North Dakota 3738 
Kansas 4455 Ohio 4534 
Michigan 4881 South Dakota 3699 
Minnesota 4298 Wisconsin 4255 

Find an approximate 95% confidence interval for n. the true 
median per capita income of states in this region in 1972. 

8. The periods of 29 comets due to return in the period 1975-1978 
are given below*: 

Period in Period in 
Name years Name years 

Arend 7.98 Grigg-Skjellerup 5.12 
Perrine-Mrkos 6.72 Encke 3.30 
Gunn 6.80 Temple I 5.50 

*Source: The World Almanac and Book of Facts, 1975. 
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Wolf 8.43 Arend-Rigauk 6.84 
Churyumoa- 6.55 Temple II 5.26 
Gerasimenko 

Harrington-Abell 7.19 Wolf-Harrington 6.55 
Schaumasse 8.18 Whipple 7.47 
Kiemola 11.00 Tsuchinshan I 6.64 
d'Arrest 6.23 Comas-Sola 8.55 
Pons-Winnecke 6.34 Daniel 7.09 
Kojima 6.19 Ashbrook-Jackson 7.43 
Johnson 6.77 Tsuchinshan II 6.80 
Dutoit-Neujmin 6.31 Jackson-Neumin 8.39 
Kopff 6.42 VanBiesbroeck 12.41 
Faye 7.39 

Assuming normality of the observations, find a 95% confidence 
interval for µ, the true average period of such comets. 

Exercises 6.2 

1. Use the program MEDIAN to find an approximate 95% confidence 
interval for the median income for the population sampled in 
Exercise 5.2.3. (Note: n =50.) 

2. (a) Use the program TCONFINT to find a 95% confidence interval 
for the true average height of the population sampled in 
Exercise 5.2.2. (Note: n = 50.) 

(b) Use MEDIAN and the above sample data to find a 95% confidence 
interval for this true average height. Compare with the 
interval in part (a). 

3. For large n, if X ~ B(n;0.5), then• 
P(X ~ r) =P(X - n/2 ~ r + 0.5 - n/2) 

rn.12 rn.;2 

Hence to attain P(X ~ r) =a/2 we use (r + 0.5 - n/2)/rn./2 = 

-Za/2 or r = [n/2 - 0.5 - (rn./2)za/2 ], where [ ] represents the 
greatest integer function. Use this fact to write a program to 

https://Churyumoa-6.55
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obtain an approximate 90, 95, 98, or 99% confidence interval for 
n in the large sample case. The value of 1 - ex and n should be 
input. The observations should appear in DATA statements. 

6.3 ESTIMATING cl, THE POPULATION VARIANCE 

We have seen in Chap. 5 that o2 is estimated unbiasedly by the sta-
tistic s2• Additionally, it has been stated that in sampling from a 
population described by the random variable X, that for any £ > 0 

limP(is2 -o2 1~£) o 
n-+<><> 

providing E(X4) is finite. In this case s2 is a consistent estimator 
of o2• In large samples one can reasonably use s2 as an estimator of 
o2 appealing to these properties. It is possible if we make addi-
tional assumptions about X to obtain confidence intervals for o2 • 
We treat this question here. 

Confidence intervals can be obtained only if we have knowledge 
of the distribution of the estimating statistic. In the case that 
we sample from X - N(µ,cr2 ), Xis an estimate ofµ. It was stated 
that (X - µ)/S/./D. had Student's t distribution with n - 1 degrees of 
freedom. Here we introduce an important random variable known as 
the x2 or chi-square random variable, which will permit us to obtain 
confidence intervals for o 2 based on a random sample from a normal 
population. 

DEFINITION 6.3.l. A random variable having a gamma distribution 
with parameters ex = V/2 and S = 2 is called a chi-square variable 
with v degrees of freedom. Such a random variable is denoted by xv2 

From the properties of the gamma random variable we see that 

E(Xv2) = exS =v and Var(Xv2 ) = exS2 = 2v. Figure 6.3.1 gives an 
example of the pdf for the chi-square random variable with v = 4 
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Chi-square Density Function for "= 4 

Fig. 6.3.1 

degrees of freedom. The chi-square variable takes on only nonnega-
tive values as it is a gamma variable. We denote by Y

2 the number 
"Cl.'v 

satisfying 

P(Xv 2 ~ ~,) = a. 

Table B.III (Appendix B) gives values of these percentiles. For 

example, we see that x0
2•05 , 4 = 9.49 and x0

2•05 , 20 = 31.41. 
For large v it is true that (xv2 - v)//2V, the standardized chi-

square variable, is approximately distributed as the standard normal 
variable. It turns out that hXv2 - hv - 1 is also approximately 
distributed as the standard normal variable for large V and that the 
normal approximation is better. Hence for large V we can find values 

2of Y as follows: 
"Cl.'\) 

a = P(Z > z ) = P( ~ - 12v - 1 > z )-a "V -a. 

Hence we obtain 

or 

(6.3.1) 

For example, 

78.798 
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The following theorem, stated without proof, can be used to find 
a confidence interval for a2 . 

THEOREM 6. 3 .1. If a random sample of size n is taken from X - N(µ,cr2 ), 
then 

(n - 1)82 2 
a2 - ~-1 

i.e., this random variable has the chi~square distribution with n - 1 
degrees of freedom. 

This theorem permits the determination of the endpoints of a 
confidence interval for X2 , assuming we are sampling from a normal 
distribution. Consider the statement 

P( 2 < 2 < 2 ) _ l
X1-a/2,n-l - ~-1 - Xa;2,n-l - - a 

or 
2

P( 2 < (n - l)S < 2 )
X1-a/2,n-l - a2 - Xa;2,n-l 1 - a 

This may be rewritten as 
2 2

P((n - l)S < a2 < (n - l)S 1 - a2 - - 2 
~/2,n-1 X1-a/2,n-l 

2This interval provides a (1 - a)lOO% confidence interval for a . 
If one takes the square roots of the endpoints of this interval, it 
is clear that we will obtain a (1 - a)lOO% confidence interval for 
a. 

The program VCONFINT computes a 95% confidence interval for cr2 , 
assuming the population sampled is normally distributed. The end-
points of the confidence interval are based on the chi-square distri-
bution using the expressions given in the previous paragraph. If 
n > 46, the approximation given in Eq. (6.3.1) is used to find 

x;.025,n-l and x~.975,n-1· The observations in a sample should be 
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VCONFINT 

10 REM PROGRAM CALCULATES A 95 PERCENT CONFIDENCE 
20 REM INTERVAL FOR THE VARIANCE AND STANDARD DEVIATION 
30 REM OF A NORMAL POPULATION. PUT DATA IN 500 AND FOLLOWING 
40 PRINT "WHAT IS THE ";"VALUE OF N?" 
50 INPUT N 
60 DI~ C(50),D(50) 
70 GOSUB 350 
80 FOR I = 1 TO N 
90 READ X 
100 LET Sl=Sl+X-2 
110 LET S=S+X 
120 NEXT I 
130 LET S2= (Sl-S-2/N)/(N-l) 
140 LET Sl=SQR(S2) 
150 PRINT "A 95 PEKCENT ";"CONFIDENCE INTERVAL ";"FOR THE POPULATION" 
160 PRINT "VARIANCE IS" 
170 IF N > 46 THEN 290 
180 LET L = (N-l)*S2/D(N-l) 
190 LET U = (N-1)*52/C(N-l) 

112 0 0 p RI NT L = II; L, II u = II; u 
210 PRBT "A 95 PERCENT ";"CONFIDENCE INTERVAL ";"FOR THE POPULATION" 
220 PRINT "STANDARD DEVIATION IS" 
230 LET L = SQR(L) 
240 LET U • SQR(U) 

11250 PRINT L == 11 ;L, 11 U = ";U 
255 PRINT 
260 PRINT "SAMPLE MEAN = ";S/N,"SAMPLE VARIANCE = ";S2 
270 PRINT "SAMPLE STD. ";"DEVIATION= ";Sl 
280 GO TO 1000 
290 LET Cl=(SQR(2*N-3)-l.96)-2/2 
300 LET C2=(SQR(2*N-3)+1.96)-2/2 
310 LET L = (N-l)*S2/C2 
320 LET U =(N-l)*S2/Cl 
330 GO TO 200 
350 FOR I = 1 TO 45 
360 READ C(I) 
370 NEXT I 
380 FOR I = l TO 45 
390 READ D(l) 
400 NEXT I 
410 RETURN 
420 DATA o.001,o.051,o.216,o.4s4,o.s31 
425 DATA 1.237,1.690,2.180,2.700,3.247 
430 DATA 3.816,4.404,5.009,5.629,6.262 
435 DATA 6.908,7.564,8.231,8.907,9.591 
4 4 0 DA TA 10. 2 8 3, 10.98 2 , 1 1•68 9, 12.40 1 , 13. 120 
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00450DATA 17.539,18.291,19.047,19.806,20.569 
00455DATA 21.336,22.106,22.878,23.654,24.433 
004"60DATA 25.215,25.999,26.785,27.575,28.366 
00465DATA 5.024,7.378,9.348,11.143,12.833 
00470DATA 14.449,16.0l~,17.535,19.023,20.483 
00475DATA 21.920,23.337,24.736,26.119,27.488 
00480DATA 28.845,30.191,31.526,32.852,34.170 
00485DATA 35.479,36.781,38.076,39.364,40.646 
00490DATA 41.923,43.194,44.461,45.722,46.979 
00495DATA 48.232,49.480,50.725,51.966,53.203 
00500DATA 54.437,55.668,56.896,58.120,59.342 
00505DATA 60.561,61.777,62.990,64.201,65.410 
00600DATA 16.28,15.45,15.38,16.04,16.35,16.08,16.12,16.58 
00610DATA 16.42,16.46,16.42,15.41,15.54,15.67,15.04,16.62 
00620DATA 15.9,15.95,15.67,16.04 
OlOOOEND 

*RUN 
WHAT IS THE VALUE OF N? 

?20 
A 95 PERCENT CONFIDENCE I~TERVAL FOR THE POPULATION 
VARIANCE IS 
L • 0.11846 U z 0.43692 
A 95 PERCENT CONFIDENCE INTERVAL FOR THE POPULATION 
STANDARD DEVIATION IS 
L • 0.34418 U • 0.661 

SAMPLE MEAN • 15.971 SAMPLE VARIANCE • 0.20482 
SAMPLE STD. DEVIATION • 0.45258 

* 

https://15.9,15.95,15.67,16.04
https://16.42,16.46,16.42,15.41,15.54,15.67,15.04,16.62
https://16.28,15.45,15.38,16.04,16.35,16.08,16.12,16.58
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entered in DATA statements beginning at line 600. The sample size 
is requested when the program is run. Let us assume that the follow-
ing are 20 weights of "1-lb" bags of flour in ounces: 16.28, 15.45, 
15.38, 16.04, 16.35, 16.08, 16.12, 16.58, 16.42, 16.46, 16.42, 15.41, 
15.54, 15.67, 15.04, 16.62, 15.90, 15.95, 15.67, 16.04. As the out-
put shows, a 95% confidence interval for o2 is given by (0.118, 0.437)

2and for o by (0.344, 0.661). In this case, the true value of o = 

0.25, which is covered by the first'interval. 

Problems 6.3 

2 21. Find the values of the following: (a) Xo.05,1; (b) Xo.95,4; and 
2 

(c) Xo.99,8· 

2. Find the following probabilities: 
2(a) P(x4 ~ 9.488) 
2(b) P(x6 ~ 1.635) 
2(c) P(x8 ~ 15-507) 
2(d) P(x10 ~ 20.483) 

3. Use Eq. (6.3.1) to approximate (a) x2 
0 . 95 , 85 ; (b) x2 

0•05 , 85 ; and 
2 

(c) Xo.50,113 

4. Assuming the validity of Theorem 6.3.1, show that this implies 
E(s2 ) = o2 in the case of a random sample of size n from a normal 
distribution. 

5. Assume that the observations given in Problem 6.2.4 of the number 
of homeruns by the National League leader from 1952-1971 inclusive 
can be assumed to be normally distributed. 
(a) Find a 95% confidence interval for o2 , the true variance of 

the number of homeruns of the leader. 
(b) Find a 95% confidence interval for o. 
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6. Assume the observations in Problem 6.2.5 of the hourly earnings 
of manufacturing workers in 15 eastern and southeastern states 
are normally distributed with expectationµ and variance o2 • 
(a) Find a 90% confidence interval for o2• 
(b) Find a 90% confidence interval for o. 

7. Take the observations of the periods of comets in Problem 6.2.8 
2to be normally distributed, that is, X - N(µ,o ). Find 95% 

confidence intervals for o2 and o. 

8. Assume that the lengths of legal bass caught in a certain lake 
2 are distributed as X - N(µ,o ). Suppose a random sample of 17 

bass yields x 14.1 in. and s = 1.20 in. Find 95% confidence 
2intervals for µ, o , and o. 

Exercises 6.3 

1. Use VCONFINT with the height data for the 25 boys given in Sec. 
6.2 to find 95% confidence intervals for o2 and o. Does the 
latter interval contain the true value of a= 2.5? 

2. Use VCONFINT with the height data given in Exercise 5.2.2 to 
find 95% confidence intervals for o2 and o. 

6.4 ESTIMATION OF o IN A NORMAL POPULATION 

A number of statistics have been suggested as estimators of o in a 
normal population. The estimator S is not an unbiased estimator of 
o, but it is a consistent estimator of o. The sample range, properly 
standardized, is used in practice to estimate o unbiasedly. This 
estimator is of the form R/c(n), where c(n) is a function of n sat-
isfying E(R/c(n)) = o. Its efficiency in relation to the standard 

deviation decreases rapidly with n. For n = 2, eR,S = l; for n = 10, 

eR,S = 0.850; while for n = 20, eR,S = 0.700 (Dixon and Massey, 1969). 
Additionally, this estimator is quite sensitive to the normality 
assumption. 
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Many recent papers have been devoted to estimates of a based on 

linear combinations of the order statistics (X(l)' x( 2 )' ••• , X(n)). 

which is an unbiased estimator of a with variance V(cr) a A(n) where 

The estimate based on the range is of this form. Downton (1966) has 
suggested the estimator 

" 2/iT
a= n(n _ l) 

n
E (i

i=l 
- 0.5(n + l))X(.) 

i 

2 

A(n) = n(n 1+ l) {n(~ + 2/:3 - 4) + (6 - 4/:3 + ~)} 

Using the measure of efficiency EMS(S)/EMS(cr) = e" 8 , the efficiencya, 
of this estimator with respect to Sis never less than 0.97, for any 
sample size, and hence it is a reasonable estimate of a. Additionally, 
since (cr - cr)//A{n)cr is approximately distributed as the standard 
normal distribution for moderate and large n, we find 

" ( a-a ).P -z I < --- < z I = l - aCl 2 - r.;--\". - Cl 2vA(n1a 

or equivalently, 

" " 0 0P( < a < ) - 1 - a 
l + za12/A(n) - - 1 - za12/A(n) 

Thus we can obtain a confidence interval for a using this estimator. 
The program SCONFINT, which is similar to VCONFINT, provides 

the value of the Downton estimator aand for n ~ 20 provides a 90, 
95. or 99% confidence interval for a, assuming the sample is from a 
normal distribution. The observations should be entered in DATA 
statements beginning at line 500, again the sample size is requested 
when the program is run. Using the weights of the 111-lb" bags of 
flour in the previous section we obtain cr = o.468 with a 95% confi-
dence interval of (0.354, 0.692). This compares with s = o.453 and 
the interval (0.344, 0.661). As the true value of a = 0.5, the 
estimator &compares favorably with S in this case. 
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SCONFINT 

1.0 REM THIS PROGRAM COMPUTES DOWNTON: S ESTIMATOR OF 
20 REM THE STANDARD DEVIATION OF A NORMAL POPULATION BASED 
30 REM ON A SAMPLE OF SIZE N AND A CONFIDENCE INTERVAL IF N>•20 
40 REM DATA SHOULD BE ENTERED IN DATA STATEMENTS BEGINNING 
50 REM AT LINE 500. IF N>lOO CHANGE DIMEN STATEMENT AT 80 
60 PRINT "WHAT IS THE ";"VALUE OF N?" 
70 INPUT N 
80 DIM X(lOO)
90 FOR I • 1 TO N 
100 READ X(I)
110 NEXT I 
120 FOR J • 1 TO N-1 
110 FOR I • l TO N-J 
140 IF X(I) <• X(I+l) THEN 180 
150 LET T • X(I+l) 
160 LET X(I+l)•X(I)
170 LET X(I)•T 
180 NEXT I 
190 NEXT J 
200 FOR I • l TO N 
210 LET C • (I-(N+l)/2)*X(I)+C 
220 NEXT I 
210 LET C • 2/(N*(N-l))*SQR(3.14159263)*C
240 PRINT "THE VALUE OF ";"THE DOWNTON ESTIMATOR IS ";C 
250 LET A •N*(3.14159263/3+2*SQR(3)-4)+(6-4*SQR(3)+3.14159263/3) 
260 LET A = A/(N*(N-1)) 
270 IF N < 20 THEN 1000 
280 PRINT "DO YOU WISH ";"A CONFIDENCE INTERVAL";" FOR SIGMA?" 
285 PRINT "PLS ANSWER 0 IF NO AND 1 IF YES" 
290 INPUT Al 
300 IF Al•l THEN 320 
310 IF Al•O THEN 1000 
315 PRINT "INPUT ERROR";" PLEASE ANSWER l IF YES AND 0 IF NO" 
318 GO TO 280 
320 PRINT "CONFIDENCE COEFFICIENT ";"90,95 OR 99?" 
330 INPUT Cl 
340 IF Cl•90 THEN 390 
350 IF Cl•95 THEN 410 
360 IF Cl • 99 THEN 430 
370 PRINT "INPUT ERROR";" TRY AGAIN" 
380 GO TO 320 
390 LET Z • 1.645 
400 GO TO 440 
410 LET Z •l.960 
420 GO TO 440 
430 LET Z • 2.576 
440 LET L • C/(l+Z*SQR(A)) 
450 LET U • C/(1-Z*SQR(A))
460 PRINT "A ";Cl;"PERCENT ";"CONFIDENCE INTERVAL" 
465 PRINT "FOR SIGMA IS" 
470 PRINT 
480 PRINT "L• ";L,"U• ";U 
500 DATA 16.28,15.45,15.38,16.04,16.35,16.08,16.12,16.58 
510 DATA 16.42,16.46,16.42,15.41,15.54,15.67,15.04,16.62 
520 DATA 15.90,15.95,15.67,16.04 
1000 END 
* 

https://15.90,15.95,15.67,16.04
https://16.42,16.46,16.42,15.41,15.54,15.67,15.04,16.62
https://16.28,15.45,15.38,16.04,16.35,16.08,16.12,16.58
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RUN 
WHAT IS THE VALUE OF N? 

?20 
THE VALUE OF THE DOWNTON ESTIMATOR IS 0.46802 
DO YOU WISH A CONFIDENCE INTERVAL FOR SIGMA? 
PLS ANSWER 0 IF NO AND l IF YES 

? l 
CONFIDENCE COEFFICIENT 90,95 OR 99? 

?90 
A 90 PERCENT CONFIDENCE INTERVAL 
FOR SIGMA IS 

L= 0.36811 u- 0.64237 

*RUN 
WHAT IS THE VALUE OF N? 

? 20 
THE VALUE OF THE DOWNTON ESTIMATOR IS 0.46802 
DO YOU WISH A CONFIDENCE INTERVAL FOR SIGMA? 
PLS ANSWER 0 IF NO AND l IF YES 
?l 

CONFIDENCE COEFFICIENT 90,95 OR 99? 
?95 

A 95 PERCENT CONFI~ENCE INTERVAL 
FOR SIGMA IS 

L= 0.35365 U= 0.69172 
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Problems 6.4 

1. Assume that the observations in Problem 6.2.5 of the hourly 
earnings in 15 states are normally distributed with expectation 
µand variance cr2 • Compute the Downton estimator of cr. 

2. Assume the per capita income in the 12 north central states 
given in Problem 6.2.7 is normally distributed. Compute the 
Downton estimator of cr. 

Exercises 6.4 

1. Use SCONFINT with the height data for the 25 boys given in Sec. 
6.2 to find a 95% confidence interval for cr and the Downton 

A 

estimator cr. Compare this interval with the corresponding out-
put from VCONFINT. Compare the values of aand s. Does the 
interval computed here contain the true value cr = 2.5? 

2. Use SCONFINT with the height data given in Exercise 5.2.2 to find 
a 95% confidence interval for cr and the Downton estimator cr. 
Compare the output of SCONFINT with that of VCONFINT. 

3. Assume that the numbers of hits gotten by the National League 
leaders in the period 1952-1971 can be considered to be normally 
distributed (Table 6.2.1). Estimate cr and find a 95% confidence 
interval for cr using SCONFINT. 

6.5 ESTIMATION OF A POPULATION PROPORTION p 

It is o~en of interest to estimate the proportion of a population 
having a certain characteristic. We may wish to know the proportion 
p of a population in favor of a certain governmental policy. For 
example, the proportion of voters in a state in favor of a state 
lottery. In manufacturing, the proportion of defective items pro-
duced by a machine is important. We generally assume that a sample 
of size n can be considered to constitute independent tri~ls. We 
observe X. = 1 if the ith selected item has the characteristic and 

i 
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Xi= O if it does not. The vector (X1 , x2•.•• , Xn) of zeros and 

ones is observed, where the common distribution of the X. is P(X. 1)
]. ]. 

= p and P(X.
]. 

= 0) = 1 - p = ~· This is, of course, the observation 

of n binomial trials. A natural estimator of p is p = E~=lXi/n. 
This is just a particular case of observing X so that p is an unbiased 

and consistent estimator of p: 

p(l - p)E(p) = p Var(il) = Var(!)
n n 

as X - B(n;p). Additionally, by the central limit theorem 

p - p 

/p(l - p)/n 

is approximately distributed as the standard normal variable for 

large n. 
This latter fact is important in finding confidence intervals 

for p in large samples. We have 

so that 

P(j P - P I< z ) =1 - a (6.5.1)- a/2/p(l - p)/n 

which may be rewritten in the form 

P(A - /p(l - p) z < < A + /p(l - p) z ) =1 - a
P n a/2 - P - P n a/2 

In the last expression, we obtain endpoints of a confidence interval 

for p with confidence coefficient 1 - a. However these expressions 

still depend upon p. We define sA 
p 

= /p(l - p)/n and obtain an approxi-

mate (1 - a)lOO% confidence interval 

p + /p(l - p)or - rn za/2 

For example, suppose that we wish to estimate the proportion of voters 

in favor of a state lottery. We find 144 or 400 randomly selected 
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voters in favor of the lottery. Here p = 144/400 = 0.36 and sA 
p 

= 

lo.36(0.64)/400 0.024. Hence an approximate 90% confidence interval 
for p is given by 

0.36 :t. o.024z0•05 = 0.36 :t. 0.024(1.645) 

or by [0.321, 0.399). Apparently the chances are high that the 
lottery would not be approved in a referendum. 

In the 1976 presidential election, the final Gallup interviews 
were made from October 28 to October 30. From a sampling of 3439 
registered voters, 1926 of those who were "most likely to vote" were 
selected. The estimated proportion of these favoring President Ford 
was o.49 and favoring Jimmy Carter was o.48. Ninety-five percent 
confidence intervals fro these population proportions are 

o.49 :!:. jo·i~2~.51) (i.96) o.490 :t. 0.022 

that is, (o.468, 0.512) 

and 

o.48 _+ o.48(0.52) (1 96) o.48 + 0.0221926 . 

that is, (0.458, 0.502) 

As can be seen from these confidence intervals it was not possible 
to predict the election winner in advance in that year. Of course 
in the final tabulation Jimmy Carter had a higher percentage of the 
popular vote than President Ford. 

In the case of intermediate size n, say (20~n~100), the 
expression (6.5.1) can be used to find a more exact confidence inter-
val for p. We have from Eq. (6.5.1) 

< (Z~/2 ) 
2p(l - p)

(p - p)2 n 

or 

z2 z2 
i(1 + ~) - (2p + ~)p + p2 _< 0 

n n 

https://o.48(0.52
https://jo�i~2~.51
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Hence the roots of this quadratic in p are endpoints of an approximate 
(1 - a)lOO% confidence interval for p. These are found to be 

p + z~12 /2n .:t. za/2 /p(l - p)/n + 

2 2Notice that for large n, if we neglect the terms Za/2/n, Za/2/2n,
2 2and Za/2/4n , we obtain the interval 

p -+ Z a12s
P
... (6.5.3) 

as before. 
The program PCONFINT has been written to calculate the endpoints 

of a confidence interval for p using the expression (6.5.2). An 
elementary statistics class of 105 students was asked to respond to 
the question: "Do you believe that students majoring in your major 
subject should be required to take a statistics course?" The number 
of "Yes" responses was 38. A 95% confidence interval for p, the 
population proportion of affirmative responses is given by the pro-
gram PCONFINT to be (0.276, 0.457]. The corresponding 95% confidence 
interval using expression (6.5.3) is [0.270, o.454], so that the 
intervals differ slightly in this case. 

Another question of importance in estimating population propor-
tions is the necessary sample size to achieve a good estimate. We 
shall require that P(lp - fll ~ o) ~ 1 - a, where o is a preassigned 
maximum tolerance of the absolute error in estimating p by p that we 
are willing to accept. The probability 1 - a is a preassigned (high) 
probability that the absolute error of the estimate be no more than 
o. From Eq. (6.5.1) we have 

1 - a= P(I - "I< /p(l - Plz )P P - n a/2 

Hence by choosing n to satisfy 

or 
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PCONFINT 

10 REM THIS PROGRAM CONPUTES AN 80,90,95,98 OR 99 PERCENT 
20 REH CONFIDENCE INTERVAL FOR P, A POPULATION PROPORTION 
30 R~:M llASED ON A SAMPLE OF SIZE N WITH X "SUCCESSES" 
40 PRINT "WHAT IS SANPLF: ";"SIZE?" 
50 I:JPUT N 
60 PRINT "HOW l!ANY SUCCESSES?" 
70 UPUT X 
80 PRINT "l<HAT IS ";"CONFIDENCE COEFFICir:N'r ";"80,90,95,98,0R 99?" 
90 UPUT C 
100 IF C = 80 THEN 160 
110 IF C =90 THEN 170 
120 IF C =95 THEN 180 
130 IF C =98 THEN 190 
140 IF C =99 THEN 200 
150 PRUT "INCORRECT FORMAT";" TRY AGAI'I'' 
155 GO TO 90 
160 LET K =l.282 
165 GO TO 220 
170 LET K=l.645 
175 GO TO 220 
180 LET K = 1.96 
185 GO TO 220 
190 LET K =2.236 
195 GO TO 220 
200 LET K= 2.576 
220 LET P =X/N 
230 LET L =(P+K-2/(2*N))-K*SQR(P*(l-P)/N+K-2/(4*N-2)) 
240 LET U =(P+K-2/(2*N))+K*SQR(P*(l-P)/N+K-2/(4*N-2)) 
250 LET B = (l+K-2/N) 
260 LET L =L/B 
270 LET U= U/B 
280 PRINT "PROPORTION OF ";"SUCCESSES= "; P 
290 PRL~T "A ";C;" PERCENT CONFIDENCE ";"INTERVAL FOR PIS" 
300 PRINT 

11 11310 PRINT ''L= ;L,' 1 U= ;U 
320 END 
*RUN 
WHAT IS SAMPLE SIZE? 

?105 
HOW MANY SUCCESSES? 

? 38 
WHAT IS CONFIDENCE COEFFICIENT 80,90,95,98,0R 99? 

?95 
PROPORTION OF SUCCESSES= 0.3619 
A 95 PERCENT CONFIDENCE INTERVAL FOR P IS 

L= 0.27637 U= 0.45719 



6.5 Estimation of a Population Proportion p 241 

where [ ] represents the greatest integer function, we will achieve 
the desired result. If we choose n1 > n*, then defining o1 
/p(l - p)/n1Za/2 ' we have o1 < o. Hence 

1 - a = P(jp - p I ~ o1 ) ~ P( IP - p I ~ o). 
Hence for n ~ n*, we achieve the desired accuracy. The expression 

for n* depends upon knowledge of p. If nothing is known about p, 

then as /p(l - p) ~ 1/2, we may take n* = (Za/2/2o) 2 On the other 
hand, if we know that p E [O, p1], for 0 < p1 < 1/2, we may use the 
expression for n* given above, evaluated at p1 , as p(l - p) is an 
increasing function of p for 0 < p < 1/2. Hence the largest sample 

size required so that P(jp - pj ~ o) for any p E [O, p1 ] will be 

found by evaluating n* at p = p1 . For p E [p1 , l], O. 5 < p1 < 1, 
similar reasoning implies that the value of n* for p = p1 is the 

maximum required sample size. 

For example, assume that we wish that the error in the estimate 

of p by p not exceed 0.02 with probability at least 0.95. Without 

any knowledge of p we use n* = (1.96/2(0.02)) 2 = 492 = 2401. If it 

were known that p E [O, 0.20], then we find 

Thus the additional knowledge permits reduction of the sample size 
by about 1/3 without a sacrifice in the accuracy of the estimator. 

Problems 6.5 

1. In 1974, Carl Yastrzemski of the Boston Red Sox batted 0.301, 
getting 155 hits in 515 at bats. Find a 90% confidence interval 

for p, Yastrzemski's lifetime batting average. Why might this 

not be a good method of estimating p? (Source: The World 

Almanac and Book of Facts, 1975.) 

2. In 1973-1974, Kareem Abdul-Jabbar attempted 1759 shots of which 

he made 948 for a proportion of success of 0.539. Find a 95% 
confidence interval for p, Jabbar's long-run shooting percentage. 

(Source: The World Almanac and Book of Facts, 1975.) 
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Table 6.5.l Effect of Gasoline Shortage on Travel Frequency of 
Families with Automobilesa 

Type of change Number of families 

No Change 237 
Change frequency 

Switched to other modes 120 
Reduce auto travel 84 
Miscellaneous 16 

Total 457 

3. A city has a population equally divided between the races (black 
and white). A sample of 400 truck drivers reveals 350 whites 
and 50 blacks. Find a 95% confidence interval for p, the true 
proportion of truck drivers in the city who are white. Does 
there appear to be evidence that blacks are underrepresented 
among truck drivers? 

4. In 1974, the Oregon Department of Transportation collected data 
concerning the effect of the energy (gasoline) shortage on the 
behavior of drivers in Portland, Oregon. The data are given in 
Table 6.5.i. 
(a) Estimate the proportion indicating no change and find a 

95% confidence interval for this population proportion. 
(b) Among those who altered their behavior, estimate the pro-

portion "Who reduced automobile travel, and find a 95% 
confidence interval as in part (a). 

5. A beer manufacturer, Lightdraft, Inc., wishes to estimate its 
proportion of the market in an urban area. A grocery chain 
agrees to supply the company with the proportion of six-packs 

aBehavior of Car owners During the Gasoline Shortage, B. W. Becker, 
D. J. Brown, and Philip B. Schary, Traffic Quarterly, July 1976. 
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of Lightdraft sold during a given week among all six-packs sold. 
Of 1600 sold, 320 are Lightdraft. Find a 95 and 99% confidence 
interval for the true market share. 

6. Suppose in Problem 6.5.5 that the manufacturer wishes the error 
in the estimate of the market share to be no more than 0.02 with 
probability at least 0.99. 
(a) Find the minimum required sample size assuming no knowledge 

about p. 
(b) Find the minimum required sample size assuming p ~ 0.25. 

7. For a maximum error of o with probability at least 1 - a without 
knowledge of p, we use n = (Za/2/20) 2 

(a) Show that as a decreases (that is, 1 - a increases), n 
increases for fixed o. 

(b) Show that if o is replaced by o/2 (i.e., the maximum toler-
able error is halved), then n is increased by a factor of 
4 for fixed a.. 

8. If we choose 1 - a.= 0.9544 in Problem 6.5.7, verify the rela-
tionship 

Evaluate this function of o for o = 0.01(0.01)(0.10). How large 
a sample is required to estimate a population proportion with 
a maximum error of 0.01 with probability at least 0.9544? 

9. Verify that the values in Eq. (6.5.2) are the roots of the 
appropriate polynomial. Sketch a graph of the polynomial for 
fixed p and za.12. 

10. (a) We wish to estimate the proportion of the female population 
(16 years and older) with Rh negative blood in a given city. 
Suppose 900 women are typed and 90 are Rh negative. Find 
a 95% confidence interval for p. 

(b) Find the minimum required sample size to estimate p with 
a maximum error of 0.005 if it can be assumed that p ~ 0.2. 
Let 1 - a. = 0.98. 

https://0.01(0.01)(0.10
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Exercises 6.5 

l. Use PCONFINT with the data of Problem 6.5.4 to calculate 95% 
confidence intervals. Compare these intervals with your previous 
results in Problem 6.5.4. 

2. Use PCONFINT with the data of Problem 6.5.5 to find 95 and 99% 
confidence intervals for the true market share. Compare these 
intervals with those found in Problem 6.5.5. 

3. Use PCONFINT with the data of Problem 6.5.10 to find a 95% 
confidence interval for the proportion of Rh negative women. 
Compare this interval with that found in Problem 6.5.lO(a). 

4. Of 64 students, 37 rank a teacher as "good" or better. Using 
PCONFINT, find a 95% confidence interval for the corresponding 
population proportion p. 
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HYPOTHESIS TESTING 

7.1 INTRODUCTION 

In Chap. 6 we have considered the estimation of para.meters, an impor-
tant topic in statistics. Here we consider another important infer-
ential area in statistics called hypothesis testing. We first give 
a definition of what is meant by a statistical hypothesis. 

DEFINITION 7.1.1. A statistical hypothesis is a statement about the 
distribution of a random variable. 

Such a statement is generally made in terms of a set of values 
that a para.meter may take on, where the para.meter is used in the 
probability law describing the distribution of a random variable. 
Let us suppose that an election is to be held for mayor in a large 
city and that there are two candidates, A and B. We decide to ask 
100 randomly sampled voters to answer the question: "Do you prefer 
candidate A to candidate B in the election for mayor?" We may con-
sider the answers to be 100 independent trials in which the number 
of "Yes" replies is distributed as X - B(lOO;p}. A statistical 
hypothesis of interest is 

245 
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where H0 is referred to as the null hypothesis. We see that this is 
a statement about the possible values of the parameter p. In statis-
tical hypothesis testing we wish to find a reasonable method of 
deciding between the hypothesis H0 and an alternative 

p>21 

Clearly a decision for H1 should please A, but not B. 
Before we consider a method of deciding between H0 and H1 , let 

us consider two possible errors to which the decision process may 
lead. These are indicated in Table 7.1.1. On the one hand, we may 
decide p > 1/2 when in fact p ~ 1/2, i.e., we may decide that the 
proportion of voters preferring A to B exceeds 1/2, when in fact, it 
does not. This error, rejecting the null hypothesis when it is true, 
is called a type I error. On the other hand, we may decide p ~ 1/2, 
when in fact, p > 1/2. This error, accepting H0 when it is false, 
is called a type II error. Clearly these errors may result in dif-
ferent responses. For example, if a type I error is made, candidate 
A may relax his efforts when he should not. If a type II error is 
made, candidate A may spend additional time and money to win an 
election in which victory is already assured. 

A decision between H0 and H1 described in Table 7.1.1 should, 
of course, depend on the observed value of the random variable X, 
the number of those of the 100 voters selected answering "Yes" to 
the question. Clearly large values of X indicate that H1 should be 
chosen, while small values of X indicate that the decision should 
be made in favor of H0 • A statistical test is determined by deciding 

Table 7.1.l Type I and Type II Errors 

True state of nature 
Decision p ~ 1/2 p > l/2 

HO is correct No error Type II error 

Hl is correct Type I error No error 
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exactly which values of the test statistic lead to rejection of n0 . 
These values are referred to as the critical region for the test. 
Let us consider the probability of a type I error. The standard 
notation is to define 

a= Pr(rejection of H0 1H0 is true) 

The testing strategy which is traditionally adopted is to construct 
a critical region so that a is not greater than a specific value, 
say 0.05 or 0.01. The maximl.llll value that a may attain is called the 
significance level for the test. In the case at hand, critical 
regions are of the form X .:::_ j for some integer 0 ~ j < 100. Now 

100 
a = P(X > j IP< 1.) = I: (1oo)l(1 - p)100-k- -2 kk=j 

It can be shown that this probability may be written as 

for c > 0 

so that a clearly increases with p. Thus, to achieve a~ 0.05, for 
example, we must choose j so that 

P(X > j IP = 1.) < 0.05- 2 -

The program BINOM has been run for n = 100 and p = 0.5. We see that 
P(X .:::_ 59) = 1 - p(X ~ 58) = 0.0443, while P(X .:::_ 58) = 0.0666. Hence 
we would choose X .:::_ 59 as critical region for the test. If 59 or 
more of the 100 persons answer "Yes," we decide that p > 1/2. The 
significance level for the test is 0.0443. 

One might ask why a should not be set equal to O. This could 
be achieved by using the empty set as the critical region. The 
decision to accept p ~ 1/2 would always be made (regardless of the 
outcome of the sampling process). However, clearly the probability 
of a type II error, the probability of accepting H0 given p > 1/2, 
would be 1 (as H0 is always accepted). In general, the probability 
of a type II error depends on the critical region and the value of 
p assl.lllled to be correct. The standard notation is 
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RUN 
BINOMIAL DISTRIBUTION 

WHAT IS THE 
? 100 

WHAT IS THE 
? • 5 

X SUCCESSES 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
7 1 
72 
73 
74 
75 

* 

VALUE OF N 

VALUE OF P 

PROB OF X 
7. l l073E-3 
l .08439E-2 
l.58691E-2 
2.22923£-2 
3.00686E-2 
3.89526E-2 
4.847431':-2 
5.79584E-2 
6.65905E-2 
7.35270E-2 
7.80287E-2 
7. 95892E-2 
7.80287E-2 
7.35270E-2 
6.65905E-2 
5.79584E-2 
4.84743E-2 
3.89526E-2 
3.00686E-2 
2.22923E-2 
l.58691E-2 
1. 084 39E-2 
7. l 1073E-3 
4.47288E-3 
2.69793E-3 
l.55974E-3 
8.63856E-4 
4.58105E-4 
2.32471E-4 
l.12817E-4 
5.23209E-5 
2.31707E-5 
9.79043E-6 
3.94337E-6 
1.5125ZE-6 
5.51867E-7 
l.91314E-7 

CUM PROB OF X 
l.76001E-2 
2.84440£-2 
4.43130E-2 
6.66Q53E-2 
9.66740E-2 
o. 13563 
0. 1841 
0.24206 
0.30865 
0.38218 
0.46021 
0.53979 
0.61782 
0.69135 
0.75794 
0.8159 
0.86437 
0.90333 
0.93339 
0.95569 
0.97156 
0.9824 
0.98951 
0.99398 
0.99668 
0.99824 
o. 99911 
0.99956 
0.9998 
0.99991 
o.99996 
0.99998 
0.99999 
1. 
1. 
1. 
1. 
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1.0 n = 100 

E S(E) 
0.5 0.9557 
0.52 0.9037 
0.54 0.8165 

0.5 0.56 0.6916 

0.58 0.5382 
0.60 0.3775 
0.65 0.0877 

0.70 0.0072 
0 0.2 0.4 1.0 0.80 0.0000+ 
The Operating Characteristic (OC) Curve 

Fig. 7.1.1 

S(p) = P(accepting H0 ip is true value) 

In the example 

S(p) = P(X ~ 58jp) = 1 - P(X·~ 59jp) 

the probabilities of a type II error for several values of p have 
been calculated using the program BINOM. A graph of S(p) as a func-
tion of p appears in Fig. 7.1.1. This graph is called the operating 

characteristic (OC) curve for the test. 
The function rr(p) = 1 - S(p) is called the power function of the 

test. The graph of the power function for this test appears in Fig. 
7.1.2. For p > 0.5, this function gives the probability of rejecting 
H0 , the correct decision, as a function of p. As the probability of 

rejection of H0 for p = 0.5 is a, rr(o.5) = a= 0.0443. For values 

of p slightly greater than 0.5, it is clear that rr(p) must be rela-
tively small as rr(p) = c f~ x58(1 - x) 41 dx, is a continuous function 

of p. It is difficult for any decision procedure to distinguish 

between p ~ 0.5 and p > 0.5 if p is only slightly larger than 0.5. 

For example, rr(o.55) = 0.2415 and rr(0.60) = 0.6225. However for 
candidate A it may be the case that distinguishing between alternatives 
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1.0 
n =100 n = 400 

E 1T(E~ 1T(E~ 

0.50 0.0443 0.0495 

n = 400 0.52 0.0963 0.1975 

0.5 0.54 0.1835 o.4800 
0.56 0.3084 0.7750 
0.58 o.4618 0.9418 
0.60 0.6225 0.9917 
0.65 0.9123 0.9999 

0 0.4 0.5 0.6 0.7 0.70 0.9928 1.0000 
Power Curves for n= 100, 400 

Fig. 7.1.2 

such as p ~ 0.5 and p = o.6 is exactly the question of importance. 
If this is the case, the power function can be improved for a = 0.05, 
only by increasing the sample size n. 

Suppose, £or example, that 400 voters can be sampled. For this 
sample size we may use the normal approximation to the binomial dis-
tribution to find a test with significance level no greater than 
0.05. Using the continuity correction, we must have 

P(j - Oi8 - 200 < X - 200 < 400.5 - 200) : 0.05 - 10 - 10 

or 

Hence (j - 200.5)/10 =1.645 and j 216.95, and the critical region 
X ~ 217 would be used. The values S(p) and 1T(p) for p > 0.5 can 
also be found using the normal approximation. For example, as 
400(0.6)(0.4) = 96, 

1T(0.6) = P( 217 - 200 •5 < Z) = P(-2.398 < Z)196 - -
= 1 - Fz(-2.398) = 0.9917 
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The graph of n(p) for this new test also appears in Fig. 7.1.2. The 
power curve for this test (with approximately the same value of a) 
lies above that for the previous test for all p > 0.5. The value 
n(0.60) = 0.9917 for n = 400. In other words, if p = o.6, the test 
has a probability of 0.99+ of yielding a decision for H1 with a = 
0.0495. For n =100, n(0.60) = 0.6225, so the probability of a 
correct decision if p o.6 is only 0.6225. Clearly the increased 
sample size has brought an important improvement in the properties 
of the decision procedure. 

It should be remarked that there is a substantial difference 
between rejecting the hypothesis H0 : p ~ 1/2 and retaining (or 
accepting) H0 • For the case n = 100, we reject H0 if 59 or more 
persons in the sample answer "Yes." Suppose, in fact, 62 answer 
"Yes." The probability that such an event occurs if p ~ 1/2 is less 
than 0.05. Hence if 62 affirmative answers are recorded, we conclude 
that H0 is false and that p > 1/2. If we observe 55 "Yes" replies, 
we retain H0 • We have not observed an event highly inconsistent 
with p ~ 1/2. However 55 "Yes" replies is consistent with values of 
p both greater than and less than 1/2. Indeed a 95% confidence inter-
val for p is given by PCONFINT as [0.452, o.644]. Hence in retaining 
H0 we can only state that no evidence inconsistent with the null 
hypothesis has been found. If we decide to reject H0 , there is 
statistical evidence inconsistent with the truth of H0 • As it is 
stronger to reject H0 in favor of H1 , studies seeking evidence for 
a hypothesis generally state the hypothesis as an alternative H1 to 
a null hypothesis H0 • 

Problems 7 .1 

1. Statistical testing methods are employed in the detection of 
aircraft by radar. The detector records voltage measurements at 
n times, t = 0 + (i - l)~t for i = 1, 2, ••• , n. The recorded 
values are denoted X1 , X2 , . . . ' x . If the signal is not present,n 
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then X - N(O,cr2 ) is assumed to be the parent distribution. If 
the signal is present, then X - N(µ,cr2 ), whereµ > O. The hypoth-
eses may be stated in terms of the parameter µ as 

versus 

(a) State in words the meaning of a type I error. 
(b) State in words the meaning of a type II error. 

2. A jury in a criminal case makes a decision between 

H0: the defendent is not guilty. 
H1 : the defendent is guilty. 

(a) State in words the meaning of a type I and type II error. 
(b) In English jurisprudence, which error probability, a or $, 

is the jury required to make small? 

3. An individual claims to have ESP powers. He states that he can 
call the suit of a card before it is revealed with a frequency 
greater than chance. Let p represent the probability that a 
card's suit is correctly called by this individual. Assume that 
after each drawing the card drawn is replaced and the deck re-
shuffled. We wish to test 

p=41 versus 

We record the outcome, success or failure, of 10 draws and call 
the number of successes X. Suppose that the critical region is 
taken to be X > 6. 
(a) Why is H0 as stated above the reasonable null :nypothesis? 
(b) Use BINOM or a table of binomial probabilities to find the 

significance level a for this test. 
(c) Use BINOM or a table of binomial probabilities to find 

$(p) for p = 0.3(0.1)(1.0). Graph the OC curve. 
(d) Find ~(p) for p = 0.25 and p = 0.3(0.1)(1.0) and graph the 

power function. 
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4. We wish to have a test to determine which basketball players 
require practice in foul shooting. A player will be considered 
"acceptable" if he makes at least 60% of his foul shots. Let p 
represent the proportion of foul shots made by a player. We 
wish to test 

versus 

(a) Using the number of successes in 10 independent trials X as 
the appropriate statistic determine a critical region for a 

test so that a =0.05 (but ~ 0.05). 
(b) Evaluate S(p) for p = 0(0.1)(0.6) and graph the power func-

tion for the test in part (a). 

5. A manufacturer claims that a gallon of his paint will cover more 
than 600 ft 2 • We assume that the number of square feet covered 
by a gallon of this paint to be a random variable X - N(µ,cr2 ). 
Assuming cr2 is known, state the null and alternative hypotheses 
in terms of µ. The hypotheses should be stated so that the 
burden of proof falls on the manufacturer. 

6. Let p represent the proportion of a population which does not get 
the flu during a winter. We test a vaccine's effectiveness by 
giving it to 100 volunteers and observing X, the number who do 
not get the flu. It is known that 3/4 of the population survives 
the winter without flu if no vaccine is given. 
(a) State the hypotheses H0 and H1 , so that we place the statis-

tical burden on the vaccine to demonstrate its effectiveness. 
(b) Using the normal approximation to the binomial distribution, 

find the critical region for this test using a = 0.05. 
(c) Again using the normal approximation to the binomial distri-

bution, find the probability of a type II error given p = 

7. A survey by Dunn's Review, October 1976, indicated that, of 300 
top business executives polled, 85% favored President Ford over 
Jilll!DY Carter for President. Let p be the proportion of business 
executives favoring President Ford. 
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(a) Find a critical region for testing H0 : p = 3/4 versus 
H1 : p > 3/4 using the normal approximation to the binomial 
and a = 0.05. 

(b) Based on the poll in Dunn's Review, is there evidence that 
the percentage of business executive preferring President 
Ford exceeded 75%? 

7.2 TESTS OF A POPULATION PROPORTION p FOR LARGE n 

In this section we shall consider tests of the hypothesis H0: p = Po 

for a fixed value of p versus various alternatives. We assume the 
sample size n is sufficiently large that the normal approximation 
applies. The three alternatives which we consider are 

1. Hl: p >Po 

2. H1 : p < Po 

3. H1 : P =f Po 

will require different critical regions for a test with significance 
level a. For H1 : p > p0 , we have seen, assuming Xis the random 
variable representing the number of successes inn trials, that the 
appropriate critical region is of form X ~ j. The exact value of j 

is determined by requiring 

The critical value of j is found from the equation 

where [ ] is the greatest integer function. For the alternative 

H1 : p < Po similar reasoning leads to the rejection region X ::_ j, 
where 
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For the case in which the alternative is written as H1 : p ~ p0 , we 
reject H0 if' X ~ or X ~ j 2 , wherej 1 

jl = [np0 + 0.5 + za12lnp0(1 - p0 )] + 1 

and 

The program PTEST has been written to test the null hypothesis 
H0: p = p0 versus the three alternatives described above. The pro-
gram requests the values of n, p0 , and the alternative. The value 
of the significance level may be 0.10, 0.05, or 0.01 and is entered 
in response to an INPUT statement. The number of successes X actu-
ally observed is entered in the same way. The program computes the 
rejection region according to the formulas given above. The power 
function for the test is also computed for appropriate values of p. 

Suppose that passage of a bond issue requires a 60% favorable 
vote. In order to test the chance of passage we sample 180 voters 
randomly from the registration list. The hypotheses may be stated 

Note that the alternative for which we are seeking evidence, namely 
the passage of the issue, is H1 • Also note that if H0 is written 
p~ 0.60, the same critical region is appropriate, as indicated 
previously. Suppose that we observe 130 voters in favor of the bond 
issue. The program PTEST, using a = 0.05 indicates the rejection 
region is X > 120. Hence the null hypothesis would be rejected. 
There is good reason to believe that more than 60% of the registered 
voters favor the bond issue. 

The values of the power function n(p) are calculated for p = 

0.6 to p = 0.95 with a step size of 0.05. For p = 0.75, we find 
n(o.75) = 0.9961, so that if the true proportion of the registered 
voters favor the bond issue is actually 75%, the probability is very 
high that p = 0.60 will be rejected in favor of H1 : p > 0.60. Note 
that n(0.60) = 0.0401, so that although the value of a is chosen to 
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PT EST 

10 REM nus PROGRAM TESTS THE HYPOTHESI s p • PO AT SI GNI 1'I CANCE 
20 RD! LEVEL ALPHA AGAIN ST ONE Of THE AL TER!\IATI \/ES 
30 REM 1 > P > PO 
40 REM 2> P < PO 
50 REM 3> P UNEQUAL PO 
100 PRINT "WHAT ARE THE VALUES OF N AND PO?" 
110 INPUT N1 P4 
120 PRINT "WHICH ALTERNATIVE "J"l.!.' OR 3?" 
130 INPUT A 
1 32 IF A • 1 TIUN 150 
134 IF A • 2 THl!l\J 1 50 
136 IF A • 3 THEN 600 
138 PRINT "INCORRECT FOR)<IAT "J "lRY AGAIN" 
140 GO TO 120 
150 PRINT "WHAT IS THE "J"SIGNIFICANCE LEVa. "J"o.10.0.os. OR 0.01?" 
160 INPUT Al 
170 IF Al• 0· 10 THl!l\J 220 
180 IF Al• o. 05 THEN 240 
190 IF Al • 0·01 THEN 260 
200 PRIN1' "INCORRECT INPUT "J"lRY AGAIN" 
210 GO TO 160 
220 LET Z: 4=o l • 28 2 
230 GO TO 270 
240 LET Z: 4=o l • 645 
250 GO TO 270 
260 LET Z:4•2• 326 
270 IF A•2 1HEN 450 
260 LET U • INT<O·S +N•P4+SQRCN•P4*C l-P4»•Z4>+1 
285 PRIN1 "POWER FUNCTION" 
287 PRINT "P"• "POWER AT P" 
290 FOR Pl • P4 TO .99 STEP .os 
300 LET z:. cu-o.s-N•Pl>/SQRCN•Pl•<l-Pl)) 
310 GOSUB 900 
320 LET P2 • 1-P 
330 PRINT Pl• P2 
335 NEXT Pl 
340 PRINT "WHAT IS THE"J" NU\fBER OF SUCESSES X?" 
350 INPUT X 
360 PRINT "THE CRITICAL REGION f'OR A "JAU''l..EVEL TEST IS" 
370 PRINT "X>• "JU 
380 IF X >• U THEN 410 
390 PRIN1 "DECISION IS "J"ACCEPT P ="JPll 
400 GO TO 1030 
410 PRINT "DECISION IS "J "REJECT P• "J P4 
420 GO TO 1030 
450 LET L•INT<N•P4-• S-SQRCN•P4*< 1-P4> >•Z:4> 
455 PRINT "POWER FUNCTION" 
457 PRINT "P"• "POWER AT P" 
460 FOR Pl•P4 TO O•Ol STEP -o.os 
470 LET Z: •<L+O• 5-N•Pl>/SQRCN•Pl•< 1-Pl » 
480 GOSUB 900 
490 PRINT Pl•P 
500 NEXT Pl 

* 

https://J"o.10.0.os
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510 PRINT "WHAT IS THE "J "Nl.MBER OS SUCCESSES X?" 
520 INPUT X 
530 PRINT "THE CRITICAL REGION FOR A "JAU''LEVEL TEST IS" 
540 PRIN1' "X<'" "JL 
550 IF X<• L THElll 580 
560 PRINT "DECISION IS "J"ACCEPT P = "JP4, 
570 GO TO 1030 
580 PRINT "DECISION IS "J "REJECT P ., "JPll 
590 GO TO 1030 
600 PRINT ''WHAT IS THE "J"SIG~IFICANCE LEVEL. "J"0.10.0.05. OR Oo01?" 
610 INPUT Al 
620 IF Al•O• 10 THElll 650 
630 IF Al• OoOS TH!N 670 
640 IF Al•O• 01 THElll 690 
6 42 PRINT "INCORRECT INPUT. TRY AGAIN" 
644 GO TO 610 
650 LET Z 4- l • 645 
660 GO TO 700 
670 LET Z4mlo96 
680 GO TO 700 
690 LET Zilm2• 576 
700 LET L • INTCN•P4-·S-SQR<N•P4*Cl-Pll>>•Zll> 
710 LET U• INT <N•P4+o S+SQRCN•P4*C l-P4> >•Z4>+ l 
720 PRINT "POWER FlNCTION" 
725 PRINT "P"• "POWER AT P" 
730 FOR P1•0·05 TO 0.95 STEP Oo05 
740 LET Z•CL+O. S-N•Pl>.ISQRCN•Pl•C 1-Pl» 
7 50 GOSUB 900 
760 LET PS-P 
770 LET Z•CU•oS-N•Pl>.ISQRCN•Pl•Cl-Pl)) 
780 GOSUB 900 
790 LET PS-PS+< l·P> 
800 PRINT Ph PS 
805 LET PS-0 
810 Nl!XT Pl 
820 PRINT "WHAT IS THE "J "NUMBER OF SUCCESSES X?" 
830 INPUT X 
840 PRINT "'!'HE CRITICAL REGION FOR A "JAU''LEVEL TEST IS" 
850 PRINT 0'X<• "JLJ"OR X>• "JU 
860 IF X o L THElll 890 
870 IF X >• U THElll 890 
880 PRINT "DECI SI 0111 IS ACCEPT P '" "J P4 
885 GO TO 1030 
890 PRINT "DECI 510111 IS REJECT P '" "J P4 
895 GO TO 1030 
900 LET Zl• ABSCZ> 
910 LET C-l.ISQRC2) 
920 LET Cl• •14112821 
930 LET Ca- 008864027 
940 LET CJ-·02743349 
950 LET Cilm ··00039446 
960 LET CS=.00328975 
9 70 DEF FNZCX>• l-1.IC l+Cl•X+C2•Xt 2+C3*Xf 3+C4*Xt 4+C5*Xf 5) ra 
980 LET p. o5+o5"'FNZCZ1•C> 
990 LET P • 1E-4*CINTC 1E4*P» 
1000 IF Z > 0 THElll 1020 
1010 LET P • 1-P 
1020 RETURN 
l 030 Ell1 D
"' 

https://J"0.10.0.05
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RlN 
WHAT ARE THE VALUES OF N AND PO? 
1 180.. 0 6 
WHICH ALTERNATIVE l• 2 OR 3? 
1 1 
WHAT IS THE SIGNIFICAlllCE t.EVa.. Oo lO.Oo05· OR OoOl? 
1 Oo05 
pOWER FWCTION 
p POWER AT P 

006 Oo 01101 
Oo65 Oo 31181 
Qo7 Oo 8 5118 
Oo75 009961 
008 009999 
Oo85 1 
Oo9 1 
Oo95 1 

WHAT IS THE NU'tBER OF SUCESSES X? 
? 130 
THE CRITICAL REGION FOR A Oo 05 t. E\iR. TEST IS 
X>• 120 
DECISION IS REJECT P. 006 

* 
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be 0.05, the actual probability of a type I error is 0.0401. The 
value 0.05 is referred to as the nominal significance level of the 
test and the value a = 0.0401 is referred to as the actual signifi-

cance level. The difference is due to the fact that the critical 
region is of form X ~ j, for integral j. The critical regions given 
by PTEST are conservative in the sense that the actual significance 
level will always be less than the nominal significance level. A 
graph of the power function for this test is given in Fig. 7.2.1, 
showing the properties of this test. 

Exercises 7. 2 

Use the program PTEST as appropriate in the following: 

1. In an article in the Academy of Management Journal, September 
1976, entitled "Informal Helping Relationships in Work Occupa-
tions," by Ronald J. Burke, Tamara Weir, and Gordon Duncan, it 
was reported that of 53 young managers, 41 were married and 12 
unmarried. We wish to test the hypothesis 

versus 

1.0 

0.5 

p
0 0.7 0.8 0.9 1.0 

,,.(p) 

Fig. 7 .2.1 
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where p is the true proportion of such managers who are married. 
Find the critical region for the test using a = 0.05. What 
decision is made here? 

2. In "Experiments on Plant Hybrids," reproduced in The Origin of 

Genetics, A Mendel Source Book, it is reported that of 8023 peas, 
2001 had green stems and 6022 had yellow. Mendel's theory pre-
dicted a 3:1 ratio of yellow to green using his genetic model. 
Test this hypothesis against a two-sided alternative using a = 

0.05. Find the critical region for the test explicitly. 

3. In 1973, Reggie Jackson, playing with the Oakland A's, had 158 
hits in 539 attempts. Find the critical region for testing 
H0: p ~ 0.300 versus H1 : p < 0.30~ using a= 0.01. (Here p 

represents Jackson's lifetime batting average.) What decision 
is made in this case? Source: The Baseball Encyclopedia, 

Revised Edition, MacMillan, New York, 1974. 

4. Assume that we wish to test at significance level a = 0.05 the 
hypothesis that a computer program randomly prints a 0 or a 1 
(that is, p = 0.5) against the alternative that it does not. 
(a) Find the critical region for a test based on 60 such 

selections. 
(b) Find the critical region for a test based on 100 such 

selections. 
(c) Sketch the power curves for the tests in parts (a) and (b) 

and comment on the relationship between the two. 

5. Suppose a holder of a political office wishes to determine whether 
a majority of his constituents are in favor of a particular bill 
on automobile speed limits. He wishes to test H0 : p ~ 0.5 
versus H1 : p > 0.5, where p is the proportion of his constitu-
ents favoring the bill. Suppose a random sample of 397 voters 
reveals 227 individuals in favor of the bill. . 
(a) Find the critical region for the test for nominal signifi-

cance levels 0.10, 0.05, and 0.01. ·Does the critical region 
become larger or smaller as a decreases? 



2617.3 Tests Concerning µ in Normal Populations 

(b) Plot the power curves for the tests with a. = 0.01 and a. = 

0.10. Make a qualitative comparison of these power curves. 
Can you give a reason for the relationship? 

7.3 TESTS CONCERNINGµ IN NORMAL POPULATIONS 

As explained in Sec. 4.4, many observations can be considered to come 
from normal distributions. Frequently we wish to test a hypothesis 
of the form µ ~ µ0 versus µ > µ0 for a fixed constant value µ0 , 
assuming a random sample from X - N(µ,o2 ) is available. For example, 
weights of newborn males may be considered to be normally distributed. 
In a study of the health of newborn males in an underdeveloped country 
we ma;y want to test H0 : µ ~ 6.5 lb versus H1 : µ > 6.5 lb. Evidence 
for H1 may indicate a satisfactory average birth weight. We shall 
consider testing hypotheses about µ in the normal case, first in the 
case that o2 is assumed known and then in the case that o2 is con-
sidered unknown. 

7.3.1 Tests forµ for X - N(µ,o2), o2 Known 

As in the case for testing the hypotheses about a population propor-
tion p, the null hypothesis will be taken to be one of the forms 
listed in Table 7.3.1. We shall be interested in finding the critical 
region of values of a test statistic leading to the rejection of H0 • 

Table 7.3.1 Tests for µ in the Normal Case, o2 Known 

HO Hl Critical region 

µ < µ µ > µo x> µ + (o/l?i)Z- 0 - 0 a. 

µ ~ µo µ < µo x< µ0 - (o/l?i)Za.-

µ = µo µ t µo x~ µo + (o/IIi)za./2 or 

x < µ - (o/IIi)za./2- 0 
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Again a will represent the maximum probability of rejecting H0 , under 
the assumption that H0 is true. For a test of the hypothesis µ ~ µ0 , 

it is reasonable to base a test on the statistic Xand to reject this 
hypothesis if X is large. An important theorem about independent 
observations from a normal distribution permits determination of the 
appropriate critical region for a test with significance level a. 
We state the theorem without proof. 

THEOREM 7.3.1. If (X1 , x2 , ... , Xn) are independent observations 
from X - N(µ,a2 ), then (X - µ)/a/./ll is distributed as the standard 
normal variable Z. 

To satisfy the requirements concerning the type I error for a 
test of H0 : µ ~ µ0 versus H1 : µ > µ0 , we require 

P((X ~ c)jµ ~ µ0) ~a 

By determining c such that 

P(X ~ cjµ µ 0 ) = a 

or 

x-µ c-µ1P [ (---o) > ___o =a 
a/Ill - a/Ill 

we obtain from Theorem 7.3.1 

c - µo = z or c = µ + .£.....iz a o .fri aa/.fri 

If µ < µ0 , we have 

P(X ~ c) P(X > µ0 + -2"..z )- .fri a 

= P [x - µ > µo - µ + z l 
a/.fri - a/.fri a 

µo - µ 
= P(Z > --- + Z ) < a 

- a/.fri a -
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as µ0 - µ > o. 
Hence we obtain the critical region X > µ0 + (cr//ri.)za. Critical 

regions for the other hypotheses are found similarly and are given in 
Table 7. 3.1. 

Suppose we consider the test mentioned above concerning male 
birth weights to decide between 

and 

Assume that a = 1, the sample size n = 25, and a = 0.05 and that we 
observe x= 6.95. Using the first row of Table 7.3.1, we find c 
6.5 + (1/5)1.645 = 6.829. Hence the rejection region is given by 
X ~ 6.829, and we decide to reject H0 . Theorem 7.3.1 also permits 
determination of the power function of the test. Recall that 

rr(µ) = P(rejecting H0 jµ) = P(X ~ 6.829jµ) 

P(X - µ > 6.829 - µ)
0.2 - 0.2 

P(Z > 6.829 - µ) = l F (6.829 - µ) 
- 0.2 z 0.2 

For example, if µ 7, we find 

rr( 7) = P(Z ~ 6•829 
0.2 -

7) = 1 - Fz(-0.855) 

1 - 0.1963 = 0.8037 

A graph of the power function for this test is given in Fig. 7.3.1. 

1.0 

0.5 

6.0 6.5 7.0 7.5 

Fig. 7.3.1 

0 
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For the moment suppose we consider only the hypothesis 

versus 7 

with a = 1 and n = 25 as before. The same critical region, namely 
X~ 6.829, is appropriate for a test with significance level a = 0.05. 
As B(µ) = 1 - n(µ), B(7) = 1 - 0.8037 = 0.1963. The areas representing 
a and B are indicated in Fig. 7.3.2. Notice that the area to the right 

of c = 6.829 under the normal density function centered at 6.5 is 
a = 0.05, while the area to the left of c = 6.829 under the normal 
density function centered at 7 is B = 0.1963. If we attempt to make 
a smaller by increasing c, B will become larger. If we attempt to 
make B smaller by decreasing c, a will become larger. For a fixed 
sample size both errors cannot simultaneously be made small. If we 
allow n to vary, however, we can control a and a. Suppose we require 
a= 0.05 and B = 0.05. Then P(X ~ cjµ = 6.5) = 0.05 and P(X ~clµ= 7) 
= 0.05. These two requirements lead to the equations 

(c - 6.5) (c - 7)1.645 and 1.645 
(l/lii) (1/lii) 

Dividing the first of these equations by the second yields 
(c - 6.5)/(c - 7) = -1 or c = 6.75. Substituting this value of c 
into the first equation yields Iii= 6.58 or n = 43.3. Hence us~ng 
n = 44 and c = 6.75 yields a test with (approximately) the required 
values of a and a. 

0 6.5 
Relationship between the a (3 errors. 

Fig. 7.3.2. 
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Here we point out that there are five steps in testing a statis-
tical hyI>othesis H0 versus an alternative H1 • This reasoning process 
will apply quite generally in testing statistical hypotheses. 

1. State H0 and H1 . 
2. Determine the values of a and n. 
3. Select the appropriate test statistic. 
4. Using steps 1 to 3, find the critical region of values of the 

test statistic which lead to the rejection of H0 . 
5. Calculate the test statistic and make a decision between H0 

and H1 • 

It is important to point out that steps 1 through 4 may be carried 
out before any data are collected. These four steps determine the 
properties of the statistical test. In this sense the decision pro-
cedure can be thought of as "objective." Either a decision for H0 
or H1 may be incorrect, but we have knowledge of the probabilities 
of these errors. It is this knowledge which produces decision pro-
cedures which in a sense may be called 11wise." 

7.3.2 Tests forµ for X - N(µ,cr2J, cr2 unknown 

In Sec. 6.2 we have seen that for a random sample (x1 , x2 , •.• , Xn) 
from X - N(µ,cr2), the statistic 

x - 11t = .::.__..to. 

s//D. 

has a distribution known as Student's t distribution with n - 1 degrees 
of freedom. As this random variable depends only upon the unknown 
parameter µ, it is not surprising that it is used to test hypotheses 
about µ in the normal case if cr2 is unknown. If we consider the 
first row of Table 7.3.1, we see that for the hypotheses 

HO: µ ~ µo and Hl: µ > µo 

that the critical region is of the form 

(x - µo)x> µ + (..Q...)Z or > z - 0 - arn a cr/ID 
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Table 7.3.2 Tests for µ in the Normal Case, cl Unknown 

HO Hl Critical Region 

µ ~ µo µ > l.lo t > t - a,n-1 

µ ~ µo µ < µo t ~ -ta,n-1 
µ = µ µ +µo ltl > t- a/2,n-1 

For the same two hyJ;>otheses, in the case that cr2 is unknown, the 
reject~on region is of the form 

(x - µo) 
t = ---~ > t - a,n-1s/./Il 

It is apparent that if H1 is true, this statistic will tend to be 
positive. The larger the value of t, the more evidence exists in 
favor of H1 • Additionally, this rejection region satisfies the type 
I error requirement that 

(x - µo)
P( > t 1 1 µ < µ 0 ) < P(t l > t 1 ) = Of.(s/.fri) - a,n- - - n- - a,n-

providing a critical region with a maximum type I error of a. In 
Table 7.3.2 we present ~he appropriate critical regions for the 
indicated hyJ;>otheses for a test with significance level a. 

The program Ml'EST has been written to calcula~e the value of 
t = (x - µ0)/s/./Il. The values of µ 0 and n are entered in input state-
ments beginning at line 600. In the sample run we have calculated the 
value of t for the heights of 25 kindergarten boys given in Sec. 6.2 
to test the hyJ;>othesis 

versus 

with Of. = 0.05. The calculated value of t is found to be t = 0.879, 

and referring to Table B.II, we see that t 0 •025 , 24 = 2.064. As 
ltl < 2.064, we retain H0• Critical regions for two-sided alternatives 
are computed for Of. = 0.10, 0.05, 0.01 or for one-sided alternatives 
with Of. = 0.05, 0.025, or 0.005. The maximum value of n is 50. 
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MTEST 

10 REM THIS PROGRAM TESTS THEHYPO'ffiESISt MlJsMUO AT SICNIFICA:~CF 
20 RE'! LEV!L ALPHA FOR A TWO-SIDED TEST•.Al..PHA/2 FOR A OlllE SIDED 
30 REM TEST AGAINST ONE OF THE AL TER'JATI VFS 
40 REM l> MU > MUO 
50 REM 2> MU < MUO 
60 REM 3> MU <>MUO 
70 REM 1HE POPlLATIOlll SAMPLED IS ASSlMED TO BF 'JOftotALl.Y 
80 REM DISTRIBU'IED WITii U'l!KNOWN VARIAlllCE• 'ffiE SA'.'!PLE SIZE 
90 RE'! IS No 
100 PRINT "WHAT ARE THE VALUES OF Ill Al\JD MUO?" 
110 INPUT t>S, UO 
120 PRINT ''WHICH ALTERNATIVE "1"1• 2 OR 3?" 
l 30 INPUT A 
140 IF A=l 1HEN 190 
ISO IF A •2 1HEN 190 
160 IF A• 3 THEN 190 
170 PRINT "INCORRECT FORMAT "J"TRY AGAIN" 
180 GO TO 110 
190 GOSUB 380 
l9S DIM XC SO>• TC SO>• UC SO>. VC 50> 
200 FOR I • 1 TEI N 
20S READ XC I> 
210 LET S • S+XCI> 
21S LET 51'" Sl+lC<I>t2 
220 NEXT I 
22S LET Xl•S/l\I 
230 LET S2'"SQR«S1-N•Xlf2)/CN-l» 
23S PRINT "WHAT IS 1HE VALUE OF ALPHA. 0.10.0.os.o.01?" 
240 INPUT Al 
245 LET T-<Xl•UO>I< S2/SQRCl\1)) 
250 IF A • 1 THElll 282 
255 IF A• 2 THEii 302 
260 PRINT "THE CRITICAL REGI 00 "J "FOR A TWO• SIDED TEST" 
262 PRINT "AT SIGNIFICANCE LEVE..• "1Al 
264 IF Al•OolO 1HElll 278 
966 IF Al•0.05 THEN 274 
270 PRI!llT "IS ABSOLUTE T >• "JV<N-l> 
27 2 GO TO 320 
27 4 PRINT "l S ABSOLUTE T>• "J U< N- 1> 
976 GO TO 320 
278 PRINT "IS ABSOLUTE T >• "JT<N-1> 
280 GO TO 320 
282 PRI!llT "THE CRITICAL REGION "J"FOR A O'.llE>SIDED TEST" 
284 PRI!llT "AT SIGNIFICA!'JCE "J''l.EV!L • "JAl/2 
286 IF Al•OolO THElll 298 
288 IF Al•O.os THEN 294 
290 PRI!llT "IS T >•"J V<N-1 > 
292 GO TO 320 
294 PRINT "IS T >• "JU<N-1> 
296 GO TO 320 
298 PRINT "IS T >• "J TCN-1 > 
300 GO TO 320 

"' 
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302 PRINT "1HE CRITICAL REGION "J"FOR A ONE•SIDED TEST" 
304 PRINT "AT SIGNIF'ICA!IJCE LEVE..• "JAl/2 
306 IF Al•Oo 10 1HEN 318 
308 IF Al• Oo05 1HllN 314 
310 PRINT "IS T <• "J•V<N•l> 
312 GO TO 320 
314 PRINT "IS T <• "J•UCN•l> 
316 GO TO 320 
318 PRINT "IS T <• "J·T<N·l> 
320 PRINT 
325 PRINT "1HE COMPUTED VALUE OF' T •"J T 
340 GO TO 1000 
380 FOR I • 1 TO 50 
382 READ T< I> 
384 NEXT I 
386 FOR I • l TO 50 
388 READ U< I> 
390 NEXT I 
392 FOR I • 1 TO 50 
394 READ V< I> 
396 NEXT I 
398 RETUR.~ 

•
EDIT LIST 600•1000 

600 DATA 420 58• 41082. 4lo94o 400 2S. 420 37• 440 6• 420 74. 43o 14• 41o 17. 4lo9• 46o2 
610 DATA 38089· 45002· 38.· 1· 480 59. 34o54o 48007. 42045. 47·97· lllo s. 43o9. 43o2 
620 DA TA 420 02• ii8 o 3o 450 9 
1000 END
•

Rl.N 
WHAT ARE 1HE VALUES OF N AND MUO? 
1 2S. 420 5 
WHICH ALTERlllATIVE 1• 2 OR 3? 
1 3 
WHAT IS 1HE VALUE OF ALPHA· OolO.OoOS.OoOl? 
? OoOS 
1HE CRITICAL REGION FOR A TWO- SIDED TEST 
AT SIGNIFICANCE LEVl!J..:o Oo 05 
IS ABSOLUTE T>= 200639 

1HE COMPUTED VALUE OF T • 00879079 

• 
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The example in the preceding paragraph shows an interesting 
relationship between a confidence interval for µ and a test of hypoth-
esis about µ. A confidence interval with confidence coefficient 
1 - a contains those points µ0 for which 

x - (~)ta/2 n-1 < µo < x+ (~)ta/2 n-1 
tn • rn • 

or equivalently by 

< (7.3.1)t a/2,n-1 

However relation (7.3.1) describes exactly all those values of µ0 
which would be accepted in a test of H0: µ = µ0 versus H1 : µ f µ0 
at level of significance level a. Conversely, all those points 
satisfying relation (7.3.1) will lie in the (1 - a)lOO% confidence 
interval for µ. Hence as we found a 95% confidence interval to be 
(41.74, 44.46) in Sec. 6.2, we know that H0 : µ = 42.5 will be 
accepted at significance level a = 0.05. However H0 : µ = 41 will 
be rejected at the same significance level, which is verified by 
calculating t = (43.08 - 41)/3.34/5 = 3.128 > 2.064. Thus, the 
confidence interval gives all the information required for a two-sided 
test. 

Problems 7. 3 

1. Assume that the weights of "5-lb" bags of sugar from a production 
line can be considered to be distributed as X - N(µ,0.01). We 
want to decide, based on a sample of size 16, if the average 
weight is acceptable. We test 

versus 

where H1 can be thought of as indicating acceptable weights. 
(a) Find the critical region for this test if a= 0.05. 

https://N(�,0.01
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RW 
WHAT ARE THE VALUES OF lll Al~D MUO? 
? 2s. 41 
WHICH .ALTERNATIVE l• 2 OR 3? 
1 3 
WHAT IS nfE VALUE OF ALPHA1 Oo 101 OoOS. OoOl? 
1 o.os 
THE CRITICAL REGION FOR A TWO• SIDED TEST 
AT SIGNIFICANCE LEVEL• OoOS 
IS ABSOLUTE T>• 2•0639 

1HE COMPUTED VALUE OF T '" 3· 12775 

• 
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(b) Find an expression for the power function of this test and 
evaluate the expression forµ = 5(0.02)(5.1). The expression 
will be a function of µ. Sketch a graph of this power 
function. 

2. Assume that SAT scores can be taken to be normally distributed 
with a = 100. A sampling of 25 members of an entering freshman 
class yields x = 580. We wish to test the hypotheses 

versus 

at significance level 0.05. Evidence for H1 will suggest a de-
cline in the test scores for this entering class. 
(a) Find the critical region for this test. 
(b) What decision is made between H0 and H1 ? 

3. The EPA is suspicious that a manufacturing company producing 
batteries is discharging mercury into a river. On 8 days a 
sample of the mercury content of the water downstream from the 
factory is made. The following data (in micrograms/liter) are 
obtained. 

Day 1 2 3 4 5 6 7 8 
Observation 2.2 1.8 1.7 1.9 1.6 1.3 1.9 2.0 

(a) An acceptable level of mercury content is less than 2 

µg/liter. Test H0: µ ~ 2 versus H1 : µ < 2 assuming 
normality of the observations. Let a = 0.05. 

(b) Find a 95% confidence interval for µ. What can the EPA 
state statistically concerning the water quality? 

4. Consider again testing H0 : µ .s_ µ0 against H1 : µ > µ0 , where 
X - N(µ,cr2 ) with cr2 known. 
(a) Show that the power function of this test can be written as 

(b) Prove that ~(µ) is an increasing function of µ. 
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5. In an article by S. Josephina Concannon in The Journal of Educa-

tional Research, November 1975, entitled "Comparison of the 
Stanford-Binet Scale with the Peabody Picture Vocabulary Test," 
a report is given about a sample of 32 five-year-old children of 
above average ability. The average IQ score on the Standord-Binet 
test is given to be 134.4 for these children with s = 6.53. 
(a) Assuming that IQ scores are N(µ,225), test the hypothesis 

versus 

for these children. Use a = 0.05. 
(b) Assuming normality, but that o2 is not known, test the 

hypotheses (a= 0.05) given in part (a). 

6. A newspaper states that the average income of high school teachers 
is $11,000. Suppose a random sample of 16 teachers' salaries 
yields x =10,500 and s = 500. Assuming that such salaries are 
normally distributed, we wish to test 

H0: µ = 11,000 versus 

(a) Find the rejection region for this test using a = 0.05. 
(b) Find the computed value of the appropriate statistic for 

these data. 
(c) Which of the two hypotheses would be chosen? 

7. Suppose that the time X that an experimental engine will operate 
with 1 gallon of a certain kind of fuel has a normal distribution, 
that is, X - N(µ,o2 ). Test runs with five models of this engine 
showed that they operated, respectively, for 21, 19, 23, 18, and 
19 min with this kind of fuel. 
(a) What is the BLUE estimate of µ? 
(b) What is the value of the sample standard deviation s? 
(c) Find a 95% confidence interval for µ. 
(d) Based on the data given would one accept the null hypothesis 

H0 : µ = 23 (versus H1 : µ f 23) at significance level 
a = 0.05? 
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8. Suppose that for many years a certain kind of power unit produced 
by the E. G. Company has, on the average, produced 1000 V of 
power/hr. The unit has recently been redesigned and E. G. now 
claims it produces more power, on the average, than the old 
design. As a user of such a power unit, you must decide to 
accept the claim or not, so you sample four units observing 
v = 1250 V ands = 100 V. 
(a) How should the null and alternative hypotheses be stated by 

you, a user? 
(b) Find the critical region for a 0.05 and a 0.01 level 

tests. 
(c) What decisions are made in part (b)? 

Exercises 7. 4 

1. Use the program MTEST to find a critical region for the test of 

H0 : µ = 72 versus H1 : µ f 72 at significance levels a 0.05 
and a = 0.01, for the observations of 50 heights given in 
Exercise 5.2.2. 

2. (a) Use the data of Sec. 6.3 on the weights of 20 111-lb" bags 
of' flour to test the hypotheses 

HO: µ 2 16 versus HO: µ > 16 

at the 5% level of' significance. 
(b) Use these same data to test 

HO: µ = 16 versus Hl: µ +16 

at the 5% level of significance. 
Use the program MTEST. 

3, The following observations are the lengths of time that driers 
set for 20 min actually operated: 19.69, 19.06, 19.15, 17.80, 
19.49, 21.38, 19.79, 20.11, 18.54, 19.12, 22. 61, 16.71, 21.61, 
16.08, 24.47, 13.23, 24.06, 19.56, 23.97, 18.80. Using MTEST, 
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(a) Test the hypothesis µ = 20 versus µ f 20 at level of 
significance a = 0.05. 

(b) Carry out tests as in part (a) of µ = 21 and µ = 22 versus 
a two-sided alternative at level of significance a = 0.05. 

7.4 TESTS FOR µ IN LARGE SAMPLES 

In Chap. 5 we have seen that the central limit theorem could be employed 
to find a confidence interval for µ, assuming a large sample from a 
continuous population is available. Due to the close relationship 
between confidence intervals and tests of hypotheses just mentioned, 
it is not surprising that tests of hypotheses concerning µ, in the 
large sample case can be based upon the normal distribution. Consider 
a test of 

versus (7.4.1) 

For large n, if H0 is true, Z = (X µ0 )/o/./ll is approximately distri-
buted as the standard normal variable. Hence 

or estimating o by the sample standard deviation s, 

If H1 were true, then (X - µ0)/s/./ll would tend to be large in magni-
tude, and the larger the magnitude the more evidence for H1 • Hence 
an approximate a level test for the hypotheses given in Eq. (7.4.1) 
is defined by the critical region Jx - µ0 J/s/./ll ~ Za/2 if n is large. 
Table 7.4.1 gives the appropriate critical regions for tests in the 
case of one-sided alternatives. 

Another concept used in statistical testing is the "likelihood" 
that an observed mean xcomes from a population with theoretical 
expectation µ0• Assuming a test against a two-sided alternative, we 
consider the probability 
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Table 7.4.1 Rejection Regions for Large Sample Tests 

HO Hl Critical region 

µ ~ µo µ > µo (x - µ0 )/s/ID. ~ za. 

µ ~ µo µ < µo (x - µ0 )/s/ID. ~ -Za. 

µ = µo µ +µo 1x - µol/s/ID. ~ za./2 

P( jzj 

where Z represents the standard normal variable. This gives the 
probability of observing a value of Xas far from µ0 or farther 
(in magnitude) than the value xobserved. Such a probability is 
referred to as a P-VALUE. If this probability is small, doubt is 
cast on the assumption that µ = µ0 • Rather than relying on arbitrary 
values of the significance level a., many statisticians prefer to use 
the P-VALUE as an indication of the truth of the assertion µ = µ0 • 
If the alternative to H0 : µ = µ0 is considered to be one-sided, 
the P-VALUE (in the upper tailed case) is 

-x - µ 
P(Z > --0 ) 

- s/ID. 

i.e., one-half of the probability in the two-sided case. 
The program MUTEST considers the hypothesis H0 : µ = µ0 in the 

large sample case. The value of n and µ0 are provided in INPUT 
statements. The program requests the alternative (1) µ > µ0 , (2) 
µ < µ0 , or (3) µ f µ0 • The observations are in DATA statements 
beginning with line 400. The value of z = (x - µ0 )/s/ID. is computed 
and a test may be carried out using Table B.I for any desired signif-
icance level. Additionally the P-VALUE defined in the previous 
paragraph is calculated. In the example, run the first 50 "ages" 
of legislators from Exercise 5.1.3 have been used as data to test 
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MUTEST 
10 Rl!M 1HI S PROGRAM TESTS 1HE HYP01HESJ SI MU • MUO 
20 R!M AGAINST ONE OF 1HE ALTERNATIVES 
30 REM l> MU > MUO 
JiO REM 2> MU < MUO 
SO REM 3> MU <> MUO 
60 REM 1HE POPU.ATI ON SAMPLED IS CONSIDERED TO HAVE llN 
70 REM EKPECTATIQN AND VARIA.~CE 
80 REM 1HE SAMPLE SIZE N JS CONSIDERED TO BE ''LARGE" 
90 REM 1HE PROGRAM CAt.ClLATES Z AND 1HE CORRESPONDING P•VAt.UE 
100 PRINT ''WHAT ARE 1HE VAt.UES OF N AND MUO?" 
110 INPUT N• UO 
120 PRINT "WHICH ALTERNATIV~ "J"l•2•0R 3?" 
130 INPUT A 
140 IF A • l 1H!N 190 
lSO IF A = 2 1HPN 190 
160 IFA,. 3 THPN 190 
170 PRINT "INCORRECT FORMAT "J "TRY AGAIN" 
180 GO TO 110 
190 FOR J • 1 TO Ill 
200 READ X 
210 LET S '" S + X 
220 LET Sl • Sl + Xt2 
230 NEKT I 
240 LET X l • S/111 
2SO LET S2•SQR< < Sl•N•Xl t 2> l(N• 1 > > 
260 LET Z a OCl•UO>I< S2/SQR<N> > 
270 GOSUB 900 
290 PRINT "'lHE CAL.CU.ATE Z VALUE• "JZ 
300 J F A • 3 THPN 330 
310 PRHJT 
320 PRINT "THE P•VALUE FOR "J"Al..TERlllATIVE "JAJ" • "JP 
32S GO TO 1030 
330 PRINT 
340 PRINT "THE P•VALUE FOR "J "ALTERNATIVE "JAJ" • "JP•2 
3SO GO TO 1030 
JiOO Iii\TA Ji6. Jill. JiS. 40. 46. S2• 47• Ji8• 42• Ji.ti 
JilO Ili\TA S7• 36. S3. 31&. 63. 211. 62• 46. 61. 43 
420 Ili\TA SO. 481 4S• 62. Sfu 1161 116• 401 LIJi. S2 
Ji30 Ili\TA 1131 391 4911171 421 S31 S3. 1131111. 47 
4.tiO DA TA 46. 34. 381 114. 43. 48• 48• 45. 1111 61 
900 LET Zl• ABS<Z> 
910 LET C-1/SQR< 2> 
920 LET Cl• • lill 12821 
930 LET C2• • 088611027 
940 LET C3=•02743349 
9 SO LET C4D • • 000 39 llil6 
960 LET CS-o0032897S 
970 DEF FNZ<X>,.1• 11< l+Cl•X+C2•Xt 2+C3•Xt 3+C4*Xt 4+C5*Xt S> t8 
9~0 LET P • • 5+• 5*FNZ<Zl•C> 
990 LET P • 1E·4*<JNT< 1E4*P» 
1010 LET P • l•P 
1020 RETU&~ 
1030 END 

• 
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Rt.N 
WHAT ARE 1HE VAl..UES OF Ill AND MUO? 
? so. 50 
WHICH ALTER!llATIVE. l1210R 3? 
? 3 
1HE CAL.CU.ATE Z VAL.UE '" -3• 17236 

'!ffE P-VAL.UE FOR Al..TERNATIVE 3 • 0·0016 

•Rl.N 
WHAT ARE 1HE VALUES OF Ill AND MUO? 
? 6.. so. 48 
WHICH ALTERNATIVE. 11210R 3? 
? 3 
THE CAI.CU.ATE Z VAl..UE • -1· 33863 

1HE P-VALUE FOR ALTEl'!llJATIVE 3 o. 1601! 

* 
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the hypothesisµ= 50. The computed value of z = -3.17, and since 

lzl .:_ 1.96, we would reject this hypothesis at the 5% level of sig-

nificance against a two-sided alternative. The P-VALUE of 0.0016 

indicates that µ = 50 is an "unlikely" value of µ. The same data 

used to test µ 48 yield z = -1.34 a P-VALUE 0.181, which leads 

to acceptance of H0 at any significance level less than 0.181. 

Hence the P-VALUE is the smallest significance level at which the 

null hypothesis can be rejected. If a predetermined a is less than 

the P-VALUE, the null hypothesis is retained. 

Exercises 7. 4 

1. Use the height data of Exercise 5.2.2 with MUTEST to test the 

hypotheses µ = 72 versus µ f 72 at significance level a = 0.05. 

What is the P-VALUE for this test? 

2. The list below gives the age at first inauguration of 38 

presidents*: 

George Washington 57 James Buchanan 65 
John Adams 61 Abraham Lincoln 52 
Thomas Jefferson 57 Andrew Johnson 56 
James Madison 57 U. S. Grant 46 
James Monroe 58 Rutherford B. Hayes 54 
John Q. Adams 57 James A. Garfield 49 
Andrew Jackson 61 Chester A. Arthur 50 
Martin Van Buren 54 Grover Cleveland 47 
William Henry Harrison 68 Benjamin Harrison 55 
John Tyler 51 William McKinley 54 
James K. Polk 49 Theodore Roosevelt 42 
Zachary Taylor 64 William H. Taft 51 
Millard Filmore 50 Woodrow Wilson 56 
Franklin Pierce 48 Warren G. Harding 55 

*Source: The World Almanac and Book of Facts, 1975· 
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Calvin Coolidge 51 John F. Kennedy 43 

Herbert Hoover 54 Lyndon B. Johnson 55 
F. D. Roosevelt 51 Richard Nixon 56 
Harry s. Truman 60 Gerald R. Ford 61 

Dwight D. Eisenhower 62 James E. Carter 52 

Use MUTEST to test the hypothesis that the true average at 
inauguration is 55 versus the alternative that µ is greater 
than 55 at level of significance a = 0.02. What is the P-VALUE 
for this test? What is the P-VALUE if the alternative is 
written as µ f 55? 

3. Use the 50 numbers generated by the program RANDSAM in Sec. 5.1 
to test the hypothesis µ = 500.5 versus µ f 500.5 using the 
P-VALUE to make a decision. 

7.5 DISTRIBUTION-FREE TESTS OF LOCATION 

In the preceding two sections of this chapter we have considered 
tests concerning the expectation µ of a population assumed to be 
normally distributed, or one for which the sample size was sufficiently 
large that the sample mean could be assumed to be normally distributed. 
In this section we consider tests of location in the case that the 
underlying population is considered only to be continuous. Specifi-
cally, the cumulative distribution function of the random variable 
X is considered to be continuous. Such tests are referred to as 
distribution-free tests because the observations are not assumed to 
come from a specific family of distributions such as the normal or 
exponential. The term nonparametric is also used to describe these 
tests. This term is unfortunate, however, because the tests to be 
discussed will concern para.meters of a distribution. 

7.5.1 The Sign Test 

We assume that we have a random sample (X1 , x2 , ••• , Xn) from a con-
tinuous population with a unique median n. In Sec. 6.2 we found 
confidence intervals for n based on the binomial distribution. As 
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there is a close relationship between confidence intervals and tests 
of hypotheses, it should not be surprising that a test of 

versus 

can be based on the binomial distribution. This test is referred 
to as the sign test. We use the statistic 

i.e., the number of observations which exceed n0 as the test statistic. 
If the true median is n0 , the observations Xi - n0 will have a posi-
tive sign with probability 1/2 and a negative sign with probability 
1/2 [the assumption that X, the parent distribution is continuous, 
implies that P(Xi = n0 ) = 0). Thus the statistic S has the binomial 
distribution B(n,1/2) under H0 • Against a two-sided alternative we 
would reject H0 if either S is very large or small. We reject H0 if 
either S ~ r or S ~ n - r, yielding a test with type I error a = 
P(S ~ r or S ~ n - rip= 1/2) = 2P(B(n,l/2) ~ r), as the probability 
in the two tails is the same. 

Let us consider the baseball data in Table 6.2.1. The 20 ordered 
league leading numbers of hits (1952-1971) are 190, 192, 194, 200, 
200, 204, 205, 205, 208, 209, 209, 210, 211, 212, 215, 218, 223, 
230, 230, 231. Assume we wish to test 

versus 

at approximately the 0.05 level of significance. Running the program 

BINOM for n = 20 and p = 1/2, we see that for r 6, 2P(B(20,l/2) ~ 6) 
= 0.0414. Hence we would reject H0 if S ~ 6 or S ~ 14. In this case 
S = 15 because 15 of the 20 observations exceed n0 = 201, and thus 
the hypothesis H0 would be rejected. Tests against one-sided alter-
natives are obtained similarly and are given in Table 7.5.1. 

For large samples one can use the normal approximation to the 
binomial distribution to find the critical region for the tests. 
Suppose we wish to test 

versus 
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Table 7.5.1 Critical Regions for the Sign Test 

HO Hl Critical region 

n ~ n0 n > no S > n - rl; Cl.= P(B(n,1/2) ~ r 1 ) 

n~ n0 n < no S ~ r 2 ; Cl.= P(B(n,1/2) ~ r 2 ) 

n no n +no S~r or S > n - r; a. = 2P(B(n,l/2) ~ r) 

using the sign test. One calculates the statistic 

If the true population median n exceeds n0 , then there will tend to 
be a large number of positive signs among the comparisons Xi - n0 , 
i = 1, 2, ••• , n. To achieve a test of significance level a. we 
require P(S ~ cjH0 ) = a.. Using the normal approximation to the 
binomial distribution we obtain 

P(s - n/2 > z ) = a 
./Il/2 - Cl. 

Hence we can base the test on the statistic Z = (S - n/2)//D./2. If 
Z ~ ZCI., we reject H0 in favor of H1 • Similarly for the other two 
alternatives of Table 7.5.1 we obtain the rejection regions Z ~ -ZCI. 
jzj ~ Za./2 • The P-VALUE for the null hypothesis can be obtained as 
for tests of µ in the large sample case. 

The program MEDTEST uses the sign test statistic S to test the 
hypothesis H0 : n = n0 in moderate or large samples. The values of 

n, no. and the alternative (1) n > no. (2) n < no or (3) n +no are 
input in response to the program. The observations should appear 
in DATA statements beginning at line 400. The program computes S, 
Z, and the P-VALUE for the indicated alternative. In the sample 
run, the height data of Sec. 6.2 have been used to test n = 42.5 
and n = 41 against alternative (3). The respective P-VALUEs are 
0.8416 and 0.0008 indicating acceptance of n = 42.5 and rejection of 
n = 41, agreeing with the parametric test results of Sec. 7.3. 
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M!DTEST 

10 REM THIS PROGRAM USES THE SIGN TEST STATISTIC TO TEST THE 
20 REM NULL HYPOTHESIS THE MEDIAN OF A CONTINUOUS POPULATION 
30 REM IS M0o THE PROGRAM ASSUMES A MODERATE OR LARGE SAMPLE SIZE N 
40 REM THE ALTERNATIVES ARE OF FORM 
50 REM 1 > MEDIAN > M0 
60 REM 2> MEDIAN c M0 
70 REM 3> MEDIAN <> M0 
80 REM THE PROGRAM COMPUTES THE VALUE OF s.z AND THE 
90 REM CORRESPONDING P·VALUE 
100 PRINT '"WHAT ARE THE VALUES OF N AND MO?'" 
110 INPUT N•M0 
120 PRINT '"WHICH ALTERNATIVE• '"J'"l•2•0R 3?" 
130 INPUT A 
140 IF A • l THEN 190 
150 IF A • 2 THEN 190 
160 IF A • 3 THEN 190 
170 PRINT '"INCORRECT FORMAT '"J"TRY AGAIN'" 
180 GO TO 110 
190 FOR I • l TO N 
200 READ X 
205 IF X • M0 THEN 225 
210 IF X c M0 THEN 230 
215 LET S • S+l 
220 GO TO 230 
225 LET T • T+l 
230 NEXT I 
240 PRINT '"THE NUMBER OF X • M0 IS "JT 
250 PRINT "THE VALUE OF S •"JS 
860 LET Z •<2•S•CN•T>>,SQRCN•T>
270 GOSUB 900 
1!90 PRINT '"THE CALCULATE Z VALUE • '"JZ 
300 IF A • 3 THEN 330 
310 PRINT 
320 PRINT "THE P•VALUE FOR '"J'"ALTERNATIVE "JAJ" • "JP 
325 GO TO 1030 
330 PRINT 
340 PRINT "THE P•VALUE FOR '"J'"ALTERNATIVE '"JAJ'" • '"JP•e 
350 GO TO 1030 
400 DATA 42o58•4lo82•4lo94.40o25•42o37•44o6•42o74•43ol4•41o17•4lo9•46o2 
410 DATA 35.59,45.02.3a.1.48.59•34·54•48·07•42•45.47·97•41•5•43·9·43•e
420 DATA 48o02.48o3.45o9 
900 LET Zl• ABSCZ> 
910 LET C•l,SQRC2>
980 LET Cl• 014112821 
930 LET C2• 008864027 
940 LET C3•o08743349 
950 LET C4• ••00039446 
960 LET C5••fil0328975 
970 DEF FNZCX>•l•l,Cl+Cl•X+C8•Xt2+C3•Xt3+C4•Xt4+C5•Xt5)t8
980 LET p •• 5+.s•FNZCZl•C> 
990 LET P • 1E•4•CINTC1E4•P>> 
1010 LET P • l•P 
1020 RETURN 
1030 END 
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RUN 
WAT ARE THE VALUES OF N AND M0? 
? 25•42o5 
!MICH ALTERNATIVE 1.2.0R 3? 
? 3 
THE NUMBER OF X = M0 IS 0 
THE VALUE OF S = 13 
THE CALCULATE Z VALUE• lh2 

THE P-VALUE FOR ALTERNATIVE 3 .. 008416 

•RUN 
WAT ARE THE VALUES OF N AND M0? 
? 25.41 
!MICH ALTERNATIVE la2•0R 3? 
? 3 
THE NUMBER OF X • MB IS 0 
THE VALUE OF S • 21 
THE CALCULATE Z VALUE • 3o4 

THE P-VALUE FOR ALTERNATIVE 3 • 7099999 E-4 

* 
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7.5.2 The Wilcoxon One-Sample Test 

We have seen that the sign test provides a simple test of hypothesis 
for the population median of a continuous distribution. However, as 
the statistic s depends only upon the signs of xi - no information 
about the magnitude of the original observations is lost. We con-
sider here a more sensitive test of location generally referred to 
as the Wilcoxon one-sample test or the Wilcoxon signed-rank test. 
We consider that we are sampling from a continuous population. We 
assume that the random variable in question has a continuous proba-
bility density function f(x;6) dependent on a location parameter e, 
The density function is assumed to be symmetric about 6, that is, 
f(6 - x) = f(6 + x) for all x. It is straightforward to show that 
the median of the distribution is 6 and that E(X) = 6, if the expec-
tation exists. A typical probability density function of this kind 
appears in Fig. 7.5.1. 

We wish to test the hypotheses H0: 6 = 60 versus H1 : 6 +60 , 
as well as one-sided tests. The test statistic is again based on 
the differences xi - eo. The statistic is a function of the ranks 
(1, 2, .•• , n) of the magnitude of these differences. Following 
common notation, we define Ri to be the rank of the magnitude of the 
ith difference. We further define T+ EXi>6o Ri and T_ = EXi<6o Ri. 
It is clear that T+ + T = n(n + 1)/2 as this is just the sum of the 

0 x8 

Fig. 7.5.1 
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first n integers. Hence T can be computed as n(n + 1)/2 - T • The 
+ -

test is based on the statistic T = min(T+, T_). We indicate the 
computation of T for the baseball data of the preceding section 
using 

x. 
l. 

Jx. 
l. 

- 201J R. 
l. 

x. 
l. 

Jx. 
l. 

- 201 J R. 
l. 

190 11 13-5 209 8 8.5 
192 9 10.5 210 9 10.5 
194 7 6.5 211 10 12 
200 1 1.5 212 11 13.5 
200 1 1.5 215 14 15 
204 3 3 218 17 16 

205 4 4.5 223 22 17 
205 4 4.5 230 29 18.5 
208 7 6.5 230 29 18.5 
209 8 8.5 231 30 20 

T = 33.5, T+ = 210 - 33.5 = 176.5, T = 33.5 

Note that for tied observations the average of the corresponding 
ranks is assigned to each such observation. It is clear that small 
values of T indicate that the ranks assigned to the positive or 
negative differences are inconsistent with e = eo. 

In order to answer the question of whether T is sufficiently 
small to reject H0 : 0 = e0 , we must know the distribution of T 
under the null hypothesis. In Table B.IV we have values of T sat-
isfying a'' = 2P(T ,S_ d), which are appropriate for two-sided tests 
with significance level a". Values of dare given for values of a" 
approximately equal to 0.01, 0.05, and 0.10. These values of d are 
appropriate for one-sided alternatives with a significance level of 
a' = a"/2. We see that for n = 20, 2P(T ~ 38) = 0.009, so that the 
decision to reject 0 = 201 at significance level CL = 0.01 would be 
correct. 

With a little reflection we see that the distributions of T+ 
and T_, excluding ties, are the same under H0 • This is true because 
each combination of the n integers summing to a particular value d 
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can be signed either plus or minus. Hence, as T+ + T_ = n(n + 1)/2, 
we have E(T+) + E(T_) = n(n + 1)/2 = 2E(T+), and thus E(T+) = 

n(n + 1)/4 under H0• Additionally the distribution of T+ is symmet-
ric about n(n + 1)/4 as 

P(T < n(n + 1) - d) P(n(n + 1) T < n(n + 1) _ d) 
+ - 4 2 - - 4 

= P(n(n : 1) + d .::_ T_) 

_ P(n(n + 1)- 4 + d .::_ T+) 

The last equality follows from the fact that T_ and T+ have the same 
distribution. It can additionally be shown that Var(T+) = Var(T_) = 
n(n + 1)(2n + 1)/24 under H0 . These facts about the null distribu-
tion of T+ permit large sample tests of H0 : 0 = 00 to be carried 
out using the normal distribution, as in the case of the sign test. 

The statistic T+ will be used in the large sample case. It ma;y 
be proved that the standardized statistic 
(T+ - n(n + 1)/4)//n(n + 1)(2n + 1)/24 is approximately distributed 
as the standard normal variable Z under H0 if n is large, say n ~ 25. 
Let us consider testing 

versus 

using the statistic T+. If the true value of 0 exceeds 00 , then the 
larger ranks of !xi - eol will tend to have positive signs. Hence 
we will reject H0 if T+ is large or analogously if 

(T+ - n(n + 1)/4)z = ~~~~~~~~~-
/n{n + 1)(2n + 1)/24 

is large. A test with approximate significance level a for large n 
is defined by the critical region Z ~ za. The critical regions for 
COilllllOnly used alternatives are presented in Table 7.5.2, where Z is 
defined by Eq. (1.5.1). For the height data of Sec. 6.2 we have 
tested H0: µ = 42.5 in Sec. 7.3 using the t distribution. If we 

carry out the same test against a two-sided alternative, we calculate 
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Table 7.5.2 Critical Regions for the Signed-Rank Test 

Critical RegionHO Hl 

e ~ e0 e > eo z -> z 
CL 

8 > 8 z < -z8 < 80 -- 0 CL 

8 = 80 8 +eo JzJ ~ ZCL/2 

T+ = 193 and hence Z = (193 - 162.5)//25(26)(51)/24 = 0.821. Hence 
again the decision is made to retain H0. The signed-rank test is 
appropriate here as the normal probability density function is 
symmetric about µ. 

The program WILTEST is similar to other programs of this chapter 
for testing the value of a location parameter. The program calls for 
the sample size n, 00 , and the appropriate alternative. A test of 
the hypotheses described in Table 7.5.2 is carried out based on a 
large sample approximation to the distribution of T+. The program 
calculates T+, Z, and the P-VALUE for the alternative selected. For 
the height data of Sec. 6.2 tests of 80 = 42.5 and e0 = 41 have been 
carried out against alternative (3). The P-VALUEs are o.412 and 
0.0018 indicating the same decisions as before. The Z values of 
0.821 and 3.135 are quite close to the t values of 0.879 and 3.128 
found using the parametric test. The strength of the rank test lies 
in the fact that the class of distributions for which it is appropri-
ate is larger than for the corresponding aprametric tests. 

Problems 7.5 

1. (a) Prove that if X - B(n,1/2), then P(X ~ r) P(X ~ n - r) 
for any integer 0 ~ r ~ [n/2]. 

(b) Illustrate this result directly for n = 6 and r = 2 by 
calculating the required probabilities. 
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WILTEST 

10 REM THIS PROGRAM USES THE SIGNED RANK STATISTIC TO TEST THE NULL 
20 REM HYPOTHESIS THAT THE MEDIAN OF A SYMMETRIC CONTINUOUS POPULATION 
30 REM IS M0• THE PROGRAM ASSUMES A MODERATE OR LARGE SAMPLE SIZE N 
40 REM THE ALTERNATIVES ARE OF FORM 
50 REM 1 > MEDIAN > M0 
60 REM 2) MEDIAlll < M0 
70 RF.M 3> MEDIAlll <> M0 
80 REM THE PROGRAM COMPUTES THE VALUE OF s,z AND THE 
90 REM CORRESPONDING P-VALUE 
100 PRINT "WHAT ARE THE VALUES OF N AND MO?" 
110 INPUT lll•M0 
120 PRINT "WHICH ALTERNATIVE• "J"l•2•0R 3?" 
130 INPUT A 
140 IF A = 1 THEN 190 
150 IF A a 2 THEN 190 
160 IF A • 3 THEN 190 
170 PRINT "INCORRECT FORMAT "J "TRY AGAIN" 
180 GO TO 110 
185 DIM xc100>.Tc100>.zc100> 
190 FOR I • 1 TO N 
195 READ XCI> 
200 LET XCI>•X CI>-M0 
205 IF XCI><•0 THEN 215 
210 LET ZC I>• 1 
215 NEXT I 
220 FOR I • 1 TO N 
225 LET TCI>'"l 
230 LET XCl>•ABSCXCI>> 
232 NEXT 1 
235 FOR J • 1 TO N-1 
240 FOR I • 1 TO N-J 
245 IF XCI><•XCI+l> THEN 275 
250 LET T•X C I+ 1 > 
255 LET Tl•TCI+l> 
260 LET XCI+l>•XCI> 
262 LET TCI+l>•TCI> 
265 LET XCI >•T 
270 LET TC I >•T 1 
275 NEXT I 
280 NEXT J 
285 FOR I • 1 TO N 
290 LET XC I>•I 
292 NEXT 1 
295 FOR J• 1 TO N-1 
300 FOR 1 • 1 TO 111-J 
305 IF TCI><TCl+l> THEN 340 
310 LET T=TCl+l> 
315 LET Tl•XCI+l> 
320 LET TC1+1>•TCI> 
325 LET XCI+l>•XCI> 
330 LET TC I >-T 
335 LET XC I >•T 1 
340 NEXT I 
345 NEXT J 
350 FOR I ,. 1 TO N 
355 LET T2•T2+XCI>•ZCI> 
360 NEXT 1 
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365 PRINT "THE VALUE OF T+ •"J T2 
370 LET Z •<T2-N•<N+l>14>1SQRCN•<N+l>•<2•N+l>124>
380 GOSUB 900 
390 PRINT "THE CALCULATED VALUE OF Z = "JZ 
400 IF A • 3 THEN 430 
410 PRINT 
420 PRINT "THE P-VALUE FOR "J"ALTERNATIVE "JAJ" • "JP 
425 GO TO 1030 
430 PRINT 
440 PRINT "THE P-VALUE FOR "J"ALTERNATlVE "JAJ" • "JP•2 
450 GO TO 1030 
500 DATA 42o58.4lo82.4lo94.40·25•42·37•44•6•42·74•43·14.41·17•41·9·46·2 
510 DATA 36·89·45·02.3a.1.4a.59,34.54,48.01.42.45,47.97,41.5.43.9,43.2 
520 DATA 42•02•48•3•45e9 
900 LET Zl• ABS<Z> 
910 LET C•l/SQR<2>
920 LET Cl= •14112821 
930 LET C2• 008864027 
940 LET C3••02743349 
950 LET C4• -.00039446 
960 LET C5•e00328975 
970 DEF FNZ<X>•l-ll<l+Cl•X+C2•Xt2+C3•Xt3+C4•Xt4+C5•Xt5)t8
980 LET p •• s+.5•FNZ<Zl•C> 
990 LET P • 1E-4•<INTC1E4•P>> 
1010 LET P • 1-P 
1020 RETURN 
1030 END
•RUN 
WHAT ARE THE VALUES OF N AND MO? 
? 2s.42.5 
WHICH ALTERNATIVE 1.2.0R 3? 
? 3 
THE VALUE OF T+ • 193 
THE CALCULATED VALUE OF Z a 00620661 

THE P-VALUE FOR ALTERNATIVE 3 • 00412 

•RUN 
WHAT ARE THE VALUES OF N AND MO? 
? 25•41 
WHICH ALTERNATIVE 1.e.oR 3? 
? 3 
THE VALUE OF T+ • 274 
THE CALCULATED VALUE OF Z • 3000012 

THE P-VALUE FOR ALTERNATIVE 3 • 000028 

• 
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2. Consider the sample of 20 observations from the Cauchy distribu-
tion given in the output of CAUCHY in Sec. 4.6. The pdf for 
this population is 

1 1f(x) = - -- -"" < x < 00 

'IT 1 + x2 

so that the variance does not exist. 
(a) Test the hypothesis n = 0 using the sign test. Consider 

the alternative to be two-sided and the significance level 
to be 0.0414. 

(b) Test the hypothesis n = 0 as in part (a) using the Wilcoxon 
signed-rank test at significance level approximately equal 
to 0.05. 

3. (a) Use the data of Exercise 7.3.3 on the running time of 20 
driers set for 20 min to test the hypothesis µ = 20 versus 
µ f 20. Calculate the value of the test statistic T and 
carry out the test at significance level 0.05 (approximately) 
against a two-sided alternative. 

(b) Carry out tests as in part (a) of µ = 21 and µ = 22 versus 
two-sided alternatives at level of significance 0.05 approxi-
mately. Do your decisions agree with those in Exercise 
7.3.37 

4. The following are the values of the weights of 20 packages of 
butter produced in a processing plant: 4.01, 4.02, 4.oo, 4.09, 
4.15, 4.07, 4.01, 3.95, 3.90, 3.99, 3.95, 4.01, 3.99, 4.08, 4.12, 
4.20, 4.25, 4.21, 4.16, 4.o4. 
(a) Test the hypothesis n ~ 4.o versus n > 4.o using the sign 

test. Discard any value equal to 4.o. Carry out the test 
at level of significance a = 0.0318. 

(b) Test the hypotheses in part (a) using the Wilcoxon signed-rank 
test at level of significance 0.05 (approximately). 

5. Suppose that a test is carried out on a drug which is supposed 
to reduce blood pressure. Assume that of 225 individuals tested, 



2917.5 Distribution-free Tests of Location 

l40 show definite reduction in blood pressure. Does the sign 
test indicate the effectiveness (p > 0.5) of the drug at signif-
icance level 0.05? At significance level 0.01? 

6. Show that if a random variable X has a continuous pdf symmetric 
about 9, that is, f(S - x) = f(S + x) for all x, then the corre-
sponding random variable X has median 9. 

7. Assume that each of the 32 possible assignments of signs (e.g., 
+ - + - -) to the ranks (1, 2, 3, 4, 5) is equally likely. 
(a) What are the smallest and largest values which T+ may 

attain. 
(b) Find explicitly the probability distribution of T+ under 

the assumption made. 
(c) Verify directly that E(T+) 55/4 from 

the result in part (b). 

8. Assume that we are testing 

for 9 the median of a continuous distribution. If we carry out 
the test using the Wilcoxon statistic T and sample size n = 17, 
find the critical region for the test with a = 0.05 (approxi-
mately). 

Exercises 7.5 

1. Use the program WILTEST to test the hypothesis H0 : µ = 72 versus 
H1 : µ = 72 at significance levels a= 0.05 and a= 0.01 using 
the height data in Exercise 5.2.2. Compare the Z values with 
those found in Exercise 7.4.1. 

2. In 1971, a draft lottery was held. The following are the priority 
dates assigned to those with birthdays in November and December*: 

*Source: u. s. News and World Report, July 13, 1970. 
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November (priority) December (priority) 

1 (243) 11 (123) 21 ( 35) 1 (347) 11 (73) 21 (181) 

2 (205) 12 (255) 22 (253) 2 (321) 12 (19) 22 (194) 

3 (294) 13 (272) 23 (193) 3 (110) 13 (151) 23 (219) 

4 (39) 14 (11) 24 (81) 4 (305) 14 (348) 24 (2) 

5 ( 286) 15 (362) 25 (23) 5 (27) 15 (87) 25 (361) 

6 (245) 16 (197) 26 (52) 6 (198) 16 (41) 26 (80) 

7 (72) 17 (6) 27 (168) 7 (162) 17 (315) 27 (239) 

8 (119) 18 (280) 28 (324) 8 (323) 18 (208) 28 (128) 

9 (176) 19 (252) 29 (100) 9 (114) 19 (249) 29 (145) 

10 (63) 20 (98) 30 (67) 10 (204) 20 (218) 30 (192) 

Use the s~le of 61 priority numbers to test µ = 183 versus 
µ f 183 at significance level a = 0.10 using the program WILTEST. 
What is the P-VALUE for this data? If one concluded µ > 183, 
what does this mean about the lottery procedure? 

3. Use the data of Sec. 5.1 giving the number of days required by 
50 students to complete a self-paced course to test the hypoth-
esis µ = 51 versus µ f 51 at significance level a = 0.10, using 
WILTEST. What is the P-VAWE for these data? Carry out the 
same analysis using µ = 55. 

7.6 TESTS CONCERNING o2 AND o IN NORMAL POPULATIONS 

In Chap. 6 we have seen that a confidence interval for o2 can be 
based on the ~-l distribution. Due to the relationship between 
confidence intervals and tests of hypotheses it is apparent that 
tests concerning o2 in the normal case will be based on the chi-
square variable. In fact the (1 - a)lOO% confidence interval for 
o2 given. in. sec. 6. 3• 

2 2[ (n - l)S (n - l)S 
2 ' 2 

Xa.;2,n-l X1-a/2,n-l 
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provides a test of H0 : o2 = 0 02 against a two-sided alternative. 
If the hypothesized value 0 02 lies in the interval, we retain H0 and 
otherwise, we reject it. For the example data giving the weights of 
20 "1-lb" bags of flour in that section we have found the 95% confi-
dence interval [0.118, 0.437] for o2• Hence any hypothesized value 
in this interval would be accepted for a 0.05 level test against a 
two-sided alternative. Values outside this interval would be 
rejected. 

As control of the variation of a production process is import-
ant we often wish to have critical measurements satisfy o2 5_ 0 02 , 
where 0 02 is some maximum tolerable variance. We state the null 
and alternative hypotheses as 

2 2 2 > 2o 5_ o0 versus o o0 

We calculate the variance of a random sample of size n and clearly 
will reject H0 if the observed value of S2 

~ k for some positive 
constant k. The requirement for an a level test, 

2 2will determine the value of k. For o 5_ o0 , we have 

2
P((n - l)S > (n - l)k) < P((n - l)S2 > (n 

0 2 - 2 2 -oo oo 

Using Theorem 6.3.l, the last probability will equal a if 

k(n - 1) = 2 
2 Xa,n-l 

oo 

or 
2 2 

0o Xa,n-lk::; -
n - 1 

2 2 2Generally the test statistic used is denoted X = (n - l)S /o0 , 

with the critical region in this case defined to be x2 ~ ~ n-1· 
' The analogous critical regions for a level tests in the normal case 

appear in Table 7.6.1. 
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Table 7.6.1 Critical Regions for Tests of cr2 in the Norm.al Case 

HO Hl Critical region 

2cr2 ~ cro 
2 2 cr > 00 2 > 2 

X - Xa,n-1 
2cr2 ~ cro 2cr2 < cro 2 < 

-
2 

X X1-a.,n-l 

2 2 2 2 > 2 2 < 2cr2 = cr a +0 cr0 X - Xa;2,n-l or X - X1-a./2,n-l 

In Sec. 6.6 we introduced the Downton unbiased estimator of cr. 
Using the notation employed there we have seen that for n ~ 20, 

a - crZ=--
/A(n)cr 

is approximately norm.ally distributed. Hence tests of hypothesis 
about cr in the normal case may be based on the statistic Z = 
((o - cr0 )//A(n)cr0 ). These tests are summarized in Table 7.6.2. 

Table 7.6.2 Critical Regions for Tests of cr in the Normal Case 

HO Hl Critical region 

cr ~ cr0 cr > cro z > z- a. 
cr ~ cr0 cr < cro z -< -z a. 
a = cr0 cr +cr0 lzl ~ za./2 

Problems 7 .6 

1. The heights of 25 males, assumed to come from a normally distri-
buted population, yield x= 43.086 and s = 3.335. Test the 
hypotheses H0 : cr2 ~ 4 versus H1 : cr2 > 4 using the chi-square 
test. Let a = 0.05. 
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2. A random sample of 17 bass yields x =14.1 in. ands =1.20 in. 
Assuming normality, find a 95% confidence interval for cr2 to 
decide between H0 : cr2 2 and H1 : cr2 f 2 at significance level 
Cl = 0.05. 

3. (a) Show that for a test of H0: cr2 ~ cr02 against H1 : cr2 > cr02 

in the normal case, the power function may be expressed as 

1 - F 2 
x 

Here F 2( ) represents the cdf of a chi-square random vari-
),(

able with n - 1 degrees of freedom. 
(b) Show limcr2....,., ~(cr2 ) = 1. 

.(c) Show that ~(cr2 ) is . f unc ion of cr2an increasing t• • 

Exercises 7. 6 

1. Write a program similar to MUTEST based on the large sample 
approximation of the Downton estimator to test H0: cr = cr0 
against any of the usual alternatives. The program should out-
put the calculated value of Z and the appropriate P-VALUE. 

2. Use the program written in Exercise 7.6.1 together with the 
data of Exercise 5.2.2 to test the hypothesis H0: cr = 2 versus 
H1 : cr f 2 for these height data. What are the values of Z and 
P-VALUE for this test. What is the correct decision at Cl = 0.01? 
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TWO-SAMPLE TESTS 

8.1 INTRODUCTION 

In this chapter we consider comparisons of two statistical populations. 
One is o~en interested in testing whether there are differences in 
two methods or ways of accomplishing an action and in estimating the 
magnitude of the differences. In statistics we say that we are test-
ing whether a difference exists between two effects. As examples we 

cite the following: 

a. Are there differences in the results achieved by two different 
teaching methods? 

b. Are there differences in the weight gains of similar animals on 
two different diets over a fixed period of time? 

c. Do differences exist in the density of cakes prepared by two 
different cake mixes? 

d. Do students in different colleges of a university, say engineer-
ing and liberal arts, spend different amounts of time studying 
on the average? 

Such questions fall under the general heading of two-sample problems 
in statistics. The basic idea is that we obtain random samples from 
each of two populations. We first wish to answer the question of 
whether these populations are statistically identical. If not, we 

want to have some measure of the magnitude of the differences between 
the populations. 

296 
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8.2 DIFFERENCES OF POPULATION EXPECTATIONS IN THE LARGE SAMPLE 
CASE 

In this section we assume that "large" independent samples are avail-
able from each of two populations described by the random variables 
x1 and x2 . We use the following notation: 

E(X1 ) ll1 E(X2 ) = µ2 

2 2Var(X1 ) al Var(X2 ) = = a2 

The null hypothesis which we consider is 

against alternatives of three general types: (1) µ1 > µ2 , (2) 
µ1 < µ 2, or (3) µ1 f µ2• It seems reasonable that a test of this 
null hypothesis, that the two populations have the same expectation, 
should be tested using a statistic based on the difference of the 

sample means, xl and x2. 
To be precise, it is assumed that we have two independent 

random samples: 

... ' and x21• x22' ·•·• x2n
2 

The samples of sizes n1 and n2 are from populations one and two, 
respectively. Of course, 

and 

Due to the properties of sample means and the variance of a differ-
ence of two independent random variables, we have 

E(X - x ) = E(X ) - E(X ) =µ - µ21 2 1 2 1 

For "large" n and n2 , one can assume that the random varia· ble1 
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is approximately distributed as the standard normal variable z. 
Under the by}lothesis µ1 = µ 2 , using the sample variances 81 2 and 
822 as estimates of the corresponding population variances, we have 
the statistic 

v'8 2; + 8 2;1 nl 2 n2 

Clearly the appropriate critical regions for the alternatives (1), 
(2), and (3) are Z > Z , Z < -Z , and lzl > Z 12 for tests at signif-

- Cl. - Cl. - Cl 
icance level a.. 

The program 2SAMP has been written to test the by}lothesis 
= µ2 in the large sample case. The program requests the valuesµ1 

of n1 and n2 • The observations in sample 1 should appear in DATA 
statements in lines 400-499 and those in sample 2 in DATA statements 
in lines 500-599. The program computes xl, i2, sl, s2, 
l"s12/n1 + s 22/n2 , as well as the computed Z value with the corre-
sponding P-VALUE. In the sample run the first 50 "ages" in Exercise 
5.1. 3 has been us~d as sample 1 and the last 50 "ages" as sample 2. 
The value Z = -0.401 and the P-VALUE of o.6886 suggest that one 
should retain µ1 = µ2 at any reasonable level of significance. 

To find a confidence interval for µ1 - µ2 , let us consider a 
general statistic e with E(S ) = e which is distributed as the n n 
standard normal variable Z for large n. The statement 

e - e 
P(-Z < n < Z ) 1 - Cl.a./2 - Ivar(§ ) - a/2 

n 

may be written as 
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2SA'1P 

10 REM nus PROGRA."f TESTS 'IHE HYPO'IHESI SI MUI • MU2 
20 REM AGAINST ONE OF 1HE ALTEIWATIVES 
30 REM I> MUI > MU2 
40 REM 2> MUI < MU2 
SO REM 3> MUI <> l'fU2 
60 REM ASSt.MilllG INDEPENDENT SA.'!Pl..ES OF SIZE NI AND N2 
70 REM FROM TWO POPl.LATIONS WI 'IH FllllI TE EXPECTATIONS A.VD VARIA"lCES 
80 REM THE SA."fPl.E SIZES NI A!llD l\12 ARE CONSIDERED TO BE LARGE 
90 REM THE PROGRAM COMPUTES z, THE CORRESPON Dl:"JG P• VALUE Alll D 
9S REM O'IHER STATISTICS OF INTEREST 
100 PRilllT "WHAT ARE THE VALUE OF NI AND N21" 
110 INPUT llll1N2 
120 PRINT "WHICH ALTERlllATIVE. "J"l.2 OR 31" 
130 IlllPUT A 
140 IF A ,. I THl!N 190 
ISO IF A• 2 THEN 190 
160 IF A 11 3 THEN 190 
170 PRilllT "INCORRECT FOR."fAT "J "TRY AGAilll" 
180 GO TO 110 
190 FOR I ,. 1 TO llll 
19S READ X 
200 LET S • X + S 
20S LET Sl • SI +Xt2 
210 lllEKT I 
21S LET Xl•S/NI 
220 LET Sl11 SQR(( S1•lll l•X1' 2> /Clll I• 1> > 
22S FOR I '" 1 TO lll2 
230 READ X 
23S LET T = T +X 
240 LET Tl • Tl + Xt 2 
24S NEKT I 
2SO LET X2• Tl'lll2 
255 LET S2aSQR<CTl•N2*X2t2)/(N2·1» 
260 LET Z • <Xl•X2>1SQR< Slt 2/lll1+S2t 2/l\12> 
265 GOSUB 900 
270 PRINT "SAMPLE"• ''MEAN"• "STD DEVIATION" 
27S PRINT" 1 ... x1.s1 
280 PRINT " 2 "1X2• S2 
28S PRINT "STD DEV OF DIFF • "JSQRCS1t2/Nl+S2t2/N2> 
290 PRINT "THE CAI.Ct.LATE Z VALUE • "JZ 
300 IF A • 3 THEN 330 
310 PRINT 
320 PRINT "'IHE P•VALUE FOR "J"ALTERNATIVE "JAJ" • "JP 
32S GO TO 1030 
330 PRINT 
340 PRINT "THE P•VALUE FOR "J"ALTERNATIVE "JA;" • "JP*2 
3SO GO TO 1030 
400 DATA 46• 44. 4S. 40• 46' S2• 47, 48. 42• 44 
410 DATA S7• 36. S3' 34. 63. 24. 62. 46. 61• 43 
420 Dl'TA SO• 48• 4S. 62• S6• 46• 46. 40• 44. S2 
430 DlllTA 43' 391 491 47, 42• S3• S3. 43' 411 47 
440 Dl'TA 46• 34. 38• 44. 43' 48• 48• 4S. 411 61 
SOO DATA 41!11 SO. 41• 41.. 30• SI. Sl• 43' 54. SS 
SlO Dl'TA 411 4S. 481 S4. S41 491 46. 52• S6. 45 
S20 DATA 4S1 so. 3S. s2. 491 44. 4S. so. s2. 52 
530 DA TA 4S. lfT • 4S. 601 48• 49, 32. SO• S2. 47 
S40 DATA S7• 421 48. 41• 401 481 39• 39• S3. 45

• 
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900 LET Zl• A8SCZ> 
910 LET C- l/SQR( 2> 
920 LET Cl• • 14112821 
930 LET C2a ·08864027 
9 40 LET C3a • 027 433119 
9SO LET C.lla ••00039446 
960 LET CS-•0032197S 
970 DEF FNZ<X>:a l• l/C I+ Cl•X+C2•Xt 2+ C3*Xt 3+CIM<Xt ll+C5*Xf S> t8 
980 LET P • • s+o 5*FNZCZl•C> 
990 LET P • IE•IM<CINTC lEIM<P» 
1010 LET P • l·P 
1020 RETURN 
1030 Elll D 

* 
RLN 

WHAT ARE 1HE VALUE OF NI AND N2? 
? so.. so 
WHICH AL TEBNATI VE. 1.. 2 OR 3? 
? 3 
SAMPLE MEAN STD DEVIATION 

1 46· S4 1. 7122 
2 470 l 6ol68SS 

STD DEV OF DI FF '" l• 39663 
1HE CALClLATE Z VALUE = •Oo 1100965 

1HE P•VALUE FOR ALTERNATIVE 3 = 0·6886 

• 
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Hence the endpoints of the confidence interval are of the form 
e + IVar(g )Z /2" We have seen this before in Sec. 5.5 where x n- n a. n 
is a statistic used to find a confidence interval for µ. If Var(S )n 
depends on an unknown para.meter, then Var(S ) is replaced by an 
estimator, say ~(S ), and the confidence ~nterval becomes 

n 

A /A"9 +Var(9 )Z / 2 (8.2.1)
n - n a. 

For the difference µ1 - µ2 using statement (8.2.1), we find 

to be an appropriate (1 - a.)100% confidence interval. For the data 
used in 2SAMP we find -0.560 ~ 1.397 (1.96), that is, [-3.297, 2.177] 
to be a 95% confidence interval for µ1 - µ2• 

Problems 8.2 

1. Assume that 100 boys and 100 girls are given a test with the 

following results: xl = 565, i2 = 540, sl = 30, and s2 = 40. 
(a) Test the hypothesis that the average performance is the 

same for boys and girls. 
(b) Find a 95% confidence interval for µ1 - µ2 • 

2. Assume that it is of interest to know whether the CPU time of 
faculty members program is greater than that of student programs. 
A sample of 100 programs of each group yields x1 = 10 and s1 

2 = 10 
- 2for the faculty programs, while x2 = 8 and = 15 for thes 2 

student programs. Time is measured in seconds. 
(a) Test the hypothesis that the average CPU time is the same 

against the alternative that the CPU time for faculty pro-
grams exceeds that of student programs. (a. 0.01) 

(b) Find a 98% confidence interval for µ1 - µ2 • 

3. In an article in the American Psychologist by Sandra Scarr and 
Richard A. Weinberg (August, 1976) entitled "IQ Test Performance 
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of Black Children Adopted by White Families," the IQ scores of 
natural and adopted children were reported. The results showed 
the average Stanford-Binet IQ of the 48 natural children was 
x1 = 113.8 with s1 = 16.7 and the average IQ for 122 adopted 
children was x2 = 106.5 with s2 = 13.9. 
(a) Do the data indicate a significant difference between these 

two groups (a = 0.05)? 
(b) Find a 95% confidence interval for µ1 - µ 2• 

4. Vidhu Moran and Dalip Kumar report in the British Journal of 

Psychology (August, 1976) the results of a study on the relation-
ship between introvertism and extrovertism and intelligence in 
an article entitled "Qualitative Analysis of the Performance of 
Introverts and Extroverts on Standard Progressive Matrices." 
The number of correct responses (of 12 possible) on the most 
difficult tests are summarized below: 

Introverts Extroverts 

x. 7.88 6.08 
l. 

s. 1.65 2.13 
l. 

n. 50 50
l. 

Test the hypothesis that there is no difference between the two 
groups using a = 0.05. 

5. Roberta M. Milgram and Norman A. Milgra.m report on the relation-
ship between anxiety and warfare in an article, "The Effect of 
the Yom Kippur War on Anxiety Level in Israeli Children," in 
The Journal of Psychology (September, 1976). The following 
data are presented where the measurements are made on the Sarason 
Scale for anxiety (20 maxim1.UI1.). 

Israeli peacetime Israeli wartime 

x s x s 

Boys (n = 42) 5.83 4.51 14.94 3.79 
Girls (n = 43) 8.10 5.11 11.91 4.59 
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(a) Compare anxiety levels for boys and girls in peacetime by 
testing the null hypothesis of no difference between the 
two groups (a= 0.10). 

(b) Test the hypothesis that anxiety increases during war in 
children using the data for the girls (a= 0.05). What 
assumptions of the two-sample test situation are violated 
in comparison? 

6. Assume that we have independent samples from each of two popu-
lations of sizes n1 and n2 , where the sample sizes are considered 
to be large. Find a (1 - a)lOO% confidence interval for 
(µ1 + µ2 )/2. Assume that a1 and a 2 are unknown and may be 
unequal. Use expression (8.2.l) 

Exercises 8.2 

l. (a) Use the second 50 "ages" and the next to last 50 "ages" 
from the data of Exercise 5.1.3 to test the hypothesis 
µ1 = µ2 versus µ1 f µ2 with a = 0.05. Use the program 
2SAMP. 

(b) Find a 95% confidence interval for the difference µ1 - µ2 . 

2. (a) The data given below represent the weights of 40 men and 
60 women to the nearest pound. Of course we expect µ1 > µ2 . 
Test µ1 = µ2 versus µ1 > µ2 using 2SAMP with a = 0.01. 

{b) Estimate the difference µ1 - µ2 and find a 95% confidence 
interval for this difference. How does your estimate 
compare with the true difference of 10? 

Sample 1: Weights of 40 Men 

148 156 163 116 153 148 143 157 145 148 
133 170 151 147 137 158 145 150 158 147 
146 139 151 143 139 142 130 169 171 145 
149 140 147 145 172 144 161 156 142 149 
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Sample 2: Weights of 60 women 

137 147 155 99 144 137 131 149 138 141 

J,31 134 134 138 120 164 141 137 125 150 
117 141 154 143 134 140 149 137 135 127 
141 132 124 135 127 140 126 131 116 163 
165 134 139 128 133 129 142 136 136 134 
166 132 153 147 130 139 132 163 147 163 

3, Below we present the scores of 31 females and 44 males on a 
final examination in an elementary statistics course. Use 28.AMP 
to test the hypothesis of no difference in average performance 
with a. = 0.10. (Note: Maximum possible score is 35.) 

Females 

19 16 12 16 26 27 24 31 20 17 11 33 13 24 12 27 
25 27 21 13 27 20 23 20 22 21 20 32 22 21 29 

Males 

29 29 31 27 29 25 24 26 16 17 22 25 28 31 30 
20 28 28 35 25 24 22 21 33 22 22 34 25 24 34 
14 15 16 23 34 28 28 33 28 22 35 21 28 16 

8.3 DIFFERENCES OF POPULATION EXPECTATIONS IN THE NORMAL CASE 
2 28.3.l The Case = o2a1 

Here we assume the same situation as in Sec. 8.2 with the additional 
information that x1 - N(µ1 ,cr12 ) and x2 - N(µ2 ,o22). Again we are 
interested in inference concerning µ1 - µ2 , based on independent 
samples of size n1 and n2 , not necessarily "large." We consider 
first the case of testing H0 : µ1 = µ2 assuming that cr12 = 0 22 = a2 , 

where o2 is considered to be unknown. Here the variance of x1 - X2 
is cr2(1/n1 + l/n2 ) where a2 is the assumed common variance of the 
two populations. To estimate a2 we use information from both samples 
to obtain the pooled estimate of the variance 
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nl 2
2: (X1 . - X ) + 

"2 i=l i 1 
0 

It can be shown that E(a2 ) = o2 . The test statistic 

t 

can be shown to have Student's distribution with n1 + n2 - 2 degrees 
of freedom under the assumptions of this paragraph. For the alter-
natives (1) µ1 > µ 2 , (2) µ1 < µ 2 , and (3) µ1 f µ 2 , the critical 
regions for level tests are t > t , t < -t , and a,n1+n2-2 a,n1+n2-2 
Jtl > t + _2 , respectively.12a. ,nl n2 

. 2 . f t ·1The assumptions that o1 = o22 is, o course, no necessari y 
true. Good statistical practice requires carrying out a test of the 

2 2 2 .!. 2 .hypothesis H0 : o1 = o2 versus H1 : o1 T o2 and conducting the 
t test described above if H0 is retained. In the following theorem, 
stated without proof, we introduce a new distribution, related to 
the chi-square distribution, which is used in determining a critical 
region for this test. 

THEOREM 8.3.1. If x12 and x22 are two independent chi-square vari-
ables with v1 and v2 degrees of freedom, then the ratio 
F = (x1 

2/v1 )/(x2 
2/v2 ) has the F distribution with v1 and v2 degrees 

of freedom. 

The F distribution has two parameters, v1 and v2 , referred to as the 
numerator and denominator "degrees of freedom." We write F(v1 ,v2 ) 
to indicate the value of the F statistic with v1 and v2 degrees of 
freedom exceeded with probability a. Table B.V (Appendix B) gives 

values of F0 . 05 and FO.Ol for various combinations of the degrees of 
freedom. Notice that F(v1 ,v2 ) = l/F(v2 ,v1 ) according to the definition 
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in Theorem 8.3.1. Hence P(F(v1 ,v2 ) .::_ l/F(v2,v1 )a) = P(F(v2 ,v1 )a .::_ 
l/F(v1 ,v2 )) = F(F(v2 ,v1 )a .::_ F(v2 ,v1 )) =a. Thus Table B.V can be 
used to find F0•95 and F0 •99 points by using the reciprocals of the 
F0•05 and F0•01 points with t~e rev~rsed degrees of freedom. 

In order to test H0: = we recall that in sampling fromo1 o2 
a normal population, (n - 1)82/o2 has the chi-square distribution 
with n - 1 degrees of freedom. Using Theorem 8.3.1, we see that if 
81 

2 2and 82 represent the sample variances from two independent 
normal populations, then 

has the F(n1 - 1, n2 - 1) distribution. If o1 
2 = 2 , then F =o2 

812/822 , which is simply the ratio of the sample variances. It makes 
sense to reject H0 if this ratio is either very large or very small. 
For an a level test the appropriate critical region would be 

F < F(n1 - 1, n2 - l)l-a/2 or F > F(n1 - 1, n2 - l)a/2 • For example, 
suppose two independent samples from normal populations yield the 

2 2following: n1 = 16, s1 = 16, n2 = 9, and s 2 = 8. At significance 
level 0.10 we find from Table B.V that we reject H0 if F > F(l5,8) 0•05 
= 3.22 or if F < ;/F(8,~5) 0 • 05 = 1/2.64 = 0.379. As F = 2, we retain 
the hypothesis = o2 •o1 

The program N2SAMP has been written to test the hypothesis 
H0: = µ2 in the normal case. The program accomplishes twoµ1 
analyses, the first under the assumption o1 = o2 = o, where o is 
unknown. The program requests the values of n1 and n2• The sample 
data for the first sample should appear in DATA statements in lines 
400-499. The output includes the value of the "pooled" estimate a, 
the computed value of t and the value of F to test o1 = o2• In the 
sample run the "ages" of 20 legislators have been compared with the 
"ages" of 15 legislators from the data of Exercise 5.i.3. The value 
of F = 1.94 and interpolating in Table B.V, we find F(l9,14)0 •05 = 
2.40, indicating acceptance of o1 = o2 at the 10% level of signif-
icance. The t value of -0.142 and the P-VALUE of 0.888 suggest that 
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N2SAMP 

10 REM nus PROGRAM TESTS 1HE HYP01HESIS1 MUI • MU2 
20 REM AGAINST ONE OF 1HE ALTERNATIVES 
30 REM 1> MUl > MU2 
40 REM 2) MUl < MU2 
50 RIM 3> MUl <> MU2 
60 RIM ASStMING I!llDEP!ND!NT SAMPLES OF SIZE !'11 A!llD N2 
70 Rl!M FROM TWO NORMAL POPU.ATIONS 
80 REM 1HE SAMPLE SIZES ARE Nl A!llD N2 
90 REM 1HE PROGRA"'l COMPUTES 1HE VALUE OF T ASSlMI!'JG EQUAL VARIAlllCES.1 
92 Rl!M 1HE VALUE OF F TO TEST 1HE EQUAL.I TY OF VARIMJCES AND 
95 REM 01HER STATISTICS OF INTEREST 
100 PRI!llT "WHAT ARE 1HE VALUE OF Nl AND N2?" 
110 INPUT Nl.1N2 
120 PRUIT "WHICH ALTERNATIVE. "J"l.12 OR 31" 
130 INPUT A 
140 IF A= 1 1H!N 190 
150 IF A• 2 1HEN 190 
160 IF A '" 3 niEN 190 
170 PRINT "INCORRECT FORMAT "J "TRY AGAIN" 
180 GO TO 110 
190 FOR I ., I TO l\Jl 
195 RFAD X 
200 LET S ., X + S 
205 LET Sl = Sl +Xt 2 
210 NEXT I 
215 LET XI• Sl'N 1 
220 LET SI• SQR<<S1-Nl•Xlt2)1'CN1-1>> 
225 FOR I • 1 TO N2 
230 READ X 
235 LET T • T +X 
2110 LET Tl = Tl + Xt 2 
245 NEXT I 
250 LET X2'"1'N2 
255 LET S2= SQR< <T1-N2•X2t 2) l'<N2- 1> > 
260 LETS• SQRC<C<Nl-1>•Slt2+CN2-1>•52t2»1'CN1+l\J2-2)) 
262 LET T • CX1-X2>1'C S•SQRC ll'Nl+ll'l\12)) 
265 GOSUB 900 
2tf7 PRINT "ANALYSIS ASSlMI!llG EQUAL VARIANCES" 
270 PRINT "SAMPLE"• ''MEA"ll"• "STD DEVIATION" 
275 PRINT " 1 ".1Xl.1 Sl 
280 PRINT " 2 ".1X2.. S2 
287 PRINT "STD DEV OF DIFF • "JS•SQRC11'N1+11'N2> 
290 PRINT "1HE CALCU.ATED VALUE OFT •"JTJ" ON "JNl+N2-2J" tOF" 
295 PRINT "1HE F VALUE• "JS1t21'S2t2J"0N"Jllll-IJ" Al\JD "JN2-IJ" DOF" 
300 IF A • 3 mm 330 
310 PRINT 
320 PRINT "1HE P-VAL UE FOR "J "AL TERNATI VE "J AJ" • "JP 
325 GO TO 350 
330 PRINT 
3il0 PRINT "niE P-VAI.UE FOR "J "ALTERNATIVE "JAJ" • "J~2 
350 PRINT 

* 

https://P-VAI.UE
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360 PRINT "ANALYSIS FOR tNEQUAI.. VARIANCES" 
362 LET T a(Xl-X2>.ISQRC Sit 2/Nl+S2t 2/N2> 
36.4 LET D'" <CS112/Nl>t2/l\Tl+CS2t2/N2>t2/N2> 
366 LET D • CSlt 2/Nl+S2t 2/N2> t 2/D 
368 LETS •SQRCS112/Nl+S212/N2> 
370 PRINT "'mE STD DEV OF DI FF • ''JS 
375 PRINT "1HE CALUClLATED VALUE OFT• "JT 
380 PRINT ''WI 'm IX>F • "JD 
390 GO TO 1030 
400 MTA 4w 41&. 4S. 40. 4w s2. 47. 48• 42- 44 
410 MTA 57• 36• 53• 31&. 63. 21&. 62• 4w 61• 43 
500 MTA 48. SO. 41• 41. 30. 51. 51• 43. 51&. 55 
510 MTA 41· 4S. 48. 51&. 51&. 49. 4w s2. 56. 45 
900 LET Tl • A!IS< T> 
905 LET C-1 
915 LET Dl•Nl+N2-2 
920 IF INT «Nl+N2)/2)•Cl\ll+N2)/2 mm 950 
925 FOR I • l TO Dl-2 STEP 2 
930 LET C • C.CDl-I>.ICDl-1-I> 
935 Nl!XT I 
9 40 LET C • C/C 3o 14159 625• SQRC Cl» 
9115 GO TO 970 
950 FOR I • 1 TO Dl-2 STEP 2 
955 LET C •C.CDl-l>.ICDl-1-I> 
960 NEXT I 
965 LET C • C/C 2* SQRC Dl » 
970 DEF FNFCX>• C/<l+Xt 2/Dl>t (( Dl+ l> /2) 
975 LET H = Tl/100 
980 FOR I • l TO 99 
985 LET X .aH•I 
990 LET I 1.aI l+FNF<X>•H 
995 Nl!XT I 
1000 LET 11 • Il+CH.12>•< Fl\lf'CO>+FNF<T» 
1010 LET P •Oo S-I 1 
1020 LET P '" 1E-4*< INT< 1E4*P» 
1025 RETURN 
1030 EIJD 

* Ra.I 
WHAT ARE 'mE VALUE OF Nl A'llD N2? 
? 20.15 
WHICH ALTERNATIVE. l• 2 OR 3? 
? 3 
ANALYSIS ASSt.MING EQUAL VARIANCES 
SAMPLE MEAN STD DEVIATION 

1 1160 65 9o 65333 
2 4700667 609227 

STD DEV OF m FF • 2093794 
THE CALClLATED VALUE OF T •-Oo 1111823 ON 33 OOF 
1HE F VALUE• lo9444e ON 19 AND 14 DOF 

1HE P-VALUE FOR ALTERNATIVE 3 • 00888 

ANALYSIS FOR a.IEQUAL VARIANCES 
'mE STD DEV OF DI FF • 2080255 
'IHE CALUClLATED VALUE OF T • -Oo 148674 
WI TH OOF • 3409322 

* 
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the hypothesis µ1 = µ2 should be retained. This is reassuring as 
the "samples" ca.me from the same population. An analysis for the 
case cr1 f cr2 is also made. 

A (1 - a)lOO% confidence interval for µ1 - µ2 is found as in 
Sec. 8.2. Such a confidence interval has endpoints 

In this case o= 2.938 and X - X = -0.417, so that a 95% confidence1 2 
interval is given by -0.417 .:!:. 2.938(1.991) or by the interval 

[-6.267 ' 5.433]. 

8.3.2 The Case al f cr2 

In the case that cr12 +cr22 with both variances unknown an approxi-
mate t test of H0 : = µ2 may be carried out usingµ1 

x1 - x2 
t 

with approximate degrees of freedom 

In general d will not be an integer, but often the closest value of 
the degrees of freedom ma;y be used. In some cases interpolation is 
required. In the sample run, assuming cr1 f cr2 , we find t = -0.149 
and d = 34.9. Using interpolation we find t 0 •025 , 35 = 2.032, so 
that again acceptance of µ1 = µ2 is clearly the appropriate decision. 

Problems 8.3 

2 2 21. (a) Show that 8 = ((n1 - l)S1 + (n2 - l)S2 )/(n1 + n2 - 2). 
(b) Assuming~ - N(µ1 ,cr2 ) and X2 - N(µ2 ,cr2 ), show that 

E(o2) = cr2 • Is the normality necessary? 
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i 

Two-Sample Tests 

2. 

3. 

4. 

The table below gives data for 15 randomly selected boys and 10 
randomly selected girls of ages 9 through 10. 

Scores on a spelling test 

- 2Sample nl x. 
.l 

I:. 
] (xij - xi) 

1 Boys 15 81 1224 
2 Girls 9 90 756 

Assume the observations come from normal distributions with 
common variance o2• 
(a) What is an unbiased estimate of o2? 
(b) Test the hypothesis that boys and girls score equally well 

against the alternative that girls have higher scores on 
the average. State clearly the rejection region for this 
test. Use a= 0.05. 

(c) Find a 90% confidence interval for µ2 - µ1 • 
2 2 2If we can assume o1 = o2 = .o , then a (1 - a)lOO% confidence 

interval for µ1 is given by X1 !_ (cr/vn)ta/2 ,n1+n2_2• Note the 
degrees of freedom. Find a 95% confidence interval for µ1 and 
for µ2 in Problem 8.3.2. 

The starting lineups for the Iowa State versus Oklahoma State 
football game played at Stillwater, Oklahoma, on November 20, 
1976, were listed in the Des Moines Register of that date as 
follows: 

Iowa State Oklahoma State 

Rogers, 216 LE Blankenship 225 
Petsch, 225 LT Perrelli, 255 
Greenwood, 240 LG Ledford, 240 
Boehm, 227 c Gofourth, 250 
Stoffel, 230 RG Baker, 229 
Cunningham, 228 RT Hardaway, 329 
Blue, 181 RE Lisle, 188 
Hardeman, 188 QB Weatherbie, 184 
Green, 171 LH Miller, 189 
Soloman, 179 RH R. Taylor, 174 
Cummings, 195 FB s. Taylor, 193 
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(a) Test the hypothesis of no difference in average weight 
between the two lines against the alternative that the OSU 
line was heavier. Use a = 0.05. Assume normality and that 

al = a2. 
(b) Carry out the sam.e comparison for the backfields. 

5. In an article entitled "The Electrodermal Component of the 
Orienting Response in Blind and Deaf Individual," in the British 

Journal of Psychology (August, 1976), D. Carroll and P. G. Surtees 
report on comparisons between blind and sighted children. They 
report an average verbal IQ of 119.4 with a standard deviation 
of 8.13 for 11 blind children. The average IQ for 11 sighted 
children in a control group was 121.4 with a standard deviation 
of 7.4. Is there evidence of any significant differenc in IQ 
between these two groups? (Use a= 0.10.) 

Exercises 8.3 

1. Suppose six plots of wheat are treated with fertilizer A and six 
plots with fertilizer B. The yields are recorded below: 

A 26.3 28.6 25.4 29.2 27.6 25.6 
B 28.5 30.0 28.8 25.3 28.4 26.5 

(a) Use N2SAMP to test µl = µ2 versus µ1 +µ2 at a 0.05. 
(b) Find a 95% confidence interval for µ2 - µ1 • 

2. Suppose 12 halfbacks are observed during spring training, six 
sampled from the freshmen and sophomores and six from the juniors 
and seniors. Each is given the opportunity of running four plays 
against the best defensive team.. The resulting total yards for 
players is given below: 

Freshmen and sophomores 10 9 5 11 16 9 
Juniors and seniors 13 8 9 18 23 25 

(a) Use N2SAMP to test the hypothesis that freshmen and sophomore 
backs are equally as good as junior and senior backs against 
the alternative that junior and senior backs are better. 
Use a = 0.05. 
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(b) Find a 95% confidence interval for µ 2 - µ1 • 

3. Use the data on the weights of men and women given in Exercise 
8.2.2 to answer the questions of that exercise using N2SAMP. 

8.4 THE WILCOXON RANK SUM TEST 

We again consider testing whether two random samples have come from 
the same continuous population. Here we assume that the x1 popula-
tion has a density function f(x) while the x2 population has a density 
function f(x - A) for some real value A. In Fig. 8.4.1 we display 
two such density functions for which A > O. We see that the effect 
of A > 0 is to "shift" the location of the second population to the 
right of the first by an amount A. Hence A is referred to as a shift 
parameter. We wish to test H0 : A 0 versus the natural alternatives 
(1) A > O, (2) A < O, and (3) A f 0. The general idea of the test 
is to obtain random samples of size n1 and n2 from the two popula-
tions. We combine the observations in the two samples and rank the 
n1 + n2 observations by magnitude from 1 to n1 + n2 • If the corre-
sponding sum of ranks for the observations from sample 2 is either 
"too large" or "too small," we tend to reject A= 0 in favor of 
A f o. 

x 

Fig. 8.4.1 Population 2 shifted to the right of l 
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The actual statistic used in the small sample case is denoted 
as U = min(U1 ,u2 ), where 

u1 = { the number of times observations from sample 1 exceed 
those from sample 2} 

- { the number of times observations from sample 2 exceedu2 
those from sample l} 

Under the hypothesis of continuous random variables x1 and x2 there 
can be no tied observations. Denoting RX and R__ , i = 1, 2, ... ,

li ~-X2j 
n1 andj=1, 2, ••• , n2 as the rank in the combined sample of the 
corresponding observation we see that 

nl n 
u = E (R - i) and U2 = E2 (R_ - j)

1 i=l xl(i) j=l -x2{j) 

For example, for the ordered Xl(i)' the smallest observation in 
sample l exceeds RX - l observations in sample 2. Hence 

1(1) 

n1 (nl + 1)nl 
U = E ~ - and2l i=l li 

It is actually necessary to compute only one of u1 and u2 as u1 + 
U2 = n1n2• If we consider testing H0 : n = 0 versus H1 : n f O, 
then the critical region will be of form U ~ d. Values of d such 
that P(U ~ d) = a." for a." approximately equal to 0.10, 0.05, and 
0.01 are given in Table B.VI. 

For example suppose we have the following samples of heights 
for 12 boys and 10 girls (in inches): 

Boys: 47.52 46.83 46.95 45.25 47.37 
(17) (13) (15) (10) (16) 
49.60 47.75 48.15 46.18 46.90 
(21) (18) (19) (11) (14) 
51.27 43.90 
(22) (4) 
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Girls: 44.53 43.83 43.95 42.25 44.37 
(7) (3) (5) (2) (6) 

46.60 44.75 45.16 48.27 40.90 
(12) (8) (9) (20) (1) 

The numbers in parentheses are the ranks of the corresponding values 
in the combined sample. Tied observations are assigned ranks as in 
the signed-rank test. Due to the format of the tables we should 
always choose the smaller sample as "sample 1." We find E~~l R__ = 

l.- --xli 
73; hence ul = 73 - 55 = 18 and u2 = 120 - 18 = 102. The statistic 
U = 18, and as P(U ~ 22) = 0.009 we certainly decide A f O. 

As in the case of the Wilcoxon signed-rank test we can find a 
large sample approximation to the distribution of u1 • As 

and E(RX )
li 

under H0 for all i, we obtain E(U1 ) = n1n2/2. It can be further 
shown that Var(u1 ) = n1n2(n1 + n2 + 1)/12. For moderate and large 
n1 and n2 , the statistic 

ul - nln2/2z = -=-__;:;......::;.....______ 

ln1n2(n1 + n2 + 1)/12 

is approximately distributed as the standard normal variable under 
H0• Against the alternatives A > O, A < O, and A +O, the rejection 
regions are Z < -Z , Z > Z , and jzj > Z 12 , respectively.

- Cl. - Cl. - Cl. 
Using the height data for the n1 =12 boys and the n2 = 10 

girls given in the example above, we find the computed value of 
Z = (102 - 60)/1(10)(12)(23)/12 = 2.769 and the corresponding P-VALUE 
against a two-sided alternative of 0.0058. This calls for rejection 
of A= 0 in favor of A f 0 at significance level a.= 0.01 {say). The 
same data have been used with the program N2SAMP. The value of t = 
3,376 with 20 degrees of freedom and a P-VALUE of 0.003 also strongly 
suggests rejection of H0 : A = O. A 95% confidence interval for 

µ2 - µ1 = A is given by x2 - x1 :!::. 8t0 •025 , 20 = -2.845 :!::. o.843(2.086) 
or by [-4.604, -1.086]. The true value of µ1 = 48 and µ2 = 45. so 
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that ~ = 3 in this case. As the data actually do come from (simu-
lated) normal populations the rank test is not as sensitive as the 
t test. As in the one sample case the Wilcoxon rank sum test is 
applicable to a much wider class of "shift" alternatives. Particu-
larly if the underlying distributions have "long tails," the rank 
test is preferred to the parametric test. 

Problems 8.4 

1. Suppose that we denote population 1 by X and population 2 by Y. 

Assume = 2 and n2 = 3. The null distribution of u1 can ben1 
found by assigning equal probability to each of the (~) permuta-
tions of 2 x's and 3 y's. For example, u1 (xxyyy) = 0, and hence 
P(U1 = 0) = 1/10. 
(a) Find the null dist~ibution of u1 . 

(b) Verify that E(U1 ) = n1n2/2 and Var(U1 ) = n1n2 (n1 + n2 + 1)/12 

in this case. 

2. The n1 + n2 observations can be assumed to come from the same 
continuous population under H0 . ~e assignment of n1 ranks to 
the x1 observations can be considered to be a random selection 
of n1 of the first n1 + n2 integers without replacement. 
(a) Using the results of Sec. 5.1 show that 

E( 
n 
zl JSc. )

i=l J. 

and 

(b) Prove that E(U1 ) 

3. Use the yield data of Exercise 8.3.1 to test the hypothesis 
µ1 = µ2 versus µ1 f µ2 at = 0.05 using the Wilcoxon rank test 
based on the statistic U. 
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4. In the data below we give the batting averages of 15 right-hand-
hitting le~ fielders and 10 left-hand-hitting left fielders. 

R.H. 0.298 0.295 0.260 0.217 0.237 
0.224 0.294 0.220 0.283 0.290 
0.297 0.285 0.226 0.307 0.298 

L.H. 0.224 0.259 0.312 0.255 0.261 
0.306 0.237 0.345 0.279 0.262 

(a) Use the large sample approximation to the statistic u1 to 
test the hypothesis H0 : ~ = 0 versus H1 : ~ f 0 using 
a = 0.05. 

(b) Use the program N2SAMP to test the same hypotheses as in 
(a). Compare the conclusions. Note: Ties to occur in 
practice. Assign the average of the ranks which would be 
assigned to the tied observations to each such observation. 

5. Use the weights of the football players for Iowa State and 
Oklahoma State given in Problem 8.3.4 to test the hypothesis of 
no difference in average weight for the two tea.ms. Use the rank 
test of this section with a = 0.10. 

6. Use the data of Exercise 8.3.2 on the yardage gained by freshmen 
and sophomore backs versus that gained by junior and senior backs 
to test the hypothesis stated in part (a) of that exercise. Use 
the Wilcoxon rank sum statistic U. 

Exercises 8.4 

l. Use the program WIL2TEST with the age data of the example run of 
N2SAMP in Sec. 8.3. Compare your decision based on the rank sum 
statistic with that based on the parametric test. 

2. Use the weight data of Exercise 8.2.2 to answer question 8.2.2(a). 
How does your decision compare with those of Exercises 8.2.2 and 

8.3.3? 
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WIL2TEST 

10 RE'! nus PROGRA.'1 TESTS THE HYPOTHESIS THAT TWO POPlLATIO'.IJS 
20 REM HAVE THE SA:'1E LOCATIOl\J PARAMETER VERSUS 
30 REM l > DEL TA < 0 
llO REM 2> DEL TA >O 
50 REM 3> DEL TA <> 0 
60 REM ASSU'IING INDEPENDENT SA.'IPLES OF SIZES l'Jl A.1\lD l'H! 
70 RE"! FROM TWO COl'JTINUOUS POPlLATIO!llS 
80 REM THE PROGRA:'! COMPUTES THE VALUE OF THE WILCOXOl\J RAi'\J!( 
85 REM SUV! STATISTIC Ul AND THE CORRESPOl\IDil'JG Z A\JD P-VALUES 
90 REM SAMPLE 1 A:'\JD SA.'!Pl.E 2 DATA APPEAR IN Lll'JES 500-600 IN 
95 REM Il'J THAT ORDER 
100 PRINT ''WHAT ARE THE VALUE OF Nl A."lD N2?" 
110 INPUT Nl.N2 
120 PRINT "iiHI CH AL TERNA TI VE."; "l• 2 OR 3?" 
130 INPUT A 
140 IFA• l THEN 190 
150 IFA:o2 THEN 190 
160 IF A• 3 THEN 190 
170 PRINT "INCORRECT FOR."IAT "J "TRY AGAIN" 
180 GO TO 110 
185 DIM XC200>.TC200>.ZC200> 
190 FOR I • 1 TO llll+l\J2 
200 READ X< I> 
205 LET TC I >•I 
210 NEXT I 
215 FOR I '" l TO N 1 
225 LET ZCI>:ol 
230 NEXT I 
235 FOR J• 1 TO <Nl+N2-1> 
240 FOR I '" 1 TO CNl+N2-J> 
245 IF XCI>csXCI+l> THEN 275 
250 LET T•XCI+l> 
255 LET Tl•TCI+l> 
260 LET X<I+l>•X<I> 
262 LET TCI+l>=T<I> 
265 LET X< I >•T 
270 LET T<I >"'Tl 
275 NEXT I 
280 l'IEXT J 
285 FOR I • 1 TO Cllll+N2> 
290 LET XC I >•I 
295 NEXT I 
300 FOR J • 1 TO <Nl+N2-1> 
305 FOR I = 1 TO CN1+N2-J> 
310 IF T<I><TCI+l> THEN 345 
315 LETT •TCI+l> 
320 LET Tl•XC I+ 1 > 
32 5 L ET T< I+ 1> • TC I > 
330 LET X<I+l>:oXCI> 
335 LET T<I>•T 
340 LET X<I>=Tl 
345 NEXT I 
350 NEXT J 

* 
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355 FOR I • 1 TO N 1 
360 LET T2• T2+XC I >•Z CI> 
365 NEXT I 
366 LET T2•T2-Nl•CNl+l>.12 
367 PRINT "1HE VALUE OF Ul • "J T2 
370 LET Z •CT2-Nl•N2.12).ISQRCNl•N2*CNl+N2+l>.fl2> 
3!50 GOSU!I 900 
390 PRINT "1HE CALClLATED VALUE OF Z • "JZ 
400 IF A • 3 1Hl!N 430 
410 PRINT 
420 PRINT "1HE P-VALUE FOR "J"ALTERNATIVE "JAJ" • "JP 
425 GO TO 1030 
430 PRINT 
440 PRINT "'mE P-VAJ,.UE FOR "J"ALTEllNATIVE "JAJ",. "JP*2 
450 GO TO 1030 
500 DATA lf1 • 52• 46• 8 3• 460 9 S. 115• 2S. 47• 37• 49• 6 
510 DATA 47o7S.118ol5.46ol!5.46o9•5lo27.43o9 
520 DATA 44• 53. 43·83. 43o9S. 42• 25• 44• 37 
530 DATA 46• 60. 44• 7 S. 45• 16. 48 • 27• 40• 9 
900 LET Z l• A!IS<Z > 
910 LET Ca l/SQRC 2> 
920 LET Cl• • 14112821 
930 LET C2- 008864027 
9 40 LET C3- • 027113349 
9 50 LET Cljlt - • 000 39 446 
960 LET CS-000328975 
970 DEF FNZ<X>• 1- I.IC 1+Cl•X+C2•X' 2+ C3*Xt 3+C4*Xt ~ CS.Xt 5> t ~ 
980 LET P • • 5+• S•FNZ<Zl•C> 
990 LET P • 1E-4*<INT<JE4*P» 
1010 LET P • 1-P 
1020 RETURN 
1030 !ND
• 

RUii 
WHAT ARE 1HE VALUE OF NI AND N2? 
1 12.10 
WKICK ALTERNATIVE.1•2 OR 3? 
? 3 
1HE VALUE OF UI • 102 
THE CALClLATED VALUE OF Z • 2·7694 

1HE P-VALUE FOR ALTERNATIVE 3 '" 5.79999 E-3 

• 

https://P-VAJ,.UE
https://T2�T2-Nl�CNl+l>.12


319 B.4 The Wilcoxon Rank Sum Test 

N2SAMP 

EDIT LI ST 400- 510 

400 DATA 117• 5211160831116o9S. 45o2S. 47• 37• 119• 6 
410 DATA 47o75•4e•IS.ll6o1!• .ti6.9.5lo27.113o9 
500 DATA 114• 53• 43·!3• 43o9S. 112. 2S. 411• 37 
510 DATA 46• 6. 114• 7 5• 45• 16. lie• 27140•9 

* 
JUJ\l 

WHAT ARE 'lliE VALUE OF N1 A-1\lD N2? 
? 12.10 
WHICH AL TERNA TI VE. l• 2 OR 3? 
? 3 
ANALYSIS ASSUMING EQUAL VARIANCES 
SAMPLE MEAN STD DEVIATION 

1 47.3ose 1·!9613 
2 44. 1161 2· 0 5202 

STD DEV OF DI FF .. o.e42565 
THE CALCU.ATED VALUE OF T • 3. 37639 ON 20 ror 
1HE F VALUE • 00853834 Ol\I 11 AND 9 IOF 

TiiE P-VALUE FOR AL TERNA TI VE 3 • o. 003 

ANALYSIS FOR Ul\IEQUAL VARIA.'llCES 
TiiE STD DEV OF DI FF • 0•848933 
'lliE CALUCULATE:C: VALUE OF T • 3• 35107 
WI TH IOF • 20• 6016 

* 
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3. Use the grades for males and females given in Exercise 8.2.3 
with WIL2TEST to test the null hypothesis of no difference 
between the sexes with regard to statistics exam grades. Use 
a = 0.10. 

8.5 INFERENCE FOR MATCHED PAIRS 

Consider a situation in which we want to determine whether there is 
an effect on performance in an arithmetic exam due to birth order 
of siblings. We consider it likely that the first born of siblings 
will do better on an arithmetic exam given to each at age 6. We 
collect data on the scores of five pairs of children on the test 
(which has a maximum scores of 125). 

Test score 

Pair Older Younger 

1 106 102 

2 98 94 

3 123 ll8 
4 97 91 
5 88 83 

At first glance it may appear reasonable to use a two-sample 
test. Using N2SAMP, we find t = 0.574 with 8 degrees of freedom 
and a P-VALUE of 0.291 for testing H0 : = µ2 versus H1 : µ1 > µ 2•µ1 
The F value of 0.983 indicates that the equal variance assumption 
can be retained. The conclusion would be to accept µ1 = µ 2 . Alter-
natively, the Wilcoxon rank sum test statistic can be used. The 
value of U = 9, which also leads to the conclusion ~ = µ2 - 0µ1 
at significance level 0.05. 

We have however made an error in the statistical analysis of 
these data. We have compared two groups of children, when actually 
we want a test and confidence interval which is sensitive to the 
differences of the scores within each of the five pairs. Using the 

notation (Xli' x2i) for i = 1, 2, .•. , n, we should consider a test 
of whether the observed differences Di = Xli - x2i come from a 
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N2SAMP 

EDIT LI ST 400• 500 

400 MTA 106,98.123.97.88 
500 Jl\TA 102.9/U 118•91•83 
•RlN 
WHAT ARE 1HE VALUE OF Nl AND N2? 
? s. 5 
WHICH ALTERIJATIVE. 1.2 OR 3? 
? 1 
ANALYSIS ASStl"IING EQUAL VARIANCES 
SAMPLE MEA.111 STD DEVIATION 

1 10204 1301643 
2 9706 1~2778 

STD DEV OF DI FF • 80 36182 
1HE CALCtLATED VALUE OF T • Oo 574038 ON 8 OOF 
1HE F VALUE• 00982985 ON 4 AND 4 OOF 

1HE P-VALUE FOR ALTERNATIVE • Oo 2908 

ANALYSIS FOR t.NEQUAL VARIANCES 
1HE STD DEV OF DI FF • 80 36182 
1HE CALUCtLATED VALUE OF T • Oo S74038 
WI 1H OOF • 9099926 

•OLD MTEST 
•600 MTA 11. 11. S. 6• 5 
RlN 
WHAT ARE TiiE VALUES OF N AND MUO? 
? s. 0 
WHICH AL TERNA TI VE 1. 2 OR 3? 
? 1 
WHAT IS 1HE VALUE OF ALPHA. Oo lO.OoOS.0.011 
? OolO 
THE CRITICAL REGION FOR A ONEl-SIDED TEST 
AT SIGNIFICANCE LEVEL• Oo05 
IST>• 201318 

'lffE COMPUTED VALUE OF T., 1208285 

* 

https://106,98.123.97.88
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population D with E(D) = µ1 - µ2 = O, versus the alternative that 
> µ2 • The appropriate test here is a one-sample test. Using theµ1 

program MTEST with the differences 4, 4, 5, 6, 5, we find t = 12.829 
with 4 degrees of freedom. A test with significance level a = 0.05 
is given by the critical region t ~ 2.132. Hence we reject µ1 = µ 2 
in favor of µ1 > µ2• Calculations yield d = 4.8 and sd2 = 0.7. 
Hence we find a 95% confidence interval for µ1 - µ2 to be given by 

d .:!:. si/5t0•025 ,4 = 4.8 .±. (./0.7//5)2.776 or by the interval 
[3.761, 5.839]. The evidence for a better performance by the first 
born is fairly strong in contrast to the decision based on the inde-
pendent two-sample tests. 

In the case in which there is a natural pairing of the elements 
in the two groups and the question of interest is whether the members 
of the pairs differ, we do not use an independent two-sample test. 
The appropriate test statistic is based on 

where the number of pairs is n. The appropriate degrees of freedom 
for a confidence interval and for the test is n - 1 and not 2(n - 1) 
as in the independent two-sample test. Many times we choose to 
design a comparison so that the elements of each pair are as similar 
as possible, except with respect to a difference we are attempting 
to measure. The paired test is appropriate here. For example, we 

may be interested in the effect of a drug. The drug is administered 
at random to one of two members of each pair. We choose the members 
in the pairs to be as similar as possible with respect to age, weight, 
and possibly other variables. This is an elementary example of the 
design of a statistical experiment. We collect the data in such a 
way that the experiment provides the greatest possible information 
about the question of interest. The field of experimental design 
for complex statistical designs is an interesting and important area 
of both mathematical and applied statistics. 
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Exercises 8.5 

1. The following data* give the morning and evening heights of 10 
individuals measured in centimeters. We wish to know if there 
is evidence for change of height of individuals during a day. 

Subject Morning Evening 

1 182.9 182.5 

2 174.o 174.o 

3 178.2 177.8 
4 181.2 181.0 

5 167.0 167.2 

6 174.8 174.4 

7 171. 7 171.5 
8 179.2 179.1 

9 181.2 180.0 

10 185.5 185.0 

(a) Use the program N2SAMP to make a test using the independent 
two-sample test to decide between µ1 
a. = 0.05. 

(b) Use the program MTEST to make the same test. 
{c) Using the appropriate design, find a confidence interval 

for µ1 - µ 2 . 

2. A researcher is studying the effectiveness of two different 
methods of teaching spelling. He has a group of 20 children, 
who he matches as closely as possible in 10 pairs according to 
IQ, sex, and age. One of the members of each pair is assigned 
at random to method 1 and the other to method 2. The results 
of a test of the spelling of 16 words is reported below: 

*Adapted from Everyday Statistics; G. W. Snedecor, 1950, 
W. C. Brown Company. 
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Pair Method 1 Method 2 

1 11 15 
2 11 9 
3 13 16 
4 11 11 

5 11 10 
6 9 12 

7 8 11 

8 6 5 

9 5 9 
10 8 10 

(a) Test the hypothesis H0 : µ1 = µ2 versus H1 : µ1 f µ2 using 
(l = 0.05. 

(b) Find a 95% confidence interval for µ1 - µ2 • 

3, Nine pairs of universities were matches as closely as possible 
according to size, type of administrative control, and location. 
In each pair one institution had a faculty organized for collec-
tive bargaining, while the other was not so organized. The 
average difference in faculty compensation was $1600, with a 
standard deviation of the differences of $500. The average 
difference favored the organized institutions. Is the differ-
ence significant (a = 0.05)? What is a 95% confidence interval 
for the difference? 

4. Students in an elementary statistics course argued that their 
second hour exam was more difficult than their first. The 
following gives the scores of 15 students on the two exams, each 
of which had a maximum of 80. 
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Student Hour exam 1 Hour exam 2 

1 48 50 

2 40 55 

3 60 60 

4 48 35 

5 64 40 

6 56 65 

7 68 63 

8 64 40 

9 28 35 
10 56 55 
11 56 40 

12 24 40 

13 48 45 

14 76 70 

15 72 75 

Use the matched-pairs test to test H0: µ1 = µ2 versus 
H1 : µ1 > µ2 . Is their evidence that exam scores on the second 
exam were lower? Does your answer to this question necessarily 
contradict the assertion made? 

8.6 COMPARISON OF TWO POPULATION PROPORTIONS 

The last two-sample situation which we consider is the comparison 
of two population proportions. We often have questions such as 

1. Is the proportion of men and women in the adult population in 
favor of a certain governmental policy the same? 

2. Is the proportion of defective items produced on two assembly 
lines the same? 

3. Is the proportion of left-hand batters hitting at least 0.280 
in the major leagues higher than that for right-hand batters? 

We assume that from each of two populations we obtain random samples 
of size n1 and n2 , respectively. Denote a proportion in population 
1 by p1 and in population 2 by p2 . Let x1 and x2 represent the 
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numbers in the corresponding samples having a characteristic (e.g., 
favoring election of the president by popular vote rather than by 
the current electoral college method). We are interested in infer-
ence about p1 and p2 based on the estimators p1 = x1/n1 and p2 = 
X2/n2. 

We first consider testing H0 : = p2 in the moderate to largep1 
sample case. The natural alternatives are (1) p1 > p2 , (2) p1 < p2 , 
and (3) p1 f p2• If we consider the statistic pl - p2 , then 
E(p1 - p2 ) = p1 - p2 and Var(p1 - p2 ) = Var(p1 ) + Var(p2 ) 
p1 (1 - p1 )/n1 + p2(1 - p2)/n2 . Under the null hypothesis p1 = p2 = 
p (say), we have E(p1 - p2 ) = 0 and Var(p1 - p2 ) = 
p(l - p)(l/n1 + l/n2 ). The parameter pis unknown but can be esti-
mated by a pooled estimate. 

Let 

P1 - P2z = ----~~~~~~~~~-
/ p ( l - p)(l/n1 + l/n2 ) 

It is clear that the appropriate rejection regions are Z ~ Za' 
Z ~ -Za' and lzl ~ Za/2 for the alternatives (1), (2), and (3). 

To find a confidence interval for p1 - p2 , we use Var(p1 - p2 ) 
~ P1 (1 - P1 )/n1 + p2 (1 - p2/n2 = sp1-p2• Using Eq. (8.2.1) we find 
an approximate (1 - a)lOO% confidence interval for p1 - p2• 

(8.6.1) 

We cannot use the pooled estimate p here because the assumption that 
= p2 is not being made here.P1 

The program 2PTEST will test the hypothesis H0 : = p2 versusp1 
one of the alternatives (1), (2), or (3). The program requests the 
values of n1 , n2 , ~· x2 , and the appropriate alternative. The 
value of Z is computed and the corresponding P-VALUE is calculated. 
A 95% confidence interval for p1 - p2 is computed. In the sample 
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P.PTEST 

10 RIM 'IHI S PROGRANJ TESTS 'IHE HYPO'IHESI S Pl "' P2 
20 RIM AGAINST ONE OF 'IHE ALTERNATIVES 
30 RIM 1) Pl > P2 
40 R!M 2) Pl < P2 
SO R!M 3) Pl <> P2 
60 REM ASStMING INDEPENDENT SA."'IPLES OF SIZE :-.11 AND l\12 
70 REM FRO:vl 'IWO POPlLATIONS WI 1H TRUE PROPORTIOOS Pl AND P2 
80 REM 'IHE NtMl!IERS OF "SUCCESSES" IN 'IHE TWO SAMPLES ARF Xl AND X2 
90 REM 'IHE PROGRA."'I CO?!'IPUTES z, 'IHE CORRESPONDilllG P- VALUE 
95 REM AND A 95 PERCENT CON FI DENCE INTERVAL FOR Pl •P2 
100 PRINT ''WHAT ARE 'IHE \IALUE OF NI AND l\12?" 
110 INPUT Nl1N2 
120 PRINT "WHICH ALTERNATIVF,, "J"l12 OR 3?" 
130 INPUT A 
140 IFA:a 1'IHEN190 
t 50 IF A • 2 'IHEN 190 
160 IF A• 3 'IHEN 190 
170 PRINT "INCORRECT FORMAT "J "TRY AGAIN" 
180GO TO 110 
190 PRINT ''WHAT ARE 'IHE \IALUES OF Xl AND X2?" 
200 INPUT X 11 X2 
210 LET Pl=Xl/l\ll 
220 LET P2 • X2/N2 
230 LET P •<Xl+X2)/(Nl+l\l2) 
235 LET P3=P 
240 LET Z •<Pl•P2>1SQR<P•< l·P>•< l/Nl+llN2» 
250 LET 5 = SQRCPl•<l·Pl>lllll+P2*Cl•P2>1N2> 
255 LET L • <Pl•P2>-S*l.96 
260 LET U • CPl•P2>+5*1.96 
265 GOSUl!I 900 
290 PRINT "'IHE CALClLATED \IALUE OF Z • "JZ 
350 PRINT "Pl•HAT • "JPl1 "P2-HAT • "JP2 
370 PRINT "1HE STD DE\I OF DI FF • "JS 
380 PRINT "1HE POOLED ESTHIATE OF P • "JP3 
390 PRINT "A 95 PERCENT CONF INT FOR Pl• P2 IS GI\l!N l!IY" 
400 PRINT " L • "JL1" U • "JU 
405 IF A • 3 'IHE!IJ 430 
410 PRINT 
420 PRI!'llT "1HE P•VALUE FOR "J"ALTERNATI\IE "JAJ" • "JP 
425 GO TO 1030 
430 PRINT 
440 PRINT "'IHE P·\IALUE FOR "J"Al..TERNATIVE "JAJ" • "JP•2 
450 GO TO 1030 
900 LET Z l• Al!ISC Z > 
910 LET C• l/SQRC 2> 
920 LET Cl• ·14112821 
9 30 LET C2• • 088 64027 
940 LET C3••02743349 
9 SO LET C4'" - • 00039446 
960 LET CS-·00328975 
970 DEF FNZ00• 1• l/C l+Cl•X+C2*Xt 2+C3*Xt 3+C4*Xt 4+C5*Xt S>t I'! 
980 LET P • • 5+• S•FNZCZ l•C> 
990 LET P • 1E•4*CINTC1E4*P)) 
1010 LET P • l•P 
1020 RETURIJ 
1030 END
• 

https://CPl�P2>+5*1.96
https://Pl�P2>-S*l.96
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RU'J 
WHAT ARE 1HE VALUE OF NI AND N2? 
1 250· 450 
WHICH ALTERNATIVE. 11 2 OR 37 
1 3 
WHAT ARE 1HE VALUES OF XI AND K27 
1 120. 260 
'!HE CAl.ClLATED VALUE OF Z ,. -2• 48828 

lHE P-VALUE FOR ALTERNATIVE 3 "' 0·013 
Pl-HAT = Oo 48 P2-HAT = O• 577778 
1HE STD DEV OF DI FF = 3·92494 E-2 
1HE POOLED ESTIMATE OF P = 0• 542857 
A 95 PERCENT CONF INT FOR Pl- P2 IS GIVEN ~ 
L = -0· 174707 U • -Q.020849 

"' 



3298.6 Comparison of Two Population Proportions 

run 250 men and 450 women are asked whether they favor the retention 
of the 55-mile/hr speed limit. The values p1 = o.48o, p2 = 0.578, 
Z = -2.488, and P-VALUE of 0.013 suggest rejection of p1 l p2 . A 
95% confidence interval for p1 - p2 is given by (-0.175, -0.021). 
The evidence suggests that p1 < p2 , i.e., the proportion of men in 
favor of the 55-mile/hr limit is less than the proportion of women. 

As a final example, consider a sample of the lifetime batting 
averages of 140 major league hitters. This yielded 20 of 40 left-
hand batters with a lifetime average of at least 0.280, and 27 of 100 
right-hand batters with lifetime averages of at least 0.280. Hence 
p1 = 0.5, p2 = 0.27, p = 47/140 = 0.3347, and Z = 2.603. As the 
P-VALUE is less than 0.01, one would reject H0 : = p2 in favor ofp1 
H1 : p1 > p2 • In other words, left-hand batters seem to hit 0.280 
or better with higher frequency than right-hand batters. 

Exercises 8. 6 

1. Assume that of 200 sophomores and 250 seniors at a university, 
74 of the sophomores and 70 of the seniors voted for the same 
presidential candidate as their fathers in the last election. 
Assume that p1 is the true proportion of sophomores voting for 
the same presidential candidate as their fathers and p2 is the 
corresponding proportion for seniors. 
(a) Test p1 = p2 versus p1 > p2 at significance level 0.05. 
(b) Find a 95% confidence interval for p1 - p2 • 

2. Assume that during a given week that 190 of 220 arrivals of air-
line A are "on time." An arrival is considered on time if a 
plane arrives within 10 min of its scheduled arrival time. 
During the same week 82 of 99 arrivals of airline B are on time. 
(a) Test the hypothesis that the proportions of on-time arrivals 

are the same for both airlines (a= 0.05). 

(b) Find a 95% confidence interval for PA - PB· 
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3. In 1974, 2037 of 4832 chemistry majors applying to medical school 
were admitted. In the same year, 263 of 650 English majors apply-
ing to medical school were admitted. Is there statistical evidence 
that chemistry majors do better than English majors in applying 
to medical school? 
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ANALYSIS OF CLASSIFICATION DATA 

9.1 INTRODUCTION 

In many cases in which statistical inference is of importance we 

measure the value of continuous random variables or random variables 
which are assumed to be continuous. For example, weights, lengths, 
times, and distances are considered to be continuous random variables. 
Test scores, ages, and words typed per minute, while actually measured 
as discrete random variables, are treated as continuous random vari-
ables in questions of inference. There are however many cases, 
especially in the social sciences, in which observations can only be 
classified into separate categories. For example, a student is 
graded as A, B, C, or failing. A tire is classified as excellent, 
acceptable with minor production flaws, or unacceptable. We observe 
the number of observations in the categories or classes in these 
cases. Data such as these are referred to as classification or 
"count" data. In this chapter we consider the elementary statistical 
analysis of these type of data. 

9.2 THE MULTINOMIAL DISTRIBUTION AND ITS RELATION TO THE CHI-SQUARE 
DISTRIBUTION 

In the case of the binomial distribution we consider n independent 
trials of an "experiment" which are classified into one of two 
classifications referred to as "success" or "failure." With the 

331 
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assumption of a constant probability p of success in each trial we 
have obtained the distribution of the random variable X - B(n;p) 
which gives the number of successes in the n trials. In the case of 
the multinomial distribution we assume that at each trial an obser-
vation ma;y be classified into one of k ~ 2 distinct classes. We 
consider n independent observations with a constant probability pi, 
i = 1, 2, ••• , k of falling into class i (with E p. = 1). Writing

J. 

Xl, X2, ••• , Xk to denote the number of the observations inn trials 
falling into classes i = 1, 2, ••• , k, it is easy to see that X. -

• J. 
B(n;p.) for i = 1, 2, ••• , k. However the joint probability of x1J. 

outcomes in class 1, x2 outcomes in class 2, ••• , ~-l outcomes in 
class k - 1 is given by the expression 

(9.2.1) 

kThe vector is of length k - 1, because the condition Ei=l xi = n, 
determines the value of ~ and the expression on the right can be 
written with n - E~:1 x. replacing x., i.e., as a1 function of x1 , . J.- J. K 
x2 , ••• , ~-l only. Hence~ is not an additional random variable. 
In the case k 2, Eq. (9.2.1) reduces to 

the familiar binomial expression. 
As a simple example let us consider that in a game of matching 

fair coins between David and Goliath, that each independently tosses 
a penny n times. If both pennies are heads, David wins, and if both 
pennies are tails, Goliath wins. If the coins differ, the outcome 
is called a tie. Let x1 represent the number of wins by David and 
X2 by Goliath in n trials. Then pl = 1/4, p2 = 1/4, and p3 = 1/2 
and 
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Assume n = 10, and we ask for the probability David and Goliath each 
win three times and the other four outcomes are ties. We find 
P(3,3) = (10!/3!3!4!)(1/4) 3(1/4) 3(1/2) 4 = 525/8192 = 0.0641. The 
probabilities of the other possible outcomes can be found by sub-
stituting all possible combinations of nonnegative integers satisfy-
ing x1 + x2 + x3 = 10 into Eq. (9.2.1). We shall not pursue this 
further here, as our real interest is in inference concerning the 

values of the pi jointly. 
Suppose that we wish to test that the true values of the prob-

abilities pi are a certain fixed set of numbers. We write the null 
hypothesis as 

HO: pi = piO i i, 2, ••. ' k 

kwhere Ei=l Pio = 1. The alternative to H0 is generally stated just 
as the negation of H0 , namely 

for some i 

Under the hypothesis H0 , we have E(X.) = np. 0 as the X. are binomial 
l l l 

variables. In order to test H0 we observe the values of x1 , x2, ... ' 
~ for a relatively large number of trials, n. The data can now be 
presented in a summary table as follows: 

Class 1 2 k Total 

Observed nxl x2 ~ 
Expected nplO np20 npkO n 

It is apparent that close agreement between the observed outcomes in 
each class with the corresponding expected values under H0 suggests 
retention of H0 • 

The statistic which is widely used in a test of the hypotheses 
H0 and H1 is 

k 22 E(observed - expected)x E expectedi=l 
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It can be shown that for multinomial data, if H0 is true, the statis-
tic x2 has asymptotically the chi-square distribution with k - l 
degrees of freedom. Rejection of H0 occurs if the observed values 
are not close to the expected values, which results in a large value 
of the computed statistic X2 . An approximate a level test is given 
by the critical region 

2 > 2 
X Xa,k-1 

as the value of x2 will exceed the Y2 point, if H0 is true, with·u,k-1 
probability approximately equal to a. 

Let us consider the example of David and Goliath again. Suppose 
Goliath's coin is biased and falls heads with probability 2/3 and 
tails with probability 1/3, while David's coin is fair. Assuming 
independence of the two coins the true values of p1 = 1/3, p2 = 1/6, 
and p3 = 1/2. Assuming fairness of the coins, we hypothesize 

Suppose that we observed the following results in 100 trials. 

Outcome 2H 2T lH, lT Total 

Observed 38 13 49 100 
Expected 25 25 50 100 

We compute (38 - 25) 2/25 + (12 25) 2/25 + (49 - 50) 2/50 = 12.54. 
As x20.01,2 = 9.21, we would reject H0 at level of significance a = 
O.Ol. The hypothesized values appear to be incorrect, as in fact 
they are. 

As another application of the large sample approximation of the 
chi-square distribution, let us consider testing H0: p = p0 versus 
H1 : pf p0 in the binomial case in which X - B(n;p) represents the 
number of successes. We observe 

Outcome Failures Successes Total 

Observed n - x x n 

Expected n 



335 9.2 The Multinomial Distribution 

2 x 

(x - np0 )2 

np0 (1 - p0 ) 

For an a level test we reject H0: P =Po if X2 > Xa,2 
1 · 

In Chap. 7 we have seen that a test of 

versus 

in the large sample case can be based on the statistic. 

x - np0z = ~~~---~~ 
/np0(1 - p0 ) 

We reject H0 if lzl ~ Za/~ for a test at significance level a. Note 
that the statistic z2 = x as defined in the previous paragraph. 
Hence, under H0 

P(Z2 > z2 ) a and- a/2 

It should not be surprising then to find out that it can be proved 
that the square of a standard normal variable has the same distri-
bution as a chi-square variable with one degree of freedom. Hence 

2 2 2 2
Z~/ 2 Xa,l· For example, if a 0.05, z0 •025 = (1.96) = 3.841 = 
Xo. 05 .,l • The two tests will thus lead to identical decisions. For 
example, if we test that a coin is fair based on 400 tosses of which 
220 are heads, we compute Z = 2 and x2 = 4. At level a = 0.05, we 
reject p = 0.5 as Z ~ 1.96 or x2 ~ 3.841. It is sensible that the 
large sample tests of p = p0 based on Z and x2 always yield the same 
decision. 

As a final note we remark that the chi-square approximation is 
considered valid only if the expected value in each of the classes 
is not too small. A general rule is that the expectation should not 
be less than 1 in any class. Other statisticians use a minimum of 
5, but we shall use the smaller bound in this chapter. If a class 
has expectation less than 1, it is combined with other classes until 
the expected value is at least 1. 
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Problems 9.2 

1. Assume six fair dice are tossed. What is the probability of 2 
twos, 2 fours, and 2 sixes? 

2. A city has a population of registered voters, with 30% registered 
Republicans, 40% registered Democrats and 30% Independents. What 
is the probability of three Republicans and four Democrats in a 
sample of size 10, assuming independence of the selections. 

3. Sketch a proof of Eq. (9.2.1). 

4. Assume that (X1 ,x2 ) have the trinomial distribution with param-
eters p1 , p2 , p3 , and n. 
(a) What is the distribution of X1 + X2? 
(b) Use the fact that Var(X1 + x2 ) = Var(X1 ) + Var(X2 ) + 

2Cov(X1 ,x2 ) to find Cov(X1 ,x2). 
(c) Generalize the result in part (b) by finding Cov(X.,X.) in 

J. J 
the general multinomial case. 

(d) Under the assumptions here, show that the conditional dis-
tribution of x1 , given X2 = j, is B(n - j; p1/(p1 + p3 )). 

5. Use the fact that the pdf of the standard normal variable is 

21 -z /2f(z) = -- e -oo<z<oo 
l21T" 

together with the result in Problem 8.4.6 to show that z2 has 
the chi-square distribution with 1 degree of freedom. 

6. Use the table of the standard normal distribution to find 

2Y for a. = 0.1(0.1)(0.9)"(). ,1 

7. Genetic theory predicts that 3/4 of hybrid crosses will display 
the dominant trait. Of 300 observations, 215 display the domi-
nant trait. Test H0 : p = 3/4 versus H1 : pf 3/4 using the 
chi-square test. Use a.= 0.05. 
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8. A die is tossed 90 times with the following outcomes: 

Number 1 2 3 4 5 6 
Observed 20 17 13 14 16 10 

Use a chi-square test to decide whether to accept the assertion 
that the die is fair. (Let a= 0.05.) 

9. A faculty member who is grading "on a curve" is expected to 
distribute his grades as indicated below. 

A B c D E 

Percent 10 20 30 20 10 

Observations 19 28 41 8 2 

In a large class a faculty member gives the indicated grades. 
Do the grades actually given support the hypothesis that he is 
grading "on a curve"? 

9,3 ANALYSIS OF CONTINGENCY TABLES 

There are many cases in which observations are classified according 
to two criteria. As an example, consider the question, "Are you in 
favor of a voluntary armed service in the United States?" We may 
be interested in whether the answer to this question is related to 
party identification, Assume that we randomly sample 360 voters 
and observe the following data: 

Party identification/question Yes No No opinion 

Democrat 57 83 9 
Republican 41 50 9 
Independent 35 64 12 

In this table each of the 360 observed voters have been classified 
according to two criteria: opinion on the question and stated party 
identification. Such a table is referred to as a contingency table. 

The question which we would like to answer is whether the two criteria 
of classification are independent or whether an association exists 
between opinion and stated party preference. 
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We consider a general contingency table with r rows and c columns. 
The random variable X.. represents the number of observations in a 

1.J 
sample of n which fall into row class i and column class j. Such a 
table appears in Table 9.3.i. The notation X.1.. is the sum of the 
number of observations in the ith row, and similarly, x •j is the sum 
of the number of observations in the jth column. We see that 

r c 
E X. = L X . n 

i=l i• j=l •J 

There are, in all, re locations into which an observation may fall. 
For the table of the example we find x1 • = 149, x2• = 100 and x3• = 
111, that is, 149 Democrats, 100 Republicans, and 111 independents 

were sampled. Similarly, x. 1 = 133, x. 2 = 197, and x. 3 = 30. 
We further denote by p .. the probability that a random obserira-

1.J 
tion from the population falls into the ijth location. By pi• we 
shall mean the probability of falling into row class i and by p .

•J 
the probability of falling into column class j. The null hYPothesis 
of independence of the row and column classifications can be written 
as 

i 1, 2, ... , r; j 1,2, ••• ,c 

Table 9.3.1 An r by c Contingency Table 

Column 

x11 x12 xlc x1. 

x21 x22 x2c x2. 

Row . . . . 
xrl xr2 x re xr• 

x.1 x.2 x •c n 
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The alternative, the negation of H0 , is p .. ~ p. p j for some pairlJ T i • • 

(i,j). It is apparent that these probabilities are not known. 
However, the following estimates are appropriate: 

i 1, 2, 3, ... , r 

=~ j = 1, 2, ..•• c n 

Under the null hypothesis, we would estimate p .. by p. . = p. p .•lJ lJ i • • J 
With this estimate we can compute the estimated expected number of 
observations in location (i,j) under H0 by 

xi· ~ xi.x•j
np .. = n-- = 

lJ n n n 

The test will be based on the chi-square statistic 
2r c (X .. - Eij)2 l,Jx L L (9.3.1)

i=l j=l Eij 

As in the previous section large values of x2 are inconsistent with 
2 2H0 , and hence a critical region will be of form X ~ 'Xa,v• where v 

is the appropriate degrees of freedom. 
While it might seem that re - 1 is the appropriate degrees of 

freedom from the discussion in the previous section, this is not so. 
The null hypothesis does not specif'y the hypothesized values of pij 
until the values of pi• and J?.j are found. As 

r c 
L p. 1 and L " 1P.ji=l i• j=l 

there are r - 1 row probabilities estimated and c - 1 column proba-
bilities. A theorem in mathematical statistics states that the 
statistic in Eq. (9.3.1) will have approximately a chi-square distri-
bution for large n, where the degrees of freedom is given by 

V = number of locations - 1 - number of parameters estimated 

Hence the value of v for an r by c contingency table is 
re - 1 - (r - 1) - (c - 1) =re - r - c + 1 = (r - l)(c - 1). Thus 
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for the example of this section the appropriate degrees of freedom 
for the x2 statistic is (3 - 1)(3 - 1) = 4. 

Using E.. = X. Y ./n, we find the following table of expectedl.J J.. • J 
values: 

Party identification/question Yes No No opinion 

Democrat 55.05 81.54 12.42 
Republican 36.94 54.72 8.33 
Independent 41.01 60.74 9.25 

Notice that the numbers in any row or column sum to the corresponding 
row or column sum in the original table. For example, for row 2 we 

find 36.94 + 54.72 + 8.33 = 99.99, which is 100 except for round-off 
error. The computed value of X2 using Eq. (9.3.1) is found to be 

23.814, and as x0 •05 , 4 9.49, we would accept the null hypothesis. 
The data do not support the hypothesis that opinion and party prefer-
ence are associated. If we delete the information concerning inde-
pendents and compare Democrats and Republicans, we find x2 = 1.204. 
The appropriate degrees of freedom is now 2. As x2 

0 •05 , 2 = 5.99, 
again these data do not support the conclusion of association between 
opinion-and party preference. 

As another example consider the following data on 200 countries, 
which are classified according to the number of storks in the country 
and the country's birthrate. The results are 

Countries with 
Birthrate Few storks Many storks Totals 

Low 42 10 52 
High 130 18 148 

172 28 200 

We compute the value of E11 172(52)/200 = 44.72, E12 = 7.28, E21 
127.28, and E22 = 20.72. The computed chi-square is x2 =1.597, 
and as x0

2 •05 ,1 = 3.841. We conclude here that there is no statistical 
evidence for the validity of the stork legend in these data. 
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CONTGY 

10 REM 1HIS PROGRAM COMPUTES 1HE CHI-SQUARE STATISTIC A'IJD 1HE 
20 REM EXPECTED VAJ...UES FOR AN R BY C CONTINGENcY TAlll..E. 
25 REM 1HE P-VALUE FOR 1HE CAJ...ClLATFD CHI-SQUARE IS Al.SO CO'IPUTED. 
30 REM DATA SHOlLD 1'E PUT IN DATA STATEMENTS 1'FGI'\J'IJING AT 
40 REM LINE 400• 1HE DATA IS ~TEREt 1'Y ROWS. 
50 REM 1HE COMPUTER WILL REQUEST THE VAJ...UES OF R CROWS> 
60 REM AND C CCOL I.MN S> • 
100 DIM XC 20• 20>. YC 20. 20>. RC 20>. CC 20> 
110 PRINT "liHAT ARE 1HE "; "VAl...UES OF R A'llD C?" 
120 INPUT R• C 
130 FOR I • I TO R 
140 FOR J ,. I TO C 
150 RFAt XC I. J> 
155 LET RCI>=RCI>+XCI.J> 
1 60 NEXT J 
170 NEXT I 
11!0 FOR J = 1 TO C 
190 FOR I = 1 TO R 
200 LET CCJ>=XCI.J>+CCJ> 
210 NEXT I 
220 NEXT J 
230 FOR I = I TO R 
240 LET N,. N+R<I> 
250 NEXT I 
260 PRINT "ROW"• "COL"• "OBSERVED''. "EXPECTED" 
270 PRINT 
21'!0 FOR I = 1 TO R 
290 FOR J ,. 1 TO C 
300 LET YCI,J>=RCI>*C<J>IN 
310 LET C2= C2 +CXCI.J>-YCI.J»t2/Y(I,J> 
320 PRINT I.J.X<I•J»YCI.J> 
330 NEX'I J 
340 NEXT I 
350 PRIN'I 
360 PRINT "CHI-SQUARE= ";C2;"WI"IH ";CR-l>*CC-lH"DOF" 
365 LE'I A,. CR-l>•CC-1> 
367 IF A = 1 THEN 660 
3 70 GOSU1' 500 
37 5 PRINT "P-VAl...UE ,. "JI 1 
31'!0 GO TO 1'!00 
400 DATA 51.e3.9, 41. 50,9. 35, 64.12 
500 IF INT ( Al2>=Al2 THEN 545 
505 LET T = INT<CA-1>12) 
105LET C • 1 
51 5 FOR I = 1 TO T 
520 LET C • C•<Al2-I> 
525 NEXT I 
530 LET C = C*2tCA/2>•SQR<3·14159263> 
535 LET C 1/C 
540 GO TO 51'!0 
545 LET C = 1 
550 L Fl T "' INT< A/2-1> 
5 55 FOR I = 1 TO T 
560 LET C = CHA/2-I > 
565 NEXT I 
570LE'I C= C*2tCAl2> 
575 LET C=l/C 

* 
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5150 DEF FNF<X>=C•<X' CA/2-1) >•EXPc-xnn 
585 LETH • C2/100 
590 LET NI • 100 
595 FGR I • 1 TO 011-1> 
ECO LET X • H•I 
605 LET I 1 • I l+FNFCX>•H 
610 NEKT I 
615 LET Il • II +CHl2>•CFNF<O>+FNF<C2» 
620 IF A~S<Il-I2> < 0001 THEN 645 
62 S LET I 2 • I 1 
630 LET H • H/2 
635 LET Nl•2•Nl 
640 LET I l=O 
642 GO TfJ 59 5 
645 LET I l•l-I 1 
650 PRINT 
655 RETURN 
660 LET Cl • SQR< C2> 
665 LET H • Cl/100 
670 DEF FNGOO• SQRC 213. 1'1159263>•EKPc-xr 212)
67 5 LET N l = l 00 
6eO FOR I• l TO <Nl-1> 
6"2 LET X • H•I 
6"4 LET I 1 • I l+FNGCX>•H 
686 NEXT I 
6ee LET I l • I l+CHl2>•< FNGCO>+FNGC Cl>> 
690 IF Al!!JSCil-I2><•00l THEN 702 
692 LET I2•I 1 
69LI LET H • H/2 
696 LET Nl •2•Nl 
698 LET I l•O 
700 GO TO 6!50 
702 LET I l• 1-I l 
704 PRHIT 
706 GO TO 375 
!500 END 

* 
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RUN 
WHAT ARE THE VALUES OF R AND C? 
1 3.o 3 
ROW COL. Ol!SERVED 

1 1 57 
1 2 11!!3 
1 3 9 
2 1 Li 1 
2 2 50 
2 3 9 
3 1 35 
3 2 611 
3 3 12 

CHI-SQUARE = 3o l'1441 WI TH 4 DOF 

P-VAl..UE • Oo 431714 

•RW 
WHAT ARE THE VALUES OF R AND C? 
1 2.. 3 
ROW COL Ol!SERVED 

1 1 57 
1 2 83 
l 3 9 
2 1 "1 
2 2 50 
2 3 9 

CHI-SQUARE • lo 20ll28 WITH 2 DOF 

p-VALUE • Oo 5ll7 638 

•l!OO DATA 42.o 10.o 130.o U! 
RUN 
WHAT ARE THE VALUES OF RAND C? 
? 2.. 2 
ROW COL O!ISERVED 

l 1 42 
I 2 10 
2 I 130 
2 2 11'! 

CHI-SQUARE = lo 596139 WITH DOF 

P-VALUE • 0·206345 

• 

EXPFCTED 

550 Oll72 
8105361 
l2olll67 
36o9411tl 
54.7222 
II!!. 33333 
41 o 00!!13 
60· 7417 
9o25 

EXPECTED 

S!!l • 61126 
790 51363 
1007711 
390 357ll 
53. lit 37 
7o 22!!192 

EXPECTED 

44072 
7o 2!5 
121. 211!! 
20·72 
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The program CONTGY has been written to calculate the value of 
chi-square for an r x c contingency table. The program requests the 
values of r and c. The observations should appear by rows in DATA 
statements in lines 400-499. The program computes the values of X2 , 
E. . for i = 1, 2, ... , r and j = 1, 2, ... , c, and also 
iJ2 2 

P(X(r-l)(c-l) ~ X ), the P-VALUE for the contingency table. The 
program has been run for the examples of this section. 

Problems 9.3 

1. Prove the following for an r x c contingency table: 
c r 

(a) E E. j = (b) E E.. 
j=l i 

X. 
i- i=l iJ 

x •j 

2. Show that in a 2 x 2 contingency table 

2 x 

3. (a) Assume that r = c in a contingency table and that Xii = ni 
for i = 1, 2, ••• , r, while X.. = 0 for if j. Defining

2 iJ 
n = n., show that X = (r - l)n. 

i 2 
(b) The value (r - l)n is the maximum value of X in a r x r 

contingency table with E: 1x. Er X . = n. Explain ini= i• a.=l "J 
words why this is reasonable. 

4. (a) Prove that in a 2 x c contingency table for which the rows 

are proportional, that is, xlJ" = kX2·• that x2 = o. This 
J2

is clearly the smallest value that x can assume. 
(b) Show that in a 2 x c contingency table. 

c (X. i - X .pl )2 
x2 L xi~ (l·: A. ) 

a.=l •jpl• P1• 

(c) Explain why the x2 test provides a test of H0 : p11 = p12 = 
p = ••• = p in this case, where p1J. can be interpreted13 le 
as the probability of falling into the jth classification in 
sampling from population 1 and p2j has the same interpreta-
tion for population 2. 
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Exercises 9.3 

Use the program CONTGY as needed in the following: 

1. In a statistics exam we classif'y the scores according to two 
criteria. The first is whether an individual's score is below 
the class median m or not. The second is whether a student is 
majoring in a physical science or mathematics or is a nonscience 
major. We observe the following: 

< m > m 

Science 31 38 
Nonscience 37 30 

Test the hypothesis that there is no association between test 
performance and type of major. (Use~= 0.05.) 

2. A survey was conducted to evaluate the effectiveness of a new 
flu vaccine, administered in a small community. Some persons 
appeared only for one shot. The following data were observed: 

No vaccine One shot Two shots 

Flu 48 17 16 
No flu 270 105 550 

(a) Evaluate the effectiveness of the vaccine. 
(b) Combine the last two column classifications so that these 

classifications become "no vaccine" and "some vaccine." 
Do the data support your conclusion in part (a)? 

3. A group of college students is asked to answer a question with 
possible responses 1, 2, 3, or 4. The respondents were also 
identified by sex, and the following bivariate frequency table 
was constructed from the data. 

Responses 1 2 3 4 Total 

Males 12 33 17 8 70 
Females 42 87 4 7 140 
Total 54 120 21 15 210 
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Test the null hypothesis that the sex of the respondent and the 
response are independent. Use a = 0.05. 

4. In the June 1976 issue of the Journal of Advertising Research, 

in an article by J. F. Dash, L. G. Schiffman, and Conrad Berenson 
entitled "Information Search and Store Choice," the following 
data concerning customers at a speciality store and a department 
store are reported. 

Store Choice and Knowledge of Audio Equipment 

Type of store 
Level of product knowledge Specialty Department 

Low 21% 63% 
Medium 30% 27% 
High 49% 10% 

Number 263 156 

Does the assertion that "customers shopping at the specialty 
store are more knowledgeable about audio equipment" appear to 
be justified? Use a = 0.05. 

5. Farley S. Brothwaithe reports on the relationship between teachers' 
class background and their career aspirations in the March-June 
1976 issue of the International Journal of Comparative Sociology 
in an article entitled "Upward Mobility and Career (Value) 
Orientation." He reports the following data. 

"LOwer class "Upper class 
Career aspirations background" background" 

Low 157 79 
High 212 47 

Is there an association between class background and career 
aspirations for this group of teachers? How would you describe 
the association? Use a = 0.01. 
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9.4 GOODNESS OF FIT 

An important question in statistics and in the scientific method 
generally is whether data can be assumed to come from a particular 
parametric family such as the binomial, Poisson, normal, or expo-
nential families. As an example; consider the following data, the 
number of calls received at an exchange in 100 1-min periods. 

Number of calls (x) 0 1 2 3 4 
Number of 1-min periods 
in which x calls arrive 

40 30 18 10 2 

Can we proceed under the assumption that the number of calls arriv-
ing is described by the Poisson distribution? A statistical answer 
to this question is provided by the large sample distribution of 
multinomial data introduced in Sec. 9.2. Assuming the Poisson model 
does apply, the probability of x calls in a 1-min period is given 
by e-µ(µ)x/x! = p(x), whereµ is the theoretical average number of 
calls arriving in a 1-min period. If we estimate µ by 0, then the 
expected number of 1-min periods in which x calls arrive is given 
by 100 p(x) = 100 e-µ(µ)x/x!. These expected numbers under the 
Poisson assumption can be used with the observed numbers in a x2 

test of 

H0: the data are Poisson 

against the alternative that they are not. 
To carry out the test we would estimate µ by 0 = (40(0) + 

30(1) + 18(2) + 10(3) + 2(4))/100 = l.04. The values of p(x) may be 
obtained by using the program POISSON. We find the following: 

x p{x) 100 p{x) Observed 

0 0.353455 35,3455 40 
1 0.367593 36. 7593 30 
2 0.191148 19.1148 18 

3 0.066265 6.6265 10 
4 or more 0.021540 2.1540 2 
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We compute the value of X2 = 3.649. The number of classes here is 
five and one parameter has been estimated. The correct degrees of 

freedom would thus be 5 - 1 - 1 = 3. Using X~.05 , 3 = 7.81, a deci-
sion in favor of H0 would be made, i.e., the Poisson assumption 
would be retained. This decision means that the data observed do 
not strongly contradict the Poisson assumption. The test by no means 
"proves" the data are Poisson, as it may be consistent with other 
assumptions also. It does indicate that the Poisson assumption is 
not strongly violated. 

The same general method of testing goodness of fit may be used 
to test whether observations come from a particular continuous dis-
tribution, such as the normal. If (X1 , X , ••• , X ) represents a 

2 2 n 
random sample of n observations from X - N(µ,cr ), then consider the 

10 intervals (Z(j-l)O.lO! Zj(O.lO)) for j = 1, 2, ••• , 10. Here 
z0 = - 00 , z0 •90 =-1.2817, ••• , z0 •90 =1.2817, and zl.O =oo. We see 
that 

X. - µ 
P(Z(j-1)0.1 < ~ ~ Zj(O.l)) = 0.1 

for each of these 10 intervals. Of course, in general µ and cr are 
unknown but may be estimated by x and s, respectively. One can test 
the hypothesis of normality by finding the number of the n transformed 
observations (x. - x)/s falling into each of these 10 intervals. If 

1. 

we denote this number by fj, then the statistic 

2 10 (f. - n/10) 2 
x = E n/10j=l 

can be used to test the normality assumption. The appropriate degrees 
of freedom is 10 - 1 - (2 parameters) = 7. 

The program NORMFIT carries out the test described in the pre-
vious paragraph. The program requests the value of n as input. 
Data should appear in lines 400-599· The program computes the values 
of fj and the chi-square statistic. In the first sample run, the 
first 100 "ages" of legislators from the data of Exercise 5.i.3 has 

2been tested for normality. The value of X 9.8 on 7 degrees of 

https://Z(j-l)O.lO
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NORMFIT 
10 REM THIS PROGRAM CARRI ES OUT A GOOINFSS OF FIT TEST 
20 R~ TO THE NORMAL DISTRIBUTION 
30 REM SAMPLE DATA SHOlLt· APPEAR IN LI:llES 400• 599 
40 REM 1HE PROGRAM COMPUTES THE NU"IBER OF STAN MRDIZ ED OBSERVATt ONS 
50 REM tN EACH OF 10 EQUAL PR0BA!!ILt1)' Il\ITF.R\IALS l.NDER THE 
(:() REM NORMALITY ASSU"IPTION AND THE CORRESPONDING VALUE 
70 REM OF CHI-SQUARE 
100 PRINT "WHAT IS THE VALUE OF N?" 
110 H.IPUT N 
120 FOR I • 1 TO 9 
130 READ ZCI> 
140 NElCT I 
145 DIM lCC 500> 
1 50 FOR I ,. 1 TO N 
160 READ lCC I> 
170 LET S ,. S +lCCI> 
180 LET Sl,. Sl+XCI>t2 
1 90 NEXT I 
200 LET A • SIN 
210 LET S ,. SQRC CSl·N•At 2>.IClll· 1 > > 
220 FOR I • I TO N 
230 FOR J = I TO 9 
240 IF CXCI>·A>IS > ZCJ) THEN 260 
250 LET CCJ>• C<J>+I 
25S GO TO 290 
260 IF J < 9 THE'.11 280 
2 70 LET CCIO>•C<IO>+l 
2 74 GO T8 290 
280 NElCT J 
290 NElCT I 
300 PRil\IT "FREQ TAILE "J "FOR TRANSFORMED OBSERVATIONS" 
310 PRINT 
320 PRINT "Cl..ASS"• "FREQUENcY"• "ElCPECTED NO•" 
330 FOR I = 1 TO 10 
340 PRINT I•C<I>.NllO 
350 LET C2 • C2+cC<I>·lll/10>t2/CNl10> 
360 N'EXT I 
370 PRINT "CHI-SQUARE• "JC2J" ON 7 OOF" 
380 DATA -1. 2811.-0. 8 418· -o. 52411.-0. 2s47, o. o. 2547, o. 524"• o.e 41!'J. 1. 2811 
400 DATA 46. 44. 45• 40• 46• 52• 117• 118, 112, 411 
410 DATA S7, 36• S3, 34, 63• 24• 62• 46, 61• 43 
420 DATA SO. 48• 45, 62. 56• 46. 46• 40• 44, 52 
430 IATA 43. 39• 49• 47• 42• 53, S3• 43, 41• 47 
440 DATA 46, 34, 38• 44, 43, 48• 48• 45, 41• 61 
450 DATA 42· S6. 40. 19, s2. 44, 49, 48. 46. 61 
460 DATA 6 !. 39, 48, S4• 49, 46, Sl• 6S• 51• 42 
470 DATA 47, 42, s6. 4s, 42, 3s, 4~. s1. s8. 37 
480 DATA 4s, ss. 36. 49. s9, s1. s2. 43, 4o. 43 
490 DATA 43, 43. 46, 47, 415• S7• SO• 44, S4• 44 
600 END 

* 
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RU'J 
WHAT I 5 THE VALUE OF 'II? 
? 100 
F"REQ TABLE FOR TRAc'llSFOR~Er: 08SEilvATI0"1S 

a.ASS FREQl'rnCY EXPEClED ~O. 
1 I'! 10 
2 8 10 
3 14 10 
4 12 10 
5 14 10 
6 13 10 
7 6 10 
8 7 10 
9 6 10 
10 12 10 

CHI-SQ!.JARE = 9•'3 Of\J 7 DOF 

* 

400 DATA -• 3023751-0•'3fl"881 1·96662•0• 309971.-0.P511f6 
.ti05 DATA 0•716976.-0.991966.-0.451391'!11•2051'!5.o.6902 
410 DATA 1·04625.-3.64143.-1.03501.-0.941516.0.36757 
41 5 DATA - 1. 06065. o. U!791~. -o. 455Ll4. - 15.761'! 5.-o. 8 53627 
420 DATA •0• 503163• 4. 44066.-2.03545.o. 299753.-0. 6!'621111 
42 5 DATA l • 1'!217 21•2. 7 30'39• o. 1"!2603• - 5• 69252• 5. !'il~03 
430 DAlA •97 eI'! 3011 - • 02068721·2· 62331. -9. 601 67. 2· 19 37 4 
435 DATA O· 6541891 • l l• 5311• 2• 59715• o. 71113331 •0• 41.6661'1 
4110 DATA -0.859211'!1•1·25742.-0.101315.1· 11337•-0•729777 
445 DATA Oe772719.·3·1132.-12·036'0·02211493.-23e61151 

* 
RU:-1 

WHAT IS THE VALUE OF N? 
? 50 
F"REQ TA!ll..E FOR TRA'llSFOR"IED Ol!ISERVATIO'llS 

CLASS FREQUE!llCY EXPECTED NO. 
1 2 5 
2 1 5 
3 2 5 
4 1 5 
5 2 5 
6 24 5 
7 16 5 
I'! 2 5 
9 0 5 
10 0 5 

CHI-SQUARE • 120 OV 7 OOF 

* 
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2 2freedom. The value of x0•05 , 7 14.07 and Xo.l0, 7 12.02. Hence 
there is no statistical evidence to reject normality at levels of 
significance a = 0.05 or a = 

.. 
0.10. The same discussion of the mean-

ing of deciding for the Poisson distribution in the previous example 
applies to the decision to "accept" normality in this case. 

In a second example, we consider 50 observations from the Cauchy 
distribution obtained by using the program CAUCHY. The program 
NORMFIT has been used with these data. The computed value of chi-

2 square is found to be 120. As Xo.Ol, 7 18.48, the evidence is clear 
that the observations do not come from a normal population. This 
would suggest, for instance, that distribution-free methods of esti-
mating parameters and testing hypotheses should be used with such 
data. 

Exercises 9.4 

Use the computer as required. 

1. Use NORMFIT to test the hypothesis that the following data come 
from a normal distribution. 

1.84 2.8 1.14 4.69 0.38 3.32 1.05 22.07 0.74 2.21 
9,5 0.79 2.81 1.2 3.41 6.55 9.01 0.98 4.42 2.12 
1.1 2.05 2.73 4.11 1.95 6.68 i.65 11.41 19.81 2.42 
2.69 9,32 11.2 1.38 0.14 9,38 6.88 1.36 1.68 1.85 
1.05 1.5 1.88 4.57 8.69 0.81 1.09 0.21 1.22 6.28 

2. Consider the exponential distribution with pdf 

1 -x//.. for x > 0 ~ 
f(x;/..) 

0 elsewhere 

(a) Use the data of Exercise 9.4.1 to estimate /.. unbiasedly by 
A:. 

(b) Solve the equation y = 1 - e-x/A for x given y = O.l(O.l)(0.9) 
to find the endpoints of 10 equal probability intervals for 
the data of Exercise 9.4.1, assuming the exponential family 
is appropriate. 
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(c) Carry out a chi-square goodness-of-fit test for the data 
of Exercise 9.4.1 to test the hypothesis that the data 
come from an exponential distribution. What is the appro-
priate number of degrees of freedom? (Use a= 0.05.) 

3. The following are "classical" data collected by Borkiewicz*, 
giving the number of deaths due to' kicks from a horse in 200 
Prussian army corps years. 

Number of deaths 0 1 2 3 4 
Number of corps years 109 65 22 3 1 

Can the assumption be retained that these data are described by 
the Poisson distribution? 

4. Since 1895 the record for the mile run until the middle of 1975 
has been reduced 23 times. The magnitudes of the reductions are 
classified below. Time is measured in seconds. 

Interval l!t:equency 

o.o < t ~ 0.5 9 
0.5 < t ~ 1.0 4 
1.0 < t ~ 1.5 2 
1.5 < t ~ 2.0 5 
2.0 < t ~ 2.5 2 
2.5 < t ~ 3.0 1 

Test the hypothesis that the data are uniformly distributed on 
(0,3.0). (Use a= 0.05.) 

5. Extend the program ERRORS to calculate the ehi-square test 
statistic for the hypothesis that the observations are from a 
uniform distribution on (-0.5,0.5). Carry out the test for 
N = 1000 for several different runs using the RANDOMIZE command. 

*M. Fisz, Probability Theory and Mathematical Statistics, Wiley, 
New York, 1963, pp. 141-142. 
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SIMPLE LINEAR REERESSION AND ASSOCIATION 

10.1 INTRODUCTION (THE LEAST SQUARES LINE) 

In almost every physical and social science it is of crucial import-
ance to examine the relationship between variables. In many physical 
sciences it has been possible to postulate a deterministic model to 
describe the relationship between an independent variable and a de-
pendent variable. For example, the distance traveled by a freely 
falling body as a function of the independent variable time is given 
by 

s = f(t) =~t 2 2 

Here if s is measured in feet and t in seconds, then g is the accel-
eration constant equal to 32 ~/sec 2 , approximately. This relation-
ship is deterministic. For any value of t, there is a single value 
of s given by this function. If t = 1, then s = f(l) = 16. There 
are many other situations in which a relationship exists between a 
dependent variable and an independent variable, but the relationship 
is not deterministic. As an example, we know that the weight of male 
infants is related to the infants' age. Nevertheless, it is obviously 
untrue that all 3-month-old male children have a given weight. In 
simple linear regression we wish to examine a relationship between 
an independent real variable x and a dependent random variable Y. 
Such a model is called stochastic. 

353 
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In the simple linear regression model we assume that for every 
value of x, the expected value of Y can be written as a real-valued 
function of x. Further it is assumed that the particular function 
is linear in x. Hence 

E(Yjx) = a. + Bx 

The line with unknown slope B and intercept a. is called the theoretical 

regression line. In Fig. 10.1.1 we indicate that there is a popula-
tion of possible values of Y for any value of x. For x = ~· the 
expected value of Y is a. + Bx1 which in this case is less than the 
expected value of Y for x = x2 • In general, this relationship is 
indicated by the following: 

E(Y.) =a.+ Bx. 
J. J. 

For the example of infant male weights, the expected weight of x-
month-old males is assumed to be a linear function of x. 

One statistical problem is to obtain estimates of the unknown 
parameters a. and B· In Fig. 10.1.2 we have plotted the weights in 
pounds of n = 5 male infants of different ages (measured in months) 
as given here: 

0 x x
I 

The Theoretical Regression Line 

F.ig. 10.1.1 
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y 
Weight 

20 

16 

12 

0 2 4 6 8 10 x 
Age 

The Least Squares Line 

Fig. 10.1.2 

Infant(i) Age(xi) Weight(yi) 

l 2 12 
2 3 13 
3 4 17 
4 5 18 

5 6 20 

It is clear from Fig. 10.l.2 that there is no line through all five 
points. We must choose a line which, according to some reasonable 
criterion, fits all points well. The slope and intercept of this 
line will be used to estimate ~ and ~. A criterion which is often 
used is to choose from all lines of form a + bx, the one for which 

the quantity 

n 2 
I: (y. - (a+ bx.)) (10.l.l)

i=l i i 
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is least. The difference y. - (a+ bx.) is the vertical difference 
1. 1. 

between the observed value of Y at x = x. and the value of the arbi-
1. 

trary line a+ bxi at x =xi. There is a unique line called the 
least squares line which minimizes expression (10.1.1). The inter-
cept and slope of this line are given by 

" - ~Cl. = Y - px and (10 .1. 2) 

We leave the proof of this to the problems. In the example here we 

find x = 4, y = 16, Ei=1 (xi - x)(yi -,...y) = 21, and Ei=1 (xi - x) 2 

10. Hence a = 16 - 2.1(4) = 7.6 and $ = 21/10 = 2.1. This line is 
graphed in Fig. 10.1.2. 

It is important to keep clearly in mind the fact that the line 
in Fig. 10.1.1 is a theoretical line with intercept and slope satis-
fying E(Yjx) = a. + $x. The parameters a. and S are unknown and after 
estimation are still unknown, just as µ is unknown after estimation 
by an observed value of X. The least squares line in Fig. 10.1.2 
is calculated from a single observation from each of the populations 
of infant males of ages 2, 3, 4, 5, and 6 months, respectively. If 
another such sample were taken, the observations (2,y1 ), (3,y2 ), 
(4,y~), (5,y4), and (6,y5) would be different and the values of a 
and S would be different. Hence the least squares line would also 
be different. The estimates a and aare random variables estimating 
a. and $, just as Xis used to estimate µ. We turn to the statistical 
properties of these estimators in the next section. 

Problems 10.1 

l. Suppose we observe the following pairs of observations (xi,yi)' 
i = l, 2, ••• , 5: (2,3), (4,1), (6,7), (8,5), (10,9). Find 
the equation of the least squares line. 

2. Show that the least squares line defined by Eq. (10.1.2) passes 
through the point (x,y). 
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3. (a) Find the minimizing value of x for the quadratic function 
2px + qx + r for p > O. 

(b) Introduce the variable a' = a + bx in expression (10.1.1) 
and show that expression may be written as 

n n n 
E (y. - a 1 ) 2 - 2b E (x. - x)(y. - y) + b2 E (x. - x) 2 

1 1 1 1i=l i=l i=l 

(c) Show that the second two terms in part (b) are minimized by 
~as defined in Eq. (10.1.2), and this does not depend on 
the value of a'. Show that the first term is minimized by 
a' = y, and hence a= y - ~x and Eminimize expression 

(10.1.1). 

4. Assume that E(Y]x) = Sx, i.e., the expected value of Y lies on 
a line through the origin. Find the equation of the least squares 
line through the origin based on a sample (x.,y.), i = 1, 2, •.. ,

1 1 
n. 

5. In time series with an odd number of equally spaced time points, 
time is o~en considered an independent variable, and the values 
of a dependent random variable Y are measured at each time point. 
Assume time is coded as -T, -(T - 1), •.• , 0, ... , T - 1, T, and 
the observation at time t is denoted by yt. Show that the inter-
cept and slope of the least squares line are given by a= y and 

~ = E~=-T 3tyt/T(T + 1)(2T + 1). 

6. Use the following data on the civilian labor force in the United 
States, together with the previous problem, to find the least 
squares line coding 1969 as -2, etc. 

Year Civilian labor force(lOOO's) 

1969 80,733 
1970 82,715 
1971 84,113 
1972 86,542 
1973 88,714 



358 Simple Linear Regression and Association 

7, The following gives the scores of 10 persons on a verbal entrance 
examination and their grade point average (GPA) at the end of 
their freshman year. Use GPA as the dependent variable to find 
the least squares line given the following data: 

Verbal exam(x) 620 640 760 520 680 560 780 580 670 620 
GPA(Y) 3.28 3.16 3.40 2.88 3.64 3.24 3.80 2.80 3,54 2.96 

10.2 INFERENCE IN THE LINEAR REGRESSION MODEL 

10.2.l Statistical Properties of a and S 
The statistical properties of the estimators a and g cannot be deter-
mined without further assumptions concerning the random variables 
Yi. The following assumptions, quite commonly made, permit infer-
ence concerning a and a. 

1. Y. =a + ax. + e. for real xi' i = 1, 2, . . . ' n • 
1 1 2 1 

2. The e. - N(O,cr ), i = 1, 2, ... ' n. 
1 

3. The e. and hence the Y. are independent.
1 1 

Assumptions 1 and 2 together imply that E(Yi) =a+ Sxi as before. 
Notice that only ei is random on the right-hand side of the equation 
in 1. The same assumptions also imply that Var(Y.) = Var(e.) = cr2 

1 1 

for all i, that· is, the variance of the Y populations is the same 
for all x. This is suggested by the symmetry of the density functions 
in Fig. 10.1.1. The assumptions of normality of the ei, and hence 
of the Yi, and the independence of the ei' and hence of the Yi' will 
lead to confidence intervals and to tests of hypotheses for a and a. 
The equation Yi = a + Sxi + ei means that the random variable ei can 
be thought of as a random error term to be added to the true expec-
tation a+ Sxi to yield values of Yi. This is the reason for the 
choice of notation e .• 

1 
We will concentrate on the statistic S, which estimates $. The 

results for aas an estimator of a are found analogously. The param-
eter a represents the theoretical average change in y per unit in-
crease in x. This clear from the fact that a is the slope of the 
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theoretical regression line (see Fig. 10.1.1). In the example S 
would represent the average change in weight per month for infant 
males. From Eq. (10.1.2) we have* 

E(S) E[: 
(xi 

(xi 

- i)(Yi 

- xl2 

- Y)] 

I (xi - x)(E(Y.)
l 

- E(Y)) 

I (xi - xl2 

I (x.
l 

- x) (a + Sx. 
l 

- (a + Sx)) 

I (xi - xl2 

s [' <x, - :):] s 
I (x. - x)

l 

Thus S is an unbiased estimator of $. The variance of Smay be 
found as follows: 

I (x. - x)Y.]~ l lVar(S) = Var [ _ 2 
I (x. - x)

l 

I (x. - x) 2Var(Y.)
l l 

- 2 2( I (x. - x) )
l 

ri 2 
2 = 08

I (x. - x)
l 

The independence assumption has been used to write the variance of 
a sum as the sum of the variances. The fact that I (x. - x)(Y. - Y)

l l 

= I (x. - x)Y. has also been used. Finally from Eq. (10.1.2) Bis
l l 

a sum of independent, normally distributed random variables. A 
theorem from mathematical statistics states that such a sum is again 
normally distributed. Hence 

*All summations in the remainder of this chapter are for i l to 
i = n, unless otherwise indicated. 
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z (10.2.1) 

has the standard normal distribution. 
Similar reasoning leads to the following results for CL· 

E(a) CL 

and the random variable 
A 

CL - CLZ=--
0"

CL 

has the standard normal distribution also. 

10.2.2 Estimation of o2 and the ANOW!. Table 

There remains one parameter of ~he model described in assumptions 1 
through 3, namely o2 , which has not been estimated. We define Y. = 
a+ sx., i = 1, 2, ••• , n, which are referred to as the predicted 

1. 

1. 
values of the Y observations at x =xi. It is left as a problem to 
show E Y./n = Y. We now introduce the concept of "partitioning the 

1. 
variability" of the Y observations. The following equality is valid 
and also left to the problems 

r (Y. - Y) 2 = r (Y. - Y) 2 + r (Y. - Y.) 2 (10.2.2)
1. 1. 1. 1. 

The left-hand side of this equation represents the "variation" of 
the Y observations about their average. The first term on the right-
hand side represents the variation of the predicted Y observations 
about their average. This term is referred to as the sum of squares 

due to regression (SSR). The remaining term on the right in Eq. 
(10.2.2) is the sum of the squares of the (observed-predicted) Y 
values. The value Y. - Y. is referred to as the ith residual. The 

1. 1. 

last term on the right is called the sum of squares due to error 
(SSE), or the sum of squares of the residuals. It is this sum of 
squares which is used to estimate o2 as we see in the following 
theorem. 
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THEOREM 10.2.1. Under the assumptions 1 through 3, 

[l: (y. - y. )2] 2 
E i i = o 

n - 2 

Proof: We find the expectation of the first two sums of squares in 
in Eq. (10.2.2). 

E ( l: ( Y. - Y) 2 ) E ( l: (a. + Bx. + e. 
l l l 

+ 28 l: ( e. - e) (x. - x))
l l 

2 - 2 2B l: (x. - x) + (n - l)o
l 

using Sec. 5.3.1. 

E(l: (Y. - Y) 2 )
l 

However as Var(S) = o2/l: (x. - x) 2 = E(S2 ) - s2 , we find 
l 

02 
E(l: 6. - 1)2 ) ( + 82 ) l: (x. - x) 2 

l -)2 ll: (x. - x 
l 

o 2 + 82 l: (x. - i:)2
l 

Taking expectations in Eq. (10.2.2) and canceling the common term, 
we have (n - l)o2 = o2 + E(l: (Y. - Y.) 2 ), from which the theorem 

l l 

follows directly. The statistic 

A 2
l: (Y. - Y. )

l l 

n - 2 

is called the mean square for error (MSE) and is an unbiased esti-
mate of o2 • 
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Table 10.2.1 ANOVA Table 

Source Sum of squares d.f. MS EMS 

"2 - 2 02 + 132 E - 2Regression 13 E (x. - x) 1 SSR (x. - x)
J. J. 

E ( " 2 (J2 02Residual Yi - yi) n - 2 

Total E {yi - y)2 n - 1 

[Incidentally the proof does not use the normality assumption, so 
that is only required that the e. are independently distributed with 

2 J. 
E(e.) = O and Var(e.) = o .]

J. J. 
The partitioning of the variation of the Y's and other related 

information is generally summarized in an analysis of variance 
(ANOVA) table. The format of the ANOVA table for the simple linear 
regression model is given in Table 10.2.1. The first column of the 
table gives a verbal description of the source of the variation of 
the corresponding sum of squares. The second column gives expres-
sions for the sum of squares. It is le~ to the problems to show 
that the sum of squares for regression (SSR) can be written as 
"2 - 213 E (x. - x) • The next column gives the degrees of freedom and 

J. 
the column labeled MS (mean square) is the quotient of the sum of 
squares divided by the appropriate degrees of freedom. The last 
column gives the expected values of the corresponding mean squares, 
which were derived in the proof of Theorem 10.2.1. 

For the example of Sec. 10.1 we obtain the following table. 

Source SS d.f. MS EMS 

Regression 44.1 1 44.1 o2 + 10132 

Residual 1.9 3 0.633 02 

Total 46 4 

The sum of squares for regression has been calculated as 
$2 E (x. - x)2 = (2.1)2(10) = 44.1. The total sum of squares has

J. 
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been calculated as E (y. - y) 2 = 46. The sum of squares of the 
1 - 2

residuals is generally computed as E (y. - y) - SSR = 46 - 44.1 
1 

1.9. The value of cr2 = 1.9/3 = 0.633 is the point estimate of cr2 • 

10.2.3 Inference for a and $ 

As in Sec. 10.2.1 we shall concentrate on inference for $ and indi-
cate that analogous confidence intervals and tests can be found for 
the parameter a. We have seen in that section that the random vari-
able still depends on the unknown parameter cr, as crg_: cr,v/r (xi - x) 2 . 
It seems reasonable again to write s~ = crr/E (xi - x) 2 and consider 
the statistic 

(10.2.3) 

The unknown parameter cr has been replaced by an estimate, the square 
root of the error mean square (MSE}. It can be shown that under the 
assumptions 1 through 3 of this section that the random variable in 
Eq. (10.2.3) has Student's t distribution with n - 2 degrees of 
freedom. With this knowledge it is possible to construct confidence 
intervals and carry out tests for the unknown parameter e. 

It is now straightforward to show that a (1 - a)lOO% confidence 
interval for e has endpoints given by 

In the example of this section we find a 95% confidence interval for 
the true average monthly weight gain to be given by 2.1 :t 
lo.633/10 t 0 •025 , 3 or by the interval [1.299, 2.9012]. Tests of the 
hypothesis Ho: s eo versus the alternatives (1) s > So, (2) 
S < S0 , and (3) S f S are based on the statistic t = (B - S0 )/s§· 
The critical regions for a-level tests are found to be t > ta,n-2 ' 

t < -ta,n-2 ' and ltl > ta/2 ,n_2 , respectively. Suppose we wish to 
test the hypotheses 

versus 
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for our example data. The critical region for a test with signifi-

cance level 0.05 is given by t > t 0 •05 , 3 = 2.353. As t = 
(2.1 - 1.5)/0.2517 = 2.384, we would conclude that the true average 
growth rate for male infants exceeds 1.5 lb/month. Similar confidence 
intervals and tests for a (in the regression model) can be found by 
replacing cr by cr in the expression for crA• a 

10.2.4 The Coefficient of Determination 

A natural question to consider concerning the simple linear regres-
sion model is whether the model is actually satisfactory. We have 
seen above that the relationship [see Eq. (10.2.3)] 

E (y.
]. 

- y)2 = SSR + SSE 

is valid. Here SSR represents the sum of squares for regression and 
SSE the sum of squares for error (or residual). The ratio r 2 = 
SSR/E (y.

]. 
- y) 2 is called the coefficient of determination. As SSR 

r 2and SSE are nonnegative it is clear that O ~ ~ 1. The statistic 
r 2 can be interpreted as the "proportion of the variation in Y ex-
plained by regression." It is useful to consider the extreme cases 

)2r 2 = 1 and r 2 = O. If r 2 = 1, then SSE= <' u ( yi - yiA = O. Hence 
y. for i 1, 2, ••• , n, and since they. lie on a line, the 

]. ]. 

original observations do also. 
In the ca.se that r 2 O, either AS = 0 or E (x.

]. 
- -x) 2 = O. The 

later can occur only if we observe Y at one value of x. Clearly we 
will not be able to make any statement about the change in Y per 
unit change in x if we observe Y at one value of x. We exclude this 
possibility. The situation in which 8 = o implies that y- = a = y. 
This implies that knowledge of x does not assist in estimating E(Y). 
For example, we would surely accept the hypothesis S = 0 as t = O. 
Thus we would retain the assumption E(Yjx) =a, i.e., the expected 
value of Y does not depend linearly on x. This does not necessarily 
imply that there is no relation between the observed values of Y and 
x. Suppose we consider the (admittedly contrived) observations: 
(-2,4), (-1,1), (0,0), (1,1), (2,4). We compute B= 0 and y = 2. 
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x 

Fig. 10.2.1 

As indicated in Fig. 10.2.1, the observations lie on the parabola 
y = x 2 • However, no line fits the observed values well. Thus 
r 2 = O means that the data do not indicate a linear relationship of 
the form E(Yjx) = a + Sx, with $ f O. Hence the coefficient of de-
termination is usually interpreted as a measure of the linearity of 
the relationship between Y and x. 

10.2.5 A Program for the Linear Regression Model 

The program LINREG computes the least squares line for n pointes 
(xi,yi) for i = 1, 2, ••• , n. The data are placed in DATA statements 
in lines 500-599 in coordinate pairs. The program requests the number 
of points n. The program output includes the values of a, $, sg, 
r 2 , and a and the t value for testing H0 : $ = 0. In addition the 
analysis of variance table is printed out. The program has been run 
for the example of this section. As another example let us consider 
the data on the U. S. Gross National Product in Table 10.2.2. Con-
sidering time to be the independent variable coded as 1, 2, ••• , 23, 
where 1 represents 1950, we obtain the regression line Y 309.86 + 

19.487t. The value of the coefficient of determination is r 2 = 0.963 
indicating a substantial degree of linearity of real GNP with time. 
The annual growth of GNP in 1958 billions of dollars is estimated by 

S=19.487 with SS= 0.837. A 95% confide~ce interval for $, the 
"true" annual growth of GNP has endpoints S ~ sgt0 •025 , 2l and is 
given by the interval [17.746, 21.228]. 



LINREG 

5 DIM TC50> 
10 REM THIS PROGRAM COMPUTES THE LEAST SQUARES LINE• 
20 REM THE ANOVA TABLE. AND RELATED STATISTICS FOR 
30 REM THE SIMPLE LINEAR REGRESSION MODEL 
40 REM DATA PO INTS SHOULD APPEAR IN LINES 500•599 IN PAIRS 
50 REM IoEo XC1>.Y<l>•X<2>.YC2>•••••X<N>•Y<N> 
60 REM THE PROGRAM WILL REQUEST THE VALUE OF No 
70 PRINT "WHAT IS THE VALUE OF N?" 
80 INPUT N 
81 DATA l2o7 062•4•3027•3ol824.2o7764•2o5706 
82 DATA 2o4469•2o3646•2o3060•2o2622•2o2281 
83 DATA 2o2010•2•1788•2•1604.2ol448.2ol315 
84 DATA 2oll99•2ol098•2ol009•2o0930•2o0860 
85 DATA 2o0796•2o0739•2o0687•2o0639•2o0595 
86 DATA 2.0sss.2.0518•2·0484.2.04s2.2.0423 
87 DATA 2o0395•2o0369·2·0345·2·0322.2o0301 
88 DATA 2o0281•2•0262•2•0244.12o0.227•2·0211 
89 DATA 2o0l95•2o0181•2•0167•2•0154•2•0141 
90 DATA Bo0129•2o0ll7•2·0106•2o0096.2o0086 
91 FOR I • 1 TO 50 
92 READ TC I> 
93 NEXT I 
100 FOR I • l TO N 
110 READ X.Y 
120 LET Xl=Xl+X 
130 LET X2• xe+Xt 2 
140 LET Yl = Yl +Y 
150 LET Y2 • Y2 +Yt2 
160 LET Zl• Zl+X•Y 
170 NEXT I 
180 LET Ml•X l/N
190 LET M2•Y l/N
200 LET Sl• xe-N•Mlt2 
210 LET S2• Y2·N•M2t2 
220 LET C • Zl·N•Ml•M2 
230 LET B • C/Sl
240 LET A • M2·B•Ml 
250 PRINT "VARIABLE"• "MEAN"• "STD DEV" 
260 PRINT "X".Ml.SQR<Sll<N-1 > > 
270 PRINT "Y"• M2• SQR< S2/ <N• 1» 
280 PRINT 
290 PRINT "FOR THE LEAST "J "SQUARES LINE" 
300 PRINT "INTERCEPT"• "SLOPE" 
310 PRINT A•B 
320 PRINT 
330 PRINT "ANOVA TABLE" 
340 PRINT "SOURCE"• "So So"• "DOF"• "Mo So" 
350 LET S3• S2-<Bt2>•S1 
360 PRINT "REGRESSION"• <Bt 2>•Sl•N-<N-I >• <Bt2>•SI 
370 PRINT "RESIDUAL"• S3•N·2• S3/CN·2>
380 PRINT "TOTAL"• S2• N-1 
390 PRINT 
400 LET F • <Bt2>•Sl•<N·2>1S3 
410 PRINT "STD DEV OF B"•"T-VALUE"• "F VALUE" 
420 LET T • SQR<F>
430 PRINT SQRCS3/CS1•<N·2>>>•T.1F 
440 PRINT "SIGMA-HAT"•"COEFFICIENT OF DET" 

https://SQRCS3/CS1�<N�2>>>�T.1F
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450 PRINT SQRCS3/CN-2>>•<Bt2>•Sl/S2 
460 PRINT "SAMPLE CORRELATION COEFFICIENT R a "JB•SQRCSl/52> 
464 PRINT "DO YOU WISH AN ESTIMATE OF THE AVERAGE VALUE OF Y?" 
468 PRINT "ANSWER 1 IF YES AND 0 IF NO" 
471 INPUT Q 
474 IF Q • 0 GO TO 700 
477 PRINT "AT WHAT VALUE OF X?" 
481 INPUT Xl 
484 PRINT "THE ESTIMATE IS "JA+B•Xl 
487 PRINT "A 95 PERCENT CONFIDENCE INTERVAL FOR THE AVERAGE Y IS" 
491 LET V =SQRCS3/CN-2>•Cl/N+CX1-Ml>t2/Sl>> 
493 PRINT "L • "JA+B•Xl-V•T<N-2>1" U= "JA+B•Xl+V•T<N-2) 
497 GO TO 464 
500 DATA 2•12•3•13•4•17•5•18•6•20 
700 END 

* RUN 
WHAT IS THE VALUE OF N? 

5 
VARIABLE MEAN STD DEV 

x 4 1·58114 
y 16 3·39116 

FOR THE LEAST SQUARES LINE 
INTERCEPT SLOPE 
7·6 2. 1 

AlllOVA TABLE 
S'.>URCE s. s. DOF Me Se 
REGRESSION 44.1 1 44.1 
RESIDUAL 1. 9 3 0·633333 
TOTAL 46e0 4 

STD DEV OF 8 T-VAl..UE F VALUE 
0.251661 5.34455 69·6316 

SIGMA-HAT COEFFICIENT OF DET 
00795822 00958696 

SAMPLE CORRELATION COEFFICIENT R • 0097913 
IO YOU WISH AN ESTIMATE OF THE AVERAGE VALUE OF Y? 
AllJSWER 1 IF YES AND 0 IF NO 

0 

* 
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500 DATA 1,355.3,2,353.4,3,395.1,4,412.s,5,407.0 
510 DATA 61438o0171446ol181452o5191447o31101475o9 
520 DATA ll1487o71121497o2113152908114155lo01151581·1 
530 DATA l61617081171658ol1l81675o21191706061201725·6 
540 DATA 21172505122174504123179007 

* 
RUN 

WHAT IS THE VALUE OF N? 
? 23 
VARIABLE MEAN STD DEV 
x 12 6078233 
y 543.7 1340702 

FOR THE LEAST SQUARES LINE 
INTERCEPT SLOPE 
3090858 1904869 

A'JOVA TABLE 
S::>URCE s.s. DOF Mo So 
REGRESSION 384295 1 384295· 
RESIDUAL 14886·5 21 7080881 
10TAL 399181· 22 

STD DEV OF B T-VALUE F VALUE 
00836944 23·2833 5420114 

SIGMA-HAT COEFFICIENT OF DET 
2606248 00962707 

SAMPLE CORRELATION COEFFICIENT R • 00981177 
IX) YOU WISH AN ESTIMATE OF THE AVERAGE VALUE OF Y? 
A'JSWER 1 IF YES AND 0 IF NO 
? 1 
AT WHAT VALUE OF X? 
? 24 
1HE ESTIMATE IS 777•542 
A 95 PERCENT CONFIDENCE INTERVAL FOR THE AVERAGE Y IS 
L • 753•678 U = 8010407 
ID YOU WISH AN ESTIMATE OF THE AVERAGE VALUE OF Y? 
IWSWER l IF YES AND 0 IF NO 
? 0 

* 
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Table 10.2.2 U. S. Gross National Product (1958 billions of dollars)a 

Year GNP Year GNP 

1950 355.3 1961 497.2 
1951 383.4 1962 529.8 
1952 395.1 1963 551.0 
1953 412.8 1964 581.l 
1954 407.0 1965 617.8 

1955 438.o 1966 658.1 
1956 446.l 1967 675.2 
1957 452.5 1968 706.6 
1958 447.3 1969 725.6 
1959 475.9 1970 725.5 
1960 487.7 1971 745.4 

1972 790.7 

8Economic Report of the President, 1974. 

Problems 10.2 

1. (a) For the data given in Problem 10.l.l, find the analysis of 
variance table and the values of r 2 , 82 , and sB. 

(b) Test the hypothesis H0 : 8 = 0 under the assumptions l 
through 3. 

2. Suppose that we have data on U. S. personal disposable income 
(x) and personal consumption (Y) over a period of 10 years. 
The least squares line is found to be 

and 

Both x and Y are measured in terms of constant 1954 dollars 
(billions). 

(a) Find a 95% confidence interval for 8· Give a verbal de-
scription of the meaning of $. 

(b) If the average personal consumption was $295 (in constant 
1954 billions), what was the average personal income (in 
constant 1954 billions)? 
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3. 

4. 

5. 

6. 

7. 

8. 

In a simple linear regression x represents the number of depend-
ents declared by an individual on his income tax return and Y 
represents the income tax due (in thousands). A sample of 52 
such returns yields 

52 52 2 
y = 2.5 - o.4x L. "' ( x. - x-)2 1600 I: (y. - y) 1506 

i=l J. i=l J. 

(a) Construct the ANOVA table for these data. 
(b) Find the value of the coefficient of determination r 2 . 
(c) Find a 95% confidence interval for $. 
(d) Test the hypothesis: H0 : 8 > -0.2 versus H1 : 8 < -0.2 

at level of significance a = 0.05. 

The heights (in inches) of different tomato plants (Y) was 
observed a~er varying periods of time (x) after being trans-
planted to the garden ( 3-9 weeks). The following summary data 

-are available: n = 10, x = 6, y 12, 

- 2I: (xi x) = 32 I: (xi x}(y. - Y:l 160 
J. 

-)2I: (yi - y = 1000 

(a) Find the equation of the least squares line. 
(b) What are the units 87 
(c) Construct the ANOVA table and find r 2 . 

Replace &by y - ax in the expression for Y. to prove that 
J. 

I: Y./n = Y. 
J. 

Show, using Problem 10.2.5, that I: (Yi O. (The sum of 
the observed residuals is o.) 

(a) Writing I: (Y. - Y) 2 = I: (Y. - Y. + Y. - Y) 2 show that the 
J. J. J. J. 

cross product term 2 I: (Y. - Y.)(Y. - Y) = 0 by replacing
J. J. J.

i. by r - s<x. - x>. 
J. J. 

(b) Prove that the basic equality of the ANOVA table in Eq. 
(10.2.2) is correct. 

(a) Using the fact that (x,y) lies on the least squares line, 
show that a= (y. - y}/(x. - x) for i = 1, 2, ... , n. 

J. J. 
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(b) Prove that the sum of squares for regression (SSR) may be 
written as a2 E (x. - i) 2• 

l. 

9. {a) Using the ANOVA table (Table 10.2.1) show that the SSR and 
a2 are both unbiased estimates of cr2 if s = o. 

(b) What is the relationship between E(SSR) and cr2 if S i O 
and the xi are not all equal? 

10. (a) If S = O, the statistic MBR/cr2 = F has the F distribution 
with 1 and n - 2 degrees of freedom under the assumptions 
of this section. A test at level a of H0 : S = 0 versus 
H1 : Si 0 can be made using the critical region F > 
F > F(l, n - 2) . 

2 a 
'(b) Show that t 0 •025 , 3 = F(l,3) 0•05 • 
(c) Show that the value of t for ~esting H0 : S = O versus 

H1 : Si 0 satisfies t 2 =Fas defined in part (a). 
(d) Demonstrate numerically that the tests of H0: S = O versus 

H1 : S i 0 are identical for the infant weight example of 
this section (for a= 0.05). In fact, the square of at 
variable with v degrees of freedom (tv2 ) has the same dis-
tribution as an F(l,v) random variable, so these two tests 
are equivalent for any given value of a. 

11. Show that E(&) = a, using the fact that E(a) = $. 

12. In the Quarterly Review of Economics and Business (Spring 1976), 
Paul C. Nystrom and Clarke C. Johnson present interesting data 
in an article entitled "Labor's Share: New Evidence on an Old 
Controversy," The variable "labor's share" was the dependent 
variable and the time measured in years was the independent 

variable. The model used was Yt = a+ St + et. The following 
regression lines were found in the indicated industries. 

Industry Regression line r 2 

Food yt 0.7777 - 0.00246t 0.31 
Petroleum yt "' 0.5598 o.00815t o.49 
Machinery yt = 0.7138 + 0.00349t 0.08 
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(a) In this case, t = 1, 2, 3, •.. , 18. Estimate labor's 
share in each of the industries at time t = 20. 

(b) Using the fact that the t statistic may be written as 
t = (r/~)~ with r having the sign of ~. test 
the hypothesis H0: B= O versus H1 : Bf 0 for each 
industry. (a= 0.05.) 

(c) In which of these three industries is there statistically 
significant evidence that labor's share is changing? 

Exercises 10.2 

1. The following table gives the total U. S. farm employment for 
1950-1972 in thousands*. 

Year Farm employment Year le.rm employment 

1950 9926 1962 6700 
1951 9546 1963 6518 
1952 9149 1964 6110 
1953 8864 1965 5610 
1954 8651 1966 5214 
1955 8381 1967 4903 
1956 7852 1968 4749 
1957 7600 1969 4749 
1958 7503 1970 4596 
1959 7342 1971 4523 
1960 7057 1972 4373 
1961 6919 

(a) Find the equation of the least squares line using the pro-
gram LINREG (code 1950 as O, etc.). 

(b) What is the value of the coefficient of determination. 
(c) Find a 95% confidence interval for B, the average change 

per year in total U. s. farm employment over this period. 

*Source: Economic Report of the President, 1974. 
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2. The following table gives the per capita disposable income in 
the United States from 1950-1972 in constant dollars*. 

Year 
Per capita 

disposable income Year 
Per capita 

disposable income 

1950 1646 1962 1969 
1951 1657 1963 2015 
1952 1678 1964 2126 
1953 1726 1965 2239 
1954 1714 1966 2335 
1955 1795 1967 2403 
1956 1839 1968 2486 
1957 1844 1969 2534 
1958 1831 1970 2610 
1959 1881 1971 2680 
1960 1883 1972 2767 
1961 1909 

(a) Find the equation of the least squares line coding time as 
in Exercise 10.2.1. 

(b) What is r 2? 

(c) Find a 95% confidence interval for $, the average change 
per year in per capita income in the United States over 
this period. 

10.3 PREDICTION USING THE REGRESSION MODEL 

We consider here the prediction of the average value of Y at a given 
level of x. The natural predictor of the expectation µYlx is given 
by 

(10.3.1) 

Under the model assumptions made in the previous section we see that 

E(PYlx) = E(& + Sx) = a + ex, so that the estimator is unbiased. The 

*Source: Economic Report of the President, 1974. 
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value of x at which the prediction is made Illlcy" be a value at which 
Y has not been observed. The statistic given by Eq. (10.3.1) is, 
of course, a random variable. Under the assumptions of the previous 
section we can find the variance of this estimator as follows: 

Var(&+ Sx) = Var(Y + S(x - x)) 
= Var(Y) + Var(S)(x - x) 2 

cr2 
= -+ 

n 

A 

The independence of y and a has been used here but will not be proved. 

Again µYlx is a normally distributed variable, so that 

µYlx - (a. + Sx) 

(x. - x) 2 
1 

has the standard normal distribution. It is also true that if cr is 
A 

replaced by cr, then 

t 
(x. - x) 2 

1 

has Student's t distribution with n - 2 degrees of freedom. 
As usual a confidence interval for µYjx is more informative than 

a point estimate. The usual (1 - a.)100% confidence interval for 

µYlx is given by 

A A /,....l--(-x---x-)-:-2 - tA 

a.+ax+cr -+~-~-- (10.3.2)
- n E (x. _ x)2 a./2,n-2 

1 

It is important to note that for a fixed value of the confidence 
coefficient, (1 - a.)100%, and observations (x.,y. ), i = 1, 2, ••• , n,

1 1 
the length of these intervals varies. It is least for x = x and 
increases as x gets further away from x. In Fig. 10.3.1 we consider 
again the data for infant weights. The endpoints of 95% confidence 
intervals are graphed for various values of x. It is clearly more 

risky to estimate µYlx at values of x far away from x than close to 
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LIN REG 

R.JN 
WHAT I .S THE VALUE OF N? 
? 5 
VARIABLE MEAN STD DEV 
x 4 1056114 
y 16 3o 39116 

FOR THE LEAST SQUARES LINE 
INTERCEPT SLOPE 

2o 1 

A'JOVA TABLE 
SJURCE So So DOF Mo So 
REGRESSION 44ol 1 44ol 
RESIDUAL 109 3 00633333 
TOTAL 46 4 

STD DEV OF B T-VALUE F VALUE 
00251661 6034455 6906316 

SIGMA-HAT COEFFICIENT OF DET 
00795822 00958696 

SAMPLE CORRELATION COEFFICIENT R = 0097913 
IO YOU WISH AN ESTIMATE OF THE AVERAGE VALUE OF Y? 
A\TSWER 1 IF YES AND 0 IF NO 
? 1 
AT WHAT VALUE OF X? 
? 7 
THF. ESTIMATE IS 22o3 
A 95 PERCENT CONFIDENCE INTERVAL FOR THE AVERAGE Y IS 
L = 1906436 U= 2409562 
IO YOU WISH AN ESTIMATE OF THE AVERAGE VALUE OF Y? 
A\TSWER 1 IF YES AND 0 IF NO 
? 0 

* 
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y 

0 2 4 6 8 10 x 
95 Percent Confidence Intervals for Average Weight 

Fig. 10.3.1 

x. For x = 7, we find CyJ 7 = 7.6 + 2.1(7) = 22.3. The endpoints 
of a 95% confidence interval for the average weight of 7-month-old 
male infants are given by expression (10.3.2) as 22.3 .:!:_ 

lo.6333(1/5 + 9/10) t 0 •025 , 3 . The interval is [19.64, 24.96]. The 
program LINREG has been written to estimate the expectation of Y for 
a given x and to provide a 95% confidence interval for the estimate. 

We indicate here, by example, two causes of erroneous predic-
tions using the linear regression model. Let us again consider the 
example of infant weights. The regression line was found to be Y = 
7.6 + 2.lx. If we estimate E(Yjx = 100), we find OYjlOO = 217.6 lb 
for an 8 1/3-year-old child. The data which produced this predic-
tion were taken over the period of the first 6 months after birth. 
While the linear model may be appropriate over a short period of 
time (say up to 10 months), growth is not linear over a long period 
of time. The model is hence deficient for long-term predictions. 
Consider the example of relating GNP to time. The least squares 
equation found in the previous section, Y= 309.86 + 19.487t, would 
predict GNP for 1973 (t = 24) to be $777-55B. The actual GNP for 
1973 was $839.2B (Source: Survey of Current Business, February 1975). 
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This estimate is again unsatisfactory. With economic time series, 
predictions based on long historical data are often not as accurate 
as those which weight more heavily the most recent past. Even with 
these methods, unforeseen economic events can (and do) lead to 
erroneous forecasts. One should generally limit the use of the 
simple linear regression model for forecasting to cross-sectional 
data (i.e., not a time series) and for values of x not too far from 
x. Elaborations of the simple linear regression model and other 
methods are more appropriate for time series data. 

Problems 10.3 

1. Using the information given in Problem 10.2.3 with the additional 
information that x= 2.3, find the predicted average income tax 
due for an individual with two dependents. Find a 95% confidence 
interval for this prediction. 

2. Using the information in Problem 10.2.4, find the predicted 
average height of tomato plants 8 weeks after being transplanted 
and also a 95% confidence interval for this prediction. 

3. Use LINREG with the data on infant weights of Sec. 10.1 to pre-
dict the weight of 6-month-old infants. 

10.4 ASSOCIATION AND CORRELATION 

In the previous sections of this chapter we have considered that the 
expected value of a random variable Y was a function of a real vari-
able x, that is, E(Ylx) = f(x). It is quite o~en the case that we 

observe the values of a bivariate random vector (X,Y) at n points, 
(x.,y.) i = 1, 2, ••• , n. However it is not possible to state which 

1 1 
random variable is dependent and which is independent. For example, 
we ma;y observe 

a. The height and weight of n individuals. 
b. The scores on a verbal test and a mathematics test for n persons. 
c. The inventory turnover (cost of goods sold/value of inventory) 

and the earnings as a percent of sales of n companies. 
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Y Weight 
x 

0 x 

Ei.g. 10.4.1 

We are aware that the random variables X and Y are often "correlated" 
or "associated." In example a. we would assume that higher weights 
and heights would occur together and lesser weights and heights would 
occur together. In Fig. 10.4.1 we illustrate this graphically. We 
would like to have a statistical measure of the intensity of the 
association between two random variables. 

10.4.1 The Correlation Coefficient 

We shall use the following notation in this section: t(X) = µ ,x 
E(Y) = µ , Var(X) = cr 2 , and Var(Y) = cr 2 We now consider measures y x y
of the population association between X and Y. We have previously 
(in Problem 3.2.14) introduced the covariance of X and Y which is 
defined by 

Cov(X,Y) E((X - µx )(Y - µy )) (10.4.1) 

If large values of X and Y occur together and small values of X and 
Y occur together the product (X - µ )(X - µ ) will tend to be posi-x y 
tive and so will its expectation. We denote Cov(X,Y) by cr and xy 
present several properties of the covariance in the following theorem. 
The proof is le~ to the problems. 
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THEOREM 10.4.1. If Oxy is defined, then 

a. a xy 
b. 

c. 
d. 

cr a xy yx
Cov(aX,bY) 

2 a = cr xx x 

abcr xy for any constants a and b. 

e. Cov(X, Y + Z) = Cov(X,Y) + Cov(X,Z). 

It is clear from part c of this theorem that the covariance itself 
cannot be used as a measure of association for if one of the random 
variables, say X is multiplied by a constant, then a is also multi-xy 
plied by the same constant. We would like to have a measure of 
association which is free of the units of measurement. 

The population parameter which is often used as a measure of the 
association between X and Y is the theoretical correlation coefficient 
between X and Y defined by 

a 
....&._p cr cr xy 

It is easy to see that p is free of the units of measurement of X 
and Y. Another important property of p is given in the following 
theorem. 

THEOREM 10.4.2. If pis defined for two random variables X and Y, 
then 

-1~p~1 

Proof: Consider the standardized random variables X' = 
(X - µ )/cr and Y' = (Y - µ )/cr • Both X' and Y' have expectationx x y y 
0 and variance 1. Clearly p = E(X'Y'). Consider E(X' + y•) 2• We 
have 

E(X' + tY' )2 E(X 1 ) 2 + 2E(X'Y')t + t 2(E(Y')) 2 

1 + 2pt + t 2 
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for any real t. However this quadratic in t is nonnegative for all 
t as it is the expectation of a nonnegative random variable. Hence 
the discriminant of this quadratic cannot be positive and 4p2 - 4 ~ O 
or p 2 

~ 1, which is equivalent to -1 ~ p ~ 1. 

It is natural to ask for a statistic, which can be calculated 
from a random sample of n independent observations (x.,y.), i = 1,

J. J. 
2, ••• , n, from the bivariate population (X,Y) to estimate p. If 
we estimate the covariance a byxy 

E (xi - x)(yi - y) 
a xy n - 1 
,... 

then a natural estimator of p is 

cr E (x. - x)(y. - y)
r=...N...._= J. J. (10.4.2) 

sxsy .,/E (x. - x)2 E (y. - y)2
J. J. 

The statistic r is called the sample correlation coefficient. The 
value of r is in fact numerically equal to the square root of the 
coefficient of determination, with the sign of f3 prefixed, calculated 
in the regression of Y on x. We can see this by writing 

E (x. - x}(y. - y) s Ss 
--~J.___--=J.___ ...,!. = ___!. 

r = (10.4.3)
E (x.J. - x)2 sy sy 

Hence 

,...2 2a s f32 E (xi - x)22 = __x_ = SSR r 
s y 

2 E (yi - y-)2 

The last expression is the coefficient of determination. Hence r, 
the sample correlation coefficient is the square root of the coeffi-
cient of determination, and by Eq. (10.4.3), r has the sign of$. 
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Inference for p may only be based on the knowledge of the dis-
tribution of the bivariate random variable (X,Y). If (X,Y) has a 
bivariate normal distribution*, it can be shown that 

cr 
E(Ylx) = µ + p-;}/-(x - µ )y cr x x 

The expectation of Y given x is then linear in x with slope p = 

S(cr /cr ). It is clear that p = 0 if and only if a= o. Hence it y x 
should not be too surprising that, in the bivariate normal case, a 
test of p = 0 is based on the same (numerical) t statistic used to 
test S = O. It can be shown that in the bivariate normal case 

t= r ~ (10.4.4) 
~ 

has Student's t distribution with n - 2 degrees of freedom if p = O. 
Hence against alternatives (1) p < O, (2) p > O, and (3) p f O, we 

have the critical regions t < -ta,n-2' t > ta,n-2' and ltl > ta;2,n_2, 
where the statistic tis defined in Eq. (10.4.4). 

We consider a small example to illustrate the computation of r 
and a test of p = 0. Assume that we obtain the following data from 
a sample of five firms. 

Earnings as a 
Company Cost of goods sold/inventory percent of sales 

1 3 10 
2 4 8 
3 5 12 
4 6 14 
5 7 16 

We find x = 5, y =12, E (x. - x)(y. - y) = 18, E (x. - x) 2 = 10,
l l l 

and E (y. - y)2 = 40. Hence r = 18//460 = 0.9. We consider a test 
l 

of H0 : p = 0 versus H1 : p > 0 assuming bivariate normality. We 

*The definition requires the multivariate calculus, see Draper and 
Smith {1966). 
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calculate t = (0.9//1 - 0.81)/3 = 3.576. As = 2.132, wet 0 •05 , 3 
would decide that p > 0 at the 5% level of significance. There is 
an apparent positive correlation between capital utilization and 
profits. 

A confidence interval for p can be found by using a transforma-
tion of r, namely z = T(r) = 0.5 log((l + r)/(l - r)), called Fisher's 
z after Sir Ronald Fisher, the famous British statistician. This 
statistic has approximately a normal distribution with E(z) 
0.5 log((l + p)/(l - p)) and Var(z) = l/(n - 3). Hence, approxi-
mately, P(z - 1.96//n - 3 2_ 0.5 log((l + p)/(l - p)) 2. z + 

1.96/~) = 0.95. The transformation T(r) is monotonic so that 
P(T-1 (z - 1.96/~) ~ p ~ T-1 (z + 1.96//n - 3)) = 0.95, where 
T-l is the inverse transformation of T. The program COR has been 
written to compute the correlation coefficient r and to calculate 
an approximate 95% confidence interval for p. 

10.4.2 A Distribution-free Measure of Association 

In this section we shall again assume that we are sampling from a 
continuous bivariate distribution (X,Y). Assume that (X1 ,Y1 ) and 
(X2 ,Y2 ) represent two independent observations from this distribu-
tion. We define a para.meter which reflects association between X 
and Y as follows. First let us define 

This para.meter represents the probability that two independent ob-
servations from (X,Y) are "concordant." Using the continuity assump-
tion, we define Tid = 1 - Tic as the probability that two independent 
observations from (X,Y) are "discordant." As a measure of associa-
tion we define T = Tic - Tid = 2Tic - 1. Note that if X and Y are 
independent, then TIC = 1/2 (why?) and T = O. Clearly as 0 ~Tic~ 1, 
-1 < T < 1. 

As an estimator of T based on a sample of n independent observa-
tions (Xi,Yi), i = 1, 2, ... , n, we use 
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n-1 n sgn(X. - X.) sgn(Y. - y )
1 J 1 j

t I: I: 
i=l j=i+l 

Assuming that X and Y are continuous variables, the probability 
X. = Xj for any pair (i,j) is 0 and similarly for Y. and Y.. Hence 

1 1 J 
sgn(X. - X.) sgn(Y. - Yj) = + 1. The value is +l if the ith and jth

1 J 1 -
pairs are concordant and -1 otherwise. Hence each of the (~) terms 

in the sum has expectation nc - Tid and E(t) = T. If X and Y are 
independent, E(t) = O. Similarly, under the independence assumption, 
we can find Var(t) = (4/9)(n + 5/2)/n(n - 1). A test of H0 : T = O 
can be made for small n using the tables available in the Handbook 

of Tables for Probability and Statistics (1966). These tables give 
the percentile points for the statistic t under the hypothesis of 
independence for n = 4 to 10. For larger values of n, one can use 

z = ----"-t__ 

IVar(tlH0 ) 

For the alternatives T > 0, T < O, and T f O, the usual critical 
regions are appropriate. 

More than a word of caution is required about the interpretation 
of a "statistically significant" correlation between two observed 
random variables. Such a correlation need not imply a causal rela-
tionship. For ex~le, the length of feet of children is correlated 
with their ability to do arithmetic problems, but this is due to the 
fact that with increasing age, both the length of feet and arithme-
tical ability increase. Often common trends in time of two time-series 
data yield a "spurious" correlation. The value of alcoholic consump-
tion and the value of razor blades sold may appear correlated due to 
a common inflationary trend. On the other hand, in many cases, the 
evidence of statistical correlation may, in fact, imply a true 
association between two random variables. 
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Problems 10.4 

1. Prove Theorem 10.4.1 using the definition 

Cov(X,Y) = E((X - µ )(Y - µ ))x y 

2. Prove that if two random variables are linearly related, that is, 
Y = aX + b, then p = 1 if a > 0 and p = -1 if a < O. 

3. In a correlation analysis we find E (x. - -x) 2 100, E (yi - y)2 = l 

64, and L (x. - x)(y. - y) = 48 with n = 18. 
l l 

(a) Find the value of r. 
(b) Test the hypothesis H0: p O versus Hl: p +0 assuming 

bivariate normality. (Use a. = 0.05.) 

4. Suppose in a sample of 29 adult males we measure the height X 
in inches and weight Y in pounds of each individual. We find 
E (x. - x) 2 = 100, E (y. - y) 2 400, and E (x. - x)(y. - y) = 

l l l l 

100. 
(a) Find the value of r. 
(b) Carry out the test of Problem 10.4.3 part (b). 

5. Suppose that two judges rank seven contestants in a diving 
competition. Test the hypotheses 

H0 : the judges rankings are independent. 
H1 : positive association exists between the rankings. 

Contestant A B c D E F G 

First judge 2 1 4 5 3 7 6 
Second judge 3 4 2 5 1 6 7 

(Use the statistic t and a. 0.07.) Note P(t > 0.524) 0.07 
if n = 7. 

6. In the absence of ties the statistic t is based on the ranks of 
the X observations and Y observations. It is clear from the 
definition of t that if the ranks of the X observations and Y 
observations replace the observations themselves, the value of 
t is not altered. 
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(a) Use the 24 possible permutations of the Y ranks together 
with the X ranks 1, 2, 3, 4 to find the null distribution 
of t for n = 4. 

(b) Verify th!¢ E(t) 0 and Var(t) (4/9)(n + 5/2)/n(n - 1), 
in this case. 

7. Lawrence G. Hrebiniak has studied the relationship between 
hospital size (measured by number of beds) and degree of pro-
fessionalism (measured by man-hours of work done by certain 
professional categories). His work appears in The Academy of 

Management Journal, December 1976, in an article entitled "Size 
and Staff Professionalism." He reports the following correla-
tions between size and staff professionalism. 

Private Private 
Staff Public (profit) (nonprofit) 

Psychiatrists 0.790 o.421 0.395 
Nurses (RN's) 0.762 0.781 o.888 
Administrative staff 0.340 0.165 0.390 

The number of public hospitals was 47, private (profit) hospitals 
was 76, and private (nonprofit) hospitals was 172. 
{a) Test whether each of the calculated correlations implies 

that H0 : p = O should be rejected in favor of H1 : p > O 
at significance level a = 0.05. 

{b) Find 95% confidence intervals for the theoretical correla-
tion coefficients. 

8. In an article entitled "Higher Education Tax Allowances: An 
Analysis," by Larry L. Leslie in the Journal of Higher Education 

(September/October 1976), the following correlations are reported. 
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Simple Correlation Coefficients between Appropriations and 
Sociometric TB.riables 

Appropriations to all public 
institutions per capita 

1960 1969 

Industrialization -0.57 -0.28 
Affluence 0.51 o.48 
Median school years 0.50 o.48 
College educated percent 0.28 o.4o 
Personal income 0.03 0.17 
Corporate income 0.02 0.26 
College age population 0.09 0.27 

The study involved observations from the 50 states. Which 
correlations appear significant at a = 0.05 level? Were there 
significant correlations for a:ny sociometric variables in 1960 
which were not significant in 1969? 

Exercises 10.4 

1. For 17 Miss America winners from 1959-1975 we give their weight 
and height. 

Year Height Weight Year Height Weight 

1959 65 114 1968 69 135 
1960 67 120 1969 67 125 
1961 67 116 1970 65.5 110 
1962 65.5 118 1971 68 121 
1963 65 115 1972 67 118 
1964 66.5 124 1973 68 120 
1965 66 124 1974 69 125 
1966 67 115 1975 68 119 
1967 66 116 

(a) Use COR to find the value of r. 
(b) Use the confidence interval to test p 0 versus p 0 at 

level a = 0.05. 
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OOR 

10 REM THIS PROGRAM COMPUTES THE PEARSON CORRELATION COEFFICIENT 
20 REM BASED ON A SAMPLE OF N POINTS FROM A BIVARIATE POPULATION• 
30 REM A 95 PERCENT CONFIDENCE INTERVAL FOR RHO IS FOUND 
40 REM USING FISHER'S APPROXIMATION• 
45 REM THE DATA SHOULD APPEAR IN LINES 500-699 IN PAIRS,
50 REM I.E. XCl),YCl),XC2),YC2>, ••• ,xcN>,Y<N> 
60 REM THE PROGRAM WILL REQUEST THE VALUE OF N• 
70 PRINT "WHAT IS THE VALUE OF N?" 
80 INPUT N 
100 FOR I • I TO N 
110 READ x,y
120 LET Xl•Xl+X 
130 LET X2• X2+Xt 2 
140 LET YI • YI +Y 
150 LET Y2 • Y2 +Yt 2 
160 LET ZI• Zl+X•Y 
170 NEXT I 
180 LET MI ,.X l/N
190 LET M2•Y I.IN 
200 LET SI• X2-N•Mlt2 
200 LET S2• Y2-N•M2t2 
220 LET C • Zl-N•Ml•M2 
240 LET R ,. C/SQR<Sl•S2>
400 LET U • 0o5*LOGCCl+R>.ICl-R>> + lo96•SQR<l.ICN-3>>
410 LET L • 0•5•LOGCCl+R)/Cl-R>> -lo96•SQRCl/CN-3>>
420 LET U,. CEXPC2•U>-l>.ICCl+EXPC2•U>>> 
430 LET L • <EXP<2•L>-1>.ICC1+EXPC2•L>>> 
440 PRINT " THE VALUE OF R•"J R 
445 PRINT 
450 PRINT "A 95 PERCENT CONFIDENCE INTERVAL FOR RHO IS GIVEN BYt" 
460 PRINT "L ,. "JL,''U • "JU 
500 DATA 2,5,3,5,6,5,4,3,5,4,3,1,1,2,4,4,5,5,6,6 
700 END 
•RUN 
WHAT IS THE VALUE OF N? 
7 5 

THE VALUE OF R• 008 

A 95 PERCENT CONFIDENCE INTERVAL FOR RHO IS GIVEN BYt 
L,. -0•279664 U • 00986197 

• 
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2. (a) The data below* give the 1970 rank of the states by popula-
tion and by land area. Find the value of r and test H0 : 
p = O versus H1 : p +0 using the Student t statistic. 
(Use a.= 0.05.) 

Rank by Rank by Rank by Rank by 
State population area State population area 

Alabama 21 29 Montana 43 4 
Alaska 50 1 Nebraska 35 15 
Arizona 33 6 Nevada 47 7 
Arkansas 32 27 New Hampshire 41 44 
California 1 3 New Jersey 8 46 
Colorado 30 8 New Mexico 37 5 
Connecticut 24 48 New York 2 30 
Delaware 46 49 North Carolina 12 28 
Florida 9 22 North Dakota 45 17 
Georgia 15 21 Ohio 6 35 
Hawaii 40 47 Oklahoma 27 18 
Idaho 42 13 Oregon 31 10 
Illinois 5 24 Pennsylvania 3 33 
Indiana 11 38 Rhode Island 39 50 
Iowa 25 25 South Carolina 26 40 
Kansas 28 14 South Dakota 44 16 
KentuckY 23 37 Tennessee 17 34 
Louisiana 20 31 Texas 4 2 
Maine 38 39 Utah 36 11 

Maryland 18 42 Vermont 48 43 
Massachusetts 10 45 Virginia 14 36 
Michigan 7 23 Washington 22 20 
Minnesota 19 12 West Virginia 34 41 
Mississippi 29 32 Wisconsin 16 26 
Missouri 13 19 Wyoming 49 9 

*Source: The World Almanac, 1975. 
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TAU 

10 REM THIS PROGRAM COMPUTES THE TAU STATISTIC 
20 REM BASED ON A SAMPLE OF SIZE N FROM A CONTINUOUS 
30 REM BIVARIATE DISTRIBUTION 
40 REM DATA SHOULD APPEAR IN LINES 500-699 IN PAIRS,
50 REM I.E. X<l>1YCl>1XC2>1YC2), ••• ,xcN>1YCN>·
60 REM THE PROGRAM COMPUTES KENDALL'S TAU1 THE ASSOCIATED 
70 REM P-VALUE1AND THE NUMBER OF PAIRS CONTRIBUTING 0 
75 REM TO THE CALCULATION OF <CONCORDANT-DISCORDANT>• 
80 PRINT "WHAT IS THE VALUE OF N?" 
90 INPUT N 
100 DIM xc100>1YC100)
110 FOR I "' 1 TO N 
120 READ XC I> 1 Y CI> 
130 NEXT I 
140 FOR I = 1 TO N-1 
150 FOR J = I+ 1 TO N 
160 IF CXCI>-X<J>>*<Y<I>-Y<J>>< 0 THEN 210 
170 IF CXCI>-XCJ>>*<Y<I>-Y<J>>• 0 THEN 200 
180 LET C= C+ 1 
190 GO TO 210 
200 LET Tl•Tl+l 
210 NEXT J 
220 NEXT I 
230 LET T •<2*C-N*<N-l)/2)/CN•<N-l>/2)
240 PRINT "TAU • "1T 
250 PRINT "NUMBER OF TIES = ".-Tl 
260 LET Z • T/SQRCC4/9)*CN+5/2)/CN•<N-1>>>
270 GOSUB 900 
280 PRHJT "IS THE ALTERNATIVE ONE-SIDED? 1 IF YES 0 IF NO" 
290 INPUT A 
300 IF A= 1 THEN 320 
310 PRINT "P-VALUE FOR TWO-SIDED ALTERNATIVE = "J2*P 
315 GO TO 1030 
320 PRINT "P-VALUE FOR ONE-SIDED ALTERNATIVE • "JP 
330 GO TO 1030 
500 DATA 2.-311.-4.-41215.-5.-31117.-6.-617 
900 LET Zl= ABS<Z> 
910 LET C=1/SQRC2>
920 LET Cl= 014112821 
930 LET C2• 008864027 
940 LET C3=o02743349 
950 LET C4= -·00039446 
960 LET C5=o00328975 
970 DEF FNZCX>=l-1/C1+C1*X+C2*Xt2+C3*Xt3+C4•Xt4+C5*Xt5>t8
980 LET P = o5+·5*FNZ<Zl*C> 
990 LET P = 1E-4*CINTC1E4*P>> 
1010 LET P = 1-P 
1020 RETURN 
1030 END 
* 
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RUN 
WHAT IS THE VALUE OF N? 
? 7 
TAU = 0·428571 
NUMBER OF TIES • 0 
IS THE ALTERNATIVE ONE-SIDED 1 IF YES 0 IF NO 
? 1 
P-VALUE FOR ONE-SIDED ALTERNATIVE • 0e0883 

* 
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(b) The program TAU computes t and the corresponding Z value 
for a large sample test of H0: T = 0. Use TAU to test 
H0: T = 0 for the data given in part (a). (Use a= 0.05.) 

3. The following gives the final batting averages and winning per-
centages for the National League teams in 1974. Use the program 
TAU to find the value of t and to test HO: T = 0 versus Hl: 
T > 0 (a= 0.025). 

Team batting average Team winning percentage 

Pittsburg 0.274 0.543 
St. Louis 0.265 0.534 
Philadelphi9. 0.261 o.494 
Montreal 0.254 o.491 
New York 0.235 o.438 
Chicago 0.251 o.407 
Los Angeles 0.272 0.630 
Cincinnati 0.260 0.605 
Atlanta 0.248 0.543 
Houston 0.263 0.500 
San Francisco 0.252 o.444 
San Diego 0.229 0.370 
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THE ANALYSIS OF VARIANCE 

11.1 INTRODUCTION 

In Chap. 8 we considered methods for testing whether there existed a 
a difference between the expectations of two populations. In sta-
tistical language we say that we are comparing the effects of two 
treatments. One compares the test performance of students taught 
by two teaching methods, the weight gain of animals on two diets, 
the life expectancy after two medical treatments, and so forth. 
It is quite natural to think of the number of different treatments 
being greater than two. Again we wish to compare the effects of the 
treatments and to make statistical statements concerning differences 
among such treatments. This topic is a part of the bodY of statis-
tical knowledge known as the analysis of variance and is considered 
in Sec. 11.2. 

In Chap. 10, in simple linear regression, we considered a means 
of ascertaining the influence of the real variable x upon the average 
value of a random variable Y. There are also the situations in which 
the level of a categorical variable or variables influences the value 
of a random variable Y. For example, we may consider that political 
attitude, measured by degree of conservatism on a 0 to 100 scale, 
may be affected by both the categorical variables of region of resi-

dence and income class. The regions could be east, south, midwest, 
and west, while the income classes could be low, medium and high. 

392 



393 11.2 Single-Factor Analysis of Variance 

We wish to analyze the effect of these two factors, region of resi-
dence and income class, upon political attitudes. In Sec. 11.3 we 
consider the randomized block design in this regard. These two 
areas of the analysis of variance present only a brief introduction 
to the vast and challenging statistical field of the design and 
analysis of experiments. 

11.2 SINGLE-FACTOR ANALYSIS OF VARIANCE 

11.2.l The One-Way Classification Model 

In Chap. 8 we considered two-sample situations. In Sec. 8.3 we 
specifically considered testing hypotheses concernihg the difference 
of the true means of two normal populations and finding a confidence 
interval for this difference. A natural extension is to compare the 
true means of t ~ 2 normal populations. Thus we assume that Xi 
X. N(µ. ,a2 ) , i = 1, 2, ••• , t. One hypothesis of interest is 

l. l. 

(11.2.1) 

Note that, as all theoretical variances are equal, this is equiva-
lent to stating that each of the t populations have the same distri-
bution. We might also be interested in testing a hypothesis of form 

ver§us 

This null hYPOthesis states that the average "effect" of populations 
1 and 2 is the same as the "effect" of population 3. A confidence 
interval for (µ1 + µ2 )/2 - µ3 might also be required. In this sec-
tion we consider a method of answering such questions which is 
referred to as the one-way classification model in the analysis of 
variance. 

The populations defined in the preceding paragraph are referred 

to as treatments. Initially, let us consider observing n observa-
tions from each of the t treatments, nt observations in all. Xij 
will refer to the jth observation on the ith treatment. Our model 
then is 
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X•• i 1,2, ••. ,t;j=l,2, ••• ,n
l.J 

2with eij - NID(O,cr ). The abbreviation NID means normally and inde-

pendently distributed. Hence each observation is independent of 
others in the same treatment and of all observations from the other 

ttreatments. By definingµ= Ei=lµi/t and µi = µ + ai, we write the 
basic model as 

(11.2.2) 

i = 1, 2, ••• , t and j = 1, 2, ••• , n. It may be easily checked that 
E1=lai = O. Thus µ can be thought of as an "overall effect" common 
to all the populations and ai = µi - µ as an "effect" due to the ith 
population. The hypothesis (11.2.1) is then restated as H0: ai = O 
for all i. 

The observed values of Xij are usually recorded in a table such 
as Table 11.2.1. Clearly tests about the theoretical means will be 
based on the sample means xi, so that these are calculated. Let x 
be the overall mean and consider the identity 

or 

which is obtained by mimicking the model equation (11.2.2). Squaring 
both sides of Eq. (11.2.3), summing first on j and ~hen on i, yields 

t n _ t _ _ t n _2 2 )2
E E (x.. - x) = n E (x. - x) + E E (x.j - x. 

i=l j=l l.J i=l J. i=l j=l J. J. (11.2.4) 

The identity (11.2.4) is the basic identity in the one-way classifi-
cation. It is symbolically written as 

SST = SSA + SSE (11.2.4') 

and read "the sum of squares for total equals the sum of squares 
among treatments plus the sum of squares for error." 
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Table 11. 2 .1 Observed Values of Xij 

Treatment Observations Mean 

1 xll xl2 xln xl 

2 x21 x22 x2n x2 ..................3 

-t xtl xt2 xtn xt 
t -x = L:i=lx/t 

Table 11.2.2 Analysis of Variance Table for the One-Way 
Classification 

Source 
of variation SS d.f. MS EMS 

2 t 2Treatments SSA t - 1 SSA/(t - 1) CJ + n L:i=la'i /(t - 1) 
(J2Error SSE t(n - 1) SSE/t(n - 1) 

Total SST nt - 1 

The information in Eq. (11.2.4) is summarized in an analysis 
of variance table such as that given in Table 11.2.2. This analysis 
of variance table is similar to the analysis of variance table of 
Sec. 10.2 in the regression case. Here the total sum of squares is 
divided into two parts, that due to variation among the treatments 
and that due to error. The degrees of freedom are integers chosen 
so that the respective mean squares are unbiased estimates of cr2 , 
under the hypothesis H0 : ai = O for all i. This is clear from the 
expressions given for the expected mean squares, whose derivations 
are left to the problems. Note that the mean square for error 
(MSE = cr2 ) is an unbiased estimate of cr2 whether or not H0 is true. 
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Now we consider a test of 

a.. = 0 i = 1, 2, ... ' t 
l 

versus (11.2.5) 

for at least one i 

The statistic which is used in this case is MSA/MSW. It is clear 
from the EMS column of Table 11.2.2 that under H0 both numerator and 
denominator estimate cr2 unbiasedly, but under H1 the numerator will 
tend to be larger. Hence we should reject H0 if MSA/MSW is large. 
It can be shown that MSA and MSW are independent x2 random variables 
divided by their degrees of freedom under H0 (although a proof is 
beyond the scope of this text). Hence MSA/MSW = F has an F distri-
bution with t - 1 and t(n - 1) degrees of freedom. Thus an a. level 
test of statement (11.2.5) is given by the critical region 
F > F(t - 1, t(n - 1))

(). 
• 

Let us consider an example of the one-way classification analysis. 
Assume that a football coach is interested in whether the statement 
"college grades increase with class 11 (i.e., freshman, sophomore, 
junior, senior) is true for his football players. He randomly se-
lects five players from each class and obtains their current GPA, 
which is measured on a 0.0 to 5.0 scale. The observations are re-
corded in Table 11.2.3. The program ONEWAY has been written to per-
form the analysis of variance computations for the one-way classifi-
cation. Data are entered according to the instructions in lines 100 
through 230. Here we see that the analysis of variance table given 
in Table 11.2.4 is appropriate. 

Table 11.2.3 Observed GPA 

Class Observations x. 
l 

Freshman 3.64 2.79 3.21 2.98 3.48 3.22 
Sophomore 
Junior 

4.23 
4.10 

3.53 
3.87 

3.62 
3.87 

4.98 
4.29 

3.50 
4.04 

3.97 
4.03 

Senior 4.50 4.24 4.36 3.77 4.24 4.22 
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Table 11.2.4 ANOVA Table 

Source SS d.f. MS EMS 

4 2Classes 2.917 3 0.972 02 + 5 L:i=l a1 /3 
2Error 2.536 16 0.1585 a 

Total 5.453 19 

The calculated value of the F = MSA/MSW = 0.972/0.1585 = 6.13. 
Hence if we wish to test the null hypothesis of no difference in 
grade averages among the classes (that is, H0 : ai = 0, i = 1, 2, 
3, 4) versus the alternative that such differences exist, we reject 
H if F > F(3,16) . If a = 0.05, the critical value is 3.24, and ifO a 
a = 0.01, the critical value is 5.29. As the calculated F value 
exceeds both of these, there is clear statistical evidence for the 
view that grade averages differ with class (i.e., freshman, sophomore, 
junior, senior). Of course we are more interested in how these grade 
averages differ. We shall take up this question later in the section 
when we discuss contrasts. 

It is often the case that the number of observations on a treat-
ment are not the same. For example in an educational experiment to 
compare the effectiveness of three teaching methods, we may observe 
the scores on a standardized exam for the students in each of the 
classes. It often will be the case that the number of students in 
the classes will differ. (This may happen even though we plan to 
have the same number in each class for example, if some students 
leave the course.) The appropriate model in such cases is given by 

i = 1, 2, ••• , t; j = 1, 2, ••. , ni 

2with eij - NID(O,o ). Using the following, 

n. n. 
l x .. t l x .. t

__.!..J._ __.!..J._x. L: x = L: L: N = L: n. 
l n. Nj=l ]. i=l j=l i=l l 
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we obtain 

n. n.t ]. - 2 ].t t - )2I: I: (x.j I: n.(x. - x) + I: I: (x .. - x. 
].i=l j=l ]. i=l ]. ]. i=l j=l l.J 

or SST = SSA + SSE. This corresponds to Eq. (ll.2.4) and reduces to 
that expression if ni = n for i = l, 2, •.• , t. 

The appropriate analysis of variance table in the case of unequal 
sample sizes is given in Table ll.2.5. In this case the test of 
H0: ai O, i = l, 2, ••• ,tis given by the rejection region 
F > F(t - l, N - t) , where the calculated statistic F = MSA/EMS, asa 
before. Again the mean square for error is an unbiased estimate of 

2 a whether H0 is true or not. 
As an example, assume the following are final exam scores of 

students from three different colleges in a statistics course. 

College Scores 

Agriculture ll2, 76, 124, 64, 132, ll2, 88, lOO, 80 
Liberal Arts 84, lOO, 56, 108, 96, 64, 92, 124, 136, l32 
Home Economics Bo, 96, 96, 92, ll6 

Here we see that n1 = 9, n2 = lO, and n3 = 5. Using the program 
ONEWAY, the analysis of variance table is constructed in Table ll.2.6. 
The calculated F = 0.0327 and F(2,2l)0 •05 = 3.49. Hence there is 
no statistical indication of difference in performance due to college 
of registration. 

Table 11.2.5 ANOVA Table One-Way Classification (Unequal n.)
]. 

Source SS d.f. MS EMS 

t 2Treatments SSA t - l SSA/(t - l) cr2 + I:i=lniai /(t - l) 

cr2Error SSE N - t SSE/(N - t) 

Total SST N - l 
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Table 11.2.6 ANOVA Table 

Source SS d.f. MS EMS 

cr2 3 2Colleges 35.733 2 17.8667 + Ei=lniai /2 
2Error 11481.6 21 546.7428 cr 

Total 11517-333 23 

11.2.2 Comparisons or Contrasts 

It is orten the case, as we have noted above, that in a statistical 
analysis using the one-wa;y classification we wish to find out more 
information about treatment means than just deciding to reject or 
accept the hypothesis in Eq. (11.2.1). We orten desire to compare 
two particular treatment means or one treatment mean with all the 
others. Such comparisons can be expressed as statistical hypotheses 
of the form 

t t 
E A.µ. 0 where E A. 0 (11.2.6)

i=l 1 1 i=l 1 

Such a linear combination of the µi is called a comparison or contrast. 
Consider the first example of Sec. 11.2.1. Suppose we wish to compare 
the grade averages of juniors and seniors. We test H0: - = 0µ3 µ4 
versus H1 : - µ4 T0. Evidence for H1 suggests the GPAs of juniorsµ3 
and seniors differ. The contrast µ1 - (µ2 + µ 3 + µ 4)/3 can be used 
to compare freshman with upper classmen. 

Let us consider the general case of testing the null hypothesis 
that a contrast is zero, i.e., Eq. (11.2.6). The same linear combi-

- t -nation of the observed means xi, L = Ei=lAixi is an unbiased esti-
mate of the contrast. Assuming an equal number of observations for 
each treatment, we see that Var(L) = (cr2/n) E~ 1A. 2 • It is natural

1= 1 
to consider the standardized statistic (L - E(L))/v"ii!iXTLT. Under 
Eq. (11.2.6), E(L) = 0 and Z = L/~would have the standard 

2normal distribution. However, cr is not known and is replaced by 
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ONEWAY 

00100 
00110 
00120 
00130 
00140 
00150 
00160 
00170 
00180 
00190 
00200 
00210 
00220 
00230 
00240 
00250 
00260 
00270 
00272 
00274 
00280 
00290 
00300 
00310 
00320 
00330 
00340 
00350 
00360 
00370 
00380 
00390 
00410 
00420 
00430 
00440 
00450 
00460 
00470 
00480 
00490 
00500 
00510 
00520 
00530 
00540 
00550 
00560 
00570 
00580 
00590 
00900 
00901 
00902 
00903 
01000 
* 

REM DESCRIPTION: COMPUTES THE ANALYSIS OF VARIANCE TABLE 
REMFOR A ONE-WAY COMPLETELY RANDOMIZED DESIGN. 
REM INSTRUCTION: ENTER UATA IN LINE 900 ANU FOLLOWING. 
REM ENTER DATA IN THE FOLLOWING ORDER: 
REM 1) THE TOTAL NUMBER OF OBSERVATIONS 
REH 2) M, THE NU~BER OF DIFFERENT TREATMENTS 
REM 3) N(l), ••• ,N(M), WHERE N(J) IF THE NUMBER OF 
REM OBSERVATIONS ON TREATMENT J. 
REM 4) AND THEN, THE OBSERVATIONS THEMSELVES, FIRST FOR 

REM TREATMENT l) THEN TREATMENT 2, ETC. 
REH IF ANY N(J)> 20, CHANGE THE DI~S IN LINE 240 
REM IF M > 10,CHANGE THE DIMS IN LINE 240. 
REM SAMPLE DATA IS IN LINES 

REM 900 THROUGH 903 
DI:t X(20,10),N(lO),T(lO),S(lO) 
READ A,M 

MAT S ZER 
LET U 0 
LET R 0 
LET V 0 
MAT T = ZER 
FOR I l T 0 M 
READ N(l) 
NEXT I 
FOR J = l TO M 
FOR I = 1 TO N(J) 
READ X(I,J) 
NEXT I 
NEXT J 
FOR J = 1 TO M 
FOR I = 1 TO N(J) 
LET T(J)=T(J)+X(I,J) 

LET S(J)=S(J)+X(I,J)*X(I,J) 
NEXT I 
LET U U + T(J) 
LET R = R+ S(J) 
LET V = V+T(J)*T(J)/N(J) 
NEXT J 
LET C U*U/A 
LET 'ti = V-C 
LET E = R- V 

PRINT "ANOVA TABLE" 
PRINT 
PRINT " ITEM 
PRINT "GRAND TOTAL","SS=",R,"DF=",A 

PRINT 11 GRAND HEAN", 11 SS= 11 ,C, 11 DF= 1',"l'1 

PRINT "TREATMENT'S", "SS=", W, "DF=" ,rt-1, "MEAN SQUARE=" ,W/ (M-1) 
PRINT" ERROR ","SS=",E,"DF=",A-M,"MEAN SQUARE=",E/(A-M) 
LET F = W/(M-1)/(E/(A-M)) 
PRINT 

PRINT "F=",F,"ON",M-1,"ANIJ'',A-tl,"DEGREES","OF FREEDOM" 
DATA 20,4,5,5,5,5 
DATA 3.64,2.79,3.21,2.98,3.48 
UATA 4.23,3.53,3.62,4.98,3.50 
DATA 4.l,3.87,3.87,4.29,4.04,4.5,4.24,4 0 36,3.77,4.24 
END 

https://36,3.77,4.24
https://4.23,3.53,3.62,4.98,3.50
https://3.64,2.79,3.21,2.98,3.48
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RUN 
ANOVA TABLE 

ITEM 
GRANIJ TOTAL 
GRANIJ MEAN 
TREAT'IENTS 
MEAN SQUARE= 

ERROR 
MEAN SQUARE= 

F= 
16 

* 

SS= 
SS= 
SS= 

0.97241 
SS= 

0.15852 

6.13443 
IJEGREES 

303.754 
298.301 
2.91724 

2.53628 

ON 
OF FR EE llOtl 

DF= 20 
DF= l 
DF= 3 

DF= 16 

3 AND 
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the MSE an unbiased estimate. It is true that the resulting statis-
tic has Student's t distribution with t(n - 1) degrees of freedom. 

Hence 

Lt 

is computed. The rejection regions are the obvious ones with 

ltl > ta/2 ,t(n-l) the appropriate region for a two-sided test with 
significance level a. 

Let us compare the grade averages of juniors and seniors using 
the data given in Sec. 11.2.1. The GPA for five juniors was 4.03 
and for five seniors was 4.22. From Table 11.2.4 we find the mean 
square for error to be 0.1585. Hence 

t = 4.03 - 4.22 = ~~2~i8 = -0.75
I (0.1585/5)(02 + 02 + 12 + (-1)2 ) 

As t 0 . 025 ,16 = 2.12 there is no significant difference at the 5% 
level of significance. Suppose we wish to compare freshmen with all 
other classes. We test H0: - (µ2 + µ3 + µ4 )/3 = 0 versusµ1 
H1 : - (µ2 + µ3 + µ4 )/3 < O. Here we obtainµ1 

3.22 - (3.97 + 4.03 + 4.22)/3t -4.13 
/( 0.1585/5 )( 4/3) 

Against H1 we reject H0 if t < -t0 . 05 ,16 = -1.746. The statistical 
evidence suggests that upperclassmen have higher GPAs on the average. 

To obtain a confidence interval for a contrast we proceed as 
previously and find 

i A.x . .:!:. fMSE i A. 2t 
i=l i i n i=l i a/2,t(n-1) 

to be the endpoints for a (1 - a)lOO% confidence interval for the 
corresponding contrast. The confidence interval for (µ2 + µ3 + µ4)/3 
- µ1 in the example would be 
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or 0.85 :!:. o.436 

with confidence coefficient 0.95. 

Finally if we have an unequal number of observations on a treat-

ment, the estimate of a contrast E~ 1\.µ. is still 1 = E~ 1\.x..
i= 1 1 i= 1 1 

However as Var(L) = o2 E1=l\i2/ni the appropriate t statistic to 
test Eq. (11.2.1) is 

1t 

The correct degrees of freedom for the test is N - t. Similarly a 

(1 - a)lOO% confidence interval for the contrast becomes 

\ 2t 
_Lt1 + MSE E n. a/2,N-ti=l 1 

Problems 11. 2 

1. Consider the one-way classification model for which Xij = µi + 

e ij , i = 1, 2, ... , t; j = 1, 2, ••. , n, withe .. - NID(o,o2 ).
t 1J 

(a) Verif'y that by defining µ = Ei=lµi/t and ai = µ - µi that 
t 

Ei=lai = o. 
(b) Prove that the identity (11.2.4) is correct. 

2. In the model of Problem 11.2.1 prove 
(a) E(SSE) o2 (n l)t. 

2 t 2(b) E(SSA) = o (t - 1) + n Ei=lai 
2Note in part (b) that x.

i• - a. 
1 

- x are NID(O,o /n). 

3. Assume t = 2 in the model defined in Problem 11.2.1. Show the 
following: 
(a) SSA = n(x- 1 - -x2 )2/2. 

"2(b) MSE = o , the pooled estimate of the common variance defined 

in Sec. 8.3. 
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(c) MSA/MSE = F = t 2 , where t is the test statistic for the 
two-sample test defined in Sec. 8.3 with n1 = n2 = n. 

(d) Using the result stated in Problem 10.2.10 concerning the 
relationship between the t and F distributions, show that 
the t test for H0: = µ2 versus H1 : µ1 +µ2 gives theµ1 
same result as the F test in the one-wa..y classification 
for t = 2 treatments and n1 = n2 = n. 

Exercises 11. 2 

Use the program ONEWAY as needed. 

1. Current expenditures per pupil in six eastern, southern, and 
midwestern states are given below. Is there statistical evidence 
of differential expenditure in these regions (a = 0.05)? 

East Expenditure($) South Expenditure ( $) 

Conneticut 1241 Alabama 590 
Maine 840 Florida 885 
Massachusetts 1090 Georgia 782 
New Jersey 1294 Mississippi 689 
New York 1584 North Carolina 802 
Rhode Island 1113 South Carolina 751 

Midwest Expenditure ( $) 

Illinois 1234 
Indiana 855 
Iowa 1055 
Kansas 969 
Missouri 861 
Nebraska 953 

Source: The World Almanac 1975, data for 1972-1973. 

2. In the previous question state, using the appropriate parameters, 
the following hypotheses: 
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{a) There is no difference in expenditura between eastern and 
midwestern states. 

(b) There is no difference between southern and midwestern 
states. 

(c) There is no difference between southern states and the other 

Test each of these hypothesis at level of significance a = 0.05. 

3. It is argued by a large department at a university that its class 
sizes in its senior undergraduate courses is increasing over time. 
The following are the class sizes of five randomly selected senior 
classes in each of four years. 

Year Class sizes 

1974 38, 19, 24, 52, 23 

1975 30, 36, 15, 54, 24 

1976 41, ~. 12, 63, 29 

1977 31, 35, 20, 58, 28 

(a) Use the analysis of variance technique to test the null 
hypothesis of equal average class size in these 4 years 
(a = 0.05). 

(b) Use the appropriate contrast to test the hypothesis that 
class sizes in 1974 and 1977 are the same on the average 
versus the alternative that they have increased. 

4. A study is made to compare the costs of elementary calculus texts 
published by companies A, B, and C. Company A publishes three 
such texts, Company B publishes four, and Company C publishes 
five. The following are the retail prices. 

Company Prices 

A 10.95, 12.95, 9.95 
B 12.95, 14.95, 16.oo, 8.95 
c ~0.95, 13.95, 15.95, 16.95, 18.95 

(a) Test the null hypothesis of equal average price (a 0.05). 
{b) Test H0: (µA + µB)/2 = µC and find a 95% confidence inter-

val for µc - (µA + µB)/2. 



406 The Analysis of Variance 

5. It is argued by some that the Central Division of the National 
Football Conference is a low-scoring one. Data are given below 
for the total points scored by each team in the NFC in 1973. 

Eastern Division Points Western Division Points 

Dallas 
Washington 
Philadelphia 
St. Louis 
New York 

382 
325 
310 
286 
226 

Los Angeles 
Atlanta 
San Francisco 
New Orleans 

388 
318 
262 
163 

Central Division Points 

Minnesota 296 
Detroit 
Green Bay 
Chicago 

271 
202 
195 

(a) Test the hypothesis of equal scoring for each of the three 
divisions (a= 0.05). 

(b) Test the hypothesis that teams in the Central Division score 
as well as teams in the other divisions against the alterna-
tive of lower scoring (a= 0.05). 

11.3 THE RANDOMIZED BLOCK DESIGN 

Often in statistics it is of interest to compare the effect of treat-
ments, where we assume that we make observations on all the treatments 
within homogeneous groups called blocks. For example, we may wish 
to compare five institutions of higher education with regard to the 
compensation of their faculty. We might then observe the following 
table giving the average compensation at the five institutions in 
thousands of dollars. Clearly it would be inappropriate to compare 
the level of compensation of instructors at one institution with the 
level of compensation of professors at another. In this case the 
blocks are the instructors, assistant professors, associate professors, 
and professors. 
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Institution 

1 2 3 4 5 

Instructors ll.8 11.8 12.4 19-1 ll.6 
Assistant professors 16.o 15.9 15.1 23.4 15-3 
Associate professors 19.2 19.0 20.9 30.0 17.8 
Professors 27.1 24.8 29.1 37.4 22.5 

The observations in the general randomized block design in which 

we have t reatements and b blocks can be modeled as follows: 

x 
J.J 
.. = µ + <\ + 8j + eij i = 1, 2, ... ' t; j = 1, 2, ... ' b 

t b 
E a. O E 8. O eij - NID(O,a2 )

i=l J. j=l J 

Here Xij represents the observation of the ith treatment in the jth 
block. The expectation E(Xij) = µ + ai + $j. Thus the expectation 
is assumed to be the sum of an overall effect, an effect due to the 
treatment i and an effect due to the block j. We denote the actual 
observations as x .. and make the following definitions: 

J.J 

t b x .. b x .. t xij- -1:.J... -1:.J... -x = E E E Exi• x. jtb b ti=l j=l j=l i=l 

for the overall mean, the ith treatment mean, and the jth block mean. 
In general we are interested in testing hypotheses about the treatment 
effects. Thus, as in the one-way classification, we wish to test 
H0: a. = O, i = 1, 2, ••• , t and to make inference about contrasts 

J. t 
of the form Ei=lAiai. 

The method of proceeding is analogous to the one-way classifi-
cation. We consider the identity 

xi'j - x= (x - x) + (x - x) + (x. - x. - x . + x)i• •j J.j i• .J 

which again results from the mimicking the model equation. Squaring 
and summing first on j and then on i yields 
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t b t -2 b_ 
L L (x.. - x) 2 = b L (x. - x) + t L(x . - x) 2 

i=l j=l iJ i=l i• j=l "J 

t b 
+ L L (x .. - x . + x) 2 

i=l j=l iJ "J 

or 

SST = SSA + SSB + SSE 

Again this is read "the total sum of squares equals the sum of squares 
for treatments plus the sum of squares for.blocks plus the sum of 
squares for error." 

This information is summarized in an analysis of variance table 
given in Table 11.3.1. The appropriate expected mean squares have 
been found. Note that E(MSA) = o2 + b L~ 1a. 2/(t - 1) involves o2 

i= 1 
and the treatment effects only and not the block effects. This makes 
possible again a test of H0: ai = O, i = 1, 2, ••. , t using F = 
MSA/MSE as the appropriate statistic. The rejection region for an 
a level test is of the form F > F (t - 1, (t - l)(b - l))a. 

Let us consider the compensation data presented above for the 
faculties at five universities. The program RELOCK performs the 
required analysis for the randomized block design. In Table 11.3.2 
we present the analysis of variance table for the example data. The 
F test for the hypothesis of equal institutional compensation is 

Table 11.3.1 ANOVA Table for the Randomized Block Design 

Source of 
Variation SS d.f. MS EMS 

2 t 2Treatments SSA t - 1 SSA/(t-1) o + b Li=lai /(t-1) 

Blocks SSB b - 1 SSB/(b-1) 02 + t b 2
Lj=lSj /(b-1) 

Error SSE (t-l){b-1) SSE/ ( t-1) (b-1) 02 

Total SST bt - 1 
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RBLOCK 

00010 
00020 
00030 
00040 
00050 
00060 
00070 
00080 
00090 
00095 
00098 
00100 
00110 
00120 
00130 
00140 
00150 
00160 
00170 
00180 
00190 
00200 
00210 
00220 
00230 
00240 
00250 
00260 
00270 
00275 
00280 
00290 
00300 
00310 
00320 
00330 
00340 
00350 
00360 
00370 
00380 
00390 
00400 
00410 
00420 
00430 
00440 
00450 
00460 
00470 
00900 
00901 
00902 
01000 
* 

REM DESCRIPTION: COMPUTES THE ANALYSIS OF VARIANCE TABLE 
REM FOR A RANDOMIZED BLOCK DESIGN. 
REM IiSTHUCTIONS: ENTER DATA IN LI~E 900 AND FOLLOWING 
REM ENTER DATA IN THE FOLLOWING ORDER: 
REM I) B, THE NUMBER OF BLOCKS 
REM 2) T, THE NUMBER OF TREATMENTS 
REM 3) THE DATA THEMSELVES BY TREATMENTS, I.E. FIRST ORS ON 
REM TREATMENT I, BLOCKS 1,2,. • .,B, THEN TRF.ATMENT 2, 
REM BLOCKS 1,2,. • .,B, ETC. 
REM IF B > 10 OR T >10 CHANGE DIMS I! LINE 100 
REM SAMPLE DAT' IS IN LI~ES 900-902 
DIM X(I0,10),V(lO),W(IO),S(IO) 
READ B,T 
llAT X ZEH 
llAT V ZEH 
HAT = ZER 
MAT w = ZER 
FOR J= I TO T 
FOR I = I TO B 
REAi) X(I, J) 
NEY ' I 
NEXT J 
FOR J = I TO T 
FOR I = l TO B 
LET V(J) V(J)+X(I,J) 
LET S(J} = S(J)+X(I,J)*X(I,J) 
NEXT I 
LET A A +V(J) 
LET E = E+S(J) 
LET C = C+V(J)*V(J}/B 
NEXT J 
FOR I = l TO B 
FOR J = l TO T 
LET w(I)=W(I)+X(l,J) 
NEXT J 
LET D = D +W(I)*W(I)/T 
NEXT I 
LET Cl = A*A/(B*T) 
LET C = C - Cl 
LET D = D - Cl 
LET fl = E - Cl 
LET El = Tl - C - D 
PRINT " ANOVA TABLE" 
PRINT " SOURCE " 
PRINT "TREATMENTS", "SS=" ,C, "OF=", T-1, "MS=" ,C/ (T-1) 

11 11PRI~T BLOCKS ,' 1 SS= 11 ,D, 11 DF= 11 ,B-l, 11 MS= 11 ,D/(B-l) 
PRINT" ERROR ","SS=",El,"DF=",(T-l)*(B-l),"MS=",El/((T-l)*(B-l)) 
PRINT "TOTAL(CORR)" ,"SS=", Tl, "DF=", B*T-1 
PRINT "F FOR TREATMTS=",C/(T-1)/(El/((T-l)*(B-l))) 
PRINT "DOF ARE", T-1, " AND",(T-l)*(R-1) 
DATA 4,5 
DAT' 11. 8, I 6. 0, l 9. 2, 2 7. I, I I. 8, I 5. 9, I 9. 0, 2 4. 8, I 2. 4, I 5. I , 2 0. 9, 2 9. I 
DATA 19.l,23.4,30.0,37.4,ll.6,15.3,17.8,22.5 
END 
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RUN 
AN OVA TAR LE 

SOURCE 
TREAT'IENTS SS= 292. 788 OF= 4 
MS= 7 3. 197 
BLOCKS SS= 606.758 OF= 3 
MS= 202.253 

ERROR SS= 27.0919 DF= 1 2 
HS= 2.25766 
TOTAL(CORR) SS= 
F FOR TREATMTS= 32.4216 

926. 638 DF= 19 

DOF ARE 4 AND 1 2 

* 
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Table 11. 3. 2 ANOVA Table 

Source SS d.:f. MS EMS 

Institutions 292.788 4 73.197 02 + 4 E a.. 2 
]. 

02 +Ranks 606.758 3 202.253 5 E B/!3 
02Error 27.092 12 

Total 926.638 19 

based on F = MSA/MSE = 73.197/2.258 = 32.42. As the critical value 
F(4,12) 0_ = 3.26, the evidence :for di:f:fering levels o:f compensa-05 
tion is overwhelming. The F test :for blocks would clearly also be 
signi:ficant at the 5% level. This test is not important however 
because we expect that there will be di:f:ferent levels o:f compensa-
tion :for the pro:fessorial ranks. The :fact that the model permits a 
test o:f treatment di:f:ferences in the :face o:f assumed block di:f:fer-
ences makes it a use:ful design in the analysis o:f variance. 

I:f we consider a test o:r contrast in the randomized block design 
o:f :form 

t t 
E A..a. 0 E A.. 0 (11.3.1)

i=l ]. J. i=l ]. 

we proceed generally as be:fore. The statistic L = E~_ 1A..x. has 
. t 2 t 2 J.- ]. J.

expectation E. 1A..a.. and Var(L) = (o /b)E. 1A.. • Thusi= J. J. i= J. 

t = ----'L::::_____ 

~(MSE/b)(E~=lA.i 2 ) 
has Student's distribution with (t - l)(b - 1) degrees o:f :freedom 
under the hypothesis in Eq. (11.3.1). Thus i:f we wish to test the 
hypothesis that the contrast a.3 - a.2 = O, we obtain 
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19.375 - 17.875t 1.411 
h.258(2/4) 

As t 0•025 ,12 = 2.179 institutions 2 and 3 cannot be said to differ 
with regard to faculty compensation at the 5% level. 

Exercises 11.3 

Use the program RBLOCK as required. 

1. Three publishers are to be compared with regard to cost of math-
ematics and statistics texts. The costs of books in different 
fields for each publisher is given below. 

Publisher 
Text A B c 

Calculus 12.95 19.25 15.95 
Elementary statistics 7.95 10.95 10.95 
Time series 12.95 20.50 12.95 
Statistical methods 16.95 19.00 15.00 
Group theory 9.95 12.00 11.00 

(a) Do the data indicate a true difference in the cost of books 
produced by the three publishers? Carry out a test at level 
a = 0.05. 

(b) The first publisher is not located in the United States and 
the other two are. Test the null hypothesis that the cost 
of books published by the foreign publisher does not differ 
from the U. S. publishers (a= 0.05). 

2. The average monthly payment to various categories of individuals 
for assistance is given below for five states for December 1973. 

State 

Group Alabama Georgia Massachusetts Utah Wisconsin 

Old age 72.92 58.56 121.21 46.73 89.49 
Blind 102.54 75.36 156.53 87.19 92.63 
Disabled 78.88 69.25 153.61 82.45 103.08 
AFDC 21. 72 32.22 95,93 61.86 95.42 
General assistance 12.50 28.40 106.49 73.01 56.66 
Source: The World Almanac and Book of Facts, 1975· 
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(a) Do the data suggest a difference in the level of assistance 
payments among these states (a= 0.05). 

(b) Compare the two southern states with the others (a 0.05). 
Compare Massachusetts with all others (a= 0.05). 



APPENDIX A: THE BASIC LANGUAGE 

A.l AN INTRODUCTION TO BASIC 

BASIC (beginner's all-purpose symbolic instruction code) is a 
computer programming language developed initially at Dartmouth College 
in 1963 and 1964 by Professors John G. Kemeny and Thomas E. Kurtz 
(1972). It was designed to be used in the time-sharing mode, i.e., 
by users located at teletype terminals remote from the central 
computer. Such a system permits the apparent simultaneous communi-
cation by many users with the computer. The language was developed 
in order to permit easy access to the power of the digital computer 
by persons without advanced training in computer technology. Hence 
the grammar, format, and statements in the language are quite simple 
and easy to learn. The language has proved to be quite popular for 
these reasons and is now widely used. 

It will be assumed that the reader has some familiarity with a 
programming language. However, we review here certain elementary 
definitions: 

DEFINITION A.1.1. A computer program is a list of instructions, 
which when executed causes the computer to perform a sequence of 
operations in a given order. 

414 
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DEFINITION A.1.2. A statement is one line in a program, requiring 
the computer to take a specific action. 

DEFINITION A.1.3. A variable, written in BASIC as a single letter 
(e.g., T) or a single letter followed by a digit (e.g., T2), can 
take on various values. A variable is thus similar to a variable in 
algebra. 

DEFINITION A.1.4. A constant is a fixed numerical value. 

DEFINITION A.1.5. A symbolic arithmetic operation, for example, * 

causes two variables, two constants, or a variable and a constant to 
be combined arithmetically. For example, A*B means to multiply A 
by B. 

To illustrate these definitions and some elementary BASIC gram-
mar, consider the following simple program in BASIC. 

10 PRINT "N","A" 
20 LET N=l 
30 LET A=(l+l/N)tN 
40 PRINT N,A 
50 LET N=N+l 
60 IF N>lO THEN 80 
70 GO TO 30 
80 END 

There are several properties of this simple program which are common 
to all BASIC programs. First, all statements in the p~ogram are 
numbered. They will be executed by the computer according to in-
creasing statement numbers. Secondly, the last statement is END, 
which is true in all BASIC programs. We see that the variables N 

and A have given values in the program. The constant 1 has been 
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used in statements 20, 30, and 50. Finally the algebraic operators 
+, /, and t standing for addition, division, and exponentiation, 
respectively, have been employed. 

Before ma.king a systematic study of the types of statements 
used in BASIC, let us consider what the preceding program achieves. 
When the program is given the command RUN, the following output 
results 

N A 
1 2 
2 2.25 
3 2.370370 
4 2.441406 

5 2.48832 
6 2.521626 

7 2.546500 
8 2.565785 

9 2.581174 
10 2.593742 

The program has computed (1 + l/N)N for N = 1, 2, ••• , 10. This 
sequence converges to e = 2.718282 as N-+ 00 • (Note that the conver-
gence is slow, so that this is not an efficient method of approxi-
mating e.) 

Observing the statements in the program in order, we see that 
the PRINT statement using quotation marks causes the printing of the 
letters N and A. The LET statments in 20 and 30 assign numerical 
values to the variables N and A. The PRINT statement in 40 causes 
the current values of N and A to be printed. The statement LET N = 

N + 1 shows that the equal sign should be interpreted as a replace-
ment. The variable N is replaced by the current value of N plus 1. 
The IF THEN statement in 60 causes the statement 80 END to be 
executed if N exceeds 10. If N is less or equal to 10, control passes 
to statement 70. This GO TO statement transfers control to state-
ment 30. Note that if statement 60 were omitted, then a never-ending 
loop would be created. 
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A.2 ELEMENTARY STATEMENTS AND OPERATIONS IN BASIC 

The elementary statements in BASIC can be classified into three types: 
(1) those causing the computer to receive input or to produce output, 
(2) those requiring the computer to perform a calculation, and (3) 

those affecting the sequence in which the computer executes state-
ments in a program. 

A.2.1 Input and Output Statements 

1. The READ ...DATA Statements: The READ statement causes a variable 
or variables to be assigned a numerical value or values given in a 
DATA statement. For example, 

10 READ X, Y, Z 
100 DATA 5, 9, 17 

assigns the variable X the value 5, Y the value 9, and Z the value 
17. The READ statement causes the values in DATA statements which 
have not been read previously to be assigned to variables. Thus if 
the value 5 in statement 100 had already been used as data and the 
statement 

110 DATA 4, 2, 1 

followed statement 100, then X would be given the value 9, Y the 
value 17, and Z the value 4. The READ statement must always be used 
with a DATA statement. If a numerical value is not available to be 
assigned to a variable, the program will terminate with the state-
ment OUT OF DATA. 
2. The INPUT Statement: The INPUT statement causes the computer 
to stop executing the program and request the value or values of 
variables to be typed in from the terminal. For example, the state-
ments 

10 PRINT "WHAT IS YOUR AGE AND WEIGHT?" 
20 INPUT A, W 

when executed result in the following: 
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WHAT IS YOUR AGE AND WEIGHT? 
'l 

The program will not continue until the programmer respons with two 
numerical values, e.g. , ? 24 ,160. (The underlined values indicate 
that these are provided at the terminal.) Following transmission 
of these values the variable A is assigned the value 24 and the 
variable Wis assigned the value 160. 

3. The LET Statement: The LET statement directly assigns a value 
to a variable. For example, LET T2 = 3.14159 assigns T2 the indicated 
value. 

4. The PRINT Statement: The PRINT statement causes either the 
printing of the value of a variable, a constant, or some text. 
Suppose the program in Sec. A.2.1.2 is completed with 

10 PRINT "WHAT IS YOUR AGE AND WEIGHT?" 
20 INPUT A, W 
30 PRINT A, W 
40 END 

We have seen that line 10 causes the words in quotation marks to be 
printed out. The PRINT statement in line 30 would cause the values 
24 and 160 to be printed. The PRINT statement alone causes a line 
to be skipped in the output. 

A.2.2 Statements Causing a Calculation to be Performed 

The symbols in BASIC which are used to perform the elementary arith-
metic operations are indicated below: 

Symbol Expression Meaning 

+ X+Y Add X to Y 
x - y Subtract y from X 

* y Multiply x by yx 
I x I y Divide X by Y 
t x t y Raise X to power y 

* 
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These symbols lD.8¥ be used to combine variables and constants. The 
most collllllon use is in a LET statement in which a variable is given 
a value in terms of variables currently assigned values. The arith-
metic operations are allowed only on the right-hand side of the equal 
sign. For example, consider 

10 LET Z = (Xt2 + Yt2)/2 

The variable Z is assigned one-half of the sum of the squares of the 
values currently assigned to X and Y. 

The hierarchy of the operations is exponentiation, multiplica-
tion and division, and addition and subtraction. This means that 
exponentiation will be carried out first. Multiplication and divi-
sion follow and will be performed in the order in which the symbols 
appear. Addition and subtraction are performed last. As examples, 
consider 

Expression Value 

3*2t3+1 25 
(3*2)t3+1 217 
2t4/4 4 
2/4t2 0.125 
2*4t2 32 
(2*3)t2-4*2 28 
2t(-2) 0.25 
3/4*8 6 
3*4-2 10 
3*(4-2) 6 

The reader should check to see that these expressions are cor-
rectly evaluated. If doubt exists as to how an expression is written, 
then sufficient parentheses should be used to ensure that the correct 
expression is being computed. Furthermore, it is not allowable to 
use two symbolic operators adjacent to one another in an expression. 
Hence in writing 3 to the power -4 in BASIC, 3t-4 is not permissible. 
The correct expression is 3t(-4). 
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A.2.3 Statements Controlling the Sequence in Which the Computer 
Executes Program Statements 

As remarked above, all statements in a BASIC program are numbered. 
The statements will be executed by the program in the order of the 
statement numbers. There need not be a statement for each number 
and, in fact, this is a bad idea, as program corrections will often 
involve the insertion of additional statements. It is of fundamental 
im:porta~ce to computing that a program can contain statements which 
allow the determination of the order in which statements within the 
program are executed. This permits the repetition of steps in a 
program by the computer without a repetition of the statements in 
the program. 

1. The GO TO Statement: The GO TO statement requires the computer 
to break its normal sequence of execution and to execute the state-
ment indicated. In the example program of Sec. A.l, the statement 
70 GO TO 30 requires statement 30 to be executed following this 
instruction. Therea~er the computer would execute statements in 
numerical order following 30. 

2. THE IF.•. THEN .•. Statement: The IF•.• THEN ••• statement can be 
thought of as a conditional GO TO statement. If the terms of the 
conditional statement are met, then the control passes to the indi-
cated statement. If the terms are not met, the next statement in 
numerical order is executed. In line 60 of the program in Sec. A.l 
we have 

60 IF N > 10 THEN 80 

The conditional statement is N > 10. If this condition is met by 
the current value of N, then th~ next statement executed is 80 END. 
Otherwise, statement 70 is executed next. 

The relational operators which may appear in the conditional 
portion of the IF ••• THEN ••• statement are as follows: 
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Symbol Meaning 

Equal 
< Less than 

> Greater than 

<= Less or equal 
>= Greater or equal 
<> Unequal 

3. The FOR.•• , NEXT ••• Statements: The ability of the digital 
computer to perform repetitive calculations very swi~ly and accurately 
is one of the major factors in its widespread use. The statements 
which permit the repeated execution of a certain sequence of state-
ments are the FOR and NEXT statements. We illustrate these in the 
following program. 

10 PRINT "APPROXIMATION,"NEXT TERM" 
20 READ N 

30 LET T 1 
40 LET S 0 
50 FOR I 1 TO N 
60 LET S S+T 
70 LET T = T/I 
80 PRINT S,T 
90 NEXT I 

100 DATA 10 
110 END 

Statements 50 through 90 constitute the FOR ••• ,NEXT .•• "loop" in this 
program. The variable I is set equal to 1 the first time that state-
ment 50 is executed. Statements 60 to 80 are then executed. At 
statement 90 if I is less than N, control is returned to statement 
50, I is increased by 1, and the loop continued until I = N at state-
ment 90. At this point control passes to the next statement in 
numerical order following the NEXT statement. 

Let us look at the output from this program. 
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Approximation Next term 

1 1 

2 0.5 
2.5 0.166667 
2.66667 0.0416667 

2.70833 0.00833333 
2.71667 0.00138889 
2.71806 0.000198413 
2.71825 0.0000248016 
2.71828 0.00000275573 
2.71828 0.000000275573 

It is easy to check that this program computes the Maclaurin expan-
sion approximations to e, that is, 

n-1
E L for n = 1, 2, ••• , 10 

k=O k! 

It is known that the error is less than 3/n! for such approximation. 
Thus we see that for n = 10, the error is less than 3(0.000000275573) 
= 0.000000826719. This program does provide an efficient method of 
approximating the constant e, in contrast with the program of Sec. 
A.l. 

The FOR ••• , NEXT ••• statements provide greater flexibility in 
looping than has been indicated. The step size for the "stepping 
variable" I was 1 in the example program. However, this need not 
be the case. The statements 

10 FOR X = 0.0 TO 1.0 STEP 0.05 

40 NEXT X 

cause the loop to be executed 21 times with X taking the values O.O, 
0.05, 0.10, ••• , 1.00, successively. This is particularly useful 
when it is desired to evaluate and print out the value of an expres-
sion depending upon X over a range of values of x. If the STEP por-
tion of a FOR conunand is omitted, the step size is assumed to be 1. 
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A.3 ADDITIONAL INFORMATION ABOUT BASIC 

A.3.1 The REM Statement 

In order to make a BASIC program more readable, a remark in English 
text may be included at any point in the program. For example, the 
statement 

5 REM COMPUTES AN APPROXIMATION OF e 

might be the first statement of the program in Sec. A.2.3.3. The 
computer ignores remark statements in the execution of a program. 

A.3.2 il.lnctions Available in BASIC 

There are some functions such as the elementary trigonometric func-
tions (the sine, cosine, and tangent) which are used so frequently 
that BASIC provides the means of calculating these functions in a 
single statement. For example the program 

10 LET X = 1 
20 LET Y = EXP(X) 
30 PRINT X,Y 
40 END 

produces the output 

1 2.7182818 

The function ex has been evaluated for X = 1. 
The following functions are available in BASIC: 

Function Mathematical meaning 

ABS(X) Ix! 
ATN(X) Arctan x 
COS(X) Cosine x 
COT(X) Cotangent x 

xEXP(X) e 
INT(X) [x] 
LOG(X) ln x 
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SGN(X) -1 if x < O, 1 if x > O, and 0 if x 0 

SIN(X) Sine x 
SQR(X) IX 
TAN(X) Tangent x 

Such a function has an argument in parentheses which must be either 
a constant or a variable whose value is defined. The arguments of 
the trigonometric functions are assumed to be in radians. 

A.3.3 Subscripted Variables 

When it is improtant to have a vector of numbers available for com-
putation the BASIC system allows the definition of a subscripted 
variable. Consider the following example: 

10 READ N 

20 FOR I = 1 TO N 
30 READ X(I) 
40 NEXT I 

50 DATA 8 
60 DATA 4, 8, 7, 16, 2, 1, 2, 5 

This portion of a program will cause the subscripted variable X to 
take on the values X(l) = 4, X(2) = 8, X(3) = 7, X(4) = 16, X(5) = 
2, X(6) = 1, X(7) = 2, and X(8) = 5. These values can then be used 
in subsequent calculations, for example, for the mean, variance, 
and standard deviation of the N numbers. 

A subscripted variable may also have two subscripts. For 
example, T(I,J) is a variable which can store an array or table of 
values. The first subscript represents the row in the table and the 
second subscript represents the column. The loop causing the read-
ing of a table with R rows and C columns would be 

10 FOR I 1 TO R 
20 FOR J 1 TO C 
30 READ T(I,J) 
40 NEXT J 

50 NEXT I 
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Note that the table is read by rows. If the index for a variable 
with a single subscript takes on values exceeding 10, or if either 
of the indexes exceed 10 for a double subscripted variable, it is 
necessary to include a statement giving the maximum index or indexes. 
The statement is of form 

10 DIM X(lOO), T(20,20) 

The dimension statement DIM may appear at any point in the program. 

A.3.4 Definition of Fl.inctions 

In some programs a certain function, not among those available in 
BASIC, is used so frequently that it becomes efficient to define a 
new function in the program. This is accomplished by the DEF command. 

Fol example, suppose the calculation of the function f(x) = x + sin x 
+ x2 + l is required repeatedly in a program. We use the following 
statement 

10 DEF FNF(X) = X + SIN(X) + SQR(Xt2+1) 

to define a new function FNF. The statement does not require the 
calculation of any quantity, and the argument X is a dwnmy argument. 
If the statement 

20 Y = FNF(O) 

appeared later in the program, then Y would be given the value of 
f(O) = 1. The functions which can be defined in a program are of 
form FN_, where the last character is a letter, e.g., FNA, FNT, FNW. 

A.3.5 The GOSUB and RETURN Statements 

We illustrate the use of these statements in the following example: 

10 DEF FNF(X) Xt2 
20 READ A,B 
30 GOSUB 200 
40 PRINT "LOWER ENDPOINT","UPPER ENDPOINT","INTEGRAL APPROX" 



426 APPENDIX A: The BASIC Language 

50 PRINT A,B,S 
60 GO TO 20 

190 REM SUBROUTINE FOR TRAPEZOIDAL RULE 
200 LET H = (B-A)/100 
210 LET S = 0 
220 FOR I 1 TO 99 
230 LET S S + FNF(A+H*I) 
240 NEXT I 
250 LETS= S + 0.5 * (FNF(A) + FNF(B)) 
260 LET S = H*S 
270 RETURN 
280 DATA 0,1 
290 DATA 1,2 
300 DATA 2,3 
310 END 

The effect of the GOSUB statement is to transfer control to the 
statement indicated in the GOSUB command. In this case the state-
ments in lines 200 through 260 carry out an approximate integration 
of the function FNF(X) on the interval with endpoints given by A 
and B, using the trapezoidal rule (with 100 subintervals). When the 
statement 270 RETURN is encountered, control is returned to the 
statement immediately following the GOSUB statement. In the example 
this would be the PRINT statement in line 40. 

This program computes approximations to the integral of x2 on 
the intervals [O, 1), [l, 2), and [2, 3). The values obtained from 
a RUN of the program were 0.33335, 2.33335, and 6.33335. These are 
approximations of 1/3, 7/3, and 19/3, the exact values. It is clear 
that a simple change of line 10 would allow approximate integration 
of other functions. The GOSUB ••• RETURN statements are useful when 
a particular algorithm is to be used frequently in the program. The 
values of any variables in the subroutine portion of the program 
must either have been assigned in the main program itself or be 
assigned in the subroutine. 
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Table B.I Cumulative Normal Distributiona 

Example: 

z .oo . 01 .02 .03 .o4 .05 .o6 .07 .o8 .09 

.o .5000 .5o40 .5o80 . 5120 . 5160 . 5199 .5239 .5279 . 5319 .5359 

. 1 

.2 

.3 

.4 

.5398 

.5793 

.6179 

.6554 

.5438 

.5832 

. 6217 

. 6591 

.5478 

. 5871 

.6255 

.6628 

. 5517 

. 5910 

.6293 

.6664 

.5557 

. 5948 

. 6331 

.6700 

.5596 

. 5987 

.6368 

.6736 

.5636 

.6026 

.64o6 

.6772 

.5675 

.6o64 

.6443 

.68o8 

. 5714 

.6103 

.6480 

.6844 

.5753 

. 6141 

.6517 

.6879 
.5 .6915 .6950 .6985 .7019 .7054 .7o88 . 7123 .7157 .7190 .7224 
.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 . 7517 .7549 
.7 
.8 
.9 

.7580 

. 7881 

.8159 

.76ll 

. 7910 

. 8186 

.7642 

.7939 

. 8212 

.7673 

.7967 

.8238 

. 77cA. 

.7995 

.8264 

.7734 

.8023 

.8289 

.7764 

. 8051 

. 8315 

.7794 

.8078 

.8340 

.7823 

. 81o6 

.8365 

.7852 

.8133 

.8389 
LO 
1.1 

•8413 
.8643 

.8438 

.8665 
. 8461 
.8686 

.8485 

.87o8 
.8508 
.8729 

. 8531 

.8749 
.8554 
.8770 

.8577 

.8790 
.8599 
.8810 

. 8621 

.8830 
1. 2 
1.3 
J..4 

.8849 

.9032 

. 9192 

.8869 

. 9cA.9 

.9207 

.8888 

.9066 

.9222 

.8907 

.9o82 

.9236 

.8925 

.9099 

.9251 

.8944 

.9ll5 

.9265 

.8962 

. 9131 

.9279 

.8980 
•9147 
.9292 

.8997 

. 9162 

.93o6 

. 9015 

. 9177 

.9319 
1.5 
1.6 

.9332 

.9452 
.9345 
.9463 

.9357 

.9474 
.9370 
.9484 

.9382 

.9495 
.9394 
.9505 

.94o6 

.9515 
.9418 
.9525 

.9429 

.9535 
.9441 
.9545 

1.7 
J..8 
L9 

.9554 

.9641 

.9713 

.9564 

.9649 

.9719 

.9573 

.9656 

.9726 

.9582 

.9664 

.9732 

.9591 

.9671 

.9738 

.9599 

.9678 

.9744 

.96o8 

.9686 

.9750 

. 9616 

.9693 

.9756 

.9625 

.9699 

.9761 

.9633 

.97o6 

.9767 
2.0 
2.1 
2.2 
2.3 

.9772 

.9821 

.9861 

.9893 

.9778 

.9826 

.9864 

.9896 

.9783 

.9830 

.9868 

.9898 

.9788 

.9834 

.9871 

.9901 

.9793 

.9838 

.9875
•99cA. 

.9798 

.9842 

.9878 

.99o6 

.9803 

.9846 

.9881 

.9909 

.98o8 

.9850

.9884 

.99ll 

.9812 

.9854 

.9887 

.9913 

.9817 

.9857 

.9890 

. 9910 
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 
2.6 .9953 .9955 .9956 .9957 . 9959 .9960 .9961 .9962 .9963 .9964 
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 -------· 

aAdapted from Table 1 of E. S. Pearson and H. O. Hartley (eds.)
(1970), Biometrika Tables for Statisticians, Vol. 1, 3rd Ed., 
Cambridge University Press, Cambridge, England, with permission of 
the Biometrika Trustees. 
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Table B.III The x2 Distributiona 

An entry in the table gives the area or probability P(x2 > x2 ) = CL, 

where x2 has a chi-square distribution with v = degrees of fr~~~om. 

~ 
0 2

Xa,• 

0.995 0.990 0.975 0.950 0.050 0.025 O.Ol.O 0.005 

l. 0.0000393 o. 0001571 0.0009821 0.0039321 3, 84146 5.02389 6.63490 7.87944
2 0.01.00251 0.0201007 o.05o6356 0.102587 5, 99147 7,37776 9.21034 l.0.5966 
3 0.0717212 0.1.1.4832 0.215795 0.351.846 7. 81473 9.34840 ll.3449 12.8381 
4 o.2o6990 0.2971.1.0 o.484419 0.710721 9.48773 ll.l.433 l.3.2767 l.4. 8602 
5 o.41.1.740 0.554300 0.83121.1. l.. l.45476 1.1..0705 12.8325 l.5. o863 1.6. 7496
6 0.675727 o.872o85 l.. 237347 l..63539 12. 591.6 l.4,4494 1.6.81.1.9 l.8. 5476 
7 0.989265 l..239o43 l..68987 2.1.6735 l.4. o67l. 1.6.0128 l.8.4753 20.2777 
8 1.. 344419 1..646482 2.17973 2.73264 l.5.5073 l.7.5346 20.0902 21.9550 
9 1..734926 2.o87912 2.70039 3,3251.1. l.6.9190 l.9.0228 21.6660 23.5893 

l.O 2.15585 2.55821 3.24697 3,94030 1.8. 3070 20.4831 23.2093 25.1.882 
1.1. 2.60321 3,05347 3,81575 4. 57481 l.9.6751 21.9200 24.7250 26.7569
12 3,07382 3,57056 4.40379 5.22603 2l.. 0261 23,3367 26.2170 28.2995 
l.3 3,56503 4. l.o69l. 5,00874 5.891.86 22. 3621 24..7356 27.6883 29.8194 
l.4 4.07468 4.66o43 5.62872 6.57o63 23.6848 26.1.1.90 29.1413 31,3193 
l.5 4.60094 5.22935 6.26214 7. 260<)4 24,9958 27.4884 30.5779 32.8013 
1.6 5.l.4224 5.81.221 6.90766 7, 961.64 26.2962 28.8454 31.9999 34.2672 
l.7 5.69724 6.40776 7, 56418 8.67176 27.5871 30.1910 33.4o87 35,71.85
l.8 6.26481 7. Ol.49l. 8.23075 9,39o46 28.8693 31. 5264 34.8053 37.1564 
l.9 6,84398 7.63273 8.9o655 l.0.1.1.70 30.1435 32.8523 36.l.9o8 38.5822 
20 7.43386 8.26o4o 9.59o83 l.0.85o8 3l..4l.o4 34.1696 37,5662 39,9968
2l. 8.03366 8.~o l.0.28293 1.1..5913 32.6705 35.4789 38,9321 4l..40l.O 
22 8.64272 9. 249 l.0.9823 12.3380 33,9244 36,7807 40.2894 42.7956 
23 9.26o42 l.O.l.9567 1.1..6885 l.3,0905 35.1725 38,0757 41.6384 44. l.8l.3 
24 9.88623 1.0. 8564 12.401.1. l.3.8484 36,4154 39. 3641 42.9798 45,5585 
25 l.0.5197 1.1..5240 l.3.1.1.97 l.4.61.1.4 37,6525 40.6465 44. 3l.4l. 46.9278 
26 1.1..1.603 12. l.981 l.3.8439 l.5. 3791 38.8852 41.9232 45.6417 48.2899 
27 1.1..8o76 12.8786 l.4. 5733 1.6. l.51.3 40.1.1.33 43.1944 46.9630 49.6449 
28 12.4613 l.3. 5648 l.5.3079 1.6.9279 4l.. 3372 44.4607 48.2782 50,9933
29 l.3.121.1. l.4.2565 l.6.o47l. l.7.7o83 42.5569 45,7222 49.5879 52,3356 
30 l.3.7867 l.4. 9535 l.6. 79o8 1.8.4926 43,7729 46.9792 50.8922 53,6720
40 20.7o65 22.1.643 24.4331 26.5093 55,7585 59, 3417 63.6907 66.7659 
50 27,9907 29.7o67 32.3574 34,7642 67.5o48 71.4202 76.1539 79.4900 
60 35,5346 37.4848 40.4817 43.1.879 79.o819 83.2976 88.3794 91.. 9517 
70 43.2752 45.441.8 48. 7576 51.7393 90,5312 95.0231 l.00.425 l.o4.2l.5 
8o 51.1720 53.5400 57.1532 60. 3915 l.Ol..879 l.o6.629 1.12. 329 1.1.6.321 
90 59.1963 61. 7541 65,6466 69.1.260 1.1.3.145 1.1.8.136 124.1.1.6 128.299 

l.00 67,3276 70.o648 74,2219 77-9295 124.342 129. 561 l.35-807 l.40.1.69 

llprom The Biometrika Tables for Statisticians, Vol. 1, 3rd Ed. 
(E. S. Pearson and H. 0. Hartley, eds.), with permission of the 
Biometrika Trustees. 

https://l.40.1.69
https://40.1.1.33
https://l.3.1.1.97
https://l.0.1.1.70
https://35,71.85
https://26.1.1.90
https://5.891.86


431 APPENDIX B: Tables 

Table B.IV d-Factors f'or Wilcoxon Signed Rank Test and Confidence 
Intervals f'or the Mediana,b 

n d 'Y a" a' n d 'Y a" a' 

3 .750 .250 .125 12 8 .991 .009 .005 
4 .875 .125 .062 9 .988 .012 .006 
5 1 .938 .062 .031 14 .958 .042 .021 

2 .875 .125 .063 15 .948 .052 .026 
6 .969 .031 .016 18 .908 .092 .046 

2 .937 .063 .031 19 .890 .110 .055 
3 .906 .094 .047 13 10 .992 .008 .004 
4 .844 .156 .078 11 .990 .010 .005 

7 1 .984 .016 .008 18 .952 .048 .024 
3 .953 .047 .016 19 .943 .057 .029 
4 .922 .078 .039 22 .906 .094 .047 
5 .891 .109 .055 23 .890 .110 .055 

8 .992 .008 .004 14 13 .991 .009 .004 
2 .984 .016 .008 14 .989 .011 .005 
4 .961 .039 .020 22 .951 .049 .025 
5 .945 .055 .027 23 .942 .058 .029 
6 .922 .078 .039 26 .909 .091 .045 
7 .891 .109 .055 27 .896 .104 .052 

9 2 .992 .008 .004 15 16 .992 .008 .004 
3 .988 .012 .006 17 .990 .010 .005 
6 .961 .039 .020 26 .952 .048 .024 
7 .945 .055 .027 27 .945 .055 .028 
9 .902 .098 .049 31 .905 .095 .047 

10 .871 .129 .065 32 .893 .107 .054 
10 4 .990 .010 .005 16 20 .991 .009 .005 

5 .986 .014 .007 21 .989 .011 .006 
9 .951 .049 .024 30 .956 .044 .022 

10 .936 .064 .032 31 .949 .051 .025 
11 .916 .084 .042 36 .907 .093 .047 
12 .895 .105 .053 37 .895 .105 .052 

11 6 .990 .010 .005 17 24 .991 .009 .005 
7 .986 .014 .007 25 .989 .011 .006 

11 .958 .042 .021 35 .955 .045 .022 
12 .946 .054 .027 36 .949 .051 .025 
14 .917 .083 .042 42 .902 .098 .049 
15 .898 .102 .051 43 .891 .109 .054 



432 APPENDIX B: Tables 

Table B.IV (Cont:inued) 

n d 1' a" a' n d 1' a" 

18 28 .991 .009 .005 22 49 .991 009 006 
29 .990 .010 .005 50 990 010 .006 
41 .952 .048 .024 66 .954 .046 .023 
42 .946 .054 .027 67 .950 .050 .025 
48 .901 .099 .049 76 .902 .098 .049 
49 .892 .108 .054 77 .895 .105 .053 

19 33 .991 .009 .005 23 55 .991 .009 .005 
34 .989 .011 .005 56 .990 .Q10 .005 
47 .951 .049 .025 74 .952 .048 .024 
48 .945 .055 .027 75 .948 .052 .026 
54 .904 .096 .048 84 .902 .098 .049 
55 .896 .104 .052 85 .895 .105 .052 

20 38 .991 .009 .005 24 62 .990 .QlO .005 
39 .989 .011 .005 63 .989 .011 .005 
53 .952 .048 .024 82 .951 .049 .025 
54 .947 .053 .027 83 .947 .053 .026 
61 .903 .097 .049 92 .905 .095 .048 
62 .895 .105 .053 93 .899 .101 .051 

21 43 .991 .009 .005 25 69 .990 .010 .005 
44 .990 .010 .005 70 .989 .011 .005 
59 .954 .046 .023 90 .952 .048 .024 
60 .950 .050 .025 91 .948 .052 .026 
68 .904 .096 .048 101 .904 .096 .048 
69 .897 .103 .052 102 .899 .101 .051 

~rom Introduction to Statistics: A Fresh Approach. Copyright 1971 
by Houghton Mifflin Company. Used by permission of the publisher. 

by = confidence coefficient; CL I = (1/2) (1 - y) = one-sided signi:ri-
cance level; et" = 2et 1 = 1 - y = two-sided significance level. 
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Table B.VI d-Factors for Wilcoxon-Mann-Whitney Test and Confidence 
Intervals for the Shi~ Parameter ~ 

'Y = confidence coefficient 
a' = ~(1 - 'Y) = one-sided 

significance level 
a" = 2a:' = 1 - 'Y = two-sided 

significance level 

For sample sizes m and n beyond the range 
of this table use d ~ t [mn + 1 -
z./mn(m + n + 1)131,wherezis read from 
Table C. 

n=3 
n=4 

n=5 

n=6 

n=7 

n=B 

n=9 

n-10 

n-11 

n-12 

m =.3 m = 4 

d 7 a" a' d 7 a " a 

1 .900 .100 .050 

1 .943 .057 .029 1 .971 .029 .014 
2 .886 .114 .057 2 .943 .057 .029 

3 .886 .114 .057 

1 
2 

.964 

.929 
.036 
.071 

,018 
.036 

1 
2 

.984 

.968 
.016 
.032 

.008 

.016 
3 .857 .143 .071 3 .937 .063 .032 

4 .889 .111 .056 

1 .976 .024 .012 1 .990 .010 .005 
2 .952 .048 .024 2 .981 .019 .010 
3 .905 .095 .048 3 .962 .038 .019 
4 .833 .167 .083 4 .933 .067 .033 

5 .886 .114 .057 

1 .983 .017 .008 1 .994 .006 .003 
2 .967 .033 .017 2 .988 .012 .006 
3 .933 .067 .033 4 .958 .042 .021 
4 .883 .117 .058 5 .927 .073 .036 

6 .891 .109 .055 

1 .988 .012 .006 2 .992 .008 .004 
3 .952 .048 .024 3 .984 .016 .008 
4 .915 .085 .042 5 .952 .048 .024 
5 .867 .133 .067 6 .927 .073 .036 

7 .891 .109 .055 

1 .991 .009 .005 2 .994 .006 .003 
2 
3 

.982 

.964 
.018 
.036 

.009 

.018 
3 
5 

.989 

.966 
.011 
.034 

,006 
.017 

4 .936 .064 .032 6 .950 .050 .025 
5 .900 .100 .050 7 .924 .076 .038 

8 .894 .106 .053 

1 .993 .007 .004 3 .992 .008 .004 
2 .986 .014 .007 4 .986 .014 .007 
4 .951 .049 .025 6 .964 .036 .018 
5 .923 .077 .039 7 .946 .054 .027 
6 .888 .112 .056 8 .924 .076 .038 

9 .894 .106 .053 

1 
2 

.995 

.989 
.005 
.011 

.003 

.006 
3 
4 

.994 

.990 
.006 
.Q10 

.003 

.005 
4 
5 

,962 
.940 

.038 

.060 
.019 
.030 

7 
8 

.960 

.944 
.040 
.056 

.020 

.028 
6 .912 .088 .044 9 .922 .078 .039 
7 .874 .126 .063 10 .896 .104 .052 

2 .991 .009 .004 4 .992 .008 .004 
3 
5 

.982 

.952 
.018 
.048 

.009 

.024 
5 
8 

.987 

.958 
.013 
.042 

.007 

.021 
6 .930 .070 .035 9 .942 .058 .029 
7 .899 .101 .051 10 .922 .078 .039 

11 .897 .103 .052 

8From Introduction to Statistics: A Fresh Approach by Gottfried 
Noether. Copyright 1971 by Houghton Mifflin Company. Used by
permission of the publisher. 
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Table B.VI (Continued) 

m-5 m=6 m=1 m-8 
d 'Y a" a' d 'Y a" a' d 'Y a" a' d 'Y a" a' 

n-5 1 
2 
3 
4 
5 
6 

.992 

.984 

.968 

.944 

.905 

.849 

.008 

.016 

.032 

.056 

.095 

.151 

.004 

.008 

.016 

.028 

.048 

.o75 

n=6 2 
3 
4 
5 
6 
7 

.991 

.983 

.970 

.948 

.918 

.874 

.009 

.017 

.o30 

.052 

.082 

.126 

.004 

.009 

.o15 

.026 

.041 

.063 

3 
4 
6 
7 
8 
9 

.991 

.985 

.959 

.935 

.907 

.868 

.009 

.o15 

.041 

.065 

.093 

.132 

.004 

.008 

.021 

.033 

.047 

.066 

n=1 2 
3 
6 
7 
8 

.995 
.990 
.952 
.927 
.894 

.005 
.010 
.048 
.073 
.106 

.003 
.005 
.024 
.037 
.053 

4 
5 
7 
8 
9 

10 

.992 

.986 

.965 

.949 

.927 

.899 

.008 

.014 

.035 

.051 

.073 

.101 

.004 

.007 

.Q18 

.026 

.037 

.051 

5 
6 
9 

10 
12 
13 

.993 

.989 

.962 

.947 

.903 

.872 

.007 

.011 

.Q38 

.053 

.097 

.128 

.004 

.006 

.019 

.027 

.049 

.064 

n-8 3 
4 
7 
8 
9 

10 

.994 

.989 

.955 

.935 

.907 

.873 

.006 

.011 

.045 

.065 

.093 

.127 

.003 

.005 

.023 
,033 
.047 
.064 

5 
6 
9 

10 
11 
12 

.992 

.987 

.957 

.941 

.919 

.892 

.008 

.013 

.043 

.059 

.081 

.108 

.004 

.006 

.021 

.030 

.041 

.054 

7 
8 

11 
12 
14 
15 

.991 

.986 

.960 

.946 

.906 

.879 

.009 

.014 

.040 

.054 

.094 

.121 

.005 

.007 

.020 

.027 

.047 

.060 

8 
9 

14 
15 
16 
17 

.993 

.990 

.950 

.935 

.917 

.895 

.007 

.010 

.050 

.065 

.083 

.105 

.004 

.005 

.025 

.033 

.042 

.052 

n-9 4 
5 
8 
9 

10 
11 

.993 

.988 

.958 

.940 

.917 

.888 

.007 

.012 

.042 

.060 

.083 

.112 

.004 

.006 

.021 

.030 

.042 

.056 

6 
7 

11 
12 
13 
14 

.992 

.988 

.950 

.934 

.912 

.887 

.008 

.012 

.050 

.066 

.088 

.113 

.004 

.006 

.025 

.033 

.044 

.057 

8 
9 

13 
14 
16 
17 

.992 
.988 
.958 
.945 
.909 
.886 

.008 

.012 

.042 

.055 

.091 

.114 

.004 

.006 

.021 

.027 

.045 

.057 

10 
11 
16 
17 
19 
20 

.992 

.989 

.954 

.941 

.907 

.886 

.008 

.011 

.046 

.059 

.093 

.114 

.004 

.006 

.023 

.030 

.046 

.057 

n-10 5 
6 
9 

10 
12 
13 

.992 

.987 

.960 

.945 

.901 

.871 

.008 

.013 

.040 

.055 

.099 

.129 

.004 

.006 

.020 

.028 

.050 

.065 

7 
8 

12 
13 
15 
16 

.993 

.989 

.958 

.944 

.907 

.882 

.007 

.011 

.042 

.056 

.093 

.118 

.004 

.006 

.021 

.028 

.047 

.059 

10 
11 
15 
16 
18 
19 

.990 

.986 

.957 

.945 

.912 

.891 

.o10 

.014 

.043 

.055 

.088 

.109 

.005 

.007 

.022 

.028 

.044 

.054 

12 
13 
18 
19 
21 
22 

.991 

.988 

.957 

.945 

.917 

.899 

.009 

.012 

.043 

.055 

.083 

.101 

.004 

.006 

.022 

.027 

.042 

.051 

n-11 6 
7 

10 
11 
13 
14 

.991 

.987 

.962 

.948 

.910 

.885 

.009 

.013 

.038 

.052 

.090 

.115 

.004 

.007 

.019 

.026 

.045 

.058 

8 
9 

14 
15 
17 
18 

.993 

.990 

.952 

.938 

.902 

.878 

.007 

.010 

.048 

.062 

.098 

.122 

.004 

.005 

.024 

.031 

.049 

.061 

11 
12 
17 
18 
20 
21 

.992 

.989 

.956 

.944 

.915 

.896 

.008 

.011 

.044 

.056 

.085 

.104 

.004 

.006 

.022 

.028 

.043 

.052 

14 
15 
20 
21 
24 
25 

.991 

.988 

.959 

.949 

.909 

.891 

.009 

.012 

.041 

.051 

.091 

.109 

.005 

.006 

.020 

.025 

.045 

.054 

n-12 7 
8 

12 
13 
14 
15 

.991 

.986 

.952 

.936 

.918 

.896 

.009 

.014 

.048 

.064 

.082 

.104 

.005 

.007 

.024 

.032 

.041 

.052 

10 
11 
15 
16 
18 
19 

.990 

.987 

.959 

.947 

.917 

.898 

.010 

.013 

.041 

.053 

.083 

.102 

.005 

.007 

.021 

.026 

.042 

.051 

13 
14 
19 
20 
22 
23 

.990 

.987 

.955 

.944 

.917 

.900 

.010 

.013 
.045 
.056 
.083 
.100 

.005 

.007 

.023 

.028 

.042 

.050 

16 
17 
23 
24 
27 
28 

.990 

.988 

.953 

.943 

.902 

.885 

.010 

.012 

.047 

.057 

.098 

.115 

.005 

.006 

.024 

.029 

.049 

.058 
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Table B.VI (Continued) 

m - 9 m -10 m-11 m -12 

d .,, a" a d .,, a" " d .,, a" a' d .,, a " a' 

n-9 12 
13 
18 
19 
22 
23 

.992 

.989 

.960 

.950 
,906 
.887 

.008 

.011 

.040 

.050 

.094 

.113 

.004 

.005 

.020 

.025 

.047 

.057 

n-10 14 
15 
21 
22 
25 
26 

.992 

.990 

.957 

.947 

.905 

.887 

.008 

.Q10 

.043 

.053 

.095 

.113 

.004 

.005 

.022 

.027 

.047 

.056 

17 
18 
24 
25 
28 
29 

.991 

.989 
,957 
.948 
.911 
.895 

.009 

.011 

.043 

.052 

.089 

.105 

,005 
.006 
.022 
.026 
.045 
.053 

n=11 17 
18 
24 
25 
28 
29 

.990 

.988 

.954 

.944 

.905 

.888 

.010 

.012 

.046 
,056 
.095 
.112 

.005 

.006 

.023 

.028 

.048 

.056 

19 
20 
27 
28 
32 
33 

.992 

.990 

.957 

.949 

.901 

.886 

.008 

.010 

.043 
,051 
.099 
.114 

.004 

.005 

.022 

.026 

.049 

.057 

22 
23 
31 
32 
35 
36 

.992 

.989 

.953 

.944 

.912 

.899 

.008 

.011 

.047 

.056 

.088 

.101 

.004 

.005 

.024 

.028 

.044 

.051 

n-12 19 
20 
27 
28 
31 
32 

.991 

.988 

.951 

.942 

.905 

.889 

.009 

.012 

.049 

.058 

.095 

.111 

.005 

.006 

.025 

.029 

.048 

.056 

22 
23 
30 
31 
35 
36 

.991 

.989 

.957 

.950 

.907 

.893 

.009 

.011 

.043 

.050 

.093 

.107 

.005 

.006 

.021 

.025 

.047 

.054 

25 
26 
34 
35 
39 
40 

.991 

.989 
,956 
.949 
.909 
.896 

.009 

.011 

.044 

.051 

.091 

.104 

,004 
.005 
.022 
.026 
.045 
.052 

28 
29 
38 
39 
43 
44 

.992 

.990 

.955 

.948 

.911 

.899 

.008 

.010 
.045 
.052 
.089 
.101 

.004 

.005 

.023 

.026 

.044 

.050 
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randomized block design, 406-413 
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DEF, 425 
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GO TO, 416, 420-422 
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expectation of, 67 
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probability function, 66 
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85-86, 89-90 
simulation of, 65 
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Cauchy distribution, 149 
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examples of, 185-192 
statement of, 185 

Chebyshev inequality, 124-126, 137 
Chi-square distribution, 226-228 

approximation of multinomial, 

334-336 
for contingency tables, 337-344 

Conditfonal frequencies, 32-35, 38 
Conditional probability, 32-37 

assignment to S, 34 

442 



Subject Index 

defined, 33 
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Distribution-free tests: 
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unbiased, 207 

Event: 
complement of, 22 
defined, 19 

Events: 
disjoint, 24 
equivalent, 22confidence interval for, 381-382 
independent, 39-40, 41, 44relation to S, 380 
intersection of, 22sample, 380 
union of, 22test for, 381-382 

Expected mean squares, 395, 408theoretical, 379 
Expected value:Covariance, 63, 378-379 

in binomial case, 67Cumulative distribution f'unqtion: 
of a constant, 59defined, 49, 115 
defined, 52-53, 121properties of, 50 
in discrete uniform case, 53 
failure to exist, 123 



444 Subject Index 

of a function, 55-56, 122 

in geometric case, 55 

of a sum, 59 

F 

F distribution, 305 

F test: 
in one way ANOVA, 396-398 
in randomized block, 408-411 

Finite population correction 

factor, 163 

Frequency table, 119-120 
Functions (in BASIC), 423-425 

G 

Gamma function, 121-122 
Geometric distribution, 14-15, 20 
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