STATISTICS: textbooks and monographs volume 26

An Introduction
to Probability
and Statistics

Using BASIC

RiCHARD A. GROENEVELD



An Introduction to
Probability and Statistics
Using BASIC



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

STATISTICS: Textbooks and Monographs
A SERIES EDITED BY

D. B. OWEN, Coordinating Editor
Department of Statistics
Southern Methodist University
Dallas, Texas

PAUL D. MINTON JOHN W. PRATT
Virginia Commonwealth University Harvard University
Richmond, Virginia Boston, Massachusetts

Volume 1:
Volume 2:
Volume 3:
Volume 4:

Volume §:

Volume 6:

Volume 7:

Volume 8:

Volume 9:

Volume 10:
Volume 11:
Volume 12:

Volume 13:

Volume 14:

Volume 15:

Volume 16:

Volume 17:
Volume 18:
Volume 19:

Volume 20:

The Generalized Jackknife Statistic, H. L. Gray and W. R. Schucany
Multivariate Analysis, Anant M. Kshirsagar
Statistics and Society, Walter T. Federer

Multivariate Analysis: A Selected and Abstracted Bibliography, 1957-1972,
Kocherlakota Subrahmaniam and Kathleen Subrahmaniam {out of print)}

Design of Experiments: A Realistic Approach, Virgil L. Anderson and Robert A.
McLean

Statistical and Mathematical Aspects of Pollution Problems, John W. Pratt

Introduction to Probability and Statistics (in two parts)
Part I: Probability; Part Il: Statistics, Narayan C. Giri

Statistical Theory of the Analysis of Experimental Designs, J. Ogawa

Statistical Techniques in Simuiation (in two parts), Jack P. C. Kleijnen

Data Quality Control and Editing, Joseph I. Naus

Cost of Living Index Numbers: Practice, Precision, and Theory, Kali S. Banerjee

Weighing Designs: For Chemistry, Medicine, Economics, Operations Research,
Statistics, Kali S. Banerjee

The Search for Oil: Some Statistical Methods and Techniques, edited by
D. B. Owen

Sample Size Choice: Charts for Experiments with Linear Models, Robert E. Odeh
and Martin Fox

Statistical Methods for Engineers and Scientists, Robert M. Bethea, Benjamin S.
Duran, and Thomas L. Boullion
Statistical Quality Control Methods, Irving W. Burr

On the History of Statistics and Probability, edited by D. B. Owen

Econometrics, Peter Schmidt .

Sufficient Statistics: Selected Contributions, Vasant S. Huzurbazar (edited by
Anant M. Kshirsagar)

Handbook of Statistical Distributions, Jagdish K. Patel, C. H. Kapadia, and
D. B. Owen



Volume 21:
Volume 22:

Volume 23:
Volume 24:

Volume 25:
Volume 26:

Case Studies in Sample Design, 4. C. Rosander

Pocket Book of Statistical Tables, compiled by R. E. Odeh, D. B. Owen, Z. W.
Birnbaum, and L. Fisher

The Information in Contingency Tables, D. V. Gokhale and Solomon Kullback

Statistical Analysis of Reliability and Life-Testing Models: Theory and Methods,
Lee J. Bain

Elementary Statistical Quality Control, Irving W. Burr

An Introduction to Probability and Statistics Using BASIC,
Richard A. Groeneveld

OTHER VOLUMES IN PREPARATION



An Introduction to
Probability and Statistics
Using BASIC

RICHARD A. GROENEVELD

Department of Statistics
lowa State University
Ames, lowa

MARCEL DEKKER, INC. New York and Basel



Library of Congress Cataloging in Publication Data

Groeneveld, Richard A  [Datel
An introduction to probability and statistics using
BASIC.

(statistics, textbooks and monographs ; v. 26)

Bibliography: p.

Includes index.

1. Probabilities--Data processing. 2. Mathematical
statistics--Data processing. 3. Basic (Computer program
language) I. Title.

QA2T3.GT65 519'.028'542k 78-31493
ISBN 0-8247-6543-5

COPYRIGHT © 1979 by MARCEL DEKKER, INC. ALL RIGHTS RESERVED

Neither this book nor any part may be reproduced or transmitted in

any form or by any means, electronic or mechanical, including photo-
copying, microfilming, and recording, or by any information storage
and retrieval system, without permission in writing from the publisher.

MARCEL DEKKER, INC.
270 Madison Avenue, New York, New York 10016

Current printing (last digit):
10987654321

PRINTED IN THE UNITED STATES OF AMERICA



To the Memory of my Father



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

CONTENTS

PREFACE ix
LIST OF BASIC PROGRAMS xiii
Chapter 1. INTRODUCTION 1
1.1 Probability and Statistics 2

1.2 The Use of BASIC Programs

Chapter 2. ELEMENTARY PROBABILITY 5

2.1 Random Experiments 5

2.2 Definition of a Probability Model in the Discrete Case

2.3 Probabilities of Events in the Discrete Case 19
2.4 Probabilities of Composite Events in a Discrete

Sample Space S 21
2.5 Conditional Frequency and Conditional Probabllity 32
2.6 Independent Events 38
Chapter 3. PROPERTIES OF DISCRETE RANDOM VARIABLES 46
3.1 Discrete Random Variables 46
3.2 The Moments of a Discrete Random Variable 52
3.3 The Binomial Random Variable 6L
3.4  The Hypergeometric Distribution 80
3.5 The Poisson Distribution 90
3.6 The Standard Deviation and the Chebyshev Inequality 99



vi Contents

Chapter 4., CONTINUOUS OUTCOME SPACES 103
4,1 Introduction to Continuous Outcome Spaces 103
4.2 Continuous Probability Measures and Random Variables 112
4.3 Moments of a Continuous Random Variable 119
4.4  Special Continuous Random Variables 127
4.5 Transformations of Continuous Random Variables 1h2
4.6 Generating Random Samples from Continuous Distributions 148
Chapter 5. SAMPLING 152
5.1 Introduction 152
5.2 Statistics Estimating Location 166
5.3 Statistics Estimating Variability 175
5.4  The Central Limit Theorem 184
5.5 Estimation of u Using Large Samples 194
5.6  Approximation of Binomial Probabilities by the

Normal Distribution 201
Chapter 6. ESTIMATION OF PARAMETERS 207
6.1 Introduction and Definitions 207
6.2 Estimation of Location in Small Samples 213
6.3 Estimating 62, the Population Variance 226
6.4 Estimation of o in a Normal Population 232
6.5 Estimation of a Population Proportion p 236
Chapter 7. HYPOTHESIS TESTING 245
T.1 Introduction 245
7.2 Tests of a Population Proportion p for Large n 254
7.3 Tests Concerning p in Normal Populations 261
7.4 Tests for y in Large Samples 274
7.5 Distribution-free Tests of Location 279
7.6 Tests Concerning 02 and ¢ in Normal Populations 292
Chapter 8. TWO-SAMPLE TESTS 296

8.1 Introduction 296



Contents

8.2

8.3

8.4
8.5
8.6

Differences of Population Expectations in the Large
Sample Case

Differences of Population Expectations in the Normal
Case

The Wilcoxon Rank Sum Test
Inference for Matched Pairs

Comparison of Two Population Proportions

Chapter 9. ANALYSIS OF CLASSIFICATION DATA

9.1
9.2

9.3
9.k

Introduction

The Multinomial Distribution and Its Relation to
the Chi-Square Distribution

Analysis of Contingency Tables
Goodness of Fit

Chepter 10. SIMPLE LINEAR REGRESSION AND ASSOCIATION

10.1
10.2
10.3
10.4

Introduction (The Least Squares Line)
Inference in the Linear Regression Model
Prediction Using the Regression Model

Association and Correlation

Chapter 11. THE ANALYSIS OF VARIANCE

11.1
11.2
11.3

Introduction
Single-Factor Analysis of Variance

The Randomized Block Design

APPENDIX A: THE BASIC LANGUAGE

Al
A.2
A3

An Introduction to BASIC
Elementary Statements and Operations in BASIC
Additional Information about BASIC

APPENDIX B: TABLES

SELECTED BIBLIOGRAPHY AND REFERENCES

SUBJECT INDEX

vii

297

30k
312
320
325

331

331

331
337
3Lt

353
353
358
373
377

392

392
393
406

bk

L1k
b7
423

Lot
L39
Lh2



Taylor & Francis
Taylor &Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

PREFACE

This text has been written for an introductory course in probability
and statistics. A central theme throughout is the introduction of
theoretical ideas in probability and statistics by means of examples.
Generally it is difficult to obtain "real-world" data quickly and
inexpensively enough to motivate and illustrate such ideas. Here the
strengths of an interactive computing language (BASIC) are exploited
to illustrate probabilistic and statistical ideas. However, no great
background in computing is required; all that is needed can be learned
within a short period of time. Appendix A gives a description of

the BASIC language adequate for the use of the reader. The gim is

to present the basic ideas in probability and statistics generally
included in a first course. It is the author's belief that inter-
active computing can provide a bridge between statistical theory and
practice, yielding better insight into both.

The author sees several ways in which the strength of computing
can be used in an introductory course. The ability of the computer
to simulate rapidly a large number of repetitions of & random ex-
periment and to summarize quickly and present succinctly the results
of these experiments is useful in illustrating a wide range of
probabilistic and statistical ideas. The computer, additionally, can
be utilized to carry out routine but tedious computations, allowing
concentration upon ideas and not upon calculations. Furthermore,

extensive use of computing provides & valuable introduction to modern

ix
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methods of data analysis. A magnetic tape of the computer programs
in the text may be obtained at the cost of reproduction and mailing
from the author at Iowa State University.

A word here about the audience to whom this text is addressed
and the background assumed is appropriate. The suthor sees this
text as addressed to students who have had a two-quarter introductory
sequence in the differential and integral calculus of functions of
a single varisble {or the equivalent). The author believes that
many students who are introduced to the calculus are not given an
opportunity to take a course demonstrating the power of this mathe-
matics at a sufficiently early stage. Those with interests outside
the physical sciences often become impatient with applications in
these areas and do not pursue additional work in mathematics. The
text includes those topics described by the Committee on the Under-
graduate Program in Mathematics (CUPM) Report of 1965 for Mathematics
2P. However, much more of the text is devoted to statistics than
is suggested there. On the one hand, it is intended that this text
contain sufficient mathematical rigor that a reader may appreciate
probability theory. A coequal aim is to provide an adequate back-
ground in statistics to serve as a basis for additional study of
statistical methods in a chosen field of application or for addition-
al study of statistical theory. In the larger sense, the text re-
presents an attempt to blend mathematical theory with statistical
practice. The author believes that such a background will become
increasingly important for the understanding of a complex technologi-
cal society.

I am indebted to the Biometrika Trustees for permission to in-
clude Tables B.I, B.III, and B.V, which are abridgments and adapta-
tions of tables published in Biometrika Tables for Statisticians.

I am also grateful to the Literary Executor of the late Sir Ronald
A. Fisher, F.R.S., to Dr. Frank Yates, F.R.S., and to the Longman
Group Ltd., London, for permission to use Table III from their
book Statistical Tables for Biological, Agricultural, and Medical

Research (6th Ed., 19T4), reproduced as Table B.II.
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The original draft of this text was written while the author
was on leave of absence at Dartmouth College, Hanover, New Hampshire.
I would like to thank Dartmouth for making available access to the
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vironment for writing this text. I would like to thank Helen Hanchett,
Nancy French, and Joy Marshall for typing the original draft and

Marlene Sposito for typing the revisions and the final draft.
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INTRODUCTION

In this text we shall pursue an understanding of the basic ideas in
the disciplines of probability and statistiecs. It is clear from the
most casual reading of the morning's newspaper that crucial social
decisions are based upon the results of the sampling of public opinion
and statistical estimates. For example, estimates of the rate of
unemployment and inflation, obtained by statistical means, are cited
as a basis for the fiscal and monetary policies of the government.
Sampling of public opinion on guestions of public policy is often
used as the basis for governmental action. At the very least, such
samplings are carefully considered in questions of public policy.
Evidence for the importance of statistics in a modern techno-
logical society confronts us constantly. Due to the importance of
statistics in understanding a modern society one is naturally led to
the consideration of the mathematical basis of statisties. We shall
be interested in questions of how to describe, mathematically, in-
stances of "chance." Additionally, we shall study some of the basic
concepts of statistics with the aim of understanding in what sense
statistical methods may be considered "valid." There is no universal
agreement on these questions, but here we shall adopt the long-run
frequency interpretation of probability, which will be defined more
explicitly in the succeeding chapters. Let us first consider some

basic definitions and the role the computer will play in this text.



2 Introduction

1.1  PROBABILITY AND STATISTICS

It is important to distinguish between the disciplines of probability
and statistics. Probability is a mathematical discipline which aims
at describing the outcomes of chance experiments. In probability
theory one defines probability models, which are mathematical struc-
tures. We believe that these models describe the essentially im-
portant characteristics of certain chance situations. One defines
the basic elements of a model, and axioms are stated concerning re-
lationships between these elements. The implications of the model,
often called theorems, are deduced from the basic definitions and
axioms. The reasoning here is essentially deductive. One hopes,

of course, that a probability model used gives a reasonably good
description of the chance experiment, so that the mathematical
properties, often summarized as theorems, will have "real-world"
application.

The discipline of statistics is essentially a body of knowledge
for reasoning inductively, i.e., from the part to the whole. A much
quoted definition of statistics is given in the text The Nature of
Statistics by Wallis and Roberts: “Statistics is a body of methods
for making wise decisions in the face of uncertainty." The types
of decisions with which we are concerned are to be based on available
numerical values, which give valuable but incomplete information
needed to make the decision. We are used to making decisions of this
kind every day. We know from previous experiences how long the
telephone conversations of the other party on a two-party line have
lasted. If the other party is on the line when we wish to make a
call, we use the data from previous similar situations to help decide
how long to wait before attempting to place the call again. In such
a case, common sense and patience may suffice, but in other more
complicated situations formal rules of inference are required.
Statistics, using the mathematics of probability, is the study of
formal rules of inference, with the intention of providing proce-
dures of inference which are scientifically justifiable and useful.

The relationship between probability and statistics may not at the
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moment be completely clear. We shall pursue the relationship and
distinction between the two disciplines in more detail in the fol-

lowing chapters to improve our understanding as we proceed.

1.2 THE USE OF BASIC PROGRAMS

As mentioned above, there has been an effort to capitalize on the
strengths of the time-sharing system in the introduction and expla-
nation of concepts and in the carrying out of routine but tedious
computations. A student will be expected to have a working knowledge
of the elementary commands in BASIC. Experience has shown that it
takes students a very small amount of time to acquire this competence.
Appendix A has been included to give a brief description of the BASIC
language. All the essentials of the grammar and content of BASIC
required for the text are included in Appendix A and this section.

Each of the chapters here is made up of several numbered sub-
sections. In most sections there are references to particular
programs written in BASIC. The first time a program is referred to
in a section, a listing of the program and a sample run will appear
near the end of the section in which it is first referenced. The
program is only listed once, so that later references to the program
may refer to a listing appearing in a previous section. Additional
runs of a program introduced in an earlier section will often appear.
Some exercises call for running a program made available with this
text. Other exercises require writing simple programs to show an
understanding of a particular idea or computation.

The BASIC language provides a statement which allows the selec-
tion of a psuedorandom number from the interval 0 < x < 1. The
function is RND which is used in conjunction with the LET statement.
RND does not require an argument. We illustrate the use of this
command in several examples.

Suppose & trial is made of a chance event which has two
outcomes: A and B. For example, in matching two coins, let A

represent getting two heads and B any other outcome. Assume the
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true relative frequencies of A and B are 1/4 and 3/4. The following
program will simulate 100 such trials and compute the relative fre-

quencles observed.

10 FOR I =1 TO 100
20 LET X = RND

30 IF X > 0.25 THEN 60
Lo ILET A=A+ 1

50 GO TO 7O

60 LET B=B+ 1

70 NEXT I

80 PRINT "FREQ A = "; A/100, "FREQ B = "; B/100
90 END

The following command will select a random number from the
interval (A, B):

10 LET X = A + (B ~ A)*RND

The following command will select a random integer from K to L for
K < L.

20 LET X = K + INT(RND*(L - K + 1))

The command RND will cause the same sequence of random numbers to be
selected each time a program is run. This is useful for debugging
programs and for checking homework assignments. However, any true
simulation requires a different set of random numbers for each run.
This will occur if the command RANDOMIZE appears at the beginning of

a program, i.e.,
1 RANDOMIZE

is the first statement. Substantial use of the simulation capacity

of the BASIC language will be made in the succeeding chapters.
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2.1  RANDOM EXPERIMENTS

We are all aware that the world in which we live is an unpredictable
one. The outcomes of many of our actions cannot be predicted in
advance. A couple has a child; they do not know the child's sex
until birth. An individual makes a visit to a drive-in bank; the
number of cars in line, including his own, upon arrival at the bank
cannot be predicted. A battery is purchased for an automobile; the
number of years that it will function until failure is unknown.
Nevertheless, actions like those described above are taken daily.
Such actions are more formally called random experiments, i.e.,
those for which the outcome is not predictable in advance through
knowledge of the conditions under which the experiment is made.

It is the desire to have some kind of reasonable knowledge
about the outcomes of such trials which has led to the development
of the mathematical discipline of probability. We shall concentrate
initially on the empirical basis for probability models. A proba-
bility model is a mathematical (or axiomatic) description of a
situation involving random experiments. In the model the salient
features of the real-world situation are abstracted and defined
mathematically. Such a model, of course, only can be an approxima-
tion of the real situation. There is, for example, probably no

real-world coin which shows heads or tails with exactly equal
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likelihood. Nevertheless, the assumption of the existence of such
a theoretical coin permits a mathematical description which has had
many useful real-world applications. The development of formal
probability models, which aim at describing the outcomes of differ-
ent types of random experiments, has its basis in man's desire to
better understand his uncertain world and to predict the outcome of
his actions.

The first step in coming to an acceptable description of a
random experiment is to concede that one should not concentrate on
the outcome of a particular trial of a random experiment. Rather,
one should first consider the set of possible outcomes or results
associated with such an experiment. We will denote such sets of
outcomes by capital letters. For the examples given in the first
paragraph we might define the following outcome sets for the three

experiments described:

I

{male, female}
{1, 2, 3, ..., 10}
{0, 1, 2, ..., 8}

joe)
[t}

The outcome set B indicates that a maximum of 10 cars may be in line
at the drive-in bank, perhaps due to physical limitations of the
parking lane. The integer n in outcome set C means that the battery
has lasted for a least n years, but not n + 1. Hence n = 0 implies
failure during the first year of operation. Operation for 9 or more
years is not considered possible.

Of course it is clear that such outcome sets alone are insuffi-
cient to provide an idea of the relative likelihood of the individual
outcomes. We make our first use of the computer here to simulate
outcomes of our first experiment, having a child. The program BIRTH
simulates the birth of N children with the true proportion of male
births assumed to be p. The values of N and p are read from the
DATA statement in line 370. The simulation is repeated 20 times and
the output prints the proportion of female and male births in each
of the 20 simulations. In addition, the graph of the relative

frequency of male births is plotted. The axes will occur in their
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traditional orientation if the output is turned 90 degrees in the

counterclockwise direction. The vertical axis represents relative

frequency with X indicating 0.5, and the horizontal axis represents

the trial numbers for the 20 simulations.

In the two runs displayed we have chosen N = 40 and N = 400
with p = 0.5. It is immediately clear that, although it is rare
that a particular sample of N births has exactly one-half of the
births of each sex, the relative frequency of male births does tend
to cluster near 0.5 in both simulations. Additionally, it is appar-
ent from comparison of the two graphs that these relative frequencies
cluster more closely about 0.5 for samples of 400 births than for
samples of 40 births.

In our second program, entitled CARS, we simulate N visits to
the drive-in bank described above. In this case we make the rather
unrealistic assumption that the number of cars in line has an equal
chance of being any integer from 1 to 10. The program simulates
N = 1000 visits and the frequencies of 1, 2, ..., 10 cars in line
are printed, along with the sum of these relative frequencies and
the average number of cars in line in the 1000 visits. The relative
frequencies cluster about the theoretical value of 0.1 for each of
the possible number of cars in line. In addition, the sum of the
frequencies is one, as a little thought convinces us that it must
be. The properties of relative frequencies which we observe will
lead us to the mathematical definition of a probability model. In
particular, if the relative frequencies of the outcomes of a random
experiment are defined to be fi’ for i =1, 2, ..., k (k possible
outcomes ), we must have 0 f_fi <1 and Z§=l fi = 1.

For example on September 30, 1976, the results of a Gallup poll
on the first Carter-Ford debate were published. In response to the
question, "In your opinion, which man did a better job in the

debate?" the following was reported:

Ford Carter No opinion

32% 25% 43%
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W

In relative frequency terms, we have fl = 0.32, f_, = 0.25, and f_ =

2 3

0.43. Clearly these relative frequencies satisfy the properties

stated in the last paragraph.

Exercises 2.1

1. Assume that a batter is a "300 hitter," and that he comes to bat
400 times in each year. Use BIRTH to simulate the batter's
average in the 20 seasons, relabeling the output "HIT" and "NWO
HIT." Alter the program to calculate his (her) 20-year average.

What were his (her) best and worst season averages?

2. The actual frequency of male birth in the United States is about
0.513. Use BIRTH to simulate 1000 births in each of 20 years.
Use the program altered to calculate the frequency of male birth
for the 20,000 births. Compare this value with p = 0.513.

3. Assume that there is space for 16 cars in line at the drive-in
bank described by CARS. Alter CARS to simulate 3000 visits to
the bank, printing out the frequency of 1 to 16 cars in line.

(You will need a dimension statement.)

L. The statement LET Y = 1 + INT(6#RND) will simulate the roll of a
die. Using this, write a program to simulate the sum attained
on 2500 tosses of two dice. Compute the relative frequencies of
the sums 2 through 12. Which outcome is most frequent and with
what frequency was it observed? What do you believe to be the

theoretical frequency of this outcome?

2.2 DEFINITION OF A PROBABILITY MODEL IN THE DISCRETE CASE

The stability of the relative frequency of the occurrence of a
particular event, when a particular random experiment is repeated a
large number of times, serves as motivation for the formal defini-
tion of a probability model. The properties of relative frequencies
which we have observed previously will be reflected in the defini-

tions which we make.
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BIRTH

16 DIM M(28),F(28)
28 FOR I = 1 TO 29
3% LET M(I)>=0

49 LET F(1)=0

50 NEXT 1

6@ PRINT "“FEMALE",'MALE"
73 READ N»P

83 FOR 1 = 1 TO 20
98 FOR J =1 TO N
180 LET Z = RND

1180 IF Z <=P THEN 140
120 LET F(I)=F(I)+]
136 GO TO 159

140 LET M(I)= M(I)+]
156 NEXT J

160 LET M(1)= M(IX/N
170 LET F(1)= F(IX/N
186 PRINT FCI),MCI)
199 NEXT I

200 PRINT

210 FOR J = 1 TO 29
220 PRINT "+'";

230 NEXT J

240 PRINT "X';

258 FOR J = 1 TO 30
260 PRINT '+";

270 NEXT J

280 PRINT 'FREQ"
290 FOR I = 1 TO 20
300 LET T = INT(60%MC(I))-1
319 PRINT "+";

320 FOR J =1 TO T
338 PRINT " "3

340 NEXT J

350 PRINT "'

368 NEXT I

370 DATA 4855

380 END

READY
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370 DATA 40055

RUN
FEMALE MALE
Be425 B+575
P.525 P.475
P+675 B.325
D475 B.525
P55 Be 45
P55 @45
Be525 Be475
Be6 Bed
Qe 425 B.575
Bedy Be 6
B+575 P. 425
B 45 B.55
P.475 B.525
B. 475 B.525
Bed 2.6
B¢ 55 Be4S
Be5 2.5
Be 45 P55
B«575 0. 425
Be 375 P.625

FHEHFFFF P F PP P e+ 4+ ++FREQ

LR B S B A B AR AR BE BE B R R B K N 4
*
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370 DATA 400,.5

RUN
FEMALE
0.515
0. 4825
0. 5525
0e 4775
0+5175%
0« 525
0.52
0.53
0+5S
Oe 47
0'48
0+ 505
0. 5275
0+ 5325
O« 485
0. 52
0. 445
0+ 4825
0+ 495
0+4825

MALE

0. 485
0+5175
0. 4475
0+ 5225
0. 4825
0. 475
O« 48
0. 47
0.5

0+ 53
0. 52
0+ 495
0. 4725
0+ 4675
0515
0. 48
0+ 555
05175
0+ 505
05178

11

FPEEP L AL P PP L P4 444404520800 00 X040 04 0444044444444 0404 44444444+ FRED

LR R 2K BE K BE IR K 25 R I K B 2K I BRI I Y

*



12

Elementary Probability

CARS

0 ORI = 1 T0 10
0 LET F(I)=0
0 NEXT I

40 READ N
SO FOR I = | TO N
60 LET T = 1 + INTCI10%RND)

7
8
9
1
1
1
1

1
1
1

1

O LET F(CTY=FCT)+1
0 NEXT 1

0 PRINT "CARS' "REL FREQ"
00 LET A= O

10 LET B =0

20 FOR1 = 1 T0 10
30 LET FCI)=sFCI)/N
40 LET B = B+IxF(])
S0 PRINT I, FKI)

60 LET A = A+F(I)
70 NEXT 1

180 PRINT

190 PRINT “TOTAL FREQ='";A
200 PRINT "AVERAGE=';B
210 DATA 1000

2
*

20 IND

RWN

CARS REL FREQ

0.102
0.103
0095
0093
0.103
0.106
0.102
0.106
0.107
0 0.083

- 0ANONH WD -

TOTAL FREQ= 1
AVERAGEs 5.471

*
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We think of an idealized experiment with either a finite or a
countable number of outcomes. Countable means that the outcomes
can be put into a one-to-one correspondence with the positive inte-
gers. The set of all possible outcomes, called the outcome (or
sample space), will be denoted S. The points in S correspond to the
outcomes of a real-life experiment and will be denoted as ei, where
the subseript 1 =1, 2, ..., n if there are a finite number of out-
comes and 1 =1, 2, ... in the case of a countable outcome space.
Such an outcome space is called discrete. Corresponding to the
long-run relative frequency in a random experiment will be a number
P(ei) called the probability associated with the point e In order
that these probabilities reflect the properties of relative frequen-

cies we require that

0< P(ei) <1 (2.2.1)
and
I Ple,)=1 (2.2.2)
all 1 1

Thus a formal probability model is asserted by defining S and the
probabilities of the points of S so that (2.2.1) and (2.2.2) are
satisfied.

Suppose that we consider a theoretical battery purchase in the

previous section with life length described as before so that
s=1{0,1, ..., 8}

One possible assignment of values to the points of S is P(ei) =1/9

fori=1,2, ..., 9, where e =1, ..., e, = 8. Certainly

1 2 9
the requirements (2.2.1) and (2.2.2) are met. This corresponds to

=0, e

the assumption of equal likelihood of failure during each of the
first 9 years of life. However, this is not the only possibility

by any means. We may define
i-1
Ple,) = =gl — i=1, 2, veu, 9
1-4a

for any q satisfying 0 < g < 1. As
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g P(e)=(l—q)(l+q+q2+-~+q8)
i 9
i=1 * 1-gq
=L_-_q.?_=l
1 - q9

and the P(ei) are clearly nonnegative. Again (2.2.1) and (2.2.2)

are satisfied. It is now clear that, because a different probability
assignment occurs for every q, there are an infinity of ways in which
the sample space S may be assigned probabilities. This latter
assignment has the important property that

Ple,,.)
i+l” _ .
P(ei) =q i=1,2, ..., 8

so that the probabilities decline geometrically.

The program BATTERY simulates N battery lives assuming this
latter model. The values of N and q are determined by the DATA
statement at line 270. The output from one run assumes 1000 batter-
ies have lives described by this model with q = 0.5. The relative
frequency of the 1000 battery life lengths and the probabilities
predicted by theimodel are printed out. As the output demonstrates,
both the frequencies and probabilities sum to 1.

If we change the outcome space of the previous example to
s=1{0,1, 2,3, ...}

we now consider that batteries may have an arbitrarily long life.
Although, of course, this is only theoretically possible, the re-
sulting probability model may nevertheless provide a useful approx-
imation to reality. Suppose we continue to assume that the prob-
abilities decline geometrically, that is,

Ple,

P(ei) = q or q

Then P(ey) = aP(e;), Pleg) = aP(e,) = a®Ple)), Ple,) = aPle,) =

q3P(el), and in general,
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i-1 .
Ple,) = . Pley) i=1,2, ...

) -] oo i _ _ .
As ;. P l) Zi=0 q = P(el)/(l q) (where the expression

for the sum of a geometric series has been used), we must have

(ei) = P(e

Hence P(e;) = 1 - g and P(e;) = (1 - Q™ 1= 1, 2, «vev As a
function of i (instead of ei), we have P(i) = (1 - q)q" for i = O,
1, 2, .... This is referred to as the geometric distribution on
the set S.

Slight changes in the program BATTERY, yield the program GEOM
which simulates N observations from this population. Of course the
computer cannot provide an infinite number of probabilities, so that
the output is terminated when the cumulative probability exceeds
0.999. One run of GEOM is shown with N = 1000 and q = 1/2. A com-
parison of the frequencies observed and the probabilities computed
under the assumption of the geometric model suggests how such a
theoretical model may be useful in describing actual random experi-

ments.

Problems 2.2

1. Assume O < p < 1 and let ¢ =1 ~ p. If P(el) = p3, P(e2) =
3p2q, P(e3) = 3pq2, and P(eh) = q3, prove that this represents
a valid probability model for S = {el, e2, e3, eh} for any such

value of p.

2. Assume that the probability a batter gets i hits in 5 "at bats"
is inversely proportional to i. (Assume the batter gets at
least 1 hit.) Find P(ei), i=1, 2, 3, 4, 5, vhere ey represents
getting 1 hits.

3. Let the probability an animal is successful for the first time

on the ith trial of a learning experiment be proportional to the
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trial number, that is, P(ei) = ipl fori=1,2, ..., n. (We
assume success on or before trial n.) Find P(ei), i=1, 2,

vees D

Prove that P(i) = 1/i(i + 1) is a valid probability model for

the positive integers.
Let P(ei) =k/(1i-1)! fori=1, 2, .... Find the constant k.

Find at least two probability models to describe the outcome on
the toss of a die, that is, S = {1, 2, 3, 4, 5, 6}.

The National Center for Health Statistics published the following

information on the cause of death in the United States for 1972.

Diseases of heart and blood vessels 1,036,560
Cancer 346,930
Accidents 113,670
Pneumonia and influenza 61,160
Diabetes 39,070
A1l other 364,610
Total 1,962,000

Describe a sample space and an appropriate probability assignment

for the causes of death in the United States.

Exercises 2.2

Assume that a battery lasts at most 5 years. Using the model
P(ei) = (1 - q)qi-l/(l - qk), where e, represents a life length
of i -~ 1 but less than i years for i =1, 2, ..., k. Simulate
the life lengths of 1000 batteries with g = 0.5 using the appro-
priate value of k. Only slight modifications of the program
BATTERY are required.

Simulate the life length of 1000 batteries using the geometric
distribution with q = 1/3.

Consider, as in Problem 2.2.3, an animal which is successful for

the first time on trial i of an experiment with probability
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BATTERY

10 FOR 1 = 1 T0 9
20 LET F(1)=0

30 NEXT 1

40 READ N> P

SO FOR J= 1 TON

€ LET Z = RND

70 LET C = 0

80 FOR 1 = 0 10 8

90 LET T = (1-P)*P11/(1-Pt9)

100 LET C = C+T

110 1F 2 > C THEN 130

120 GO TO 140

130 NEXT I

140 LET I = I +1

150 LET FCI)=FCI)+1

160 NEXT J

ITOLET C = 0

180 PRINT "LIFE LENGTH", "REL FREQ", “"PROBABILITY", "CUMULATI VE PROB*
190 FOR I = 1 10 9

200 LET T = (1-P)*Pt(l=-1)/(1~-Pt9)

210 LET C = T +C

220 PRINT I-1,FCI)/N> To C

230 LET A = FCI)/N +A

240 NEXT 1

250 PRINT

260 PRINT "TOTAL FREQ="3 A, "TOTAL PROB=";C
270 DATA 1000+ 5

280 END

*RIN

LIFE LENGTH REL FREQ PROBABILITY CUMILATIVE PROB
o) 0« 497 0« 500978 0+ 500978
1 0.264 O+ 250489 0.7514¢€8
2 0.134 0. 125245 0.876712
3 0.056 6. 26223 E~-2 04939335
4 0.022 3.13112 E-2 0970646
5 0.016 1+ 5655€ E=-2 0«98 6301
[ 0. 007 7.82779 E-3 0994129
7 0.003 3.91389 E-~3 0998043
8 0+001 1.95695 E-3 1e

TOTAL FREG= 1 TOTAL PROB= 1.

*®
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G EOM

S DIM F(S51)

10 FORI = 1 TO 50

20 LET F(I)=0

30 NEXT I

40 READ N, P

S0 FOR J = 1 TO N

60 LET Z = RND

70 LET C = 0

80 FOR 1 = 0 TO 8

90 LET T = (1-P)*Ptl

100 LET C = CeT

110 IF Z > C THEN 130

120 GO TO 140

130 NEXT I

140 LET 1 = 1 +1

150 LET F(1)=F(1)+1

160 NEXT J

170 LET C = ¢

180 PRINT 'LIFE LENGTH*, "REL FREQ", "PROBABILITY'» "CIMULATI VE PROB"
190 FOR I = 1 10 S0

200 LET T = (1-P)*Pt(I-1)
210 LET C = T +C

220 PRINT I-1, F(ID/N> T, C
230 LET A = F(I)/N +A

235 IF C > 0.999 THEN 260
240 NEXT I

250 PRINT

260 PRINT "TOTAL FREQ=";A, "TOTAL PROB=";(C
270 DATA 100055

280 END

*RUN

LIFE LENGTH REL FREQ PROBABILITY CUIMULATIVE PROB
(o} 0.4896 0¢5 0¢5

1 0+263 0.25 0+7S

2 0+135 0.125 0+87S

3 0+0S5S 0.0625 09375

& 0.022 0.03125 0.96875
5 0.018 0.015625 0.984375
6 0.007 78125 E=3 0.992187
17 0.002 3.90625 E~3 0.996094
8 0.002 1.95312 E-3 0.998047
9 [} 976562 E~4 0999023
TOTAL. FREQ= 1. TOTAL PROBs 0.999023

*
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proportional to the trial number. Assume the first success

occurs on or before trial 10. Write a program to simulate the
trial numbers of the first success for 1000 animals. Print out
the frequencies of first success on trial numbers 1-10 and the

corresponding probabilities.

2.3 PROBABILITIES OF EVENTS IN THE DISCRETE CASE

Often we are interested in the probability associated with a subset

of the sample space S. We make the following formal definition:
DEFINITION 2.3.1. An event A is a subset of the sample S.

It is quite natural to assign to the event A the sum of the proba-

bilities of the points in A. Formally, we state

DEFINITION 2.3.2. The probability of an event A is P(A) = I (ei),

P
ei(: A
where eiE: A means e, is an element of A.

Suppose we consider, as in our waiting line example, selecting
a random integer from 1 to 10, where, as before, we assume eqgual
probability of selection of each such integer. A driver might be

interested in one of the following events:

A: {1} (He is alone.)
B: {1, 2, 3, k4, 5} (Five or fewer cars in line.)

¢c: {8, 9, 10} (Eight or more cars in line.)

It is clear that the probabilities of these events are given by
P(A) = 0.1, P(B) = 0.5, and P(C) = 0.3 using the definitions above.
Referring to the output of the program CARS of Sec. 2.1, we see
that the output yields relative frequencies of 0.102, 0.L496, and

0.296, respectively, for the corresponding sets of outcomes in the
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simulation for N = 1000. Thus the probability of an event can be
thought of, as in the case of the assignment of probabilities to the
points of S, as an abstraction of the idea of relative frequency in
a large number of trials.

In the case in which we consider the geometric assignment of

probabilities to the set

s=1{0, 1,2, ...}
that is
P(i) = (1 -q)a" i=0,1,2,...
[where P(i) stands for the probability of the integer il, we may be

interested in events such as

0, 1, 2, 3 (A battery lasts less than 4 years.)
B=L4, 5, ... (A battery lasts at least 4 years.)

LI}

Here we see that

L
P(A) = (1-a)(1+q+d®+q)= e _(%)Elq; =
=:L..q_)4
For B, we have
o i
P(B) = (1 - Q)" (% o) = Lli::ggl'
i=0
L
=q

Of course, the fact that P(A) + P(B) = 1 is evident here, so that
the latter calculation would be unnecessary. We will next consider
the relationships between the probabilities of various events
(subsets) of S.

Problems 2.3

1. What is the probability of an even outcome in the toss of a fair

die? An odd outcome? An outcome less than 5%
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1) = P(ez) = P(e3) = P(eh) =
0.15 and P(es) = P(e6) = 0.20, where e; represents the outcome

i. Answer the questions in Problem 2.3.1.

2. Suppose for an unbalanced die, P(e

3. In Problem 2.2.2 find the probability of more than two hits by
the batter in the 5 "at bats.”

4. Let p = 1/2 in Problem 2.2.1. Let A = {e_}, B = {el, eh}, and
c

l b

c = {e2, ey eh}. Find P(A), P(B), and P(C).

S. Let P(i) = 1/i(i + 1) represent the probability integer i is
selected from the positive integers. Find the probability the

integer selected is between 4 and 6 inclusive.

6. A card is selected at random from a standard bridge deck. What

is the probability of a deuce? A heart? A red card?

7. In Problem 2.2.3 find the probability the first success occurs
on or before trial k. For n = 10, what is the smallest value

of k for which this probability is at least 0.5°%

8. Let the geometric distribution given by P(i) = (1 - q)qi for
i=90,1, 2, ..., describe life lengths of batteries as before.
What is the probability the life length is an odd number? If
p = 1/2, what is the value of this probability? If 0 < gq <1,
show that the probability of an odd number is less than 0.5.

2.4  PROBABILITIES OF COMPOSITE EVENTS IN A DISCRETE

SAMPLE SPACE S
We will assume that the reader has had an introduction to the algebra
of subsets of a given set. The references Kemeny et al. (1974) and
Scheid (1962) contain good introductions. We will, however, review
here briefly the basic definitions and some important theorems con-

cerning the events or subsets of S.

DEFINITION 2.4.1. If A and B are events in S, then A is called a
subset of B if for any point e € A we have e € B. We write A C B.
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DEFINITION 2.4.2. Two events A and B in S are equivalent or equal
if AC B and BC A, We write A =3B

DEFINITION 2.4.3. If A and B are subsets of S, then the union of A
and B is the set containing those points in A or B including those

points common to A and B. We write the union as A + B.

DEFINITION 2.4.4. If A and B are two events in S, then the inter-
section of A and B is the event containing those points in both A

and B. We write the intersection as AB.

DEFINITION 2.4.5. If A is an event of S, then the complement of A
is the set of those points of S not in A. We write the complement

as E.

DEFINITION 2.4.6. The empty set is the subset of S without any
points. We write the empty set as @. TFrom Definition 2.4k.1,
@ C A for any A since the conditions of Definition 2.4.1 are met

vacuously.

We are interested in finding formulas for the probabilities of A + B,
AB, E, and @. In words, A + B is the event that A or B occurs, AB
is the event that A and B occur, and A is the event that A does not
occur.

There are numerous theorems concerning the algebra of subsets
which can be proved using the preceding definitions. We state a

number of these without proof in the following theorem.



2.4 Probability of Composite Events 23

THEOREM 2.4.1. For any events A, B, and C in S,

(A + B) = AB

AB=A+B

(a) A+B=B+A (3) A+®=2a
(b) AB = BA (k) A =¢
(¢) (A+B)+C=A+(B+C) (1) A+Ai=38
(d) (aB)C = A(BC) (m) AR =¢Q
(e) (A + B)C =AC + BC (n) AS =4
(f) A(B + C) = AB + AC (o) A+8=358
(g) A+BC=(A+B)A+C) (p) AA=A
(nh) (q) A+A=A
(1)

These theorems can be proved by direct arguments from the above
definitions or demonstrated convincingly using Venn diagrams. We
refer the reader to references on finite mathematics in the bibliog-
raphy.

Let us consider a list of 100,000 registered voters who are
partitioned according to three dichotomous classifications: male or
female, married or unmarried, and Democrat or Republican. We will
use the following notation: A represents the set of males, B the
married individuals, and C the set of Democrats. There are eight
categories into which individuals may be classified. These are dis-

played in Fig. 2.hk.la.

A
ABC ABC
5 | 10000 4,000 A
ABC EBC AB 7B
30,000 36,000 | Bl40000| 40,000
ABC ABC AB AB
6,000 3,000 8,000 | 12,000
ABC ABC
2,000 9,000
@) b

Fig. 2.4.1
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The event ABC, for example, contains married male Republicans,
ABC contains married male Democrats, ABC contains married female
Democrats, and so forth. In Fig. 2.L4.1b, the 100,000 individuals
have been classified into four categories: married males, married
females, unmaerried males, and unmarried females, that is, AB, iB,
AE, and AB. The numbers in both diagrams of course represent the
number of individuals in each category. We shall use this example
to illustrate some of the elementary theorems of probability, where
we assume each person has an associated probability of 1/100,000.

We shall first require a definition.

DEFINITION 2.4.7. Events A and B are called disjoint if AB =0,

i.e., there are no points common to A and B.

In our example the set of females A and the set of married males AB

are disjoint. The events A + B (married or male) and AB (unmarried

females) are disjoint. This is, of course, clear from the diagrams

in Fig. 2.4.1 but can be formally shown by using Theorem 2.L4.1. For
example, A(AB) = (BA)B =(®B = @ using appropriate parts of the

theorem. Similarly,

AB(A + B) = (EB)A + (AB)B = (BA)A + A(EB)
= B(AA) + A(BB) = BO+ AQ
= ®+®= @

We now turn to some basic theorems of elementary probability.

THEOREM 2.4.2 1If A and B are disjoint, then P(A + B) = P(A) + P(B).
Proof: The statement of the theorem is equivalent to

X P(ei) = I Ple.)+ 2 P(ei)
e EA+B e€A + e EB
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Because AB =;Z; the points in A + B are separated into those in A
and those in B, where there are no points common to A and B. Hence
both sides represent the sum of the same probabilities and must

therefore be equal.

COROLLARY 1. P(A) + P(A) = 1.

Proof: From Theorem 2.4.1(1) and (m), A+ A =S and A =@.
Hence the current theorem implies that P(A) + P(A) = P(A + &) =

P(8) = 1.

COROLLARY 2. If Al’ Ays vees Ak are pairwise disjoint (that is,

_ . k _ ok
Aﬁj—Q:mrl#J),ﬂwnP@FlAi)—EFlPﬂg.

Proof: This follows from a straightforward mathematical induc-
tion from the theorem. [Scheid (1962) contains a good discussion of

mathematical induction.]

We have seen that in our example {and in general) A and AB are
disjoint. Hence P(A + AB) = P(A) + P(AB) = 0.52 + 0.40 = 0.92. 1In
words, 92% of the individuals on our list are female or married
males. We have seen that A + B and AB are disjoint. However Theo-
rem 2.4.1(h) implies that these events are complements. Hence
P(A + B) + P(B) = 1 by Corollary 1. Thus, P(A + B) = 1 - P(EB),
or P(A+B) =1 - 0.12 = 0.88. 1In words, 88% of the individuals

are male or married.

COROLLARY 3. P(®) = 0.

Proof: By Theorem 2.4.1(j) and (k), we have S +@ = S and
S@=@. Thus from the current theorem, P(S) + P(@) = P(S) or
1+ P(@) = 1. Canceling 1 from each side yields P(@) = 0.
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THEOREM 2.4.3. For any events A and B,

P(A + B) = P(A) + P(B) - P(AB)

From Fig. 2.4.1b it is clear that A = AB + AB, B = AB + AB, and A +
B = AB + AB + AB, where each right-hand side is a union of disjoint

sets. Hence we can write
P(A + B) = P(AB) + P(AB) + P(EB)
However P(A) = P(AB) + P(AB) and P(B) = P(AB) + P(AB). Thus

P(A + B) = P(AB) + P(AB) + P(AB) + P(AB) - P(AB)
P(A) + P(B) - P(AB)

using the expressions for P(A) and P(B).

COROLLARY 1. For any three events A, B, and C,

P(A+ B+ C)="P(A) + P(B) + P(C) - P(AB) - P(AC)
- P(BC) + P(ABC)

Proof: Using A + B and C as two events, the theorem yields

P((A + B) + C)

oo
oY
B> e

+ 4+
+
W W
WOy o —

In our example P(A + B + C) represents the probability of a male or

a married person or a Democrat. This probability is
P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ARC)
which from Fig. 2.h.la is given by

0.48 + 0.80 + 0.75 - 0.40 - 0.36 - 0.66 + 0.30 = 0.91
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COROLLARY 2. 1If A_, A2, ey Ak are any kK events in S, then

1
k k
P(Z A))= X P(Ai) - I P(AiA.) + X P(AiA.Am)
i=1 i=1 143 0 145,5#m, J
i#m
k-1
- eee 4+ (=1) P(AlAz...Ak)

This corollary is proved by a straightforward mathematical induction
from the main theorem. We leave the proof as a problem, but note
that Corollary 1 is a special case of Corollary 2 with k = 3, Al =
A, A_L = B, and A3 = C.

The program VOTERS simulates the selection of N individuals

2

from the population of 100,000 voters described above. In the out-
put of the program the proportion of sampled voters in the eight
categories is printed. The categories are identified by a symbolic
binary string of length 3. The integer 1 in such a sequence indi-
cates that a letter is present in the product representing the event
and a O indicates that its complement is present. For example, 101
corresponds to AEC, 000 to KEE, and so forth. The frequencies of
these outcomes can be compared with the probabilities of the corre-
sponding events in Fig. 2.L4.1. The probability of any composite
event such as A + B can be compared with the corresponding frequency
which results in a sample of size N. The probability of A + B, for
example, was found to be 0.88. Its frequency in the output of
VOTERS using N = 1000 is 0.897. The frequency of the outcomes male,
married, and Democrat are printed and may be compared with the corre-
sponding probabilities of 0.48, 0.80, and 0.75, respectively. The
remaining output concerns conditional outcomes which we discuss in

the next section.

Problems 2.4

1l. In the example given in the section find the probability of the
following events: AC, A+ C, A + C, AC.
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VOTERS

10 FOR 1 = 1 T0 8
20 LET FCI)=0

30 NEXT I

40 FORK = 1 T0 7
50 READ N(K)

60 NEXT X

70 READ N1

80 FOR J = 1 TO NI

90 LET C = O

100
110
120
130
140
150
160
170
180
190
200
210

LET V= 1 + INTCI0t5*RND)
FORK =1 T0 7

LET C = C +1

IF V> N(K) THEN 150

GO TO 170

NEXT K

LET C = 8

LET FC(C)=F(C)+1

NEXT J

Elementary Probability

PRINT "FREQUENCIES IN"3*" SAMPLE OF SIZE'"$ N1

PRINT

PRINT *"111'% 110" 101" *O11"

PRINT FC1)/N1, FC2)/N1s FC3)/N1s FC4) /N1

PRINT

PRINT 100%s 010", "001*, *000"

PRINT F(S5)/N1, F(6)/N1s F(T) /N1, F(8)/N1

PRINT

PRINT "FREQUENCY OF', *MALE'", "MARRIED', "DEMOCRAT"

LET A s FCD+F(2)+FI(3+F(S)
LET B = FC(I)+F(2)+F(4+F(6)
LET C s FCIX+F(D+F(H+F(T
PRINT "', A/N1,B/N1,C/N1

PRINT "CONDI TIONAL *3*"FREQUENCIES"

LET A32 F(D)+F(2)
LET Al=a FC(1)+F(3)
LET A2a F(1)+F(4&)
PRINT

PRINT *MARRIED/MAL E*, "MARRI ED/ FEMALE"

PRINT A374,(B~A3)/(N1-8)

PRINT *MARRIED/DEM*, *™MARRI ED/REP"

PRINT A2/C, (B-A2)/(N1-C)
PRINT "MALE/DEM", "MAL E/REP"
PRINT Al1/C, (A~A1)/(N1-0C)

DATA 30000, 40000, 46000, 82000, 8 4000,88000,91000

DATA 1000
IND
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FREQUENCIES IN SAMPLE OF

111
0.3

100
0.025

FREQUENCY OF

110
04093

010
0,047

MALE
0. 485

CONDI TIONAL FREQUENCIES

MARRI ED/MAL E
0.810309

MARRI ED/ DEM
0.880795

MAL E/ DEM
0.486093

SIZE 1000

101
0+ 067

001
0.023

MARRIED
0.805

MARRI ED/FEMALE

OB

MARRI ED/REP

0+ 571429
MAL E/REP
0481633

011
0+ 365

000
0.08

DEMOCRAT
00785

29
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Assume that S represents the set of students at a college. Let
A represent the set of students taking at least one mathematiecs
course and B represent the set of students taking at least one
language course. Suppose P(A) = 0.7, P(B) = 0.6, and P(AB) =
0.5. PFind

(a) P(A+B) (e) P(EB)
(b) P(R) (f) P(AB)
(e) P(B) (g) P(EB)
(a) P(A + B) (n) P(AB + AB)

Interpret these events in words.

Assume we select at random a three-digit number from 001 to 400.

Call the selected number N. Find the following probabilities:

90)
is odd)

P(N
(N
(N is odd or N > 390)
(
(
(

P(N
P
P(Left~hand digit of N is odd)

P(Middle digit of N is odd)

(
(
(c
(
(
( P

)
)
)
d)
)
) (d) or (e) is true)
Using Theorem 2.4.1, prove that for any events A, B, and C in S,
A+ B+ C=REC and ABC=A+ 3B+ ¢C

Interpret the events ABC and ABC in words for the example given
in Fig. 2.k4.1a.

Prove that for Al’ AE’
is, AiAj =@ for i #j,

R Ak mutually disjoint events, that

Use mathematical induction.

Use Theorem 2.4.3 to prove that P(A + B) < P(A) + P(B). By
mathematical induction, prove that for any events Al’ AE’ ceesy
Ak’ we have
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T.

Use mathematical induction to prove that for any events Al’ A2,

cees Ak’ we have

k k
P(Z A,)= % PA,) - I P(AA,) + ...
i=1 Y oi=1 ¢ igg Y
k-1
+ (-1) P(A1A2 Ak)

Assume three events A, B, and C are given such that P(A) = 0.5,
P(B) = 0.6, P(C) = 0.4, P(AB) = 0.3, P(AC) = 0.1, P(BC) = 0.2,
and P(ABC) = 0.05. TFind

(a) P(ABC) (e) P(ARC)
(b) P(ABC) (f) P(ABC)
(c) P(ABC) (g) P(AERC)
(a) P(ABC) (h) P(a+B+C)

Draw a diagram similar to Fig. 2.4.la labeling the eight basic

events with the appropriate probabilities.

Exercises 2.4

Use N1 = 2000 in the program VOTERS (line 440) to sample this
number of voters from the population of 100,000 voters. Indi-
cate which of the eight frequencies are added .together to give
the relative frequency of the male, married, and Democratic
individuals selected. Indicate the set equality which describes
the events A, B, and C, in terms of the eight basic sets (e.g.,

AB = ABC + ABC).

In Problem 2.4,.8 let A represent the set of homeowners, B the
set of Democrats, and C the set of dog owners among 100,000 heads
of household. Use the probabilities of Problem 2.4.8 as the true
proportions in each of the eight basic events in S. Alter the

program VOTERS at line 430 to represent this population. Delete
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lines 320-420 and change the PRINT statement in line 270 appro-
priately to sample 1000 individuals from this population. What
frequencies are observed for Democratic home owners, Democratic
dog owners, and dog-owning home owners. Compare these with the

corresponding probabilities.

3. Write a program to simulate the sum on the toss of two diece 2000
times (as in Exercise 2.1.3). What is the observed frequency of
an odd sum? What is the observed frequency of 7 or 11? What is
the observed frequency of a sum less than 67 Assuming the 36
outcomes (i, j), i=1,2, ..., 6and j=1, 2, ..., 6, have
equal probability, find the theoretical probabilities correspond-

ing to these events.

2.5 CONDITIONAL FREQUENCY AND CONDITIONAL PROBABILITY

In the example given in the preceding section we might be interested
in comparing the proportion of married persons among females to the
proportion of married persons among males for the population of
100,000 persons. In sampling from the population we would, of course,
take the proportion of married males among the sampled females as
estimates of the population proportions. If we take a sample of size
N, we would estimate the proportion of males who are married as

number of married males

Frequency (married/male) = er of malos

Dividing the numerator and denominator by N, we can express this

conditional frequency as

sample frequency of married males
sample frequency of males

Frequency (married/male) =

Similarly the conditional frequency of married given a female is
given by the ratio of the frequency of married females to the fre-
gquency of females. The program VOTERS prints out these particular
conditional freguencies as well as several others for a sample of

size N = 1000.
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We are naturally led by consideration of conditional frequencies
to the idea of conditional probability. If we replace sample fre-
quency by probability in the foregoing, we are led to the following

definition.

DEFINITION 2.5.1. For any two events A and B for which P(A) > O,
we define the conditional probability of B given A by

P(BIA) = M

P(A)

The requirement that P(A) > O ensures that division by zero does not
occur. As we have AB + AB = A and P(AB) + P(AB) = P(A), we see that
P(AB) < P(A) or 0 < P(AB)/P(A) < 1, so that a conditional probability
is a true probability. Using the definitions of A = males, B =
married individuals, and C = Democrats in our example, with equal

probability assignment as before, we find

P(AB)

= = 0.h0
P(BlA) = Ty = 5iig = 0-833
and
P(B|R) = %&”—?—)— = g—:%% = 0.769

These conditional probabilities are not equal, but also are not
very different, so that it is not surprising that the sample estimates
of 0.810309 and 0.8, respectively, from the program VOTERS do not
differ greatly. However,

p(slc) = HBS) - 0:68 o gg
and
P(B|C) = ﬁé?‘;) = %:—%—;i= 0.56

The sample estimates of these conditional probabilities given by the

program VOTERS are 0.881 and 0.571. These are reasonable estimates
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of the corresponding conditional probabilities. It is clear that the
conditional probability of an event (being married in this case) can
be altered greatly by a conditioning event (Democrat or Republican in
this case).

The conditional probabilities of the points of S with respect
to a fixed event A for which P(A) > 0O define a new probability as-
signment to 8. Clearly, if e € A, then P(eilA) = P(ei)/P(A) <1,
and if e, & A, P(e,|A) = 0. Hence,

P(e,)
P(A)
I Ple,]A) = I Ple.]A) = = =5 =]
e,ES = e.€A . e.€A P(A) P(A)
1 1 1
Thus we have
0 _<_P(ei]A) <1 for e, € § (2.5.1)
and
z P(ei]A) =1 (2.5.2)

e.€S8
i

for any event A for which P(A) > 0. This can be also thought of as

an assignment of probabilities to the event A by itself [as if ei;{ A,
P(eiIA) = 0], consistent with the original assignment of probabilities
to 8. It is often useful to consider a conditional probability assign-
ment to S with respect to a fixed set A.

Let us recall the battery example in which we assumed the geo-
metric distribution, that is, P(i) = (1 - q)qi for i =0, 1, 2, ....
Let p = 1/2, so that P(i) = (l/2)i+l for i =0,1, 2, .... Suppose
we consider the conditioning event that the life length is less than
x years. The probability that the life length is x or more years is

oLyl 1

iEx (3) = (E)x

Hence the conditional probability of a life of i years given a life

length less than x years is

P41
f(i{x) = P(i|life length < x years) = ii[gli————
1- (1/72)%
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Table 2.5.1 Probabilities for Life Lengths Less Than x Years

Life length P(i) P(il2) P(ilh) P(i]8)
0 0.5 0.666667 0.533333 0.501961
1 0.25 0.333333 - 0.266667 0.250980
2 0.125 0.133333 0.125L450
3 0.0625 0.066667 0.062745
Ly 0.03125 0.031373
5 0.015625 0.015686
6 0.007813 0.007843
7 0.003906 0.003922

for i=0,1, 2, ..., x = 1. Table 2.5.1 indicates how the proba-
bilities of the various life lengths are affected by knowledge of
the fact that the life length is less than x years.
If the maximum life length is very short, the conditional probabili-
ties differ markedly from those of the geometric distribution. If
the maximum life length is‘fairly long (as in the case x = 8), the
conditional probabilities and the probabilities given by the geometric
distribution are quite similar, indicating again that a model with an
infinite simple space may be useful in describing real-world phenomena.
The equality expressed in Definition 2.5.1 is often written in
the form

P(AB) = P(A)P(B|A)
and referred to as the multiplication law. It also follows that
P(ABC) = P(aB)P(c|AB) = P(A)P(B|A)P(C|{AR)

Similarly, it can be shown by mathematical induction that for any
events Al’ A2, ey Ak’

P(A1A2A3---Ak) = P(Al)P(AglAl)P(ABIAlAE)---P(Ak’AlA2-~-Ak_l)

For example, suppose that an individual is asked to perform a task

three times. Assume that the probability he succeeds increases with
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the trial number. For example, let p, = 1/, p, = 1/2, and Py = 3/k
be the probabilities of success on trials 1, 2, and 3, respectively.
Let Si represent success on trial i and Fi represent failure on trial

i. The probability of success on the first two trials is given by

P(8,8,) = (8 )P(S,|8)) = (1/4)(1/2) = 1/8. The probability of at
least two successes in the three trials would be given by P((Slsz) +
F8,8; + lesz) = P(slsz) + P(Flszss) + P(lesz) as these events

are mutually disjoint. In turn we may write this expression as
P(s,5,) + P(Fl)P(Slel)P(SB|F182) + P(Sl)P(Fz}Sl)P(SBISle) =1/8 +
(3/L)(1/2)(3/4) + (1/u)(1/72)(3/4) = 1/2.

As another example of conditional probability let us assume
that the probability that a program runs correctly after n debugging
efforts is given by n/(n + 1). The probability that the program
runs correctly, of course, approaches 1 as the number of debugging
efforts n becomes large. The probability that one trial is required
is, of course, 1/2. The probability that two trials are required
until success in the notation of the previous paragraph is P(Flsz) =
(1/2)(2/3) = 1/3. The probability that three trials are required is
P(F.F.S.) = (1/2)(1/3)(3/4) = 1/8. The probability of n required

1273
trials is given by

= (B)dy... & .
P(F Fpr e Fra8y) = (B35 () : A + 1!

It seems reasonable that Zm_ n/{(n +1)! =1, i.e., that the proba-
n=1
bility of a successful run at some trial is 1. This is, in fact,

the case. Can you show that it is true?

Problems 2.5

1. Suppose that a fair die is tossed twice and the sum recorded.
If the events (i, j), i=1,2, .o., 6and j=1, 2, ..., 6
are equally likely, find

(a) The probability the sum is T.
(b) The probability the sum is 7 given the sum is odd.
(¢) The probability the sum is 7 given the sum is odd but not 11.
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2.

Two selections are made from a standard bridge deck without

replacement. Find the probability of

(a) Two spades in the two draws.
(b) Two cards of the same suit.
(¢) Two cards of the same denomination.
(d) No spades in the two draws.

Suppose a basketball player shoots three foul shots with prob-
ability of success on trial 1 equal to 1/4, on trial 2 equal to
1/2, and on trial 3 equal to 3/4. Find the probability the
player makes 0, 1, 2, or 3 shots in the three attempts.

Suppose one of four similar appearing keys opens a lock. The
keys are chosen successively until the correct one is found.
If a key fails, it is put aside. What is the probability that
1, 2, 3, or 4 trials are required?

Consider the case of n keys, one of which opens a lock.
What 1s the probability of 1, 2, ..., or n required trials

until success?
Suppose we have the situation described in Problem 2.4.2. Find

(a) P(a]B) (¢) P(B|A)
(v) P(4]B) (4) P(BJA)

Prove that for any two events A and B in a sample space S,

p(A|B) + P(A|B) = 1, assuming P(B) > 0.
Given the geometric distribution with
P(i)=(l—p)pi i=0, 1,2, ...
prove that
P(1> (x+y)]i2>x)=P12y)

where x and y are nonnegative integers. Interpret this in terms

of the length of life of a battery.

Consider s = {1, 2, 3, ..., 20}. Let A represent the set of

prime numbers in 8, B represent the set of odd numbers in S,
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and C represent the set of numbers evenly divisible by 3.

Assuming each integer is assigned probability 1/20, find

(a) P(A|B) (¢) p(afc)
(b) p(B[a) (a) p(B|C)

Suppose that we make successive trials which result in success
or failure and that the probability the first success occurs on

or after the nth trial is 1/n for n =1, 2, ....

(a) Find an expression for the probability that the first
success occurs on trial n.

(b) What is the conditional probability that the first
success occurs on trial n given at least n trials are

required?

Exercises 2.5

Alter the program VOTERS in lines 330 through 420 to print out
the conditional frequencies of Democrat/married and Democrat/
unmarried, Democrat/male and Republican/male, and Democrat/female
and Republican/female. Run the program using N = 1000. What is

the sum of the last two frequencies? Why?

Expand the program written for Exercise 2.4.3 to print out the
conditional frequency of a sum of 7, the conditional freguency
of a sum of 7 given an odd outcome, and the conditional frequency
of a sum of 7 given an odd outcome not equal to 11. Compare with

the probabilities in Problem 2.5.1.

INDEPENDENT EVENTS

An important idea in probability is that of independence. We shall

again use the output of the program VOTERS to introduce this concept.

If we consider again the outcomes male, married, or Democrat, we see

that the conditional frequency of married individuals is considerably

larger among Democrats than among Republicans. On the other hand,
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the conditional frequency of males among Democrats is almost the
same as for Republicans. Thus the conditional frequency of males
among Democcrats in the sample of 1000 (0.486) is almost the same as
the frequency of males among all of the 1000 sampled individuals
(0.485). Thus we have

Frequency (males) = frequency(males|Democrat)

frequency(males[Republicans)

In short the frequency of males does not seem to depend upon party
preference.
The probabilistic counterpart of the approximate equalities

given above for the events A =male and C=Republican would be
P(a) = p(a]c) = P(A]T)

In fact, if we compute these probabilities using equal probability

assignment as before, we find

0.36
P(alc) = i ég =-5?%§ = 0.48
P(A[T) = %%%%l-= %f%% = 0.148

and P(A) = 0.48. The three probabilities are equal. On the other
hand, we have previously found P(B|C) = 0.88, P(B|C) = 0.56, and
P(B) = 0.80. The conditional probabilities are not equal in this

case. Thus we are led to the following provisional:

DEFINITION 2.6.1'. In a sample space S, two events A and B are
said to be independent if P(A|B) = P(4).

Notice that this implies P(AB)/P(B) = P(A) or P(AB) = P(A)P(B),
where we have tacitly assumed P(B) > 0. Conversely, for any event
B for which P(B) > 0, P{AB) = P(A)P(B) implies P(A|B) = P(A). We
would like our definition of independence to include the case

P(B) = 0 and to assert that A is independent of B when P(B) = 0.
The equation P(A)P(B) = P(AB) holds if P(B) = 0. The left side is
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clearly O, and as O < P(AB) < P(AB) + P(AB) + P(AB) = P(B) = 0, the
right side is O also. Hence the generally accepted definition of

independence is

DEFINITION 2.6.1. 1In a sample space S, two events A and B are
independent if P(AB) = P(A)P(B).

If P(A) > 0, P(B) > 0, and A and ‘B are independent, then
P(AB)/P(A) = P(BJA) = P(B) and P(AB)/P(B) = P(A|B) = P(A). The
conditional probability of B given A does not depend on A, and the
conditional probability of A does not depend on B. Hence the defi-
nition treats A and B symmetrically.

To illustrate this idea once more let us consider the following
example. OSuppose we consider two baseball players, who we number 1
and 2. Let the event labeled Ai mean that batter i gets a hit and
Bi mean that there are men on base when he is credited with an "at
bat." OSuppose that both men are credited with 450 at bats during
the year with the following results

Batter | Batter 2
A Ay

B, 50 | 100 {150 B, 60 90 [I50
100 | 200 [300 80 | 210 {300
150 300 450 150 300 450

If we consider these to be two theoretical outcome spaces and assign

equal probability to each at bat, we obtain

P(A.) = P(A) = % P(B,) = P(B,) = %

However, P(AlIBl) = P(AlBl)/P(Bl) (1/9)/(1/3) = 1/3, but P(AQiBz) =

P(AQBZ)/P(BZ) = (2/15)/(1/3) = 2/5. The events Al and Bl are inde-

pendent [note P(Al)P(Bl) =1/9 = P(AlBl)], while the events A2 and B2
are not. Apparently batter 2 does better with men on base.
The idea of independence for three events A, B, and C is

contained in the following:
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DEFINITION 2.6.2 1In a sample space S, three events A, B, and C are

said to be mutually independent if
P(aB) = P(4)P(B)
P

P(ac) = P(A)P(C)
P(BC)

i
[ss]
g

and

P(aBC) = P(A)P(B)P(C)

It is possible for the first three of these conditions to hold but

the last to fail. This would mean that A and B, A and C, and B and
C are pairwise independent but not mutually independent. For events
Al’ A2,
ability of the intersection of any combination of these events equal

oo Ar to be mutually independent, we require that the prob-

the product of the probabilities of the events in the intersection.
The most useful of these equalities is

P(AlAz- eh) = P(Al)P(Az) . -P(Ar)
Consider a batter who gets a hit with probability 1/3 (i.e., his
batting average is 0.333). If he is charged with three at bats the
following eight outcomes can occur: HHH, HHO, HOH, OHH, HOO, OHO,
00H, and 000, where H indicates a hit and 0, no hit with the position
of the letter indicating the first, second, or third at bat. If the

trials are considered independent, we obtain

- (Ly3 . L
P(HHH) = (3) =57
P(HHO) = P(HOH) = P(OHH) = (%—)(%)2 = %
P(00H) = P(OHO) = P(HOO) = (2)2(%) - 2_“7.
- (233_8
P(000) = (3) =27

Hence the probability of x hits in the three trials is given by
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x P(x)
0 8/27
1 12/27
2 6/27
3 1/27

where Zi=0 P(x) = 1. This is an example of an important distribution
in probability, called the binomial distribution, which will be de-

scribed in detail in the next chapter.

Problems 2.6

1. Assume that in two-child families, male and female births occur
independently with probability 1/2. What is the probability

such a family has

(a) Two male children?
(b) Two children of the same sex?
(¢) At least one male child?

2. Assume that an outcome space S describes the blood types of
individuals with the types O, A, B, and AB occurring with
probabilities 0.55, 0.25, 0.15, and 0.05, respectively.
Assuming independence find the following probabilities for

two randomly selected individuals.

The individuals have blood type O.

)
(b) The individuals have the same blood type.
) Neither has blood type AB.

)

The individuals have different blood types.

3. A machine performs an operation (say multiplication) correctly,
with probability 0.9. The machine performs three successive
multiplications. Assuming independence, find the probability
of

(a) Three correct multiplications

(b) Exactly one failure in the three multiplications
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(e¢) DNo correct multiplications

(d) Exactly one success in the three multiplications

What is the sum of the probasbilities in (a) through (d)? Why?

4., 1In a triangle test one individual is asked to taste three simi-
lar appearing items and to choose the one with a different taste
than the other two. One of the three items has a different
composition from the other two. It may contain a preservative,
for example, but the other two items do not. Assume that three
individuals make their cholces, which we assume to be independ-

ent, but the preservative cannot be detected by taste.

(a) What is the probability an individual correctly identifies
the item with the preservative by chance?

(b) Wnat is the probability that at least two of the three
individuals identify the item with the preservative?

(e) If five individuals maske a selection, what is the proba-

bility at least one will select correctly?

5. The statement LET T = 1 + INT(10#RND) selects an integer from
1l to 10 with equal probability. If two integers are selected
independently, what is the probability that

The integers will both be odd?

The integers will both be even?

)
)
) Of the two integers, one will be odd, and the other even?
) The two integers will be the same?

)

The second integer will be larger than the first?

6. If P(A) > 0 and P(R) > 0, show that A and A cannot be indepen-
dent. Note the distinction between disjoint events and inde-

pendent events.

T. Prove that if A is independent of B, then A is independent of

B. Use the fact that P(AB) = P(A + B) and the definition of

independence.



44

8.

10.

Elementary Probability

Let a sample space S consist of binary sequences as indicated:
s = {100, 010, 001, 111}. A sequence is selected at random.

The following events are defined:

A = the first digit in the sequence is 1.
B = the second digit in the sequence is 1.

C = the third digit in the sequence is 1.

Show that A, B, and C are pairwise independent but not mutually

independent.

(a) Let three independent trials of an experiment be made in
which the probability of success is 2/3. What is the
probability of three successes?

(b) Let five independent trials of an experiment be made in
which the probability of a success is 4/5. What is the
probability of five successes?

(c¢) Let n independent trials be made with success probability
(n - 1)/n. What is the limiting value of the probability

of n successes as n + ®7

Consider tossing a "fair" coin until a head occurs. The outcome
space S = {1, 2, 3, ...}. Assuming the outcomes of the tosses

to be independent, find the probability of

) One required toss.

) Two required tosses.

) x required tosses.

) Assume the probability the coin shows heads is 0 < p < 1
with @ = 1 - p, find the probability of x required tosses.
Show that these probabilities sum to 1.

Exercises 2.6

Run the program VOTERS as altered in Exercise 2.5.1. What are
the frequencies of Democrat, Democrat/male, and Democrat/female?
Compare these frequencies with the corresponding probabilities

implied by Fig. 2.4k.1a.
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2.

Write a program which selects pairs of integers randomly from
the set of integers from 0 to 9. Use a loop so that 1000 pairs

are selected. Compute the frequency of the following outcomes:

a) The first integer of the pair is odd.
(b) The second integer of the pair is odd.

{c) Both integers in the pair are odd.

Do the outcomes described by items (a) and (b) appear to be

independent?

Write a program which simulates the number of trials required to
obtain a head on the toss of a fair coin. Repeat this simulation
1000 times and compare the frequency of i required tosses with the
probabilities in Problem 2.6.10. Calculate the average number of
tosses required. The program must allow only a finite number of

tosses, of course. Let the maximum number be 20.

Write a program as in Exercise 2.6.3 for a coin which shows heads
with probability p. Run the program using p = 1/3. What is the
average number of tosses required. Can you guess the theoretical

average as a function of p?



PROPERTIES OF DISCRETE RANDOM VARIABLES

3.1  DISCRETE RANDOM VARIABLES

It is often the case that we naturally associate a number with each
outcome of a random experiment. This idea was illustrated in our
examples of Sec. 2.1.1. The outcomes of the trip to the drive~in
bank were naturally identified with the number of cars in line at
the bank, and the outcomes of the battery purchase were identified
by the number of full years the battery functioned. It was not as
traditional to assign numerical values to the outcome set {male,
female}l, but it is clearly equivalent to code a male birth as 1 and
a female birth as 2 and speak of the frequency of the outcome 1 as
the frequency of a male birth. Such an assignment of a number to
each outcome of a theoretical sample space S is called a random
variable. In this chapter we will again consider discrete sample
spaces only. Formally we give the definition of a random variable

as

DEFINITION 3.1.1. A random variable X is a function which assigns

to every point &> in a sample space S, a numerical value X(ei).

A random variable is often referred to by the letter X alone, but

it is important to remember that X, contrary to notation often

46
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used in mathematics, is a real-valued function defined on S. Much
of formal probability theory is concerned with the properties of
random variables.

As an example, let us consider the theoretical sample space
associated with the "at bats' in three trials of a batter who gets
a hit 1/3 of the time. Using the notation of Sec. 2.6, the sample

space describing the outcome of the three at bats is
S = {HHH, HHO, HOH, OHH, HOO, OHO, 000}

The random variable X giving the number of hits in the three trials
has values X(HHH) = 3, X(HHO) = X(HOH) = X(OHH) = 2, X(HOO) = X(OHO)
= X(00H) = 1, and X{000) = 0. ©Notice that by defining Y to be the
number of outs made in the three at bats we would obtain Y(HHH) = O,
Y{HHO) = 1, etc., and in general, Y(ei) =3 - X(ei) for each e, €s.
Hence more than one random variable may be defined on the same sample
space S, so that one cannot speak of the random variable associated
with S. As a second example, consider the 95 Justices of the Supreme
Court who have completed their service on the bench through 1976 as

a theoretical outcome space. A random variable, say L, assigns to
each Justice his length of service on the court in years. For
example, the first Chief Justice would be assigned the value 5, as

he served for 5 years.

Recalling the assignment of probabilities to the sample space
associated with three at bats of the 0.333 hitter, we have seen that
an assignment of probabilities to S implies an assignment of proba-
bilities to the values of the random variable X defined on S. Under
the assumption of independence of the three at bats, the probabilities
of x hits for x = 0, 1, 2, 3 were found to be 8/27, 12/27, 6/27, and
1/27, respectively. 1In order to find the probability assigned to any
X we use the rule P(X

x) =1L P(ei) for those e, for which X(ei) = x.
The function P(X = x), often written as f(x), gives the proba-

bility the random variable X achieves the value x. From the proper-

ties of the probabilities assigned to the points of S, we see that

L f(x) = 1, as is easily checked in the baseball example.

all x
Formally, we state the following.
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DEFINITION 3.1.2. The probability function f(x) of a random variable
X gives P(X = x) for all values x which the random variable X may

attain. Such a probability function satisfies
1. 0<% f(x) <1 for all x.

2. Zﬂlxﬂx)=l'

The probability function for the random variable L is given below:

1 £(1) 1 £(1) 1 f(1) 1 £(1)
1 3/95 9 3/95 18 3/95 28 3/95
2 2/95 10 L/95 19 3/95 29 1/95
3 2/95 1 2/95 20 4/95 30 1/95
L 5/95 12 1/95 21 2/95 31 1/95
5 8/95 13 3/95 22 2/95 32 2/95
6 5/95 1L 3/95 23 3/95 33 1/95
T 4/95 15 5/95 26 3/95 34 4/95
8 L/95 16 6/95 27 1/95 37 1/95

We see for example that one Justice, William O. Douglas, served for
37 years, while a proportion of 20/95 = 0.210 served 5 or fewer
a1 171 =1

Let us consider random variables associated with the countably

years. Simple addition yields I

infinite sample space S = {0, 1, 2, ...}. The geometric distribu-
tion, as given in Sec. 2.3, defines such a random variable with
probability funection f(k) = (1 - q)qk for k=0,1, 2, .... There
is a different probability function defined for each value of q,

0 < g €1, with the class of distributions referred to as the geo-
metric family. We can obtain another family by using the fact that
for any t > 0O,

N
e=2k—,
k=0 ~°
so that
o -t k
t
1= X i
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If t > 0, each term in this last infinite series is positive, and it
is possible to define a probability function for a random variable
on S by f(k) = e~ttk/k!, k=0,1, 2, ..., for any value of t > O.
Again there is a family of distributions, one for each value of
t > 0. PFinally, we might consider a random variable on S for which
X(ei) =life, is an even integer and X(ei) =01if e, is an odd
integer. This is an example in which S is infinite, but X takes on
only two values. If S is assigned geometric probabilities with
q = 1/2, then the probability function for this random variable is
given by £(1) = 2/3 and £(0) = 1/3.

We consider lastly one additional function which is used to

describe a random variable.

DEFINITION 3.1.3. The cumulative distribution function of the random

variable X is given by

where f£(x) is the probability function for X.

In words, F(x) is the probability that the random variable X has a
value of x or less. For discrete random variables the cumulative
distribution function has a graph given by a step function which
Jumps at x by the amount f{x). For the random variable X giving the

number of hits in the three trials above, we have
F(x) =0 for -» < x < 0

F(x)=-§— for 0 < x<1

27
_ 2
F(x) = o7 for 1 < x< 2
26
F(x)-27 for 2<x< 3
and
F(x) =1 for 3 < x
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1.0 -
+——0
0.5
>0
I 1 i
ol 1 2 3
Fig. 3.1.1

The graph of this function is given in Fig. 3.1.1.
It is apparent that the cumulative distribution function of a

random variable X satisfies the following properties:

1. F(xl) 5_F(x2) for X, < X,
2. l:Lmx N °°F(x) =1.
3. lim , _F(x) = o.

The first property states that for Xy < X, the probability of X

achieving a value of x, or less is not greater than the probability

1

of X achieving a value of X, or less. The reader is invited to make
similar probabilistic interpretations for the other two properties.

We turn next to properties of discrete random variables.

Problems 3.1

1. Assume & fair die has one face numbered 1, two faces numbered
2, and three faces numbered 3. Find the probability function
f(x) and cumulative distribution function F(x) for the random
variable X which gives the number observed on the toss of such

a die.

2. Suppose a lot of 10 items has three defectives. Three items
are chosen randomly with replacement of the item before another
selection. Find the probability function f(x) for the random
variable X giving the number of defectives in the three

selections.
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3.

Answer Problem 3.1.2 if the items drawn are not replaced after

each selection.

Suppose that S consists of all half-open intervals on [0, 1) of
form [(k - 1)/1000, k/1000) for k = 1, 2, ..., 1000. Label the
kth interval as k and define f(k) = 1/1000 for k = 1, 2, ...,
1000.

(a) What probability does f(k) assign to the intervals
with union [0, 0.230)2 [0, 0.500)?

(b) What probability does f(k) assign to the intervals
with union [0, 0.250)? [0.250, 0.500)% [0.75, 1.00)?

Assume that a girl has written letters to four boyfriends and
has addressed four envelopes with their names. In haste she
places the letters into the envelopes in random order. Consider
the addressed envelopes to be in positions 1, 2, 3, 4, and let
the order of the letters placed into the envelopes be given by

a listing of the letters A, B, C, D. For example, ACBD means
that boy 2 gets the letter for 3 and boy 3, the letter for 2,

while the others receive the correct letters.

(a) How many listings are possible?

(b) Let X be a random variable giving the number of boys who
receive their letter. TFind f(x), the probability function
for X.

Suppose a fair coin is tossed until a head appears.

(a) TFind the sample space S and a probability function defin-
ing the random variable X which gives the number of tosses
until the first head.

(b) Answer part (a) for the random variable Y giving the number

of tosses until a 6 occurs on repeated tosses of a fair die.

An employee is twice as likely to be absent on Monday and Friday
as on the other 3 days of a 5-day work week. Let f£(x), x= 1,
2, 3, 4, 5, glve the probability of absence on Monday through
Friday. Find and graph f(x) and F(x).
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8.

10.

3.2
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It is known that Z;=l l/k2 = ﬂ2/6. Find ¢ so that f(k) = c/k2
is a probability function on {1, 2, 3, ...}.

Suppose f(k)/f(k - 1) = 1/k for k = 2, 3, ..., and that f(k)

is a probability function on the positive integers.

(a) Find £(1).
(b) Find £(k) for k > 1.

For what value or values of x can a probability function satisfy

(k) = kxk for all positive integers k.

Exercises 3.1

Write a program to simulate the outcome of tossing the die
described in Problem 3.1.1. Find the frequency of a 1, 2, or
a 3 in 1000 repetitions. Compare these frequencies with the

probabilities calculated in Problem 3.1.1.

Write a program which simulates the situation described in
Problem 3.1.5 by programming a method to produce a random order-
ing of the integers 1, 2, 3, 4. Compare the ordering with the
natural ordering 1 2 3 4, and count the number of matches. Run
the simulation 1000 times and find the frequency of 1, 2, 3, or
4 matches. Compare these frequencies with the probabilities

calculated in Problem 3.1.5.

THE MOMENTS OF A DISCRETE RANDOM VARIABLE

In this section we wish to consider some important parameters of a

discrete random variable with distribution given by the probability

function f(x). The parameters serve to describe important character-

istics of the random variable X. The first moment of a random vari-

able, called the expected value of X, written E(X), gives information

about an average value of the random variable.
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DEFINITION 3.2.1. The expected value of a discrete random variable
with probability function f(x) is given by

E(X)= I xf(x), if =& |x|£(x) converges
all x all x

For example the expected number of hits in three at bats by the
batter described in Sec. 2.6 would be given by

3

8 12 6 1
= o— 4 o &+ o— 4 *— =

_Z_xf(x) o27 127 227 327 1

x=0
Similarly, we find E(L) = 14.7 in the Supreme Court Justice example.
As another example, let a random variable X have probability function
f(x) = 1/n for x =1, 2, ..., n. This is referred to as the discrete

uniform random variable. We find

n{n+1) _n+1

o X
BX) = 2 o= Ty 2

x=1
The expected value is often denoted by U = E(X).

In order to indicate that this definition of E(X) is not arbi-
trary, let us consider the random experiment described in the program
CARS. The program simulates 1000 visits to a drive-in bank, assuming
the number of cars in line is equally likely to be any integer from
1l to 10. The program prints the average number of cars in line in

the 1000 trials, which is given by

+ + e +
Total number of cars in line - lnl * 2n2 3n3 lonlO
1000 1000
= + + + eec 4+
lfl 2f2 3f3 lOflO

Here n, is the number of times that i cars are observed in line in
the 1000 trials and fi = ni/lOOO is the frequency of i cars in line.
The last line states that the average number of cars is a weighted
average of the values 1 through 10, where the weights are the fre-
quencies of these numbers. As the theoretical counterpart of fre-

quency is probability, it is reasonable to define E(X) as a weighted
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CAR

S F
10
20
30
40
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S1

ORR=1 T0 10
FOR I = 1 TO 10
LET F(ID=0
NEXT I

LET N = 1000

50 FOR I = 1 TO N

€0 LET T = 1 + INTCI10¥*RND)
70 LET FCTY=F(T)+1
80 NEXT I

100 LET A = O

110 LET B =0

120 FOR I = 1t TO 10
130 LET FCID=FCID)/N
140 LET B = B+IxF(I)
160 LET A = A+F(D)

170 NEXT I

200 PRINT '"AVERAGF=':B
210 NEXT R

220 END
*

RUN

AVERAGE= 5. 471
AVERAGE= 5. 487
AVERAGE= 5. 543
AVERAGE= 5.563
AVERAGE= 5.517
AVERAGE= 5. 542
AVERAGE= S. 407
AVERAGE= 5. 475
AVERAGE= 5. 509
AVERAGE= 5.575

&*
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average of the values that the random variable X achieves, where the
weights are the probabilities assigned to these values by f(x). This
is the definition of E(X) given in the preceding paragraph. Ten runs
of the simulation CARS gave the following averages: 5.471, 5.487,
5.543, 5.563, 5.517, 5.542, 5.407, 5.475, 5.509, and 5.575. These
approximations to the theoretical expectation given in the paragraph
above for n = 10, that is (10 + 1)/2 = 5.5. The output of CARS1
shows these approximations.

Let us consider the geometric distribution defined by the

probability function
X
£(x) = pq x=0,1, 2, ...
for 0 < g<1land p=1-gq. In this case we compute

[+ [+

X X
I xpQ” =pa I xq
x=

0 x=1
4911 ) _pre_.4q
pqdq{l—q)_p2 P

We have used the fact that

1

=
]
n

il

d 1 d 2 2
—_— ——] = == + + “oe = + + + s
aq [1 = (J 3 (1+a+q + ) =1+ 29+ 3q

By a slight alteration in the program GEOM we can compute the average
life length of 1000 batteries assuming the geometric distribution.
The averages obtained in 10 runs using q = 0.5 were 0.948, 0.949,
0.978, 1.027, 0.98, 1.027, 0.956, 0.99, 1.0008, and 1.047. The
theoretical expectation is, of course, 1 in this case. We shall
later return to the statistical question of how good such an approx-
imation of u by a calculated average may be.

It is quite natural to define the expected value of a function

of a random variable X, say g(X), by

DEFINITION 3.2.2. The expected value of a function g(X) of discrete

random variable with probability function f(x) is given by
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E(eg(X)) = I glx)f(x)
all x

if the latter converges absolutely.

There are two sets of functions of a random variable which have

particularly important expected values. These are Xk, k=1, 2, 3,

ve., and (X ~ u)k, k=1, 2, .... The parameters
m = E(Xk) = I xkf(x)
all x
and
k k
wo=EX-wT = I (x-u)rlx)
all x

are called the kth moments and kth central moments, respectively, of

the random variable X if they exist. It is clear that m o= U= B(X)

and

=EX-u)= I xf(x)- L uf(x)=wu-u=0
all x all x

!
when E(X) exists. While we shall not continue to repeat this last
proviso, it is not an empty one in the case of a random variable
with an infinite number of values. For example, if f(x) = 1/x(x + 1)
for x =1, 2, ..., it can be shown that Zz=l f(x) =1, but in attempt-
1 1/(x + 1) which diverges. On

the other hand, the expectation of a real-valued function of a random

s
ting to compute E(X), we obtain Z:=

variable with a finite number of values will always exist.

The importance of the moments of a random variable X lies in
the information which these parameters convey about the distribution
of the random variable. The expectation E(X) clearly contains infor-
mation about an average value of a random variable. The second
central moment U, = E(X - u)2 conveys information about the varia-

2
bility of a random variable about u.
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DEFINITION 3.2.3. The variance of a random variable X is u2 =
E(X - u)2, the second central moment of X, often denoted as ¢ or

Var(X).

Suppose we assume the error X in prediction of the size of a crowd
(actual-predicted) is equally likely to achieve any of the values
-k, ~k + 1, 0., -1, 0, 1, 2, ..., k. It is apparent that E(X) = 0,
whatever the value of k. On the other hand, it seems clear that the
variation of this random variable will be larger for larger values
of k, the assumed maximum absolute error. This is reflected in the
following computation of the variance:

k

-1 2 _
)= sT ot
J=1

02 = B(X - u)2 = E(X

2
which clearly increases with k. It may appear that the choice of
(x - u)2 is quite arbitrary and that |X ~ p| or some other increasing
function of ]X - ul would be equally appropriate. However, the vari-
ance has proven to be tractable mathematically and to be useful in
applications.

Let us consider three random variables X, X2. X3 defined on
the integers -k, -k + 1, ..., -1, O, 1, 2, ..., k. Let these be
defined by the probability functions

o1
H) = 55T
fe(x) = k(kx"l' 1)
£ (x) = (k +1) - x|
3 (k + 1)2

on the specified set of integers. Graphs of these probability

functions are given below in the case k = 2.
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1/3 173 /3
/5 /5
| ] ol | [
-2 -t o1 2 2 - o1 2 -2 - 0 2
f'(x) fz(x) f3(x)

The variance of Xl has been found to be k(k + 1)/3 previously. It
would appear that the variance of X2 would exceed the variance of
Xl’ while the variance of X3 would be less, for the same value of k.

Calculations yield

2 2 X k(k + 1)
o =EBX.")=2 % =
X, 2 =1 k(k + 1) 2
k 2
o’y =Ex) =2 3 Ll klkr?)
3 =1 (k + 1)

It is easy to check that for k > 1,

k(k + 2) < k(k + 1) < kik + 1)
6 3 2
or
°2x < 02x < °2x
3 1 2

Thus the variance reflects the relative spread of the values of a
random variable with respect to u. Greater probability assigned to
large deviations from u will tend to increase the variance. While
other moments of a random variable X can be important, the expecta-
tion and variance of X are the most important in applications, so
we shall not pursue the properties of the higher-order moments here.
We now discuss some properties of the expectation operator

which are implied in Definition 3.2.2. We state these properties

in the form of a theorem, leaving most of the proofs as exercises.
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THEOREM 3.2.1. If X is & discrete random variable defined on a
sample space S, then if E(g(X)) and E((h(X)) exist, it follows that

1. E(xg(X)) = xE(g(X)) for any constant k.
E(g(X) + h(X)) = E(g(X)) + E(n(X)).

COROLLARY 1. For random variables X X .oy Xk defined on a

1’ 72
sample space S, for which E(Xi) exist, 1 =1, 2, ..., k,

k k
E[ I xi] = 7 E(Xi)
i=1 i=1

Proof: This follows by induction using part 2 of Theorem 3.2.1.

COROLLARY 2. For any constant k, E(k) = k.
Proof:

E(k) = % kf(x)=k I f(x)=xk

COROLLARY 3. For any constant k, Var(k) = 0.
Proof:
Var(k) = E(X - k)2 = E(x - k)2 = E(o)2 =0
COROLLARY 4. Var(kX) = k2Var(X).
2 2
COROLLARY 5. Var(X) = E(X") - y°, for u = E(X).

The last expression is sometimes helpful in computing the variance
of a random variable. For example, if f(x) = 1/n for x = 1, 2, ...,

n, we have seen that E(X) = (n + 1)/2, and we find
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n 2
B(x%) = 1 X - {ot 1)é2n *+ 1)
x=]1 n
Hence
Var(x) = (n + l)é2n +1) (@ ; 1)2
_ n2 -1
T2

To conclude this section we consider an important expectation

associated with a discrete random variable X.

DEFINITION 3.2.4. The moment generating function (mgf) of a random
variable X is defined by E(eXt) = mX(t) when this expectation exists.

Note that the mgf is a function of the real variable t. To see that

the name is appropriate, consider derivatives of mX(t) at t = 0.

n'(t) = E(XeXt) and hence m'(0) = E(X).
m"(t) = E(XzeXt) and hence m"(0) = E(X2).

(k) (0) = E(Xk), that is, the kth derivative of the

In general, m
mgf at t = 0 is the kth moment of X. To obtain these derivatives,
we have assumed that the operations expectation and differentiation
could be interchanged and that the required derivatives actually
exist. This will be true for the cases in which the mgf is used in
this text.

Consider the geometric random variable with (k) = qu, k=0,

1, 2, «.., where p = 1. - q.
> 1k t
m(t) = I plge”)" = -——2~—€ lge’| <1
k=0 1l - qe

0
O T T
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agreeing with the previous result. Moreover, we find

Thus the variance of the geometric random variable is given by

2
£(x%) - (8(x))° = SLLl—;—ql SL-a
P P P

We note here two properties of the moment generating function

in the following theorem.

THEOREM 3.2.2.
at
e

—

ot

~
1

Mx(t) for any constant a.
MX(kt) for any constant k.

ot
~
I

We prove part 2 and leave part 1 as an exercise.

Proof of part 2:

(

)(t) = E(e kJC)X) = MX(kt)

M(kX
We will make use of these properties of the mgf in Chap. 5.

Problems 3.2

1. Consider the fair die with one face numbered 1, two faces
numbered 2, and three faces numbered 3. Let X be a random
variable representing the outcome of a toss of such a die.

Find E(X) and Var(X).

2. Find E(X) for Problems 3.1.2 and 3.1.3.
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10.

11.

12.
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Find the expected number of boys who receive their own letter
in Problem 3.1.5.

Suppose f(x) = kx for x =1, 2, ..., N is a probability function
for a random variable X.

(a) Find k, E(X).

(b) Find Var(X).

Suppose that visits are made to the drive-in bank with the dis-

tribution of the number of cars in line given by f(x) = 1/10,
x=1, 2, «.., 10.

(a) What is the variance of the number of cars in line?
(b) What is the expected total number of cars in line in

two visits and in k visits?

Let a fair die be tossed until a head appears. What is the

expected number of tosses?

Let f(x) = 1/(e - 1)x! for x = 1, 2, ... be the probability

function for a random variable X. TFind E(X).

Let f(x) = 6/(x‘n)2 for x = 1, 2, ... be the probability function

for a random varisble X. What can be said about E(X) and Var(X)?

Prove that if X is a discrete random variable defined on a

sample space S, then if E(g(X)) and E(h(X)) exist,

(a) E(kg(X)) = kE(g(X)) for a constant k.
(b) E(g(X) + h(X)) = E(g(X)) + E(h(X)).

Using Theorem 3.2.1 prove that

(a) Var(x) = E(XE) - EE(X).
(b) Var(xX) = kZVar(X) for a constant k.

Assume that Var(X) exists for a random variable X.

(a) Prove that Var(-X) = Var(X).
(b) Prove that Var(X) > O.

Show by example that in general, E(g(X)) # g(E(X)) for a
function g.
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13.

14.

15.

16.

17.

18.

19.

Assume that E(X) and E )2
show that E2(XY) < E(X

exist.

(Y) exist. By considering E(X + tY
2
)

E(YZ), assuming these expectations

The covariance of two random variables X and Y is defined as

Cov(X, Y) = E({X - ux)(Y - uY)).

(a) Prove Cov(X, Y) = E(XY) - E(X)E(Y).
(b) Prove that if Cov(X, Y) = 0, then Var(X + Y) = Var(X) +
Var(Y).

A fair coin is tossed until head appears. Let X represent the

number of tosses required. Find mx(t) and use it to find E(X).

(a) Find the moment generating function of the discrete uniform
distribution, that is f(x) = 1/n, k =1, 2, ..., n.
(b) Use the result in part (a) to find the expected value and

variance of the number showing on the toss of a fair die.
Prove part 1 of Theorem 3.2.2.

If X is a random variable with a moment generating function
mx(t), show that m(0) = 1.

t
Suppose a random variable X has mX(t) = e—a(l—e ), a> 0.

Find E(X) and Var(X).

Exercises 3.2
Write a program to simulate the selection of an observation from
the distribution described by the probability function

£(x) =% for x =1, 2, ..., 19

Find the average of 1000 selections and compare this with the

theoretical value.

Write a program to simulate the tossing of a coin until a head
occurs. Find the average number of tosses required in 1000
such trials. Compare this average with the expectation found
in Problem 3.2.5.



64 Properties of Discrete Random Variables

3.3 THE BINOMIAL RANDOM VARIABLE

Let us consider the arrivals of flights of Omega Airlines at O'Hara
Airport. An arrival is considered to be on time if the plane arrives
at its designated gate within 10 min. of its scheduled time. Suppose
that experience has shown that three of four flights arrive on time.
On a given weekday 12 Omega flights are scheduled to arrive at O'Hara.
What can be said about the likelihood of 0, 1, 2, ..., 12 of the
flights arriving on time. We use the program FLIGHTS to simulate the
flight arrivals on 1000 weekdays. The program prints out the frequency
of 0, 1, 2, ..., N on-time flights with the theoretical population
of on-time flights equal to p for the 1000 days. The program has
been run for N = 12 and p = 0.75. Although it is perhaps not sur-
prising, the frequency of on-time arrivals is largest for nine
arrivals (0.263 in the sample run). Additionally, the frequency of
six or more on-time arrivals is quite large (0.985 in the example).
Apparently the number of days with less than six on-time arrivals is
small under the assumptions made here.

The situation described above is a simulation of a probability
model called the binomial trials model. We say that n trials are

binomial trials if

1. Each trial results either in a success or a failure.
2. The probability of success at any trial is the constant p,
and hence of failure is 1 - p.

3. The trials are independent.

The sample space for this theoretical experiment is all sequences of
S's and F's of length n. For example, in the case of n = 3, the
sequences are FFF, SFF, FSF, FFS, SSF, SFS, FSS, and SSS. The bi-
nomial random variable B which counts the number of successes in

the three trials has values
B(FFF) = 0, B(SFF) = 1, cees B(sss) = 3

Due to the independence of the trials, the probability of any out-

come is a product of p's and q's in which the number of p's is equel



3.3 The Binomial Random Variable

FLIGHTS

10 DIM FC(50)

20 FOR 1 =1 T0 50
30 LET F(I)=0

40 NEXT I

50 READ No P

60 FOR J = 1 TO 1000

70 LET X = O

80 FOR I =1 TON

90 LET T = RND

100 IF T > P THEN 120
110 LET X = X +1

120 NEXT 1

130 LET Y = X +1
140 LET FCY)=F(Y)+1

150 NEXT J

160 PRINT "NUM ON TIME', "FREQUENCY"
170 FOR I = 1 TO N+1

180 LET A= A+(I=-1)*F(I)/1000

190 PRINT I-1, F¢1>/1000

200 NEXT I

210 PRINT

220 PRINT "AVERAGE= "3 A

230 DATA 12,.75

240 END

b
RN

NUM ON TIME FREQUENCY
0 )
1 0
2 0
3 0.001
4 0.003
5 0.011
6 04038
7 0.097
8 0.189
9 0.263
10 0.238
11 0.126
12 0+034

AVERAGE= 9.03

*
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to the number of S's and the number of g's is equal to the number of

F's in the particular sequence. Hence for n = 3,

P(FFF) = o°

P(SFF) = P(FSF) = P(FFS) = pq2
P(SSF) = P(SFS) = P(SSF) = pq

P(sSS) = p°

Thus in this case the probability function for B is given by £(0;3,p) =
o>, £(1;3,p) = 3pa°, £(253,p) = 3p°q, and £(3;3,p) = p>. Here £(x;n,p)
represents the probability of x successes in n trials with success
probablility p at each trial.

In the general case of n trials, we seek the probability function
for the random variable B which counts the number of successes in n
independent trials. We consider all sequences of length n of S's

and F's with exactly x successes. For example,

SS§S--~S;}--3;
is such a sequence in which the successes come first. Each such
sequence has probability pan_x, and every sequence with x S's and
n - x F's will have the same probability. To find the probability
of x successes we need only count the number of ways in which x S's
can be placed in the n locations (l§§"'—)’ and multiply this number
times pan_x. The answer to this question is given by the binomial
coefficient (2) = nt/x'(n - x)!, where 0! = 1 [see Kemeny et al.
(1974)]. Hence the probability function for the random variable B
is given by

(n)px n-x

£(x3n,p) = x

x=0,1, 2, ¢oey n

If n =3 and p = 1/3 as in our baseball player example of Sec. 2.6,

we obtain
b =A@’ -2
c 4 1L 1,122 _ 12
£(15 3, 3) = ( MZ)7(E)° = 27
Ca Ly 2 (37122 - 6
£(25 3, 3) = QG = 5
ca Ly o (314320 L L
£(3; 3, 3) = (73 = 5
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Let us consider some properties of the binomial distribution.
Note that the sum of the binomial probabilities is 1 as
n

n
r f(x;n,p) = I
x=0 x=0

n
=(p+q) =1
by the binomial theorem. From the definition of f(x;n,p), we

obtain

Cip™(1 - 2" = (P - p)" 7"

f

f(x;n,p)

f(n - x; n, 1 - p)

This expresses the equality of the probability of x successes inn
independent trials with success probability p, with the probability
of n - x failures in n independent trials with failure probability
1l - p. This allows the calculation of binomial probabilities using
values of p on the interval [0, 0.5] only. We find the formula for
E(X) when X has the binomial distribution [we write X ~ B(n,p)] in
the following theorem.

THEOREM-3.3.1. If X ~ B(n,p), then E(X) = np.

Proof:
o o xn! X n-x
E(X}) = I xf(xn,p)= I ey e 1l
x=0 x=1 *° :
n
(n - 1)! x-1 n-x
=np Z _ T _ v D
=1 (x - 1)!(n - x)!
n-1
=np I (n;l)pyqn—l-y where y = x - 1
y=0
n-1
=np I fly;n-1,p)=np
y=0

The latter summation is 1 because it is the sum of all binomial prob-

abilities in the case of n - 1 trials with success probability p.
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The variance of X ~ B(n,p) can be obtained from the definition
of Var(X) as E(X) has been obtained here, but the calculation is
tedious. Another method which is useful here is based on the idea

of indicator random variables.

DEFINITION 3.3.1. An indicator random variable I takes on only the
values 1 and 0. The indicator variable is 1 when the event "indicated"
occurs and 0 otherwise. We define n indicator random variables as

follows for k =1, 2, ..., n.

1 if the kth binomial trial is a success.
Ik =
0 if the kth binomial trial is a failure.
Here P(Ik =1)=p and P(Ik = 0) = q for all k. Thus if X ~ B(n,p),

we see that

n
*= kfl Ik
Hence
E(Xe) = E( g Ik)2 = 2 E(Ike) + I E(IkI.).
k=1 k=1 k#3 J
Clearly Ik2 and IkIj are also indicator variables with E(Ike) =

2
P(Ik =1) = P(Ik = 1)2- p. Also, E(Iklj) = P(IkIj =1) =
P(Ik = l)P(Ij = 1) = p~, where the independence of the trials has

2
been used. Hence, E(X") = np + n(n - l)p2, and thus

Var(X)

2 2 2 2
E(X") = (np)” = np + n(n - 1)p° - (np)
2
=mnp - np =np(l ~ p) = npg
The program BINOM calculates the values of f(x;n,p) and the
values of the cumulative distribution function F(x;n,p) =
X f(t;n,p) for values of n and p requested by the program. It

t=0
is necessary only to run the program and supply the requested values
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BINOM

10 PRINT "BINOMIAL';' LCISTRIBUTION"

20 FRINT

30 PRINT "WHAT IS THE "3 "VALUE OF N"

40 INPUT N

50 PRINT

60 PRINT "WHAT IS5 THE";'" VALUE OF P*"

70 INPUT P

80 PRINT

90 PRINT ' X SUCCESSES', '"PROB OF X', ""CUM PROB OF X"

100 LET @ = 1-P
110 LET Q1= QN

120 LET C = 01

130 FOR I = 1 TO N+1

140 IF Q1 < 10E-6 THEN 180

150 PRINT 1I-1,01,C

160 IF ABS(C-1)<10E-10 THEN 220
170 IF I > N THEN 210
180 LET Ql=(N=I+1)/1I%Q1
190 LET 1 = Ql1*P/Q
200 LET C = C + Q1

210 NEXT I

2280 END

*

RUN

BINOMIAL DI STRIBUTION

WHAT 1S THE VALUE OF N
? 12

WHAT IS THE VALUE OF P

?2 «75

X SUCCESSES PROB OF X CtM PROB OF X
2 3. 54052 F=5 3. 76105 E-5
3 3. 54052 E~4 391662 E-4
4 2. 38985 E~3 2.78151 E-3
] 114713 E-2 1. 42528 E-2
6 4401495 E~2 Se 44022 E~2
7 0.103241 O« 157644

8 0+193578 0. 351221

g9 0+.258104 0. 609325

10 0.232293 0.841618

11 0.126705 0968324

12 3. 16764 E~2 1
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of n and p. The values of p should be chosen from the interval
[0, 0.5] using the relationship f(n - x; n, 1 - p) = f(x3n,p)
for cases for which n > 25 and p > 0.5. Table 3.3.1 compares the
simulated frequency of on-time arrivals in 1000 days with the prob-
ability function for X ~ B(12, 0.75) (accurate to three decimal
places). The freguencies approximate the probabilities quite well.
The program FLIGHTS also computes the average number of flights
which are on time in the 1000. days. Ten runs of the program yielded
the velues 9.03, 8.91k, 9.023, 9.03, 8.99, 8.995, B8.976, 8.989,
9.009, and 8.94L, which are approximations to the expected value
np = 12(3/L4) = 9.

The binomial probability model has proven to be satisfactory
in a wide variety of situations. One example is the triangle test

which is used to determine whether individuals can detect which of

Table 3.3.1 Simulated Frequency and Probability Function

X Frequency f(x; 12, 0.75)
0 0 0.000
1 0 0.000
2 0 0.000
3 0.001 0.000
i 0.003 0.002
5 0.011 0.011
6 0.038 0.0Lo
k¢ 0.097 0.103
8 0.189 0.19%4
9 0.263 0.258
10 0.238 0.232
11 0.126 0.127
12 0.034 0.032
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three similar appearing items has a distinctive feature. For example,
a cheese manufacturer may wish to know if a preservative can be tasted.
Each of n individuals is given three pieces of cheese, only one of
which has the preservative. Each individual is asked to indicate
which of the three pieces of cheese tastes unlike the other two. If
we suppose the trials are independent, then the number of persons out
of n who correctly identify the item with the distinctive feature is
binomially distributed, that is X ~ B(n,p). Here p is the proba-
bility an individual can correctly identify the distinctive item.

If the preservative actually cannot be detected, then this proba-
bility is 1/3. Hence, in this case, X ~ B(n,1/3).

The program BINOM has been run to yield the binomial distribu-
tion for the triangle test situation assuming p = 1/3 with n = 18
and n = 32, respectively. As the reader will note, for n = 18, no
probabilities are printed out for x 2_16. The program is written
so that any value of f(x;n,p) less than 10—6 will not be printed
in the output. This prevents the listing of large numbers of very
small probabilities in the case of large n. In order to suggest
how the binomial distribution might be used to decide whether the
preservative can be tasted, consider the case n = 32. If the choices
are random, then we expect n/3 = 10.67 correct decisions. Suppose
in fact the number of successes is 16. If p = 1/3, the probability
of 16 or more correct decisions would be 1 - P(X < 15) = 0.0L47653.
One is presented with the choice of accepting p = 1/3 and concluding
that a rather unusual event has occurred or deciding that p > 1/3.

A reasonable decision might be for the latter. This discussion is
an example of statistical reasoning, which will be discussed in
detail in the later chapters.

The two runs of BINOM for the triangle test give examples of a
property of binomial probabilities. In the case n = 18, there is a
single maximum probability at x = 6, while for n = 32, the binomial
distribution has two values for which a maximum is attained, namely
x =10 and x = 11. It can be shown that if p + np is not an integer,

then the binomial probabilities increase to a single maximum at
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RWN
BINOMIAL [ISTRIBUTION

WHAT 1S THE VALUE OF N
? 18

WHAT IS THE VALUE OF P
? +333333

X SUCCESSES PROB OF X

0 €+ 76646 FE~4
1 6+ 0898 F-3
2 2.58816 k-2
3 690175 F-2
4 0.129408

5 0.18117

6 0.196268

7 0.163229

8 0+115657

9 0064254

10 289143 E=2
11 1.05143 E-2
12 3.06666 E-3
13 T+07€89 E~4
14 126373 E~4
1S 1. 68497 E~S

CUM PROB OF X
6o TE64E E=4
6. 76645 E~3
3.26481 F~-2
0. 101666
0.231073
0. 412244
0. 608512
0.776741
0.892398
0956652
0985567
0.996081
0.999147
0.999355
0.999981
0999998
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RN
BINOMIAL T[ISTRIBUTION

WHAT 1S THE VALUE OF N
? 32

WHAT IS THE VALUE OF P

?

OCRNomd WO ~0O X

« 33333333

SUCCESSES

PROB OF X

2.31782 E-6
3.70851 E-5
28741 E~4
1. 43705 E-3
5.2093 F-3
0.014586
3.2818¢€ E-2
6.09488 E-2
9. 52325 E-2
0126977

0+ 146023
0.146023
012777
9.82848 E-2
6+ 66933 E-2
0.040016
2.12585 E-2
0.010004
4416833 E-3
15357 E-3
4.99103 E-4
1. 42601 E-4
3. 56502 E-S
775004 E~6
145313 E-6
2.32501 E-7

ClM PROB

2. 31732
3.9 4029
3.2€313
1. 76386
€.97316
2. 15592
5. 43778
0.115327
0.210559
0¢ 337536
0. 483559
0. 629582
0.757353
0.355637
0.922331
0.962347
0.983€05
0« 993609
0997777
0.999313
0.999812
0999955
0.999991
0999998
1.

Ie

OF X
E~ 6
E-5
E=-4
F-3
E-3
E-2
E-2

73
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RUN
BINOMIAL Ol STRIRUTION

WHAT IS THE VALUL OF N

? 10
WHAT IS THE VALUE OF P

?7 «5

X SUCCESSES PROB OF X CuM PROB OF X
0 9.7€5€2 E~4 9.7€562 E-4
1 9.765€2 E=3 107422 E=-2
2 4e 39453 E-2 50‘!6875 E=-2
3 0.117187 0.17187S

4 0. 205078 0+ 376953

S 0+ 246094 Ne 623047

6 0.205078 0.828125

7 0.117187 0.945312

8 £e 39453 F~2 0.989258

9 9.765€2 E-3 0.999023

10 9.765€2 E~4 1
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RUN

BINOAIAL DI STRIBUTION

WwHAT IS THE VALUE OF N

?

20

WHAT IS THE VALUE OF P

?

«5

SUCCESSES

PROB OF X

9. 53674
1.90735
1.81198
1.08719
4. 62055
147858
3« 69644
739288
0.120134
0.160179
0.176197
0160179
0.120134
7.39288
3. 69644
1 47858
4e 62055
1.08719
1.81198
1490735
9.53674

CM PPROB

9.53674
2.00272
2.01225
1. 288 41
5.90897
2.069 47
S¢7€591
0.131588
0.251722
0. 411901
0. 588099
0+748278
D.8€8412
0942341
04979305
0994091
0.998712
0.999799
0+99998
0+999999
1

E-3

75
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[p + np] = Xg» where [x] represents the greatest integer in x, and

then decrease. If p + np = x. is an integer, then the binomial

0

probabilities increase to two adjacent maximum values at Xy = 1l and

X, and then decrease.

We describe here several additional examples of real-world
situations for which the binomial distribution has proved to be a
successful model. In certain circumstances it is possible to employ

the model even though one or more of the assumptions are violated.
1. Hybrid Crosses in Genetics

If we assume that there are two types of genes, G (dominant) and
g (recessive), controlling a certain trait, then a hybrid (Gg)
carries one of each. In a hybrid cross the offspring are assumed
to acquire one gene at random from each parent. Hence the geno-
types GG, Gg, and gg among the offspring of such crosses are
taken to have probabilities 1/L, 1/2, and 1/L, respectively. As
both GG and Gg types display the dominant trait, we expect that
the number of offspring X displaying the dominant trait among n

such crosses will have a B(n,3/4) distribution.
2. True-False Test

A true-false test with n questions can be considered as an
example of n binomial trials. The probability of getting a
question correct would be taken as the parameter p. The assump-
tion of independence of the trials and the equality of the
probability of a correct answer for each question might be

suspect. However, if a person knows nothing whatever about the

questions and arbitrarily answers them true or false, the binomial

model with X ~ B(n,1/2) would be appropriate. We have run BINOM
for p = 0.5 and n = 10 and n = 20. In the case of a 1l0-question
test with T0% representing passing, there is a not insignificant
probability of 0.172 of such a respondent passing. If the
number of questions is increased to 20, the probability of T70%
or more correct answers is a more tolerable 0.058. Making the

test longer would further reduce the probability of passing
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"by guessing." Note, however, that the expected number of

correct answers by guessing is n/2 or 5S0%.
3. Roulette Wheels

A standard roulette wheel has 38 slots. Thirty-six of these

are numbered randomly with the integers 1, 2, ..., 36, while the
remaining two are numbered O and 00. Eighteen of the numbered
slots are colored red and 18 are colored black. If a ball ends
up on a number, then those betting on that number and its color
win the amount they have bet. The other bettors lose to the
house. If the ball ends up in O or 00, the house wins. Suppose
we make n $l bets on a color. The number of wins in the n trials
has a binomial distribution with p = 18/38 = 9/19. Note that in
n trials the expected winnings are (9/19)n, but the expected
losings are (lO/l9)n. Hence the average advantage to the house

is n/19.
4. Defectives in a Lot

In order to determine the quality of a large lot of N items a
sample of size n is often taken. The items selected are either
classified as defectives or good. Let X denote the number of
defectives in the lot. A decision to accept the lot or to reject
it may be based on the quality of the sample. (An alternative

to rejecting the lot might be a complete evaluation of the
quality of all items in the lot.) The random variable X is often
considered to be B{(n,p) with p representing the proportion defec-

tive in the lot.

A decision rule might be to accept the lot if X < d for d a
fixed constant. Note that we can find the probabilities of accept-
ing a lot as a function of p for any such plan. For example, if
n =25 and d = 3, we find P(B(25,p) < 3). The values of certain of
these probabilities are tabulated in Table 3.3.2. We see that using
this decision rule the probability of accepting a lot with 5% defec-
tives is 0.9659. The probability of accepting a lot with 25% or
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Table 3.3.2 Probability as a function of p

P P(B(25,p) < 3
0.05 0.9659
0.10 0.7636
0.15 0.4711
0.20 0.2340
0.25 0.0962
0.30 0.0332
0.35 0.0097
0.%0 0.0024
0.45 0.0005
0.50 0.0001
0.55 + 1.0 0.0000

more defectives is less than 0.0962. The properties of decision
rules is an important aspect of the subject of statistics which we
study in detail in the second half of this text.

In this example the assumptions of the binomial model do not
hold exactly. If one item is removed from a lot, it alters the
probability of obtaining a defective for the next selected item.
Hence the trials are not truly independent. However if N is very
large in relation to n, this dependence will be slight and thus have
little effect upon the distribution of X. We consider this situa-

tion in more detail in the next section.

Problems 3.3

1. Assume 10% of the income tax forms received by thke IRS are
audited. Let X represent the number of forms out of the next
100 processed which will be audited. Assuming independence,
find E(X) and Var(X).
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2.

10.

Which is more probable, three heads in six tosses of a fair

coin or two heads in four tosses of a fair coin.

Assume a fair coin is tossed 2n times. Find f(n;2n,1/2), the
probability of exactly n heads. Find f(n + 1; 2n + 2, 1/2)
and show that this probability is less than f(n;2n,1/2).

A basketball player makes 80% of his foul shots. Assuming
independence, find the probability of x successes in his next

four shots for x = 0, 1, 2, 3, k.

Show that f(n - x; n, 1/2) = f(x;n,1/2) and interpret this

equality in terms of tossing a coin.

Suppose animals undergoing a particular experimental procedure
survive with probability 0.8. What is the smallest number of
animals with which to start in order to ensure a probability

of at least 0.9 that at least five animals survive.

Show that the variance of X ~ B(n,p) is greatest for fixed n
when p = 1/2.

Use the fact that X ~ B(n,p) can be written as a sum of indi-

cator variables to prove that E(X) = np.

If X ~ B(n,p), show that Z = (X - np)/vnp(l - p) satisfies
E(Z) = 0 and Var(Z) = 1.

Prove that f(X;n,p)/f(x - 1; n, p) = (n - x + 1)p/x(1 - p).
Using this fact show that

(a) If np + p = 1, then f£(O3n,p) = £f(1sn,p) > £(2;n,p) >
«es > £(n3n,p).

(b) If np + p = k an integer greater than 1, then £(0;n,p) <
++- < f(k - 15 n, p) = £(k;n,p) > -++ > £(n;n,p).

(¢) If np + p is not an integer, show that for ko = [np + pl,

£(03n,p) < ... < f(ko; n, p) > f{k, + 13 n, p) > ++- >

0
f(n;n,p).
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(a) Show that the moment generating function of the binomial
random vaeriable is (pet + q)n
(b) Verify that E(X) = np and VAR(X) = npq for X ~ B(n,Dp)

using the result in part (a).

Exercises 3.3

Run the program FLIGHTS to simulate the number of daily on-time
arrivals of an airline over a 1000-day period at an airport.
Assume an on-~-time arrival rate of 0.80 and 15 flights a day

arrive at the airport.

Run BINOM with the values of n = 15 and p = 0.8. Compare the
frequencies observed in the previous exercise with the theoret-
ical probabilities. Compare the average number of daily arrivals

in the simulation with the expected number of on-time arrivals.

[Answer part (a) before computations. ]

(a) If n =16 and p = 3/8 in the binomial distribution, for
what value or values of x will f(x;16,3/8) be greatest.
If n =29 and p = 1/2, for what value or values of x will
£(x3;29,1/2) be maximum.

{b) Verify your answers in part (a) by running BINOM with the

appropriate values of n and p.

An assembly line is shut down for repairs if a sample of size

20 contains two or more defectives. Assume that the sample can
be treated as 20 independent trials. If g(p) is the probability
of two or more defective items, when the assembly line is actu-
ally producing 100p% defectives, find g(0.05), and g(p) for
p=k/10, k=1, 2, ..., 10. Plot g{(p) as a function of p.

THE HYPERGEOMETRIC DISTRIBUTION

Let us consider a finite population of N persons of whom R are

Republicans and N - R are Democrats. Suppose that a sample of size

n is taken from this population in such a way that each individual
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has equal probability of selection, but once an individual is chosen
he is not considered again. This is called random sampling without
replacement. We define the random variable H to be the number of
Republicans in the sample of n. If we consider that there are (ﬁ)
combinations of size n of the N persons, it is clear that each such
combination has equal probability of selection. In order to compute
the probability of x Republicans, we must find the number of differ-
ent combinations having exactly x Republicans. This number is
M
x’ 'n-x
of x Republicans and the second factor counts the number of combina-

because the first factor counts the number of combinations

tions of n - x Democrats. Hence the probability of exactly x

Republicans is given by

R, /N-R N
G /@

This 1s an example of the hypergeometric random variable. The proba-
bility function for the hypergeometric random variable is defined in

the following.

DEFINITION 3.4.1. From a finite population of size N of which R
elements have a property and N - R do not, we select a random sample
of size n without replacement. The probability function for the
number of elements in the sample with a property is given by
_ (Ry,N-R N
h(xsmEn) = (OO /()

where

max(0, n - N + R) < x < min(R,n)

The program HYPER generates the probabilities for the hyper-
geometric distribution with values of N, R, and n provided in a DATA
statement. An example run illustrates the sampling of 10 individuals
from a finite population of 50 Republicans and 50 Democrats. The
probabilities h(x3;100,50,10) are printed out as well as the values

of the cumulative distribution function
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H(x) = ; h(+3100,50,10) for x = 0, 1, 2, ..., 10
t=0

It seems intuitively clear that, if the population size N is large
in relation to the sample size n, then sampling without replacement
should not be very different from sampling with replacement. However,
the number of Republicans obtained in a sample of size n, if we sample
with replacement from a population with a proportion of R/N Republi-
cans, will just be an example of n binomial trials with probability
of success R/N at each trial. 1In fact it can be shown that if N + o
and R > ® in such a way that R/N = p, then for fixed n,

1im h{x;N,R,n) = f£(x;n,R/N)

Nooo

R/N=p
where f{x;n,R/N) is the probability function for the binomial distri-
bution. The proof of this is sketched in Problem 3.k4.4.

To illustrate this idea we compare the hypergeometric probabil-~
ities for N = 100, 200, 1000 with R = 50, 100, 500, respectively,
with the binomial probabilities in the case of 10 trials with p =
0.5.

x h(x;100,50,10) h(x;200,100,10) h(x;1000,500,10) f£f(x;10,0.5)

0 0.00059 0.0007T 0.00093 0.00098
1 0.0072k 0.00847 0.00953 0.00977
2 0.03799 0.0L4103 0.04337 0.0k4395
3 0.11310 0.11529 0.11683 0.11719
L 0.211k1 0.20820 0.20570 0.20508
5 0.24933 0.252k47 0.24733 0.24609

The probabilities for x > 5 need not be compared as both distribu-
tions are symmetric about x = 5. While it may be observed that the
hypergeometric probabilities are approaching the binomial probabil-
ities, the approximation is not very satisfactory until the ratio
N/n, the population size to sample size, is quite large. In our

example the ratio of N/n = 100 provides reasonable accuracy.
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HYPER

10 READ N»R»N1

20 DIM FC100)

30 PRINT *"HYPERGEOMETRIC'";* DI STRIBUTION"
40 PRINT '

50 PRINT "X' "PROB OF X', "CUM PROB OF X"

60 LET C = |

70 FOR I = 0 TO (N1-1)
80 LET C = Cx(N-I>/(N1~-1)
90 NEXT 1

100 LET C = 1/C

110 LET T = 1

120 IF N1<N=R THEN 150
30 LET H = 1
140 GO TO 200

150 LET H = 1

160 FOR J = 0 TO (N1=-1)

170 LET H = H*(N=R-J)/(N1=-J)
180 NEXT J

190 GO TO 320

200 FOR J = 0 TO N1-N+R-1

210 LET H = Hx(R=-J)/(N1=-N+R=-J)
220 NEXT J

230 LET F(N1-N+R)=H*C

240 FOR X=N1-N+R TO R

250 IF K>N1 THEN 440

260 LET F(K+1)=2F(K)*(R=-K)*(N1=-K)/((K+1)%(N=-R-N1+K+1))
270 LET L = L+ F(K)

080 PRINT K» F(K)»L,

290 IF ABS(L-1)<10E-8 THEN 440
300 NEXT K

310 GO TO 440

320 LET F(O)=H%*C

330 FOR X=0 TO R-1

340 IF K>N1 THEN 370

350 LET F(K+1)=F(K)*(R=-K)% (N1=K)/((K+1)% (N-R=N1+K+1))
360 NEXT K

370 FOR K= 0 TO R

380 IF K >N1 THEN 440

3 90 LET L= L+F(K)

400 PRINT K» F(K)»sL

410 IF ABS(L~-1)><10E-8 THEN 440
420 NEXT K

430 DATA 10,858

440 END

*
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430 DATA 100, 50510

RN

HYPERGEOMETRIC DI STRIBUTION

X

O RNrMWO=O

PROB OF X

549342 E~4
7.23683 E-3
3.79933 E-2
0.113096
0.211413
0.259334
0.211413
0.113096
379933 E-2
723683 E-3
5.9342 E-4

CUM PROB OF X
S5¢9342 E-4
7.83024 E-3
4058236 E-2
0.15892
0. 370333
O« 629667
0.84108
0.954176
0.99217
0.999407
1
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Let us consider the expected value and variance of the hyper-
geometric random variable. It is again helpful to use the idea of
indicator random variables. We define n indicator random variables

as follows:

1 if a Republican is chosen on the kth trial

0 if a Democrat is chosen on the kth trial

fork=1, 2, ..., n. We write the hypergeometric random variable

as

= + + e 4
H Il 12 In

Consider P(Ik = 1). As there are n elements selected without replace-
ment, the number of distinct sequences of n elements chosen from N is
given by N(N - 1)--+(N - n + 1), which is denoted as (N)n. This is
because the first element can be chosen in N ways, the second in
N - 1 ways once the first is chosen, and so forth until the nth choice.
We count the number of such sequences‘with a Republican in the kth
place by considering that there are R ways that the kth place may be
filled and then (N - l)n_l ways of filling the remaining n - 1 places.
Hence P(Ik =1) = R(N - 1)n_l/(N)n = R/N. This probability is not
dependent on k. Hence

n n

E(H) = & E(Ik)= I P(I

R
k=1 k=1 N

= 1) =

Although the algebra is more extensive, it is straightforward to

show, using indicator variables, that

Var(H) = n % (1 - %)

N-n
N-1

Again we see the close correspondence with binomial distribution

X ~ B(n,p), for if we write p = R/N, we obtain

N-n
N-1

E(H) = np and Var(H) = np(l - p)
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The expectation matches the expectation of the binomial distribution,
and if N is very much larger than n, we have Var(H) = np(l - p) the
binomial variance. The factor (N - n)/(N - 1) is referred to as the
finite population correction factor.

That binomial probabilities can be used as good approximations
to the corresponding hypergeometric probabilities is of much more
than theoretical interest. We often sample from a large population,
taking a small fraction of it in a sample of size n. Common examples
are polls such as the Gallup Poll, sampling plans used to decide to
accept or reject a large lot of items, and catches of fish. In each
case we may be interested in the distribution of the number of ele~
ments in the sample which have a certain characteristic. For the
preceding examples the characteristics could be having voted at the
last presidential election, being a defective item, and belonging to
the bass family, respectively. N, the population size, is almost
never actually known, so hypergeometric probabilities cannot be used.
However the sample size n is known, and using an approximation for p,
probabllistic statements can be made about X, the number of elements
in the sample possessing the characteristic in question.

As another example of the hypergeometric distribution let us
consider a college class of size 500 of whom 150 are women. We take
a random sample of size 20. If we sample without replacement, the
expected number of women in the sample is E(H) = 20(150/500) = 6 and
the Var(H) = 20(0.3)(0.7)(480/499) = 4.040. If we sample with re-~
placement, the expected number of women is given by np = 20(0.3) = 6
and variance np(l - p) = 20(0.3)(0.7) = 4.2, using the expectation
and variance of the binomial distribution. The programs HYPER and
BINOM have been run to obtain the hypergeometric distribution with
N = 500, R = 150, and n = 20 and the binomial distribution B(20,0.3).
Again these should be compared to get an idea of the accuracy of the

binomial approximation to the hypergeometric probabilities.
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430 DATA 500,150, 20

RUN
HYPERGEOMETRIC LCISTRIBUTION

X PROB OF X
6.74398 E~-4
€.11237 E~-3
2+ £0604 E-2
€e94945 E-2
0.12999
0.181288
0+195586
0.1€7147
0114914
0.06418

10 2492774 E-2
11 1.09273 E-2
12 333091 E-3
13 824698 k=08
14 1. €422 E=-2&
15 258945 E-5
16 3415729 E-6
17 2.8€688 F-17

WR~NouosrwwH—0O

CUM PROB
€e 74398
€ 78677
3. 284782
0.102342
0. 232332
0.413619
0. 609205
De 776352
ND«B91026¢€
0.95544¢€
0984724
0+995651
0998982
0«99980€
0.999971
0.999997
1.

!.

JF X
F=-4
E-3
F=-2

87
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RUN
BINOMIAL [LISTRIBUTION

WHAT IS THE VALUE OF N

? 20
WHAT 1S THE VALUE OF P
? .3

X SUCCESSES PROB OF X cM PROB OF X
0 797923 F-4 7497923 E=~4
1 €.83934 E-3 T+ €3726 E~3
2 2.78459 -2 3454831 F=-2
3 716037 E-2 0.107087

4 01230421 0.237508

5 0.1788623 0. 416371

[ 0.191639 0+ 60801

7 0s 164262 0772272

8 0114397 0+.88€€€69

9 6+ 53€9€ E-2 0.952038

10 3.08171 E-2 0.982855

11 1.20067 E-2 0.994862

12 385928 E-3 0.998721

13 1.01783 E-3 0.999739

14 2+18107 E=4 04999957

15 373898 E-5 0.999995

16 500756 E-6 1.

17 504964 E=7 |
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Problems 3.4

Assume that a group consists of 10 persons of whom seven are men
and three are women. A committee of three persons is chosen
without replacement. Find the probability of x women on the

committee for x = 0, 1, 2, 3.

The number of registered voters in a city is 100,000. Of these
32% are Republicans, 56% are Democrats, and 12% are independents.
If a random sample of 50 is taken without replacement from the
list of registered voters, find the expected number E(X) of
Republicans and Var(X).

(a) If n < N/2 for even N, show that h(x;N,N/2,n) =
h(n - x; N, N/2, n) for x =0, 1, 2, ..., 1.
(b) If X ~ h(x;N,N/2,n), find E(X) and Var(X).

If N and R are very much larger than n, show that
n)R (R-1) . (R-x+1) (N-R)

N N-1) (N-x+1) (§-x) =
(N-R-n+x+ 1)
N=-n+1)

(b) If R~ and N » «, so that R/N = p, show that

(a) h(x;N,R,n) = (

lim n(x3N,R,n) = (D)p"(1 - p)" 7™
N-oo
R-oo

for x =0, 1, 2, ..., n.

(a) If X ~ B(10,1/2), find Oy -
(b) If Y has the hypergeometric distribution, find UY/OX for X
in part (a) when n = 10 and (1) R = N/2 = 10, (2) R = N/2 =

20, and (3) R = N/2 = 100.
(a) Prove directly that
R
Ry N-R, _ (N
DGy = ()

j=o *

by comparing the coefficients of the polynomials
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1+ )+ )R+t

N
)
Assume n < R and n < N ~ R.

(b) What is the importance of this equality?

Exercises 3.4

1. Suppose that a college class of 400 has 300 men and 100 women.
In a sample taken without replacement of 20 persons from this

class, find the distribution of the number of women.

2. Compare the probabilities in Exercise 3.4.1 with the appropriate

binomial probabilities.

3.5 THE POISSON DISTRIBUTION

Another probability distribution of importance related to the binomial
distribution is the Poisson distribution which assigns probabilities
to the set =0, 1, 2, 3, .... We consider the binomial trials model
in the case that the number of trials n + ® while the probability of
success p > 0 in such a way that np = 4 is held constant. The bi-

nomial probability function is written

£n,p) = (D (1 - p)™*  x=0,1,2, ..y

—nln = 1)eee{n-x+1) M* (1 - ByP(g - Byx

x! n n n
_ Ei (1 HO_(ﬁO(-U) (Bo- 1,,n-x+ l)(l Hy-x
T ox! " n n n n “n

For fixed x, if n + «, the last two terms have limit equal to 1,
)l/z -

while the second term has limit e " as limz*o(l + z e. This
fact has been used with z = -u/n. Hence
M
lim £(x3n,p) = r x=0,1, 2, ...
oo x!
PO

We have already seen in Sec. 3.1 that Z:=O e-uux/x! = 1 for any

fixed 4 > 0. Hence we can make the following definition:
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DEFINITION 3.5.1. The probability function for the Poisson random
variable X with parameter u > 0 is given by f(x;u) = e—uux/x!, X =
0, 1, 2, .... If X has the Poisson distribution with parameter u,

we write X ~ P(u).

The expectation and variance of X ~ P(|) can be obtained by

direct computations using the definitions of expectation and

variance.
L e-u X L e-u x-1
EXx)= £ x3—H= 3 -
=0 x! =1 (x - 1)!

and letting y = x - 1, we have

® THY
E(X) =u I ——;%i— = U
y=0 7
This result is very plausible because the expectations of each of
the binomial distributions having the Poisson as the limiting distri-

bution were np = Y. To find the variance we find

o -U x o -p (x-2)
B(X(X - 1)) = I x(x-1) SH =P ERY
x=2 : x=2 \¥ :

and letting y = x - 2, we have

2 T WY 2
EX(X-1)=y" Z = U
y=0 ¥

As Var(X) = E(X(X - 1)) + E(X) - EZ(X), we find the variance of
X ~ P(u) as Var(X) = u2 + - u2 = U. This result is also plausible
as the variances of the binomial distributions with the Poisson
limit are np(l - p) which has limit y = np as p > 0 and n + » with
np = .

The Poisson distribution should be a good approximation to the
binomial distribution when the number of trials n is large and p is
small. There are many situations in which this is the case. Consider

sending a message which consists of a binary string of n zeros and
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ones. We assume that the message received may be altered by noise
in the transmission system, so that one or more of the numbers
received is altered from a O to a 1 or a 1 to a 0. We assume that
the frequency of such a transposition is given by p. The program
MESSAGE simulates the sending of 1000 messages of length n. The
proportion of these messages with 0, 1, 2, ... errors is calculated.
The program has been run for n = 100 for two values of p (0.02 and
0.025). The distribution of the number of errors should be well
approximated by the Poisson distribution with @ = 2 and u = 2.5. It
is only necessary to run the program and supply the values of n and
p as requested.

The program POISSON calculates the probabilities for the Poisson
distribution with expectation u. Again it is only necessary to supply
the requested value of the expectation u. The program has been run
for values of U = 2 and 2.5 to permit comparison with the simulations
of the previous paragraph. It can be shown that the Poisson proba-
bilities increase to a maximum value of [u] if U is not an integer
and then decrease. If U is a positive integer the Poisson probabil-
ities increase to adjacent maximum values at x = 4 - 1 and x = Y and
then decrease. These properties are illustrated by the two runs of
POISSON for y = 2 and g = 2.5 given below.

The program BIPO has been written to compare the binomial prob-
abilities with their corresponding Poisson approximations. It is
only necessary to run the program and answer the guestions requiring
the input of p and n. The program prints the binomial probabilities
and the corresponding Poisson probabilities using u = np. The example
run uses the parameters n = 80 and p = 0.025. As can be seen from
the output, the agreement of the binomial and Poisson probabilities
is excellent.

The Poisson distribution is widely applied as a probability model
to describe the number of "events" of a certain type occurring in a
time period of length t, when the events occur "randomly" during the
time interval. Examples are arrivals of phone calls at a switchboard

during a fixed period of time, arrivals of individuals at a queue for
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MESSAGE

10 DIM FC101)

20 PRINT "WHAT IS THE *;“ERROR FREQUENCY"
30 INPUT P

40 PRINT "WHAT IS THE '3 '"™ESSAGE LENGTH"
S0 INPUT N

60 PRINT "BE PATIENT"

70 FOR I = 1 TO 1000

8 OLET C =1

90 FOR J = | TO N

100 LET Z = RND

110 IF Z > P THEN 130

120 LET C = C + 1

130 NEXT J

140 LET FCC)=F(Cr+1

150 NEXT 1

160 LET F1 =0

170 PRINT "ERRORS", ""FREQUENCY', *ClM FREQ"™
180 FOR I = 1 TO 100

190 LET F = F(I>/1000

2 00 IF F= 0 THEN 230

19 LET FI=sFl+F

220 PRINT I-1,F, Fl

230 NEXT 1

240 IND

*
RN

WHAT IS THE ERROR FREQUENCY

? «02

WHAT 1S THE MESSAGE LENGTH

? 100

BE PATIENT

ERRORS FREQUENCY CM FREQ
0 0143 0+ 143
1 0. 269 Qe 412
2 0. 267 0. 679
3 0.185 0.864
4 0.094 0.958
S 0.031 0.989
6 0.006 0.995
7 0.004 0999
9 0.001 1
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RUN

WHAT IS THE ERROR FREQUENCY

? «025

WHAT IS THE MESSAGE LENGTH

? 100

BE PATIENT

ERRORS FREQUENCY ClM FREQ
0 0.094 0.094
1 0.191 0.285
2 0« 266 O« 551
3 0.213 Oe.764
4 Delan 0906
S 0.063 0.969
6 0.022 0.991
7 0.007 0.998
8 0.001 0+999
9 0.001 1



POI SSON

10 PRINT "POISSON "3 "DISTRIBUTION'

20 PRINT "WHAT IS THE ";"VALUE OF MO"

30 INPUT U

40 PRINT

50 IF U > | THEN 80

€0 LET T = 8

70 GO TO 90

80 LET T=INT(3*U+1)

9 OLET V = EXP(-)

1 00 PRINT 'X', "PROB OF X', "CUM PROB OF X'

110 FOR I = 0 TO T
120 LET C = V + C
130 PRINT 1,VU,C

140 LET V = UxU/(I+1)
1 S50 NEXT 1

160

170 END

*

RUN

POISSON DISTRIBUTION
WHAT 1S THE VALUE OF MU

? 2

X PROB OF X CtM PROB OF X
0 0. 135335 0. 135335
1 0.270671 0« 406006
2 0.270671 0. 676676
3 00180447 0.857123
4 9.02235 E-2 0947347
5 3.60894 E=2 0983436
é 1.20298 E-2 04995466
7 3. 43709 E~3 0«998903
8 8459272 E~4 0999763

* RUN

POISSON DI STRIBUTION
WHAT IS THE VALUE OF MU

? 25

X PROB OF X CM PROB OF X
0 0.082085 0.082085
i 0.205212 0. 287297
2 0.256516 0.543813
3 0. 213763 0.757576
4 0.133602 0.891178
5 6+ 68009 E-2 0.957979
6 2.78337 E~2 0.985813
7 9.94062 E-3 0995753
8 3.10644 E~3 0+99886
9 B+ 62901 E-4 0999723
10 2415725 E=-4 0999938
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BIPO

10 REM THIS PROGRAM

Properties of Discrete Random Variables

COMPARES THE PROBABILITIES OF THE

20 REM BINOMIAL DISTRIBUTION WITH THOSE OF THE POLSSON DISTRIBUTION
30 REM TYPE "RUN" TO EXECUTE THE PROGRAM

40 PRINT "WHAT IS THE“;" VALUE OF p?"

50 INPUT P

60 PRINT “WHAT IS THE"; " VALUE OF N?°

70 INPUT N

80 PRINT "HOW MANY“;" POISSON";" PROBABILITIES DO"; " YOU WANT?"
90 INPUT C

100 LET Q = 1=p

110 LET Ql=Q"N

120 LET M=N*p

130 LET Q2=EXP(=-H)

140 PRINT * X ™,"BINOMIAL PROB"™,"POISSON PROB"

150 FOR I = 1 TO C+1

160 PRINT I-1,Ql,Q2

170
180
190
200
210
220
239
240
*

IF I > N THEN 210
LET Ql=(N-I+1)/1%Ql
LET Ql=Ql*(P/Q)

GO TO 220

LET Ql=0

LET Q2=Q2*M/1

NEXT I

END

RUN

WHAT IS THE VALUE OF P?
?7.025

WHAT IS THE VALUE OF N?
780
HOW
710

X BINOMIAL PROB

0.13194
0.27064
0.27411
0.18274
9.01990E-2
3.51545E=2
1,12675E=2
3.05418E=3
7.14601E-4
1,46585E=4
0 2.66859E~5

— O o~V WwWN—~C

MANY POISSON PROBABILITIES DO YOU WANT?

POISSON PROB
0.13534
0.27067
0.27067
0.18045
9.02235E~2
3.60894E~2
1.20298E~2
3,43709E-3
8.59272E-4
1.90949LE-4
3.81898E-5
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a bus in a fixed time interval, the number of suicides in a city
during a week, and other similar situations. The following axioms
are sufficient to guarantee that the number of events in a time
period have a Poisson distribution. We write Pk(t) to mean the

probability of k events in a time period of length t.

1. The number of arrivals of events in two nonoverlapping time
periods are independent.

2. The probability of the arrival of one event in a short period
of time is proportional to the length of the time interval. We
write Pl(h) = Ah + o(h), where o(h) is a function with the prop-
erty limh_)oo(h)/h = 0.

3. The arrival of more than one event in a short time interval is

essentially zero: Pk(h) = o(h) for k > 2.

These properties are sufficient to guarantee that Pk(t) =
e—Xt(kt)k/k!, k=0,1, 2, .... The parameter U = At is the average
number of events in a time period of length t. Hence if calls arrive
at the rate of 2 per minute, the probability of no calls in 2 min.

is e_h. The probability of one call in a 2-min period would be
-}
he ™,

Problems 3.5

1. Assume that a typist makes a keyboard error once every 1000 times
she strikes the keyboard. If a page consists of 25 lines of 80
characters each, find the expected number of errors per page.

Find the probability of 0, 1, 2, 3, or 4 errors per page.

2. Assume that customers arrive in a queue at the rate of one every
5 min.
(a) What is the probability of zero arrivals in a 5-min period?
(b) What is the probability of more than four arrivals in a

5-min period?

3. A good outfielder has a fielding percentage of 0.99. What is the

probability he handles his next five chances without an error?
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Suppose that the probability a calculator makes a numerical error
is lO_lO. What distribution can be used to describe the number
of errors in lOlo calculations? What is the probability of more
than five errors in lOlO calculations?

Find the moment generating function for the random variable

X ~ P(u).

Use the result in Problem 3.5.5 to verify that E(X) = Var(X) = u
for the Poisson distribution.

(a) Using the axioms 1 through 3 concerning Pk(t) show that

(P.(t +h) - P (t)})/h= (=X + o(h)/h)PO(t).

0 0
(b) Using the assumption that P_(0) = 1, prove that P

-At
e 7.

(t) =

0 0

If X ~ P(u), show that f(x;u)/f(x ~ 1; W) = u/x for x > 1. Let

(u] = n.

(a) If n = 0, show that f£(O;u) > £(L;u) > eee > £(x3u) > *°-.

(b) If u =1, show that £(0;u) = £(1;u) > £(2;u) > <= >
£lxsu) > «o-.

(c) If U is an integer greater than 1, show that f(O;u) <
(1) < vee < f(u - 15 ) = £usp) > £(u + 15 p) > eo-.

(@) If {p] =n > 1 but [u] # yu, then show that £(0;u) < £(1;u)
< eee < Fnsu) > f(n + 13 w) > se-.

Exercises 3.5

Using an error proportion of p = 0.0l run the program MESSAGE to
simulate the frequency of errors in 1000 messages of 100 charac-
ters each.

Run the program POISSON with the appropriate value of U to compare
the frequences observed in Exercise 3.5.1 with the theoretical
probabilities given by the POISSON model.

Use the program BIPO to compare the binomial and Poisson proba-
bilities in the case that n = 100 and p = 0.01L, n = 20 and p =
0.05, n =10 and p = 0.1, and n = 5 and p = 0.2. For which

values of n and p is the Poisson approximation best? worst?
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3.6 THE STANDARD DEVIATION AND THE CHEBYSHEV INEQUALITY

We expand upon the meaning of the variance of a random variable as

a measure of the spread or variability of a random variable. Notice
that as Var(X) = E(X - u)e, the units of Var(X) will be in terms of
squared units of those used to measure the observations of the random
variable. For example, we used the Poisson random variable to rep-
resent the distribution of errors in the transmission of binary
strings of length N. Suppose that E(X) = u = 2, i.e., the expected
number of errors is 2. We have seen before that Var(X) = u for the
variance is 2(errors)2. In order to obtain a measure of variability

in the same units as those used to measure X, we state the following:

DEFINITION 3.6.1. The standard deviation of a random variable X is
/Gar(X), when the variance exists. The standard deviation is denoted

OX or 0 alone if it is clear which random variable is involved.

A theorem due to Chebyshev has great theoretical importance in
probability theory and also importance in giving meaning to the con-

cept of the standard deviation of a random variable X.

THEOREM 3.6.1. If a discrete random variable X has variance 02,

then the following ineguality holds for any € > O.

2
P(JX - u zeM-Z;

Before proving the theorem, let us consider its consequences. If we
let € = ko for k > 0, we obtain the inequality P({[X - u| > ko) < 1/x°.
The following table gives a short 1list of these bounds.
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/K%
1
1/4
1/9
1/16

1/25

vioE W Fow

Thus the probability that an observation of a random variable is 3

or more standard deviations from P cannot exceed 1/9. Hence the

probability is at least 8/9 that an observation will be within 3

standard deviations of u. In general the probability is at least

1 - l/k2 that an observation is within k standard deviations of u.
Often the Chebyshev bounds are quite conservative. For example,

for the Poisson distribution with yu = 1, we find

X P(lx - 1] > k) 1/x% (upper bound)
1 0.6321 1.0000
5 0.0803 0.2500
3 0.0190 0.1111
Ly 0.0037 0.0625
5 0.0006 0.0400

Hence the probability of obtaining an observation at least 3 standard
deviations from yu = 1 is 0.0190, considerably smaller than the upper
bound 0.1111. The strength of the Chebyshev bound lies in the fact
that it applies to all random variables which have a variance. The
bound cannot be improved upon in general, for if X has distribution
P(X = +1) = 1/2, then E(X) = 0, Var(X) = 1, and P(|X| > 1) = 1.
Hence the Chebyshev bound holds as an equality in this case for
k = 1.

A proof of Theorem 3.6.1 proceeds as follows. Let X have vari-

ance 02 and let € > 0. Then
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¥ r (x-wir) v T (x - wPr(x)
[x-ul<e |x-u|>e

E(X -

Q
[}

5 (x-wi(x) >e2 & £(x)
|x-u[>e |x-u|>e

{v

Hence

@ 3_62 P(|X ~ u| > &)

using the first and last expression in this string. Thus

N

[¢]
P(|X - uf > e) 2z

As one further example to illustrate the meaning of the Chebyshev
inequality, we consider again the random variable with probability
function f(x) = 1/N for x = 1, 2, ..., N. We have seen that E(X) =
(N + 1)/2 and Var(X) = (N2 - 1)/12. Consider

+ -
N l+/-3-0=N+l+/(N 1)(N + 1)
- p'd 2 -~ 2
We have
N+ 1 = N+1 N-1_
5 + /3cx > + 5 = N

and

N+ 1 _ S < N+1 N-1 1.
2 X

Hence the open interval (N + 1)/2 ¢_¢§bx contains all the integers
1, 2, ..., N, so that P([X - ul Z_/%bx) = 0, while the Chebyshev
bound would yield 1/3 as an upper bound for this probability. The
Chebyshev bound is useful in providing a general interpretation for
the meaning of the standard deviation ¢ and for many theoretical
purposes, but it is not useful for calculating probabilities for

any particular distribution.
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Problems 3.6

Suppose a fair coin is tossed 400 times. Find upper bounds for

the following probabilities, where H represents the number of
heads in the 400 tosses.

(a) P(|H - 200] > 10)
(b) P(|8 - 200] > 20)
(e) P(]H - 200} > 30)

Let f = X/n represent the proportion of heads in n tosses of a
fair coin. Use the Chebyshev inequality to show that
. 1
lim P(|f - 51 >€)=0 for any € > 0
n-re
Let X be a Poisson random variable with y = 4. Compare

P(|X - 4] > 2k) with the Chebyshev bounds for k = 1, 2, 3.

If X is a random variable with P(X = +t) = P(X = -t) = 1/2 for
t # 0, show that

(a) P(|X - E(X)] >0.)=1.

(b) P(|x - B(X)| 2 ko, ) = 0 for k > 1.

(¢) What does part (a) imply about the Chebyshev inequality?



CONTINUOUS OUTCOME SPACES

4.1  INTRODUCTION TO CONTINUOUS OUTCOME SPACES

Until now we have considered outcome spaces which contained at most
a countable number of points. In turn, the random variables defined
on these spaces could have at most a countable number of values.
Meny random experiments, however, can be considered to have as out-
comes, all possible values on an interval of the real number line.
For example, we may measure the length of time that an individual
takes to respond to a stimulus. For instance, the length of time

it takes a child to answer an arithmetic problem. The response time
is generally assumed to be a real number in an interval of possible
times. Similarly, the net weight of a package of breakfast food
labeled 16 oz net weight may be thought of as a value on an interval
centered at 16. The error made in rounding off a number to the
nearest integer (calculated as actual-integer) can be thought of as
any number on the interval (-0.5, 0.5], where we round down if the
observed number is an integer plus 1/2. Appropriate sample spaces

for these experiments can be taken to be, respectively,

{t]0 < t < 20}, t measured in minutes.

{w|1h < w < 18}, w measured in ounces.

{x]|-0.5 < x < 0.5}.

103
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Measurements such as length, weight, voltage, speed, and many others
can be thought of as attaining values on an interval of the real-
number line.

The outcome spaces for measurements such as those described in

the previous paragraph are called continuous. Formally, we state

DEFINITION 4.1.1. An outcome space S of a random experiment is
called continuous if it is composed of an interval or a union of a

countable number of intervals of the real line.

Often the interval is taken to have infinite length, for example,
(~0,2) or (0,%), even though in reality there is a limit to the size
measurements can realistically attain. For example, the length of
time that a light bulb will burn if it is run until failure is often
considered to have an outcome space S = {tlt > 0}, although physically
we know that the bulb cannot function for more than some maximum time
(say 100,000 hr). Nevertheless such outcome spaces are useful in
describing the outcomes of real-world experiments.

The program ANSWER simulates times required by N children to
complete an arithmetic problem. The program requires the average
time of completion M, and the maximum time allowed which is denoted
as T. In the case considered here, we assume an average time M = L
and a maximum time of T = 20. The program has been run for N = 1000.
ANSWER prints out the relative frequency of times in the intervals
(k, k + 1] for k =0, 1, 2, ..., 19. As one can see from the output
these relative frequencies are not equal. An idea of the distribu-
tion of these times can be gotten by considering the graph of the
histogram which indicates the relative frequency for each interval.
For example, the height of the bar associated with the first interval
is 0.223, with the second is 0.160, and with the last is 0.005. The
graph of the histogram is shown in Fig. L.1.1. The average time for
the 1000 trials was 3.89. However the distribution of times has a

long tail to the right. The relative frequency of a time of 4 min
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AN

SWER

DIM F(25)
FOR I = 1 TO 29
LET F(IL)=0
NEXT I
PRINT “HOW MANY";" SIMULATED ";"TIMES"
INPUT N

PRINT “WHAT IS MAX ";"TIME"
INPUT T
PRINT "WHAT IS AVERAGE"; "™ TIME?"
INPUT M

FOR I = 1 TO N

LET Z = RND

LET X ==-LOG(L=-2)*M

FOR J = 1 TO 20

IF X > J*T/20 THEN 170

GO TO 180

NEXT J

LET F(J)=F(J)+1

NEXT I

LET A=0Q

LET B=0

PRINT "FREQUENCY"; " COUNTS FOR ";"INTERVALS"

PRINT

PRINT "INTERVAL NO.","LOWER END","UPPER END","REL FREQ","CUM

FOR J = L TO 20
LET A =A+F(J)*(J-1/2)*T/(20%N)
LET B = B+F(J)/N

PRINT J,(J-1)*T/20,J*%T/20,F(J)/N,B
NEXT J

PRINT

PRINT "AVERAGE=";A

END

105
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RUN
HOW MANY SIMULATED TIMES
7 1000
WHAT IS MAX TIME
7 20
WHAT 1S5 AVERAGE TIME?
7 4
FREQUENCY COUNTS FOR INTERVALS
INTERVAL NO. LOW ER END UPPER END REL FREQ CUM FREQ
1 [} 1 0.223 B.223
2 1 2 Bel6 Q.383
3 2 3 P.138 P+521
4 3 4 Q.111 B.632
S 4 S P393 @725
6 S 6 P+063 @.788
7 6 7 B.B46 B.834
8 7 8 BeB47 P.881
9 8 9 P.233 0.914
10 9 10 2.022 B+936
11 18 11 g.012 Be948
12 11 12 2.008 P+956
13 12 13 2.008 B.964
14 13 14 2.008 B.972
15 14 15 0885 Be977
16 15 16 B.007 B.984
17 16 17 B.005 B.989
18 17 18 e 2.989
19 18 19 0.286 B.995
20 19 20 P.005 1

AVERAGE= 3.889
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0 4 8 12 16 20 t

Fig. 4.1.1

or less is 0.632, but a substantial number of children require a long
time to answer the question. Note that the total area of the histo-
gram is 1 as the base of each bar is 1 and the height is the relative
frequency of that interval. Hence the total area is the relative
frequency of all the intervals which is 1.

The program NETWT simulates the net weights of 1000 packages of
a breakfast food. Here the input to the program is the number of
packages N, the true average weight M, and a measure of variation,
the standard deviation. The program prints out the relative frequen-
cies of 17 intervals with the central interval having a midpoint of M.
The program has been run for N = 1000, M = 16, and a standard devia-
tion of 0.5. The intervals all have length 0.25, so that the histogram
of these relative frequencies would have a total area of 0.25. In
order to make the graph comparable with the previous one, we should
have a total area of 1. To accomplish this, each bar of the histo-
gram has a height four times the corresponding relative frequency.
Proceeding in this way the area of the bar of the histogram gives
the relative frequency for the interval. Noﬁe that the height is no
longer a relative frequency. This histogram appears in Fig. L4.1.2,
which indicates symmetry of the distribution about a central value.
The program also points out the average net weight, which in this
case was 15.9822. This shows close correspondence with the theoret-
ical value, which we would expect for a large number of observations.

The program ERRORS simulates a sample of N rounding errors as

in the first paragraph. The program described has been run for
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NE

10

280
300
310
320
325
330
340
350
360
370
380

TWT

REM SAMPLE FROM NORMAL
DIM F(20)
FOR I = 1 TO 18
LET F(L)=0
NEXT 1
PRINT “WHAT IS SAMPLE";" SIZE?"
INPUT N
PRINT "WHAT IS TRUE";*" MEAN?"
INPUT M
PRINT “WHAT IS *;"STD DEV?"
INPUT S
FOR I = 1 TO N
GOSUB 340
LET X = M4S5*Z
FOR J= 1 T0 17
IF X > M+(2*J-1)/4*S=-4*S THEN 180
GO TO 190
NEXT J
LET F(J)=F(J)+1
NEXT 1
LET A = 0
LET B = 0
PRINT “FREQUENCY ";“COUNTS FOR “;"INTERVALS"
PRINT

PRINT "INTERVAL NO.","LOWER END","UPPER END","FREQENCY","CUM

FOR J= 1 TO 17

LET A= A+(F(J)/N)Y*(M+(J~1)/2%S~4%5)
LET B = B+F(J)/N

LET L=M+(2*J=3)/4%*S~4*§
LET R=L+S/2

PRINT J,L,R,F(J)/N,B
NEXT J

PRINT "AVERAGE=";A

GO TO 380

LET 21=SQR(-2*LOG(RND))
LET 22=6.,2831853*RND
LET 2=21%C0S(22)

RETURN

END

Continuous Outcome Spaces

FREQ"
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RUN

WHAT IS SAMPLE SIZE?

? 1002
WHAT 1S TRUE MEAN?
? 16
WHAT IS STD DEV?
? «5
FREQUENCY COUNTS FOR INTERVALS
INTERVAL NO. LOWER END UPPER END
1 13.875 144125
2 14. 125 14375
3 14.375 14.625
4 14.625 144875
5 14.875 156125
6 15.125 154375
7 154375 15.625
8 15625 15.875
9 15.875 164125
10 164125 16375
11 164375 16+ 625
12 164625 164875
13 16+875 17125
14 17.125 17375
15 17.375 17.625
16 17+6285 17.875
17 17.875 180125

AVERAGE= 15.9822

FREQUENCY

2

B.002
D281
D309
0.0236
D+055
Pel121
B.198
?.188
P.181
P.118
B 255
0.022
B.011
B.003
2

[

109

CUM FREQ
%]
B.0B2
B.803
g.012
De D48
G123
Be224
Be422
Be61
Be791
B.909
Be964
2.986
0997
1

1
1
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0.4r

Fig. 4.1.2

N = 1000. ERRORS prints out the relative frequency of observations
in the intervals (-0.5 + k/10, ~-0.5 + (k + 1)/10] for k = 0, 1, 2,
«e+5 9. As can be seen from the output, in this case the relative
frequency of observations in each of the intervals is close to 0.100
for each interval. In order to have a histogram with total area
equal to 1 we must use a height of ten times the relative frequency
for each interval as the length of each interval is 1/10. Again the
area of a bar of the histogram represents the relative frequency
associated with each interval. A graph of this histogram appears in
Fig. 4.1.3. Note again that the height of a bar of the histogram is
not a relative frequency but a relative frequency multiplied by 10.
It is the properties of the histograms representing relative
frequencies which is mirrored in the formal definition of a probabil-
ity distribution on an interval of the real line. The first property

is that the relative frequency associated with an interval is given

Fig. 4.1.3
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RORS

DIM F(25)
FOR I = 1 TO 20
LET F(1)=0
NEXT I
PRINT "HOW MANY ';"SIMULATED ";"ERRORS?"
INPUT N
FOR I = 1 TO N
LET 2 =RND-.5
FOR J=1 TO 10
IF 2>-,5+J/10 THEN 120
GO TO 130
NEXT J
LET F(J)=F(J)+1
NEXT I
LET A=-,5
LET T=1
LET B=0
PRINT "FREQUENCY"; ' COUNTS FOR ";"INTERVALS"
PRINT
PRINT “INTERVAL NO.","LOWER END","UPPER END","REL FREQ","CUM FREQ"
FOR J= 1 TO 190
LET A=A+F(J)*(J-1/2)*T/(10%*N)
LET B = B+F(J)/N
PRINT J,~,5+(J=1)*T/10,~.5+IJ*T/10,F(J)/N,B
NEXT J
PRINT
PRINT “AVERAGE=";A
END
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by the area of the histogram above the interval. The second property
is that the total area under the histogram describing relative fre-
quencies is 1 because the total of the relative frequencies is 1.

In the next section we will define continuous probability distribu-
tions. The concept of probability will be expressed by area under

a curve. The area under a curve and above an interval will define
the probability assoclated with the interval. The total area under

the curve, as the total area of the histogram, will be 1.

Exercises 4.1

1. Run the program ANSWER with M = 2, T = 10, and N = 1000, thus
simulating 1000 times. Plot a histogram by hand for your obser-

vations so that the area under the histogram is 1.

2. Write a program to simulate N selections of a real number on the
interval [0, 2] in such a way that intervals of equal length have
the same probability. Run the program with N = 1000, and plot a
histogram using intervals of length 0.2 so that the area under

the histogram is 1.

4.2 CONTINUOUS PROBABILITY MEASURES AND RANDOM VARIABLES

A continuous probability distribution will assign probabilities to a
continuous outcome space S as defined in Sec. L4.1. It is not possible
to proceed as in the case of a discrete outcome space. If an assign-
ment of positive probabilities were made to every point of an interval

I={x|a<x<b} forb >a, it can be shown that

(2]

i

% P(x)
x I
The intervel would be assigned a probability which would be arbitrar-
ily large. Instead we assign probabilities to intervals of the real
number line by means of a nonnegative function f(x). Areas under

f(x) above an interval will represent the probability associated with
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the interval. The total area under f(x) must be 1 so that the total
probability assigned to the real line is 1. Formally, we state

DEFINITION 4.2.1. A probability model for a continuous outcome space

S is defined by a real-valued function f(x) satisfying

1. f(x) > 0, for all real x.
2. The function f(x) has at most a finite number of discontinuities
on any finite interval of the real line.

30 S £x) &x = Sy £(x) ax = 1.

The function f(x) is called a probability density function (abbrevi-
ated as pdf) and f(x) is not a probability.

If f(x) > 0 is defined only on S satisfying fS f(x) dx = 1 and also
property 2, the definition of f(x) can be extended to the whole real
line by defining f(x) = 0 on the complement of S. Hence one can
always think of defining f(x) on the whole real line although f(x)
may only be positive on a finite interval. Finally, the probability
associated with any interval of the real line is defined by
fz f(x) dx, the area under f(x) sbove the interval [a, Db].

As an example of a class of probability density functions assign-

ing probability to the interval [0, 1], we may consider

(k + 1)x5 0<x<1
fx) =
0 elsewhere
where we assume that k = 0, 1, 2, .... For each such integer k, a

different probability measure is assigned. For k = 0 and k = 1, the
graphs of these density functions appear in Fig. 4.2.1. In the case
that k = 0, we see that intervals on [0, 1] are assigned a probability
equal to the length of the interval as IZ 1l dx =D - a. For instance,
the probability associated with I = [1/2, 3/4] is 1/4. On the other
hand, for k = 1, that is, f(x) = 2x on [0, 1], the probability
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2.0

3/4
1/2
Another point to note is that for any x

o L2134 _
2x dx = x 12 = 5/16.

o€ [0, 1], we have P(xo) =
J jzo f(x) dx = 0. The property that points have zero probability
0

associated with the interval I is [

holds for any continuous space S assigned a probability measure by

a probability density function as described in Definition 4.2.1.
Hence for such a probability assignment the intervals (a, b), {(a, b],
[a, b), and [a, b] are all assigned the same probability, because
the probabillity contributed by the endpoints is zero.

As in the discrete case, a random variable is a function which
assigns a numerical value to points in S. If S is a continuous out-
come space, then the points of S are real values, so that the function
is a real-valued function of a real variable. Perhaps unfortunately,
this function is widely denoted as X(w) for w € S. Although not
every real-valued function may define a random varisble, the excep-~
tions are rarely encountered in practice. The most common function
is X(w) = w, the identity function. As before the probabilities
associated with the random variable X are inherited from the proba-

bility assignment to S. If X(w) = w, then

P(a < X(w) <) = P(a < w < D) ="fz £(x) ax

where f(x) is the probability density function assigning probabilities
to the continuous outcome space S. In this case we say that f(x) is
the probability density function for the random variable X and write
Pla <X <b)= fz f(x) dx for any interval [a, b]. For example, the
density function f{x) = 1 for [-0.5, +0.5] and f(x) = 0 elsewhere
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would be the natural pdf for the random variable X representing the
error made in rounding a real number to the nearest integer.
Another important function associated with a probability assign-

ment to a continuous outcome space S is the function
X
F(x) = [ f(x) ax

where f(x) is a pdf. F(x) represents the probability of the event
{wjw < x} a subset of S. F(x) = P(X < x) and F(x) is called the
cumulative distribution function (cdf) for X as in the discrete case.
Except at the points of discontinuity of f(x), the fundamental

theorem of the calculus yields the relationship

For example, if

1 in [0, 1]
f(x) =

0 elsewhere .

the graph of F(x) is given in Fig. 4.2.2. We see that F(x) = 0 for
X <0, F(x) = x for 0 < x <1, and F(x) = 1 for x < 1. We see that
F'(x) =0 for x < 0, F*'(x) = 1 for 0 < x <1, and F'(x) = 0 for
x > 1, while the derivative is not defined at x = 0 and x = 1.
Hence the density function is given by F'(x) except at the points
of discontinuity of f(x), namely x = 0 and x = 1.

Let us consider the waiting time T until the first Poisson event
from a time point which we label t = 0. The corresponding outcome

space is

F{x}

Fig. 4.2.2
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s = {t|t > o}

If the rate of occurrence of Poisson events is A per unit of time,
we know that the number of events in a time period of length t has
the Poisson distribution with parameter At. Let F(t) represent the
cumulative distribution function for the random variable T. We see

that
P(T > t) = P(no Poisson events in [0, t])

or

1-F(t) = oMt for t > 0

Mso F(t) = 0 for t < 0. Hence we can obtain the pdf for T by 4if-
ferentiating F(t) except at t = 0. We find

Ae for t > 0

0 for t <0

where the function has arbitrarily been assigned the value of 0 at
t = 0. That f(t) is a density function can be immediately checked
by simple integration. Graphs of the cdf and pdf for T appear in
Fig. L4.2.3.

As in the case of a discrete random variable, it is clear that
the cumulative distribution function of a continuous random variable

satisfies the following properties:

1. F(xl) j_F(xz) for X, < X,
2. lim _ F(x)=1.
3. limx - (x) = 0.
1.0
f(1)
Flt)=1-e™M A

Fig. 4.2.3
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These properties are demonstrated by the graphs of the cumulative
distribution functions which appear in Figs. 4.2.2 and 4.2.3. Proofs
of these properties are left to the problems. We also remark that

if two continuous random variables have the same distribution funection,
then the corresponding random variables are said to have the same

distribution.

Problems 4.2

1. The probability density function of a random variable X is

defined as follows:

cx2 on [-1, 1]
f(x) =

0 elsewhere

a) Find the constant c.
(b) Find the cumuwlative distribution function F(x) of X.
(¢) Find P(-0.5 < X < 0.5).

2. The cumulative distribution function of the random variable

X is given by

o for x < 1
for x > 1

a) Find the pdf for X.
(b) Find P(X > 2).
(¢) Graph f(x) and F(x).

3. The time required for an individual to complete a task is a
random variable T (measured in minutes). The pdf for T is
f(t) = (l/?,)e-t/3 for t > 0 and f(t) = 0 elsewhere.

(2) Show that f: (1/3)e™%/3 at = 1.

(b) Find P[T < 3].

(c) What is the probability that at least one of two individuals

chosen at random will complete the task in 3 min or less.
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4. Show that the following are probability demsity functions for
randon veriables on the indicated intervals. The functions are
0 outside these intervals.
(a) f(x) = sin x on (0, m/2]
(v) f£(x) = 1/(n/1-x%) on (-1, 1)
(e) f(x) = 6x(1 - x) on [0, 1]

5. Find the cumulative distribution functions for the random vari-

ables of Problem 4.2.k.

6. Assume that a continuous random variable is defined on (-, «)
by the pdf f(x). Prove the following:
(a) limx - wF(x) = 1, and interpret this statement probabilist-
ically.
(b) The requirements on the pdf of a random variable X as defined
in this section imply that lim _FP(X <) =0. Interpret
this statement probabilistically.

7. The family of exponential distributions is defined by the proba-
bility density functions:

Xe-xx for x > 0 and fixed A > 0

f(x;A) =

0 for x < 0

(a) Find P(X > b) for a constant b.

(b) Find P(X > a + b|X > a).

(¢) What family of discrete random variables has the property
analogous to that in part (b)?

8. Consider two independent selections from the distribution
deseribed by density function f(x) = 1 on [0, 1]. Such a selec-
tion can be thought of as the selection of a point in the square
0<x<1, 0Ly<1, vhere the x coordinate represents the

first selection and the y coordinate the second selection. The
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y
(0,1) (L,
X
(0,0 (z,0) (1,0)
Fig. 4.2.4

area of a subset of this unit square gives the probability of

the subset. We wish to find the pdf for Z = X + Y. The graph

below shows that for 0 < z < 1, P[Z ﬁyz] = z2/2 as the area of

the shaded triangle is z2/2.

(a) Find the cdf for Z for z < 0, z > 2, and 1 < z < 2.
[Note: The cdf is not 22/2 on (1, 2).]

(b) Find the pdf for Z.

4.3 MOMENTS OF A CONTINUOUS RANDOM VARTIABLE

In the case in which one has a large number of measurements of a
continuous variable, it is customary to classify these observations
in a tabular format called a frequency table. The frequency table

is a device for summarizing a large number of observations into a
concise readable format. The interval on which the observations may
fall is divided into nonoverlapping subintervals generally of equal
length. The number of observations in each subinterval and the rela-
tive frequency of observations is displayed. The output of the
program ERRORS gives an example of a frequency table. In this example
1000 simulated round-off errors are classified into 10 subintervals
of (-0.5, 0.5]. These intervals, (~0.5 + (k - 1)/10, -0.5 + k/10]
for k =1, 2, ..., 10, each have a length of 0.1 and are nonoverlap-

ping. The corresponding frequency table appears below:
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Interval Boundaries Class mark ni fi
1 -0.5, -0.4 -0.L45 102 0.102
2 -0.4, -0.3 -0.35 103 0.103
3 ~-0.3, -0.2 -0.25 95 0.095
4 -0.2, -0.1 -0.15 93 0.093
5 -0.1, 0.0 -0.05 103 0.103
6 0.0, 0.1 0.05 106 0.106
T 0.1, 0.2 0.15 102 0.102
8 0.2, 0.3 0.25 106 0.106
9 0.3, 0.4 0.35 107 0.107
10 0.4, 0.5 0.45 83 0.083

The average value of the 1000 observations is computed from the

frequency table as

The value xi is the midpoint of the ith subinterval. This value is
referred to as the class mark. In computing this average all obser-
vations in the ith interval are treated as if their true value
equaled X, . If we denote the height of the ith bar of the histogram
in Fig. 4.1.3 as hi and the length as Ali, recall that fi =h; Ali.
Hence we can write

_ 10

x= L x.h, AR,

=3 1171

It is this form of the computation of X which is mirrored in the
definition of the expectation of a continuous random variable X. If
we consider observing a very large number of round-off errors, the
number of subintervals k can be made large as well. At the same
time Ali = 1/k will become small. Hence the expression given above
for x will be an approximation to the integral of a function with
ordinate at X of xih(xi). As the probability density function in
the theoretical model corresponds to the height of the histogram,

it is natural to make the following definition:
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DEFINITION 4.5.1. The expected value of the continuous random
variable X with probability density function f(x) is given by

B(X) = S© xf(x) ax
Technically, we require ffm[xlf(x) dx < ®, which will be true in the
text except when specifically mentioned. In those other cases the
expectation is said not to exist.

Let us consider the example given in Sec. L.2 of the family of

random variables Xk defined by the probability density functions

kx on [0, 1]

0 elsewhere
where a different random variable is defined for each positive

integer k
= . = 1 S =2
E(X)) = Sy x°1 ax = 3 E(X,) = [, x+2x dx = 3
k k

E(Xk)=f]6kx dx = 77

Before considering another example we introduce a famous integral.

The following integral

o™ ax = Ta)
can be shown to converge for d > 0 and is called the gamma function
of the real variable a. An important property of the gamma function
can be demonstrated by letting u = xa_l and d&v = e * dx and then
integrating by parts.

o
T(a) = f: udv = -xo‘_le_X

(e - 1)T{a - 1) ifa~1>0
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It is easy to compute the value of the gamma function for positive
integers. First T(1l) = f: e X ax = —e-xlz = 1. Secondly, by

repeated integration by parts

I'(n) (n-1)T(n-1)=1(n~-1)(n - 2)T(n - 2)

(n=-1)n - 2)*+(2)(1)T(1) = (n - 1)!

i

Hence the gamma function can be thought of interpolating through the

values
(130!), (Esl!)a (332!)’ cocy (k, (k" l)!), L

As another example of an expected value computation, consider the

random variable T of Sec. 4.2 giving the time until the first Poisson

event, where the events have arrival rate A. The pdf is f(t) = Xe—Xt

for t > 0 and f(t) = 0 for t < 0. Hence

L™ u o D(2)
=3 fO ue du = =

At
dt X

B(T) = f‘; Ate”

>

The fact that the expected waiting time until the first event is the
reciprocal of the arrival rate coincides with what intuition would

suggest.

DEFINITION 4.3.2. If g(X) is a function of the continuous random
variable X with pdf given by f(x), then

E(g(X)) = S _g(x)f(x) ax

Again we assume the latter integral converges absolutely. As in the
discrete case the kth moments and kth central moments are defined,

respectively, as

00

m = B(X) = /7 xr(x) ax

n

and

=
!
=
>
1
=
jo
=
]
Ay
L8
"
!
=
H
»
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if these integrals are absolutely convergent. As an example of a
variable for which the expectation is not defined, consider X to
have pdf given by f(x) = l/x2 for x > 1 and f(x) = 0 for x < 1. We
see that

oodx_ ; _
fl 2" T x|, 1
X

but when we try to compute E(X), we obtain f: (1/x) dx which diverges.

The variance of a continuous variable X is defined by:

DEFINITION 4.3.3. The variance of a random variable X is

u2 = E(X - u)z the second central moment of X.

The properties of random variables given in Theorem 3.2.1 carry
over to the continuous case, almost word for word. The proof is

omitted.

THEOREM 4.3.1. If X is a continuocus random variable defined on a

continuous sample space S, then if E{g{(X)) and E(h(X)) exist,

1. E(kg(X)) = kE(g{X)) for any constant k.
2. E(g(X) + h(X)) = B(g(X)) + E(h(X)).

COROLLARY 1. For any constant k, E(k) = 0.
COROLLARY 2. For any constant k, Var(k) = O.
COROLLARY 3. Var(kX) = kEVar(X).

COROLLARY 4. Var(X) = E(Xz) - u2 =m_ - {m
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The definition of the standard deviation of a continuous random

variable X is analogous to the definition in the discrete case:

DEFINITION 4.3.4. 1If a continuous random variable X has variance

OEX, the standard deviation of X is defined to be War(X) = Oy-

The Chebyshev inequality and its implications carry over in a
straightforward manner from the discrete case. It is stated in the

following:

THEOREM 4.3.2. If a continuous random variable X has variance, then

for any € > 0, the following inequality holds:

P(jx ~u|l 2e) <

02

€
Again we obtain the result that P(|X - u| > ko) 5_1/k2, yielding
a bound on the probability of an observation k or more standard
deviations from the theoretical expectation. The proof of the
theorem is exactly analogous to the discrete case, with integration
replacing summation and is left as an exercise.

As examples of variance calculations let us consider again the

=% k~1 o

family of random variables with density functions fk(x) n

(0, 1] and fk(x) = 0 elsewhere. We find

2, 1. x+l. _  k
E(X7) = [ kx Tdx =
> 2 2
Hence, O Xy K/ (k +2) - (k/{k+ 1)) =k/(k+2)(k+1). In the
particular case k = 1, that is, f{(x) = 1 on [0, 1], we obtain
2
0X1—1/12.

For the example of the random variable T representing the wait-

ing time until the first Poisson event, we found
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> |

£(t) = Xe for t > 0 and E(T) =

where A represented the arrival rate of the Poisson events. We find

2) -~ 2e—>\tdt = uze-u du _ T(3)

2
St -=
22 )

0 0 2 A

using the substitution u = At as before. Hence OZT = 2/)\2 - l/)x2 =
l/kz. The standard deviation of the first arrival time is 1/A which
is also the expected waiting time. This could not be predicted by
intuition.

The response times in the program ANSWER have been generated

from a continuous distribution with a probability density function

f(t) = Ae for t >0

The value of E(t) = 1/X is available as input in response to the
request for the average response time. The value of E(T) = 4 has
been used in the sample run of ANSWER. In the output of this sample
run let us observe the frequency of observations of times equal to
or greater than 16 = E(T) + 3OT. We see that this frequency is
0.016. This is far less than the Chebyshev upper bound given by

P(|T - E(T)] > 30,) 5_%—= 0.111

However, using the knowledge that f(t) = (l/h)e”t/h for t > 0, we
find P(|T -~ 4| > 12) = P(T > 16) = :6 (l/h)e-t/hdt = -e't/hi:6 =
e_h = 0.0183. This is in substantial agreement with the observed
frequency of 0.016. Again it should be noted that the Chebyshev
inequality, although a correct probability statement, is of little
value for calculating probabilities. For this, knowledge of the
probabilistic law generating the observations is required. The
question of which probability law has generated a set of numerical

observations is a statistical one, which will be addressed in the

sequel.
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Problems 4.3

1. Find E(X) for random varisbles with the following pdf's.
(a) f(x) =1/% on [0, 4], and f(x) = 0 elsewhere.
(b) f£(x) = 6x(1 - x) on [0, 1], and f(x) = O elsewhere.
(e¢) f(x) = Qe—xg//i for x > 0, and f(x) = 0 elsewhere,

2. Find the Var(X) for the random variables with the pdf's given
in parts (a) and (b) of Problem 4.3.1.

3. If X is a continuous random variable for which E(X) exists and
the pdf of X is symmetric about 0 (that is, f(-x) = f(x) for
all x), prove E(X) = 0. Hint: E(X) = Iy xf(x) dx + f: xf(x) dax.

-00

L. Let X have pdf f(x) =1 on [0, 1] and f(x)

(a) E(sinmx) .

0 elsewhere. Find

(b) m for k =1, 2, 3,
(e) My for k=1, 2, 3,

5. Prove Corollaries 1-4 of Theorem L4.3.1.

6. Let X have pdf f(x) = x on [0, 1] and f(x)
Find E(X) and Var(X).

2 -xon [1, 2].

L[}

7. Let X have pdf f(x) = e X for x > 0 and f(x) = 0 elsewhere.
E(X) = oy = 1. Find P(|X - u| > koy) for k =1, 2, 3, } end
compare these probabilities with the Chebyshev upper bounds.

8. Let X have pdf f(x) = 1/m(1 + ).

(a) Find F(0), where F is the cdf for X.

(b) What can be said about E(X)? (See note to Definition

4.5.1.)

9. 1If the pdf of a random variable X is f(x) = 2/x3 for x > 1 and
f£(x) = 0 for x < 1, show that E(X) exists and that Var(X) does
not exist. Find E(X).

10. Prove the Chebyshev inequality'for a continuous random variable
with variance o2, Hint: o° = S (x - u)2f(x) dx +
|x=n|<e

PO w2e(x) ax.
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4.4  SPECIAL CONTINUOUS RANDOM VARIABLES

In this section we consider several cases of particular families of
random variables which have important applications in theory and

practice.

4.4.1 The Uniform Random Variable

The uniform random variable takes on values on an interval [a, b] of
the real line in such a way that each interval of [a, b] is assigned
a probability in proportion to the length of the interval. The prob-
ability density function for this class of random variables is defined

to be

for x on [a, b]

0 elsewhere

By integration we find the cumulative distribution function to be

given by
_ X = a
F(x) = . on [a, bl
¢} for x < a
F(x) =

1 for x> b

In Fig. 4.4.1 graphs of f(x) and F(x) are presented. The expectation
of this random variable is obtained in a straightforward manner by

integration.

_ b X _a+thb
E(X) = fa b -a dx = 2

Similarly we find Var(X) = (b - a)2/12. The uniform distribution is
important in describing observations which occur "randomly" on an
interval of the real line, such as errors in rounding numbers, the
value in radians of an angle selected "at random" on [0, m/2], the

value of a real number selected by a "spinner" on a circle of unit
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f(x)

F{x)

Fig. 4.4.1

circumference, and other similar selections. The uniform distribu-
tion on [0, 1] has particular practical importance which we shall

see subsequently.

4.4.2 The Gamma Distribution

The probability density function for the family of gamma distribu-

tions is given by

xa—l -x/8
£ & _ forx>0,a>0,and B >0
fxsa,B) = O

0 elsewhere

By letting v = x/B, we see that

0o . _ 1 o o-1 -v., _ I'{a) _
fO f(x,a,B) dx = I‘(a) fO v e dv = I‘(a) =1

The expectation and variance of the gamma distribution are easy to

calculate.

_ 1 o o-x/B. _ B © O -7
E(X) = I‘(a) fO X e dx = F(a) fO v e dv

_plla+1) T(a) _

T P r{a) = 0T (q) T ap

Similarly the variance can be shown to be a82. The family of expo-

nential distributions are gamma distributions with
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a=1 and B =1/Xx

and hence pdf

0 otherwise

As an example of the usefulness of the gamma distribution let us
consider the waiting time T until the second Poisson event, when the

events occur with arrival rate A.

P(T > t) = P(O or 1 events in [0, t])
1-F(t) = My ()d;)e')‘t
and hence
F(t) =1 - e-)‘t - (At)e_)‘t
By differentiation we find
f(t) = Ae-xt - Ae-xt + theaxt = the-xt

This is the pdf for a gamma random variable with B = 1/X and a = 2.
Hence the expected waiting time until the second Poisson event is
af = 2/A, which coincides with intuition. It can be shown that the

pdf of the wailting time Tk until the kth Poisson event is

Aktk—le—lt

fp (8 = gy —

k

for ¢t > O

Hence Tk has the gamma distribution with & = k and B = 1/A.

The program WAIT simulates N times until the kth Poisson event
in the case that the Poisson events occur with arrival rate A. The
number of times N, the arrival rate A, the value of k, and an upper
bound on the interval on which the times are recorded are input in
response to guestions asked by the program. The program outputs the
frequency table of the resulting times. It is only necessary to run
the program and to answer the questions asked. A sample run is shown

in the case that A = 1, k = 2, and N = 1000. The actual distribution
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WA

190
200
2190
220
230

250
260
270
280
290
300
310
320
330
340
350
360
370
380
*

IT

DIM F(25)

FOR I = 1 TO 20

LET F(1)=0

NEXT 1

PRINT "HOW MANY ";"WAITING TIMES?"
INPUT N

PRINT “WHAT IS THE";" ARRIVAL RATE?"
INPUT L

LET ¥ = 1/L

PRINT “WAIT UNTIL KTH "; "EVENT.,"; " WHAT 1§ K?"
INPUT K

PRINT “WHAT IS "; "“MAX WALT?"

INPUT T

FOR I = 1 TO N

LET X = 0

FOR J = | TO K

LET 2 = RND

LET X = -LOG(1-2)*M +X

NEXT J

FOR J = | TO 20

IF X > J*T/20 THEN 230

GO TO 2490

NEXT J

LET F(J)=F(J)+1

NEXT 1

LET A =0

LET B=Q

PRINT "“FREQUENCY ";“COUNTS FOR “;"INTERVALS"
PRINT

PRINT "INTERVAL NO.","LOWER END","UPPER END","REL FREQ","cCUM
FOR J = 1 TO 20

LET A = A +F(J)*(J=1/2)*T/(20%N)

LET B = B 4+F(J)/N

PRINT J,(J-1)*T/20,J*F/20,F(J)/N,B

NEXT J

PRINT

PRINT “AVERAGE=",A

END

Continuous Outcome Spaces

FREQ"
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RUN

HOW MANY WAITING TIMES?

? 1000
WHAT 15 THE ARRIVAL RATE?
71
WAIT UNTIL KTH EVENT. WHAT IS K?

72
WHAT IS MAX WAIT?
? 20
FREQUENCY COUNTS FOR INTERVALS

INTERVAL NO. LOWER END UPPER END REL FREQ CUM FREQ
1 "] 1 2.271 2.271
2 1 2 2.349 2.62
3 2 3 P.198 p.818
4 3 4 B.106 B.924
5 4 5 B+046 297
6 5 6 B.02 B.99
7 6 7 2006 2.996
8 7 8 2.002 2.998
9 8 9 2.001 2.999
10 9 10 2 2.999
11 10 11 2 2+999
12 11 12 0.001 1

13 12 13 2 1

14 13 14 @ 1

15 14 15 2 1

16 15 16 2 1

17 16 17 "] 1

18 17 18 2 1

19 18 19 2 1

20 19 20 2 1

AVERAGE= 1.916
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0.5
N
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\/f (1) = te
‘N:><:L
{ 1 - — . p——
o 2 4 6 8 10

Fig. 4.4.2

is a gamms distribution with o = 2 and B = 1. A histogram of the
resulting times appears in Fig. 4.4.2. The corresponding probability
density function for the gamma distribution f(t) = te™¥ for t > 0 is
also graphed in Fig. 4.4.2. The correspondence between the histogram,
which has area 1, and the probability density function f{t;2,1) for

the gamma distribution is evident from the figure.

4.4.3 The Normal Distribution

A very important distribution, widely used in practice, is the normal
distribution. The normal distribution is not a single distribution,
but a two-parameter family of distributions. The probability density

function for the normal random variable is

1 e—(x—u)z/zo2
210

f(x;u,oz) = -0 < x <o, g>0
In order to show that the area under this curve is 1, the transforma-
tion z = {(x ~ W)/0 is made and one obtains

o0

52 2(xu,00) dx =

-0

2
o0 -
';'—'f_°° e”? /2dz
vem
The latter integral can be shown to be 1, but the proof requires the

calculus of more than a single variable. We shall accept this fact
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here (while including the method of proof in the problems). To

compute E(X), the transformation above is made yielding

2
o0 2 -
E(X) = J__ xf(x;1,07) dx = 2 /7 (4 + oz)e”® /245
v2m
e-22/2
= u - T/ = u
|
Similarly the variance is calculated as
2 . 2
Var(X) = ff; (x - u)zf(x;u,o) dx = JZ—-f_w z2e z /2dz
yam
—22/2
Letting u = z and dv = ze , we obtain
2 2
2 2 -z7/2 | -z /2
Var(X) = J%: ffm 2272 /245 = o2l | + ffw s 4
/o | /Ew

The first term in parentheses in the last expression is 0 and the
last term is 1. Thus Var(X) = 02. The choice of the letters W and
2

G as the names of the parameters is thus Justified.

The moment generating function of the normal random variable
with parameters U and 02 is given by

22

Mx(t) _ etu + t7o"/2

We leave the proof of this fact to the problems. The particular

normal distribution for which u = 0 and 02 = 1 is known as the

standard normal variable. It is denoted by Z and has pdf

2
f(z):—l—e_z/2 -0 < g < @
yom
and
2
M (t) = e /2
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The following theorem indicates the reason for the importance of the

standard normal variable.

. . . 2
THEOREM 4.4.1. If X is normal with expectation y and variance ¢ ,

then (X - u)/0 is a standard normal variable.

Proof: Using the properties of the moment generating function,

we have

_ -Ht/o
My () = e M (
(6]

2 2
Eq - e—ut/c eut/o +t7/2 et /2

Q

Hence (X - u)/0 has the mgf of a standard normal variable and there-
fore is distributed as a standard normal variable. We write

(X - u)/o ~ Z.

The importance of the standard normal distribution lies in the
fact that the probabilities assoclated with any normal distribution
may be computed from the probabilities given by the standard normal
distribution. For example, if X ~ N(u,c2) (X is normally distributed
with parameters u and 02), consider the probability that X has a

value on [a, b]:
Pla<X<b)= fz f(x;u,cz) dx

If we make the transformation Z = (X - u)/o, we find

(o-p)

o z/2 b -
Pla<Xx<d) =/  S——a =7, -7 A0

(a-u1) /o o] Z o]

g

Here FZ(Z) = ffw £(z;0,1) dz is the cumulative distribution function
of the standard normal variable. Thus probabilities concerning any
normal distribution can be reduced to corresponding probabilities

associated with the standard normal distribution.
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F(z)
f{z)
1 1 1
-30 -2.0 -1.0 [0} 1.0 20 30
Fig. 4.4.3

The values of FZ(z), the cumulative distribution function for
the standard normal distribution, are available in App. B.I. or
can be obtained by using the program Z-PROB. It is only necessary
to input the value of z reguested and the computer will calculate
FZ(z). There is no expression for FZ(z) in terms of elementary
functions, but this fact does not make the interpretation of the
normal distribution more difficult than any other continuous distri-
bution. Figure 4.4.3 gives the graph of the probability density

function for the standard normal variable. The area under this

curve as a function of z, that is,

provides a geometric interpretation of FZ(z).

As an example of the use of the normal distribution, let us
assume that scores on the Scholastic Aptitude Test (SAT) are normally
distributed with y = 500 and 0 = 100. What proportion of the popula-

tion taking this exam have scores of 630 or less? We write

(X =n) . 630 - 500,
¢ = 100

= P(2 £ 1.3) = F,(1.3)

P(X < 630) =P

The value FZ(1.3) = 0.9032, and hence 630 is roughly at the 90th
percentile of scores on this exam. Suppose we wish to know the score

x* corresponding to the 6Tth percentile on this exam.
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Z-PROB

10 REM PROGRAM GIVES LOWER TAILED NORMAL PROBABILITY FOR
20 REM Z VALUE INPUT BY USER

30 PRINT “WHAT IS THE ";“VALUE OF z"

40 INPUT Z

50 LET 21= ABS(Z)

60 LET C=1/SQR(2)

70 LET Cl= ,14112821

80 LET C2= ,08864027

90 LET C€3=.02743349

1300 LET C4= =-,00039446

110 LET C5=.00328975

120 DEF FNZ(X)=1=1/(1+CLl*X+C2%X"24+C3*X"3+C4*X"4+C5*X"5)"8
130 LET P = ,5+.,5*%FNZ(Z1*C)

140 LET P = 1E~4*(INT(lE4*p))

150 IF Z > 0 THEN 170

160 LET P = 1-P

170 PRINT “2","PROB < Z “;"”IN STANDARD ";“NORMAL DIST"
180 PRINT Z,P

190 END

*RUN

WHAT IS THE VALUE OF Z

71

A PROB < Z IN STANDARD NORMAL DIST
1 0.8413

*RUN

WHAT IS THE VALUE OF Z

72

A PROB < Z IN STANDARD NORMAL DIST
2 0.9772

*RUN

WHAT IS THE VALUE OF 2

70

Z PROB < Z IN STANDARD NORMAL DIST

0 0.5
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(X - 500)  (x* - 500),
100 - 100

0.67 = P(X < x*) = P(

p(g < Xt =500) _ (&% - 500),

- 100 Z 100

= 0.67

However as FZ(O.AH) = 0.67 (from App. B.I.) we must have
(x* = 500)/100 = 0.4k or x* = 54k,
Another important property of the normel distribution is given

by the following equality for X ~ N(u,cg).
P(|X - u| < ko) = P(]z] < %) for any k > 0

Hence the probability of an observation of a normal variable falling
within k standard deviations of U is the same for all normal distri-
butions. Table 4.4.1 gives these probabilities for X ~ N(u,OZ) for

several values of k and the corresponding Chebyshev (lower) bounds.

An observation in a normal distribution will be outside the
interval [U - 30, U + 30] with probability only 0.0026. Such events
are unusual. The program NORSAMP samples observations from a normal
distribution with values of U and O requested by the program. A run
with N = 10,000 observations (with u = 0 and ¢ = 1) produced 44 or a
frequency of 0.0044 observations outside the interval [-2.75, 2.75].
This compares with a theoretical probability of 0.0066. This is

additional evidence that observations more than 30 units from U are

Table 4.4.1 Probabilities for X ~ N(u,cg)

k P(|X - u| < ko) Bound (1 - 1/k°)
1 0.6826 0.0000

2 0.954k 0.7500

3 0.997h 0.8889

4 0.99994 0.9375
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NO

10
20
30
40
50
60
70
80

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
325
330
340
350
360
370
380

RSAMP

REM SAMPLE FROM NORMAL
DIM F(20)
FOR I = | TO 18
LET F(1)=0

NEXT I
PRINT "WHAT 1S SAMPLE";" SIZE?"
INPUT N
PRINT “WHAT IS TRUE";" MEAN?"
INPUT M

PRINT “WHAT IS “3"STD DEV?"

INPUT S

FOR I = 1| TO ¥

GOSUB 340

LET X = M+S*Z

FOR J= 1 TO 17

IF X > M+(2%J-1)/4*S=-4*3 THEN 180
GO TO 190

NEXT J

LET F(J)=F(J)+1

NEXT I

LET A = 0

LET B = 0

PRINT “FREQUENCY “;"COUNTS FOR “;"INTERVALS"
PRINT

PRINT “INTERVAL NO."”,"LOWER END","UPPER END","FREQENCY","CUM FREQ"
FOR J= 1 TO 17

LET A= A+(F(J)/N)*X(M+(J=1)/2%S~4%S)
LET B = B+F(J)/N

LET L=M+(2%J-3)/4%S~4%S

LET R=L+S/2

PRINT J,L,R,F(J)/N,B

NEXT J

PRINT "AVERAGE=";A

GO TO 380

LET Z1=SQR(=-2*LOG(RND))

LET 22=6,2831853*RND

LET Z=Z1*C0S(Z2)

RETURN

END



4.4 Special Continuous Random Variables 139

RUN
WHAT IS SAMPLE SIZE?
? 10800
WHAT 1S TRUE MEAN?
2?0
WHAT IS STD DEV?
7?1
FREQUENCY COUNTS FOR INTERVALS
INTERVAL NO. LOWER END UPPER END FREQUENCY CUM FREQ
1 ~4425 ~3+75 9 ]
2 ~3.75 - -3.25 D.0004 2.0€04
3 ~3.25 -2+75 P.2015 2.0019
4 =275 -2.25 0.0091 2.011
5 -2425 ~1+75 P.0295 D.02405
6 ~1e¢75 ~1+25 B.0642 0.1047
7 “1e25 =075 21248 2.2295
8 =Be175 -2.25 P.1751 D 4046
9 ~Be25 B.25 9.1931 05977
10 D25 Be75 B.1766 D.7743
11 D75 1.25 P.1214 0.8957
12 1.25 1.75 B.0642 09599
13 175 2425 P.0284 2.98B3
14 225 2075 P.0092 B+9975
15 2475 3+25 B.0021 #9996
16 3.25 375 0.0003 0.9999
17 3.75 4.25 2.0001 1.

AVERAGE= ~0.00275
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unusual in normal populations and observations more than 4o units
from Y are very rare indeed. (The probability is 0.00006.)

The importance of the normal distribution lies in the fact that
many measurements of continuous random variables, such as crop yields,
lengths, heights, and voltages, can be considered to be approximately
normally distributed. Secondly, it is often possible to apply a
real-valued transformation to measurements so that the resulting
transformed values have a normal distribution. Additionally, the
mathematical theory of the normal random variable has been highly
developed, so that the properties of normal random variables are
well understood. Also, as we shall see, averages of measurements of
random variable can often be thought of as normal random variables,

even though the measurements themselves are not normally distributed.

Problems 4.4

1. Prove that for X uniformly distributed on [a, b], Var(X) =
(b - a)?/12.

2. Suppose that 6 is uniformly distributed on [0, 7/4]. Find
E{cos 8).

3. Show that the variance of a gamma random variable is a82.
Hint: Find E(X2).

4. A particular example of the gamma distribution is the chi-square
distribution with parameter n. The parameters a = n/2 and B = 2.
Find the expectation and variance of a chi-square variable with

parameter n (called the degrees of freedom).

5. Graph the pdf for the gamma distribution for a = 1 and B =1,

2, 3 on the same axes.
—ve
6. Use the fact that fz e " dy = /1/2 to show that T(1/2) = /.

—z2
7. Using the fact that I'(1/2) = /T, show that ff;(e z /2/2n) dz = 1.
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8.

10.

12.

13.

14,

2y .
Show that the moment generating function of X ~ N(u,07) is

+ 2
given by eut (ot)=/2
Verify that E(X) = U and Var(X) = 02 for the normal distribution
using the result in Problem L.L.8.

For the standard normal variable Z, find the following proba-
bilities: (a) P(Z < 1.22), (b) P(1.00 < Z < 2.00), (c)
P(-0.25 < Z < 0.5), and (4) P(Z > 1.28).

Assume that heights of men are distributed as X ~ N(?O,G2 = L).
(a) What proportion of male heights exceed 6 ft?

(b) What proportion of male heights are less than 66 in.?

(c) What height is at the 80th percentile of these heights?

In the standard normal distribution find the values c¢ satisfying
(a) P(2Z > e) = 0.025

{v) P(-c <£Z<ec)=0.95

(e) P(z<e¢c)=0.05

If IQ scores X are considered to be normally distributed with
U = 100 and ¢ = 15, find the following probebilities:

P(85 < X < 115)

P(100 < X < 130)

P(X > 100)

P(X > 137.5)

Consider the integral

2.2
®© 00— +
.fo.foe(x Y2 4 ay = 12
o —x2/2 . .
where I =/ e dx. Change the integral to polar coordinates

0
to evaluate 12. Prove that

2
1 [ X /2

er T

dx = 1

(This problem requires the multivariate calculus.)
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Exercises 4.4

1. Use the program NORSAMP to select a sample of the ages of legis-~
lators which are assumed to be normally distributed with p = 50
and 0 = 4. Use N = 2000 and plot a relative frequency histogram

for the sample obtained.

2. Write a program to sample N observations from the uniform distri-
bution on [a, b]. The values of a, b, and ¥ should be requested
by the program as input. The output should include a frequency
table of the sample. The number of classes should also be input
by the user. The critical command is LET X = A + (B - A)#RND.

3. Run the program WAIT with data A = 1, k = 3, and N = 1000 to
simulate the waiting times until the third Poisson event which
occur with a rate of 1 per time period. Use a maximum wait of
20. Constrﬁct a histogram of these times. What pdf describes

the distribution of these waiting times?

4.5 TRANSFORMATIONS OF CONTINUOUS RANDOM VARIABLES

Suppose we consider a continuous random variable X defined on a
sample space S by the probability density function f£(x). Consider
Y = r(X), a continuous real-valued function defined on the range of
X. Let us take R, to be the range of ¥ = r(X(s)). It is clear that

Y

Y is a random variable defined on S with values in RY given by Y =
r(X(s)), which is again a real-valued function on S. If [c, 4] is

an interval contained in Ry, then

Ple<Y<3)=Ple<r{X) <4
= P(wfe < r(X(w)

so that the probability distribution of the random variable Y is
defined via the original probability distribution on S. For example,
if X is the random length of the edge of a cube, then Y = r(X) = X3

is a random variable giving the volume of the cube. We shall general-
1y be interested in obtaining the probability density function and

cumulative distribution function of Y from a knowledge of the pdf and
cdf of X.
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As an example, suppose that a cube has a side of length X, where

X is a random variable with probability density function

1 on [0, 1]
f(x) =

0 elsewhere

It is clear that the pdf of Y = X3 is positive only on [0, 1]. The
cdf for X is

0 for x > 0
F(x) =
1 for x > 1
and
P(x) = x for 0 < x <1

Hence the cdf for Y may be written as G(y) = P(Y < y) = P(X3 <y)=

P(X f_yl/3) yl/3, on (0, 1), as the function x3 is an increasing

one-to-one function mapping [0, 1] onto [0, 1]. Hence

0 for y <0

G(y) =
1 for y >0
and
oy) = y3  roroc<y <
By differentiation we obtain the pdf g(y) for Y. G'(y) = g(y) =0
if y<Qory>1, and G'(y) = gly) = (l/3)y_2/3 for 0 <y < 1. Note

that E(Y) = 1/3 fé yl/3dy = 1/h. This is not equal to (E(X))>
(fé x dx)3 = 1/8.

In order to emphasize this example, let us consider the program
CUBE which simulates the selection of N cubes with edge X, where X
is assumed to be uniformly distributed on [0, 1]. The program com-
putes the edge x and volume x3 of each cube. The average length of
an edge and average volume of the N cubes is calculated. Notice
that these values are close to 0.5 and 0.25 in the example for which

N = 10,000. This coincides with our previous theoretical results.
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CUBE

10 REM SIMULATES THE SELECTION OF N CUBES WITH EDGE UNIFORMLY
20 REM DISTRIBUTED (0,1)
25 PRINT "HOW MANY CUBES?"

30 INPUT N

40 LET A = 0

50 LET B =0

60 FOR I =1 TO N
70 LET $ = RND

80 LET V = §73

90 LET A = A +5
100 LET B = B +V
105 NEXT I

110 PRINT “NO. OF CUBES","AVERAGE SIDE","AVERAGE VOL."
130 PRINT N,A/N,B/N

200 END

x

RUN
HOW MANY CUBES?

21000
NO. OF CUBES AVERAGE SIDE AVERAGE VOL.
1000 0.49247 0.24788

*
RUN

HOW MANY CUBES?
710000

NO. OF CUBES AVERAGE SIDE AVERAGE VOL,
10000 0.49555 024795
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The method used in this example can be used to find the pdf of
the random variable Y = r(X) which is a continuous increasing function
of X, where we suppose f(x) > O on a < x < b. The method is stated

in the following theorem which is stated without proof.

THEOREM 4.5.1. Suppose a continuous random variable X has a pdf f(x)
which is positive on a < x < b and that r(x) is strictly increasing
(or decreasing) on a < x < b. If the function r(x) is differentiable

on a < x < b, then the pdf for Y = r(X) is given by
-1
8(y) = 27 ) B o)) 12

for r(a) < y < r(b) [or for r(a) >y > r(b)].

As an example, consider the radius of a sphere to be uniformly
distributed on [0, a]. We find the cdf and pdf of the surface area
of the sphere. The radius X has pdf f(x) = 1/a on [0, a]. The
surface area ¥ = r(X) = hﬂXz, an increasing function on [0, al.
Hence the pdf of Y is f(x(y)) a(v¥y/2vT)/dy on (0O, hﬂaz], that is,
(1/2)(1/W/my) on (0, hnag]. To see that this is a density function
we integrate g(y) on (O, hﬂaz]:

5 La?
1 fgﬂa (v5) Lay = 2= 25 - Wia
haym LayT 0 Ly/Ta
We find
2 2
1 hma™ - Lma,
B(Y) = ——/ vy dy =
LayT 0 3
Note that E(Y) # hﬂ(E(X))g = hﬂ(a/2)2 = ﬂae. However we can use the

pdf of X to obtain E(Y) = 4mE(XZ) = (4u/a) I X ax = hma®/3. We

shall now turn to a general statement in this regard.
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Suppose the random variable X is defined on a continuous sample
space S. We have seen that Y = r(X) for a continuous real-valued
function is again a random variable. In several situations we have
seen that the probability density function of Y, g(y), can be obtained
from the pdf of X, say f(x). We can then calculate

E(Y) = fp vely) &

Y
if this expectation exists. It is also possible to calculate E(r(X))

using the density function f(x):

For example, in the case of a cube with edge uniformly distributed
on [0, 1] with volume Y = X3 we have found E(Y) = 1/L. If we calcu-
late E(X3) = f% X ax = xh/h]é = 1/L, so we obtain the same result.
In general we have the following statement. If X has a pdf f(x) and
Y = r(X) is any function of the type met in practice, then E(Y) =
ST r(x)f(x) ax = E(r(X)). This result is often useful because it
means that the pdf of Y need not be found in order to calculate E(Y).
For example, the cube described above has surface area 6X2 and thus

the expected surface area is

B(6x°) = f% 6x° dx = 2

Problems 4.5

1. Assume that the edge of a square has side X uniformly distributed
on [0, 1]. Find the pdf for Y = X2, the area of the sguare.
Evaluate E(Y) using the pdf of Y and also by finding E(Xg) using
the pdf of X.

2. Assume that an angle X is uniformly distributed on [0, w/2].
Find the pdf for Y = sin X on the interval 0 < y < 1. Show
that this pdf integrates to 1.
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3. Let a circle have radius X, uniformly distributed on [0, a].
Find the pdf for Y = WXQ, the area of this circle. Find E(Y)
and Var(Y).

4. If X is uniformly distributed on [a, b], show that Y =
(X - a)/(b - a) is uniformly distributed on [0, 1]. Using the
fact that X = a + (b - a)Y and the expectation and variance of
a uniformly distributed variable on [0, 1], show that E(X) =
(a + b)/2 and Var(X) = (b - a)2/l2.

5. If X is uniformly distributed on [0, 1], show that Y = -1n X
has the exponential distribution with A = 1.

6. Assume X has a pdf satisfying f(x) = f(-x) for all X. Consider
the transformation Y = X2 (which is not strictly decreasing or

inereasing). Using the equality

2

P(Y<y) =P(X“<y)=P(-"¥ <X<)

show that g(y) = £(/3)/vy for 0 < y < ®, where g(y) is the pdf
of Y.

7. Using the result of Problem 4.5.6 show that if Z is standard
normal, then Z2 has the gamma distribution with @ = 1/2 and
B = 2. (Note: This distribution is also the chi-square distri-

bution with n = 1.)

8. Assume X has pdf f(x) for all x and E(X) and Var(X) exist.
Show that Y = aX + b for a > 0 has pdaf f((y - b)/a)/a. Show
E(Y) = aE(X) + b and Var(Y) = a2Var(X).

9. If X has a pdf such that f(x) = f(-x) for all x, show that
Y = |X| has paf 2f(y) for y > O.

10. Using Problem 4.5.9 show that if Z ~ N(0,1) then for Y = [Z]|
2
we obtain g(y) = v2/m e ve/2 for y > 0. Find E(IZ]).
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Exercise 4.5

1. Write a program which simulates the edge and the area of 2000
squares with edge X uniformly distributed on [0, 1]. Find the
average length of an edge of the squares and the average area.
Do these results correspond to the theoretical expectations
found in Problem 4.5.1%

4.6  GENERATING RANDOM SAMPLES FROM CONTINUOUS DISTRIBUTIONS

It is often desirable to generate a large number of observations

from a particular continuous distribution. A number of the programs
mentioned in the chapter, e.g., ANSWER, ERRORS, and WAIT perform
exactly this function. It is an interesting fact that this can be
accomplished numerically in a large number of cases by sampling from
the uniform distribution on [0, 1] and then transforming these obser-

vations by a particular function. This is based on the following:

THEOREM 4.6.1. Assume X is a continuous random variable with a
strictly increasing cumulative distribution function F(x) on an
interval [a, b}, (~», ®), [a, ©), or (~~, b]. Assume U has the
uniform distribuiton on [0, 1]. Then F_l(U) has the cumulative
distribution function F(x) on the appropriate interval.

Proof: We must show that P(F—l(U) < x) = F(x). As F is strictly
increasing, it has an inverse, say F~l, on its range. On the one

(

hand, as U is uniform P(U < F(x)) = F(x). On the other hand, as F
L) < P

has an inverse, P(U < F(x)) = P(F F(x))) = P(F_l(U) < x).
Hence

P(F ~(U) £ x) = F(x)

and F‘l(U) has the specified cdf.
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Thus in order to take a random sample of size n from a distribu-
tion with strictly increasing cumulative distribution function, it is
only necessary to sample n observations from the uniform distribution
on [0, 1] and then obtain x; = F-l(ui), i=1,2, ..., n. The values
X5 will be a random sample of size n from the distribution with cdf
F(x). As an example, consider sampling from the distribution with

pdf

£(x) = —=s~  w<x<w
{1l + x°)
We find
x
F(x) = ff; ————1——5— dx = %'arctan x
1+ x) —0

1
F arctan x + 0.5

The program CAUCHY samples n observations from this distribution by
finding xi = tan 1T(ui - 0.5), where the ui are uniformly distributed
on [0, 1]. The ui are easlily obtained by using the function RND in

BASIC.

Exercises 4.6

1. Write a program to sample N observations from an exponential
distribution with expectation 1/A. The values of N and the
expectation should be input in response to questions in the
program. The output should contain a frequency table of the N
observations and the observed average value, but not the obser-

vations themselves.

2. Run the program NORSAMP for the standard normal distribution
with N = 100, N = 1000, and N = 2000. Delete lines 230, 240,
250, and 310 (which supresses the frequency table). Do the

averages seem to approach 0 as N increases?
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CAUCHY

10 REM SAMPLES N OBSERVATIONS FROM CAUCHY DISTRIBUTION
20 PRINT "HOW MANY ";"OBSERVATIONS ";“FROM CAUCHY ";"DISTRIBUTION"
30 INPUT N

40 LET § = 0
50 FOR I = 1 TO N
60 LET Z = RND
70 LET X = TAN(3,14159263*%(2-,5))
80 PRINT X,
90 LET S = S + X
100 NEXT T
105 PRINT
110 PRINT "AVERAGE = ";S/N
120 END
*
RUN
HOW MANY OBSERVATIONS FRO# CAUCHY DISTRIBUTION
220
-2,53199 -0.63602 -3,18786 -0.70455 2.58189
-1.54645 ~4.23989 -0.70455 -0.2422 -1,35782
~0.83008 -0.40191 -0.69468 -0.37868 -0.49694
0.64787 1.4014 2.76477E-2 0.56724 0.89034

AVERAGE = ~-0.59186
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3.

Run the program CAUCHY for values of N = 100, N = 1000, and
N = 2000. Delete the PRINT statement at line 80. Do these
averages seem to approach the true median value of 0? Can you

explain this?

Write a program to calculate the average of N observations from
the distribution with pdf f(x) = 3x2 on [0, 1] in response to a
program question. What is the theoretical expectation of this
distribution? What average values do you obtain for N = 100,
1000, and 20007



SAMPLING

5.1 INTRODUCTION

In the previous chapters we have examined the mathematical properties
of certain probability models, which have been assumed to be appro-
priate to describe particular real-world situations. Random variables
such as the binomial, Poisson, hypergeometric, normal, and gamma
families are examples of such probability models. A user is generally
faced with several questions as he proceeds to use such probability
models. Each of the probability models depends upon a parameter

(such as p in the binomial case) or parameters (U and 02 in the normal
case). Values have to be assigned to these parameters before proba-
bilities can be computed. In the use of these models, how should the
values of the parameters be assigned? Secondly, it may not be clear
which probability model is appropriate to describe the situation at
hand. A user knows that a model will not exactly reflect reality,

but does the model provide a sufficiently close description of observed
data to permit its use? Additionally, if two models might possibly
be appropriate, then how is a choice made between the two?

The information available to answer such questions is almost
invariably incomplete. The value of parameters of a probability model
have to be estimated from a sample from the relevant population. For
example, a hospital association may wish to estimate the true propor-

tion p of a state's population with blood type O. This value can

152
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then be used in the binomial distribution to compute probabilities

of interest to a hospital in the administration of its blood trans-
fusions. As a second example, the normal distribution may be appro-
priate to describe the distribution of the yield (in bushels per acre)
of corn within a certain state. However, estimates of u and 02 will
be required in order to use the normal distribution. As a third
example, the Poisson distribution may be appropriate to describe the
number of serious accidents in a large factory in a month. How can

we decide from the accident history at the factory whether the Poisson
distribution should be used?

Questions such as those posed in the previous paragraphs reguire
inferential reasoning. In order to estimate parameters of a distri-
bution we must take a sample from the population in guestion and,
based on the properties of the sample, infer to properties of the
population from which the sample was taken. It is never possible to
be absolutely certain concerning the characteristics of a population
by observing only a part of it. For example, the true proportion of
individuals with type O blood can only be found with certainty by
typing the blood of all the state's residents. This process would
clearly be too costly, time consuming, and impractical to implement.
Nevertheless, by selecting a sample of the state's population, an
estimate of the true proportion p can be obtained. It is with prop-
erties of such inferential methods that statistics is concerned.

Before proceeding, let us define what is meant here by a popu-

lation.

DEFINITION 5.1.1. A population is the aggregate or set of possible

observations of interest.

Although this idea seems simple enough, it is known from experience
that many studies are made without adequate definition of the popula-
tion to which the study is directed. This is most glaringly pointed

out when inference is made to a population, based on the results of
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a sample of a particular subset of the population. A classic example
was the 1936 poll of the Literary Digest, aimed at predicting the
winner of the Roosevelt-Landon presidential race of that year. The
poll obtained several million responses and the conclusion was made
that Landon would win easily. In that year Landon won in Maine and
Vermont while Roosevelt won in the other L6 states. The poll sampled
telephone directories and lists of magazine subscribers. This sub-
group of the electorate favored Landon, while those without telephones
and magazine subscriptions were strongly for Roosevelt. At the end
of a long period of depression, this latter group was a substantial
proportion of the electorate. It was not represented in the sampling
technique employed by the Literary Digest. This became very clear
in November 1936.

We also remark here that Definition 5.1.1 in no way requires
that a population be animate or that it be possible to observe all
elements of a population. For example, the following may all be

considered to be populations:

1. The tires produced on a given line at a particular factory
during the year 1976.

2. The male undergraduate population at a large state university
on a given date.

3. The form 1040 income tax returns received by the U. S. Government
prior to a specific cutoff date in a given year.

4. A1l possible samples of a cubic centimeter of a liquid in a tank.

In general terms the population of interest corresponds to the
outcome space S which is defined in Chap. 2 as a basic component of
a probability model. With each element of the population we associate
a characteristic or characteristics, to which a numerical value is
assigned. For example, for the populations in the preceding paragraph,

the following characteristics might be appropriate:

1. A measurement of the quality of the tire: 1 if the tire is
acceptable according to manufacturing standards, 2 ifi it is

safe but has other production defects, and 3 if it is defective.
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2. The IQ scores of the students.
3. The gross reported income on each 1040 form.

3

4. The density measured in g/cm” of a cubic centimeter of the

liquid.

Such measurements correspond to observations of a random variable X,
which assigns a numerical value to each element of S. It is for this
reason that the distributions of random variables are so important,
and why we have devoted substantial effort toward understanding the
properties of random variables.

It is clear that one would like to have a method of sampling
from a population which will yield samples representative of the
population being sampled. It is also clear that for large populations
it is impossible to guarantee that a sample will reflect the popula-
tion characteristic or characteristics being measured. Unusual
samples, e.g., samples of an electorate evenly balanced between
Democrats and non-Democrats, may include either a high or low per-
centage of Democrats. We wish to design a method of sampling which
will make small the probability of samples unrepresentative of the
sampled population. The basic idea of the sampling process called
random sampling is to avold bias in favor or against any particular
sample of a given size. For a finite population we give the follow-

ing definition of random sample.

DEFINITION 5.1.2a. Suppose a finite population has N elements. A
random sample of size n with replacement is one obtained in such a
way that each element of the population has probability 1/N of selec-
tion at each of the n selections. A random sample of size n without
replacement is a selection of n items in such a way that at each
selection, the elements not already chosen have equal chance of

selection.

The notation employed to describe a random sample is a vector

of n random variables (Xl’ X2, ees Xn), where Xi is a random variable



156 Sampling

which describes the possible values that the ith sampled observation
may have. A random sample is then a vector of random variables. A
particular observation of size five from the population of IQ scores
described above might be (120, 118, 125, 138, 110). The first student
selected has IQ 120, the second has IQ 118, and the last has an IQ

of 110. Notice that if a random sample is taken with replacement,

the random variables Xl’ X eny Xn will be independent and have the

s
same distribution. This ii because the item selected at each step

is replaced, so that the next selection does not depend on the previous
ones and the distribution of the random variable Xi is the same at

each step, as the population is the same. It cen be shown that in
random sampling without replacement the distribution of each Xi is

the same, but the random variables are not independent. For example,
suppose a population contains N = 5 elements {1, 2, 3, 4, 5} and a
random sample of size n = 2 is taken without replacement. For Xl,

we have P(xl =i)=1/5 for i =1, 2, 3, 4, 5. Let us find

P(x2 = 1) =P((2,1) + (3,1) + (4,1) + (5,1)) = 4/20 = 1/5 because

each of the 20 outcomes (Xl =1, X2 = 3j) fori# j,i=1,2, 3, L4,
Sand j =1, 2, 3, 4, 5 has equal probability under random sampling

5 = J)=1/5 for J =1, 2, 3, L,

5. However it is clear that Xl and X2 are not independent, for if

X, =1, X, cannot be equal to 1. Hence P(Xl =1, X2 =1)=0+#

P(Xl = l)P(X2 = 1) = 1/25, showing clearly that Xl and X, are not

without replacement. Similarly P(X
1
2
independent.
The idea of a random sample from a infinite population follows

from the properties of random sampling with replacement for a finite

population.

DEFINITION 5.1.2b. Suppose an infinite population has a character-
istic described by a random variable X. A random sample frcm this
population is a vector of random variables (Xl’ X2, cees Xn) where
the Xi are independent random variables with the common distribution

of X, called the parent distribution.
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In a sense, the removal of an element from an infinite population
corresponds to sampling with replacement, as the removal does not
affect the distribution of the remaining population. A realization
of such a random sample might be (1.02, 0.98, 1.10, 1.03, 1.04),
where the values are the densities of 5 cm3 of the liguid described
in preceding example (L). In the sequel we will use the word random
10 Koo eees xn)
which are independently and identically distributed. If the sampling

sample to refer to a vector of random variables (X

involves random samples from a finite population without replacement,
it will be specifically called random sampling without replacement.

In the case of a finite population in which each of the elements
may be numbered from 1 to N, it is easy to use the RND command to
take a random sample of size M with or without replacement. The
program RANSAM prints out M random integers from the set {1, 2, 3,
«e., N}. The elements in the population labeled with the M numbers
selected would constitute the random sample with replacement. If
random sampling without replacement is required, the program RANDSAMO
can be used to obtain a random sample without replacement. This means
that no two of the M integers selected will be the same. Both pro-~
grams can be utilized by running the program and answering the gues-
tions concerning the values of N and M. RANSAM and RANSAMO have been
run for N = 1000 and M = 50, and the associated output appears follow-
ing the program listing.

Table 5.1.1 gives the number of days required by 1000 students
in a self-paced course to complete the required examinations. We
can use the output of RANSAM to take a random sample of size 50 from
this population. In this case 120 corresponds to 50, 320 to 62, and
finally, 724 to S5h. The 50 observations are

50 62 51 L9 73 52 50 L9 67 50
4 45 46 48 60 57 55 65 56 L9
57 4 43 sb 60 Lo 56 52 54 37
68 54 44 56 52 62 52 56 53 Lo
55 43 59 L45 60 42 53 53 61 5k
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RANDSAM

10 REM RANDOM SAMPLE FROM FINITE POPULATION WITH REPLACEMENT
20 PRINT “WHAT IS ";"THE POPULATION “;“SIZE?"

30 INPUT N

40 PRINT “"WHAT IS ";“THE SAMPLE ";"SIZE?"

50 INPUT M

60 PRINT

70 PRINT M;" RANDOM NUMBERS";" FROM POPULATION";" OF SIZE ;N
80 PRINT

90 FOR I = 1 TO #

100 LET K = Ll+INT(RND#*N)

110 PRINT K,

120 NEXT I

130 END

RUN

WHAT IS THE POPULATION SIZE?
71000

WHAT IS THE SAMPLE SIZE?
750

50 RANDOM NUMBERS FROM POPULATION OF SIZE 1000

120 320 97 305 883
183 74 305 425 203
280 379 307 385 354
683 803 509 665 732
110 894 18 415 535
619 558 749 644 512
576 164 284 262 70

325 928 174 645 488
608 189 844 970 535

963 489 457 577 724
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NDSAMO

IM F(100)
REM RANDOM SAMPLE FROM FINITE POPULATION WITHOUT REPLACEMENT

PRINT “WHAT IS “;“"THE POPULATION "“;“SIZE?"
INPUT N
PRINT "WHAT IS “;“THE SAMPLE ";"“SIZE?"
INPUT M
PRINT
PRINT M;" RANDOM NUMBERS";'" FROM POPULATION";" OF SIZE ;N
PRINT
FOR I = 1 TO M

LET K = 1+INT(RND*N)

LET F(I)=K

FOR J= 1 TO I-1

IF F(J)= K THEN 100

NEXT J

PRINT K,

NEXT 1

END
N
T IS THE POPULATION SIZE?
000
T IS THE SAMPLE SIZE?
0

RANDOM NUMBERS FROM POPULATION OF SIZE 1000
0 320 97 305 883
3 74 425 203 280
9 307 385 354 683
3 509 665 732 110
4 18 415 535 619
8 749 644 512 576
4 284 262 70 325
8 774 645 488 608
9 844 970 963 489
7 577 724 807 458
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Table 5.1.1 Number of Days Required by 1000 Students
Column number

Row

number 1 2 3 N 5 6 7 8 9 10
00 61 51 45 53 Sk 52 sk 41 51 51
01 25 32 54 N 26 42 L7 43 35 L9
02 38 62 59 60 LYy 57 46 53 51 50
03 59 52 67 L8 54 38 47 4o L 50
ok 46 L 52 46 50 35 4o L7 38 35
05 L5 57T 45 53 32 48 51 54 57 47
06 53 59 55 50 Ly 45 38 54 Lo 52
07 52 63 56 50 50 58 64 57 52 L9
08 62 50 50 5k 53 5k 66 58 52 55
09 4o 55 51 50 38 41 51 53 58 e}
10 53 59 L9 50 56 o] 66 - 49 46 57
11 46 65 63 51 L7 56 59 37 50 50
12 Sk 38 36 Ly 25 25 29 32 4o 35
13 60 57 53 57 42 45 55 50 55 57
14 50 59 51 52 53 51 48 L7 56 L7
15 e} 48 59 50 51 35 38 4 46 49
16 46 67 48 54 55 51 68 61 51 56
17 46 53 54 45 49 48 52 54 55 54
18 50 61 52 45 Lo 45 60 4o 43 46
19 51 N 50 LY 51 59 54 53 52 kg
20 39 50 50 5k 36 50 38 43 46 48
21 60 52 50 50 48 53 52 50 Ls 54
22 59 6h 53 63 50 58 50 Ly 45 55
23 52 58 57 L9 L9 46 L9 48 59 4s
2l 46 4o 60 Lo 48 4o L5 iTe] 56 46
25 50 56 53 5h L1 48 5k 51 61 52
26 52 56 L6 47 LY 51 g 50 48 52
27 41 56 55 5k o] 46 4o 56 60 46
28 Lo 53 50 LY 50 52 L3 55 43 56
29 5k sk 50 52 Lo 5k 58 53 55 L6
30 55 54 g 68 49 50 46 41 49 55
31 45 48 58 56 52 47 61 4o 54 62
32 53 69 56 50 62 51 60 52 52 55
33 56 56 53 148 41 50 57 54 57 54
3k 56 53 43 Ly 56 5k 57 4o 46 g
35 50 53 54 60 31 36 L9 5T 58 L5
36 Ly 61 50 43 58 b5 3k 26 W8 kg
37 46 37 38 37 4o 43 41 46 45 52
38 sk b9 kg b1 48 48 50 50 56 60
39 Ly L1 51 b7 55 LY Lo e 61 L9
Lo b 5% 53 51 Lk 4 51 52 51 53
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Column number

Row

number 1 2 3 i 5 6 7 8 9 10
41 55 g 55 Lo in 46 Lo 48 65 61
Lo 54 43 56 63 67 53 58 59 55 53
43 56 55 58 57 57 57 53 49 51 58
Ly 58 53 56 65 55 61 5k 52 61 58
L5 43 52 53 52 51 L7 53 55 55 L9
46 60 50 57 kg 51 49 b7 53 51 52
b 55 59 5k 48 53 b 51 48 5k L7
48 4o 32 39 48 48 53 L7 4o 53 Ly
kg 52 57 55 kg 54 53 60 48 50 53
50 48 48 50 - 48 47 48 37 51 65 50
51 43 37 N 35 Sk 46 36 28 43 46
52 57 52 58 L8 51 57 61 55 50 57
53 57 51 58 49 60 55 61 62 Ly L7
5L 46 59 54 56 Sk 61 52 60 48 53
55 58 61 56 61 57 63 T2 56 57 58
56 i 50 52 50 57 65 57 65 55 57
57 61 48 50 55 S 68 61 57 63 52
58 59 66 61 59 61 61 S1 70 52 62
59 52 50 50 52 50 in 4l 49 50 47
60 52 48 LY 4o 50 56 kg 55 57 L6
61 50 48 g 45 40 52 51 51 Lo Ll
62 kg 48 41 49 Ly 48 46 b1 46 40
63 57 57 51 46 L9 59 50 58 53 48
[an 60 59 52 54 53 53 50 49 45 55
65 61 50 50 52 56 51 55 59 55 43
66 55 57 55 57 56 58 59 55 55 52
67 56 49 50 49 52 48 50 u7 57 54
68 48 kg 5T 56 46 49 Lg 63 51 51
69 50 48 L4 51 L7 L7 39 52 47 50
70 45 Ll 39 45 L5 41 L4s 37 41 L1
71 61 53 el 53 51 L9 51 54 55 48
T2 43 53 57 54 50 51 48 48 48 L2
73 58 kg 52 55 52 48 47 L9 55 57
Th 60 56 55 52 57 56 54 49 52 L5
75 57 55 48 52 46 49 43 55 36 L5
76 53 61 55 53 kg 43 53 45 b 45
T7 55 51 53 56 50 49 48 54 51 43
78 Ly 53 kg Lh 50 59 53 Lo 50 38
79 63 54 45 51 57 48 59 57 53 LY
80 57 51 55 56 60 56 52 53 kg 43
81 48 55 4L 55 53 46 50 49 48 43
82 49 50 48 55 58 53 46 50 49 58
83 55 57 56 43 Lo 5k 59 L7 55 Ly
8l Th 55 45 59 53 53 53 57 56 b

85 53 48 L7 43 L5 48 59 53 52 39
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Colwm number

Row

number 1 2 3 L 5 6 7 8 9 10
86 L5 45 31 46 61 52 b1 30 36 45
87 51 41 55 58 58 L5 53 45 L7 33
88 55 58 73 55 65 50 48 46 5h 43
89 68 68 51 LY 51 57 52 55 54 39
90 58 L9 71 51 54 57 55 58 55 Lo
91 L5 L5 52 57 56 53 52 50 61 45
92 50 56 49 kg 53 k9 57 52 55 b1
93 55 53 Lo 48 57 51 50 48 56 59
9L 56 50 51 63 52 51 60 46 52 L7
95 53 46 61 51 kg 50 48 55 Ls 37
96 50 50 Lo 5k 51 55 iy L8 48 4s
97 48 53 ST 53 53 kg 52 iTe] 66 46
98 56 54 kg 51 58 46 50 50 51 Lo
99 L6 L6 51 45 61 54 50 48 58 51

Typically we wish to estimate the true average of the population.
The average of the 50 sampled values is 52.82 days. The true average
of the population is 50.87. We shall presently investigate the
properties of such estimates.

We consider, in somewhat more detail, sampling without replace-
ment from a finite population of size N. Assume that the N values
are vl, Vg’ vees v, and define

N

v. (v. - B(V))?

N

E(V)= £ == and o, = § —=
1= ¥ Viooga ¥

Assume that a random sample of size n is taken from this population

without replacement. It can be shown that

n n n
Var[ z X.J z Var(Xi) + I Cov(Xi,X.)
i=1 Y i=1 i#] J

where

COV(Xi,Xj) = E(Xin) - E(Xi)E(xj)

As all X, have the same distribution Var(Xi) = GVE for all i. It is

also true that all the covariances are equal, although this is not

so apparent. Hence
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o 2
Var[ z X‘] =g~ +n{n - 1)y (5.1.1)
=10V

where Y is the common covariance. Setting n = N yields
2 N
No,” + N(N - 1) = Var[ z X.) =0
v j=1 I

The latter equation follows because the sum of all the population

2 . .
values is a constant. Hence Yy = -0y /(N - 1). Substitution in Eq.
(5.1.1) and simplification yields

n n0v2(N - n)
Var[ x X.) = ——— (5.1.2)
4 1 N-1

i=1

Furthermore we have

n
E[ b x.) = nE(V)
i=1 *

These yield
n Xi
E[ z j;) = E(V)
i=1
and
> & 0v2 N-n
Var[izl :;) =— (N — l)

Thus the sample average has expectation equal to E(V) and variance
(Uvz/n)((N - n)/(n - 1)). If the sampling is done with replacement,
the corresponding values are E(V) and UV2/n. As the factor (N - n)/
(N - 1), referred to as the finite population correction factor,
will be close to 1 when the sample size n is very much smaller than
N, we have a strong indication that in this situation, sampling
either with or without replacement will permit similar inferential

statements about the population.
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Problem 5.1

Using the result in the last paragraph, show that the variance of
H, the hypergeometric random variable with finite population of
size N, with R special items, from which a sample of size n is

taken without replacement is given by

Var(H) =

Ry N-n
(l'N)N-l

[a]
=W

Exercises 5.1

Suppose that 10,000 lottery tickets numbered 1 to 10,000 are sold.
Take a random sample of 25 such numbers without replacement using

the appropriate program. What population is being sampled? What

is the expected value and variance of the random variable Xi which
gives the number on the lottery ticket drawn on the ith draw?

Use RANDSAMO.

Write a program to compute the probability that for a sample of
size n, at least two persons have the same birthday. Find this
probability for n = 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50.
Use the program RANDSAM to select 40 birthdays at random from the
365 birth dates. Are there any two birth dates alike?

The following is a list of the ages of 500 legislators. Take a
sample of size 25 from this population without replacement.

Average the ages of these 25 sampled individuals. Compare this
average with 48 which is the average age of the population from

which the 500 were chosen.
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5.2  STATISTICS ESTIMATING LOCATION

We have seen in Chap. U that it is useful to employ some means of

summarizing tho information in a random sample from a population.

In Sec. 4.1 random samples of size 1000 were taken from three popula-
and S, Wwere response

1’ 82’ 3
times, net weights of a breakfast food, and the values of round-off

tions. The populations sampled denoted S

errors in rounding a number to the nearest integer, respectively.

The samples were summarized by means of relative frequency histograms
displayed in Figs. 4.1.1, 4.1.2, and 4.1.3. It is clear that the
ordinate measurement could be changed to frequency by multiplication
by n = 1000. Each bar would then represent the number of observations
for the appropriate interval. Histograms which display the properties
of a sample are a useful graphical means of summarizing data. In

Sec. 4.1 a frequency table was used to summarize the information in
the sample of round-off errors in tabular form. Such a frequency
table is often used to display the properties of a sample. In
statistiecs, however, we are mainly interested in algebraic or mathe-
matical ways of summarizing the information in a sample. The sample
characteristics will in turn be used inferentially to describe
characteristics of the population from which the sample was taken.

The first characteristic which we consider is "location." An import-
ant inferential question is how to estimate the parameter u = E(X),
the expectation of the random variable X, which describes the
"location" of a population, using the information in a sample. We
will use certain statistics based on a random sample of size n from
the population. We now define the word statistic in this usage and

differentiate it from the body of knowledge referred to as statistics.

DEFINITION 5.2.1. A statistic is a calculation based on the values
of a random sample. More precisely, a statistic is a real-valued
function of the observations (Xl’ Xg, cees Xn) in a random sample of
size n from a population.
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The statistic is to be used to describe a characteristic of the random

variable X, the parent distribution.

5.2.1 The Sample Mean

The sample mean is given by the statistic X = (Xl + X2 + see 4 Xn)/n.
Notice that this is a real-valued function which, in a sénse, summar-
izes certain information about the sample in a single number. Note
also that since Xl, X2, ey Xn are random variables, X is a random
variable also. For different random samples of a fixed size n, X
will have different values. In general, we observe only one realiza-
tion of this random variable X and denote it as x. On the other hand,
X seems a reasonable statistic to use as an estimate of Y = E(X) for

several reasons. The first is due to the fact that

o1

_ n X, n E(X,)
E(X)=EIZ %}: ni =-rlnE-=u
i=1 i=1

because E(Xi) =y for all i in a random sample. In words, the expec-

tation of the sample mean is the expected value of X. We also have
_ n X, n Var(Xi) n02 02
Var(X)=Var[Z -—l)= I —m— = —F=—
n2 n

i=1 i=1 n2

where 02 is Var(X). This follows from the fact that Var(U + W) =
Var(U) + Var(W), if U and W are independent random variables. The
importance of the relation Var(X) = 02/n lies in the fact that as n
increases the variance of X decreases, so roughly the probability
that the sample mean X differs from U becomes smell as n increases.
In fact, using the Chebyshev inequality in the form expressed in

Theorem 4.3.2, we have
P(JX - u| 2e) <=
ne
for any € > 0. Hence

Lim P(|X - p] >e) =0

-
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In words, the probability that the random variable X differs from u
by more than any € > O approaches O as the sample size increases.

With the aid of the computer we now illustrate the properties
of the random variable X by taking all possible samples of size 3
with replacement from the integer population {1, 2, 3, ..., 10}. We
have seen before that if P(X = i) = 1/10 for i =1, 2, ..., 10, then
E(X) = 5.5. There are 103 = 1000 samples of size 3 from this popu-
lation. The program MVAL3 calculates the expected value of the
averages of these 1000 samples of size 3 by assigning each a proba-
bility of 1/1000. In addition the probability distribution of these
averages 1s printed out. This gives the probability of an average
falling into the intervals [i - 0.5, i + 0.5) for i =1, 2, ..., 10.
The probability histograms for the original population and the popu-
lation of means (n = 3) appear in Fig. 5.2.1. We see that although
E(X) = E(X) = 5.5, the averages have a distribution with much smaller
variance. In fact, Var(X) = 99/12 = 33/h and Var(X) = Var(X)/n =
11/h.

0.2+

O.1r 0.1F

55 55
Histogram for X Histogram for X

Fig. 5.2.1

5.2.2 The Population and Sample Median

We shall often use E(X) = u as a measure of the population location.
The statistic X will generally be used as the appropriate calculation

from the sample data to estimate u = E(X). In the next chapter we
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MV

150
160
170
180
190
200
210
220
230

240
*

RU
PRO

LOW

AL3

REM MEANS OF SIZE 3 FROM INTEGER POPULATION 1-10
LET T=0

FOR I =1 TO 10

FOR J = 1 TO 10

FOR K =1 TO 190

LET S = (I+J+K)/3

FOR N= 1 TO 10

IF S > (N+.5) THEN 110

LET F(N)=F(N)+1

GO TO 120

NEXT N

LET T = T+S/1000

NEXT K

NEXT J

NEXT 1

PRINT “PROBABILITY ";"DISTIBUTION ";"FOR MEANS"
PRINT

PRINT “LOWER BOUNDARY","UPPER BOUNDARY","PROBABILITY"
PRINT

FOR I = 1 TO 10

PRINT I-.5,I+,5,F(I1)/1000
NEXT I

PRINT "AVERAGE MEAN = ";T
END

N
BABILITY DISTIBUTION FOR MEANS

ER BOUNDARY UPPER BOUNDARY PROBABILITY

4.00000E~-3
3.10000E~-
8.50000E~-
0.163
0.217
0.217
0.163
8.50000E~2
3.10000E-2
5 4.00000E-3

2
<
2
<

e v e .
(VAR VL IRV Vo RV R W, R VL RV R V)

W= W0 X Ny &R
. .
woe

AGE MEAN =
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shall note several properties of X which suggest that it is an effi-
cient statistic. There are, on the other hand, populations for which
a measure other than E(X), would be appropriate as a measure of the
population location. In highly skewed populations such as that
described by the probability density fumction f(t) = te—t, t > 0,
presented in Fig. 5.2.2, the population median may be a more meaning-

ful measure of location.

() = te

o ————

ol ]

Fig. 5.2.2

DEFINITION 5.2.2. The population median for a continuous random
variable defined by the cdf F(x) is a value of x, say 1, for which
F(n) = 1/2.

The population median is then a value for which P(X < n) = 1/2 and
P(X > n) = 1/2. In the probability sense, it divides the population
into two equal parts. TFigure 5.2.2 shows the values of E(T) =

f: t2e_t dt = 2 and n = 1.678 which satisfies the equation

e M1+1n) =05 [asF(t)=1-e"?-te? fort>0]

If the random variable T is thought of as describing response times
to a stimulus in minutes, then one-half of the population has a

response time of 1.678 min or less, while the expected response time
is E(T) = 2 min, which exceeds T because a sizable proportion of the

population requires a rather long time to respond.
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The appropriate estimate of the population median based on a
random sample of size W from a population is the sample median, which

is calculated as follows:

DEFINITION 5.2.3. Let X(l)’ X(2)’ ey X(n) represent the values of
a random sample (Xl’ X2, cees Xn) ordered by magnitude (that is,

X <X < o0 < X . The sample median M is defined to be
(1) SX(2) S0 2 Xyy) P

X(n +1)/2 if n is odd

(X(n/2) + X(n/g + l))/2 if n is even

Suppose we observe a random sample of five response times (3.5, 1.6,

2.3, 1.5, 1.7). Then the sample median is denoted m = x( = 1.7.

As in the case of the sample mean, the sample median M is3i random
variable. We generally have only one sample of size n and observe

a single value of the median, denoted by m. However, we understand
that different samples of size n from the same population will pro-
duce different sample medians and hence there is a distribution of
such values. Generally the sample mean is preferred as a measure of
location when the population can be thought of as symmetrically dis-
tributed about its expected value. For skewed populations such as
incomes, response times, and city sizes, the sample median is often

more acceptable as a measure of location.

Problems 5.2

1. BSuppose that the following is a random sample of 10 heights of
female students in inches: 64.5, 63.0, 67.5, 62.25, 64.0, 69.25,
62.0, 65.25, 66.0, 61.0. Find X and m for this sample.

2. Suppose that in Problem 5.2.1 that 69.25 is replaced by T8.0.
What is the new value of X for the sample? The new value of m?
Which of these measures of location is more sensitive to extreme

observations.
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Prove the following for any real numbers x., ceey X .

*po n

Show that x minimizes

f(a) (x, - a)

1

It
[ e =

1

Hint: Expand

(a) Assume that E(X) = | exists for a continuous random variable
X. Show that if the probability density function for X satisfies
fla - x) = f(a + x) for all X then E(X) = a and the median of X
is also a.

(b) For the density function

—22/2

f(z) = e

1
12241
for what value of a does the relation f(a - z) = f(a + z) hold
for all real z?

(c) What are the expected value and theoretical median of the

standard normal distribution?

Given f(x) = (1/m)1/(1 + x2) is the density function of a random
variable X what can be said about E(X). Why does this not con-
tradict Problem 5.2.5(a). What is the median of the random

variable X?

Let a population have values x = 1, 2, 3 with probabilities
f(x) = 1/3 for x = 1, 2, 3.
(a) Find E(X) and Var(X).
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(b) PFind the probability function for X, the average of two
observations taken from this population with replacement.

(¢) Find E(X) and Var(X) from the probability function in part
(b) and show that E(X) = E(X) and Var(X) = Var(X)/2.

8. TFor the exponential function with pdf f(x) = e-X for x > 0 and
f(x) = 0 elsevwhere, find E(X) and the median of X. Which is

larger? Give a qualitative reason why this is plausible.

9. If all observations in a sample, xl, x2, ey xn, are replaced
by yi = axi + b show that
(a) 5 = ax + b.
(b) 1If X(1)> X(p)» =ev» X(y) are the ordered x5 values with
median m = X((n+1)/2) (n assumed odd), then the median of the

y(i) values is ax(( + D.

nt+l)/2)

10. Let p® be the true probability a theoretical tack falls "point
upward." Let fn be the relative frequency of such a tack falling
point upward in n tosses. Show that for any € > O,

lim P(]f - p*| >e) =0

n-re

Exercises 5.2

1. Use the program MEANS to sample 400 means of samples of size 1,
9, 25, and 100 each from the exponential distribution with E(X) =
E(X) = 4. Draw relative frequency histograms for each of the

400 means with boundaries 0, 1, 2, ..., 20.

2. Write a program to calculate the mean x and median m for a sample

of size n < 50. Find mean and median of the following heights:

72.1 T70.0 67.1 69.2 T1.3 T72.% 7Th.1 Th.O0 TL.0 67.5
67.8 70.1 71.8 72.1 Th.5 Th.1 T3.2 T1.5 T0.3 68.0
68.8 T70.3 T1.h 73.8 T4.0 T75.0 T73.7 T2.6 TO.L 69.1
69.1 71.6 72.8 T3.1 75.8 76.5 TL.0 T2.5 T1.7 69.4
69.2 T7i.b 72.3 T4.8 T7.1 T78.0 TL.3 T2.1 T1.0 69.5
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10 REM FREQUENCY DISTRIBUTION FOR K MEANS FROM EXPONENTIAL

20 REM DISTRIBUTION (TRUE EXPECTATION 4).
30 PRINT "HOW MANY MEANS?"

40 INPUT X

50 PRINT "WHAT SAMPLE SIZE?"

60 INPUT N

SAMPLE SIZE N

70 PRINT “CLASS NO.","LOWER","UPPER","REL FREQ"

80 DIM F(25)
90 FOR J =1 TO K

100 FOR I =1 TO N
110 LET Z = Z~-4*(LOG(I-RND))
120 NEXT I

130 LET A= 2/N

140 LET 2=0

150 FOR I = 1 TO 20
160 IF A>I THEN 210
170 LET F(L)=F(L)+1/X
180 GO TO 220

190 IF 1<20 THEN 210

200 LET F(20)=F(20)+1/K

210 NEXT I
220 NEXT J
230 FOR I = 1 TO 20

240 PRINT I,I-1,I,F(I)
250 LET V=(I-.5)*F(I1)+V

260 LET T = F(I)+T

270 IF T>.999999 THEN 290

280 NEXT 1

290 PRINT "AVERAGE MEAN=

300 PRINT “TOTAL FREQ
310 END

RUN

HOW MANY MEANS?
21000

WHAT SAMPLE SIZE?
725

CLASS NO. LOWER
1 0

2 1

3 2

4 3

5 4

6 5

7 6

8 7

AVERAGE MEAN= " 3,972
TOTAL FREQ 1.

UPPER

[« BE NI VIR NN S

REL FREQ

0
1.00000E-3
9.60000E-2
0.451
0.347
9.30000E-2
1,10000E~2
1.00000E-3
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Plot a histogram for these data with a class interval of 1.

Would you call these data symmetric or skewed?

3. Use the program written in Exercise 5.2.2 to find the mean and
median of the following incomes in thousands of dollars. Which

measure of location would be preferred? Why?

11.2 13.6 4.7 11.8 4.7
10.3 11.2 1.1 11.8 11.2
20.6 13.5 17.3 13.2 21.2
12.7 10.1 1k.6 18.2 11.8
10.9 15.8 1k.9 10.1 10

11.2 15.2 13.6 12.1 10.1
13.8 13.7 16.2 11.1 11.9
19.6 16.9 12.4 12.3 15.4
13.5 13.3 13 1h.7 12.9
17.4 15.7 14.8 12.1 20

5.3 STATISTICS ESTIMATING VARIABILITY

The parameter 02, the variance of the random variable X, is a measure
of variability of a population described by X. We often are able to
assume that the observations which we sample come from a normal dis-
tribution, but the variance 02 is not known. The value of 02 must
then be estimated before the normal model can be used. A statistic
often used to estimate 02 is the sample variance, which we define as

follows:

DEFINITION 5.3.1. The sample variance based on a random sample of

size n is defined by
=\ 2

(x; - X)

1 n-1

w
[}
Mg

i
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We note here that 82, like X, is a random variable which will have
different values for different random samples from a population.

The value of a single observation of 82 is denoted

(x, - 07

n-1

n
52 = 2
i=1
. . 2 2 .

The population variance ¢° = E(X - u)° is the expected squared
difference between the values of X and p = E(X), the population
expectation. The sample variance is almost an average of the squared
differences of the sample values from the sample mean, but the

divisor n - 1 is used instead of n. The reason for this is that

E(S2) = 02, while
=2
2 n (X, - X) 2
- o] -
E((n 1)s)=E(z i ) = (n-1)
n . n n
i=1
If we write
n n
T (Xi - u)2 = 3 (Xl -X+X~ u)2
i=1l i=1
n =12 o = 2
= F X, -X)"+2X-y) T (X.-X)+nX-un
1 1
i=1 i=1
o =2 = 2 o -
= Z (X, -X) + n(X - u) as L (X, -X)=0
i R i
i=1 i=1
we have
n n
2 =12 2
E( Z (x, -w7) =E(Z (X;-X)7)+En(X-w)
i=1 i=1
or
n0° = E((n - 1)s°) + 3
2 2 ek . 2 2
Thus E({n - 1)87) = (n - 1)¢°. Division by n - 1 yields E(58%) = ¢°,

and division by n yields E((n - l)Sg/n) = 02(

that E(Sz) = 02, i.e., the expected value of S2 is equal to the

n - 1)/n. The property
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parameter being estimated, seems to be a reasonable requirement for
an estimate. The statistic (n - 1)82/n would be an under estimate
of 02 on the average because the factor (n - 1)/n < 1. For large n,
clearly there would be little difference between the two statisties.
The program VARSAMP has been written to give an idea of the
distribution of sample variances, taken from the standard normal
distribution. In this case, of course, 02 = 1. For samples of size
N =5, 10, and 25, the program computes 1000 sample variances. A
frequency table of the 1000 sample variances is printed out for N = 5,
10, and 25. As can be seen from these frequency tables, these vari-
ances cluster more closely about the population variance 02 =1 as
n increases. In fact, it may be shown that for a population for

which E(Xh) exists,

2

lim P(]s2 -0 | >e)=0  foramny € >0

n->oo
This property corresponds to the analogous property of i, namely
that

lim P(]X - u| > €) =0

n->oo
and is also proved using the Chebyshev inequality.

We give an example of two samples of size 5 with the same mean

X = 9 to illustrate the calculation of 52.

Sample 1 Sample 2

i X. X, - X (x. - 2)2 X. X, - X (x. - §)2
1 1 1 1 1 1

1 7 -2 L 1 -8 6k

2 8 -1 1 8 -1 1

3 9 0 9 0

i 10 1 11 2

5 11 L 16 7 kg

Totals 45 0 10 4s o] 118

il =9 512 = 2.5 22 =9 522 = 29.5
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va

10
20
30
40
50
60
70

90
100
110
120
130
140
150
160
170
180
130
200
210
220
2130
240
250
260
270
280
290
300
310
320
330
3490
350
360
370
380
390
400
410
420
430
440
450

Sampling

RSAIP

REM FREQUENCY TABLE OF K VARIANCES OF SAMPLES
REM FROM NORMAL DISTRIBUTION

PIM F(35)

FOR I = 1 TO 35

LET F(1)=0
NEXT I

PRINT "WHAT IS SAdPLE";" SIzZE?"
INPUT N

PRINT "HOW MANY";" REPETITIONS?"
INPUT K

FOR J =1 TO K

FOR I = 1 TO H

GOSUB 410

LET § = S +2

LET S2= S2+272

NEXT I

LET X1=S/N

LET V =(S2-N*X172)/(N-1)

FOR C = 1 TO 30

1F v>C/5 THEN 230

LET F(C)=F(C)+1/K

GO TO 260

IF C <30 THEN 250

LET F(C)=F(C)+1/K

NEXT C

LET S§=0

LET §2=0

NEXT J

PRINT

PRINT "FREQUENCY ";“DISTRIBUTION OF";'" VARIANCES"
PRINT

PRINT "LOWER END","UPPER END","REL FREQ"
FOR C = 1 TO 30

PRINT (C=-1)/5,C/5,F(C)

LET T = T+F(C)

IF T >= 0.999999 THEN 380

NEXT C

PRINT

PRINT “TOTAL FREQ= ";T
GO TO 450

LET Z1=SQR(~2*LOG(RND))
LET Z2=6,2831853*RND
LET 7Z=Z1*C0S(Z2)

RETURN

END
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RUN
WHAT IS SAMPLE SIZE?
?5
HOW MANY REPETITIONS?
71000

FREQUENCY UDISTRIBUTION OF VARIANCES

LOWER END u R END REL FREQ
4,90000E-2

E
2
o4 0.126
6
8

.

.
w o

0.16

0.119
0.119

2 0.112

4 8.40000E-2
+6 6.50000E~2
.8 3.40000E~2
2,60000E~2
2 2.20000E-2
o4 2,00000E-2
6

8

e s o » . .
[o K- W8 S N

2,00000E~-2
1.00000E-2
1.40000E-2
2 2,00000E-3
4 6.00000E-3
.6 6.00000E-3
8 1.00000E-3
2.00000E-3
1.00000E~3

PR ) » o e
WO [o e N S N [o T 0 S S}

+00000E~-3

.

MUV UVnNEEESPOLUWWLWWLWWLWRRNRRRORND = - r—— =00 COCO0O
.. .
=<l R N N ]

0
0
0
0
0
0
1
0
1

.00000E~-3

TOTAL FREQ= 1.
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LOWER END u

LOWER END u

RUN
WHAT IS SAMPLE SIZE?

710

HOW MANY REPETITIONS?

271000

FREQUENCY DISTRIBUTION OF VARIANCES

ER END REL FREQ

2 3.00000E-3
4 4.80000E~2
6
8

0.155
0.162
0.177
o2 0.149
b 0.1
.6

8

W &N

8.80000E-2
4.60000E-2
2.90000E-2
2 2,10000E-2
b 7.00000E=-3
.6 4.00000E-3
.8 4.,00000E-3

2.00000E-3
2 2.00000E-3
4 1.00000E-3
6 1.00000E-3
8

o v e @
N

AR WWWWWRONRNNRNRNE= P~ —~,0000O0O
« e
W e

0
0
0
1

.
~

+.00000E=-3

TOTAL FREQ= 1.

*RUN
WHAT IS SAMPLE S1ZE?

725

HOW MANY REPETITIONS?

21000

FREQUENCY DISTRIBUTION OF VARIANCES

ER END REL FREQ

2 0

4 1.00000E-3
6
3

o s
N

5.20000E-2
0.209
0.273
2 0.234
4 0.142
6 5.20000E-2
8 2.50000E-2
5.00000E-3
2 3.00000E-3
4 2.,00000E~-3
6 1.00000E-3
8 1.00000E~3

NRNRONNNNFE— -~~~ 00000

TOTAL FREQ= 1.

Sampling
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RUN
WHAT 1S SAMPLE SIZE?
740
HOW MANY REPETITIONS?
71000

FREQUENCY DISTRIBUTION OF VARIANCES
LOWER END UPPER END REL FREQ

2 0

4 3.00000E-3
6
8

1.70000E~-2
0.16
0.344
2 0.275
4 0.139
b 4.80000E~-2
8 9.00000E-3
4,00000E-3
2 1.00000E-3

.« . . .
[o =K N S B N ]

Nr—r——r——0 00000
. .
(o= alE S N

TOTAL FREQ= 1.
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Although both samples have the same mean of 9, it is clear that the
variability of the first sample is less than that of the second.

This is reflected in the values of 512 and s 2.

Another measure of variation of a popul:tion is the population
standard deviation o = vo2. Similarly the sample standard deviation
is defined as S = /EE’ or for an individual sample s = V/s2. Hence
the sample standard deviations for the two samples given above would
be sl = /5?; = 1.58 and s2 = /557; = 5.43, A useful property of the
standard deviation is that its units are the same as the units of
the measurements of the sample values xl, x2, ceey xn.

The units of 52, on the other hand, are in terms of these units
squared. It is not true that E(S) = 0, but it is true for normal
populations that E(S) = k(n)o, where k(n) is a function of n for
which limnﬁwk(n) = 1; so for large n, E(S) = g. For these reasons
the sample standard deviation is generally used to estimate o,

although other statistics are also used.

Problems 5.3

1. Using the heights of the 10 students given in Problem 5.2.1 find

52, the sample variance and the sample standard deviation s.

2. Suppose that in Problem 5.3.1 69.25 is replaced by 78.0. What
are the values of 52 and s? Does the variance seem sensitive

to the extreme observation?

3. Suppose, as in Problem 5.2.9, that all observations xl, Xps eees
d b . = . + b.
xn are replace Y yl axl
(a) Show that if a = 1, then
S =s
Yy b4
This implies that if the same constant is added to a set of n
observations, then the variance is not changed.
(b) Show that if a is any real value, then

2= azs 2 and s = ]als
y X Y X

S
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k.,

The average of 20 Fahrenheit temperatures is T7 with a standard
deviation of 9. Using the relationship C = (5/9)(F - 32) find
the values of the mean, standard deviation and variance of these

temperatures in degrees Celsius.

Suppose 10 "yardsticks" have a mean of x = 37.2 in. and a standard
deviation of s = 1.44 in. What is the mean and standard deviation

of these measurements in yards?

The uniform distribution on the set 8 = {0, 1, 2, ..., 9} has
E(X) = 4.5 and Var(X) = 8.25. The following is a sample of 25
observations from this distribution (i.e., a sample of random
digits): 6, 0, 6, 7, 0, 2, 0, 7o T, Ts 3, T, T, 4, 1, 1, 1, 6,
0, 0, 1, 4, 4, 4, 0. Find the value of 62 for this sample.

Does it seem a reasonable estimate of Var(X)?

The coefficient of variation, defined as s/x (or 100s/x in per-
centage terms), gives a measure of variability of the sample as

a proportion or percentage of the observed mean. This measure

is used for measurements which are naturally measured in positive
units (such as heighits). Find s/x for the heights in Problem
5.3.1.

Prove that
n n
-2 2 -
(a) I (xi -x)" =z %" - n(x)2
i=1 i=1
n 2
nop (Ex)
=z T n
i=1

(b) Use the data of Sample 2 of this section to illustrate the
equalities in part (a).
(c) Show that

n 2 -2
2 _Limxy -0l

n-1

Use the Chebyshev inequality to show that in any sample of size
n, P(lxi - i[ > ks) < (n - l)/nkz, for any observation x5 in the

sample.
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Exercises 5.3

1. Use the program VARSAMP to sample 1000 variances from the standard
normal distribution with sample sizes 5, 10, and 40. Draw rela-

tive frequency histograms for each set of observations.

2. Expand the program written in Exercise 5.2.2 to calculate the
sample variance and standard deviation. Use the height data of

that exercise to calculate 52, s, and s/i.

3. Use the program in Exercise 5.3.2 together with the data of
Exercise 5.2.3 to find the variance, standard deviation, and
coefficient of variation of the income data given there. Which
of the two data sets is more variable, this income data or the

height data of the previous exercise?

5.4  THE CENTRAL LIMIT THEOREM

A crucial theorem in probability and statistics concerns the distri-
bution of means, which have been calculated from random samples from
a population. As mentioned above such means, X, are random variables.
We have seen that E(X) = u and var(X) = 02/n, where U and 02 are the
population expectation and variance. In order to give an example,
to suggest the behavior of sample means, let us again look at the
histograms in Fig. 5.2.1. Here the underlying distribution is the
discrete uniform distribution, assigning equal probabilities to the
integers 1, 2, ..., 10. The distribution of means for n = 3 again
takes on values on the interval [1, 10], but we notice that the
histogram reflects a "bell-shaped" appearance, with small probability
in the tails and substantial probability near the center. _

We shall pursue this example further, but first we consider
standardizing a random variable X. If E(X) = u and Var(X) = 02

’

the standardized random variable

g =X-H
o
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has two important properties. First, E(Z) = E((X - u)}/o) =
E(X - u)/o = (4 - u)/o = 0. Secondly, it is straightforward to show
that Var(Z) = 1. Thus, as we have found the expectation and variance

of X to equal Y and cz/n, respectively, we see that

g=X-u
o/vn
has expectation zero and variance one. Although we shall not prove
it here, the variable Z = (X - u)/o/vh "behaves" like the standard
normal variable for large n, regardless of the distribution from
which the means are sampled, providing only E(X) = u and Var(X) = e

exist. This is formally stated in the following:

X veey X are

1’ 722 n
independently and identically distributed random variables, with

THEOREM 5.4.1. (The Central Limit Theorem). If X

common distribution given by the random variable X, for which E(X) =

U and Var(X) = 02, then

lim P(X‘—“< t) = F_(t)

e o/n z
for all t, where FZ(t) is the cdf for the standard normal distribu-
tion. We say X is asymptotically normally distributed, with mean u

. 2
and variance o /n.

*

We use the program CLT to simulate 10,000 means of samples of
size n = 5, 10, and 50 from the discrete uniform distribution on
1, 2, ..., 10. These means are transformed by the standardizing

transformation
X - 5.5
¥99/12n
A histogram for the case of n = 10 and the corresponding histogram

for the standard normal distribution are displayed in Fig. 5.4.1.

The close relationship between the two histograms is apparent. For
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CL

T
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REM COMPUTES K STANDARDIZED MEANS OF SAMPLES OF SIZE R
REM FROM DISCRETE UNIFORM DISTRIBUTION ON 1,2,...,N
PRINT “WHAT VALUE OF N";" FOR DISCRETE";" UNIFORM DIST?"

INPUT N
DIM Z(18),F(18)
PRINT "HOW MANY MEANS?"

INPUT K
PRINT “WHAT SAMPLE SIZE?"
INPUT R

FOR I =1 TO 16

READ Z(1)

NEXT 1

FOR L = 1 TO K

FOR J=1 TO R

LET M = 1 +INT(RND*N)
LET T =T+M/R

NEXT J

LET T = T-(N+1)/2

LET T =T/SQR((N"2=-1)/(12%R))
FOR I = 1 TO 16

IF T>-4+1/2 THEN 240
LET F(IL)=F(I)+1/K

GO TO 270

IF 1<l6 THEN 260

LET F(I)=F(L)+l/K
NEXT I

LET T=0

NEXT L

PRINT “FREQUENCY TABLE";" FOR TRANSFORMED";*

PRINT

MEANS"

PRINT “LOWER END","UPPER END","FREQUENCY","NORMAL PROB"

PRINT

FOR I =1 TO 16

PRINT =4+(1-1)/2,-4+1/2,F(1),2(1)

LET A =(=4.,25+1/2)*F(1)+A

LET B = B +F(I)

NEXT 1

PRINT “"AVERAGE ";“TRANSFORMED “;"MEAN =";A
PRINT "TOTAL FREQ= ";B

DATA .0002,.0011,.0049,.0166,.0440,.0919,.1498,.1915
DATA .1915,.1498,.0919,.0440,.0166,.,0049,.0011,.0002

END
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RUN
WHAT VALUE OF N FOR DISCRETE UNIFORM DIST?
718
HOW MANY MEANS?
7?7 10000
WHAT SAMPLE SIZE?
75
FREQUENCY TABLE FOR TRANSFORMED MEANS
LOWER END UPPER END FREQUENCY NORMAL PROB
=4 =3+5 0 2.2002
=345 -3 D.0004 PeB011
-3 -2e5 D.2037 0.2049
=245 -2 B.0159 P.0166
-2 =1.5 BeB411 Be044
=1e5 -1 Pel1166 P.0919
-1 ~De5 Bela42 D. 1498
=0.5 0 P.1783 @.1915
o Be5 2.1823 0.1915
B¢5 1 P.1423 B.1498
1 15 B.1166 P.0919
1.5 2 B.0387 Be.044
2 2¢5 P.0154 B.0166
2¢5 3 O.0044 0.0049
3 3.5 0.00081 P.0011
3¢5 4 0 G.0002

AVERAGE TRANSFORMED MEAN =-4.79999 E-3
TOTAL FREQ= @.999999
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RUN

WHAT VALUE OF N FOR DISCRETE UNIFORM DIST?

? 10

HOW MANY MEANS?

? 10000

WHAT SAMPLE S51ZE?

? 10

FREQUENCY TABLE FOR TRANSFORMED MEANS

LOWER END
-4
=35
-3
=245
-2
=15
-1
~De5
15}
Be5
1
1¢5
2
25
3
3¢5

UPPER END
=35

-3

-2¢5

-2

=-1.5

-1

~Be5

FREQUENCY

a

0.0003
B.0061
P.0143
B.B489
8447999 E-2
P+1593
2.2039
D174

B.16
8.15999 E-2
P.0458
0.8156
D.0044
P.001

()

AVERAGE TRANSFORMED MEAN =-0.01585

TOTAL FREQ=

#+999999

Sampling

NORMAL PROB
0.0082
6.2011
D.0049
P.0166
0.044
D.0919
D.1498
01915
P.1915
01498
B.0919
P.044
0.02166
0.0049
2.28011
d.0002
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RUN

WHAT VALUFE OF N FOR DISCRETE UNIFOKM DIST?
?2 10

HOW MANY MEANS?

? 16000

WHAT SAMPLF SIZE?

? 50 .

FREQUENCY TABLE FOR TRANSFORMED MEANS

LOWER END UPPER END FREQUENCY NORMAL PROB
=4 «3e5 Be0002 B.0202
=35 -3 R.0014 P.0011
-3 ~2e5 B.0051 BeDD49
~24¢5 -2 BeB184 BeBl66
-2 ~1.5 Be0437 Be @44
~le5 -1 9.10999 E-2 DeP919
-1 =-Be5 felanl De1498
~3e5 [} Be2874 Bel915
4] Jdeb Belonq Pel915
Ge5 1 Gelale Be 1498
1 15 8463999 E-2 DeB3919
1.5 2 B«0437 Je0usl
2 245 BeN1l4a7 BeBl66
2+5 3 DePB43 BeB049
3 3¢5 Be01 D.0011
35 4 D.00002 Be.00G2

AVERAGE TRANSFORMED MEAN =-0.02425
TOTAL FREU= 9+999999
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msrandardized
Means

7

7

Fig. 5.4.1

7

NN

i

0

n
W

n = 50, the simulation of the program CLT indicates that the standard
normal distribution and that of X are pracéically identical.

The central limit theorem has many important practical conse-
quences in statistics. As the distribution of means of "large samples”
can be considered to be approximately normally distributed, questions
of inference concerning Y may be reduced to questions of inference
concerning U in the case of a normal distribution. Additionally, as
many statistics and random variables can be thought of as sums of
independent and identically distributed (iid) random variables, the
distribution of such sums or an average of such sums can be approxi-
mated using the normal distribution.

As an example of this we shall consider Xl’ X2, PR Xn to be
iid random variables, each with the exponential distribution. Thus
the random variable X, representing the common distribution has pdf
£(x) = e X for x > 0. However, Y = Xl + X2 + see 4+ Xn would repre-
sent the waiting time until the nth Poisson event, when the events
have arrival rate 1/A = 1. As stated in Sec. 4.4, this random vari-

able has the gamma distribution with @ = n and B = 1. Hence the pdf

for Y is
n-1 —y
= >
fY(y) %zzj-e for y > 0

As the average waiting time for n arrivals is given by Y/n = X we

can use Theorem 4.5.1 to show that the pdf for X is given by
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CnGm)™t anx -
5.(n(x) ey e for x
The probability density functions for Xn are plotted in Fig. 5.4.2
for n = 1, 4, and 16. As is readily apparent, the exponential pdf
is neither symmetric nor bell-shaped in appearance. However the
averages of 16 independent observations from this population have a
distribution which is decidedly bell-shaped in appearance. The
expectations for each of these distributions is one, while the vari-
ance is 1/n. The approach to normality for fairly small n is quite
remarkable, considering the shape of the parent distribution.

As a practical example of the use of the central 1imit theorem,

let us assume that the dollar amount of losses due to theft at a
clothing store per week is a uniformly distributed random variable

on [50, 150] with the measurements made in dollars. Assuming inde-

pendence, the total loss in a 50-week period is

i
0 L.O 2.0

Fig. 5.4.2 Probability density functions for the average of
n=1, 4, and 16 observations.
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50
L= I Xi
i=1
where Xi is the loss in the ith week. We find E(X) = 100 and Var(X)
Var(X) = (100)2/12, where X is the common distribution of the Xi.
Thus E(L) = 5000 and Var(L) = 50(100)2/12. Standardizing L, we find
that

L - 5000
100v50/12

~Z

i.e., is approximately a standard normal variable. We may be inter-

ested in the probability L does not exceed $6000. This is found as

P(L < 6000) = P(Z < 1000/100¥50/12) = P(Z < 4.90)
=1

Similarly the upper 95th percentile of the distribution of losses

0.05 = 5335.78. The
central 1imit theorem has allowed us to state that the sum of 50 iid

over the SO-week period is 5000 + (100v50/12)%Z

uniform variables, when properly standardized, has approximately a

standard normal distribution.

Problems 5.4

1. Assume that n = 25 observations are taken from a normal distri-
bution X with E(X) = 500 and Oy = 100. Find the expectation

and standard deviation of X.

2. Assume that the length of telephone calls T in minutes is described

by the distribution with pdf

%-e't/z £ >0
£(t) =

0 t<o0

(a) Find E(T) and Var(T).
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(b) Let s = Tl + T, + oo 4+ Tn’ where the Ti are independent

random variablis with the distribution given by f(t). Find
E(S) and Var(S). (These will be functions of n.)

(c) Find the probability that the total length of 100 calls
does not exceed 4 hr (T is assumed to be measured in minutes).
Note that (S - E(S))//Var(S) is approximately a standard

normal variable.

Assume that X is uniformly distributed on [-0.5, 0.5].

(a) Find E(X) and Var(X).

(b) Find E(X) and Var(X) for n = LS.

(¢) Approximate the probability that an average of 48 indepen-

dent observations from X satisfies
-1/8 < X < 1/8
(d) What is P(-1/8 < X < 1/8).
Assume X has pdf given by

6x(1 - x) on [0, 1]
£(x) =

0 elsewhere

(a) Find P(0.25 < X < 0.75).
(b) Approximate P(0.25 < X < 0.75) for n = 30.

Exercises 5.4

Use CLT to sample 1000 means of sample size 20 from the discrete
uniform distribution on the integers 1, 2, 3, 4, 5. Construct
a relative frequency histogram for the transformed means. How

does this compare with the histogram for the uniform variable?

Use the DEF FNF(X) command in BASIC to evaluate the pdf of the
average of 20 exponential random variables with A = 1. Print
the values for X = (k - 1)/20 for k =1, 2, ..., 41. Plot a

graph of this function. What general shape does the curve have?
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3. Write a program to compute the averages of n = 100 observations

from the distribution with cdf
1
F(x) =1 - . for x > 1

Find 1000 such means and plot a relative frequency histogram of
these means. Does the resulting histogram appear symmetric?

How can you explain this?

5.5  ESTIMATION OF u USING LARGE SAMPLES

To illustrate the usefulness of the central limit theorem in questions
of inference, we consider here the problem of estimating the expecta-
tion U of a population with variance 02, using large samples. Ques-
tions of this type are common in practice, as we indicate in the
following examples. What 1s the average net weight of packages of a
breakfast food? What is the true average time required for a b6-year-
0ld child to answer an arithmetic problem correctly? What is the
average age of adult male voters in a city? To provide answers to
such questions we assume that a random sample of size n is taken

from a population described by the random variable X with E(X) = u
and Var(X) = 02. We assume for the moment that u is unknown, but
that 02 is known.

The random variable X = % Xi/n is, as mentioned above, a

n
i=1
reasonable estimate for U. However, this provides only a single
number as an estimate of U and gives no indication of the error
assoclated with the estimate. Assuming large n, the asymptotic norm-
ality of X can be used to provide information of this kind. We denote
by Za the value of Z in the standard normal distribution satisfying
P(2Z Z_Za) = 0, as indicated by the tail area in Fig. 5.5.1. By the

symmetry of the normal distribution we see that

p(|z| 5za/2) =1-a

or, approximately, for large n
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f(z)

Fig. 5.5.1 The standard normal pdf

P(|X - w/o/va| < Zysp) =1 -0

or egquivalently,

Hence for any preassigned probability o, the random interval

[X - (O/VE)ZG/E, X+ (G//ﬁ)Za/z] covers U with probability 1 - a.
This means, in freguency terms, that if a large number of random
samples of n are taken from a population and the interval centered

at X of length 2(0//E)Za is marked off on the real-number axis,

then (1 - 0)100% of thesézintervals will contain u. Of course, we
generally only obtain one such interval from a single sample. The
interval is referred to as a confidence interval for U with confi-
dence coefficient (1 - a)100%. The probability 1 - o is associated
with the procedure which has led to the construction of the interval
and not with the particular interval itself.

Suppose that we wish to obtain a confidence interval for the
reaction time to a stimulus. We will assume that we have n = 100
individuals and that 0 = 2. The sample yields an average reaction
time x = 5.1 min. A 95% confidence interval for U is obtained as

follows:

(1 - @)100 = 95 yields o = 0.05

Za/2 = ZO.025 = 1.96 (from App. B. I)
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The interval is

3+ o =51

va ¢

1+

0.2(1.96)
= 5.1+ 0.392 or [4.708, 5.492]

Although we call this interval a 95% confidence interval for u, in
fact the probability that [4.708, 5.492] contains u is either 1 or
0 (as 1 is in or not in this interval). However, it is the case that
approximately 95% of intervals constructed in this way will contain
He

To i1llustrate this point further we consider the program CONFINT
which computes K 95% confidence intervals for samples of size N taken
from the exponential distribution with mean p. The program has been
run for U = 5, K = 1000, and N = 20, 40, and 80. 1In each case the
first 10 intervals are printed out. For N = L0, for example, all
but the 10th interval contain the parameter u = 5. The program cal-
culates the interval X i-(S/VG)ZO.OES’ using s as an estimate of O,
assuming a large sample size. The proportions of intervals contain-
ing 1 in the 1000 samples are found to be 0.924, 0.94, and 0.928 for
n = 20, 40, and 80, respectively. For large n, these confidence in-
tervals become better for several reasons. First, the estimate s of
0 improves. Second, the approximation to normality becomes better
for larger n. Thirdly, the length of confidence intervals becomes
shorter, on the average. This is most clearly seen by observing that
if ¢ is known the length of the confidence interval is given by

2(0/¢E)Za/2, which clearly decreases with n.

Problems 5.5

1. A sample of n = 64 college students yielded on average IQ score
of x = 121.5 with s = 18.
(a) Find a 95% confidence interval for u for the population
from which these students were selected, assuming the popu-
lation standard deviation is ¢ = 15.
(b) Find a 95% confidence interval as in part (a) assuming o is

unknown.
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REM 95 PERCENT CONFIDENCE INTERVALS FOR MU FOR EXPONENTIAL

PRINT "WHAT IS SAMPLE";" SIZE?"

INPUT N
PRINT “WHAT 1S TRUE";" MEAN?"

INPUT M ‘

PRINT "HOW MANY “;"CONFIDENCE";" INTERVALS?"

INPUT K
PRINT "ENDPOINTS OF ";"FIRST 10 INTERVALS"
PRIN'I HLH,(!UH

FOR J = 1 TO K
FOR I = 1 TO N
LET X =-M*LOG(1~RND)

LET X1=X+X1

LET X2=X"2+X2

NEXT I

LET A = X1/N

LET B =SQR((X2-N*AT2)/(N-1))
LET B=B/SQR(N)

LET L = A-1,96%*8

LET U = A+1,96%*B

1IF J>10 THEN 230

PRINT L,U

IF M<L THEN 270

IF M>U THEN 270
LET F(1)=F(1)+1/K
GO TO 280

LET F(2)=F(2)+1/K
LET X1=0

LET X2=0

NEXT J

PRINT

PRINT “PROPORTION COVERING","PROP NOT COVERING"
PRINT F(1),"",F(2)
GO TO 350

END
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RUN

WHAT 1S5 SAMPLE SIZE?

? 28

WHAT IS TRUE MEAN?

75

HOW MANY CONFIDENCE INTERVALS?
? 18008

INDPOINTS OF FIRST 1@ INTERVALS
L U

2.28229 4.56973

2. 48621 6+ 51059

2.07132 4467738

401221 6. 66326

3.68824 8.5829

4019414 9.57308

246434 5. 62246

344853 T+69141

2469294 6459116

2098931 704533
PROPORTION COVERING PROP NOT COVERING
B.924 B.076
*RUN

WHAT 1S SAMPLE SIZE?

? 40

WHAT IS TRUE MEAN?

75
HOW MANY CONFIDENCE INTERVALS?
10000~

ENDPOINTS OF FIRST 10 INTERVALS
L U

2.80755 511686

3.43187 5. 33596

471107 8. 30811

3447965 6413373

3+48615 6+21323

3+5967 680164

3.52781 5. 79695

4. 65295 8. 68237

2.91102 5059845

261319 4458944
PROPORTION COVERING PROP NOT COVERING

Q.94 Be06
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RUN
WHAT IS SAMPLE SIZE?

? 80

WHAT IS TRUE MEAN?

75

HOW MANY CONFIDENCE INTERVALS?

? 1000 ,
ENDPOINTS OF FIRST 1@ INTERVALS

L U

3.42777 4491795

4.53192 6+ 78436

3.94521 6+86365

4049517 6+83487

3.99623 4. 75982

3.85123 6410175

3.23937 5.0517

4.05192 6+58775

3.99525 5.98547

3.55178 5432257
PROPORTION COVERING PROP NOT COVERING
2.928 0.072
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(¢) Find a 99% confidence interval as in part (b).

The average GPA (grade point average) of 225 randomly selected
students from a university was 3.12 with s = 0.31. Find 95 and
99% confidence intervals for the true average GPA of students at

this university.

Weight losses of 81 individuals on the first 30 days on a diet

averaged 8.2 1b with sample variance of L4 lb2.

(a) Find a 99% confidence interval for U, the true average loss
of individuals on this diet.

(b) The diet orginator claims that the true average weight loss
in the first 30 days is 10 1b. Do the data support this

assertion? Why or why not?

Suppose we wish to have a probability of at least 1 ~ a that the
error in estimating U by X is no more than 4 in magnitude. For

large n, we have
PR - ul/(a//m) <2 ;) 1 -a

We wish the statement P([i - u[ < 4d) =1~ a to be true.
(a) Assuming o, 4, and 0 are known, show that a sample of size
_ 2
n = ((0/2)2,)

(b) Suppose IQ scores have 0 = 15 and we wish to estimate the

will satisfy the reguirements.

true average I1IQ of a large group using X. If we wish a
maximum absolute error of 3 with probability 0.95, what
sample size is required?

(c) If we wish the maximum error to be 1.5 with probability

0.95, what sample size is required?

An assembly-line process is used to fill packages with flour.

It is desired to estimate the true average net weight. Long
experience indicates that the true variance of the net weight is
0.25 022. What sample size should be used in order to ensure
the estimate X differs from | by no more than 0.05 oz with prob-
ability of 0.95? (Use Problem 5.5.4.)
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Exercises 5.5

1. Use the program CONFINT with true mean Y = 4, n =25, and k =
100. Omit statement 210 so that the endpoints of the 100 inter-

vals are printed out. Identify those which fail to cover u.

2. Use the program written in Exercise 5.3.2 to find a 95% confidence
interval for the true average height p of the population from

which the data of Exercise 5.2.2 were sampled.

3. Use the program in Exercise 5.5.2 to find a 95% confidence inter-

val for Y for the income data in Exercise 5.2.3.

4, Alter CONFINT to provide 80, 90, 95, or 99% confidence intervals,

where the program requests the confidence coefficient 1 - a.

5.6  APPROXIMATION OF BINOMIAL PROBABILITIES BY THE NORMAL
DISTRIBUTION
As another example of the importance of the central limit theorem
we condider approximating binomial probabilities in the case that the
number of trials n is large. We have seen before that the Poisson
distribution is a good approximation to the binomial distribution for
large n and small p. The Poisson approximation to the binomial dis-
tribution has been described as satisfactory if n > 20 and p < 0.05
in several texts. It is very good for n > 100 and p < 0.1. However,
for large values of n and 0.1 < p < 0.9, it is often very tedious to
compute binomial probabilities, and the Poisson approximation does
not apply. However, in Sec. 3.3 we have seen that the binomial vari-
able X could be written as X = I, T , where the I
and identically distributed indicator variables with P[Ik =0]=1-p
and P[I

were independently

X = 1] = p.

The central limit theorem allows us to assert that for X ~ B(n,p),

X-np __X-p
vnp(l - p})  vp(1 - p)/n

has approximately the standard normal distribution. This allows use

of the normal distribution to approximate binomial probabilities for
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large n. Suppose a basketball player makes 80% of his foul shots.
What is the probability he makes between 75 and 85 of his next 100
shots.

We have
85 100) (& k 1 100-k
P(75< X< 85) = % [k)[g) [E)
k=75

This is an impossible calculation by hand, and even a somewhat annoy-
ing calculation using the computer. However, we can use the normal

approximation as follows:

L

P(75 < X < 85) = P(75 - np < X - np < 85 - np)
P{ T5-mp_ _X-np 8 -mp )
vop(1 - p)  v/op(1 - p)  vop(1 - p)
_pf13=80  , 85 - 60
/16 V16§,
P(-1.25 < Z £ 1.25)

A

it

where Z has the standard normal distribution. From Table B.I in

Appendix B, we find P(Z < 1.25) = 0.7888.

\ﬂi
s

0.2

N(6, v.r2=4)

Fig. 5.6.1
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In order to see how this approximation may be improved, we
consider the case n = 18 and p = 1/3. Hence E(X) = np = 6 and
Var(X) = 4. In Fig. 5.6.1 the probability histogram for this binomial
distribution and the normal density function with U = 6 and 02 = b
are graphed. We are estimating the area under the histogram, by the
area under the corresponding normal probability density function.
If we consider finding P(3 <X 5_8), we can run the program BINOM
and find the exact probability to be 0.859750. The normal approxi-

mation yields

P(-1.5 < Z < 1)

FZ(l) - FZ(-1.5)

0.8413 - 0.0668 = 0.7T45

It is clear from Fig. 5.6.1 that the approximation would be improved
if we find the area under the normal density function from 2.5 to
8.5, as this will give a better approximation to the area under the
histogram. The shaded area has not been approximated. Hence we
apply a "continuity correction" and find

P[z.g = 6 8.5 - 6

< < —L—
creb329

FZ(1.25) - FZ(—1.75)

0.8944 - 0.0401 = 0.85L43

This result is much closer to the true probability.

In general, if we approximate P(kl <X <k_ ), wve use the follow-

2
ing approximation:

k., - 0.5 ~ np k., + 0.5 - np
P—l—-——izi_g____—__
wnp(l - p) vnp(l - p)
. k2 + 0.5 - np ) kl - 0.5 - np

yop(T = p) 2\ /a1 = p)

Hence for the basketball player we would estimate P(75 < X < 85)

as

85.5 - 80 4.5 = 80} _
FZ[ n ) - FZ[ T ) = 0.8310
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This will be an improvement over the previous estimate. If we wish
to estimate P(X = k), say P(X = 6) for n = 18, and p = 1/3, we use

the estimate

5.5 -6 5.5 - 6} _ _
FZ[ > ) - FZ[ 5 ] = FZ(O-ZS) - FZ(—O.ES) = 0.1974

The actual probability is 0.1963. This is quite a good approximation
considering that n is only 18. We turn to a more detailed discussion

of the question of the estimation of parameters in the next chapter.

Problems 5.6

1. Genetic theory predicts that certain flowers will be white with
probability 1/4 and yellow with probability 3/L. Approximate
the probability that of 300 such flowers between 210 and 240
flowers inclusive will be yellow. (Make two calculations with-

out and with the continuity correction.)

2. In a triangle test, persons unable to detect the specified char-
acteristic will be correct by chance with probability 1/3. For
n = 72 persons, find the probability that between 20 and 30 will
ldentify the characteristic correctly. Again approximate this

probability without and with the continuity correction.

3. A fair coln is tossed n times.
(a) If n = 16, find the exact probability of 8 heads and the
corresponding normal approximation.
(b) If n = 100, use the normal approximation to estimate the
probability of exactly 50 heads.
(c) For even n, find an approximate expression for exactly n/2
heads in n tosses.

(d) What is the limit of the probability in [part (c)] as n » =?

4. An operation is successful with probability 0.9. What is the
probability that in the next 100 operations,
(a) Ninety-three or more will be successful.
(b) Eighty-five or more will be successful.

(Use the continuity correction.)
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5.

6.

A batter gets a hit with probability p = 1/4. Compute his prob-
ability of exactly 4 hits in his next 12 at bats.
(a) Using the binomial distribution with n = 12.
(b) Using the normal approximation to the binomial distribution

with the continuity correction.

For large n, assume we estimate an unknown probability p by the
estimator § defined as the frequency of the event in n trials.

(a) Show that
P(IPA‘ PI < E/E_E_zl"n)é 0.954k

and

P(|§ - p| < -5) > 0.95kk

T YA
(Note: p(1 - p) < 1/k.)
(b) Show that by choosing n = l/d2 we can achieve, for a pre-
determined value of 4, the result that the estimate P will
not differ in magnitude from p by more than 4 with probabil-

ity at least 0.95Lh.

In order to estimate the percent of an electorate who prefer the
Republican candidate to all others, how large a sample size should
be used in order to have a probability at least 0.95 that the
error of the estimate will not exceed 2.5 percentage points?

What sample size is required if the error is not to exceed 2 per-

centage points? Use Problem 5.6.6.

(a) We wish to estimate the proportion of the registered voters
in a city in favor of a bond issue. How large a sample of
these voters do we require in order that the probability is
at least 0.95 that the error in the estimate of this propor-
tion does not exceed 5 percentage points?

(b) If the allowable error is cut in half (2.5 percentage points),
what happens to the sample size?

{e) 1If the allowable error is divided by k (5/k), what happens
to the result in parts (a)?
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Exercise 5.6

Write a BASIC program to evaluate the probability density function
of the normal density function used to approximate the binomial
probabilities for n = 25 and p = 1/2. Evaluate the pdf on the
interval [0, 25] with step size 0.5. Plot this function and the
probability histogram for B(25,0.5) using the same axes.



ESTIMATION OF PARAMETERS

6.1  INTRODUCTION AND DEFINITIONS

As has been mentioned in the previous chapter, one of the important
inferential questions considered in statistics is the estimation of
parameters of a theoretical distribution. Here we shall consider
some important properties of statistical estimators. It 1s conven-
tional to denote an estimator of the parameter 8 by én' We recall
that en is a real-valued function of the observations in a random
sample of size n. The statistics X and 82 are particular examples
of such estimators (of the parameters U and 02, respectively). The
estimator én is called a point estimate of 8 because a random sample
provides a single real number estimating 6. On the other hand, it
should be kept clearly in mind that én is a random variable, as dif-
ferent random samples of size n will yield different values of en.
We next define certain properties of an estimator én of a

parameter 6, which are considered to be important.

DEFINITION 6.1.1. The estimator én is an unbiased estimator of ©
if E(§ ) = 6.
i E(Gn) ]

In words, the expected value of the random variable én is equal to

the parameter being estimated. We have seen in the previous chapter

207
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that X is an unbiased estimator of W, the expectation of the popula-
tion from which the sample has been taken, as E(X) = u. More
colloquially, a statistic én is an unbiased estimator of a parameter

B if it is equal to 8 "on the average." We have seen that

(x. - %)2

is not an unbiased estimator of 0° as E(Si) = ((n - l)/n)oz, while
82 is an unbiased estimator of 02.

The next property of an estimator concerns the behavior of the
estimator @n as n becomes large. Such a property is called an

asymptotic property of Gn.

DEFINITION 6.1.2. As estimator 6n is called a consistent estimator
of © if for any € > 0,

1im P(]8_- 8] > ¢€) = 0.
n-e

This property means that the probability that én has a value more
than € away from 6 becomes small (approaches zero) as the sample size
n is increased. Using the Chebyshev inequality, we have seen in the
previous chapter that X is a consistent estimator of u if the popu-
lation from which we are sampling has a finite theoretical variance
02.

If we write

~ 2 A A A 2
E(en -8) = E(en - E(en) + E(en) - 9)

= 58 - 88 )% + (6 - (B )°
we see that the expression E(én - 6)2, called the expected mean square
(EMS) error, can be written as

mus(8_) = Var() + (Bias<6n))2 (6.1.1)
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where 6 - E(@n) is called the bias of @n' It is straightforward
to show that if Var(8 ) » 0 ana Bias(B ) » 0 as n > =, then 6
is a consistent estimator of 6. For example consider X =

(x; +X

1 2

+ ses + Xn)/(n ~ 1) as an estimate of u for a population
with theoretical variance 02.

- 2
Var(X) = Var[ix_ 1] = [n f 1] Var(X)
22
_{_=n %%
N [n - 1] n
and
Bias(X) = u - E(X) = u - _ng
n-1
R T
n-1

Clearly Var(%X) -~ 0 and Bias(X) ~ 0 as n + », so that X is a consistent
estimator of U but not an unbiased estimator of y.

A third property of én which we shall consider is the efficiency
of one estimator én with respect to another estimator En, both esti-
mating 6. The efficiency is measured in terms of the variance of an
estimator when it is unbiased for 6. It is clear that for two un-
biased estimators, the one with the smaller variance is to be pre-
ferred, as roughly, the smaller the variance the higher the probabil-
ity that an estimator will have a value close to 6. (See Fig. 6.1.1.)

£(8,)

£(6,)

Fig. 6.1.1



210 Estimation of Parameters

DEFINITION 6.1.3. Let én and én be two estimators of 6. The

efficiency of én with respect to Gn is given by

EMS(8 )
n
5

The efficiency equals Var(én)/Var(én) if both estimators are unbiased.

DEFINITION 6.1.4. The asymptotic efficiency of én with respect to
én is given by
ms(8 )
e = 1im
o EE))

n

if this limit exists.

For example consider X and X mentioned above. From Fig. 6.1.1 we see
that BMS(X) = (n/(n - 1))%6%/m + (u/(n - 1))® ana Ws(X) = o°/n.
Hence the efficiency e(X,X) is always less than 1 as it is equal to
the ratio of the latter expected mean square to the former. The
limit e is clearly 1 here.

Let us consider finding the best linear unbiased estimator
(BLUE) of M, based on a random sample of size n from a population
with expectation ¢ and variance 02. The term linear refers to re-
stricting our attention to estimates of the form

n
L a X,

i=1 7 T
where (Xl’ X2, cees Xn) represents the observations in the random
sample. As E(Xi) = U and Var(Xi) = 0° for all i and the observations
are independent, we find

n

n n n
E(ZaX)=1(Za.lu and Var( £ a.X.) = ( ¥ a,
i=1 * 1 i=1 * i=1 * 7t i=1 *

2,2

Jo
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As the estimate is to be unbiased, Z?=
mate has the smallest variance, we must minimize Z?=

this condition. Let us write a; = 1/n + e where from Z?_

a. = 1, and as the best esti-
11 5

lai subject to
1% = b

it follows that - _e, = 0. Then
i=1"1

n n
X 8.,2= z (-—-+ e_) =
i=1 * i=1 i

Clearly this expression is minimized by setting e, = 0 for all i, so

that &, = 1/n for i =1, 2, ..., n. Thus X = z?_lxi/n is the best

linear unbiased estimator (BLUE) for u.

1.

Problems 6.1

Assume (Xl’ X2,

ceay Xn) represents a random sample of size n
from a population X with E(X) = u and Var(X) = 02. Assume also

that n is even. Consider the estimators X* and X where

n/2 Xi

* = —_—
X n/2

i=1

and X is the sample mean.

~

Show that X* is an unbiased estimator of u
(b) Find Var(X¥).
¢) Show that the efficiency e(X¥, X) is 1/2 for any even

(a

—_

integer n.

Parallel the proof of Theorem 3.6.1 (the Chebyshev inequality)

to show that

(a) P(]én - 6] >¢) f‘EMS(én)/€2 for any € > O, in both the
discrete and continuous cases, assuming EMS(@H) exists.

(b) Using Eq. (6.1.1) show that if limn+wVar(§n) = 0 and

1lim Bias(é ) = 0, then é is a consistent estimator of 6.
n>o n n

Let (Xl’ X2, cees Xn) be a random example of size n from the
population described in Problem 6.1.1

(a) Find Bias(S*g).

(b) Assuming Va.r(S*2) + 0 as n > o, show that 8*2 is a

consistent estimator of 02.
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4. Assume that a random variable X is defined by the pdf

%E—X/B for x > 0
£(x;B) =
0 elsewhere

(a) Prove that X is an unbiased estimator of B for a sample of

size n.

(p) Find Var(X) for a sample of size n.

5. Assume that a random variable X is defined by the pdf

1

5 on [0, 8]
f(x3;8) =

0 elsewhere

(a) Show that 2X is an unbiased estimator of 6 for a sample of
size n.
(b) Find Var(2X) for a sample of size n.

(¢) Show that 2% is a consistent estimator of 9.

vy

6. (Continuation of Problem 6.1.5.) Let X(n) = maxi(Xl, X2,
Xn), the maximum of a sample of size n from the distribution
described in Problem 6.1.5.

(a) Show that P(X(n) < x) = (x/8) for x [0, 8].
Show that fX(n)(x) = nxn-l/en on [0, 8] and 0 elsewhere.

)
; Find Var(X(n)) and Bias (X(n)).

)n

Use Problem 6.1.2 to demonstrate that X(n) is a consistent

estimator of 6.

(e} Find e(2%, X(n)) and the limit of this efficiency as n -+ .

T. Consider random sampling from a population with probability

function

)l—x

£(x3p) = p (1 - p x =0, 1

In other words, we observe 1 with probability p and O with prob-
ability 1 - p. These are called Bernoulli trials.

(a) What is the distribution of X = Z?=1Xi?
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(b) PFind an unbiased estimate of p and the variance of this
estimate.

(¢) Is your estimate in part (b) BLUE for p? Why or why not?

8. Assume that we are'sampling from a population of tobacco seed-
lings, of which a proportion p have green stems and a proportion
1 - p have white stems. Out of 110 germinated seedlings 76 have
green stems. What is an estimate of p? Is the estimator which

you have used unbiased and consistent? (Use Problem 6.1.7.)

6.2  ESTIMATION OF LOCATION IN SMALL SAMPLES

In the previous chapter we have considered the estimation of uy = E(X)
in the case that a large sample is taken from a population. Via the
central limit theorem, we have been able to find confidence intervals
for U, based on the normal approximation for the distribution of X
. in large samples. of course, it is often the case that for reasons
of cost, time, or ethical considerations that sample sizes cannot be
large. For example, medical experiments using primates to discover
characteristics which may be useful in the practice of medicine are
very expensive. Consideration of humane treatment of animals encour-
ages the practice of seeking the most information from "small" samples.

We consider first the estimation of the median n of a continuous
random variable. We recall that n satisfies F(n) = 0.5, where P(x)
is the cumulative distribution function of a random variable X. We
assume here that X has a unique median n. The natural point estimate
of n is given by the sample median M given in Definition 5.2.3. It
can be show that

lim P(|JM - n| >€) =0

n-roo
for any € > O, so that M is a consistent estimator of n. Here we are
interested in finding a confidence interval for n based on the order
statistics X(l)’ X(E)’ cees X(n) of a random sample of size n. A
natural confidence interval for u is given by [X(l)’ X(n)]' The

corresponding confidence coefficient is
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P(X(

1 1

) n f.x(n)) =1- P(X( n

) >n) - P(X( ) <n)

However P(X( ) > n) is the probability that all observations in the

sample exceeé the population median. As the probability that any
observation in a random sample exceeds n is 1/2, the probability that
n independent observations exceed N is the binomial probability (1/2)
Similarly P(X(n) < 1) is the probability that all obiervations are

less than the population median, which is also (1/2) Hence the

confidence coefficient associated with [X(l)’ X(n)] is 1 - 2(1/2)n.
The confidence interval which we shall use for n is given by
[X(r)’ X(n—r+l)]’ i.e., the closed interval having the rth smallest
and the rth largest observations in the random sample as endpoints.
Again the corresponding confidence coefficient may be found from the

binomial distribution by observing that

< < = - >
P(X(r) <n —X(n-r+l)) 1 2P(X(r) n)
r-1
=1-2 1 "
k=0
where P(X(r) > n) is the probability that exactly 0, 1, 2, ..., OT

r - 1 observations of the sample of size n are less than n, which is
given by the indicated binomial probability.

The program MEDIAN produces a confidence interval for the true
population median based on a sample of size n. The number of obser-
vations n, followed by the n observations should be typed in DATA
statements beginning at line 500. The program requests the value of
r in response to an INPUT statement and then prints X(r)’ X(n—r+l)
and the corresponding confidence coefficient. The observations need
not be typed in order of magnitude, as the program will order them.
Consider the batters in the National League who had the most hits in
the years 1952-1971. These are listed in Table 6.2.1. Find a con-
fidence interval for n, the theoretical median winning number of hits
per year. As indicated by the output from the program MEDIAN, [200,
218] is a confidence interval with confidence coefficient 0.988,

while [204, 215] is a confidence interval with coefficient 0.959.

n
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MEDTAN

10 REM COMPUTES A CONFIDENCE INTERVAL FOR THE MEDIAN OF A
20 REM CONTINUOUS POPULATION OF FORM X(R),X(N-R+l) WHERE
30 REM X{(I) IS THE ITH ORDER STATISTIC OF A RANDOM SAMPLE
40 REM OF SIZE N, THE CONFIDENCE COEFFICIENT IS ALSO PRINTED,
50 REM FIRST DATA POINT IS N, THE SAMPLE SIZE, FOLLOWED BY THE
60 REM OBSERVATIONS THEMSELVES BEGINNING AT LINE 500

70 REM THE SAMPLE SIZE IS LIMITED TO 100 OBSERVATIONS

80 DIM X(100)

90 READ N

100 FOR I = 1 TO N

110 READ X(I)

120 NEXT I

130 FOR J = 1 TO N-1

140 FOR I = 1 TO HN-J

150 IF X(L) <= X{(I+1) THEN 190

160 LET T=X(I+1)

170 LET X(I+1)=X(I)

180 LET X(I)=T

190 NEXT I

200 NEXT J

210 PRINT "“WHAT IS THE ";"VALUE OF R?"

220 INPUT R

230 LET Q= (0.5)"N

240 LET C=Q

250 FOR I = 1 TO R-l

260 LET Q=(N=I+1)/I*Q

270 LET C = C+Q

280 NEXT I

290 PRINT "THE ENDPOINTS ";"OF THE CONFINENCE";'" INTERVAL ARE"
300 PRINT "X (R)=";X(R),"X(N-R+1)=";X(N=R+1)

310 PRINT “THE CONFIDENCE ";'"COEFFICIENT="3;(l=-2%C)

S00 DATA 20, 194, 205, 212, 192, 200, 200, 215, 223, 190, 208
S1) DATA 230, 204, 211, 209, 218, 209, 210, 231, 205, 230

1000 END
*RUN

WHAT IS THE VALUE OF R?

75

THE ENDPOINTS OF THE CONFIDENCE INTERVAL ARE
X(R)= 200 X(N=-R+1)= 218

THE CONFIDENCE COEFFICIENT= 0,98818

*RUN
WHAT IS THE VALUE OF R?
76
THE ENDPOINTS OF THE CONFIDENCE INTERVAL ARE
X{(R)= 204 X(N=R+1)= 215"

THE CONFIDENCE COEFFICIENT= 0,95861
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LIST 490~520

00490 DATA 25

00500 DATA 42,52,41.82,41.94,40.25,42,37,44.6,42,74,43.14,41,17,41.9,46,2
00510 DATA 38.89,45.02,38.1,48.59,34.54,48.07,42.45,47.97,41.5,43,9,43.2
00520 DATA 42.02,48.3,45.9

*RUN
WHAT IS THE VALUE OF R?

78

THE ENDPOINTS OF THE CONFIDENCE INTERVAL ARE
X(R)= 41.9 X(N=R+1)= 44,6

THE CONFIDENCE COEFFICIENT= 0.95671

*RUN
WHAT IS THE VALUE OF R?
27
THE ENDPOINTS OF THE CONFIDENCE INTERVAL ARE
X(R)= 41.82 X(N=R+1)= 45,02
THE CONFIDENCE COEFFICIENT= 0.98537
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Table 6.2.1 Total Number of Hits for the National League Leaders®

Year Name Hits Year Name Hits
1952 Musial 194 1962 Davis, H. 230
1953 Ashburn 205 1963 Pinson 204
1954 Mueller 212 1964 Clemente/Flood 211
1955 Kluszewski 192 1965 Rose 209
1956 Aaron 200 1966 Alou, F. 218
1957 Schoendienst 200 1967 Clemente 209
1958 Ashburn 215 1968 Rose 210
1959 Aaron 223 1969 Alou, M. 231
1960 Mays 190 1970 Rose/Williams 205
1961 Pinson 208 1971 Torre 230

&Tnhe Official Encyclopedia of Baseball, 6th Ed. (revised).

If it is known that a population is normally distributed, then
a substantial improvement can be made in estimating U in small samples
by using a point estimate based on X. It can be shown that the
asymptotic efficiency of the median M in relation to X is given by
e = 2/m = 0.64. The asymptotic efficiency of M is thus rather low
if the population is normally distributed, but it may exceed 1 for
other distributions. Additionally, in skewed populations the popu-
lation median n may be a more informative measure of location.

The determination of the endpoints of confidence intervals for
U in small samples from a population assumed to be normally distri-
buted [X ~ N(u,02)] with 02 unknown is based on the knowledge of the

distribution of the random variable

g =X=U (6.2.1)
S/vn
The distribution of this random variable was found by Gosset who
published his work under the pseudonym of Student in 1908. The ran=-

dom variable is referred to as Student's t distribution. The
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-4 -3 2 -1 0 1 2 3 4
Student's t5 and the normal Z

Fig. 6.2.1

distribution depends upon the sample size n. If the sample is of
size n the corresponding random variable t is said to have v = n - 1
degrees of freedom. 1In Fig. 6.2.1 we present the density functions
for the t distribution with v = 5 degrees of freedom and that of the
standard normal variable. Note that the t statistic in Eq. (6.2.1)
is similar to a standardized mean, where the unknown parameter ©
has been replaced by the estimator S. Roughly one can say that the
t distribution has greater probability in the "tails" than the stan-
dard normal Z, but less probability near zero. The probability
density function is symmetric about 0, as in the case of the standard
normal variable Z. As the sample size becomes arbitrarily large
(n >~ @), the percentiles of the Student t distribution approach those
of the standard normal distribution. This is not surprising as S is
a consistent estimator of o.

We will denote by ta,v the number exceeded with probability a
in the t distribution with v degrees of freedom. From Table B.II we
see that to.o5,h = 2.132 [that is, P(th > 2.132) = 0.05],
1.812, and t0.05,m = Z.05

find the endpoints of confidence intervals in the same way that was

*.05,10 =
= 1.645. The t distribution is used to

described in Sec. 5.5 for large samples, where the standard normal

distribution was used. We assume that we observe n independent

observations (Xl, X2, vees Xn) from a parent population X ~ N(u,o2

Then

).

P(|t y=1-a

<
ne1l < tojoono
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or

P(J(X - w)/s/va| < t )=1l-a

o/2,n~1
This statement can be rewritten as

P(X - (8/vn)t <u <X+ (s/vVa)t y=1-a

a/2,n-1 0/2,n-1

Hence a confidence interval for u is given by the interval
(X - (SA/n)ta/2,n-l’ X + (sAfn)ta/z,n_l)

Again the probability 1 - o is associated with the method of con-
structing the interval and not with a single observed interval. Note
that the length of the interval 2(S//ﬁ)ta/2’n_l is a random variable
since S is random, so that two intervals with the same confidence
coefficient and the same sample size will not have the same length

as in Sec. 5.5.

The program TCONFINF produces a confidence interval for u, where
it is assumed that one obtains a random sample of size n from a popu-
lation X ~ N(u,cg). It is assumed that e is not known. The sample
observations are placed in DATA statements in line 600 and following.
The program requests the sample size N as input and the value of the
confidence coefficient (90, 95, or 99%). The program prints as out-
put the endpoints of the confidence interval, the mean of the sample
data, and the standard deviation of the sample data. The maximum
sample size 1s 50. For larger sample éizes, the program CONFINT may
be used.

As an example, suppose that the following are 25 measurements of
the heights in inches of kindergarten boys in September of the school
year: k2,52, 41.82, 41.94%, 40.25, 42.37, Wh4.6, h2.7h, 43,14, 41.17,
b1.9, k6.2, 38.89, Lk5.02, 38.1, 48.59, 34.54, 4B.OT, b2.45, 47.97,
4b1.5, 43.9, 43.2, 42.02, 48.3, 45.9. The program TCONFINT has been
run to find a 95% confidence interval for u, the true average height
of the population of such boys. The interval is found to be (41.71,
W, L6), with x = 43,09 and s
sampled had a true mean of u = 43 and 0 = 2.5. The program MEDIAN

3.34. The actual normal population

has also been run to find an approximate 95% confidence interval for
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TCONFINT

10 REM PROGRAM CALCULATES A 90,95 OR 99 PERCENT CONFIDENCE
20 REM INTERVAL FOR THE TRUE MEAN OF A NORMAL DISTRIBUTION
30 REM ASSUMING THAT THE VARIANCE OF THE POPULATION IS

40 REM UNKNOWN, PUT DATA IN 600 AND FOLLOWING. THE MAXIMUM
50 REM NUMBER OF OBSERVATIONS IS 50. OTHERWISE USE CONFINT.
60 PRINT "WHAT IS THE “;"VALUE OF N?"

70 INPUT N

80 PRINT "WHAT IS CONFIDENCE";" COEFFICIENT? *“;"90,95 OR 997"
90 INPUT C

92 IF C = 90 THEN 105

94 IF C = 95 THEN 105

96 IF C = 99 THEN 105

98 PRINT "INCOREECT FORMAT";" TRY AGAIN"

100 GO TO 90

105 GOSUB 300

110 DIM X(50),T(50),U(50),V(50)

120 FOR I = 1 TO N

130 READ X(I)

140 LET S = S+X(I)

150 LET S1=S1+X(I)~2

160 NEXT I

170 LET X1=S/N

180 LET $2=SQR((S1=-N*X172)/(N~1))

190 PRINT "A ";C;" PERCENT CONFIDENCE";'" INTERVAL ';"FOR MU Is"
200 IF C =90 THEN 230

210 IF C=95 THEN 240

220 IF C=99 THEN 250

230 LET L =X1=-S2/SQR(N)*T(N~1)

232 LET U = X14S2/SQR(N)*T(N-1)

234 PRINT "L= ";L,"U= ";U

236 PRINT "SAMPLE MEAN= “;X1,“SAMPLE STD DEV = ";S2

238 GO TO 1000

240 LET L=X1-S2/SQR(N)*U(N~-1)

242 LET U=X14S2/SQR(N)*U(N=-1)

244 PRINT “L= "3L,"U= “;U

246 PRINT “SAMPLE MEAN= ";X1,"SAMPLE STD DEV = “;S2

248 GO TO 1000

250 LET L=X1-S2/SQR(N)*V(N-1)

252 LET U=X1+4+S2/SQR(N)*V(N-1)

254 PRINT "L= *j;L,"U= “;U

256 PRINT “SAMPLE MEAN= ";X1,"SAMPLE STD DEV = ";S2

258 GO TO 1000

300 FOR I = 1 TO 50

310 READ T(I)

320 NEXT I

330 FOR I = | TO 50

340 READ U(I)

350 NEXT I

360 FOR I = 1
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LIS 360~1000

00360FOR I = 1 TO 50
00370READ V(I)

00380NEXT I

00390RETURN

00400DATA 6,3138,2,9200,2.3534,2.1318,2,0150
00405DATA 1.9432,1.8946,1.8595,1,8331,1.8125
00410DATA 1.7959,1.7823,1.7709,1.7613,1.7531
00415DATA 1.7459,1.7396,1.7341,1,7291,1.7247
00420DATA 1.7202,1.7171,1.7139,1,7109,1.7081
00425DATA 1.7056,1.7033,1.7011,1.6991,1.6973
00430DATA 1.6955,1.6939,1.6924,1.6909,1.6896
00435DATA 1.6883,1.6871,1.6860,1,6849,1.6839
00440ODATA 1.6829,1,6820,1,6811,1,6802,1,6794
00445DATA 1.6787,1.6779,1.6772,1,6766,1,6759
00450DATA 12.7062,4,3027,3.1824,2.7764,2.5706
00455DATA 2.4469,2.3646,2,3060,2.2622,2.2281
00460DATA 2.2010,2.1788,2.1604,2,1448,2,1315
00465DATA 2.1199,2.1098,2.1009,2.0930,2.0860
00470DATA 2.0796,2,0739,2,0687,2,0639,2,0595
00475DATA 2.0555,2.0518,2,0484,2,0452,2.0423
00480DATA 2.0395,2.0369,2.0345,2,0322,2.0301
00485DATA 2.0281,2,0262,2,0244,2,0227,2,0211
00490DATA 2.0195,2.0181,2.0167,2.0154,2.0141
00495DATA 2.0129,2.0117,2.0106,2.0096,2.0086
00S500DATA 63.6574,9.9248,5.8409,4.6041,4.0322
00505DATA 3.7074,3.4995,3.3554,3.2498,3.1693
00510DATA 3.1058,3.0545,3.0123,2,9768,2.9467
00515DATA 2.9208,2.8982,2.8784,2.8609,2.8453
00520DATA 2.8314,2,8188,2.8073,2,7969,2.7874
00525DATA 2.7787,2.7707,2.7633,2.7564,2.7500
00530DATA 2.7440,2,7385,2,7333,2,7284,2.7238
00535DATA 2.7195,2.7154,2.7116,2.7079,2.7045
00540DATA 2.7012,2.6981,2.6951,2.6923,2.6896
00545DATA 2.6870,2,6846,2,6822,2.6800,2.6778
00600DATA 42.58,41.82,41,94,40.25,42.37,44,6,42.74,43,14,41,17,41,9,46,2
00610DATA 38.89,45.02,38.1,48.59,34.54,48,07,42.45,47.97,41.5,43.9,43,2
00620DATA 42.02,48.3,45.9

O1O0O00END

*RUN

WHAT IS THE VALUE OF N?

225 .

WHAT IS CONFIDENCE COEFFICIENT? 90,95 OR 99?
795

A 95 PERCENT CONFIDENCE INTERVAL FOR MU IS
L= 41.7097 U= 44,4631

SAMPLE MEAN= 43,0864 SAMPLE STD DEV = 3.33531
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n = u. The interval is found to be [41.9, L4.6] with confidence
coefficient 0.957. In this case, this interval compares favorably
with that obtained from TCONFINT. Its length is 2.7 compared with
2.75 for the interval based on the t distribution.

Problems 6.2

1. {(a) Verify that for X ~ B(n;1/2) that P(X < r - 1) =
P(X>n-r+1).
(b) For a random sample of size 25 from a continuous population,
find the confidence coefficient associated with the interval

[X(B)’ X(lB)] used as a confidence interval for 7

2. The following is a random sample of the March kilowatt usage of
10 households in Florida: 780, 820, 960, 750, 850, 1040, 620,
930, 2400, 800.

(a) Find a 97.86% confidence interval for the true median house~
hold power consumption.

(b) Find a 89.06% confidence interval for this median.

3. Find the values of the following:

(@) 5 05,17° t0.95,16" %0.01,5° t0.01,20" ¥0.01,%
(b) P(t9 > 1.833), P(t3 < -3.182), P(tll < 2.718),
P(t, > 1.960), P(t_ > 1.282), P(t < 1.6L45)

4, The homerun leaders in the National League over a 20-year period
are given in Table 6.2.2.
(a) Find a 95.9% confidence interval for n, the true median
winning number of homeruns.
(b) Assuming normality of these observations find a 95% confi-
dence interval for u, the true avérage winning number.

(¢) Which of these intervals do you prefer. Why?
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Table 6.2.2 Homerun Leaders 1952—19Yla

Year Name Number Year Name Number
1952 Kiner/Sauer 37 1962 Mays 49
1953 Mathews L7 1963 Aaron/McCovey Ly
1954 Kluszewski 49 1964 Mays L7
1955 Mays 51 1965 Mays 52
1956 Snider L3 1966 Aaron Ly
1957 Aaron Ly 1967 Aaron 39
1958 Banks L7 1968 McCovey 36
1959 Mathews 46 1969 MeCovey 45
1960 Banks 41 1970 Bench 45
1961 Cepeda L6 1971 Stargell 48

&rhe Official Encyclopedia of Baseball, 6th Ed. (revised).

5. The average hourly earnings of production workers in manufactur-
ing industries in 15 eastern and southeastern states as of

November 1975 are given below¥:

State Earnings State Earnings
Connecticut 4.89 New Jersey 5.06
Deleware 5.40 New York Lk.99
Florida 4,11 North Carolina 3.62
Georgia 4.00 Pennsylvania 5.10
Maine 3.95 Rhode Island 3.90
Maryland 5.16 South Carolina 3.72
Massachusetts 4.59 Vermont 4.18
New Hampshire 4,05

(a) Find a 90% confidence interval for U, the true average

hourly earnings in these states assuming normality.

¥Source: The Handbook of Economic Statistics, January 1976.
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(b) Find an approximate 90% confidence interval for n, the true
median hourly earnings in these states.

(c) Which interval would you prefer. Why?

6. Suppose that the IQ scores of a large group of children can be
considered to be normally distributed. A sample of 25 such
children yielded a sample IQ of 114.2 and a sample standard de-
viation of 12.1.

(a) Find 95 and 99% confidence intervals for the true average
1Q of children in this group.

(b) Is it reasonable to suppose that the true average I1IQ of this
group of children is 1007

T. The following data give per capita income in 12 north central

states in 1972%:

State Income State Income
Iillinois 5140 Missouri L4293
Indiana 4366 Nebraska 4355
Iowa 4300 North Dakota 3738
Kansas L4455 Ohio 4534
Michigan L8B1 South Dakota 3699
Minnesota L4298 Wisconsin L2s5

Find an approximate 95% confidence interval for 1, the true

median per capita income of states in this region in 1972.

8. The periods of 29 comets due to return in the period 1975-1978

are given below¥:

Period in Period in
Name years Name years
Arend T7.98 Grigg-Skjellerup 5.12
Perrine-Mrkos 6.72 Encke 3.30
Gunn 6.80 Temple I 5.50

¥Source: The World Almanac and Book of Facts, 1975.
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Wolf 8.43 Arend-Rigauk 6.84
Churyumoa- 6.55 Temple II 5.26
Gerasimenko

Harrington-Abell T.19 Wolf-Harrington 6.55
Schaumasse 8.18 Whipple T.47
Kiemola 11.00 Tsuchinshan I 6.64
d'Arrest 6.23 Comas-Sola 8.55
Pons-Winnecke 6.3k Daniel 7.09
Kojima 6.19 Ashbrook-Jackson 7.43
Johnson 6.77 Tsuchinshan II 6.80
Dutoit-Neujmin 6.31 Jackson-Neumin 8.39
Kopff 6.42 VanBiesbroeck 12.41
Faye 7.39

Assuming normality of the observations, find a 95% confidence

interval for U, the true average period of such comets.

Exercises 6.2

1. Use the program MEDIAN to find an approximate 95% confidence
interval for the median income for the population sampled in

Exercise 5.2.3. {(Note: n = 50.)

2. (a) Use the program TCONFINT to find a 95% confidence interval
for the true average height of the population sampled in
Exercise 5.2.2. {Note: n = 50.)

(b) Use MEDIAN and the above sample data to find a 95% confidence
interval for this true average height. Compare with the

interval in part {(a).
3. For large n, if X ~ B{n;0.5), then
»

P

B(X < 1) X-n/2<r+0.5—n/2J

/2 T /a2

Hence to attain P(X < r) = /2 we use (r + 0.5 - n/2)/vn/2 =
_Za/2 or r = [n/2 - 0.5 - (/5/2)Za/2], where [ ] represents the

greatest integer function. Use this fact to write a program to
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obtain an approximate 90, 95, 98, or 99% confidence interval for
N in the large sample case. The value of 1 - o and n should be

input. The observations should appear in DATA statements.

6.3  ESTIMATING 02, THE POPULATION VARIANCE

We have seen in Chap. 5 that 02 is estimated unbiasedly by the sta-
tistic SZ. Additionally, it has been stated that in sampling from a
population described by the random variable X, that for any € > 0

lim P(ls2 - 02| >e)=0

n-ree
providing E(Xu) is finite. 1In this case 82 is a consistent estimator
of 0°. In large samples one can reasonably use 82 as an estimator of
02 appealing to these properties. It is possible if we make addi-
tional assumptions about X to obtain confidence intervals for 02.
We treat this question here.

Confidence intervals can be obtained only if we have knowledge
of the distribution of the estimating statistic. 1In the case that
we sample from X ~ N(u,cz), X is an estimate of py. It was stated
that (X - u)/S/va had Student's t distribution with n - 1 degrees of
freedom. Here we introduce an important random variable known as
the X2 or chi-square random variable, which will permit us to obtain
confidence intervals for 02 based on a random sample from a normal

population.

DEFINITION 6.3.1. A random variable having a gamma distribution

with parameters 0 = V/2 and B = 2 is called a chi-square variable

with v degrees of freedom. Such a random variable is denoted by sz.

From the properties of the gamma random variable we see that

2
V
example of the pdf for the chi-square random variable with v = L4

E(sz) =08 =V and Var(yx ") = a82 = 2v. Figure 6.3.1 gives an
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Chi~square Density Function for » =4

Fig. 6.3.1

degrees of freedom. The chi-square variable takes on only nonnega-
. oy s . 2

tive values as it is a gamma variable. We denote by Xo v the number
3

satisfying

Table B.III (Appendix B) gives values of these percentiles. For
example, we see that Xg.05,h = 9.49 and XS.O5,20 = 31.h1.

For large v it is true that (Xv - V)/V/2v, the standardized chi-
square variable, is approximately distributed as the standard normal
variable. It turns out that /Eizg-- /2v - 1 is also approximately
distributed as the standard normal variable for large v and that the
normel approximation is better. Hence for large v we can find values

2
of xa,v as follows:

a=P(z > za) = P(/2xv2 -Yov -1 > Za)

Hence we obtain

P(X\)2 > (Vv - 1 + Za)2/2) = q
or
Xyy = (/Y -1+ z)%/2 (6.3.1)

For example,

2 . 25 -
X0.05,60 - (/119 + 1.645)/2 = 78.798
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The following theorem, stated without proof, can be used to find

a confidence interval for 02.

THEOREM 6.3.1. 1If a random sample of size n is taken from ¥ ~ N(u,o2

then

)s

(n - 1)82 Xi
c2 -1
i.e., this random variable has the chi-square distribution with n - 1

degrees of freedom.

This theorem permits the determination of the endpoints of a
confidence interval for X2: assuming we are sampling from a normal
distribution. Consider the statement

2 2 2 _
P(Xq_q/o,n-1 < Xpo1 S Xqjo,pe1) =1 -0

or
2
2 (n - 1)8 2
& —_—— = -
P/, n-1 2 2 S Xgj2,p-1) L0
This may be rewritten as
2 2
P(%_lls._ig‘?i(lé-—l)s):l_a
Xo/2,n-1 X1-a/2,n-1

This interval provides a (1 - a)100% confidence interval for 02.

If one takes the square roots of the endpoints of this interval, it
is clear that we will obtain a (1 - ®)100% confidence interval for
ag.

The program VCONFINT computes a 95% confidence interval for 02,
assuming the population sampled is normally distributed. The end-
points of the confidence interval are based on the chi-square distri-
bution using the expressions given in the previous paragraph. If
n > 46, the approximation given in Eq. (6.3.1) is used to find

2 2 . s
X0.025,n-l and X0.975,n—l' The observations in a sample should be
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VCONFINT

10 REM PROGRAM CALCULATES A 95 PERCENT CONFIDENCE
20 REM INTERVAL FOR THE VARIANCE AND STANDARD DEVIATION

30 REM OF A NORMAL POPULATION. PUT DATA IN 500 AND FOLLOWING

40 PRINT “WHAT IS THE ";"VALUE OF N?"

50 INPUT N

60 DIM C(50),D(50)

70 GOSUB 350

80 FOR I = 1 TO N

90 READ X

100 LET S1=S1+X"2

110 LET $=S+X

120 NEXT I

130 LET S2= (S1l=-S~2/N)/(N~-1)

140 LET S1=SQR(S2)

150 PRINT ™A 95 PERCENT “;"CONFIDENCE INTERVAL ";"FOR THE POPULATION"
160 PRINT “VARIANCE IS"

170 IF N > 46 THEN 290

180 LET L = (N=1)*S2/D(N-1)

190 LET U = (N-1)*S2/C(N~1)

200 PRINT “L = ";L,"U = ";U

210 PRINT "A 95 PERCENT ";“CONFIDENCE INTERVAL “;"FOR THE POPULATION"
220 PRINT “STANDARD DEVIATION IS"

230 LET L = SQR(L)

240 LET U = SQR(U)

250 PRINT "L = “;L,"U = ";U
255 PRINT
260 PRINT “SAMPLE MEAN = ";S/N,"SAMPLE VARIANCE = ";S2

270 PRINT "SAMPLE STD. ";"DEVIATION = ";SI
280 GO TO 1000

290 LET Cl=(SQR(2*N-3)-1.96)"2/2

300 LET C2=(SQR(2*N-3)+1,96)72/2

310 LET L = (N-1)%S82/C2

320 LET U =(N~1)*S2/C1

330 GO TO 200

350 FOR I = 1 TO 45

360 READ C(IL)

370 NEXT 1

380 FOR I = 1 TO 45

390 READ D(I)

400 NEXT I

410 RETURN

420 DATA 0.001,0.051,0.216,0.484,0,831

425 DATA 1.237,1.690,2,180,2,700,3.247

430 DATA 3.816,4,404,5.009,5.629,6,262

435 DATA 6.908,7.564,8.231,8.907,9.59!

440 DATA 10.283,10.982,11.689,12.401,13.120
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00450DATA 17.539,18.291,19,047,19.806,20.569

00455SDATA 21.336,22.106,22.878,23.654,24.,433

00460DATA 25.215,25.999,26.785,27.575,28.366

00465DATA 5.024,7.378,9,348,11,143,12,833

00470DATA 14.449,16.01%,17.535,19.023,20.483

00475DATA 21.920,23.337,26,736,26,119,27,488

00480DATA 28,845,30,191,31,526,32.852,34.170

00485DATA 35.479,36.781,38.076,39.364,40.646

00490DATA 41.923,43,194,64,461,45,722,46,979

00495DATA 48.232,49.480,50.725,51.966,53.203

00500DATA 54.437,55,668,56,896,58.120,59.342

00505DATA 60.561,61,777,62,990,64.201,65.410

00600DATA 16.28,15.45,15.38,16,04,16.35,16,08,16.12,16.58
0061 0DATA 16,42,16,46,16.42,15.41,15.54,15.67,15.04,16.62
00620DATA 15.9,15,95,15,67,16,04

01000END

*RUN
WHAT IS THE VALUE OF N?
720
A 95 PERCENT CONFIDENCE INTERVAL FOR THE POPULATION
VARIANCE IS
L = 0.11846 U = 0.43692
A 95 PERCENT CONFIDENCE INTERVAL FOR THE POPULATION
STANDARD DEVIATION IS
L = 0.34418 U = 0.661

SAMPLE MEAN = 15.971 SAMPLE VARIANCE = 0.20482
SAMPLE STD,., DEVIATION = 0.,45258
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entered in DATA statements beginning at line 600. The sample size

is requested when the program is run. Let us assume that the follow-
ing are 20 weights of "1-1b" bags of flour in ocunces: 16.28, 15.45,
15.38, 16.04, 16.35, 16.08, 16.12, 16.58, 16.42, 16.46, 16.42, 15.41,
15.54, 15.67, 15.04, 16.62, 15.90, 15.95, 15.67, 16.04. As the out-
put shows, a 95% confidence interval for 02 is given by (0.118, 0.437)
and for ¢ by (0.3L4L4, 0.661). 1In this case, the true value of 02 =
0.25, which is covered by the first'interval.

Problems 6.3

. . 2 2
1. Find the values of the following: (a) XO.OS,l; () XO.95,M; and

2
(e) X5.99,8°

2. Find the following probabilities:
2

(b) P(xé > 1.635)
(e) Bl < 15.507)

() P(Xfo_g 20.483)

()

5 and

3. Use Eq. (6.3.1) to approximate (a) Xg 95,85

(e)

2
2 X0.05,85
X0.50,113"

4. Assuming the validity of Theorem 6.3.1, show that this implies
E(SE) = 02 in the case of a random sample of size n from a normal

distribution.

5. Assume that the observations given in Problem 6.2.4 of the number
of homeruns by the National League leader from 1952-1971 inclusive
can be assumed to be normally distributed.

(a) Find a 95% confidence interval for 02, the true variance of
the number of homeruns of the leader.

(b) Find a 95% confidence interval for o.
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6. Assume the observations in Problem 6.2.5 of the hourly earnings
of manufacturing workers in 15 eastern and southeastern states
are normally distributed with expectation W and variance 02.
(a) Find a 90% confidence interval for 02.

(b) Find a 90% confidence interval for o.

7. Take the observations of the periods of comets in Problem 6.2.8
to be normally distributed, that is, X ~ N(u,02). Find 95%

confidence intervals for 02 and 0.

8. Assume that the lengths of legal bass caught in a certain lake
are distributed as X ~ N(u,o2). Suppose a random sample of 17
bass yields x = 14.1 in. and s = 1.20 in. Find 95% confidence

intervals for u, 02, and 0.

Exercises 6.3

1. Use VCONFINT with the height data for the 25 boys given in Sec.
6.2 to find 95% confidence intervals for 02 and 0. Does the

latter interval contain the true value of 0 = 2.57

2. Use VCONFINT with the height data given in Exercise 5.2.2 to

find 95% confidence intervals for 02 and o.

6.4  ESTIMATION OF 0 IN A NORMAL POPULATION

A number of statistics have been suggested as estimators of ¢ in a
normal population. The estimator S is not an unbiased estimator of
g, but it is a consistent estimator of ¢. The sample range, properly
standardized, is used in practice to estimate 0 unbiasedly. This
estimator is of the form R/c(n), where c(n) is a function of n sat-
isfying E(R/c(n)) = 0. Its efficiency in relation to the standard
deviation decreases rapidly with n. For n =2, e

= 0.850; while for n = 20, e

=1; for n = 10,
R,S
°R,S R,S ~ 0.700 (Dixon and Massey, 1969).
Additionally, this estimator is quite sensitive to the normality

assumption.
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Many recent papers have been devoted to estimates of 0 based on

linear combinations of the order statistics (X( X

ceey X .
1) X2y oo Xy
The estimate based on the range is of this form. Downton (1966) has

suggested the estimator

A 2/ .
o= 2o - 1) iil(l - 0.5(n + l))X(i)

. . ~ 2
which is an unbiased estimator of O with variance V(o) = 0“A(n) where

A(n) = “——j;——y {n(%-+ 2/3 - L) + (6 - W/3 + %g}

n{n + 1

Using the measure of efficiency EMS(S)/EMS(G) = ea’s, the efficiency
of this estimator with respect to S is never less than 0.97, for any
sample size, and hence it is a reasonable estimate of ¢. Additionally,
since (0 - 0)/YA(n)o is approximately distributed as the standard

normal distribution for moderate and large n, we find

A

[ .
P(-Z,,p S——2<2,,,) *1-a
a/2 vﬁiﬁjb a/2
or equivalently,
P(-—————JZ——————-< o] f_——————il——"———) =1 -aqa

1+ Za/z/A(n) - 1- Za/gv/A(n)

Thus we can obtaln a confidence interval for ¢ using this estimator.

The program SCONFINT, which is similar to VCONFINT, provides
the value of the Downton estimator O and for n > 20 provides a 90,
95, or 99% confidence interval for 0, assuming the sample is from a
normal distribution. The observations should be entered in DATA
statements beginning at line 500, again the sample size is requested
when the program is run. Using the weights of the "1-1b" bags of
flour in the previous section we obtain & = 0.468 with a 95% confi-
dence interval of (0.354, 0.692). This compares with s = 0.453 and
the interval (0.344, 0.661). As the true value of 0 = 0.5, the

estimator O compares favorably with S in this case.
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SC

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
285
290
300
310
315
318
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
465
470
480
500
510
520
100
*

ONFINT

REM THIS PROGRAM COMPUTES DOWNTON:S ESTIMATOR OF

REM THE STANDARD DEVIATION OF A NORMAL POPULATION BASED
REM ON A SAMPLE OF SIZE N AND A CONFIDENCE INTERVAL IF N>=20
REM DATA SHOULD BE ENTERED IN DATA STATEMENTS BEGINNING
REM AT LINE 500. IF N>100 CHANGE DIMEN STATEMENT AT 80
PRINT “WHAT IS THE “;"VALUE OF N?"

INPUT N
DIM X(100)
FOR I = 1 TO N

READ X(I)

NEXT 1

FOR J = 1 TO N-l

FOR I = 1 TO N-J

IF X(I) <= X(I+l1) THEN 180

LET T = X(I+l)

LET X(I+1)=X(I)

LET X(I)=T

NEXT I

NEXT J

FOR I = 1 TO N

LET C = (I-(N+1)/2)*X(1)+C

NEXT I

LET C = 2/(N*(N-=1))*SQR(3.14159263)*C

PRINT “THE VALUE OF ";"THE DOWNTON ESTIMATOR IS "“;C
LET A =N*(3.14159263/3+2%SQR(3)~4)+(6~4*SQR(3)+3.14159263/3)
LET A = A/(N*(N-1))

IF N < 20 THEN 1000

PRINT "DO YOU WISH ";"A CONFIDENCE INTERVAL";" FOR SIGMA?"
PRINT "PLS ANSWER 0 IF NO AND 1 IF YES"

INPUT Al

IF Al=1 THEN 320

IF Al=0 THEN 1000

PRINT “INPUT ERROR";" PLEASE ANSWER 1 IF YES AND 0 IF NO"
GO TO 280

PRINT "CONFIDENCE COEFFICIENT ";"90,95 OR 992"

INPUT C1

IF Cl=90 THEN 390

IF Cl=95 THEN 410

IF Cl = 99 THEN 430

PRINT "INPUT ERROR™;" TRY AGAIN"

GO TO 320

LET Z = 1.645

GO TO 440

LET Z =1.960

GO TO 440

LET Z = 2,576

LET L = C/(1+Z*SQR(A))

LET U = C/(1-2*SQR(A))

PRINT “A ";Cl3"PERCENT “;"CONFIDENCE INTERVAL"

PRINT “FOR SIGMA IS"

PRINT

PRINT “L= “;L,"U= ";U

DATA 16.28,15.45,15.38,16.04,16.35,16,08,16,12,16,58
DATA 16.42,16.46,16.42,15.,41,15.54,15,67,15.,04,16.62
DATA 15.90,15.95,15.67,16.04

0 END


https://15.90,15.95,15.67,16.04
https://16.42,16.46,16.42,15.41,15.54,15.67,15.04,16.62
https://16.28,15.45,15.38,16.04,16.35,16.08,16.12,16.58
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RUN
WHAT IS THE VALUE OF N?

720
THE VALUE OF THE DOWNTON ESTIMATOR IS 0.46802
DO YOU WISH A CONFIDENCE INTERVAL FOR SIGMA?
PLS ANSWER O IF NO AND 1 IF YES

21
CONFIDENCE COEFFICIENT 90,95 OR 99?7

290
A 90 PERCENT CONFIDENCE INTERVAL

FOR SIGMA IS

L= 0.36811 U= 0.64237

*RUN

WHAT IS THE VALUE OF N?
720

THE VALUE OF THE DOWNTON ESTIMATOR IS 0.46802
DO YOU WISH A CONFIDENCE INTERVAL FOR SIGMA?
PLS ANSWER 0 IF NO AND I IF YES

71

CONFIDENCE COEFFICIENT 90,95 OR 997

295
A 95 PERCENT CONFIDENCE INTERVAL

FOR SIGMA IS

L= 0.35365 U= 0.69172
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Problems 6.4

1. Assume that the observations in Problem 6.2.5 of the hourly
earnings in 15 states are normally distributed with expectation

U and variance 02. Compute the Downton estimator of 0.

2. Assume the per capita income in the 12 north central states
given in Problem 6.2.7 is normally distributed. Compute the

Downton estimator of o.

Exercises 6.4

1. Use SCONFINT with the height data for the 25 boys given in Sec.
6.2 to find a 95% confidence interval for ¢ and the Downton
estimator 8. Compare this interval with the corresponding out-
put from VCONFINT. Compare the values of G and s. Does the

interval computed here contain the true value ¢ = 2.5?

2. Use SCONFINT with the height data given in Exercise 5.2.2 to find
a 95% confidence interval for ¢ and the Downton estimator a.

Compare the output of SCONFINT with that of VCONFINT.

3. Assume that the numbers of hits gotten by the National League
leaders in the period 1952-1971 can be considered to be normally
distributed (Table 6.2.1). Estimate 0 and find a 95% confidence
interval for ¢ using SCONFINT.

6.5 ESTIMATION OF A POPULATION PROPORTION p

It is often of interest to estimate the proporticn of a population
having a certain characteristic. We may wish to know the proportion
p of a population in favor of a certain governmental policy. For
example, the proportion of voters in a state in favor of a state
lottery. In manufacturing, the proportion of defective items pro-
duced by a machine is important. We generally assume that a sample
of size n can be considered to constitute independent trials. We

observe Xi = 1 if the ith selected item has the characteristic and
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10 Xpe ey Xn) of zeros and
ones is observed, where the common distribution of the Xi is P(Xi = 1)

Xi = 0 if it does not. The vector (X

= p and P(Xi =0)=1-p=gq. This is, of course, the observation
of n binomial trials. A natural estimator of p is P = Z?=1Xi/n.
This is just a particular case of observing X so that § is an unbiased

and consistent estimator of p:

Ep) =p Var(p) = Va_r(%) - b(l-p)

as X ~ B(n;p). Additionally, by the central limit theorem

A

. R-pP

vp(1 - p)/n
is approximately distributed as the standard normal variable for
large n.

This latter fact is important in finding confidence intervals

for p in large samples. We have

P(]z|5za/2)=1-a
so that
P(—2=2 <z jyz1-a (6.5.1)
/p(1 - p)/n o/2
which may be rewritten in the form
~ _ 7p(1 - p) A, /p(1 - p) P
P(P o Zyp SPIPH > Za/z) 1-ao

In the last expression, we obtain endpoints of a confidence interval
for p with confidence coefficient 1 - o. However these expressions
still depend upon p. We define S5 = yp(1 - P)/n and obtain an approxi-

mate (1 - ©)100% confidence interval
~ A p(1 - B)
P t sAaZ or p+—P—-——LZ
pu— 2 p—
P a/ /o o/2
For example, suppose that we wish to estimate the proportion of voters

in favor of a state lottery. We find 14L or 400 randomly selected
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voters in favor of the lottery. Here P = 144/400 = 0.36 and sﬁ =
v0.36(0.64)/L00 = 0.024. Hence an approximate 90% confidence interval

for p is given by

0.36 + 0.0247 = 0.36 + 0.024{1.6L5)

0.05
or by [0.321, 0.399]. Apparently the chances are high that the
lottery would not be approved in a referendum.

In the 1976 presidential election, the final Gallup interviews
were made from October 28 to October 30. From a sampling of 3439
registered voters, 1926 of those who were "most likely to vote'" were
selected. The estimated proportion of these favoring President Ford
was 0.49 and favoring Jimmy Carter was 0.48. Ninety-five percent

confidence intervals fro these population proportions are

0.49(0.51)
e (1.96)

that is, (0.468, 0.512)

0.48 + /Qiﬁgé%gégl-(l.96)

that is, (0.L458, 0.502)

0.490 + 0.022

and

0.48 *+ 0.022

As can be seen from these confidence intervals it was not possible
to predict the election winner in advance in that year. Of course
in the final tabulation Jimmy Carter had a higher percentage of the
popular vote than President Ford.

In the case of intermediate size n, say (20 < n < 100), the
expression (6.5.1) can be used to find a more exact confidence inter-
val for p. We have from Eq. (6.5.1)

)2p(1 - p)

(5 )2 < (Za/2

or


https://o.48(0.52
https://jo�i~2~.51
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Hence the roots of this quadratic in p are endpoints of an approximate

(1 - &)100% confidence interval for p. These are found to be

a 2 ~ ~ 2 2
D+ Za/2/2n :-Za/2 vp(1l - B)/n + Zq[g/hn

2
+
1 Za/2/n

(6.5.2)
Notice that for 1 if w lect the terms 22 /n 22 /2n
otice a, or arge n, 1 € neglec 0./2 N 0./2 N

and Zi/z/hnz, we obtain the interval

(6.5.3)

B i.Za/gsﬁ
as before.

The program PCONFINT has been written to calculate the endpoints
of a confidence interval for p using the expression (6.5.2). An
elementary statistics class of 105 students was asked to respond to
the question: "Do you believe that students majoring in your major
subject should be required to take a statistics course?" The number
of "Yes" responses was 38. A 95% confidence interval for p, the
population proportion of affirmative responses is given by the pro-
gram PCONFINT to be [0.276, 0.457]. The corresponding 95% confidence
interval using expression (6.5.3) is [0.270, 0.454], so that the
intervals differ slightly in this case.

Another question of importance in estimating population propor-
tions is the necessary sample size to achieve a good estimate. We
shall require that P(]p - B| < §) > 1 - a, where § is a preassigned
maximum tolerance of the absolute error in estimating p by § that we
are willing to accept. The probability 1 - a is a preassigned (high)
probability that the absolute error of the estimate be no more than

8. From Eq. (6.5.1) we have
1-a=>p|p-3]|< 1 - p)

Hence by choosing n to satisfy

§ = Eil;:_Elz or n¥* = [ELL_:_EJZQ 1+ 1
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165
170
175
180
185
190
195
200
220
230
240
250
260
270
280
290
300
310
320
*RU
WHA

71
HOW

73
WHA

279
PRO
A

L=

PCONFINT

REM THIS PROGRAM CONPUTES AN 80,90,95,98 OR 99 PERCENT
REM CONFIDENCE INTERVAL FOR P, A POPULATION PROPORTION
REM BASED ON A SAMPLE OF SIZE N WITH X “SUCCESSES"
PRINT "WHAT IS SAMPLE “;“SIZE?"
INPUT N
PRINT "HOW MANY SUCCESSES?"

INPUT X
PRINT “WHAT IS "“;"CONFIDENCE COEFFICIENT *;"80,90,95,98,0R 992"
INPUT C

IF C = 80 THEN 160

IF C =90 THEN 170
IF C =95 THEN 180
IF C =98 THEN 190

IF C =99 THEN 200

PRINT “INCORRECT FORMAT";" TRY AGAIN"
GO TO 90
LET K =1,282
GO TO 220

LET K=1.645
GO TO 220

LET K = 1.96
GO TO 220

LET K =2,236
GO TO 220

LET K= 2,576

LET P =X/¥

LET L =(P+K"~2/(2*#N))=K*SQR(P*(1=P)/N+K"2/(4*N"2))

LET U =(P+K~2/(2%N))+K*SQR(P*(1-P)/N+K~2/(4*N"2))

LET B8 = (1+K72/W)

LET L =L/B

LET U= U/B

PRINT “PROPORTION OF *“;"SUCCESSES= '‘;P

PRINT ™A ";C;'" PERCENT CONFIDENCE "“;"“INTERVAL FOR P IS"
PRINT

PRINT L= *“;L,"U= ";U

END

N

T IS SAHMPLE SIZE?

05

MANY SUCCESSES?

8

T IS CONFIDENCE COEFFICIENT 80,90,95,98,0R 997
5

PORTION OF SUCCESSES= 0.3619
95 PERCENT CONFIDENCE INTERVAL FOR P IS

0.27637 U= 0.45719
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where [ ] represents the greatest integer function, we will achieve

the desired result. If we choose nl > n¥*

V - < 6.
p(1 p)/ana/2, we have dl §. Hence

, then defining 61 =

1-a=2(p-5]26)<r(p-8] <6

¥ we achieve the desired accuracy. The expression

Hence for n > n
for n¥* depends upon knowledge of p. If nothing is known about p,
then as v¥p(1 - p) < 1/2, we may take n¥* = (Za/2/26)2

hand, if we know that p € [0, pl], for 0 < P, < 1/2, we may use the

On the other

expression for n¥* given above, evaluated at Py, as p(l - p) is an
increasing function of p for 0 < p < 1/2. Hence the largest sample
size required so that P(|p - ] < &) for any p € [0, pl] will be
found by evaluating n* at p = P - For p e [p., 1], 0.5 < »; <1,

1
similar reasoning implies that the value of n¥ for p = p. is the

maximum required sample size. '

For example, assume that we wish that the error in the estimate
of p by D not exceed 0.02 with probability at least 0.95. Without
any knowledge of p we use n¥* = (1.96/2(0.02))2 = h92 = 2L401. If it

were known that p e [0, 0.20], then we find

% = [(0.2)(0.8)(%:28)2

0. 00 ] +1=1537

Thus the additional knowledge permits reduction of the sample size

by about 1/3 without a sacrifice in the accuracy of the estimator.

Problems 6.5

1. In 197h4, Carl Yastrzemski of the Boston Red Sox batted 0.301,
getting 155 hits in 515 at bats. Find a 90% confidence interval
for p, Yastrzemski's lifetime batting average. Why might this
not be a good method of estimating p? (Source: The World

Almanac and Book of Facts, 1975.)

2, In 1973-1974, Kareem Abdul-Jabbar attempted 1759 shots of which
he made 948 for a proportion of success of 0.539. Find a 95%
confidence interval for p, Jabbar's long-run shooting percentage.

(Source: The World Almanac and Book of Facts, 1975.)
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Table 6.5.1 Effect of Gasoline Shortage on Travel Frequency of
Families with Automobiles®

Type of change Number of families
No Change 237
Change frequency
Switched to other modes 120
Reduce auto travel 8L
Miscellaneous 16
Total 457

3. A city has a population equally divided between the races (black
and white). A sample of 400 truck drivers reveals 350 whites
and 50 blacks. Find a 95% confidence interval for p, the true
proportion of truck drivers in the city who are white. Does
there appear to be evidence that blacks are underrepresented

among truck drivers?

4. In 1974, the Oregon Department of Transportation collected data
concerning the effect of the energy (gasoline) shortage on the
behavior of drivers in Portland, Oregon. The data are given in
Table 6.5.1.

(a) Estimate the proportion indicating no change and find a
95% confidence interval for this population proportion.

(b) Among those who altered their behavior, estimate the pro-
portion who reduced automobile travel, and find a 95%
confidence interval as in part (a).

5. A beer manufacturer, Lightdraft,.Inc., wishes to estimate its
proportion of the market in an urban area. A grocery chain

agrees to supply the company with the proportion of six-packs

a'Behavior of Car Owners During the Gasoline Shortage, B. W. Becker,
D. J. Brown, and Philip B. Schary, Traffic Quarterly, July 1976.
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10.

of Lightdraft sold during a given week among all six-packs sold.
0f 1600 sold, 320 are Lightdraft. Find a 95 and 99% confidence

interval for the true market share.

Suppose in Problem 6.5.5 that the manufacturer wishes the error

in the estimate of the market share to be no more than 0.02 with

probability at least 0.99.

(a) Find the minimum required sample size assuming no knowledge
about p.

(b) Find the minimum required sample size assuming p < 0.25.

For a maximum error of § with probability at least 1 - o without

knowledge of p, we use n = (Za/2/26)2.

(a) Show that as & decreases (that is, 1 ~ o increases), n
increases for fixed 6.

(b) Show that if 8 is replaced by &/2 {i.e., the maximum toler-
able error is halved), then n is increased by a factor of

L for fixed a.

If we choose 1 - & = 0.954}4 in Problem 6.5.7, verify the rela-
tionship

.
62

Evaluate this function of § for § = 0.01(0.01)(0.10). How large

a sample is required to estimate a population proportion with

a maximum error of 0.0l with probability at least 0.95Lk4?

Verify that the values in Egq. (6.5.2) are the roots of the
appropriate polynomial. Sketch a graph of the polynomial for
fixed P and Za/z.
{a) We wish to estimate the proportion of the female population
{16 years and older) with Rh negative blood in a given city.
Suppose 900 women are typed and 90 are Rh negative. Find
a 95% confidence interval for p.
(b) Find the minimum required sample size to estimate p with
a maximum error of 0.005 if it can be assumed that p < 0.2.

Let 1 - a = 0.98.


https://0.01(0.01)(0.10
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Exercises 6.5

1. Use PCONFINT with the data of Problem 6.5.4 to calculate 95%
confidence intervals. Compare these intervals with your previous

results in Problem 6.5.k4.

2. Use PCONFINT with the data of Problem 6.5.5 to find 95 and 99%
confidence intervals for the true market share. Compare these

intervals with those found in Problem 6.5.5.

3. Use PCONFINT with the data of Problem 6.5.10 to find a 95%
confidence interval for the proportion of Rh negative women.

Compare this interval with that found in Problem 6.5.10{(a).

L. Of 64 students, 37 rank a teacher as "good" or better. Using
PCONFINT, find a 95% confidence interval for the corresponding
population proportion p.



HYPOTHESIS TESTING

7.1 INTRODUCTION

In Chap. 6 we have considered the estimation of parameters, an impor-
tant topic in statistics. Here we consider another important infer-
ential area in statistics called hypothesis testing. We first give

a definition of what is meant by a statistical hypothesis.

DEFINITION 7.1.1. A statistical hypothesis 1s a statement about the

distribution of a random variable.

Such a statement 1s generally made in terms of a set of values
that a parameter may take on, where the parameter is used in the
probability law describing the distribution of a random variable.
Let us suppose that an election is to be held for mayor in a large
city and that there are two candidates, A and B. We decide to ask
100 randomly sampled voters to answer the question: '"Do you prefer
candidate A to candidate B in the election for mayor?" We may con-
sider the answers to be 100 independent trials in which the number
of "Yes" replies is distributed as X ~ B(100;p). A statistical
hypothesis of interest is

: <
Hy: P<

S

245
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where H0 is referred to as the null hypothesis. We see that this is
a statement about the possible values of the parameter p. In statis-
tical hypothesis testing we wish to find a reasonable method of

deciding between the hypothesis H0 and an alternative

1
: > =
B2 P~

Clearly a decision for Hl should please A, but not B.

Before we consider a method of deciding between H,  and H_, let

us consider two possible errors to which the decision grocesslmay
lead. These are indicated in Table T7.1l.1l. On the one hand, we may
decide p > 1/2 when in fact p 5_1/2, i.e., we may decide that the
proportion of voters preferring A to B exceeds 1/2, when in fact, it
does not. This error, rejecting the null hypothesis when it is true,
is called a type I error. On the other hand, we may decide p < 1/2,

when in fact, p > 1/2. This error, accepting H. when it is false,

is called a type II error. Clearly these errorg may result in dif-
ferent responses. For example, if a type I error is made, candidate
A may relax his efforts when he should not. If a type II error is
made, candidate A may spend additional time and money to win an
election in which victory is already assured.

A decision between HO and Hl described in Table T7.l.1 should,
of course, depend on the observed value of the random variable X,
the number of those of the 100 voters selected answering "Yes" to
the question. Clearly large values of X indicate that Hl should be
chosen, while small values of X indicate that the decision should

be made in favor of HO' A statistical test is determined by deciding

Table 7.1.1 Type I and Type II Errors

True state of nature

Decision p< 1/2 p > 1/2

HO is correct No error Type II error

Hl is correct Type I error No error
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exactly which values of the test statistic lead to rejection of Ho.
These values are referred to as the critical region for the test.
Let us consider the probability of a type I error. The standard

notation is to define

o = Pr(rejection of HO]HO is true)

The testing strategy which is traditionally adopted is to construct
a critical region so that o is not greater than a specific value,
say 0.05 or 0.01. The maximum value that o may attain is called the
significance level for the test. In the case at hand, critical

regions are of the form X > j for some integer 0 < j < 100. Now

100
l) = 3 (lOO)pk(

20y K

)lOO-k

a=PX2>jlp< 1-p

It can be shown that this probability may be written as

e fg XJ—l(l - x)lOO-J dx for ¢ > 0
so that 0 clearly increases with p. Thus, to achieve a < 0.05, for

example, we must choose j so that

100
Z
k=]

100,1)100 _

ily = L
2 G P(X > jlp = 5) < 0.05

The program BINOM has been run for n = 100 and p = 0.5. We see that
P(X >59) =1 - p(X < 58) = 0.0443, while P(X > 58) = 0.0666. Hence
we would choose X > 59 as critical region for the test. If 59 or
more of the 100 persons answer "Yes,”" we decide that p > 1/2. The
significance level for the test is 0.0Lk43.

One might ask why o should not be set equal to 0. This could
be achieved by using the empty set as the critical region. The
decision to accept p 3_1/2 would always be made (regardless of the
outcome of the sampling process). However, clearly the probability
of a type II error, the probability of accepting HO given p > 1/2,
would be 1 (as HO is always accepted). In general, the probability
of a type II error depends on the critical region and the value of

p assumed to be correct. The standard notation is
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RUN
BINOMIAL DISTRIBUTION

WHAT IS THE VALUE OF N

2100
WHAT IS THE VALUE OF P

7.5

X SUCCESSES PROB OF X CUM PROB OF X
39 7.11073E~-3 1.76001E=2
40 1.08439E~2 2.84440E~2
41 1.58691E~-2 4.43130E=2
42 2.22923E-2 6.66053E~2
43 3.00686E-2 9.66740E=2
44 3.89526E~2 0.13563

45 4.84743E~2 0.1841

46 5.79584E~2 0.24206

47 6.65905E~2 0.30865

48 7.35270E-2 0.38218

49 7.80287E=2 0.46021

50 7.95892E~2 0.53979

51 7.80287E-2 0.61782

52 7.35270E~2 0.69135

53 6.65905E=~2 0.75794

54 5.79584E-2 0.8159

55 4.84743E~2 0.86437

56 3.89526E-2 0.90333

57 3.00686E~-2 0.93339

58 2.22923E=2 0.95569

59 1.58691E=-2 0.97156

60 1.08439E~2 0.9824

61 7.11073E-3 0.98951

62 4.47288E~3 0.99398

63 2.69793E~3 0.99668

64 1.55974E=3 0.99824

65 8.63856E~4 0.99911

66 4.58105E-4 0.99956

67 2.32471E~4 0.9998

68 1.12817E~4 0.99991

69 5.23209E-5 0.99996

70 2,31707E-5 0.99998

71 9.79043E~6 0.99999

72 3.94337E=-6 l.

73 1.51252E=6 l.

74 5.51867E~7 l.

75 1.81314E~7 l.
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1.0k n = 100
D B(p)
0.5 0.9557
0.52 0.9037
B(p) 0.5L4 0.8165
0.5

0.56 0.6916
0.58 0.5382
0.60 0.3775
0.65 0.0877

0.70 0.0072
1 I3 1 1 1 1 : 1 1
0 0.2 0.4 0.6 0.8 1.0 0.80 0.0000+
The Operating Characteristic (OC) Curve

Fig. 7.1.1

B(p) = P{accepting Holp is true value)
In the example
B(p) = P(X < 58|p) = 1 - P(X'> 59]p)

the probabilities of a type II error for several values of p have
been calculated using the program BINOM. A graph of B(p) as a func-—
tion of p appears in Fig. 7.1l.1l. This graph is called the operating
characteristic {0C) curve for the test.

The function T(p) = 1 - B(p) is called the power function of the
test. The graph of the power function for this test appears in Fig.
T.1.2. For p > 0.5, this function gives the probability of rejecting
HO, the correct decision, as a function of p. As the probability of
rejection of HO for p = 0.5 is o, 7(0.5) = a = 0.04Lk3. For values
of p slightly greater than 0.5, it is clear that w(p) must be rela-
tively small as 7(p) = ¢ fg x58(l -~ x)ul dx, is a continuous function
of p. It is difficult for any decision procedure to distinguish
between p < 0.5 and p > 0.5 if p is only slightly larger than 0.5.
For example, 7(0.55) = 0.2415 and w(0.60) = 0.6225. However for

candidate A it may be the case that distinguishing between alternatives
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1.0k
n = 100 n = 400
P m(p) m(p)
0.50 0.0L43 0.0495
0.52 0.0963 0.1975
0.5 0.54 0.1835 0.4800
0.56 0.3084 0.7750
0.58 0.4618 0.9418
0.60 0.6225 0.9917
0.65 0.9123 0.9999
o205 45 56 o7 0.70  0.9928  1.0000
Power Curves for n=100, 400
Fig. 7.1.2

such as p< 0.5 and p = 0.6 is exactly the question of importance.
If this is the case, the power function can be improved for o = 0.05,
only by increasing the sample size n.

Suppose, for example, that 400 voters can be sampled. For this
sample size we may use the normal approximation to the binomial dis-
tribution to find a test with significance level no greater than

0.05. Using the continuity correction, we must have

J ~ 0.5 - 200 X - 200 400.5 - 200, .
B 10 = 10 - 10 ) £0.05

or

B( '1500'5 < 7 < 20.05) = 0.05
Hence (j - 200.5)/10 £ 1.645 and j = 216.95, and the critical region
X > 217 would be used. The values B(p) and m(p) for p > 0.5 can

also be found using the normal approximation. For example, as

400(0.6)(0.4) = 96,

n(0.6) = p(EEL=2%0:5 ¢ 7y = p(_p.398 < z)
/96

1 - FZ(—2.398) = 0.9917
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The graph of m(p) for this new test also appears in Fig. T7.1l.2. The
power curve for this test (with approximately the same value of o)
lies above that for the previous test for all p > 0.5. The value
m{0.60) = 0.9917 for n = 400. In other words, if p = 0.6, the test
has a probability of 0.99+ of yielding a decision for Hl with a =
0.0495. For n = 100, m(0.60) = 0.6225, so the probability of a
correct decision if p = 0.6 is only 0.6225. Clearly the increased
sample size has brought an important improvement in the properties
of the decision procedure.

It should be remarked that there is a substantial difference

between rejecting the hypothesis H P 5_1/2 and retaining (or

O:

accepting) H For the case n = 100, we reject H, if 59 or more

0° 0
persons in the sample answer "Yes." Suppose, in fact, 62 answer

"Yes." The probability that such an event occurs if p < 1/2 is less
than 0.05. Hence if 62 affirmative answers are recorded, we conclude

that HO is false and that p > 1/2. If we observe 55 "Yes" replies,

we retain HO' We have not observed an event highly inconsistent

with p < 1/2. However 55 "Yes" replies is consistent with values of
P both greater than and less than 1/2. Indeed a 95% confidence inter-
val for p is given by PCONFINT as [0.452, 0.6L44]. Hence in retaining

Ho we can only state that no evidence inconsistent with the null

hypothesis has been found. If we decide to reject H there is

O’
statistical evidence inconsistent with the truth of Ho. As it is

stronger to reject H_ in favor of Hl’ studies seeking evidence for

0
a hypothesis generally state the hypothesis as an alternative H. to

1
a null hypothesis HO.

Problems 7.1

1l. Statistical testing methods are employed in the detection of
aircraft by radar. The detector records voltage measurements at
n times, t = 0 + (i - 1)At for 1 =1, 2, ..., n. The recorded

values are denoted Xl’ X2, vees Xn. If the signal is not present,
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then X ~ N(0,0z) is assumed to be the parent distribution. If
the signal is present, then X -~ N(u,oz), where y > 0. The hypoth-

eses may be stated in terms of the parameter u as

HO: u=20 versus Hl: u>0

(a) State in words the meaning of a type I error.

(b) State in words the meaning of a type II error.
A jury in a criminal case makes a decision between

HO: the defendent is not guilty.

Hl: the defendent is guilty.

(a) State in words the meaning of a type I and type II error.
(p) In Fnglish jurisprudence, which error probability, a or B,

is the jury required to make small?

An individual claims to have ESP powers. He states that he can
call the suit of a card before it is revealed with a frequency
greater than chance. Let p represent the probability that a
card's suit is correctly called by this individual. Assume that

after each drawing the card drawn is replaced and the deck re-
shuffled. We wish to test

1 1
H = = s> =
HO P L versus H L

We record the outcome, success or failure, of 10 draws and call

the number of successes X. Suppose that the critical region is

taken to be X > 6.

(a) Why is HO as stated above the reasonable null nypothesis?

(b) Use BINOM or a table of binomial probabilities to find the
significance level a for this test.

(e) Use BINOM or a table of binomial probabilities to find
B(p) for p = 0.3(0.1)(1.0). Graph the OC curve.

(d) Find m(p) for p = 0.25 and p = 0.3(0.1)(1.0) and graph the
power function.
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N

We wish to have a test to determine which basketball players
require practice in foul shooting. A player will be considered
"acceptable" if he makes at least 60% of his foul shots. Let p
represent the proportion of foul shots made by a player. We

wish to test

Hy: P > 0.6 versus H: p< 0.6

(a) Using the number of successes in 10 independent trials X as
the appropriate statistic determine a critical region for a
test so that o # 0.05 (but < 0.05).

(b) Evaluate B(p) for p = 0(0.1)(0.6) and graph the power func-—
tion for the test in part (a).

A manufacturer claims that a gallon of his paint will cover more
than 600 ft2. We assume that the number of square feet covered
by a gallon of this paint to be a random variable X ~ N(u,oz).
Assuming 02 is known, state the null and alternative hypotheses
in terms of w. The hypotheses should be stated so that the

burden of proof falls on the manufacturer.

Let p represent the proportion of a population which does not get
the flu during a winter. We test a vaccine's effectiveness by
giving it to 100 volunteers and observing X, the number who do
not get the flu. It is known that 3/4 of the population survives
the winter without flu if no vaccine is given.

(a) State the hypotheses H. and H,, so that we place the statis-

tical burden on the vagcine to demonstrate its effectiveness.
(b) Using the normal approximation to the binomial distribution,
find the critical region for this test using o = 0.05.
(¢) Again using the normal approximation to the binomial distri-
bution, find the probability of a type II error given p =

0.9.

A survey by Dunn's Review, October 1976, indicated that, of 300
top business executives polled, 85% favored President Ford over
Jimmy Carter for President. Let p be the proportion of business

executives favoring President Ford.
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(a) Find a critical region for testing H p = 3/4 versus

Hl: p > 3/4% using the normal approxgmation to the binomial
and a = 0.05.

(b) Based on the poll in Dunn's Review, is there evidence that
the percentage of business executive preferring President

Ford exceeded T75%%

7.2 TESTS OF A POPULATION PROPORTION p FOR LARGE n

In this section we shall consider tests of the hypothesis HO: P =P,
for a fixed value of p versus various alternatives. We assume the
sample size n is sufficiently large that the normal approximation

applies. The three alternatives which we consider are

H >
1. Hl P po

B H <
2. Hy: P <P,y

3. Hi:op # P,

will require different critical regions for a test with significance
level o. For Hl: p > po, we have seen, assuming X is the random
variable representing the number of successes in n trials, that the
appropriate critical region is of form X > j. The exact value of J
is determined by requiring
J - 0.5 -mp,
P(3 < X]p =p.) = Pj—r—m————-=x< 7
—_— O ———— . —
/hpo(l - po)

nA
Q

The critical value of j is found from the equation

j=1[0.5+ np,, + zavhpo(l - po)] +1

where [ ] is the greatest integer function. For the alternative
Hl: p < Py similar reasoning leads to the rejection region X < j,

where

j = [mpy - 0.5 - Za/npo(l - po)]
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For the case in which the alternative is written as Hl: p# PO’ we

. S 3 < 3
reject HO if X > Jy or X < dps where

Jp = [mpy + 0.5+ 2, /op (1 -p )] +1
and

o= - . - -

dp = [mpy = 0.5 - 2 v0po(1 - py)]

The program PTEST has been written to test the null hypothesis
HO: p = Py versus the three alternatives described above. The pro-

gram requests the values of n, PO’ and the alternative. The value
of the significance level may be 0.10, 0.05, or 0.0l and is entered
in response to an INPUT statement. The number of successes X actu-
ally observed is entered in the same way. The program computes the
rejection region according to the formulas given above. The power
function for the test is also computed for appropriate values of p.
Suppose that passage of a bond issue requires a 60% favorable
vote. In order to test the chance of passage we sample 180 voters

randomly from the registration list. The hypotheses may be stated

: = 0. : > 0.
HO p = 0.60 Hl p > 0.60

Note that the alternative for which we are seeking evidence, namely

1° Also note that if HO is written
p < 0.60, the same critical region is appropriate, as indicated

the passage of the issue, is H

previously. Suppose that we observe 130 voters in favor of the bond
issue. The program PTEST, using o = 0.05 indicates the rejection
region is X > 120. Hence the null hypothesis would be rejected.
There is good reason to believe that more than 60% of the registered
voters favor the bond issue.

The values of the power function m(p) are calculated for p =
0.6 to p = 0.95 with a step size of 0.05. For p = 0.75, we find
w(0.75) = 0.9961, so that if the true proportion of the registered
voters favor the bond issue is actually 75%, the probability is very
high that p = 0.60 will be rejected in favor of Hl: p > 0.60. Note
that m(0.60) = 0.0401, so that although the value of a is chosen to
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130
132
134
136
138
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
285
287
290
300
310
320
330
335
340
350
360
370
380
390
400
410
420
450
455
457
460
410
480
490
500
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ST

REM THIS PROGRAM TESTS THE HYPOTHESIS P = PO AT SIGNI FICANCE

REM LEVEL ALPHA AGAINST ONE OF THE AL TERNATIVES
REM 1) P > PO

REM 2) P < PO

REM 3) P UNEQUAL PO

PRINT "WHAT ARE THE VALUES OF N AND PO?"
INPUT N, P4

PRINT "WHICH ALTERNATIVE *"3'1,2 OR 37"

INPUT A

IF A= 1 THEN 150

IF A= 2 THEN 150

IF A= 3 THEN 600

PRINT "INCORRECT FORMAT ';'1RY AGAIN"

GO TO 120

PRINT "WHAT IS THE '3 "SIGNIFICANCE LEVEL, "3'"0.10,0.05 OR
INPUT Al

IF Al= 0.10 THEN 220

IF Al= 0.05 THEN 240

IF Al = 0.01 THEN 260

PRINT *INCORRECT INPUT *"3'1RY AGAIN"

GO TO 160

LET Z4=1.282

GO TO 270

LET Z4=1.645

GO TO 270

LET Z4=2.326

IF A=2 THEN 450

LET U= INT(OeS +N*P4+SQR(N*P4#(1~-P4))*%Z 4)+]
PRINT **POWER FUNCTION"

PRINT 'P*, ""POWER AT P"

FOR Pl = P4 TO .99 STEP .05

LET Z = (U=0«5-N*P1)/SQR(N*P1*(1-P1))

GOSUB 900

LET P2 = 1-P

PRINT Pl, P2

NEXT P1

PRINT "WHAT IS THE";' NUMBER OF SUCESSES X7*
INPUT X

PRINT “THE CRITICAL REGION FOR A '";Al;'LEVEL TEST IS™

PRINT *X>= '";U

IF X >= U THEN 410

PRINT "“DECISION IS ";"ACCEPT P =";P4
GO TO 1030

PRINT *"DECISION IS *"3;"REJECT P= ";P4
GO TO 1030

LET LoINT(N*P 4=+ 5- SQR(N*P4*(1-P4))*Z 4)
PRINT *"POWER FUNCTION®

PRINT *P*, ""POWER AT P"

FOR P1=P4 TO 0.01 STEP «0.05

LET Z a(L+0.5~N*P1)/SQR(N*P1%(1-P1))
GOSUB 900

PRINT P1,P

NEXT Pl

0.012"
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510 PRINT "WHAT IS THE *;'"NUMBER 0S SUCCESSES X?'
520 INPUT X

530 PRINT “THE CRITICAL REGION FOR A ";Al:'LEVEL TEST IS"
540 PRINT "X<= ';L

550 IF X<= L THEN 580

560 PRINT “DECISION 1S ';"ACCEPT P = "3P4.

570 GO TO 1030

580 PRINT “DECISION IS *";"REJECT P = 3P4

590 GO TO 1030

600 PRINT '"WHAT IS THE *3"SIGNIFICANCE LEVEL, *3"0.10,0.05 OR 0.01?2"
610 INPUT Al

620 IF Al=0.10 THEN 650

630 IF Al= 0.05 THEN 670

640 IF Al1=20.01 THEN 690

642 PRINT "INCORRECT INPUT, TRY AGAIN"

644 GO TO 610

650 LET Z4=1.645

660 GO TO 700

670 LET Z4=1.96

630 GO TO 700

690 LET Z4=2. 576

700 LET L = INT(N%P4=-. 5 SQRIN*P4x( 1-P4)I%Z 4)

710 LET U= INT (N#P&+e5+SQR(N*P&kC 1=P4))%Z &) +1
720 PRINT “POWER FUNCTION®

725 PRINT “P", "POWER AT P"

730 FOR P1=0.05 TO 0.95 STEP 0.05

T40 LET Z=(L+0+«5-N*P1)/SQR(N*P1*(1=-P1))

750 GOSUB 900

760 LET PS5=P

770 LET Z=(U~.5-N*P1)/SQR(N*P1*(1-P1))

780 GOSUB 900

790 LET P5=PS+(1-P)

800 PRINT P1,P5

805 LET P5=0

810 NEXT P1

820 PRINT "WHAT IS THE "3 *NUMBER OF SUCCESSES X?*
830 INPUT X

840 PRINT "THE CRITICAL REGION FOR A "3Al;"LEVEL TEST IS"
850 PRINT *X<= "3;L3"OR X>= '3U

860 IF X <= L. THEN 890

870 IF X >= U THEN 890

880 PRINT “DECISION 1S ACCEPT P = "3P4

885 GO TO 1030

890 PRINT "DECISION 1S REJECT P = ";P4

895 GO TO 1030

900 LET Z1= ABS(Z)

910 LET C=1/5QRC(2)

920 LET Cl= 14112821

930 LET C2= +08864027

940 LET C3=.02743349

950 LET Cd= ~.00039446

960 LET C5=.00328975

9 70 DEF FNZ(X)=1=1/C14C1*X+C2%X1t 2+ C3kXt 3+ C4kX1t 4+ CS5xX1 5) t8
980 LET P = +5+¢.5¢INZ(Z1%C)

990 LET P = 1E=4*CINTC1E&P))

1000 1F 2 > 0 THEN 1020

1010 LET P = 1-P

1020 RETURN

Jo3o END
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RUN

WHAT ARE THE VALUES QOF N AND PO?
? 180,46

WHICH ALTERNATIVE 1,2 OR 37

71

WHAT IS THE SIGNIFICANCE LEVEL, 0.10,0.05 OR 0.017
? 0.05

POWER FUNCTION

P POWER AT P

0+ 6 0.0401

0. 65 0.3481

0+7 0.8548

0.75 0.9961

0.8 0.9999

0.85 1

0+9 1

0.95 1

WHAT IS THE NUMBER OF SUCESSES X?
? 130

THE CRITICAL REGION FOR A 0.05 LEVE. TEST IS
X>»= 120

DECISION IS REJECT P= 0.6

*
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be 0.05, the actual probability of a type I error is 0.0L01l. The
value 0.05 is referred to as the nominal significance level of the
test and the value a = 0.0L0l is referred to as the actual signifi-
cance level. The difference is due to the fact that the critical
region is of form X > Jj, for integral j. The critical regions given
by PTEST are conservative in the sense that the actual significance
level will always be less than the nominal significance level. A
graph of the power function for this test is given in Fig. T7.2.1,

showing the properties of this test.

Exercises 7.2
Use the program PTEST as appropriate in the following:

1. In an article in the Academy of Management Journal, September
1976, entitled "Informal Helping Relationships in Work Occupa-~
tions," by Ronald J. Burke, Tamara Weir, and Gordon Duncan, it
was reported that of 53 young managers, 41 were married and 12

unmarried. We wish to test the hypothesis

HO: p < 0.75 versus Hl: p > 0.75

A L I 1 1 I p
0 r 06 07 08 09 10

m{p)

Fig. 7.2.1
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where p is the true proportion of such managers who are married.
Find the critical region for the test using o = 0.05. What

decision is made here?

In "Experiments on Plant Hybrids," reproduced in The Origin of
Genetics, A Mendel Source Book, it is reported that of 8023 peas,
2001 had green stems and 6022 had yellow. Mendel's theory pre-
dicted a 3:1 ratio of yellow to green using his genetic model.
Test this hypothesis against a two-sided alternative using a =

0.05. Find the critical region for the test explicitly.

In 1973, Reggie Jackson, playing with the Oakland A's, had 158
hits in 539 attempts. Find the critical region for testing

: > 0. :
HO p > 0.300 versus Hl )
represents Jackson's lifetime batting average.) What decision

p < 0.300 using o = 0.01. (Here p

is made in this case? Source: The Baseball Encyclopedia,

Revised Edition, MacMillan, New York, 19Th.

Assume that we wish to test at significance level o = 0.05 the

hypothesis that a computer program randomly prints a 0 or a 1

(that is, p = 0.5) against the alternative that it does not.

(a) Tind the critical region for a test based on 60 such
selections.

(b) Find the critical region for a test based on 100 such
selections.

(¢) Sketch the power curves for the tests in parts (a) and (b)

and comment on the relationship between the two.

Suppose a holder of a political office wishes to determine whether

a majority of his constituents are in favor of a particular bill

on automobile speed limits. He wishes to test HO: p < 0.5

versus Hl: p > 0.5, where p is the proportion of his constitu-

ents favoring the bill. Suppose a random sample of 397 voters

reveals 227 individuals in favor of the bill.

(a) Pind the critical region for the test for nominal signifi-
cance levels 0.10, 0.05, and 0.01l. -Does the critical region

become larger or smaller as O decreases?
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(b) Plot the power curves for the tests with o = 0.0l and a =
0.10. Make a qualitative comparison of these power curves.

Can you give a reason for the relationship?

7.3 TESTS CONCERNING u IN NORMAL POPULATIONS

As explained in Sec. 4.4, many observations can be considered to come
from normal distributions. Frequently we wish to test a hypothesis

of the form u g_uo versus U > uo for a fixed constant value uo,
assuming a random sample from X ~ N(u,oz) is available. For example,
weights of newborn males may be considered to be normally distributed.
In a study of the health of newborn males in an underdeveloped country
u > 6.5 1b. Evidence

we may want to test H u 3_6.5 1b versus H

o 1t
for Hl may indicate a satisfactory average birth weight. We shall
consider testing hypotheses about U in the normal case, first in the
case that 02 is assumed known and then in the case that 02 is con-

sidered unknown.

2
7.3.1 Tests for U for X ~ N(u,0 ), 02 Known

As in the case for testing the hypotheses about a population propor-
tion p, the null hypothesis will be taken to be one of the forms
listed in Table 7.3.1l. We shall be interested in finding the critical

region of values of a test statistic leading to the rejection of H

.

0

Table 7.3.1 Tests for U in the Normal Case, 02 Known

HO Hl Critical region

IS u> g X > u, + (0/vn)z,

LT Mg X <uy - (0/vn)z,

RS T TS X >, + (/)2 or
X< g = (O//I'-I)Za/z
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Again o will represent the maximum probability of rejecting H under

>
the assumption that H0 is true. For a test of the hypothesisou i_uo,
it is reasonable to base a test on the statistic X and to reject this
hypothesis if X is large. An important theorem about independent
observations from a normal distribution permits determination of the
appropriate critical region for a test with significance level a.

We state the theorem without proof.

THEOREM 7.3.1. If (X X2, cees Xn) are independent observations

l,
from X ~ N(u,cz), then (X - u)/o/vh is distributed as the standard

normal variable Z.

To satisfy the requirements concerning the type I error for a

: <
test of Ho U __uo

P((X > c)|usu

versus Hl: u > u., we reguire

0

<
o)_a

By determining c such that

or

we obtain from Theorem 7.3.1
c-Uu
0. Za or c = uo + g—Z

o/vn v

If u< uo, we have

P(X > c) = P(X > uy + =2 )
/n
= TR
_plEou, to -
o/va o/va
My = M
= P(Z > +Z)<a
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as uo - u > 0.

Hence we obtain the critical region X > My + (O//ﬁ)Za. Critical
regions for the other hypotheses are found similarly and are given in
Table 7.3.1. _

Suppose we consider the test mentioned above concerning male

birth weights to decide between

Hy: o < 6.5 and H:ow> 6.5

Assume that 0 = 1, the sample size n = 25, and a = 0.05 and that we
observe x = 6.95. Using the first row of Table 7.3.1, we find ¢ =
6.5 + (1/5)1.645 = 6.829. Hence the rejection region is given by

X > 6.829, and we decide to reject H . Theorem 7.3.1 also permits

0
determination of the power function of the test. Recall that

m(u) = P(rejecting Ho]u) = P(X > 6.829 )
_ . X-u_6.829 -u
= P( 0.0 = 0.2 )
_ 6.829 - u, _ 6.829 - u
=Pz 2=n ) s - Fl 0.2 )

For example, if u = 7, we find

T(7) = P(Z 3_§ﬁ§§?§:—1) =1 - FZ(-0.855)

1 - 0.1963 = 0.8037

A graph of the power function for this test is given in Fig. T7.3.1.

0.5

1 I 1 i
o) — 60 65 70 75

Fig. 7.3.1
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For the moment suppose we consider only the hypothesis

HO: u = 6.5 versus Hl: u=rT

with 0 = 1 and n = 25 as before. The same critical region, namely

X > 6.829, is appropriate for a test with significance level o = 0.05.
As B(u) = 1 ~ m(u), B{7) = 1 - 0.8037 = 0.1963. The areas representing
0. and B are indicated in Fig. T7.3.2. Notice that the area to the right
of ¢ = 6.829 under the normal density function centered at 6.5 is

o = 0.05, while the area to the left of ¢ = 6.829 under the normal
density function centered at 7 is B = 0.1963. If we attempt to make

o smaller by increasing c, B will become larger. If we attempt to

make B smaller by decreasing c, o will become larger. TFor a fixed
sample size both errors cannot simultaneously be made small. If we
allow n to vary, however, we can control o and 8. Suppose we require
o = 0.05 and B = 0.05. Then P(X > c¢]p = 6.5) = 0.05 and P(X < c|u = 7)

= 0.05. These two requirements lead to the equations

(e - 6.5) _ 1.645 ang  le=T)_ 1.645
(1//a) (1//2)

Dividing the first of these equations by the second yields

{(c = 6.5)/(c = 7)) ==-1or c=6.75. Substituting this value of c
into the first equation yields vYn = 6.58 or n = 43.3. Hence using
n= L4k and ¢ = 6.75 yields a test with (approximately) the required

values of o and B.

l-a
L, e

o ' 65 c75

Relationship between the @ and 8 errors.

Fig. 7.3.2.
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Here we point out that there are five steps in testing a statis-
tical hypothesis HO
will apply quite generally in testing statistical hypotheses.

versus an alternative Hl. This reasoning process

1. State Hy and H .

2. Determine the values of a and n.

3, ©Select the appropriate test statistic.

4. Using steps 1 to 3, find the critical region of values of the
test statistic which lead to the rejection of H

0
5. Calculate the test statistic and make a decision between HO

and Hl'

It is important to point out that steps 1 through 4 may be carried
out before any data are collected. These four steps determine the
properties of the statistical test. In this sense the decision pro-
cedure can be thought of as "objective." Either a decision for H

0

or Hl may be incorrect, but we have knowledge of the probabilities
of these errors. It is this knowledge which produces decision pro-

cedures which in a sense may be called "wise.”

7.3.2 Tests for U for X ~ N(u,cz), 02 unknown

In Sec. 6.2 we have seen that for a random sample (Xl’ X

from X ~ N(u,02), the statistic

ot xn)

=X U
5/va
has a distribution known as Student's t distribution with n - 1 degrees
of freedom. As this random variable depends only upon the unknown
parameter u, it is not surprising that it is used to test hypotheses
about u in the normal case if 02 is unknown. If we consider the

first row of Table 7.3.1, we see that for the hypotheses

: < : >
Hyt WSug and  Hirou>y

that the critical region is of the form

< (X - uy) )
>u. + (—)z or ——>
- "0 /E ¢ 0//;1 a

B4l
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Table 7.3.2 Tests for uw in the Normal Case, 02 Unknown

HO Hl Critical Region
HZH HZ ©2 %y n1
M2 Uy W< g St
p=u I T R I

For the same two hypotheses, in the case that 02 is unknown, the
rejection region is of the form
(X - uy)
v = Z'ta n-1
S/vh K

It is apparent that if H, is true, this statistic will tend to be

1
positive. The larger the value of t, the more evidence exists in
favor of Hl' Additionally, this rejection region satisfies the type
I error requirement that

(X - )

Pl————> ¢
(s/Va) &,n=

Al SR g 2% ) =a
providing a critical region with a maximum type I error of a. In
Table 7.3.2 we present the appropriate critical regions for the
indicated hypotheses for a test with significance level a.

The program MIEST has been written to calculave the value of
t = (x - uo)/s/VS. The values of Ho and n are entered in input state-
ments beginning at line 600. In the sample run we have calculated the
value of t for the heights of 25 kindergarten boys given in Sec. 6.2

to test the hypothesis

HO: U= hg.S versus Hl: U + Lo.s5
with @ = 0.05. The calculated value of %+ is found to be t = 0.879,
and referring to Table B.II, we see that t = 2,064, As

0.025,24
Itl < 2.06k4, we retain H Critical regions for two-sided alternatives

o
are computed for a = 0.10, 0.05, 0.01 or for one-sided alternatives

with a = 0.05, 0.025, or 0.005. The maximum value of n is 50.
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10 REM THIS PROGRAY TESTS THE HYPOTHESIS: MU=MUO AT SIGNI FICANYCE
20 REM LEVEL ALPHA FOR A TWO-SIDEC TEST, ALPHA/2 FOR A ONE SI DED
30 REM TEST AGAINST ONE OF THE AL TERNATIVES

40 REM 1) MU > MUO

50 REM 2) MU < MUD

60 REM 3) MU <>MUO

70 REM THE POPULATION SAMPLED IS ASSIMED TO BE NORMALLY
80 REM DISTRIBUTED WITH UNKNOWN VARIANCE. THE SAMPLE SIZE
90 REM IS N.

100 PRINT "WHAT ARE THE VALUES OF N AND MUO?"

110 INPUT N, UO

120 PRINT "WHICH ALTERNATIVE ";*1,2 OR 3?"

130 INPUT A

140 IF A=1 THEN 190

150 IF A =2 THEN 190

160 IF A = 3 THEN 190

170 PRINT "INCORRECT FORMAT ;" TRY AGAIN"

180 GO TO 110

190 GOSUB 380

195 DIM X503, TC 503, Ut 503, V¢ 50)

200 FORI = 1 TO N

205 READ X(1)

210 LET S = S+X(I)

215 LET Sl= S1+X(I)12

220 NEXT 1

225 LET X1=5/N

230 LET S2=SQR((S1-N#X1t2)/(N-1>)

235 PRINT "WHAT 1S THE VALUE OF ALPHA, 0.10,0+05: 04017
240 INPUT Al

245 LET T=(X1-U0)/(S2/SQR(N))

250 IF A = | THEN 282

255 IF A = 2 THEN 302

260 PRINT "THE CRITICAL REGION *;"FOR A TWO-SIDED TEST"
262 PRINT "AT SIGNIFICANCE LEVEL= *;Al

264 IF A120.10 THEN 278

266 1F A120.05 THEN 274

270 PRINT "IS ABSOLUTE T »= "3 U(N-1)

272 GO 10 320

274 PRINT "IS ABSOLUTE T>= "3UCN-1)

276 GO TO 320

278 PRINT "IS ABSOLUTE T >a 3 T(N=1)

280 GO TO 320

282 PRINT "THE CRITICAL REGION *3"FOR A ONE=SIDED TEST"
234 PRINT "AT SIGNIFICANCE ";'LEVEL = *;A1/2

286 IF Al=0.10 THEN 298

288 IF A1=0.05 THEN 294

290 PRINT “IS T >a'; U(N~1)

292 GO T0 320

294 PRINT "IS T >= "3UCN-1)

296 GO TO 320

298 PRINT “IS T >= "3 T(N=1)

300 GO TO 320
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302 PRINT "THE CRI TICAL REGION *3"FOR A ONE-SIDELC TEST"
304 PRINT AT SIGNIFICANCE LEVEL = ";Al/2
306 IF Al1=0.10 THEN 318

308 IF Als 0.05 THEN 314

310 PRINT "IS T <=s *";=-U(N-1)

312 GO TO 320

314 PRINT IS T <= ";=-U(N-1)

316 GO TO 320

318 PRINT IS T <= *3=-T(N-1)

320 PRINT

325 PRINT "THE COMPUTED VALUE OF T ='3 7T
340 GO TO 1000

380 FOR 1 = 1 TO SO

382 READ T(ID)

384 NEXT 1

386 FOR I = 1 TO SO

388 READ U(1l)

390 NEXT I

392 FOR 1 = 1 TO 50

394 READ WD)

396 NEXT 1

398 RETURN

*

EDIT LIST 600-1000

600 DATA 420585 41825 41694 40¢ 255 424 375 U4lie 69 424 T4 430 145 410175 41095 4642
610 DATA 38.89, {JS. 0253815 480595 340545 4Be0Ts» 420 455 4T3 T» 416 5» 43095 434 2
620 DATA 424025 484 35 45.9

1000 END

*

RUN

WHAT ARE THE VALUES OF N AND MUO?

WHICH AL TERNATIVE 1,2 OR 37

? 3

WHAT 1S THE VALUE OF ALPHA, 0.10,0.05,0.017

? 0.0%

THE CRITICAL REGION FOR A TWO-SIDED TEST

AT SIGNIFICANCE LEVEL= 0.05

IS ABSOLUTE T>= 2.0639

THE COMPUTED VALUE OF T = 0.879079

*
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The example in the preceding paragraph shows an interesting
relationship between a confidence interval for p and a test of hypoth-
esis about u. A confidence interval with confidence coefficient

1l - o contains those points UO for which

x - ( <x+ ()

)ta/Z,n—l < ¥ 7 ta/2,n-1

s
vn
or equivalently by
(x - uo)

S/)/I'-l l ) ta/zan_l (7'3.1)

|
However relation (7.3.1) describes exactly all those values of Hy
which would be accepted in a test of HO: u = uo versus Hl: H + UO
at level of significance level a. Conversely, all those points
satisfying relation (7.3.1) will lie in the (1 - 0)100% confidence
interval for u. Hence as we found a 95% confidence interval to be
(41.74, 4L .46) in Sec. 6.2, we know that Hy: wo= k2.5 will be
accepted at significance level o = 0.05. However HO: p= 4 wina
be rejected at the same significance level, which is verified by
calculating t = (43.08 ~ 41)/3.34/5 = 3.128 > 2.064. Thus, the
confidence interval gives all the information required for a two-sided

test.

Problems 7.3

1. Assume that the weights of "5-1b" bags of sugar from a production
line can be considered to be distributed as X ~ N(pu,0.0l). We
want to decide, based on a sample of size 16, if the average

weight is acceptable. We test

H: pw<5 versus H: u>5

where Hl can be thought of as indicating acceptable weights.

(a) Find the critical region for this test if o = 0.05.
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RUN

WHAT ARE THE VALUES OF N AND MUO?

? 25, 41

WHICH AL TERNATIVE 1,2 OR 37

?7 3

WHAT IS THE VALUE OF ALPHAs 0410504055 0+017?
? 005

THE CRITICAL REGION FOR A TWO-SIDED TEST
AT SIGNIFICANCE LEVEL= 0.05

IS ABSOLUTE T>= 2.0639

THE COMPUTED VALUE OF T = 3+1277S

*
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(b) TFind an expression for the power function of this test and
evaluate the expression for p = 5(0.02)(5.1). The expression
will be a function of u. Sketch a graph of this power

function.

2. Assume that SAT scores can be taken to be normally distributed
with 0 = 100. A sampling of 25 members of an entering freshman
class yields x = 580. We wish to test the hypotheses

Hy: > 600 versus Hi:ou< 600

at significance level 0.05. Evidence for Hl will suggest a de-
cline in the test scores for this entering class.
(a) TFind the critical region for this test.

(b) What decision is made between Ho and Hl?

3. The EPA is suspicious that a menufacturing company producing
batteries is discharging mercury into a river. On 8 days a
sample of the mercury content of the water downstream from the

factory is made. The following data (in micrograms/liter) are

obtained.
Day 1 2 3 L 5 6 7 8
Observation 2,2 1.8 1.7 1.9 1.6 1.3 1.9 2.0

(a) An acceptable level of mercury content is less than 2
ug/liter. Test HO: U > 2 versus Hl:
normality of the observations. Let o = 0.05.

(b) Find a 95% confidence interval for u. What can the EPA

Y < 2 assuming

state statistically concerning the water quality?

4. Consider again testing H u< uo against Hl: u > uo, where

2 2 of
X ~ N(u,0°) with ¢ known.

(a) Show that the power function of this test can be written as

/E(uo - n)

m{u) =1 - FZ(Za + ————?;————-)

(b) Prove that m(u) is an increasing function of p.
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5.

Hypothesis Testing

In an article by S. Josephina Concannon in The Journal of Educa-
tional Research, November 1975, entitled "Comparison of the
Stanford-Binet Scale with the Peabody Picture Vocabulary Test,"”

a report is given about a sample of 32 five-year-old children of
above average ability. The average IQ score on the Standord-Binet
test is given to be 134.L4 for these children with s = 6.53.

(a) Assuming that IQ scores are N(u,225), test the hypothesis

HO: u <130 versus Hl: u > 130

for these children. Use a = 0.05.
(b) Assuming normality, but that 02 is not known, test the
hypotheses (o = 0.05) given in part (a).

A newspaper states that the average income of high school teachers
is $11,000. Suppose a random sample of 16 teachers' salaries
yields X = 10,500 and s = 500. Assuming that such salaries are
normally distributed, we wish to test

Ho: u = 11,000 versus Hl: u < 11,000

(a) Find the rejection region for this test using o = 0.05.
(b) Find the computed value of the appropriate statistic for
these data.

(¢) Which of the two hypotheses would be chosen?

Suppose that the time X that an experimental engine will operate
with 1 gallon of a certain kind of fuel has a normal distribution,
that is, X ~ N(u,02). Test runs with five models of this engine
showed that they operated, respectively, for 21, 19, 23, 18, and
19 min with this kind of fuel.

(a) What is the BLUE estimate of u?

b) What is the value of the sample standard deviation s?

¢) Find a 95% confidence interval for u.

d) Based on the data given would one accept the null hypothesis

HO: u = 23 (versus Hl: u + 23) at significance level
a = 0.05°7
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8.

Suppose that for many years a certain kind of power unit produced

by the E. G. Company has, on the average, produced 1000 V of

power/hr. The unit has recently been redesigned and E. G. now

claims it produces more power, on the average, than the old

design. As a user of such a power unit, you must decide to

accept the claim or not, so you sample four units observing

v = 1250 V and 5 = 100 V.

(a) How should the null and alternative hypotheses be stated by
you, a user?

(b) Find the critical region for o = 0.05 and a = 0.0l level
tests.

(c) What decisions are made in part (b)?

Exercises 7.4

Use the program MTEST to find a critical region for the test of
HO: U = 72 versus Hl: u + T2 at significance levels o = 0.05
and o = 0.01, for the observations of 50 heights given in

Exercise 5.2.2.

{a) Use the data of Sec. 6.3 on the weights of 20 "1-1b" bags
of flour to test the hypotheses

HO: U <16 versus Hy: u > 16

at the 5% level of significance.

(b) Use these same data to test

Hy: u= 16 versus H:ou $ 16

at the 5% level of significance.

Use the program MTEST.

The following observations are the lengths of time that driers
set for 20 min actually operated: 19.69, 19.06, 19.15, 17.80,
19.k9, 21.38, 19.79, 20.11, 18.54, 19.12, 22.61, 16.71, 21.61,
16.08, 2k.47, 13.23, 24.06, 19.56, 23.97, 18.80. Using MTEST,
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(a) Test the hypothesis B = 20 versus u % 20 at level of
significance o = 0.05.
(b) Carry out tests as in part (a) of w = 21 and u = 22 versus

a two-sided alternative at level of significance a = 0.05.

T.h4 TESTS FOR u IN LARGE SAMPLES

In Chap. 5 we have seen that the central limit theorem could be employed
to find a confidence interval for u, assuming a large sample from a
continuous population is available. Due to the close relationship
between confidence intervals and tests of hypotheses just mentioned,

it is not surprising that tests of hypotheses concerning u, in the

large sample case can be based upon the normal distribution. Consider

a test of

of M= Mg versus Hl: u# M, (7.4.1)

For large n, if H. is true, Z = (X - uo)/o//ﬁ is approximately distri-

0
buted as the standard normal variable. Hence

P(lj—( - uol

o/vn

Z-Za/Z) =a

or estimating ¢ by the sample standard deviation s,

1% - u,l

P(——g"
s/vn

1t Hl were true, then (X - uo)/s//ﬁ would tend to be large in magni-

2 Za/2) =

tude, and the larger the magnitude the more evidence for Hl' Hence
an approximate o level test for the hypotheses given in Eq. (7.4.1)

is defined by the critical region Ii - UO]/S//E Z'Za/ if n is large.

Table T.4.1 gives the appropriate critical regions foi tests in the
case of one-sided alternatives.

Another concept used in statistical testing is the "likelihood"
that an observed mean X comes from a population with theoretical
expectation Hge Assuming a test against a two-sided alternative, we

consider the probability
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Table 7.4.1 Rejection Regions for Large Sample Tests

H, H) Critical region
nE H> g (X - ug)/s/vn 2z
M2, W<y X - Wg)/s/vn < -2
H= g IR TS X -ul/sivmze,,
p(]z] zu3
s/va

where 7Z represents the standard normal variable. This gives the
probability of observing a value of X as far from uo or farther

(in magnitude) than the value x observed. Such a probability is
referred to as a P-VALUE. If this probability is small, doubt is
cast on the assumption that u = uo. Rather than relying on arbitrary
values of the significance level o, many statisticians prefer to use

the P-VALUE as an indication of the truth of the assertion u =1u

0

If the alternative to Ho: u = uo is considered to be one-sided,

the P-VALUE (in the upper tailed case) is
X - uo
s/va

P(Z >

)

i.e., one-half of the probability in the two-sided case.

The program MUTEST considers the hypothesis Ho: M= g in the
large sample case. The value of n and uo are provided in INPUT
statements. The program requests the alternative (1) u > oo (2)
< Mgs or (3) u ¢ Mo+ The observations are in DATA statements
beginning with line 400. The value of z = (x - uo)/s//ﬁ is computed
and a test may be carried out using Table B.I for any desired signif-
icance level. Additionally the P~VALUE defined in the previous

1"

paragraph is calculated. In the example, run the first 50 "ages"

of legislators from Exercise 5.1.3 have been used as data to test
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MUTEST

10 REM THIS PROGRAM TESTS THE HYPOTHESIS: MU = MUO
20 REM AGAINST ONE OF THE AL TERNATIVES

30 REM 1) MU > MUO

40 REM 2) MU < MUO

SO0 REM 3) MU <> MU0

60 REM THE POPULATION SAMPLED IS CONSIDERED TO HAVE AN
70 REM EXPECTATION AND VARIANCE

80 REM THE SAMPLE SIZE N IS CONSIDERED TO BE “LARGE"
90 REM THE PROGRAM CALCULATES Z AND THE CORRESPONDING P-VALUE
100 PRINT "WHAT ARE THE VALUES OF N AND MUO?"

110 INPUT N, UO

120 PRINT "WHICH ALTERNATIVE, *3'"1,2,0R 37"

130 INPUT A

140 IF A= 1 THEN 190

150 IF A= 2 THEN 190

160 IF A = 3 THEN 190

170 PRINT *“INCORRECT FORMAT ' " TRY AGAIN"

180 GO TOo 110

190 FOR I = 1 TO N

200 READ X

210 LET S = S + X

220 LET S1 = S1 + Xt2

230 NEXT 1

240 LET X1 = S/N

250 LET S2=SQR((S1-N*X1t2)/(N~1))

260 LET Z = (X1-U0)/¢S2/SQR(N))

270 GOSUB 900

290 PRINT "*THE CALCU.ATE Z VALUE = ';Z

300 IF A = 3 THEN 330

310 PRINT

320 PRINT "THE P-VALUE FOR *";"AL TERNATIVE *"3A3‘' = 3P
325 GO TO 1030

330 PRINT

340 PRINT “THE P-VALUE FOR *;"AL TERNATIVE ";A3'" = *";Px2
350 GO TO 1030

400 DATA 46, 44 45, 405 46, 525 475 48,5 425 44

410 DATA 57, 365 53 34s 635 24 625 469 615 43

420 DATA 5S0s 485 455 625 S65 465 465 40s 44 52

430 DATA 43, 39, 49, 47, 425 S3» 53, 435 41, 47

440 DATA 46, 34 38, 4ds 43, 48, 48, 45, 41, 61

900 LET Z1= ABS(Z)

910 LET C=1/SQR(2)

920 LET Cl= .14112821

930 LET C2= .08864027

940 LET C3=.02743349

950 LET C4= -.00039446

960 LET CS5=.00328975

970 DEF FNZ(X)=1-1/C1+CI1%X+C2%X? 2+ C3%X? 3+ CHxX?t 4+ CSxX1 5) 8
980 LET P = «S5+¢5«FNZ(Z1%(0)

990 LET P = 1E-4«(INT(1E4%P))

1010 LET P = 1-P

1020 RETURN

1030 IND

*
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RUN

wHAT ARE THE VALUES OF N AND MUO?
? 50, 50

WHICH AL TERNATIVEs 1,2,0R 3?

? 3

THE CALCU.ATE Z VALUE = -3.17236

THE P-VALUE FOR ALTERNATIVE 3 = 0.0016

*RUN

WHAT ARE THE VALUES OF N AND MUO?
? 6+50s 48

WHICH AL TERNATIVE» 1, 2,0R 37

?7 3

THE CALCU.ATE Z VALUE = -1,33863
THE P~VALUE FOR AL TERNATIVE 3 = 0.1808

*
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the hypothesis p = 50. The computed value of z = -3.17, and since
|z[ 2_1.96, we would reject this hypothesis at the 5% level of sig-
nificance against a two-sided alternative. The P-VALUE of 0.0016
indicates that p = 50 is an "unlikely" value of p. The same data
used to test U = 48 yield z = -1.34k a P-VAILUE = 0.181, which leads
to acceptance of HO at any significance level less than 0.181.
Hence the P-VALUE is the smallest significance level at which the
null hypothesis can be rejected. If a predetermined o is less than

the P-VALUE, the null hypothesis is retained.

Exercises 7.4

1. Use the height data of Exercise 5.2.2 with MUTEST to test the
hypotheses 1 = T2 versus pu F 72 at significance level a = 0.05.
What is the P-VALUE for this test?

2. The list below gives the age at first inauguration of 38

presidents¥*:

George Washington 5T James Buchanan 65
John Adams 61 Abraham Lincoln 52
Thomas Jefferson 57 Andrew Johnson 56
James Madison 57 U. S. Grant L6
James Monroe 58 Rutherford B. Hayes 54
John Q. Adams 57 James A. Garfield L9
Andrew Jackson 61 Chester A. Arthur 50
Martin Van Buren 54 Grover Cleveland L7
William Henry Harrison 68 Benjamin Harrison 55
John Tyler 51 William McKinley 54
James K. Polk 49 Theodore Roosevelt 42
Zachary Taylor 6k William H. Taft 51
Millard Filmore 50 Woodrow Wilson 56
Franklin Pierce 48 Warren G. Harding 55

*Source: The World Almanac and Book of Facts, 1975.
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Calvin Coolidge 51 John F. Kennedy 43
Herbert Hoover 54 Lyndon B. Johnson 55
F. D. Roosevelt 51 Richard Nixon 56
Harry S. Truman 60 Gerald R. Ford 61
Dwight D. Eisenhower 62 James E. Carter 52

Use MUTEST to test the hypothesis that the true average at
inauguration is 55 versus the alternative that u is greater
than 55 at level of significance o = 0.02. What is the P-VALUE
for this test? What is the P-VALUE if the alternative is
written as u + 55%

3. Use the 50 numbers generated by the program RANDSAM in Sec. 5.1
to test the hypothesis u = 500.5 versus u + 500.5 using the
P-VALUE to make a decision.

7.5 DISTRIBUTION-FREE TESTS OF LOCATION

In the preceding two sections of this chapter we have considered

tests concerning the expectation u of a population assumed to be
normally distributed, or one for which the sample size was sufficiently
large that the sample mean could be assumed to be normally distributed.
In this section we consider tests of location in the case that the
underlying population is considered only to be continuous. Specifi-
cally, the cumulative distribution function of the random variable

X is considered to be continuous. Such tests are referred to as
distribution-free tests because the observations are not assumed to
come from a specific family of distributions such as the normal or
exponential. The term nonparametric i1s also used to describe these
tests. This term is unfortunate, however, because the tests to be

discussed will concern pérameters of a distribution.

7.5.1 The Sign Test

We assume that we have a random sample (X_, X., ..., Xn) from a con-

1’ 72
tinuous population with a unique median n. In Sec. 6.2 we found

confidence intervals for n based on the binomial distribution. As
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there is a close relationship between confidence intervals and tests

of hypotheses, it should not be surprising that a test of

Hy: n=n,  versus Hi: ngng

can be based on the binomial distribution. This test is referred
to as the sign test. We use the statistic

s = X.En sen(X; - ngy)

i'0

i.e., the number of observations which exceed no as the test statistic.
If the true medlan is no, the observations Xi - no will have a posi-
tive sign with probability 1/2 and a negative sign with probability
1/2 [the assumption that X, the parent distribution is continuous,
implies that P(Xi = no) = 0]. Thus the statistic S has the binomial
distribution B(n,1/2) under HO' Against a two-sided alternative we
would reject HO if either S is very large or small. We reject HO if
either S<ror 8 >n - r, yielding a test with type I error a =
P(S<rors>n- rlp = 1/2) = 2P(B(n,1/2) < r), as the probability
in the two tails is the same.

Let us consider the baseball data in Table 6.2.1. The 20 ordered
league leading numbers of hits (1952-1971) are 190, 192, 194, 200,
200, 20k, 205, 205, 208, 209, 209, 210, 211, 212, 215, 218, 223,

230, 230, 231. Assume we wish to test

HO: n = 201 versus H:on 4 201

at approximately the 0.05 level of significance. Running the program
BINOM for n = 20 and p = 1/2, we see that for r = 6, 2P(B(20,1/2) < 6)
= 0.0414. Hence we would reject Hy if 8 < 6 or 8> 1k4. 1In this case
S = 15 because 15 of the 20 observations exceed no = 201, and thus
the hypothesis HO would be rejected. Tests against one-sided alter-
natives are obtained similarly and are given in Table T7.5.1.

For large samples one can use the normal approximation to the
binomial distribution to find the critical region for the tests.

Suppose we wish to test

H < H >
HO n __no versus Hl n no
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Table 7.5.1 Critical Regions for the Sign Test

HO Hl Critical region
> - : = <
n < ng n>n, S>n-rj5a P(B(n,1/2) < rl)
.y = <
n>n, n <, § < ry3 o = P(B(n,1/2) < r,)
noong n#n, S<rorsS>n-r;as= 2P(8(n,1/2) < 1)

using the sign test. One calculates the statistic

S= I Sgn(Xi -n,)

0]
>
X. 0

If the true population median n exceeds No? then there will tend to
be a large number of positive signs among the comparisons Xi - no,
i=1, 2, ..., n. To achieve a test of significance level a we
require P(S > c}HO) = 0. Using the normal approximation to the

binomial distribution we obtain

(M>Z)=a

vaje ¢

Hence we can base the test on the statistic Z = (8 - n/2)/vn/2. If

P

Z Z-Za’ we reject HO in favor of Hl' Similarly for the other two
alternatives of Table T7.5.1 we obtain the rejection regions Z 5-_Za
|Z] > Z,/p- The P-VALUE for the null hypothesis can be obtained as
for tests of y in the large sample case.

The program MEDTEST uses the sign test statistic S to test the
hypothesis HO:

n, Ngs and the alternative (1) n > Nge (2) n < n, or (3) n4 n, are

n-= no in moderate or large samples. The values of

input in response to the program. The observations should appear

in DATA statements beginning at line 400. The program computes S,
Z, and the P-VALUE for the indicated alternative. In the sample
run, the height data of Sec. 6.2 have been used to test n = 42.5

and n = 41 against alternative (3). The respective P-VALUEs are
0.8416 and 0.0008 indicating acceptance of 1 = 42.5 and rejection of
n = 41, agreeing with the parametric test results of Sec. T.3.



282 Hypothesis Testing

MEDTEST

18 REM THIS PROGRAM USES THE SIGN TEST STATISTIC TO TEST THE
20 REM NULL HYPOTHESIS THE MEDIAN OF A CONTINUOUS POPULATION
30 REM 1S M@. THE PROGRAM ASSUMES A MODERATE OR LARGE SAMPLE SIZE N
43 REM THE ALTERNATIVES ARE OF FORM

5@ REM 1) MEDIAN > M@

60 REM 2) MEDIAN < M@

7¢ REM 3) MEDIAN <> M@

80 REM THE PROGRAM COMPUTES THE VALUE OF S»Z AND THE

990 REM CORRESPONDING P-VALUE

106 PRINT "WHAT ARE THE VALUES OF N AND MO?"

110 INPUT N,M2

120 PRINT "WHICH ALTERNATIVE», *"3"1,2,0R 32"

138 INPUT A

146 IF A = 1 THEN 190

156 IF A = 2 THEN 190

160 IF A = 3 THEN 199

178 PRINT "INCORRECT FORMAT "3 “TRY AGAIN"

180 GO TO 110

196 FOR I = 1 TO N

200 READ X

205 IF X = M@ THEN 225

210 IF X < M@ THEN 230

215 LET S = S+l

220 GO TO 230

225 LET T = T+l

230 NEXT 1

249 PRINT "THE NUMBER OF X = M@ IS5 '"3T

250 PRINT "THE VALUE OF § =35

2686 LET Z =(2%S~(N-T))/SQR(N-T)

270 GOSUB 902

298 PRINT "THE CALCULATE Z VALUE = *3Z

300 IF A = 3 THEN 330

318 PRINT

320 PRINT "THE P-VALUE FOR *'3"ALTERNATIVE "3A3" = '"3P

325 GO TO 1030

338 PRINT

34 PRINT "THE P~VALUE FOR "3 "ALTERNATIVE ™3A3" = '3Px%2
350 GO TO 1838

400 DATA 42¢58,41¢82,41694,40e25542037544¢65426T4543:1485810175416954642
410 DATA 38489,45.02538¢15484595340¢54548+087542¢45547:¢975481655430924342
420 DATA 42.02,4843,45.9

900 LET Zl= ABS(Z?

910 LET C=1/S5QR(2)

920 LET Cl= 14112821

930 LET C2= .08864027

940 LET C3=.02743349

95¢ LET Ca= ~-.00039446

96@ LET CS5=.08328975

970 DEF FNZ{X)=1-1/C1+C1eX+C2%Xt2+C3%Xt 3+C4*Xt4+C5%Xt5)18
980 LET P = +«5+.5%FNZ(Z1%C)

990 LET P = 1E-4%(INTC(1EA®P))

101@ LET P = 1P

1820 RETURN

18638 END
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RUN

WHAT ARE THE VALUES OF N AND M@?
? 25,4245

WHICH ALTERNATIVE 1,2,0R 37

? 3

THE NUMBER OF X = M@ 1S @

THE VALUE OF S5 = 13

THE CALCULATE Z VALUE= @.2

THE P-VALUE FOR ALTERNATIVE 3 = @.8416

*RUN

WHAT ARE THE VALUES OF N AND M@?
? 25,41

WHICH ALTERNATIVE 1,2,0R 3?2

? 3

THE NUMBER OF X = M@ IS @

THE VALUE OF S = 21

THE CALCULATE Z VALUE = 3.4

THE P-VALUE FOR ALTERNATIVE 3 = 7.99999 E-4
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7.5.2 The Wilcoxon One-Sample Test

We have seen that the sign test provides a simple test of hypothesis
for the population median of a continuous distribution. However, as
the statistic S depends only upon the signs of Xi - no information
about the magnitude of the original observations is lost. We con-
sider here a more sensitive test of location generally referred to
as the Wilcoxon one-sample test or the Wilcoxon signed-rank test.

We consider that we are sampling from a continuous population. We
assume that the random variable in question has a continuous proba-
bility density function f(x;0) dependent on a location parameter 8.
The density function is assumed to be symmetric about 6, that is,
(8 - x) = £(8 + x) for all x. It is straightforward to show that
the median of the distribution is 6 and that E(X) = 0, if the expec-
tation exists. A typical probability density function of this kind
appears in Fig. T7.5.1.

We wish to test the hypotheses HO: 6 = 60 versus Hl: 3] + BO,
as well as one-sided tests. The test statistic is again based on
the differences Xi - BO. The statistic is a function of the ranks
(1, 2, ..., n) of the magnitude of these differences. Following
common notation, we define Ri to be the rank of the magnitude of the
ith difference. We further define T, = in>eo Ri and T_ = in<90 R;.
It is clear that T+ T_ = n(n + 1)/2 as this is just the sum of the

f{x)

6] X

Fig. 7.5.1
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first n integers. Hence T _can be computed as n(n + 1)/2 - T_. The

test is based on the statistic T = min(T T_). We indicate the

+’
computation of T for the baseball data of the preceding section

using

X, |xi - 201 R, X, |xi - 201 R,
190 11 13.5 209 8 8.5
192 9 10.5 210 9 10.5
194 7 6.5 211 10 12
200 1 1.5 212 11 13.5
200 1 1.5 215 14 15
20k 3 3 218 17 16
205 L 4.5 223 22 17
205 i h.5 230 29 18.5
208 7 6.5 230 29 18.5
209 8 8.5 231 30 20

T_=33.5, T, = 210 - 33.5 = 176.5, T = 33.5

Note that for tied observations the average of the corresponding
ranks is assigned to each such observation. It is clear that small
values of T indicate that the ranks assigned to the positive or
negative differences are inconsistent with 6 = eo.

In order to answer the question of whether T is sufficiently
small to reject HO: 0 = 60, we must know the distribution of T
under the null hypothesis. In Table B.IV we have values of T sat-
isfying o" = 2P(T < d), which are appropriate for two-sided tests
with significance level a'. Values of d are given for values of o"
approximately equal to 0.0l1, 0.05, and 0.10. These values of 4 are
appropriate for one-sided alternatives with a significance level of
a' = a"/2. We see that for n = 20, 2P(T < 38) = 0.009, so that the
decision to reject 8 = 201 at significance level a = 0.01 would be
correct.

With a little reflection we see that the distributions of T+
and T_, excluding ties, are the same under H_ . This is true because

0
each combination of the n integers summing to a particular value 4
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can be signed either plus or minus. Hence, as T+ T_ = n(n + 1)/2,
we have E(T,) + E(T_) = n(n + 1)/2 = 2E(T,), and thus E(T) =
n{n + 1)/4 under HO. Additionally the distribution of T _ is symmet-

ric about n(n + 1)/4 as

P(T+ 5_nfn Z l} - a) = P(nﬁn ; 1) T 5.ngn + 1) - a)

The last equality follows from the fact that T_ and T+ have the same
distribution. It can additionally be shown that Var(T+) = Var(T_) =

n{n + 1)(2n + 1)/24 under H These facts about the null distribu-

tion of T+ permit large samgle tests of HO: 0 = 80 to be carried

out using the normal distribution, as in the case of the sign test.
The statistic T+ will be used in the large sample case. It may

be proved that the stendardized statistic

(T+ - n(n +1)/4)/vn(n + 1)(2n + 1)/2L is approximately distributed

as the standard normal variable Z under Ho if n is large, say n > 25.

Let us consider testing

H.: © j_eo versus Hl: 8 > 80

using the statistic T+. If the true value of O exceeds 80, then the
larger ranks of ]Xi - Oo] will tend to have positive signs. Hence

we will reject Ho if T+ is large or analogously if

. - (T+ - n(n + 1)/4)

) vn{n + 1){(2n + 1)/24

(7.5.1)

is large. A test with approximate significance level o for large n
is defined by the critical region Z 3_Za. The critical regions for
commonly used alternatives are presented in Table T7.5.2, where Z is
defined by Eg. (7.5.1). For the height data of Sec. 6.2 we have
tested HO: p = 42.5 in See. 7.3 using the t distribution. If we

carry out the same test against a two-sided alternative, we calculate
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Table 7.5.2 Critical Regions for the Signed-Rank Test

HO Hl Critical Region
8 < 8, 8> 8, Z2>7
62> 6, 8 < 8, z<-2,
6 =6, 8 % 6, |2 2 2075

162.5)/v25(26)(51)/2k = 0.821. Hence

again the decision is made to retain HO. The signed-rank test is

T+ = 193 and hence Z = (193

appropriate here as the normal probability density function is
symmetric about u.

The program WILTEST is similar to other programs of this chapter
for testing the value of a location parameter. The program calls for
the sample size n, eo, and the appropriate alternative. A test of
the hypotheses described in Table T7.5.2 is carried out based on a
large sample approximation to the distribution of T+. The program
calculates T+, Z, and the P-VALUE for the alternative selected. For
the height data of Sec. 6.2 tests of 60 = L2.5 and 6y = 41 nave been
carried out against alternative (3). The P-VALUEs are 0.412 and
0.0018 indicating the same decisions as before. The Z values of
0.821 and 3.135 are quite close to the t values of 0.879 and 3.128
found using the parametric test. The strength of the rank test lies
in the fact that the class of distributions for which it is appropri-

ate is larger than for the corresponding aprametric tests.

Problems 7.5

1. (a) Prove that if X ~ B(n,1/2), then P(X < r) = P(X > n - r)
for any integer 0 < r < [n/2].
(b) Illustrate this result directly for n = 6 and r = 2 by

calculating the reguired probabilities.
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WIL

12

20

30

490

50

60

70

80

90

100
110
120
130
140
150
160
170
180
185
190
195
200
205
210
215
220
225
230
232
235
249
245
250
255
260
262
265
2708
275
280
285
290
292
295
300
305
310
315
320
325
330
335
340
345
350
355
360

TEST

REM THIS PROGRAM USES THE SIGNED RANK STATISTIC TO TEST THE NULL
REM HYPOTHESIS THAT THE MEDIAN OF A SYMMETRIC CONTINUOUS POPULATION
REM 15 M@. THE PROGRAM ASSUMES A MODERATE OR LARGE SAMPLE SIZE N
REM THE ALTERNATIVES ARE OF FORM

REM 1) MEDIAN > MO

REM 2) MEDIAN < M@

RFM 3) MEDIAN <> M@

REM THE PROGRAM COMPUTES THE VALUE OF S.,Z AND THE

REM CORRESPONDING P-VALUE

PRINT "WHAT ARE THE VALUES OF N AND MO?"
INPUT N,MO

PRINT "WHICH ALTERNATIVE, "3"1,2,0R 37"
INPUT A

IF A =1 THEN 190
IF A = 2 THEN 190
IF A = 3 THEN 190
PRINT "INCORRECT FORMAT ''3'"TRY AGAIN"
GO TO 11@

DIM X(€100),TC(100),Z2¢100)
FOR 1 = 1 TON

READ X(I)

LET X(I)=X (1)-MB
IF X(1)<=@ THEN 215
LET Z(1)=1

NEXT I

FORI = 1 TON

LET TCI)=1

LET XC¢I)=ABS(X(I1))
NEXT 1

FOR J = 1 TO N-1
FOR I = 1 TO N~J

IF X(I)<=XCI+]1) THEN 275
LET T=XC(I+1)

LET T1=TC(I+1)

LET XC¢I+1)=X<CI)

LET TCI+1)=TCD)

LET X(I1)=T

LET T(I1)=T]

NEXT 1

NEXT J

FOR I = 1 TON

LET X(I)=l

NEXT I

FOR J= 1 TO N-1

FOR I = 1 TO N-J

IF TCI)<TCI+1) THEN 340
LET T=T(I+1)

LET T1=XCI+1)

LET TCI+1)=TC(D)

LET XC(I+1)aX(I)

LET T(I)=T

LET XC¢I)=T1

NEXT I

NEXT J

FOR 1 = 1 TON

LET T2aT2+XCI)%Z(1)
NEXT I
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365 PRINT "THE VALUE OF T+ ="3T2

370 LET Z =(T2«-N*(N+1)/4)/SQRIN*(N+1)*(2%N+1)/24)

380 GOSUB 908

392 PRINT "THE CALCULATED VALUE OF Z = "3Z

400 IF A = 3 THEN 43¢

41¢ PRINT

428 PRINT *“THE P-VALUE FOR *“$"ALTERNATIVE “3A3"™ = 3P
425 GO TO 1830

430 PRINT

4409 PRINT "THE P-VALUE FOR "$"ALTERNATIVE "$A$"™ = "j;Px2
450 GO TO 1030

508 DATA 42:¢58541¢82541094540025542¢3754406542:T745430148,41017541095464.2
510 DATA 3848954502, 38¢1548¢59534058548.07»42e455470975414554309543.2
520 DATA 42.02,484+3,45.9

998 LET Z1= ABS(Z)

910 LET C=1/5QR(2)

920 LET Cl= «14112821

938 LET C2= .08864027

940 LET C3=.02743349

958 LET C4= -.20839446

960 LET C5=.80328975

972 DEF FNZ(X)ml=1/(Cj+Cl*X+C2%X12+C3%X1 3+C4*X1 4+C5%X15)18
980 LET P = +5+¢5%FNZ(Z1%C)

998 LET P = 1E-4%CINTC1E4%P))

1019 LET P = 1-P

1828 RETURN

1830 END

*

RUN

WHAT ARE THE VALUES OF N AND MO?

? 25,42.5

WHICH ALTERNATIVE 1,2,0R 37

7?3

THE VALUE OF T+ = 193

THE CALCULATED VALUE OF Z = (.820661

THE P-VALUE FOR ALTERNATIVE 3 = @.412

*RUN

WHAT ARE THE VALUES OF N AND MO?
? 25,41

WHICH ALTERNATIVE 1,2,0R 37

7?3

THE VALUE OF T+ = 274
THE CALCULATED VALUE OF Z = 3.0800812

THE P-VALUE FOR ALTERNATIVE 3 = 0.0028



290

2.

Hypothesis Testing

Consider the sample of 20 observations from the Cauchy distribu-~
tion given in the output of CAUCHY in Sec. 4.6. The pdf for
this population is

f{x) = %- —3 -0 < x < ®
1+ x

so that the variance does not exist.

(a) Test the hypothesis n = 0 using the sign test. Consider
the alternative to be two-~sided and the significance level
to be 0.041k.

(b) Test the hypothesis n = O as in part (a) using the Wilcoxon
signed-rank test at significance level approximately equal
to 0.05.

(a) Use the data of Exercise 7.3.3 on the running time of 20
driers set for 20 min to test the hypothesis u = 20 versus
u # 20. Calculate the value of the test statistic T and
carry out the test at significance level 0.05 (approximately)
against a two-sided alternative.

(b) Carry out tests as in part (a) of u = 21 and § = 22 versus
two-sided alternatives at level of significance 0.05 approxi-
mately. Do your decisions agree with those in Exercise
7.3.32

The following are the values of the weights of 20 packages of
butter produced in a processing plant: 4.01, L.02, 4.00, L4.09,
4.15, 4.07, k.01, 3.95, 3.90, 3.99, 3.95, L.0ol, 3.99, k.08, k.12,
L.20, 4.25, 4.21, 4.16, 4.0k
(a) Test the hypothesis n < 4.0 versus n > 4.0 using the sign
test. Discard any value equal to 4.0. Carry out the test
at level of significance a = 0.0318.
(b) Test the hypotheses in part (a) using the Wilcoxon signed-rank

test at level of significance 0.05 (approximately).

Suppose that a test is carried out on a drug which is supposed

to reduce blood pressure. Assume that of 225 individuals tested,
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140 show definite reduction in blood pressure. Does the sign
test indicate the effectiveness (p > 0.5) of the drug at signif-

icance level 0.05? At significance level 0.017

6. Show that if a random variable X has a continuous pdf symmetric
about O, that is, £(0 - x) = £{8 + x) for all x, then the corre-

sponding random variable X has median 8.

7. Assume that each of the 32 possible assignments of signs (e.g.,

+ - + - =) to the ranks (1, 2, 3, 4, 5) is equally likely.

(a) Wnat are the smallest and largest values which T+ may
attain.

(b) Find explicitly the probability distribution of T, under
the assumption made.

(c) Verify directly that E(T+) = 7.5 and Var(T+) = 55/4 from
the result in part (b).

8. Assume that we are testing

H: 6 =0 versus H Hl: 6 >80

0 0 0

for 6 the median of a continuous distribution. If we carry out
the test using the Wilcoxon statistic T and sample size n = 1T,
find the eritical region for the test with o = 0.05 (approxi~
mately).

Exercises 7.5

1. Use the program WILTEST to test the hypothesis H U = 72 versus

o
Hl: U = T2 at significance levels a = 0.05 and o = 0.01 using
the height data in Exercise 5.2.2. Compare the Z values with

those found in Exercise T.L4.1.

2. In 1971, a draft lottery was held. The following are the priority

dates assigned to those with birthdays in November and December¥:

*¥Source: U. S. News and World Report, July 13, 1970.
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November (priority) December (priority)

1 (243) 11 (123) 21 (35) 1 (347) 11 (73) 21 (181)
2 (205) 12 (255) 22 (253) 2 (321) 12 (19) 22 (19k4)
3 (294) 13 (212) 23 (193) 3 (110) 13 (151) 23 (219)
L (39) 14 (11) 2h (81) L (305) 1b (348) 2h (2)

5 (286) 15 (362) 25 (23) 5 (27) 15 (87) 25 (361)
6 (2hs5) 16 (197) 26 (52) 6 (198) 16 (k1) 26 (80)
7 (72) 17 (6) 27 (168) 7T (162) 17 (315) 27 (239)
8 (119) 18 (280) 28 (324) 8 (323) 18 (208) 28 (128)
9 (176) 19 (252) 29 (100) 9 (11k) 19 (249) 29 (145)
10 (63) 20 (98) 30 (67) 10 (204) 20 (218) 30 (192)

Use the sample of 61 priority numbers to test U = 183 versus
H + 183 at significance level o = 0.10 using the program WILTEST.
What is the P-VALUE for this data? If one concluded u > 183,

what does this mean about the lottery procedure?

3. Use the data of Sec. 5.1 giving the number of days required by
50 students to complete a self-paced course to test the hypoth-
esis u = 51 versus u # 51 at significance level o = 0.10, using
WILTEST. What is the P-VALUE for these data? Carry out the

same analysis using p = 55.

7.6  TESTS CONCERNING 02 AND ¢ IN NORMAL POPULATIONS

In Chap. 6 we have seen that a confidence interval for 02 can be

based on the Xi—l distribution. Due to the relationship between

confidence intervals and tests of hypotheses it is apparent that

tests concerning 02 in the normal case will be based on the chi-

square variable. In fact the (1 -~ 0)100% confidence interval for
o° given in Sec. 6.3.

2 2

[(n - 1)8 (n - 1)8 ]

2 >
Xa/2,n-1  X1-0/2,n-1
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o 02 = 002 against a two-sided alternative.
2 .
If the hypothesized value OO lies in the interval, we retain HO and

otherwise, we reject it. For the example data giving the weights of

provides a test of H

20 "1-1b" bags of flour in that section we have found the 95% confi-
dence interval [0.118, 0.437] for 02. Hence any hypothesized value
in this interval would be accepted for a 0.05 level test against a
two-sided alternative. Values outside this interval would be
rejected.

As control of the variation of a production process is import-

ant we often wish to have critical measurements satisfy @ <0

O 3>
where 002 is some maximum tolerable variance. We state the null
and alternative hypotheses as

2 2 2 2
: < : >
HO o 20, versus Hl o 9

We calculate the variance of a random sample of size n and clearly
will reject HO if the observed value of 32 > k for some positive
constant k. The requirement for an o level test,

2

P(s _>_k]HO)5a

will determine the value of k. For 02 5_002, we have

2 2
(n - 1)8 (n - )k (n - 1)8 (n - 1)k
=z > 2 ) < P( 2 > 5 )
0 0 %

B(

Using Theorem 6.3.1, the last probability will equal o if

k(n -1) _ 2
. 2 Xa,n—l
0

or

o 22
0 Xa n-1
n -1

k =

Generally the test statistic used is denoted X2 = (n - 1)82/0 2,

with the critical region in this case defined to be x2 > xs nel’
JN—

The analogous critical regions for o level tests in the normal case

appear in Table 7.6.1.
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Table 7.6.1 Critical Regions for Tests of 02 in the Normal Case

HO Hl Critical region
2 2 2 2 2 2
< > >
9 2% 9 > 9% X 2 Xg,n-1
2 2 2 2 2
> <
9 29 9 <9 X = X1-g,n-1
02 =g 2 02 + . 2 2 2 or 2 < 2
=% 0 X ZXg/2,m-1 ¥ X ZX1g/2,n-1

In Sec. 6.6 we introduced the Downton unbiased estimator of o.
Using the notation employed there we have seen that for n > 20,
g -0

vA(n)o

7 =

is approximately normally distributed. Hence tests of hypothesis
about 0 in the normal case may be based on the statistic Z =

(G - OO)/VA(n)OO). These tests are summarized in Table T7.6.2.

Table 7.6.2 Critical Regions for Tests of 0 in the Normal Case

HO Hl Critical region
< >
0 <0, G > 0y z > Za
< < -
g 20, o <o, z<-Z,
g =0y o %o, ]Z[izm/2

Problems 7.6

1. The heights of 25 males, assumed to come from a normally distri-
buted population, yield x = 43.086 and s = 3.335. Test the
hypotheses Hj: 0@ < kb versus H : >k using the chi-square
test. Let o = 0.05.
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2.

A random sample of 17 bass yields X = 14.1 in. and s = 1.20 in.
Assuming normality, find a 95% confidence interval for 02 to
decide between HO: 02 = 2 and Hl: 02 + 2 at significance level
o = 0.05.

(a) Show that for a test of Ho: 02 5_002 against Hl: 02 > %

in the normal case, the power function may be expressed as

mo?) = 1 - F , (B2l
X o
Here F 2( ) represents the cdf of a chi-square random vari-

able with n - 1 degrees of freedom.
. 2y _
(b) Show 11m02+w m(og"™) = 1.

(¢) Show that ﬂ(cz) is an increasing function of .

Exercises 7.6

Write a program similar to MUTEST based on the large sample

approximation of the Downton estimator to test H g=a0

o 0
against any of the usual alternatives. The program should out-

put the calculated value of Z and the appropriate P-VALUE.

Use the program written in Exercise T7.6.1 together with the
data of Exercise 5.2.2 to test the hypothesis Ho:
Hl : 0 § 2 for these height data. What are the values of Z and

P-VALUE for this test. What is the correct decision at o = 0.01°?

0 = 2 versus



TWO~-SAMPLE TESTS

8.1  INTRODUCTION

In this chapter we consider comparisons of two statistical populations.
One is often interested in testing whether there are differences in
two methods or ways of accomplishing an action and in estimating the
magnitude of the differences. In statistics we say that we are test-
ing whether a difference exists between two effects. As examples we

cite the following:

a. Are there differences in the results achieved by two different
teaching methods?

b. Are there differences in the weight gains of similar animals on
two different diets over a fixed period of time?

c. Do differences exist in the density of cakes prepared by two
different cake mixes?

d. Do students in different colleges of a university, say engineer-
ing and liberal arts, spend different amounts of time studying

on the average?

Such gquestions fall under the general heading of two-sample problems
in statistics. The basic idea is that we obtain random samples from
each of two populations. We first wish to answer the question of
whether these populations are statistically identical. If not, we
want to have some measure of the magnitude of the differences between

the populations.

296
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8.2 DIFFERENCES OF POPULATION EXPECTATIONS IN THE LARGE SAMPLE
CASE

In this section we assume that "large" independent samples are avail-

able from each of two populations described by the random variables

Xl and X2. We use the following notation:
E(X,) =1y E(X,) = u,
_ 2 _ 2
Var(Xl) =0, Var(Xg) = 0,

The null hypothesis which we consider is

17
against alternatives of three general types: (1) My > s (2)
Hy < Uy, or (3) Hy $ My It seems reasonable that a test of this
null hypothesis, that the two populations have the same expectation,
should be tested using a statistic based on the difference of the
sample means, il and 22.

To be precise, it is assumed that we have two independent

random samples:

1os e xlnl and Xy Koo eees x2n2

X

11° X

The samples of sizes n, and n, are from populations one and two,

respectively. Of course,

X
1 1 and
1

. X
1
bl i

272
1

>

I
™

>

1
™z

i
i oo
Due to the properties of sample means and the variance of a differ-

ence of two independent random variables, we have

B(%, - %) = B(X)) - 2(E,) = u, -,

Var(Xl - X2)

For "large" n, and n,, one can assume that the random variable

1
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(Xl—Xe) - (ul-u2)

V2 2
o /nl + 0, /n2

is approximately distributed as the standard normal variable Z.

Under the hypothesis ul

2 . .
82 as estimates of the corresponding population variances, we have
the statistic

2
= ue, using the sample variances Sl and

& - %)

Va2 2
8) /nq + 5, /n,

Clearly the appropriate critical regions for the alternatives (1),
> < - > ignif-
(2), and (3) are Z —-Za’ Z < Za’ and [Z] —-Za/e for tests at signif
icance level a.
The program 2SAMP has been written to test the hypothesis
ul = u2 in the large sample case. The program requests the values

of ny and n,- The observations in sample 1 should appear in DATA

statements in lines 400-499 and those in sample 2 in DATA statements

in lines 500-599. The program computes El’ 22, S15 S5

+ szz/nz, as well as the computed Z value with the corre-

Sle/nl
sponding P-VALUE. In the sample run the first 50 "ages" in Exercise
5.1.3 has been used as sample 1 and the last 50 "ages" as sample 2.
The value Z = -0.401 and the P-VALUE of 0.6886 suggest that one
should retain ul = u2 at any reasonable level of significance.

To find a confidence inEerval for ul = My let us consider a

general statistic én with E(en) = 0 which is distributed as the

standard normal variable Z for large n. The statement

6n -9
)

iVa.r(en) a/2

P(-Za/2 < =1-aqa

may be written as

P(én - vGar(en)zu/z <9 §_§n + Vﬁar(ﬁn)za/z) =1-0
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2SAMP

10
20
30
40
50
60
70
80
90
95
100
110
120
130
140
150
160
170
180
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
300
310
320
325
330
340
350
400
410
420
430
440
500
510
520
530
540
*

REM THIS PROGRAM TESTS THE HYPOTHESI St MUl = MU2
RFEM AGAINST ONE OF THE AL TERNATIVES

REM 1) MU1 > MU2

REM 2) MUl < MU2

REM 3) MUl <> MU2
REM ASSUMING INDEPENDENT SAMPLES OF SIZE N1 AND N2
RFM FROM TWO POPULATIONS WITH FINITE EXPECTATIONS AND VARIANCES
REM THE SAMPLE SIZES N1 AND N2 ARE CONSIDERED TO BE LARGE
RFM THE PROGRAM COMPUTES Z, THE CORRESPONDING P-VALUE AND
REM OTHER STATISTICS OF INTEREST

PRINT "WHAT ARE THE VALUE OF N1 AND Ng?*

INPUT N1sN2

PRINT *“WHICH ALTERNATIVE, '3"i,2 OR 32"

INPUT A

IF A= 1 THEN 190

IF A= 2 THEN 190

IF A= 3 THEN 190

PRINT "INCORRECT FORMAT '3 *"TRY AGAIN*

GO TO 110

FOR I = 1 TO NI

READ X

LET S= X + S

LET 51 = Si +X12

NEXT I

LET X1=sS/N1

LET Sl= SQRC(S1=-N1%X1t2)/(N1-1))

FORI = | TO N2

READ X

LET T = T +X

LET T1 = T1 + Xt2

NEXT I

LET X2=T/N2

LET S2=SQRC(TI-N24X2t2)/(N2-1))

LET Z = (X1-X2)/SQR(S1t2/N1+S2t2/N2)

GOSUB 900

PRINT *SAMPLE', *MEAN', "STD DEVIATION"

PRINT * X1, 51

PRINT *»* 2 X2, S2

PRINT *STD DEV OF DIFF = "5 SQR(S1t2/N1+S5212/N2)
PRINT "“THE CALCULATE Z VALUE = *3Z

IF A= 3 THEN 330

PRINT

PRINT *THE P-VALUE FOR *'3 AL TERNATIVE ;A" = 3P
GO TO 1030

PRINT

PRINT “THE P-VALUE FOR *; "AL TERNATIVE “;A3;' a ';Px2
GO TO 1030

DATA 46, 4ds 45, 405 46s 525 475 48, 42, 44

DATA 57, 36, 53, 34, 63, 24, 62, 465 615 43

DATA 505 485 45 625 565 465 465 40, 445 52

DATA 435 395 49, 475 425 535 535 435 41, 47

DATA 465 34, 38, 44, 435 48, 48, 455 415 61

DATA 48, SO» 41,5 415, 305 515 S1s 43, 545 55

DATA 415 455 485 S4s 54s 495 465 525 565 45

DATA 45, 505 35s 525 49, 44 45, 50, 52, 52

DATA 45, 47, 45 605 485 49, 325 505 52, 47

DATA 57, 425 48, 41, 40, 485 395 39, 53, 45
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900 LET Z1= ABS(Z)

910 LET C=1/SQR(2)

920 LET Cl= 14112821

930 LET C2= .08864027

940 LET C3=.02743349

950 LET C4= -.00039446

960 LET CS=.00328975

970 DEF FNZ(X)31-1/C1+C1kX+C24X1 2+ CIhX?t 3+ C4:X1 4+ C5+Xt 5)18
980 LET P = «5++5«FNZ(Z1%C)
990 LET P = 1E-&4%(INTC(1E4*P))
1010 LET P = 1=-P

1020 RETURN

1030 END

*

RWN

WHAT ARE THE VALUE OF N1 AND N2?

? 50s 50

WHICH AL TERNATIVE, 1,2 OR 3?

? 3

SAMPLE MEAN STD DEVIATION
1 464 54 T.7122
2 47.1 6016855

STD DEV OF DIFF = 1.39663
THE CALCLLATE Z VALUE = =-0.400965

THE P-VALUE FOR ALTERNATIVE 3 = 0.6886

*
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Hence the endpoints of the confidence interval are of the form
5 + ATBY )
en + VVar( n)Za/Q .
is a statistic used to find a confidence interval for u. If Var(en)

We have seen this before in Sec. 5.5 where in

depends on an unknown parameter, then Var(en) is replaced by an
estimator, say ar(@n), and the confidence interval becomes

8 + v Vg}(§n)Z

n —

/2 (8.2.1)

For the difference W~ using statement (8.2.1), we find

2

to be an appropriate (1 - a)100% confidence interval. For the data
used in 28AMP we find -0.560 + 1.397 (1.96), that is, [-3.297, 2.177)]
to be a 95% confidence interval for ul - uz.

Problems 8.2

1. Assume that 100 boys and 100 girls are given a test with the

1= 30, and s, = Lo.

(a) Test the hypothesis that the average performance is the

following results: il = 565, §2 = 5ho, s

same for boys and girls.
(b) Find a 95% confidence interval for B - e
2. Assume that it is of interest to know whether the CPU time of
faculty members program is greater than that of student programs.
2

A sample of 100 programs of each group yields il = 10 and sl = 10

for the faculty programs, while iz = 8 and 522 = 15 for the

student programs. Time is measured in seconds.

(a) Test the hypothesis that the average CPU time is the same
against the alternative that the CPU time for faculty pro-
grams exceeds that of student programs. (o = 0.01)

(b) Find a 98% confidence interval for By = M-

3. In an article in the American Psychologist by Sandra Scarr and

Richard A. Weinberg (August, 1976) entitled "IQ Test Performance
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Two-Sample Tests
of Black Children Adopted by White Families,” the IQ scores of
natural and adopted children were reported. The results showed
the average Stanford~Binet IQ of the 48 natural children was
= 113.8 with sl = 16.7 and the average IQ for 122 adopted

= 106.5 with s, = 13.9.

El
children was X,
(a) Do the data indicate a significant difference between these
two groups (a = 0.05)?

(b) Find a 95% confidence interval for Hy = My

Vidhu Moran and Dalip Kumar report in the British Journal of
Psychology (August, 1976) the results of a study on the relation-~
ship between introvertism and extrovertism and intelligence in

an article entitled "Qualitative Analysis of the Performance of
Introverts and Extroverts on Standard Progressive Matrices."

The number of correct responses (of 12 possible) on the most

difficult tests are summarized below:

Introverts Extroverts
Ei 7.88 6.08
s, 1.65 2.13
i
n, 50 50

Test the hypothesis that there is no difference between the two

groups using a = 0.05.

Roberta M. Milgram and Norman A. Milgram report on the relation-
ship between anxiety and warfare in an article, "The Effect of
the Yom Kippur War on Anxiety Level in Israeli Children," in

The Journal of Psychology (September, 1976). The following

data are presented where the measurements are made on the Sarason

Scale for anxiety (20 maximum).

Israeli peacetime

Israeli wartime

X S X S
Boys (n = L42) 5.83 k.51 14.9L 3.79
Girls (n = 43) 8.10 5.11 11.91 k.59
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(a) Compare anxiety levels for boys and girls in peacetime by
testing the null hypothesis of no difference between the
two groups (a = 0.10).

(b) Test the hypothesis that anxiety increases during war in
children using the data for the girls (o = 0.05). What
assumptions of the two-sample test situation are violated

in comparison?

Assume that we have independent samples from each of two popu-
lations of sizes n, and Oy where the sample sizes are considered
to be large. Find a {1 - a)100% confidence interval for

(ul + ”2)/2' Assume that ay and o, are unknown and may be
unequal. Use expression (8.2.1)

Exercises 8.2

(a) Use the second 50 "ages" and the next to last 50 "ages"
from the data of Exercise 5.1.3 to test the hypothesis
ul = u2 versus ul + u2 with a = 0.05. Use the program
2SAMP.

(b) Find a 95% confidence interval for the difference Wy - Mo

(a) The data given below represent the weights of 40 men and
60 women to the nearest pound. Of course we expect ul > u2.
Test ul = u2 versus ul > u2 using 2SAMP with o = 0.01.

(b) Estimate the difference M) - U, and find a 95% confidence
interval for this difference. How does your estimate

compare with the true difference of 10°%

Sample 1: Weights of 40 Men
148 156 163 116 153 148 143 157 145 148
133 170 151 1bk7 137 158 145 150 158 147

146 139 151 143 139 142 130 169 171 1ks
149 140 147 145 172 1Ly 161 156 142 149
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Sample 2: Weights of 60 women

137 147 155 99 1k4 137 131 149 138 1k
131 134 134 138 120 164 1Lk1 137 125 150
117 11 154 143 134 1ko 149 137 135 127
141 132 124 135 127 140 126 131 116 163
165 134 139 128 133 129 1k2 136 136 134
166 132 153 147 130 139 132 163 147 163

3. Below we present the scores of 31 females and L4 males on a
final examination in an elementary statistics course. Use 2SAMP
to test the hypothesis of no difference in average performance

with & = 0.10. (Note: Maximum possible score is 35.)
Females

19 16 12 16 26 27 24 31 20 17 11 33 13 24 12 27
25 27 21 13 27 20 23 20 22 21 20 32 22 21 29

Males

29 29 31 27 29 25 24 26 16 17 22 25 28 31 30
20 28 28 35 25 24 22 21 33 22 22 34 25 24 34
14 15 16 23 34 28 28 33 28 22 35 21 28 16

8.3 DIFFERENCES OF POPULATION EXPECTATIONS IN THE NORMAL CASE

2 2
8.3.1 The Case Ol = 02

Here we assume the same situation as in Sec. 8.2 with the additional

2) and X

information that Xl ~ N(u 2). Again we are

~ (1,50,

- u2, based on independent

o
1’71
interested in inference concerning u

2

1

and n,, not necessarily "large."

samples of size n We consider

1
first the case of testing Ho: ul = u2 assuming that 012 = 022 = 2
where 02 is considered to be unknown. Here the variance of Xl -

is 02(l/nl + l/n2) where 02 is the assumed common variance of the

G
2

. . 2 . .
two populations. To estimate 0 we use information from both samples

to obtain the pooled estimate of the variance
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n 2
1 = \2 = \2
(X, -X )+ L (X, -X)
Ao i=1 1i 1 i=1 21 2
= " =
nl n2 2

It can be shown that E(62) = 02. The test statistic

G/l/nl + 1/n2

can be shown to have Student's distribution with nl + n,

of freedom under the assumptions of this paragraph. For the alter-

- 2 degrees

natives (1) My > s (2) by < My, and (3) My $ M,» the critical

i > < -
regions for level tests are t ta,nl+n2-2’ t ta,nl+n2-2’ and

> i .
]t] ta/z,n i _0° respectively

172
The assumptions that 012 = 022 is, of course, not necessarily
true. Good statistical practice requires carrying out a test of the
. . 2_ _2 . 2 2 .

hypothesis Ho. Ol = 02 versus Hl. Ol + 02 and conducting the
t test described above if H  is retained. In the following theorem,

0
stated without proof, we introduce a new distribution, related to

the chi-square distribution, which is used in determining a critical

region for this test.

THEOREM 8.3.1. If X12 and X22 are two independent chi-square vari-
ables with vl and v2 degrees of freedom, then the ratio

2 2
F= (Xl /\)l)/()(2 /v2) has the F distribution with v, and v, degrees

2
of freedom.

The F distribution has two parameters, v, and v2, referred to as the
1oV,)
to indicate the value of the F statistic with vl and v2 degrees of
freedom exceeded with probability a. Table B.V (Appendix B) gives

1
numerator and denominator "degrees of freedom.” We write F(v

values of F and F for various combinations of the degrees of

0.05 0.01
by . i =
reedom. Notice that F(vl,v2) l/F(\)g,\)l

) according to the definition
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s 8 < = <

in Theorem 8.3.1. Hence P(F(v],vz) /F(V;,V )a) P(E(v;,v )a
= < =

1/F(v ’V2>) F(F(vE’vl) F(vE’vl)) o. Thus Table B.V can be

used to find FO 95 and FO 99 points by using the reciprocals of the

FO.OS and FO.Ol points with tge reversed degrees of freedom.

In order to test HO: Ol = 022 we recall that in sampling from
a normal population, (n - 1)82/02 has the chi-square distribution

with n - 1 degrees of freedom. Using Theorem 8.3.1, we see that if
Sl2 and 822 represent the sample variances from two independent

normal populations, then

2, 2
8, /99
F =
8 2/0 2
2772
. . . 2 2
has the F(nl -1, n, - 1) distribution. If 0," =0, then F =

812/822, which is simply the ratio of the sample variances. It makes

sense to reject HO if this ratio is either very large or very small.

For an 0 level test the appropriate critical region would be

F< F(nl -1, n, -1) or F>F(n, -1, n, - 1)

2 1-a/2 1 a/2"
suppose two independent samples from normal populations yield the

For example,

following: n, = 16, sl2 =16, n, =9, and s 2= 8. At significance

1 2
level 0.10 we find from Table B.V that we reject HO if F > F(lS,B)O 05
=1/2.64 = 0.379. As F = 2, we retain

= 3.22 or if F < l/F(B,lS)O 05

. 2
the hypothesis Ol = 02 .

The program N2SAMP has been written to test the hypothesis
HO: ul

analyses, the first under the assumption Ol = 02 = O, where O is

unknown. The program requests the values of nl and n,- The sample

data for the first sample should appear in DATA statements in lines

= u2 in the normal case. The program accomplishes two

400-499. The output includes the value of the "pooled" estimate &,
the computed value of t and the value of F to test o, = 02. In the
sample run the "ages" of 20 legislators have been compared with the

"ages" of 15 legislators from the data of Exercise 5.1.3. The value
of F = 1.94 and interpolating in Table B.V, we find F(19,14)

0.05

2.40, indicating acceptance of cl = 02 at the 10% level of signif-

icance. The t value of -0.142 and the P-VALUE of 0.888 suggest that
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N2SAMP

10 REM THIS PROGRAM TESTS THE HYPOTHESIS: MUl = MU2
20 REM AGAINST ONE OF THE AL TERNATIVES

30 REM 1) MUl > MU2

40 REM 2) MUl < MU2

SO0 REM 3) MUl1l <> MU2

60 REM ASSUMING INDEPENDENT SAMPLES OF SIZE N1 AND N2
70 REM FROM TWO NORMAL POPULATIONS

210
215
220

350

REM THE SAMPLE SIZES ARE N1 AND N2

REM THE PROGRAM COMPUTES THE VALUE OF T ASSWMING EQUAL VARIANCES,
REM THE VALUE OF F TO TEST THE EQUALITY OF VARIANCES AND
REM OTHER STATISTICS OF INTEREST

PRINT °*WHAT ARE THE VALUE OF N1 AND N27"

INPUT N1,N2

PRINT "“WHICH AL TERNATIVE, ";*1,2 OR 37"

INPUT A

IFA=1 THEN 190

IF A= 2 THEN 190

IF A= 3 THEN 190

PRINT "INCORRECT FORMAT '3 *"TRY AGAIN"

GO TO 110

FORI =1 TO NI

READ X

LET S=X + S

LET S1 = S1 +Xt2

NEXT I

LET X1aS/N1

LET S1= SQR((S1-N1%X1t2)/(N1-1))

FOR I = 1 TO N2

READ X

LET Ts= T +X

LET Tl = T1 + X112

NEXT I

LET X2=T/N2

LET S2=SQRC(T1-N2*X2t2)/(N2=-1))

LET S = SORC(C(NI-1)%S1t2+(N2=1)%S212))/(N1+N2~2))
LET T = (X1-X2)/(S*SQR(1/N1+1/N2))

GOSUB 900

PRINT "ANALYSIS ASSWMING EQUAL VARIANCES"

PRINT *SAMPLE", "MEAN'", ''STD DEVIATION'

PRINT ** 1 ">X1, S1

PRINT " 2 X2 52

PRINT "STD DEV OF DIFF = *3SxSQR(1/N1+1/N2)

PRINT "THE CALCULATED VALUE OF T s*; T3 ON "3N1+4N2-2;'" LOF"
PRINT "THE F VALUE = "3 S1t2/S2t25"ON*;N1=-13' AND ";N2-13' DOF"
IF A= 3 THEN 330

PRINT

PRINT "THE P-VALUE FOR "; "ALTERNATIVE ";A3' = 'SP
GO TO 350

PRINT

PRINT "THE P-VALUE FOR *; “ALTERNATIVE '"; A" = ";Px2
PRINT
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360 PRINT "ANALYSIS FfOR WWEQUAL VARIANCES"
362 LET T =(X1-X2)/SQR(S{t2/N1+S21 2/N2)
364 LET D = ((S112/N1)t2/N1+(S212/N2>12/N2)
366 LET D = (S112/N1+S2t2/N2)12/D

368 LET S =SQR(S112/N1+S212/N2)

370 PRINT "THE STD DEV OF DIFF = ;S

375 PRINT "THE CALUCWATED VALUE OF T = "3 T
380 PRINT "WITH DOF = *3D

390 GO TO 1030

400 DATA 46s 44, 45, 400 860 525 875 485 42, 84
410 DATA 57, 365 535 345 635 24, 625 46, 61, 43
S00 DATA 48, S0, 41, 41, 30» 51, 51, 43, 54, 55
510 DATA 41, 45, 48, 54, S4» 49, 46s 525 565 45
900 LET Tl = ABS(T

905 LET C=1

915 LET DlaN1+N2-2

920 IF INT ((NI+N2)/2)=(N1+N2)/2 THIN 950
925 FOR 1 = 1 TO D1-2 STEP 2

930 LET C = C#¥(D1«1)>/¢(Dl~-1-1>

935 NEXT 1

940 LET C = C/(3.14159625%SQR(TC1))

945 GO TO 970

950 FOR I = 1 TO D1-2 STEP 2

955 LET C =C*x(D1-1)/(D1=-1-1)

960 NEXT 1

965 LET C = C/(2%SQR(D1))

970 DEF FNF(X)=C/(1+4X12/D1)1((D1+1)/2)
975 LET H = T1/100

980 FOR I = 1 TO 99

985 LET X =H=*I

990 LET Il=Il+FNF(X)*H

995 NEXT I

1000 LET I1 = I1+(H/2)x( ENF(O)+FNF(T))
1010 LET P =0.5-11

1020 LET P = 1E-4x(INTC(1E&P))

1025 RETURN

1030 END

L 3

RUN

WHAT ARE THE VALUE QOF N1 AND N2?

? 20,15

WHICH ALTERNATIVE, 1,2 OR 37

7 3

ANALYSIS ASSUMING EQUAL VARIANCES

SAMPLE MEAN STD DEVIATION
1 46¢ 65 9+ 65333
2 47.0667 6.9227

STD DEV OF DIFF = 2.93794
THE CALCWATED VALUE OF T =-0.141823 ON 33
THE F VALUE = 1.94448 ON {9 AND 14 [IOF

THE P-VALUE FOR ALTERNATIVE 3 = 0.888
ANALYSIS FOR UINEQUAL VARIANCES

THE STD DEV OF DIFF = 2.80255

THE CALUCULATED VALUE OF T = -0.148674
VITH DOF = 34.9322

*®
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the hypothesis pl = p2 should be retained. This is reassuring as
the "samples" came from the same population. An analysis for the
case 0 + 9, is also made.

A (1 - 0)100% confidence interval for My =Wy is found as in
Sec. 8.2. Such a confidence interval has endpoints

X, - X + 05t

+n -
1 2 OL/2,nl n, 2

In this case G = 2.938 and il - i2 = -0.417, so that a 95% confidence
interval is given by -0.417 + 2.938(1.991) or by the interval

[-6.267 , 5.433].

8.3.2 The Case Ol + 02

In the case that 012 * 022 with both variances unknown an approxi-

mate t test of HO: ul = u2 may be carried out using

-t:
2 2
V/Sl /nl + 82 /n2

with approximate degrees of freedom

2 2 2
) (Sl /nl + 8, /n2)

d
(5,0, )%/n + (8,%/n))%/m,

In general d will not be an integer, but often the closest value of
the degrees of freedom may be used. In some cases interpolation is
required. In the sample run, assuming Ol + 02, we find t = -0.149

and d = 34.9. Using interpolation we find t = 2.032, so

0.025,35
that again acceptance of ul = u2 is clearly the appropriate decision.

Problems 8.3

1. (a) Show that 6° = ((nl - 1)512 + (n2 - 1)822)/(nl +n, - 2).

(b) Assuming Xl ~ N(ul,oz) and X2 ~ N(uz,cz), show that

E(82) = 0°. Is the normality necessary?
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The table below gives data for 15 randomly selected boys and 10
randomly selected girls of ages 9 through 10.

Scores on a spelling test

_ - - 2
i Sample n, X, Zj (xij Xi)
1 Boys 15 81 1224

Girls 9 90 756

Assume the observations come from normal distributions with

common variance 02.

(a) What is an unbiased estimate of 02?

(b) Test the hypothesis that boys and girls score equally well
against the alternative that girls have higher scores on
the average. ©State clearly the rejection region for this
test. Use a = 0.05.

(¢) Find a 90% confidence interval for My = Ug-

If we can assume 012 = 022 =_02, then a (1 - a)100% confidence

-— A
. R . + .
interval for W, is given by X, —-(O/Vn)ta/Z,nl+n2~2 Note the
degrees of freedom. Find a 95% confidence interval for Uy and

for M, in Problem 8.3.2.

The starting lineups for the Iowa State versus Oklahoma State
football game played at Stillwater, Oklahoma, on November 20,
1976, were listed in the Des Moines Register of that date as
follows:

Iowa State Oklahoma State
Rogers, 216 LE Blankenship 225
Petsch, 225 LT Perrelli, 255
Greenwood, 240 LG Ledford, 240
Boehm, 227 C Gofourth, 250
Stoffel, 230 RG Baker, 229
Cunningham, 228 RT Hardaway, 329
Blue, 181 RE Lisle, 188
Hardeman, 188 QB Weatherbie, 184
Green, 171 LH Miller, 189
Soloman, 179 RH R. Taylor, 174

Cummings, 195 FB S. Taylor, 193
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(a) Test the hypothesis of no difference in average weight
between the two lines against the alternative that the OSU
line was heavier. Use o = 0.05. Assume normality and that
Ol = 62.

(b) Carry out the same comparison for the backfields.

In an article entitled "The Electrodermal Component of the

Orienting Response in Blind and Deaf Individual," in the British

Journal of Psychology (August, 1976), D. Carroll and P. G. Surtees

report on comparisons between blind and sighted children. They

report an average verbal IQ of 119.4 with a standard deviation
of 8.13 for 11 blind children. The average IQ for 11 sighted
children in a control group was 121.4 with a standard deviation
of T.4. 1Is there evidence of any significant differenc in IQ

between these two groups? (Use o = 0.10.)

Exercises 8.3

Suppose six plots of wheat are treated with fertilizer A and six

plots with fertilizer B. The ylelds are recorded below:

A 26.3 28.6 25.h4 29.2 27.6 25.6
B 28.5 30.0 28.8 25.3 28.4 26.5

(a) Use N2SAMP to test u, =y, versus W, % U, at a = 0.05.
(b) Find a 95% confidence interval for My = Wy

Suppose 12 halfbacks are observed during spring training, six
sampled from the freshmen and sophomores and six from the juniors
and seniors. BEach is given the opportunity of running four plays
against the best defensive team. The resulting total yards for

players is given below:

Freshmen and sophomores 10 9 5 11 16 9
Juniors and seniors 13 8 9 18 23 25

(a) Use N2SAMP to test the hypothesis that freshmen and sophomore
backs are equally as good as junior and senior backs against
the alternative that junior and senior backs are better.

Use a = 0.05.
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(b) Find a 95% confidence interval for Hy = M-

3. Use the data on the weights of men and women given in Exercise

8.2.2 to answer the questions of that exercise using N2SAMP.

8.4  THE WILCOXON RANK SUM TEST

We again consider testing whether two random samples have come from
the same continuous population. Here we assume that the Xl popula-
tion has a density function f{x) while the X2 population has a density
function f{x - A) for some real value A. In Fig. 8.4.1 we display

two such density functions for which A > 0. We see that the effect

of A > 0 is to "shift" the location of the second population to the
right of the first by an amount A. Hence A is referred to as a shift
parameter. We wish to test HO: A = 0 versus the natural alternatives
(1) A>0, (2) A< 0, and (3) A # 0. The general idea of the test

is to obtain random samples of size ny and n, from the two popula-
tions. We combine the observations in the two samples and rank the

n, + n, observations by magnitude from 1 to ny + n,. If the corre-
sponding sum of ranks for the observations from sample 2 is either
"too large" or "too small," we tend to reject A = 0 in favor of

A # 0.

f{x)
f{x-A4)

© 7z ”

Fig. 8.4.1 Population 2 shifted to the right of 1
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The actual statistic used in the small sample case is denoted

as U = min(Ul,Uz), where
Ul = { the number of times observations from sample 1 exceed
those from sample 2}
U2 = { the number of times observations from sample 2 exceed

those from sample 1}

Under the hypothesis of continuous random variables Xl and X2 there

can be no tied observations. Denoting R and R a1 =1, 2, vouy
X141 X3
as the rank in the combined sample of the

n and j=1,2, ..., n

1 2
corresponding observation we see that

v
(R - 1) and u, = z
1 1(1) J=1 2(3)

For example, for the ordered X (i) the smallest observation in

1(1

sample 1 exceeds R -~ 1 observations in sample 2. Hence

n n
U= R, -1 " aa U = TR, -
1 . X, 2 : 2 .
i=1 11 j=

It is actually necessary to compute only one of Ul and U2 as Ul +
U2 = nyn,. o’ A = 0 versus Hl: A% o0,
then the critical region will be of form U < d. Values of d such

If we consider testing H

that P(U < d) = a" for a" approximately equal to 0.10, 0.05, and
0.01 are given in Table B.VI.
For example suppose we have the following samples of heights

for 12 boys and 10 girls (in inches):

Boys: 47.52 46.83 46.95 45.25 47.37
(17) (13) (15) (10) (16)
k9.60 47.75 48.15 46.18 46.90
(21) (18) (19) (11) (1%)
51.27 43.90

(22) (%)
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Girls: 4k .53 43.83 43.95 42,25 Ly, 37
(1) (3) (5) (2) (6)

46.60 k.75 45.16 4g.27 40.90
(12) (8) (9) (20) (1)

The numbers in parentheses are the ranks of the corresponding values
in the combined sample. Tied observations are assigned ranks as in
the signed-rank test. Due to the format of the tables we should

always choose the smaller sample as "sample 1." We find zi?l Ry =
- 11
73; hence U =T73-5+= 18 and U, =120 - 18 = 102. The statistic

U = 18, and as P(U 5_22) = 0.009 we certainly decide A # 0.
As in the case of the Wilcoxon signed-rank test we can find a

large éample approximation to the distribution of Ul. As

n n (n, + 1) (n, +n. + 1)
U, = Zl RX - —l——;z———— and E(RX ) = -+ 2
i=1 1i 1i

under Ho for all i, we obtain E(Ul) = nln2/2. It can be further

shown that Var(Ul) = nlnz(nl +n, ¥ 1)/12. For moderate and large

n, and 0, the statistic

) Ul - nln2/2

/hlng(nl +n, ¥ 1)/12
is approximately distributed as the standard normal variable under
HO. Against the alternatives A > 0, A < 0, and A # 0, the rejection
regions are 2 < -Z , Z > Z, and |z] > Zy o> Tespectively.

Using the height data for the n, = 12 boys and the n, = 10

1 2
girls given in the example above, we find the computed value of
z = (102 - 60)/v/(10)(12)(23)/12 = 2.769 and the corresponding P-VALUE

against a two-sided alternative of 0.0058. This calls for rejection

of A =0 in favor of A # O at significance level o = 0.0l (say). The
same data have been used with the program N2SAMP. The value of t =
3.376 with 20 degrees of freedom and a P-VALUE of 0.003 also strongly
suggests rejection of HO: A= 0. A 95% confidence interval for

Hp = My = A is given by 22 - il i_3t0.025’20 = -2.845 + 0.843(2.086)
or by [-k.604, -1.086]. The true value of w = 48 and W, = L5, so
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that A = 3 in this case. As the data actually do come from (simu-
lated) normal populations the rank test is not as sensitive as the
t test. As in the one sample case the Wilcoxon rank sum test is
applicable to a much wider class of "shift" alternatives. Particu-
larly if the underlying distributions have "long tails," the rank

test is preferred to the parametric test.

Problems 8.4

1. Suppose that we denote population 1 by X and population 2 by Y.
Assume n, = 2 and n, = 3. The null distribution of Ul can be

found by assigning equal probability to each of the (2) permuta-

tions of 2 x's and 3 y's. For example, Ul(xxyyy) = 0, and hence
P(Ul = 0) = 1/10.

) Find the null dist?ibution of u,-
) Verify that E(Ul) = nln2/2 and Var(Ul) = nlng(n:L +n, + 1)/12

(a
(b

in this case.

2. The nl + n2 observations can be assumed to come from the same

continuous population under HO. The assignment of n, ranks to
the Xl observations can be considered to be a random selection
of n, of the first ny + n, integers without replacement.

(a) Using the results of Sec. 5.1 show that

oy _ny(ny +ny+ 1)
E( Z° R, ) =
. X. 2
i=1 i
and
n nn{n, +n.+1)
- A R
Var(.f Ry ) = 12
i=1 i

(b) Prove that E(Ul) = nln2/2 and Var(Ul) = nlng(n:L +n, + 1)/12.

3. Use the yield data of Exercise 8.3.1 to test the hypothesis
ul = u2 versus ul + u2 at = 0.05 using the Wilcoxon rank test
based on the statistic U.
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5.

Two-Sample Tests

In the data below we give the batting averages of 15 right-hand-
hitting left fielders and 10 left-hand-hitting left fielders.

R.H. 0.298 0.295 0.260 0.217 0.237
0.22h 0.29k 0.220 0.283 0.290
0.297 0.285 0.226 0.307 0.298
L.H. 0.224 0.259 0.312 0.255 0.261
0.306 0.237 0.345 0.279 0.262

(a) Use the large sample approximation to the statistic U, to

1
test the hypothesis H A =0 versus H.: A + 0 using
a = 0.05.

o 1

(b) Use the program N2SAMP to test the same hypotheses as in
(a). Compare the conclusions. Note: Ties to oceur in
practice. Assign the average of the ranks which would be

assigned to the tied observations to each such observation.

Use the weights of the football players for Iowa State and
Oklahoma State given in Problem 8.3.L4 to test the hypothesis of
no difference in average weight for the two teams. Use the rank

test of this section with a = 0.10.

Use the data of Exercise 8.3.2 on the yardage gained by freshmen
and sophomore backs versus that gained by junior and senior backs
to test the hypothesis stated in part (a) of that exercise. Use

the Wilcoxon rank sum statistic U.

Exercises 8.4

Use the program WIL2TEST with the age data of the example run of
N2SAMP in Sec. 8.3. Compare your decision based on the rank sum

statistic with that based on the parametric test.

Use the weight data of Exercise 8.2.2 to answer question 8.2.2(a).
How does your decision compare with those of Exercises 8.2.2 and

8.3.37?
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WIL2TEST

10 REM THIS PROGRAM TESTS THE HYPOTHESIS THAT TWO POPULATIONS
20 REM HAVE THE SAME LOCATION PARAMETER VERSUS

30 REM 1)DELTA <0

40 REM 2)DELTA >0

50 REM 3)DH.TA <> O

60 REM ASSUMING INDEPENDENT SAMPLES OF SIZES N1 AND N2

70 REM FROM TWO CONTINUOUS POPULATIONS

80

REM THE PROGRAM COMPUTES THE VALUE OF THE WILCOXON RANX

85 REM SUM STATISTIC Ul AND THE CORRESPONDING Z AND P-VALUES

90

REM SAMPLE 1 AND SAMPLE 2 DATA APPEAR IN LINES 500-600 IN

95 REM IN THAT ORDER

100
110
120
130
140
150
160
170
180
185
190
200
205
210
215
225
230
235
240
245
250
255
260
262
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350

PRINT "WHAT ARE THE VALUE OF N1 AND N2?"
INPUT N1,N2

PRINT “WHICH ALTERNATIVE, ";'1,2 OR 37"
INPUT A

IFA=1 THIN 190

IF A =2 THEN 190

IF A= 3 THEN 190

PRINT "INCORRECT FORMAT "3 TRY AGAIN"
GO T9 110

DIM X(200), T(200),Z(200)
FGR I = 1 TO N1+N2

READ XCI)

LET T(1)=l

NEXT I

FOR 1 = 1 TO N1

LET Z(I)=]

NEXT I

FOR Js 1 TO (N1+N2-1)
FOR I = 1 TO (NI+N2-OD
IF X(I)<=X(I+1) THEN 275
LET TsX(I+1)

LET T1=T(I+)1)

LET X(I+1)=X(I)

LET T(I+1)=TCI)

LET X(I)=T

LET T(I)=T1

NEXT 1

NEXT J

FOR I = 1 TO (NI+N2)
LET X(I)=1I

NEXT I

FOR J = 1 TO (NI+N2-1)
FOR I = 1 TO (N1+N2-U)
IF TCId<TCI+1) THEN 345
LET T =TCI+1)

LET TiaX(I+1)

LET TCI+1)=TC(D)

LET X(I+1)=X(I)

LET T(I)>=aT

LET X(I)>=T])

NEXT I

NEXT J
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355 FOR I = | TO N1

360 LET T2=T2+X(I1)*Z (1)

365 NEXT 1

366 LET T2=T2-N1*(N1+1)/2

367 PRINT "THE VALUE OF Ul =*; T2

370 LET Z =(T2=-N1#N2/2>/SQR(NI*N2x(N1+N2+1>/12)
380 GOSUB 900

390 PRINT "THE CALCUWATED VALUE OF Z = ";Z

400 IF A= 3 THEN 430

410 PRINT

420 PRINT “THE P-VALUE FOR *3"ALTERNATIVE *3A;* = *;P
425 G@ TO 1030

430 PRINT

440 PRINT "THE P-VALUE FOR ' "ALTERNATIVE ";A3" = *;Px2
450 GO TO 1030

500 DATA 47452, 464835 460955 45+ 255 474 375 494 6

510 DATA 4T7¢7 5, 48e 155 464 18, 46095 514275 4349

520 DATA 44+ 53, 4383, 4395, 42+ 25, 444 37

530 DATA 46¢ 60, 44eT 55 45165 48.275 4049

900 LET Z1= ABS(Z)

910 LET C=1/SQR(2)

920 LET Ci= .l14112821

930 LET C2= .08864027

940 LET C3=.027 43349

950 LET C4= =.00039446

960 LET CS=.00328975

970 DEF FNZ(X)=1=-1/C1+C1hkX+C2%k Xt 2+ CI%xX1t 3+ Ca4x X1t 4+ CSkXt 5) 1 8
980 LET P = .5+.5¢FNZC(Z1*0)

990 LET P = 1E~4x(CINTC(1E4%P))

1010 LET P = 1=-P

1020 RETURN

1030 END

®

RUN

WHAT ARE THE VALUE OF N1 AND N2?

? 12,10

WHICH AL TERNATIVE, 1,2 OR 37

? 3

THE VALUE OF Ul = o2

THE CALCUWATED VALUE OF Z = 2.7694

THE P-VALUE FOR ALTERNATIVE 3 = 5.79999 E-3

*
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N2SAMP
EDIT LIST 400-510

400 DATA 474525 460835 86695, 45,255 474 375 494 €
410 DATA 477 5s 48¢ 15 464185 46¢95 51275 4349
500 DATA 44e¢ 535 4383, 434955 42425, 44+ 37

510 DATA 46e6s 44eT5s 45¢ 165 484275 4049

*

RN

wHAT ARE THE VALUE OF N1 AND N2?

? 12,10

WHICH AL TERNATIVE, 1,2 OR 3?

? 3

ANALYSIS ASSUMING EQUAL VARIANCES

SAMPLE MEAN STD DEVIATION
1 47+ 3058 1.89613
2 440 461 2+ 05202

STD DEV OF DIFF = 0.842565
THE CALCWATED VALUE OF T = 3.37639 ON 20 DOF
THE F VALUE = 0.853834 ON 11 AND 9 IOF

THE P-VALUE FOR ALTERNATIVE 3 = 0.003
ANALYSIS FOR UINEQUAL VARIANCES

THE STD DEV OF DIFF = 0.848933

THE CALUCULATEL VALUE QF T = 3.35107 ,
WITH DOF = 20+.6016

*
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3. Use the grades for males and females given in Exercise 8.2.3
with WIL2TEST to test the null hypothesis of no difference
between the sexes with regard to statistics exam grades. Use
o = 0.10.

8.5 INFERENCE FOR MATCHED PAIRS

Consider a situation in which we want to determine whether there is
an effect on performance in an arithmetic exam due to birth order
of siblings. We consider it likely that the first born of siblings
will do better on an arithmetic exam given to each at age 6. We
collect data on the scores of five pairs of children on the test

(which has a maximum scores of 125).

Test score

Pair Older Younger
1 106 102
2 98 9k
3 123 118
it 97 91
5 88 83

At first glance it may appear reasonable to use a two-sample
test. Using N2SAMP, we find t = 0.57h4 with 8 degrees of freedom
and a P-VALUE of 0.291 for testing HO: ul = u2 versus Hl: Ul > Hye
The F value of 0.983 indicates that the equal variance assumption
can be retained. The conclusion would be to accept My = Uy Alter-
natively, the Wilcoxon rank sum test statistic can be used. The

value of U = 9, which also leads to the conclusion A = u 0

o "W T
at significance level 0.05.

We have however made an error in the statistical analysis of
these data. We have compared two groups of children, when actually
we want a test and confidence interval which i1s sensitive to the
differences of the scores within each of the five pairs. Using the
notation (Xli’ X2i) fori=1, 2, ..., n, we should consider a test

of whether the observed differences Di = Xli - X2i come from a
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N2SaMP
EDIT LIST 400-500

400 DATA 106,98, 123,97,88
500 DATA 102,94, 118,91,83

*RUN

WHAT ARE THE VALUE OF N! AND N2?

? 55

WHICH AL TERNATIVE, 1,2 OR 37

?1

ANALYSIS ASSUMING EQUAL. VARIANCES

SAMPL E MEAN STD DEVIATION
1 102+ 4 131643
2 97.6 13. 2778

STD DEV OF DIFF = 8.36182
THE CALCULATED VALUE OF T = 0574038 ON & IOF
THE F VALUE = 00982985 ON 4 AND 4 DOF

THE P-VALUE FOR ALTERNATIVE 1 = 0.2908

ANALYSIS FOR UINEQUAL VARIANCES

THE STD DEV OF DIFF = 8.36182

THE CALUCUWLATED VALUE OF T = 0.574038
WITH DOF = 9.99926

*0LD MTEST

* 600 DATA 4 4 5,6, 5

RN

WHAT ARE THE VALUES OF N AND MUO?

? 50

WHICH AL TERNATIVE 1,2 OR 3?

11

WHAT IS THE VALUE OF ALPHA, 0410,0.050.017?
? 0.10

THE CRITICAL REGION FOR A ONE=SIDED TEST
AT SIGNIFICANCE LEVEL = 0.05

IS T>= 241318

THE COMPUTED VALUE OF T = 12.8285

*


https://106,98.123.97.88

322 Two-Sample Tests

population D with E(D) = Bpo- My = 0, versus the alternative that
ul > uz. The appropriate test here is a one-sample test. Using the
program MTEST with the differences 4, L, 5, 6, 5, we find t = 12.829
with 4 degrees of freedom. A test with significance level a = 0.05

is given by the critical region t > 2.132. Hence we reject Ul = |

2
in favor of My > Moo Calculations yield d = 4.8 and s 2 - 0.7.

Hence we find a 95% confidence interval for ul - My todbe given by
d i-sd//gt0.0ES,h = 4.8 + (/0.7//5)2.776 or by the interval
[3.761, 5.839]. The evidence for a better performance by the first
born is fairly strong in contrast to the decision based on the inde-
pendent two-sample tests.

In the case in which there is a natural pairing of the elements
in the two groups and the question of interest is whether the members

of the pairs differ, we do not use an independent two-sample test.

The appropriate test statistic 1s based on

l

t =
Sd/v/r_l

where the number of pairs is n. The appropriate degrees of freedom
for a confidence interval and for the test is n - 1 and not 2(n - 1)
as in the independent two-sample test. Many times we choose to
design a comparison so that the elements of each pair are as similar
as possible, except with respect to a difference we are attempting
to measure. The paired test is appropriate here. For example, we
may be interested in the effect of a drug. The drug is administered
at random to one of two members of each pair. We choose the members
in the pairs to be as similar as possible with respect to age, weight,
and possibly other variables. This is an elementary example of the
design of a statistical experiment. We collect the data in such a
way that the experiment provides the greatest possible information
about the gquestion of interest. The field of experimental design
for complex statistical designs is an interesting and important area

of both mathematical and applied statistics.
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Exercises 8.5

1. The following data® give the morning and evening heights of 10
individuals measured in centimeters. We wish to know if there

is evidence for change of height of individuals during a day.

Subject Morning Evening
1 182.9 182.5
2 17k.o 17h.0
3 178.2 177.8
L 181.2 181.0
5 167.0 167.2
6 174.8 17h. 4
7 171.7 171.5
8 179.2 179.1
9 181.2 180.0

10 185.5 185.0

(a) Use the program N2SAMP to make a test using the independent
two-sample test to decide between ul = u2 and ul + u2 using
o = 0.05.

(b) Use the program MTEST to make the same test.

(¢) Using the appropriate design, find a confidence interval
for ul - M-

2. A researcher is studying the effectiveness of two different
methods of teaching spelling. He has a group of 20 children,
who he matches as closely as possible in 10 pairs according to
IQ, sex, and age. One of the members of each pair is assigned
at random to method 1 and the other to method 2. The results
of a test of the spelling of 16 words is reported below:

*¥Adapted from Everyday Statistics; G. W. Snedecor, 1950,
W. C. Brown Company.
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Pair Method 1 Method 2
1 11 15
2 11 9
3 13 16
L 11 11
5 11 10
6 9 12
7 8 11
8 6
9 5 9

10 8 10

®

Test the hypothesis H
a = 0.05.

of My = M, versus H : 1 $ M, using

(b) Find a 95% confidence interval for W Uy
Nine pairs of universities were matches as closely as possible
according to size, type of administrative control, and location.
In each pair one institution had a faculty organized for collec-
tive bargaining, while the other was not so organized. The
average difference in faculty compensation was $1600, with a
standard deviation of the differences of $500. The average
difference favored the organized institutions. Is the differ-
ence significant (o = 0.05)? What is a 95% confidence interval

for the difference?

Students in an elementary statistics course argued that their
second hour exam was more difficult than their first. The
following gives the scores of 15 students on the two exams, each

of which had a maximum of 80.
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Student Hour exam 1 Hour exam 2
1 48 50
2 Lo 55
3 60 60
L L8 35
5 N 40
6 56 65
T 68 63
8 n Lo
9 28 35
10 56 55
11 56 ko
12 2k ko
13 L8 L5
1k 76 T0
15 72 >
Use the matched-pairs test to test HO: ul = u2 versus
Hl: ul > u2. Is their evidence that exam scores on the second

exam were lower? Does your answer to this gquestion necessarily

contradict the assertion made?

8.6 COMPARISON OF TWO POPULATION PROPORTIONS

The last two-sample situation which we consider is the comparison

of two population proportions. We often have questions such as

1.

We
of

Is the proportion of men and women in the adult population in
favor of a certain governmental policy the same?

Is the proportion of defective items produced on two assembly
lines the same?

Is the proportion of left-hand batters hitting at least 0.280
in the major leagues higher than that for right-hand batters?

assume that from each of two populations we obtain random samples

size ny and n,, respectively. Denote a proportion in population

1 by 12 and in population 2 by p2. Let X, and X, represent the

1 2
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numbers in the corresponding samples having a characteristic (e.g.,
favoring election of the president by popular vote rather than by
the current electoral college method). We are interested in infer-
ence about pl and P, based on the estimators pl = Xl/nl and p2 =
X2/n2.

We first consider testing H =D, in the moderate to large

P
0 1
sample case. The natural alternatives are (1) P, > Py (2) Py < Py
and (3) pl # p2. If we consider the statistic pl - p2, then
E(, - B,) = p, - p, and Var(, - §,) = Var(p,) + var(3,) =
pl(l - pl)/nl + p2(l - p2)/n2. Under the null hypothesis p, = p, =
p (say), we have E(pl - p2) = 0 and Var(pl - p2) =
p(1 - p)(l/nl + l/n2). The parameter p is unknown but can be esti-
mated by a pooled estimate.

Ltk
SN
Let

B, -9
g =1 2

AT =D, * sy

It is clear that the appropriate rejection regions are Z > %1,
Z< -7, and [Z] > Z,/p for the alternatives (1), (2), and (3).
To find a confidence interval for P, - P,» We use Var(ﬁl - ﬁe)
=P - P + P - P = Sn A e i . (8.2, i
Pl(l Pl)/nl P2(l Pe/n2 S51-Bp Using Eq. (8.2.1) we find
an approximate (1 - o)100% confidence interval for P, - P,

A oy

B -B,ts (8.6.1)

ﬁl-ﬁQZa/e
We cannot use the pooled estimate D here because the assumption that
pl = Py is not being made here.

The program 2PTEST will test the hypothesis Ho: P, = P, versus
one of the alternatives (1), (2), or (3). The program requests the
values of Dy Dy X5 X5s and the appropriate alternative. The
value of Z 1s computed and the corresponding P-VALUE is calculated.

A 95% confidence interval for pl - Py is computed. In the sample
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ePTEST

10 REM THIS PROGRAM TESTS THE HYPOTHESIS P1 = P2

20 REM AGAINST ONE OF THE AL TERNATIVES

30 REM 1) P1 > P2

40 REM 2) Pl < P2

s0 REM 3) Pl <> P2

60 REM ASSUMING INDEPENDENT SAMPLES OF SIZE N1 AND N2

70 REM FROM TWO POPULATIONS WITH TRUE PROPORTIONS P1 AND P2
80 REM THE NUMBERS OF "SUCCESSES" IN THE TWO SAMPLES ARF X1 AND X2
90 REM THE PROGRAM COMPUTES Z, THE CORRESPONDING P- VALUE
95 REM AND A 95 PERCENT CONFIDENCE INTERVAL FOR P1 -P2
100 PRINT "WHAT ARE THE VALUE OF N1 AND N21*

110 INPUT N1,N2

120 PRINT "WHICH AL TERNATIVF, ™3'"1,2 OR 37"

130 INPUT A

140 IF A= 1 THEN 190

150 IF A = 2 THEN 190

160 IF A = 3 THEN 190

170 PRINT *"INCORRECT FORMAT *3"TRY AGAIN"

180 GO TO 110

190 PRINT "WHAT ARE THE VALUES OF X1 AND X2?7"

200 INPUT X1,X2

210 LET Pl1aX1/N1

220 LET P2 = X2/N2

230 LET P =(X1+X2)/(N1+N2)

235 LET P3=P

240 LET Z =(P1-P2)/SQR(P*(1=-P)*(1/N1+1/N2))

250 LET S = SQR(P1*(1-P1)/N1+P2«(1-P2)/N2)
255 LET L = (P1=-P2)~S*x1.96
260 LET U = (Pl1-P2)+5%1.96

265 GOSUB 900

290 PRINT "THE CALCULATED VALUE OF Z = *3Z

350 PRINT "P1-HAT = ";P1, "P2-HAT = *}P2

370 PRINT "THE STD DEV OF DIFF = ";§

380 PRINT "THE POOLED ESTIMATE OF P = ";P3

390 PRINT "A 95 PERCENT CONF INT FOR P1- P2 IS GIVEN BY"
400 PRINT " L = *3;L," U= "3U

405 IF A = 3 THEN 430

410 PRINT

420 PRINT “THE P-VALUE FOR ';“ALTERNATIVE "3 A3" = ";P
425 GO TO 1030

430 PRINT

440 PRINT "THE P-VALUE FOR *;“ALTERNATIVE ";A;" = *3P%2
450 GO TO 1030

900 LET Z1a ABS(Z)

910 LET C=1/5QR(2)

920 LET Cl= .14112821

930 LET C2= .08864027

940 LET C3=.027 43349

950 LET Ca= =.00039446

960 LET C5=.00328975

970 DEF FNZ(X)=1=1/(1+C1#X+C2kX 12+ C3KXT 3+ CAeX1 4+ C5kX1 5) 18
980 LET P = o5+, 5kFNZ(Z1%C)

990 LET P = 1E-4xCINTC1E4«P))

1010 LET P = 1-P

1020 RETURN

1030 END

”
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RN

WHAT ARE THE VALUE OF N1 AND N2?

? 250s 450

WHICH AL TERNATIVE, 1,2 OR 3?

? 3

WHAT ARE THE VALUES OF X! AND X2?

? 120, 260

THE CALCUW.ATED VALUE OF Z = -2.48828

THE P-VALUE FOR ALTERNATIVE 3 = 0013

P1-HAT = 0e48 P2-HAT = 0.577778
THE STD PEV OF DIFF = 3.92494 E-2
THE POOLED ESTIMATE OF P = 0O.542857

A 95 PERCENT CONF INT FOR Pl- P2 IS GIVEN RBY
L = -C-174707 U = =-0.020849

*
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run 250 men and 450 women are asked whether they favor the retention
of the 55-mile/hr speed limit. The values ﬁl = 0.480, ﬁg = 0.578,
7 = -2.488, and P-VALUE of 0.013 suggest rejection of 1 4 P, A
95% confidence interval for P, - P, is given by (-0.175, -0.021).
The evidence suggests that Pl < p2, i.e., the proportion of men in
favor of the 55-mile/hr limit is less than the proportion of women.
As a final example, consider a sample of the lifetime batting
averages of 140 major league hitters. This yielded 20 of 40 left-
hand batters with a lifetime average of at least 0.280, and 27 of 100
right-hand batters with lifetime averages of at least 0.280. Hence
ﬁl = 0.5, §2 = 0.27, $ = b7/140 = 0.3347, and Z = 2.603. As the

P-VALUE is less than 0.0l1, one would reject H Py =Py in favor of

o
Hl: Pl > Py- In other words, left-hand batters seem to hit 0.280
or better with higher frequency than right-hand batters.

Exercises 8.6

1. Assume that of 200 sophomores and 250 seniors at a university,
Th of the sophomores and 70 of the seniors voted for the same
presidential candidate as their fathers in the last election.
Assume that 123 is the true proportion of sophomores voting for
the same presidential candidate as their fathers and Py is the
corresponding proportion for seniors.

(a) Test Py = p, versus p; > p, at significance level 0.05.
(b) Find a 95% confidence interval for P, - P,

2. Assume that during a given week that 190 of 220 arrivals of air-
line A are "on time." An arrival is considered on time if a
plane arrives within 10 min of its scheduled arrival time.

During the same week 82 of 99 arrivals of airline B are on time.
(a) Test the hypothesis that the proportions of on-time arrivals
are the same for both airlines {(a = 0.05).

(b) Find a 95% confidence interval for Py - Pg-
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Two-Sample Tests

In 197k, 2037 of 4832 chemistry majors applying to medical school
were admitted. In the same year, 263 of 650 English majors apply-
ing to medical school were admitted. Is there statistical evidence
that chemistry majors do better than English majors in applying

to medical school?



ANALYSIS OF CLASSIFICATION DATA

9.1  INTRODUCTION

In many cases in which statistical inference is of importance we
measure the value of continuous random variables or random variables
which are assumed to be continuous. For example, weights, lengths,
times, and distances are considered to be continuous random variables.
Test scores, ages, and words typed per minute, while actually measured
as discrete random variables, are treated as continuous random vari-
ables in questions of inference. There are however many cases,
especially in the social sciences, in which observations can only be
classified into separate categories. For example, a student is
graded as A, B, C, or failing. A tire is classified as excellent,
acceptable with minor production flaws, or unacceptable. We observe
the number of observations in the categories or classes in these
cases. Data such as these are referred to as classification or
"count" data. In this chapter we consider the elementary statistical

analysis of these type of data.

9.2 THE MULTINOMIAL DISTRIBUTION AND ITS RELATION TO THE CHI-SQUARE
DISTRIBUTION

In the case of the binomial distribution we consider n independent
trials of an "experiment" which are classified into one of two

classifications referred to as "success" or "failure." With the

331
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assumption of a constant probability p of success in each trial we
have obtained the distribution of the random variable X ~ B(n;p)
which gives the number of successes in the n trials. In the case of
the multinomial distribution we assume that at each trial an obser-
vation may be classified into one of k > 2 distinct.classes. We
consider n independent observations with a constant probability Pi’
i=1,2, ..., k of falling into class i (with I p, = 1). Writing
Xl’ X2, oo Xk to denote the number of the observations in n trials
falling into classes i = 1, ?, ..., kK, 1t is easy to see that Xi ~
B(n;pi) for i =1, 2, ..., k. However the joint probability of X
outcomes in class 1, x2 outcomes in class 2, ..., X outcomes in

class k - 1 is given by the expression

2 *x
P(X, 3% 5000y )) = /7D, P, D (9.2.1)
1°%2 *k-1 x txpteeex TP P2 Kk
The vector is of length k - 1, because the condition Z§=l xi =n,
determines the value of xk and the expression on the right can be
. . k-1 . . .
written with n - Zi=l x; replacing X, 1.e., as a function of Xy
x2, cees X g only. Hence Xk is not an additional random variable.

In the case k = 2, Eq. (9.2.1) reduces to

' X

_ . n. 1 _
)= TP, (1-p

YR
x Mn - x)! "1

1

the familiar binomial expression.

As a simple example let us consider that in a game of matching
fair coins between David and Goliath, that each independently tosses
a penny n times. If both pennies are heads, David wins, and if both
pennies are tails, Goliath wins. If the coins differ, the outcome
is called a tie. Let Xl represent the number of wins by David and
X2 by Goliath in n trials. Then P, = 1/k, P, = 1/4, and Py = 1/2

and
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Assume n = 10, and we ask for the probability David and Goliath each
win three times and the other four outcomes are ties. We find
P(3,3) = (101/313141)(1/%)3(1/%)3(1/2)" = 525/8192 = 0.0641. The
probabilities of the other possible outcomes can be found by sub-
stituting all possible combinations of nonnegative integers satisfy-

ing x, + x. + x., = 10 into Eq. (9.2.1). We shall not pursue this

furthir heie, ai our real interest is in inference concerning the
values of the P Jointly.

Suppose that we wish to test that the true values of the prob-
abilities p; are a certain fixed set of numbers. We write the null

hypothesis as

HO: pi = PiO i=1i, 2, ..., k

where Z§=l piO = 1. The alternative to HO is generally stated just

as the negation of HO, namely

Hl: P + Pip for some 1

Under the hypothesis HO’ we have E(X,) = np,  as the Xi are binomial

i
variables. In order to test HO we observe the values of Xl’ X2, e

Xk for a relatively large number of trials, n. The data can now be

presented in a summary table as follows:

Class 1 2 ¢ o k Total
Observed xl x2 L xk n
Expected np, npzo . . npko n

It is apparent that close agreement between the observed outcomes in

each class with the corresponding expected values under H_, suggests

0

retention of HO.

The statistic which is widely used in a test of the hypotheses

HO and Hl is

(x. - np )2 2
i i0 (observed - expected)

expected

k
x2 =z
i=

n =Z
1 Pio
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It can be shown that for multinomial data, if H, is true, the statis-

tic X2 has asymptotically the chi-square distrigution with k - 1
degrees of freedom. Rejection of HO occurs if the observed values
are not close to the expected values, which results in a large value
of the computed statistic x2. An approximate o level test is given

by the critical region
2 2
>
X7 Xy, k-1

as the value of X2 will exceed the Xi k1 point, if H is true, with
b

probability approximately equal to . °
Let us consider the example of David and Goliath again. Suppose
Goliath's coin is biased and falls heads with probability 2/3 and
tails with probability 1/3, while David's coin is fair. Assuming
independence of the two coins the true values of Py = 1/3, Py =1/6,

and p3 = 1/2. Assuming fairness of the coins, we hypothesize

Hp: p, = 1/4, P, = 1/4, Py = 1/2

Suppose that we observed the following results in 100 trials.

Outcome 2H 2T IH, 1IT Total
Observed 38 13 Lo 100
Expected 25 25 50 100

We compute X2 = (38 - 25)2/25 + (12 - 25)2/25 + (b9 - 50)2/50 = 12.5k,

= 9.21, we would reject H, at level of significance o =

As X§.01,2 0
0.01. The hypothesized values appear to be incorrect, as in fact
they are.

As another application of the large sample approximation of the
chi-square distribution, let us consider testing HO: p= Py versus
Hl: P + Pq in the binomial case in which X ~ B(n;p) represents the
number of successes. We observe

Outcome Failures Successes Total

Observed n-x X n

Expected n(1l - po) np,, n
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, Ge=m)® (a-x-n(-p)°

X = + _

np, n(1 - p,)
2
(x - np,)
np,(1 - pg)

2 2
. . - . N .
For an 0 level test we reject HO. P = P, if x Xa,l
In Chap. 7 we have seen that a test of
HO: p = P, versus le ho) # po

in the large sample case can be based on the statistic.

X - np
z=——2——
/npy (1 - py)

We reject Ho if ]Z] Z-Za/ for a test at significance level a. Note

that the statistic Z° = X as defined in the previous paragraph.

Hence, under HO

2.2
>
P(Z° > 2,

) =a and P(Zgixil) o

It should not be surprising then to find out that it can be proved
that the square of a standard normal variable has the same distri-

bution as a chi-square variable with one degree of freedom. Hence

2 _ .2 . _ 2 _ 2 _ _
Z%/2 = Xy,1° For example, if o = 0.05, 20-025 (1.96) 3.841
Xo 05,1° The two tests will thus lead to identical decisions. For
. 3

example, if we test that a coin is fair based on L00O tosses of which
220 are heads, we compute Z = 2 and X2 = L. At level a = 0.05, we
reject p = 0.5 as Z > 1.96 or X2 > 3.841. It is sensible that the
large sample tests of p = Py based on Z and X2 always yield the same
decision.

As a final note we remark that the chi-square approximation is
considered valid only 1f the expected value in each of the classes
is not too small. A general rule is that the expectation should not
be less than 1 in any class. Other statisticians use a minimum of
5, but we shall use the smaller bound in this chapter. If a class
has expectation less than 1, it is combined with other classes until

the expected value is at least 1.
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Problems 9.2

Assume six fair dice are tossed. What is the probability of 2

twos, 2 fours, and 2 sixes?

A city has a population of registered voters, with 30% registered

Republicans, 40% registered Democrats and 30% Independents. What
is the probability of three Republicans and four Democrats in a

sample of size 10, assuming independence of the selections.
Sketch a proof of Eq. (9.2.1).

Assume that (Xl’Xg) have the trinomial distribution with param-
eters pl, pg, p3, and n.
(a) What is the distribution of X+ X?

2
(b) Use the fact that Var(xl + X

= Var(X.) + Var(X,) +
200v(xl,x

2) 1 2
5 1’X ).

(¢) Generalize the result in part (b) by finding Cov(Xi,Xj) in

) to find Cov(X

the general multinomial case.
(d) Under the assumptions here, show that the conditional dis-

tribution of X , given X, = j, is B{n - j; Pl/(Pl + p3)).

Use the fact that the pdf of the standard normal variable is
2
f(z) = L2 /2
ven

- 0o < 7 < ©

together with the result in Problem 8.4.6 to show that 7° has

the chi-square distribution with 1 degree of freedom.

Use the table of the standard normal distribution to find

X1 for o = 0.1(0.1)(0.9)

Genetic theory predicts that 3/ of hybrid crosses will display
the dominant trait. Of 300 observations, 215 display the domi-
nant trait. Test Hy: p = 3/h4 versus Hy: D 4 3/4 using the
chi-square test. Use a = 0.05.
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8. A die is tossed 90 times with the following outcomes:

Number 1 2 3 I 5 6
Observed 20 17 13 1k 16 10

Use a chi-square test to decide whether to accept the assertion

that the die is fair. (Let a = 0.05.)

9. A faculty member who is grading "on a curve" is expected to

distribute his grades as indicated below.

A B C D FE
Percent 10 20 30 20 10
Observations 19 28 L1 8 2

In a large class a faculty member gives the indicated grades.
Do the grades actually given support the hypothesis that he is

grading "on a curve"?

9.3 ANALYSIS OF CONTINGENCY TABLES

There are many cases in which observations are classified according
to two criteria. As an example, consider the question, "Are you in
favor of a voluntary armed service in the United States?”" We may
be interested in whether the answer to this question is related to
party identification. Assume that we randomly sample 360 voters

and observe the following data:

Party identification/question Yes No No opinion
Democrat 57 83 9
Republican L1 50 9
Independent 35 6k 12

In this table each of the 360 observed voters have been classified
according to two criteria: opinion on the question and stated party
identification. Such a table is referred to as a contingency table.
The question which we would like to answer is whether the two criteria
of classification are independent or whether an association exists

between opinion and stated party preference.
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We consider a general contingency table with r rows and ¢ columns.
The random variable Xij represents the number of observations in a
sample of n which fall into row class i and column class Jj. Such a
table appears in Table 9.3.1. The notation Xi.is the sum of the
number of observations in the ith row, and similarly, X-j is the sum
of the number of observations in the jth column. We see that
r c
L Xi° = LX,.=n
i=]1 j:l J
There are, in all, rc locations into which an observation may fall.
1. = 149, X,, = 100 and Xy =
111, that is, 149 Democrats, 100 Republicans, and 111 independents
S 133, X.2 = 197, and X.3 = 30.
We further denote by Pij the probability that a random observa-

For the table of the example we find X
were sampled. Similarly, X

tion from the population falls into the ijth location. By pi. we
shall mean the probability of falling into row class i and by p.j
the probability of falling into column class j. The null hypothesis
of independence of the row and column classifications can be written

as

H: p..= Pi-P i=1,2, ., 3 J =12, suvy C

Table 9.3.1 An r by ¢ Contingency Table

Column
11 X e Xe .
X5 %50 e %50 X5,
ROW . . 3 . 3 . 3 . 3 . . . 3 3 . . . . . . - 3 . . .
xrl Xr2 ct xrc xr'
X x e o o x n
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The alternative, the negation of HO’ is pij + pi.p for some pair

*J
(i,j). It is apparent that these probabilities are not known.

However, the following estimates are appropriate:

X,.

ﬁi‘=_?1_ 1=1,2, 3, eeey T
X, .

By= 3 9=1,2, e

Under the null hypothesis, we would estimate Pij by ﬁij = ﬁi'ﬁ-j'
With this estimate we can compute the estimated expected number of

observations in location (i,j) under HO by
X. X . X, X_,
“ ie Fey _ Miete
n n

The test will be based on the chi-square statistic

r ¢ (X., - E..)2
2 _ ij ij
x = I I T (9.3.1)
i=1 J=1 ij
As in the previous section large values of X2 are inconsistent with
HO’ and hence a critical region will be of form X2 E.Xi NE where v

3>

is the appropriate degrees of freedom.

While it might seem that rc - 1 is the appropriate degrees of
freedom from the discussion in the previous section, this is not so.
The null bhypothesis does not specify the hypothesized values of pij

until the values of ﬁi_ and ﬁ.j are found. As

c
Lp,, =1 and Ip,.,=1
i=1 1 J=l J

there are r - 1 row probabilities estimated and ¢ - 1 column proba-
bilities. A theorem in mathematical statistics states that the
statistic in Eq. (9.3.1) will have approximately a chi-square distri-

bution for large n, where the degrees of freedom is given by
V = number of locations - 1 - number of parameters estimated

Hence the value of v for an r by c¢ contingency table is

rec ~1-(r-1)-(ec=-1)=rc-r-c+1=(r-21){c -1). Thus
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for the example of this section the appropriate degrees of freedom
for the X2 statistic is (3 - 1)(3 - 1) = 4.
Using Eij = Xi'Y'j/n’ we find the following table of expected

values:

pParty identification/question Yes No No opinion
Democrat 55.05 81.54 12.h42
Republican 36.94 sh.72 8.33
Independent hi.o1 60. 74 9.25

Notice that the numbers in any row or column sum to the corresponding
row or column sum in the original table. For example, for row 2 we
f£ind 36.94 + 5L.72 + 8.33 = 99.99, which is 100 except for round-off
error. The computed value of X2 using Eq. (9.3.1) is found to be
3.814, and as Xg.OB,h = 9.49, we would accept the null hypothesis.
The data do not support the hypothesis that opinion and party prefer-
ence are associated. If we delete the information concerning inde-
pendents and compare Democrats and Republicans, we find X2 = 1.20k.
The appropriate degrees of freedom is now 2. As X5.05’2 = 5.99,
again these data do not support the conclusion of association between
opinion-and party preference.

As another example consider the following data on 200 countries,
which are classified according to the number of storks in the country

and the country's birthrate. The results are

Countries with

Birthrate Few storks Many storks Totals

Low Lo 10 52

High 130 18 148
172 28 200

We compute the value of El
127.28, and E2

. 172(52)/200 = Lk.T2, E122= 7.28, Ey =

5 = 20.72. The computed chi-square is x = 1.597,

and as Xg 05,1 = 3.841. We conclude here that there is no statistical
. b

evidence for the validity of the stork legend in these data.
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CONTGY

10 RIM THIS PROGRAM COMPUTES THE CHI-SQUARE STATISTIC AND THE
20 REM EXPECTED VALUES FOR AN R BY C CONTINGENCY TABLE.
25 REM THE P-VALUE FOR THE CALCULATED CHI~SQUARE IS AL SO COMPUTED.
30 REM DATA SHOULD BE PUT IN DATA STATEMENTS BEGINNING AT
40 REM LINE 400. THE DATA 1S ENTEREL BY ROWS.

S0 REM THE COMPUTER WILL REQUEST THE VALUES O0F R (ROWS)
60 REM AND C (COLUMNS).

100 DIM X(20,20),Y(20s20)5 R(20), CC20)

110 PRINT *"WHAT ARE THE 3 "VALUES OF R AND C?"

120 INPUT Rs C

130 FOR 1 = | TO R

140 FOR J = 1 TO C

150 READ X(I,J)

155 LET RCID=SRCII+X(I» D)

160 NEXT J

170 NEXT 1

180 FOR J =1 TO0 C

190 FOR I = 1 TO R

200 LET CC(J)=X(I,I)+C(D)

210 NEXT 1

220 NEXT J

230 FOR I = 1| TO R

240 LET N= N+R(D)

250 NEXT 1

260 PRINT *"ROW'", ''COL'' "OBSERVED", "EXPECTED"

270 PRINT

280 FOR 1 = 1 TO R

290 FOR J = 1 TO C

300 LET Y(I,J)=R(I)X*CCJI/N

310 LET C2= C2 +(X(I,ND=Y(I,)12/Y(1, )

320 PRINT I»JsXCI, D Y(Is D)

330 NEXT J

340 NEXT I

350 PRINT

360 PRINT ""CHI-SQUARE = ";C23"WITH ";(R-1)*(C~1);"DOF"
365 LET A = (R=-1)*(C~-1)

367 IF A = | THEN 660

3 70 GOSUB 500

375 PRINT "P-VALUE = ;511

380 GO TO 800

400 DATA 57583,9, 415 50,95 35, 64> 12

500 IF INT (A/2)=A/2 THEN 545

SOS LET T = INT(CA-1)/2)

10SLET C = |

51S FOR I = 1 TO T

520 LET C = Cx(A/2~1)

525 NEXT I

$30 LET C = C*2t(A/72)*SQR(3.14159263)

535 LET C = 1/C

$40 GO T0 S80

S45 LET C = 1

550 LET T = INTCA/2-1)

$ 55 FORI =1 TO T

560 LET C = Cx(A/2-1)

565 NEXT I

570 LET C = Cx2t(A/2)

575 LET C=1/C

*
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580 DEF FNF(X)=C#(Xt(A/2-1))%EXP(-X/2)
sS85 LET H = C2/100

590 LET N1 = 100

595 FOR I = 1 TO (N1-1)

600 LET X = H#*l

605 LET Il = [1+4FNFCX)*H

610 NEXT !

615 LET 11 = 11 +(H/2)%CFNFCO)+FNF(C2))
620 IF ABSCI1-12) < .00l THEN 645

625 LET 12 = 11

630 LET H = H/2

635 LET Nl=2xN1

640 LET 11=0

642 GO TO 595

645 LET I1=1-11

650 PRINT

655 RETURN

660 LET Cl1 = SQR(C2)

665 LET H = C1/100

670 DEF FNG(X)=SQR(2/3.14159263)%EXP(~X12/2)
675 LET N1 =100

680 FOR I = 1 TO (N1-1)

€82 LET X = HxI

684 LET 11 = T1+4FNGCX)*H

€86 NEXT 1

688 LET I1 = [14(H/2)%x(FNGCO)+FNGC(C1))
690 IF ABSCI1-12)<.001 THIN 702

692 LET I2=11

€94 LET H = H/2

696 LET N1 =2xN1

€98 LET 11=0

700 GO TO 680

702 LET I1=1-11

704 PRINT

706 GO TO 375

800 END



9.3 Analysis of Contingency Tables

RUN

WHAT ARE THE VALUES OF R AND C?

?2 33

ROW COL. OBSERVED
1 1 57
1 2 £3
1 3 9
2 1 41
2 2 50
2 3 9
3 1 35
3 2 64
3 3 12

CHI-SQUARE = 3.81441 WITH 4 DOF

P-VALUE = 0.431714

*RUN
WHAT ARE THE VALUES OF R AND C?
?2 23
ROW coL OBSERVED
1 1 57
1 2 83
1 3 9
2 1 41
2 2 50
2 3 9

CHI-SQUARE = 1.20428 WITH 2 DOF
P-VALUE = 0.547638

*400 DATA 42,10,130,18

RUN

WHAT ARE THE VALUES OF R AND C?
? 22

ROW CoL OBSERVED
1 1 42

1 2 10

2 1 130

2 2 18

CHI-SQUARE = 1.59689 WITH 1 DOF
P-VALUE = 0.20€345

*

343

EXPFCTEL

55.0472
81+ 53€1
12. 4167
36.9444
S4. 7222
%. 33333
41.0083
€0.7417
9.25

EXPECTED

58. 6426
79. 5863
107711
39. 3574
53. 4137
7.22892

EXPECTED

44472
7.28
127.28
20.72
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The program CONTGY has been written to calculate the value of
chi-square for an r x ¢ contingency table. The program requests the
values of r and c¢. The observations should appear by rows in DATA
statements in lines 400-499. The program computes the values of xg,
Ei' fori=1,2, ..., rand J=1, 2, ..., ¢, and also

2
P(X

(r-1)(e-1)
program has been run for the examples of this section.

z_xg), the P-VALUE for the contingency table. The

Problems 9.3

1. Prove the following for an r x c contingency table:
c r

(a) LBE., =X, () ZIE,.=X,.
j=1 * i=1 *Y J

2. Show that in a 2 x 2 contingency table

2
N (X, X,n - X, X, )
XXX,
3. (a) Assume that r = ¢ in a contingency table and that Xii = ni
for i =1, 2, ..., r, while xij =0 for i ¢ j. Defining

n=n, show that X2 = (r - 1)n.

(b) The value (r - 1)n is the maximum value of X2 inarxr
. . r - 5T - s s
contingency table with Zi=lxi' Za=lx'j n. Explain in
words why this is reasonable.

4. (a) Prove that in a 2 x c¢ contingency table for which the rows
are proportional, that is, le = kX2j, that X2 = 0. This
is clearly the smallest value that ¥  can assume.

(b) Show that in a 2 x ¢ contingency table.
A~ )2
iy~ TegP1e

X = L P -
a=1 Xojpl-(l plo)

(¢) Explain why the x2 test provides a test of Hy: p, =D, =
pl3 = see = plc in this case, where plj can be interpreted
as the probability of falling into the jth classification in
sampling from population 1 and p2j has the same interpreta-

tion for population 2.
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Exercises 9.3
Use the program CONTGY as needed in the following:

1. In a statistics exam we classify the scores according to two
criteria. The first is whether an individual's score is below
the class median m or not. The second is whether a student is
majoring in a physical science or mathematics or is a nonscience

major. We observe the following:

<m > m
Science 31 38
Nonscience 37 30

Test the hypothesis that there is no association between test

performance and type of major. (Use o = 0.05.)

2. A survey was conducted to evaluate the effectiveness of a new
flu vaccine, administered in a small community. Some persons

appeared only for one shot. The following data were observed:

No vaccine One shot Two shots
Flu L8 17 16
No flu 270 105 550

(a) Bvaluate the effectiveness of the vaccine.
(b) Combine the last two column classifications so that these
classifications become "no vaccine" and "some vaccine."

Do the data support your conclusion in part (a)?

3. A group of college students is asked to answer a question with
possible responses 1, 2, 3, or 4. The respondents were also
identified by sex, and the following bivariate frequency table

was constructed from the data.

Responses 1 2 3 4 Total
Males 12 33 17 8 70
Females L2 87 it 7 1ko

Total SL 120 21 15 210
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Test the null hypothesis that the sex of the respondent and the

response are independent. Use a = 0.05.

In the June 1976 issue of the Journal of Advertising Research,

in an article by J. F. Dash, L. G. Schiffman, and Conrad Berenson
entitled "Information Search and Store Choice," the following
data concerning customers at a speciality store and a department

store are reported.

Store Choice and Knowledge of Audio Eguipment

Type of store

Level of product knowledge Specialty Department
Low 21% 63%
Medium 30% 27%
High 497 10%

Number 263 156

Does the assertion that "

customers shopping at the specialty
store are more knowledgeable about audio equipment” appear to

be Justified? Use a = 0.05.

Farley S. Brothwaithe reports on the relationship between teachers'
class background and their career aspirations in the March-June
1976 issue of the International Journal of Comparative Sociology
in an article entitled "Upward Mobility and Career (Value)

Orientation."” He reports the followirg data.

"Lower class "Upper class
Career aspirations background” background”
Low 157 9
High 212 L

Is there an association between class background and career
aspirations for this group of teachers? How would you describe

the association? Use o = 0.01.
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9.4  GOODNESS OF FIT

An important question in statistics and in the scientific method

generally is whether data can be assumed to come from a particular
parametric family such as the binomial, Poisson, normal, or expo-
nential families. As an example, consider the following data, the

number of calls received at an exchange in 100 l-min periods.

Number of calls (x) 0 1 2 3 L
Number of l-min periods Lo 30 18 10 2
in which x calls arrive
Can we proceed under the assumption that the number of calls arriv-
ing is described by the Poisson distribution? A statistical answer
to this question is provided by the large sample distribution of
multinomial data introduced in Sec. 9.2. Assuming the Poisson model
does apply, the probability of x calls in a l-min period is given
by e_u(u)x/x! = p(x), where U is the theoretical average number of
calls arriving in a l-min period. If we estimate u by {I, then the
expected number of l-min periods in which x calls arrive is given
by 100 p(x) = 100 e_u(u)x/x!. These expected numbers under the
Poisson assumption can be used with the observed numbers in a X2

test of

Ho: the data are Poisson

against the alternative that they are not.

To carry out the test we would estimate u by fi = (40(0) +
30(1) + 18(2) + 10(3) + 2(4))/100 = 1.04. The values of p(x) may be
obtained by using the program POISSON. We find the following:

X p(x) 100 p(x) Observed
0 0.353455 35.3455 Lo
1 0.367593 36.7593 30
2 0.191148 19.1148 18
3 0.066265 6.6265 10
4 or more 0.021540 2.1540 2
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We compute the value of x2 = 3.649. The number of classes here is
five and one parameter has been estimated. The correct degrees of
freedom would thus be 5 - 1 - 1 = 3. Using xg.05’3 = 7.81, a deci-
sion in favor of Ho would be made, i.e., the Poisson assumption
would be retained. This decision means that the data observed do
not strongly contradict the Poisson assumption. The test by no means
"proves" the data are Poisson, as it may be consistent with other
assumptions also. It does indicate that the Poisson assumption is
not strongly violated.

The same general method of testing goodness of fit may be used
to test whether observations come from a particular continuous dis-

tribution, such as the normal. If (X., X , ..., Xn) represents a

1’ 7o
random sample of n observations from X ~ N(u,ce), then consider the

10 intervals Y for 3 =1, 2, ..., 10. Here

= 1.2817, and Zl.O = o, We see

(Z(j-l)o.lo? Zj(O.lO)

Z = =, ZO.9O = -102817’ LA 1 ZO.9O

i =
P2ay00 T o £ 80.)) T 0

for each of these 10 intervals. Of course, in general U and O are
unknown but may be estimated by X and s, respectively. One can test
the hypothesis of normality by finding the number of the n transformed
observations (xi - X)/s falling into each of these 10 intervals. If
we denote this number by fj’ then the statistic

, 10 (f, - n/10)°

X = jzl n/10

can be used to test the normality assumption. The appropriate degrees
of freedom is 10 - 1 - (2 parameters) = T.

The program NORMFIT carries out the test described in the pre-
vious paragraph. The program requests the value of n as input.
Data should appear in lines L00-599. The program computes the values
of fj and the chi-square statistic. In the first sample run, the
first 100 "ages" of legislators from the data of Exercise 5.1.3 has
been tested for normality. The value of X2 = 9.8 on 7 degrees of


https://Z(j-l)O.lO
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v

NORMFIT

10 REM THIS PROGRAM CARRIES OUT A GOODNFESS OF FIT TEST

20 REM TO THF NORMAL [ISTRIBUTION

30 REM SAMPLE DATA SHOWLL APPEAR IN LINES 400-599

40 REM THE PROGRAM COMPUTES THE NUMBER OF STANDARDIZED OBSERVATIONS
50 REM IN EACH OF 10 EQUAL PROBABILITY INTERVALS UNLER THF
60 REM NORMALITY ASSUMPTION AND THE CORRESPONDING VALUE
70 REM OF CHI-SQUARE

100 PRINT "WHAT IS THE VALUE OF N?*

110 INPUT N

120 FOR I = | TO 9

130 READ Z(D)

140 NEXT I

145 DIM X(500)

150 FOR I = 1 TO N

160 READ X<(I)

170 LET S = S +X(I)

180 LET S1 = Sl+X(I>t2

1 90 NEXT I

200 LET A = S/N

210 LET S = SQR((S1-N*ATt2)/(N-1))
220 ORI = 1 TO N

230 FOR J = 1 TD 9

240 IF (X(1)~-A)/S > Z(J) THEN 260

250 LET C(J)= C(J)+1

255 GO TO 290

260 IF J < 9 THEN 280

2 70 LET CC(10)=CC10)+1]

2 74 GO TO 290

280 NEXT J

290 NEXT I

300 PRINT "FREQ TABLE *;*"FOR TRANSFORMED OBSERVATIONS*
310 PRINT

320 PRINT "CLASS™, "FREQUENCY'> “"EXPECTED NO."
330 FORI = 1 TO 10

340 PRINT I,CCI)»N/10

350 LET C2 = C2+(CC(I)=N/10)t2/(N/10)

360 NEXT I

370 PRINT "CHI-SQUARE = *;C23* ON 7 DOF"

380 DATA ~1428175-0e8418,~00¢ 5244 =0e2547505 062547500 5244, 048418, 1.2817
400 DATA 46, 445 U5, 40s 465 52, 475 485 425 44

410 DATA S7, 365 53, 34, 63, 245 62, 465 61, 43

420 DATA 50, 48, 455 625 565 465 465 40s 44, 52

430 DATA 43, 39, 49, 475 425 53, 53, 435 41, 47

440 DATA 46, 34, 38, 44, 43, 4B, 48, 45, 41, 61

450 DATA 42, 56 405 495 525 44, 49, 48, 46, 61

460 DATA 61, 39, 48, S4s 495 465 515 65, 51, 42

470 DATA 47, 42, 56, 455 425 35, 48, 51, 58, 37

480 DATA 45, 55, 365 495 595 51, 525 43, 405 43

490 DATA 43, 435 465 475 48s 575 50s 44 54, 44

600 END

*
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FREQ TABLE FOR TRANSFORMED OBSFRVATIONS

a.ass

VAU bW -

10
CHI~-SQUARE =

*

FREQUENCY

12

9.5

ON 7 DIF

EXPECTED NO.

400 DATA =« 302375, ~0+B €7 488, 1496662504 309971,-0.251166
405 DATA 0+716976,=04991966, 04 251398, 1420585, 0. 6902
410 DATA 104625, -3+64143,-1+.03501,~0+941516€,043€6757
415 DATA =-1.06065, 04127918, -0+ 45544,-15.76%5,-0.853627
420 DATA ~0¢503163s 4e 440665 ~2.03545,06299753,~0. 626281
425 DATA 1482172, -247 3089, 0« 182603, ~ 5¢ 69252, S 24803

430 DATA =-97+8301,~+0206872, -2+ €2331,-9.601€7,2.19374
435 DATA 0+ 654189,~11.5311,2¢59715,0.714333,-0. 416668
440 DATA ~0+859218,-1.25742,~0+10131551¢11337,-0.729777
445 DATA 0.772719,~3+1132,-12.036,0.0224493,~-23 6451

*

RUN

WHAT IS THE VALUE OF N?

? 50

FREQ TABRLE FOR TRANSFORMED OBSERVATIONS

CLASS

OCARNVNOAODS W -

10
CHI~SOUARE =

*

FREQUENCY

ON 7 DOF

EXPECTED NO.

oot ou
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freedom. The value of x5005,7 = 14.07 and Xé.lO,? = 12.02. Hence
there is no statistical evidence to reject normality at levels of
significance a = 0.05 or a 2 0.10. The same discussion of the mean-
ing of deciding for the Poisson distribution in the previous example
applies to the decision to "accept" normality in this case.

In a second example, we consider 50 observations from the Cauchy
distribution obtained by using the program CAUCHY. The program
NORMFIT has been used with these data. The computed value of chi-

square is found to be 120. = 18.48, the evidence is clear

2
As Xo.01,7
that the observations do not come from a normal population. This
would suggest, for instance, that distribution-free methods of esti-
mating parameters and testing hypotheses should be used with such

data.

Exercises 9.4
Use the computer as required.

1. Use NORMFIT to test the hypothesis that the following data come

from a normal distribution.

1.84 2.8 1.14 4.69 0.38 3.32 1.05 22.07 O0.74 2.221
9.5 0.79 2.81L 1.2 3.k 6.55 9.01 0.98 L.hk2 2.12
1.1 2.05 2.73 4.11 1.95 6.68 1.65 11.41 19.81 2.k42
2.69 9.32 11.2 1.38 0.14 9.38 6.88 1.36 1.68 1.85
1.05 1.5 1.88 b4.57 8.69 0.81L 1.09 0.21 1.22 6.28

2. Consider the exponential distribution with pdf

%e-x/k for x > 0
f(x3A) =
0 elsewhere

(a) Use the data of Exercise 9.4.1 to estimate A unbiasedly by
x.

(b) Solve the equation y = 1 - e-x/X

for x given y = 0.1(0.1)(0.9)
to find the endpoints of 10 equal probability intervals for
the data of Exercise 9.4.1, assuming the exponential family

is appropriate.
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(¢) Carry out a chi-square goodness-of-fit test for the data
of Exercise 9.4.1 to test the hypothesis that the data
come from an exponential distribution. What is the appro-

priate number of degrees of freedom? (Use a = 0.05.)

The following are "classical" data collected by Borkiewicz¥,
giving the number of deaths due to kicks from a horse in 200

Prussian army corps years.

Number of deaths 0 1 2
Number of corps years 109 65 22 3 1

Can the assumption be retained that these data are described by

the Poisson distribution?

Since 1895 the record for the mile run until the middle of 1975
has been reduced 23 times. The magnitudes of the reductions are

classified below. Time is measured in seconds.

Interval Frequency
0.0 <t <0.5 9
0.5 <%t <1.0 L
1.0< ¢t < 1.5 2
1.5< 1t <2.0 >
2.0 <t < 2.5 2
2.5 < 1% < 3.0 1

Test the hypothesis that the data are uniformly distributed on
(0,3.0). (Use a = 0.05.)

Extend the program ERRORS to calculate the chi-square test
statistic for the hypothesis that the observations are from a
uniform distribution on (-0.5,0.5). Carry out the test for

N = 1000 for several different runs using the RANDOMIZE command.

*M.

Fisz, Probability Theory and Mathematical Statistics, Wiley,

New York, 1963, pp. 1hki-1k2.
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SIMPLE LINEAR REGRESSION AND ASSOCIATION

10.1  INTRODUCTION (THE LEAST SQUARES LINE)

In almost every physical and social science it 1s of crucial import-
ance to examine the relationship between variables. In many physical
sciences it has been possible to postulate a deterministic model to
describe the relationship between an independent variable and a de-
pendent variable. For example, the distance traveled by a freely

falling body as a function of the independent variable time is given

by

Here if s is measured in feet and t in seconds, then g is the accel-
eration constant equal to 32 ft/secz, approximately. This relation-
ship is deterministic. For any value of t, there is a single value
of s given by this function. If t = 1, then s = £(1) = 16. There
are many other situations in which a relationship exists between a
dependent variable and an independent variable, but the relationship
is not deterministic. As an example, we know that the weight of male
infants is related to the infants' age. Nevertheless, it is obviously
untrue that all 3-month-old male children have a given weight. In
simple linear regression we wish to examine a relationship between
an independent real variable x and a dependent random variable Y.

Such a model is called stochastic.

353
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In the simple linear regression model we assume that for every
value of x, the expected value of Y can be written as a real-valued
function of x. Further it is assumed that the particular function

is linear in x. Hence
E(YIX) = o + Bx

The line with unknown slope 8 and intercept o is called the theoretical
regression line. In Fig. 10.1.1 we indicate that there is a popula-
tion of possible values of Y for any value of x. For x = xl, the
expected value of ¥ is o + le which in this case is less than the
expected value of Y for x = X5e In general, this relationship is

indicated by the following:

E(Yi) =q + Bxi

For the example of infant male weights, the expected weight of x-
month-old males is assumed to be a linear function of x.

One statistical problem is to obtain estimates of the unknown
parameters o and B. In Fig. 10.1.2 we have plotted the weights in

pounds of n = 5 male infants of different ages (measured in months)

as given here:

E(Y)

\\\a + Bx

a + ﬁxz

a + Bx,

o) 3 X X
! 2

The Theoretical Regression Line

Fig. 10.1.1



10.1 Introduction (The Least Squares Line) 355

(6,20}

%

Age
The Least Squares Line

Fig. 10.1.2
Infant (i) Age(xi) Weight(gi)
1 2 12
2 3 13
3 L4 17
L 5 18
5 6 20

It is clear from Fig. 10.1.2 that there is no line through all five
points. We must choose a line which, according to some reasonable
criterion, fits all points well. The slope and intercept of this

line will be used to estimate o and B. A criterion which is often
used is to choose from all lines of form a + bx, the one for which

the quantity

(v, - (a + bxi))2 (10.1.1)
1

n~MpB

1
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is least. The difference y; - (a + bxi) is the vertical difference
between the observed value of Y at x = X and the value of the arbi-
trary line a + bxi at x = X5 - There is a unique line called the
least squares line which minimizes expression (10.1.1). The inter-

cept and slope of this line are given by

LI (x, - Xy, - 7)
8= -8 ana f=—t i = (10.1.2)
2 {x, - x)
i=1'"1

We leave the proof of this to the problems. In the example here we
. - _ - _ 5 - =y = 5 2

find x = h,Ay = 16, Zi=l(xi - X)(yi —AY) 2L, and L_, )

10. Hence a = 16 - 2.1(4) = 7.6 and B = 21/10 = 2.1. This line is

(xi - X
graphed in Fig. 10.1.2.

It is important to keep clearly in mind the fact that the line
in Fig. 10.1.1 is a theoretical line with intercept and slope satis-
fying E(Y]x) = a + Bx. The parameters o and R are unknown and after
estimation are still unknown, just as p is unknown after estimation
by an observed value of X. The least squares line in Fig. 10.1.2
is calculated from a single observation from each of the populations
of infant males of ages 2, 3, 4, 5, and 6 months, respectively. If
another such sample were taken, the observations (2,yl), (3,y2),
(byyy), (S’Yh)’ and (6,y5) would be different and the values of G
and B would be different. Hence the least squares line would also
be different. The estimates G and é are random variables estimating
a and B, just as X is used to estimate n. We turn to the statistical

properties of these estimators in the next section.

Problems 10.1

1. Suppose we observe the following pairs of observations (xi,yi),
i = l’ 2, e 5: (2’3)3 (h,l), (637)3 (8,5), (10,9)0 Find

the equation of the least squares line.

2. Show that the least squares line defined by Eq. (10.1.2) passes
through the point (X,¥y).
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3.

(a) Find the minimizing value of x for the quadratic function
px2 + gx + r for p > 0.
(b) Introduce the variable a' = a + bx in expression (10.1.1)

and show that expression may be written as

n
L (x, - x

- - - 2
SO AR CN

i=] i=1

(e¢) ©Show that the second two terms in part (b) are minimized by
B as defined in Eq. (10.1.2), and this does not depend on
the value of a'. Show that the first term is minimized by
a' = i, and hence O = y - éi and é minimize expression

(10.1.1).

Assume that E(Y]x) = Bx, i.e., the expected value of Y lies on
a line through the origin. Find the equation of the least squares
line through the origin based on a sample (xi,yi), i=1,2, ...,

n.

In time series with an odd number of equally spaced time points,
time is often considered an independent variable, and the values
of a dependent random variable Y are measured at each time point.
Assume time is coded as -T, -(T - 1), ..., O, ..., T -1, T, and
the observation at time t is denoted by V- Show that the inter-
cept and slope of the least squares line are given by G = ¥y and

B = Zz=—T 3ty /T(T + 1)(2T + 1).

Use the following data on the civilian labor force in the United
States, together with the previous problem, to find the least

squares line coding 1969 as -2, etec.

Year Civilian labor force(1l000's)
1969 80,733
1970 82,715
1971 8L4,113
1972 86,542

1973 88,714
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7. The following gives the scores of 10 persons on a verbal entrance
examinstion and their grade point average (GPA) at the end of
their freshman year. Use GPA as the dependent variable to find

the least squares line given the following data:

Verbal exam(x) 620 640 760 520 680 560 T80 580 670 620
GPA(Y) 3.28 3.16 3.40 2.88 3.6L4 3.24 3.80 2.80 3.54 2.96

10.2 INFERENCE IN THE LINEAR REGRESSION MODEL
10.2.1 Statistical Properties of & and E

The statistical properties of the estimators & and ﬁ cannot be deter-
mined without further assumptions concerning the random variables
Yi. The following assumptions, quite commonly made, permit infer-

ence concerning a and B.

1. Y, =a + Bx, +e. for real x., 1 =1, 2, ..., n.
i i, i
2. The e; ~ N(0,07), i =1, 2, ..., n.

3. The ei and hence the Yi are independent.

Assumptions 1 and 2 together imply that E(Yi) =0 + Bxi as before.
Notice that only ei is random on the right-hand side of the equation
in 1. The same assumptions also imply that Var(Yi) = Var(ei) = 02
for all i, that-is, the variance of the Y populations is the same
for all x. This is suggested by the symmetry of the density functions
in Fig. 10.1.1. The assumptions of normality of the e and hence
of the Yi’ and the independence of the ei, and hence of the Yi’ will
lead to confidence intervals and to tests of hypotheses for o and B.
The equation Yi =0 + Bxi + e means that the random variable e, can
be thought of as a random error term to be added to the true expec-
tation o + Bxi to yield values of Yi. This is the reason for the
choice of notation e

We will concentrate on the statistic B, which estimates B. The
results for & as an estimator of O are found analogously. The param-
eter B represents the theoretical average change in Y per unit in-

crease in x. This clear from the fact that B is the slope of the
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theoretical regression line (see Fig. 10.1.1). In the example B
would represent the average change in weight per month for infant

males. From Eg. (10.1.2) we have*

I (x, - )Y, - Y)]

E(B) = Ej—= =
5 (x, - )2 J
1
£ (x, - D(E(Y,) - B(D))
I (xi - 3)?
z (xi - x)(a + BXi - (a + BX))
) I (xi - )—()2
£ (x, - %)°
=8 ———| =8
I (x. - x)

A~ A

Thus B is an unbiased estimator of B. The variance of B may be

found as follows:

Var(B) = var

@ (x. - 1)%)?
2
[¢] 2
= - OA
I (xi - §)2 8

The independence assumption has been used to write the variance of

a sum as the sum of the variances. The fact that I (xi - i)(Yi -¥)
=7 (xi - ;)Yi has also been used. Finally from Eq. (10.1.2) B is
a sum of independent, normally distributed random variables. A
theorem from mathematical statistics states that such a sum is again

normally distributed. Hence

*¥A11 summations in the remainder of this chapter are for i = 1 to
i = n, unless otherwise indicated.
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z=-8-8 (10.2.1)

has the standard normal distribution.

Similar reasoning leads to the following results for o.

=2
+—X— :O‘A2

T (x, - 2)2 o
i

EQ) =a  Var(@) = o°

5~

and the random variable

O =0
o~
¢

has the standard normal distribution also.

10.2.2 Estimation of 02 and the ANOVA Table

There remains one parameter of the model described in assumptions 1
through 3, namely 02, which has not been estimated. We define Qi =
& + éxi, i=1, 2, ..., n, which are referred to as the predicted
values of the Y observations at x = Xg- It is left as a problem to
show I Yi/n = Y. We now introduce the concept of "partitioning the
variability" of the Y observations. The following equality is valid
and also left to the problems

2 2

z (Yi -Y)

=z (3 -7z (v, - 1) (10.2.2)
The left-hand side of this equation represents the "variation" of
the Y observations about their average. The first term on the right-
hand side represents the variation of the predicted Y observations
about their average. This term is referred to as the sum of squares
due to regression (SSR). The remaining term on the right in Eq.
(10.2.2) is the sum of the squares of the (observed-predicted) Y
values. The value Yi - ?i is referred to as the ith residual. The
last term on the right is called the sum of squares due to error
(SSE), or the sum of squares of the residuals. It is this sum of
squares which is used to estimate 02 as we see in the following

theorem.
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THEOREM 10.2.1. Under the assumptions 1 through 3,

2
T (Yi - Yi)

e
Proof: We find the expectation of the first two sums of squares in
in Eq. (10.2.2).

Bz (1, - 1)P) = B2 (o + Bx, *+ e, - (o + 8% + ))°)

= E(B2 Z(xi - 2)2 + % (ei - e)

+ 28 X (ei - E)(xi - x))

=825 (x. - 0%+ (n - 1)0°
using Sec. 5.3.1.
Bz (%, - %) = 5z (& + Bx, - 7)°)
= B(2 (T - 8% + 8x, - D) = 5(B° T (x, - 0P
However as Var(B) = 02/2 (xi - E)E = E(éz) - 82, we find
~ p— 2 -
BE (¥, - D) = (—F——5+ ) I (x, - B)°
1 L (x, - x) 1

2

=%+ g° 3 (x, - %)°

Taking expectations in Eq. (10.2.2) and canceling the common term,
2 A
we have (n - 1)o” = 02 + E(X (Yi -~ Yi)2), from which the theorem

follows directly. The statistic

is called the mean square for error (MSE) and is an unbiased esti-

mate of 02.
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Table 10.2.1 ANOVA Table

Source Sum of squares d.f. MS EMS
Regression §2 I (xi - 2)2 1 SSR o+ 82 z (xi - §)2
Residual z (yi - §i)2 n-2 52 o°

Total ) (yi - §)2 n-1

[Incidentally the proof does not use the normality assumption, so
that is only required that the e, are independently distributed with
E(ei) = 0 and Var(ei) = 02.]

The partitioning of the variation of the Y's and other related
information is generally summarized in an analysis of variance
(ANOVA) table. The format of the ANOVA table for the simple linear
regression model is given in Table 10.2.1. The first column of the
table gives a verbal description of the source of the variation of
the corresponding sum of squares. The second column gives expres-—
sions for the sum of squares. It 1s left to the problems to show
that the sum of squares for regression (SSR) can be written as
§2 z (xi ~ §)2. The next column gives the degrees of freedom and
the column labeled MS (mean square) is the quotient of the sum of
squares divided by the appropriate degrees of freedom. The last
column gives the expected values of the corresponding mean squares,
which were derived in the proof of Theorem 10.2.1.

For the example of Sec. 10.1 we obtain the following table.

Source Ss d.f. MS EMS
Regression Ly, 1 1 Ly .1 o + lOB2
Residual 1.9 3 0.633 o°

Total L6

The sum of squares for regression has been calculated as

§2 X (xi - i)z = (2.1)2(10) = L4.1. The total sum of squares has
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been calculated as I (yi - §)2 = 46. The sum of squares of the
-2

residuals is generally computed as Z (yi - y) - 8SR = 46 - 4.1 =

1.9. The value of 32 = 1.9/3 = 0.633 is the point estimate of 02.

10.2.3 Inference for o and B

As in Sec. 10.2.1 we shall concentrate on inference for B and indi-
cate that analogous confidence intervals and tests can be found for
the parameter a. We have seen in that section that the random vari-

able still depends on the unknown parameter ¢, as 04 = oA/L (x, - 2)2

i
It seems reasonable again to write sg = GAZ (xi - 2)2 and consider

B
the statistic

t = (10.2.3)

The unknown parameter O has been replaced by an estimate, the square
root of the error mean square {MSE). It can be shown that under the
assumptions 1 through 3 of this section that the random variable in
Eq. (10.2.3) has Student's t distribution with n - 2 degrees of
freedom. With this knowledge it is possible to construct confidence
intervals and carry out tests for the unknown parameter B.

It is now straightforward to show that a (1 - a)100% confidence

interval for B has endpoints given by

A
B2 sgty /o n-2

In the example of this section we find a 95% confidence interval for
the true average monthly weight gain to be given by 2.1 +

v0.633/10 %0005, OF bY the imterval [1.299, 2.9012]. Tests of the
hypothesis H: B = B, versus the alternatives (1) B > Byo (2)

B < BO, and (3) B # B are based on the statistic t = (é - BO)/sé'
The critical regions for a-level tests are found to be t > ta
t < -ta, , and [t] >t

n~2
test the hypotheses

,n=2>

a/2,n-2" respectively. Suppose we wish to
2

HO B < 1.5 versus Hl: B > 1.5
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for our example data. The critical region for a test with signifi-

0.05,3 = 2.353. As t =
(2.1 - 1.5)/0.2517 = 2.384, we would conclude that the true average

cance level 0.05 is given by t > t

growth rate for male infants exceeds 1.5 1b/month. Similar confidence
intervals and tests for a (in the regression model) can be found by

replacing O by G in the expression for Ga.

10.2.4 The Coefficient of Determination

A natural question to consider concerning the simple linear regres-
sion model is whether the model is actually satisfactory. We have
seen above that the relationship [see Eq. (10.2.3)]

£ (y. - ¥)° = SSR + SSE

is valid. Here SSR represents the sum of squares for regression and
SSE the sum of squares for error (or residual). The ratio r2 =
SSR/L (yi - ?)2 is called the coefficient of determination. As SSR
and SSE are nonnegative it is clear that O §_r2 < 1. The statistic
r2 can be interpreted as the "proportion of the variation in Y ex-
plained by regression.” It is useful to consider the extreme cases
r2=1and rd=0. If r°= 1, then SSE = £ (yi - §i)2 = 0. Hence
v; = ?i fori=1, 2, ..., n, and since the ?i lie on a line, the
original observations do also.

In the case that r2 = 0, either 8=0orz (xi - §)2 = 0. The
later can occur only if we observe Y at one value of x. Clearly we
will not be able to make any statement about the change in Y per
unit change in x if we observe Y at one value of x. We exclude this
possibility. The situation in which g=0 implies that § = § = y.
This implies that knowledge of x does not assist in estimating E(Y).
For example, we would surely accept the hypothesis B = 0 as t = O.
Thus we would retain the assumption E(Y|x) = a, i.e., the expected
value of Y does not depend linearly on x. This does not necessarily
imply that there is no relation between the observed values of Y and
X. Suppose we consider the (admittedly contrived) observations:

(-2,4), (<1,1), (0,0), (1,1), (2,4). We compute é = 0 and § =2,
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(-4, 4) (2,4)

1,1} (Ln

Fig. 10.2.1

As indicated in Fig. 10.2.1, the observations lie on the parabola
vy = x2. However, no line fits the observed values well. Thus

r2 = 0 means that the data do not indicate a linear relationship of
the form E{Y|x) = a + Bx, with § ¥ 0. Hence the coefficient of de-
termination is usually interpreted as a measure of the linearity of

the relationship between Y and x.

10.2.5 A Program for the Linear Regression Model

The program LINREG computes the least squares line for n pointes
(xi,yi) for i =1, 2, ..., n. The data are placed in DATA statements
in lines 500-599 in coordinate pairs. The program requests the number
of points n. The program output includes the values of &, é, 5%

r2, and 8 and the t value for testing H B = 0. In addition the

analysis of variance table is printed ogt. The program has been run
for the example of this section. As another example let us consider
the data on the U. S. Gross National Product in Table 10.2.2. Con-
sidering time to be the independent variable coded as 1, 2, ..., 23,
where 1 represents 1950, we obtain the regression line § = 309.86 +
19.487t. The value of the coefficient of determination is r2 = 0.963
indicating a substantial degree of linearity of real GNP with time.
The annual growth of GNP in 1958 billions of dollars is estimated by

~

B = 19.487 with sg = 0.837. A 95% confidence interval for B, the

"true" annual growth of GNP has endpoints B + s4

8t0.025,21 and is
given by the interval [17.T746, 21.228].



LINREG

S DIM T(58)

10 REM THIS PROGRAM COMPUTES THE LEAST SQUARES LINE,
20 REM THE ANOVA TABLE, AND RELATED STATISTICS FOR
3¢ RFEM THE SIMPLE LINEAR REGRESSION MODEL

40 REM DATA PO INTS SHOULD APPEAR IN LINES 580-599 IN PAIRS
5@ REM IeEe X(1)5Y(C1)5X(2)5¥(2)s5000sX(N)»YT(N)
60 REM THE PROGRAM WILL REQUEST THE VALUE OF N.
78 PRINT "WHAT IS THE VALUE OF N?°"

80 INPUT N

81 DATA 12.7 062,44302753.1824,2.7764,245706
82 DATA 244469,2.364652.3060,2+2622,2.2281

83 DATA 2.2010,2.1788,2.1604,2.1448,241315

84 DATA 2.1199,2.1098,2.1009,2.0930,2.0860

85 DATA 2.07962200739,2.068752¢0639,240595

86 DATA 2.0555,2.0518,2.0484,2.0452,2.0423

87 DATA 2.0395,2.0369,2.0345,2.0322,2.0301

88 DATA 2.0281,2.0262:,2.0244,2.0227,2.0211

89 DATA 2:0195,5,2+0181,52.0167,2.0154,2.0141

90 DATA 2+0129,2:0117,2.0106,2.0096,2.0086

91 FOR 1 = 1 TO S50

92 READ T(I)

93 NEXT I

166 FOR 1 = 1 TO N

1190 READ X,Y

120 LET Xl1=X1+X

130 LET X2= X2+X12

140 LET Y1 = Y1 +Y

150 LET Y2 = Y2 +Yt12

160 LET Z1= Z1+XxY

17@ NEXT 1

1890 LET MI1=X1/N

199 LET M2=Y1/N

200 LET Sl= X2-N*M1t2

219 LET S2= Y2-N*M212

2290 LET C = Z1-N*M1xM2

230 LET B = C/S51

240 LET A = M2-BxM]

250 PRINT ''VARIABLE'",''MEAN","STD DEV"

260 PRINT "X"»M1,SQR(S1/(N-1))

270 PRINT "'Y',M2, SQR(S52/(N=1))

280 PRINT

299 PRINT '"FOR THE LEAST "'3'SQUARES LINE"

300 PRINT "INTERCEPT",''SLOPE"

318 PRINT A,B

320 PRINT

330 PRINT "ANOVA TABLE"

340 PRINT "SOURCE"™»>"SeSe',»"DOF","*MeSe"

350 LET S3= S2-(B12)*Sl1

360 PRINT "REGRESSION", (Bt2)*S1,N=(N~1),(B12)*51
370 PRINT "RESIDUAL', S3,N=-2,53/(N=-2)

380 PRINT "TOTAL'"»S52,N-1

390 PRINT

400 LET F = (Bt2)*51%(N-2)/53

419 PRINT "STD DEV OF B",'"T-VALUE",'"F VALUE"
428 LET T = SQR(F)

430 PRINT SQR(S3/(S1*(N-2))),T»F

440 PRINT “SIGMA-HAT'">"COEFFICIENT OF DET"
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450 PRINT SQR(S3/(N-2)),(Bt2)*S51/52

460 PRINT 'SAMPLE CORRELATION COEFFICIENT R = '"3B*SQR(S1/52)
464 PRINT 'DO YOU WISH AN ESTIMATE OF THE AVERAGE VALUE OF Y?*"
468 PRINT "ANSWER 1 IF YES AND @ IF NO*"

471 INPUT @

474 IF Q@ = @ GO TO 700

477 PRINT "AT WHAT VALUE OF X?*

481 INPUT X1

484 PRINT "THE ESTIMATE IS '3 A+B*X1

487 PRINT 'A 95 PERCENT CONFIDENCE INTERVAL FOR THE AVERAGE Y IS"
491 LET UV =SQR(S3/(N-2)%C1/N+(X1-M1)12/51))

493 PRINT "L = "; A+B*X1=-UxT(N=2)3'" U= '"3A+B*X1+U*T(N=-2)

497 GO TO 464

500 DATA 2,12532132451755,1856,20

700 END

*

RUN

WHAT IS THE VALUE OF N?

S

VARIABLE MEAN STD DEV

X 4 1.58114

Y 16 3.39116

FOR THE LEAST SQUARES LINE

INTERCEPT SLOPE

Teb 201

ANOVA TABLE

SOURCE SeSe DOF MeSe
REGRESSION 44.1 1 441
RESIDUAL 1.9 3 #.633333
TOTAL 460 4

STD DEV OF B T=VALUE F VALUE

B.251661 8. 34455 6946316

SIGMA-HAT COEFFICIENT OF DET

8. 795822 B.958696

SAMPLE CORRELATION COEFFICIENT R = ©.97913
DO YOU WISH AN ESTIMATE OF THE AVERAGE VALUE OF Y?
ANSWER 1 IF YES AND 8 IF NO

%]

*
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500 DATA 15355¢3525383:453,39501,545412.855,4078

510 DATA 6s438eBsT544601585452¢5595447¢351054759

520 DATA 115487¢75125497¢25135,529¢8,14,551¢0515558141
530 DATA 165617¢8s175658¢15185675¢25195,706¢6520572506
540 DATA 215725¢5+225745¢4523,7907

*

RUN

WHAT IS THE VALUE OF N?

? 23

VARIABLE MEAN STD DEV
X 12 6+78233
Y 5437 134.702
FOR THE LEAST SQUARES LINE

INTERCEPT SLOPE

309.858 19.4869

ANOVA TABLE

SOURCE SeSe DOF Me Se
REGRESSION 384295 1 384295,
RESIDUAL 148865 21 708.881
TOTAL 399181, 22

STD DEV OF B T-VALUE F VALUE

2.836944 23.2833 542.114

SIGMA-HAT COEFFICIENT OF DET

26.6248 B.962707

SAMPLE CORRELATION COEFFICIENT R = 0.981177

DD YOU WISH AN ESTIMATE OF THE AVERAGE VALUE OF Y?
ANSWER 1 IF YES AND @ IF NO

71

AT WHAT VALUE OF X7

? 24

THE ESTIMATE IS 777542

A 95 PERCENT CONFIDENCE INTERVAL FOR THE AVERAGE Y IS
L= 753678 U = 8014407

D0 YOU WISH AN ESTIMATE OF THE AVERAGE VALUE OF Y?
ANSWER 1| IF YES AND @ IF NO

70
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Table 10.2.2 U. S. Gross National Product (1958 billions of dollars)®

Year GNP Year GNP
1950 355.3 1961 Lg7.2
1951 383.L4 1962 529.8
1952 395.1 1963 551.0
1953 Lio.8 1964 581.1
1954 407.0 1965 617.8
1955 438.0 1966 658.1
1956 4h6.1 1967 675.2
1957 4s2.5 1968 T06.6
1958 4h7.3 1969 725.6
1959 475.9 1970 725.5
1960 L87.7 1971 Th5.h

1972 790.7

®Economic Report of the President, 197h.

Problems 10.2

1. (a) For the data given in Problem 10.1.1, find the analysis of
variance table and the values of r2, 82, and sg.
(b) Test the hypothesis HO: B = 0 under the assumptions 1

through 3.

2. ©Suppose that we have data on U. S. personal disposable income
(x) and personal consumption (Y) over a period of 10 years.

The least squares line is found to be

? = 7.0 + 0.9x and sg = 0.1

Both x and Y are measured in terms of constant 1954 dollars

(billions).

(a) Find a 95% confidence interval for B. Give a verbal de-
scription of the meaning of R.

(b) If the average personal consumption was $295 (in constant
l95h'billions), what was the average personal income (in

constant 1954 billions)?
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In a simple linear regression x represents the number of depend-
ents declared by an individual on his income tax return and Y
represents the income tax due (in thousands). A sample of 52
such returns yields

52 52

Y = 2.5 - 0.kx L o(x, - 2)2 = 1600 T (yi -y

2
4 )
i=1 i=1

= 1506
Construct the ANOVA table for these data.

)

) Find the value of the coefficient of determination r2.
) Find a 95% confidence interval for B.

)

Test the hypothesis: HO: B 2 -0.2 versus H

at level of significance o = 0.05.

: < -0.

1 B 0.2
The heights (in inches) of different tomato plants (Y) was
observed after varying periods of time (x) after being trans-
planted to the garden (3-9 weeks). The following summary data
are available: n =10, x = 6, ¥y = 12,

s =3 I (x; -x)y; -¥) =160

"

1000

a) Find the equation of the least squares line.
(b) What are the units B?
(e) Construct the ANOVA table and find r2.

Replace 4 by ¥ - éi in the expression for Yi to prove that
%Y. /n=7.
i/n Y

Show, using Problem 10.2.5, that I (Yi -Y.) = 0. (The sum of
the observed residuals is 0.)

(a) Writing I (Yi S92 =1 (y, - Y, 2. - 7)2 show that the
cross product term 2 I (Y, - Y. )(

Y. by ¥ - Blx; - ).

[}

- Y) = 0 by replacing
(b) Prove that the basic equality of the ANOVA table in Eq.
(10.2.2) is correct.

(a) Using the fact that (%X,y) lies on the least squares line,
show that B = (9i - ¥)/(x; - %) for i =1, 2, ..., n.
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10.

11.

12.

(b) Prove that the sum of squares for regression (SSR) may be
written as @2 bX (xi - §)2.

(a) Using the ANOVA table (Table 10.2.1) show that the SSR and
62 are both unbiased estimates of 02 if B = 0.

(b) What is the relationship between E(SSR) and 02 ifg#$0

and the x, are not all equal?

(a) If B = 0, the statistic MSR/G2 = F has the F distribution

with 1 and n - 2 degrees of freedom under the assumptions

of this section. A test at level o of HO: B = 0 versus
Hl: B + 0 can be made using the critical region F >
F>F1, n - 2)a.

(b) Show that t20025,3 = F(1,3)4 o5

(c) Show that the value of t for testing HO: B = 0 versus
le B + 0 satisfies t2 = F as defined in part (a).

(d) Demonstrate numerically that the tests of HO: B = 0 versus
Hl: B + 0 are identical for the infant weight example of

this section (for a = 0.05). In fact, the square of a t
variable with v degrees of freedom (tvz) has the same dis-~
tribution as an F(1l,v) random variable, so these two tests

are equivalent for any given value of .
Show that E(8) = a, using the fact that E(B) = 8.

In the Quarterly Review of Economics and Business (Spring 1976),
Paul C. Nystrom and Clarke C. Johnson present interesting data
in an article entitled "Labor's Share: New Evidence on an 0ld
Controversy," The variable "labor's share” was the dependent
variable and the time measured in years was the independent
variable. The model used was Y = o + Bt + e,. The following

t t
regression lines were found in the indicated industries.

Industry Regression line r2

Food ?t = 0.7777 - 0.00246t 0.31
Petroleum Qt = 0.5598 - 0.00815t 0.49
Machinery ?t = 0.7138 + 0.00349t 0.08
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In this case, t =1, 2, 3, ..., 18. Estimate labvor's
share in each of the industries at time t = 20.

Using the fact that the t statistic may be written as

t = (r/¥1 - r")V/n - 2 with r having the sign of B, test

the hypothesis H B =0 versus H : B + 0 for each

0 1
industry. (a = 0.05.)
In which of these three industries is there statistically

significant evidence that labor's share is changing?

Exercises 10.2

1. The following table gives the total U. S. farm employment for
1950-1972 in thousands¥.

Year Farm employment Year Rrm employment

1950 9926 1962 6700

1951 9546 1963 6518

1952 9149 1964 6110

1953 8864 1965 5610

1954 8651 1966 521k

1955 8381 1967 4903

1956 7852 1968 L7hg

1957 7600 1969 47h9

1958 7503 1970 4596

1959 T3k2 1971 L523

1960 7057 1972 43713

1961 6919

(a) Find the equation of the least squares line using the pro-
gram LINREG (code 1950 as O, etc.).

(b) What is the value of the coefficient of determination.

(e) Find a 95% confidence interval for B, the average change
per year in total U. S. farm employment over this period.

*¥Source: Economic Report of the President, 197L.
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2. The following table gives the per capita disposable income in

the United States from 1950-1972 in constant dollars¥.

Per capita Per capita

Year disposable income Year disposable income
1950 1646 1962 1969
1951 1657 1963 2015
1952 1678 196k 2126
1953 1726 1965 2239
1954 171k 1966 2335
1955 1795 1967 2403
1956 1839 1968 2486
1957 18hk 1969 2534
1958 1831 1970 2610
1959 1881 1971 2680
1960 1883 1972 2767
1961 1909

(a) Find the equation of the least squares line coding time as
in Exercise 10.2.1.

(b) What is re?

{(¢) Find a 95% confidence interval for R, the average change
per year in per capita income in the United States over

this period.

10.3 PREDICTION USING THE REGRESSION MODEL

We consider here the prediction of the average value of Y at a given

level of x. The natural predictor of the expectation uYIx is given
by

Ay = &+ Bx (10.3.1)

Under the model assumptions made in the previous section we see that

E(f)

le) = E(& + Bx) = a + Bx, so that the estimator is unbiased. The

¥Source: Economic Report of the President, 19Th.
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value of x at which the prediction is made may be a value at which
Y has not been observed. The statistic given by Eq. (10.3.1) is,
of course, a random variable. Under the assumptions of the previous

section we can find the variance of this estimator as follows:

Var(@ + Bx) = Var(¥T + B(x - X))

= Var(¥) + Var(B)(x - i)z

_ o2 02§x - 5)°
= 4 —
T o(x, - %)

The independence of Y and é has been used here but will not be proved.

Again uY]x is a normally distributed variable, so that

ﬁle - (a + Bx)

G/l/n + (x - 0)%/1 (x; - %)2

has the standard normal distribution. It is also true that if ¢ is

replaced by O, then
- qux - qux

8/17n + (x - §)2/Z (xi - i)2

t

has Student's t distribution with n - 2 degrees of freedom.
As usual a confidence interval for uY x is more informative than
a point estimate. The usual (1 - ©)100% confidence interval for

UY X is given by

5+ Bx + 6 1, x-%° t (10.3.2)
o - -2 “a/2,n-2 .3
L (xi - x)

It is important to note that for a fixed value of the confidence
coefficient, (1 ~ 0.)100%, and observations (xi,yi), i=1,2, ..., n,
the length of these intervals varies. It is least for x = x and
increases as x gets further away from x. In Fig. 10.3.1 we consider
again the data for infant weights. The endpoints of 95% confidence
intervals are graphed for various values of x. It is clearly more

risky to estimate uY X at values of x far away from x than close to
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LINREG

RUN

WHAT IS5 THE VALUE OF N?

?25

VARIABLE MEAN STD DEV
X 4 1.58114
Y 16 3.39116
FOR THE LEAST SQUARES LINE
INTERCEPFT SLOPE

Teb 2.1

ANOUVA TABLE

SOURCE SeSe DOF Me Se
REGRFSSION 4441 1 441
RESIDUAL 1.9 3 @.633333
TOTAL 46 4

SThb DEV OF B T~VALUE F VALUE

B.251661 HBe 34455 69.6316

SIGMA-HAT COEFFICIENT OF DET

P.795822 B+9358696

SAMPLE CORRELATION COEFFICIENT R = (97913

DO YOU WISH AN ESTIMATE OF THE AVERAGE VALUE OF Y?
ANSWER 1| IF YES AND @ IF NO

7?71

AT WHAT VALUFE OF X?

27

THE ESTIMATE IS 22.3

A 95 PERCENT CONFIDENCE INTERVAL FOR THE AVERAGE Y IS
L= 19.6438 U= 24.9562

DO YOU WISH AN ESTIMATE OF THE AVERAGE VALUE OF Y?
ANSWER 1 IF YES AND 0 IF NO

?2 0
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Y
30
76+ 2.1x
1 I i s 1 1 ¢ {
0 2 4 6 8 0 X

95 Percent Confidence Intervals for Average Weight

Fig. 10.3.1

%X. For x = 7, we find ﬁYl7 = 7.6 + 2.1(7) = 22.3. The endpoints

of a 95% confidence interval for the average weight of T-month-old
male infants are given by expression (10.3.2) as 22.3 +

¥0.6333(1/5 + 9/10) t9.005,3° The inmterval is [19.6k, 24.96]. The
program LINREG has been written to estimate the expectation of Y for

a given x and to provide a 95% confidence interval for the estimate.
We indicate here, by example, two causes of erroneous predic-
tions using the linear regression model. Let us again consider the
example of infant weights. The regression line was found to be Y =
7.6 + 2.1x. If we estimate E(Y|x = 100}, we find ﬁY]lOO = 217.6 1b
for an 8 1/3-year-old child. The data which produced this predic-
tion were taken over the period of the first 6 months after birth.
While the linear model may be appropriate over a short period of
time (say up to 10 months), growth is not linear over a long period
of time. The model is hence deficient for long-term predictions.
Consider the example of relating GNP to time. The least squares
equation found in the previous section, ¥ = 309.86 + 19.487t, would
predict GNP for 1973 (t = 24) to be $777.55B. The actual GNP for
1973 was $839.2B (Source: Survey of Current Business, February 1975).
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This estimate is again unsatisfactory. With economic time series,
predictions based on long historical data are often not as accurate
as those which weight more heavily the most recent past. Even with
these methods, unforeseen economic events can (and do) lead to
erroneous forecasts. One should generally limit the use of the
simple linear regression model for forecasting to cross-sectional
data (i.e., not a time series) and for values of x not too far from
X. Elaborations of the simple linear regression model and other

methods are more appropriate for time series data.

Problems 10.3

1. Using the information given in Problem 10.2.3 with the additional
information that X = 2.3, find the predicted average income tax
due for an individual with two dependents. Find a 95% confidence

interval for this prediction.

2. Using the information in Problem 10.2.k4, find the predicted
average height of tomato plants 8 weeks after being transplanted

and also a 95% confidence interval for this prediction.

3. Use LINREG with the data on infant weights of Sec. 10.1 to pre-
dict the weight of 6-month~old infants.

10.4  ASSOCIATION AND CORRELATION

In the previous sections of this chapter we have considered that the
expected value of a random variable Y was a function of a real vari-
able x, that is, E(Y|x) = f(x). It is quite often the case that we
observe the values of a bivariate random vector (X,Y) at n points,
(xi,yi) i=1,2, ..., n. However it is not possible to state which
random variable is dependent and which is independent. For example,

We may observe

a. The height and weight of n individuals.
b. The scores on a verbal test and a mathematics test for n persons.
c. The inventory turnover (cost of goods sold/value of inventory)

and the earnings as a percent of sales of n companies.
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Y| Weight

0 X

Fig. 10.4.1

We are aware that the fandom variables X and Y are often "correlated"
or "associated." In example a. we would assume that higher weights
and heights would occur together and lesser weights and heights would
occur together. In Fig. 10.4.1 we illustrate this graphically. We
would like to have a statistical measure of the intensity of the

association between two random variables.

10.4.1 The Correlation Coefficient

We shall use the following notation in this section: E(X) = Wos
E(Y) = uy, Var(X) = Oxz, and Var(Y) = Oyz. We now consider measures
of the population association between X and Y. We have previously
(in Problem 3.2.14) introduced the covariance of X and Y which is
defined by

Cov(X,Y) = E((X - u (Y - uy)) (10.4.1)
If large values of X and Y occur together and small values of X and
Y occur together the product (X - ux)(X - uy) will tend to be posi-
tive and so will its expectation. We denote Cov(X,Y) by Oxy and
present several properties of the covariance in the following theoremn.

The proof is left to the problems.
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THEOREM 10.4.1. If ny is defined, then

a. O = E(XY) - .
Xy (xY) MMy
b. 0o =g
Xy ¥x
c. Cov(aX,pY) = abGxy for any constants a and b.
d. 0 =g¢ 2.
XX b's

e. Covi{X, Y+ 2) = Cov(X,Y) + Cov(X,Z).

It is clear from part c¢ of this theorem that the covariance itself
cannot be used as a measure of association for if one of the random
variables, say X is multiplied by a constant, then ny is also multi-
plied by the same constant. We would like to have a measure of
association which is free of the units of measurement.

The population parameter which is often used as a measure of the
association between X and Y is the theoretical correlation coefficient

between X and Y defined by

o= Xy

fofilo]

Xy
It is easy to see that p is free of the units of measurement of X
and Y. Another important property of p is given in the following

theorem.

THEOREM 10.4.2. 1If p is defined for two random variables X and Y,
then

-l<p<1

Proof: Consider the standardized random variables X' =

(x - ux)/cx and Y' = (Y - uy)/ = Both X' and Y' have expectation

0 and variance 1. Clearly p = E(X'Y'). Consider E(X' + Y')2. We

have

E(X' + tY')% = E(x')2 + 2B(X'Y")t + t°( 2

1+ 20t + t°

E(Y"))
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for any real t. However this gquadratic in t 1s nonnegative for all
t as it is the expectation of a nonnegative random variable. Hence
the discriminant of this quadratic cannot be positive and hp2 -L4<o

2 . .
or p <1, which is equivalent to -1 < p < 1.

It is natural to ask for a statistic, which can be calculated
from a random sample of n independent observations (xi,yi), i=1,
2, .+., n, from the bivariate population (X,Y) to estimate p. If

we estimate the covariance ny by

then a natural estimator of p is

~

r= (10.4.2)

s s
X -2 -2
Y ik -0%1 Gy, -7
i
The statistic r is called the sample correlation coefficient. The
value of r is in fact numerically equal to the square root of the
coefficient of determination, with the sign of é prefixed, calculated

in the regression of Y on x. We can see this by writing

I(x, -x)(y, -¥)s Bs
r= L ; E o X (10.4.3)
- S S
I (x; - x) y Y
Hence
A2 2 a2 -2
22 Sx=B’:(Xi‘X)= SSR
2 .2 .2
s, Ly, -¥) Ly, -¥)

The last expression is the coefficient of determination. Hence r,
the sample correlation coefficient is the square root of the coeffi-

cient of determination, and by Eq. (10.4.3), r has the sign of 8.
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Inference for p may only be based on the knowledge of the dis-
tribution of the bivariate random variable (X,Y). If (X,Y) has a

bivariate normal distribution¥*, it can be shown that

o
E(Y]x) = p_ + pgx(x - )

!
¥ X

The expectation of Y given x is then linear in x with slope p =
B(oy/ox). It is clear that p = 0 if and only if B = 0. Hence it
should not be too surprising that, in the bivariate normal case, a
test of p = 0 is based on the same (numerical) t statistic used to

test B = 0. It can be shown that in the bivariate normal case

t 2 ——— - 2 (10.4.4)

has Student's t distribution with n - 2 degrees of freedom if p = O.
Hence against alternatives (1) p < 0, (2) p > 0, and (3) p # 0, we
2> > by nps and [t] >t
where the statistic t is defined in Eq. (10.4.L4).

have the critical regions t < _ta a/2,n-2°

We consider a small example to illustrate the computation of r
and a test of p = 0. Assume that we obtain the following data from

a sample of five firms.

Earnings as a

Company Cost of goods sold/inventory percent of sales
1 3 10
2 L 8
3 5 12
4 6 14
> T 16

We find =5, =12, % (x; - Ny, - ¥) =18, I (x; - 0 = 10,
and I (yi - §)2 = 40. Hence r = 18//400 = 0.9. We consider a test

of HO: p = 0 versus Hl: p > 0 assuming bivariate normality. We

*¥The definition requires the multivariate calculus, see Draper and
Smith (1966).
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calculate t = (0.9/¥1 = 0.81)/3 = 3.576. As ty.05,3 = 2132, we
would decide that p > 0 at the 5% level of significance. There is
an apparent positive correlation between capital utilization and
profits.

A confidence interval for p can be found by using a transforma-
tion of r, namely z = T(r) = 0.5 log((l + r)/(1 - r)), called Fisher's
z after Sir Ronald Fisher, the famous British statistician. This
statistic has approximately a normal distribution with E(z) =
0.5 log((1 + p)/(1 - p)) and Var(z) = 1/(n - 3). Hence, approxi-
mately, P(z -~ 1.96/Vn - 3 < 0.5 tog((1 + p)/(1 -p)) <z +
1.96/Vn - 3) = 0.95. The transformation T(r) is monotonic so that
P(T1(z - 1.96/Va = 3) < p < TH(z + 1.96/Va = 3)) = 0.95, where
T—l is the inverse transformation of T. The program COR has been
written to compute the correlation coefficient r and to calculate

an approximate 95% confidence interval for p.

10.4.2 A Distribution-free Measure of Association

In this sectlon we shall again assume that we are sampling from a
continuous bivariate distribution (X,Y). Assume that (Xl,Yl) and
(X2,Y2) represent two independent observations from this distribu-
tion. We define a parameter which reflects association between X

and Y as follows. ZFirst let us define

m, = P(xl > x2 and yl > Y2) + P(xl < x2 and Yl < Y2)

This parameter represents the probability that two independent ob-
servations from (X,Y) are "concordant." Using the continuity assump-
tion, we define ﬂd =1 - ﬂc as the probability that two independent
observations from (X,Y) are "discordant." As a measure of associa-
tion we define T = T, = ﬂd = 2ﬂc - 1. Note that if X and Y are
independent, then L 1/2 (why?) and T = 0. Clearly as O T, <1,
-1 <T1<1.

As an estimator of T based on a sample of n independent observa-

tions_(Xi,Yi), i=1,2, ..., n, we use
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. - ngl g sgn(Xi - X.) sgn(Yi - Yj)
i=1 j=i+l 69

Assuming that X and Y are continuous variables, the probability
Xi = X'j for any pair (i,j) is 0 and similarly for Yi and Yj' Hence

sgn(Xi - Xj) sgn(Yi - Yj) =+ 1. The value is +1 if the ith and jth

pairs are concordant and -1 otherwise. Hence each of the (2) terms
in the sum has expectation T, - Ty and E(t) = 1. If X and Y are

independent, E(t) = 0. Similarly, under the independence assumption,
we can find Var(t) = (4/9)(n + 5/2)/n(n - 1). A test of HO: T=0
can be made for small n using the tables available in the Handbook
of Tables for Probability and Statistics (1966). These tables give
the percentile points for the statistic t under the hypothesis of

independence for n = 4 to 10. For larger values of n, one can use

For the alternatives 7 > 0, T < 0, and T # 0, the usual critical
regions are appropriate.

More than a word of caution is required about the interpretation
of a "statistically significant" correlation between two observed
random variables. Such a correlation need not imply a causal rela-
tionship. For example, the length of feet of children is correlated
with their ability to do arithmetic problems, but this is due to the
fact that with increasing age, both the length of feet and arithme-
tical ability increase. Often common trends in time of two time-series
data yield a "spurious" correlation. The value of alcoholic consump-
tion and the value of razor blades sold may appear correlated due to
a common inflationary trend. On the other hand, in many cases, the
evidence of statistical correlation may, in fact, imply a true

association between two random variables.
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Problems 10.4
1. Prove Theorem 10.4.1 using the definition

Cov(X,Y) = E((X - ux)(Y - uy))

2. Prove that if two random variables are linearly related, that is,
Y=aX+ Db, then p=1if a > 0 and p = -1 if a < 0.

3. In a correlation analysis we find I (xi - 2)2 = 100, I (yi - 5)2 =

64, and I (xi - 2)(yi - y) = 48 with n = 18.
(a) Find the value of r.
(b) Test the hypothesis HO: p = 0 versus Hl: p % 0 assuming

bivariate normality. (Use a = 0.05.)

4. Suppose in a sample of 29 adult males we measure the height X
in inches and weight Y in pounds of each individual. We find
I (x, - %)° =100, L (y, - )% = 400, ana £ (x, - Dy, - ¥) =
100.
(a) Find the value of r.
(b) Carry out the test of Problem 10.4.3 part (b).

5. Suppose that two judges rank seven contestants in a diving

competition. Test the hypotheses

HO: the judges rankings are independent.

Hl: positive association exists between the rankings.
Contestant A B C D E F G
First judge 2 1 L

Second judge 3 i 2 5 1 6 7

(Use the statistic t and @ = 0.07.) Note P(t > 0.524) = 0.07
ifn=T7.

6. In the absence of ties the statistic t is based on the ranks of
the X observations and Y observations. It is clear from the
definition of t that if the ranks of the X observations and Y
observations replace the observations themselves, the value of

t is not altered.
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(a) Use the 24 possible permutations of the Y ranks together
with the X ranks 1, 2, 3, 4 to find the null distribution
of t for n = 4.

(b) Verify thag E(t) = 0 and Var(t) = (4/9)(n + 5/2)/n(n - 1),

in this case.

T. Lawrence G. Hrebiniak has studied the relationship between
hospital size (measured by number of beds) and degree of pro-
fessionalism (measured by man-hours of work done by certain
professional categories). His work appears in The Academy of
Management Journal, December 1976, in an article entitled "Size
and Staff Professionalism.” He reports the following correla-

tions between size and staff professionalism.

Private Private
Staff Public (profit) (nonprofit)
Psychiatrists 0.790 0.k21 0.395
Nurses (RN's) 0.762 0.781 0.888
Administrative staff 0.3%0 0.165 0.390

The number of public hospitals was 47, private (profit) hospitals

was 76, and private (nonprofit) hospitals was 172.

(a) Test whether each of the calculated correlations implies
that H : p = O should be rejected in favor of H

0
at significance level o = 0.05.

17 P >0
(b) Find 95% confidence intervals for the theoretical correla-
tion coefficients.

8. In an article entitled "Higher Education Tax Allowances: An
1

Analysis, by Larry L. Leslie in the Journal of Higher Education

(September /October 1976), the following correlations are reported.
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Simple Correlation Coefficients between Appropriations and
Sociometric lariables

Appropriations to all public
Institutions per capita

1960 1969
Industrialization -0.57 -0.28
Affluence 0.51 0.48
Median school years 0.50 0.48
College educated percent 0.28 0.k40
Personal income 0.03 0.17
Corporate income 0.02 0.26
College age population 0.09 0.27

The study involved observations from the 50 states. Which
correlations appear significant at o = 0.05 level? Were there
significant correlations for any sociometric variables in 1960

which were not significant in 1969?

Exercises 10.4

For 17 Miss America winners from 1959-1975 we give their weight

and height.

Year Height Weight Year Height Weight
1959 65 11k 1968 69 135
1960 67 120 1969 67 125
1961 67 116 1970 65.5 110
1962 65.5 118 1971 68 121
1963 65 115 1972 67 118
1964 66.5 124 1973 68 120
1965 66 124 1974 69 125
1966 67 115 1975 68 119
1967 66 116

(a) Use COR to find the value of r.

(b) Use the confidence interval to test p = 0 versus p = 0 at

level o = 0.05.
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REM THIS PROGRAM COMPUTES THE PEARSON CORRELATION COEFFICIENT
REM BASED ON A SAMPLE OF N POINTS FROM A BIVARIATE POPULATION.
REM A 95 PERCENT CONFIDENCE INTERVAL FOR RHO IS FOUND
REM USING FISHER'S APPROXIMATION.

REM THE DATA SHOULD APPEAR IN LINES 500-699 IN PAIRS,
REM IeEe XC1)2YC1)5X(2)2Y(2)s0eesX(NI»Y(N)

REM THE PROGRAM WILL REQUEST THE VALUE OF N.
PRINT °*WHAT 1S THE VALUE OF N?"

INPUT N

FORI = 1 TON

READ X,Y

LET X1=X1+4X

LET X2= X2+X12

LET Y1 = Y1 +Y

LET Y2 = Y2 +Yt2

LET Z21= Z14+4X*Y

NEXT 1

LET Mi1=X1/N

LET M2aY1/N

LET Sl= X2-N*M1t2

LET S2= Y2-N*M2t2

LET C = Z1~N*M1*M2

LET R = C/SQR(S1*52)

LET U B«5*LOG(C(14+R)/(1~R)) + 1.96*%SQR(1/(N=-3))

LET L B«5*%LOGCC14R)/(1=R)) =1.96*SQAR(1/(N-3))

LET U CEXP(2%U)=1)/CC1+EXP(2%U)))
LET L CEXP(2%L)-1)Y/((1+EXP(2%L)))

PRINT THE VALUE OF Re'3R

PRINT

PRINT A 95 PERCENT CONFIDENCE INTERVAL FOR RHO IS GIVEN BY:"
PRINT "L = 'SL,"U = '3U

DATA 235553,556+5548535554853:15122+454551556+6

END

*RUN

WHA
?5
TH

A9
L=

*

T 1S THE VALUE OF N?
E VALUE OF R= 2.8

5 PERCENT CONFIDENCE INTERVAL FOR RHO 1S GIVEN BY:
«0¢279664 U = 0.986197
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2. (a) The data below*® give the 1970 rank of the states by popula-
tion and by land area. Find the value of r and test HO:
p = 0 versus Hl: p + 0 using the Student t statistic.
(Use o = 0.05.)

] Rank by Rank by Rank by Rank by
State population area State population area
Al abama 21 29 Montana 43 i
Al aska 50 1 Nebraska 35 15
Arizona 33 6 Nevada L7 7
Arkansas 32 27 New Hampshire 4 Ly
California 1 3 New Jersey 8 46
Colorado 30 8 New Mexico 37 5
Connecticut 24 18 New York 2 30
Delaware L6 49 North Carolina 12 28
Florida 9 22 North Dakota L5 17
Georgia 15 21 Ohio 6 35
Hawaii Lo b7 Oklahoma 27 18
Idaho L2 13 Oregon 31 10
Illinois 5 2L Pennsylvania 3 33
Indiana 11 38 Rhode Island 39 50
Iowa 25 25 South Carolina 26 Lo
Kansas 28 14 South Dakota LL 16
Kentucky 23 37 Tennessee 17 34
Louisiana 20 31 Texas i 2
Maine 38 39 Utah 36 11
Maryland 18 42 Vermont 48 43
Massachusetts 10 45 Virginia 1k 36
Michigan T 23 Washington 22 20
Minnesota 19 12 West Virginia 34 L1
Mississippi 29 32 Wisconsin 16 26
Missouri 13 19 Wyoming 49 9

*¥Source: The World Almanac, 1975.
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TAU

950
960
970
988
990
101
192
183
*
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REM THIS PROGRAM COMPUTES THE TAU STATISTIC

REM BASED ON A SAMPLE OF SIZE N FROM A CONTINUOUS
REM BIVARIATE DISTRIBUTION
REM DATA SHOULD APPFAR IN LINES 588-699 IN PAIRS,
REM I+Ee XC1)oY(1)sX(2)5YC2)500esX(NI>Y(N)
REM THE PROGRAM COMPUTES KENDALL'S TAU, THE ASSOCIATED
REM P-VALUE,AND THE NUMBER OF PAIRS CONTRIBUTING @
REM TO THF CALCULATION OF (CONCORDANT=DISCORDANT).
PRINT "WHAT IS THE VALUE OF N?*"

INPUT N

DIM X(100),Y(100)

FORI = 1 TON

READ X(I),Y(I)

NEXT I

FOR I = 1 TO N-1

FOR J = I+1 TO N

IF (X(I)=X(JII*(Y(I)~Y(J))< @ THEN 2108
IF (XCI)=-XCJII)*(Y(I)-Y(J))= O THEN 200
LET C=C+1

GO TO 2180

LET TiaTl+1

NEXT J

NEXT 1

LET T =(2%¥C-N*(N=-1)/2)/(N*(N=-1)/2)

PRINT “TAU = '»T

PRINT "NUMBER OF TIES = ", TI

LET Z = T/SQRCC4/79)%(N+5/2)/(N*(N=-1)))

GOSUB 900

PRINT *"1S THE ALTERNATIVE ONE-SIDED? 1 IF YES @ IF NO"
INPUT A

IF A= 1 THEN 320

PRINT '"P-VALUE FOR TWO~SIDED ALTERNATIVE = ''32%P
GO TO 1039

PRINT "P-UVALUE FOR ONE-SIDED ALTERNATIVE = '"3P
GO TO 10830

DATA 25351545452555553515756+657

LET Z1= ABS(Z)

LET C=1/SQR(2)

LET Cl= .14112821

LET C2= .08864027

LET C3=2.02743349

LET C4= =-.00039446¢

LET C5=.00328975

DEF FNZ(X)=1-1/C14C1%X4+C2%X1t2+C3%Xt 3+C4*xXt4+C5*xX15)18
LET P = +S5+«5%FNZ(Z1%C)

LET P = 1E-4x(CINTC(1E4*%P))
@ LET P = 1-P
® RETURN

@ END
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RUN

WHAT IS THE VALUE OF N?

? 7

TAU = Be 428571

NUMBER OF TIES = %]

IS THE ALTERNATIVE ONE-SIDED 1 IF YES @ IF NO
71

P-VALUE FOR ONE~SIDED ALTERNATIVE = 0.02883

*
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(b) The program TAU computes t and the corresponding Z value

for a large sample test of H T = 0. Use TAU to test

HO:

o
T = 0 for the data given in part (a). (Use o = 0.05.)
3. The following gives the final batting averages and winning per-
centages for the National League teams in 19Th. Use the program
TAU to find the value of t and to test HO: T = 0 versus Hl:
T >0 (a = 0.025).

Team batting average Team winning percentage

Pittsburg 0.27h 0.543
St. Louis 0.265 0.53k4
Philadelphia 0.261 0.h9k
Montreal 0.254 0.491
New York 0.235 0.438
Chicago 0.251 0.407
Los Angeles 0.272 0.630
Cincinnati 0.260 0.605
Atlanta 0.248 : 0.543
Houston 0.263 0.500
San Francisco 0.252 0.hhh

San Diego 0.229 0.370
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THE ANALYSIS OF VARIANCE

11.1  INTRODUCTION

In Chap. 8 we considered methods for testing whether there existed a
a difference between the expectations of two populations. In sta-
tistical language we say that we are comparing the effects of two
treatments. One compares the test performance of students taught

by two teaching methods, the weight gain of animals on two diets,
the life expectancy after two medical treatments, and so forth.

It is quite natural to think of the number of different treatments
being greater than two. Again we wish to compare the effects of the
treatments and to make statistical statements concerning differences
among such treatments. This topic is a part of the body of statis-
tical knowledge known as the analysis of variance and is considered
in Sec. 11.2.

In Chap. 10, in simple linear regression, we considered a means
of ascertaining the influence of the real variable x upon the average
value of a random variable Y. There are also the situations in which
the level of a categorical variable or variables influences the value
of a random variable Y. For example, we may consider that political
attitude, measured by degree of conservatism on a 0 to 100 scale,
may be affected by both the categorical variables of region of resi-
dence and income class. The regions could be east, south, midwest,

and west, while the income classes could be low, medium and high.

392
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We wish to analyze the effect of these two factors, region of resi-
dence and income class, upon political attitudes. In Sec. 11.3 we
consider the randomized block design in this regard. These two
areas of the analysis of variance present only a brief introduction
to the vast and challenging statistical field of the design and

analysis of experiments.

11.2  SINGLE~FACTOR ANALYSIS OF VARIANCE
11.2.1 The One~Way Classification Model

In Chap. 8 we considered two-sample situations. In Sec. 8.3 we
specifically considered testing hypotheses concernihg the difference
of the true means of two normal populations and finding a confidence
interval for this difference. A natural extension is to compare the
true means of t > 2 normal populations. Thus we assume that Xi

Xi ~ N(ui,cz), i=1,2, ..., t. One hypothesis of interest is

Hyt My S H, = cer = (11.2.1)

Note that, as all theoretical variances are equal, this is equiva-
lent to stating that each of the t populations have the same distri-
bution. We might also be interested in testing a hypothesis of form
+
-

HO: - = u3 versus Hl:HO is false

This null hypothesis states that the average "effect" of populations
1 and 2 is the same as the "effect" of population 3. A confidence

+ -
Lt E)/2 Hy

tion we consider a method of answering such questions which is

interval for (p might also be required. In this sec-
referred to as the one-way classification model in the analysis of
variance.

The populations defined in the preceding paragraph are referred
to as treatments. Initially, let us consider observing n observa-
tions from each of the t treatments, nt observations in all. Xij
will refer to the jth observation on the ith treatment. Our model

then is
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i3 = ui + eij i=1,2, ¢y 35 J=1,2, «c.y, n
with eij ~ NID(O,OQ). The abbreviation NID means normally and inde-
pendently distributed. Hence each observation is independent of
others in the same treatment and of all observations from the other
treatments. By defining u = Z§=lui/t and U; = U+ oy, ve write the

basic model as

_ 2
xij =u+o, + €3 €5 NID(0,07) (11.2.2)

i=1,2, ..., tand J =1, 2, ..., n. It may be easily checked that
Z§=lai = 0. Thus K can be thought of as an "overall effect" common
to all the populations and @, =W, - M as an "effect" due to the ith
population. The hypothesis (11.2.1) is then restated as HO: a, = 0
for all i.

The observed values of Xij are usually recorded in a table such
as Table 11.2.1. Clearly tests about the theoretical means will be
based on the sample means ii’ so that these are calculated. Let x

be the overall mean and consider the identity

xij = x + (xi - x) + (xij - xi)

or

i3 " x = (ii - X) + (xij - ii) (11.2.3)

vwhich is obtained by mimicking the model equation (11.2.2). Squaring

both sides of Eq. (11.2.3), summing first on j and *hen on i, yields

> t t n

X _)2 + I I {x..-x,

(xi. -x)"=n I (xi - X ]
1 M i=1 i=1 j=1 T (11.2.4)

It ct
™M

i=1 ]

The identity (11.2.4) is the basic identity in the one-way classifi-
cation. It is symbolically written as

SST = SSA + SSE (11.2.4)

and read "the sum of squares for total equals the sum of squares

among treatments plus the sum of squares for error."
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Table 11.2.1 Observed Values of Xij

Treatment Observations Mean
1 X1 X 7T Xy x)
2 Xp1 Xop T %y X,
3 Ceeenereetencnnnns
® X1 Ko 7T gy X
x = Z§=lii/t

Table 11.2.2 Analysis of Variance Table for the One-Way

Classification
Source
of variation SS d.f. MS EMS
2 t 2
Treatments SSA t -1 SSA/{t - 1) 0“ +n Zi=1ai /{t - 1)
Error SSE  t(n - 1) SSE/t(n -~ 1) o°
Total SST nt -1

The information in Eq. (11.2.4) is summarized in an analysis
of variance table such as that given in Table 11.2.2. This analysis
of varlance table is similar to the analysis of variance table of
Sec. 10.2 in the regression case. Here the total sum of squares is
divided into two parts, that due to variation among the treatments
and that due to error. The degrees of freedom are integers chosen
so that the respective mean squares are unbiased estimates of 02,

under the hypothesis H o = 0 for all i. This is clear from the

o
expressions given for the expected mean squares, whose derivations
are left to the problems. Note that the mean square for error

(MSE = 82) is an unbiased estimate of 02 whether or not Ho is true.
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Now we consider a test of

HO: a; = 0 i=1,2, ..., t
versus (11.2.5)
H: a, 30 for at least one i
1 i

The statistic which is used in this case is MSA/MSW. It is clear
from the EMS column oszable 11.2.2 that under HO both numerator and
denominator estimate ¢ unbiasedly, but under Hl the numerator will
o if MSA/MSW is large.

It can be shown that MSA and MSW are independent X2 random variables

tend to be larger. Hence we should reject H

divided by their degrees of freedom under H_ (although a proof is

beyond the scope of this text). Hence MSA/ﬁSW = F has an F distri-
bution with t - 1 and t(n - 1) degrees of freedom. Thus an O level
test of statement (11.2.5) is given by the critical region
F>F(t -1, t(n - 1))a.
Let us consider an example of the one-way classification analysis.
Assume that a football coach is interested in whether the statement
"ecollege grades increase with class" (i.e., freshman, sophomore,
junior, senior) is true for his football players. He randomly se-
lects five players from each class and obtains their current GPA,
which is measured on a 0.0 to 5.0 scale. The observations are re-
corded in Table 11.2.3. The program ONEWAY has been written to per-
form the analysis of variance computations for the one-way classifi-
cation. Data are entered according to the instructions in lines 100
through 230. Here we see that the analysis of variance table given

in Table 11.2.4 is appropriate.

Table 11.2.3 Observed GPA

Class Observations xi

Freshman 3.64 2.79 3.21 2.98 3.48 3.22
Sophomore L.23 3.53 3.62 k.98 3.50 3.97
Junior k.10 3.87 3.87 k.29 L. ok 4.03

Senior 4.50 4.24 4.36 3.77 4.2k 4,20
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Table 11.2.4 ANOVA Table

Source SS a.f. MS EMS

Classes 2.917 3 0.972 02 + 5 Z:_la.2/3
=1"i

Error 2.536 16 0.1585 02

Total 5.453 19

The calculated value of the F = MSA/MSW = 0.972/0.1585 = 6.13.
Hence 1f we wish to test the null hypothesis of no difference in
grade averages among the classes (that is, HO: ai =0,1=1, 2,

3, 4) versus the alternative that such differences exist, we reject
HO if F > F(3,l6)a. If o = 0.05, the critical value is 3.24, and if
o = 0.01, the critical value is 5.29. As the calculated F value
exceeds both of these, there is clear statistical evidence for the
view that grade averages differ with class (i.e., freshman, sophomore,
Junior, senior). Of course we are more interested in how these grade
averages differ. We shall take up this question later in the section
when we discuss contrasts.

It is often the case that the number of observations on a treat-
ment are not the same. For example in an educational experiment to
compare the effectiveness of three teaching methods, we may observe
the scores on a standardized exam for the students in each of the
classes. It often will be the case that the number of students in
the classes will differ. (This may happen even though we plan to

have the same number in each class for example, if some students

leave the course.) The appropriate model in such cases is given by

Xij = ui + eij i=1,2, ..., t5 3 =1, 2, ..., n,

with ey, ~ NID(0,0°). Using the following,

x t Mx t
= x= 3 1 3 yx= za
n, . . N .
i i=1 j=1 i=

=
]
no~ =
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we obtain
t M1 ot o, ot o
L I (xi. -x)" = I ni(xi -x)"+ I I (xi, - xi)
i=1 j=1 9 i=1 i=1 3=1 9

or SST = SSA + SSE. This corresponds to Eq. (11.2.4) and reduces to
that expression if n, =nfori=1, 2, ..., t.

The appropriate analysis of variance table in the case of unequal
sample sizes is given in Table 11.2.5. In this case the test of
HO: o = 0, i=1, 2, ..., t is given by the rejection region
F>F(t -1, N - t)a, where the calculated statistic F = MSA/EMS, as
before. Again the mean square for error is an unbiased estimate of
02 whether HO is true or not.

As an example, assume the following are final exam scores of

students from three different colleges in a statistics course.

College Scores

Agriculture 112, 76, 124, 64, 132, 112, 88, 100, 80
Liberal Arts 84, 100, 56, 108, 96, 64, 92, 124, 136, 132
Home Economics 80, 96, 96, 92, 116

Here we see that nl =9, n, = 10, and n3 = 5. Using the program
ONEWAY, the analysis of variance table is constructed in Table 11.2.6.

The calculated F = 0,0327 and F(2,21) = 3.49. Hence there is

0.05
no statistical indication of difference in performance due to college

of registration.

Table 11.2.5 ANOVA Table One-Way Classification (Unequal ni)

Source 38 d.f. MS EMS

2, ¢t 2
Treatments ~ S8A t -1  SSA/(t -1) 0%+ I/ na”/(t-1)
Error SSE N-t SSE/(N-t) o

Total SST N-1
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Table 11.2.6  ANOVA Table

Source S8 d.f. MS EMS

Colleges 35.733 2 17.8667 @ + 13 n.0.°/2
& : ‘ i=1741

Error 11481.6 21 546.7428  o°

Total 11517.333 23

11.2.2 Comparisons or Contrasts

It is often the case, as we have noted above, that in a statistical
analysis using the one-way classification we wish to find out more
information about treatment means than just deciding to reject or
accept the hypothesis in Eg. (11.2.1). We often desire to compare
two particular treatment means or one treatment mean with all the
others. Such comparisons can be expressed as statistical hypotheses
of the form

t t
H.: ‘Z Ay, =0 where 'Z Ai =0 (11.2.6)
i=1
Such a linear combination of the My is called a comparison or contrast.
Consider the first example of Sec. 11.2.1. Suppose we wish to compare
the grade averages of Juniors and seniors. We test H.: u_ - u, = 0

0 3

versus H._: u3 - uh # 0. Evidence for H, suggests the GPAs of juniors

and seniirs differ. The contrast Wy (t2 + My + uh)/3 can be used
to compare freshman with upper classmen.

Let us consider the general case of testing the null hypothesis
that a contrast is zero, i.e., Eq. (11.2.6). The same linear combi-

nation of the observed means Ei’ L= Zt A.X. is an unbiased esti-

i=1"i"1
mate of the contrast. Assuming an equal number of observations for
each treatment, we see that Var(L) = (Gz/n) Z§=1Ai2. It is natural

to consider the standardized statistic (L - E(L))//Var(L). Under
Eg. (11.2.6), E(L) = 0 and Z = L/¥Var(L) would have the standard

normal distribution. However, 02 is not known and is replaced by
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ONEWAY

00100 REM DESCRIPTION: COMPUTES THE ANALYSIS OF VARIANCE TABLE
00110 REMFOR A ONE-WAY COMPLETELY KANDOMIZED DESIGN,

00120 REM INSTRUCTION: ENTER DATA IN LINE 900 AND FOLLOWING.
00130 REM ENTER DATA IN THE FOLLOWING ORDER:

00140 REM 1) THE TOTAL NUMBER OF OBSERVATIONS

00150 REM 2) M, THE NUMBER OF DIFFERENT TREATMENTS

00160 REM 3) N(1),...,N(M), WHERE N(J) IF THE NUMBER OF

00170 REM OBSERVATIONS ON TREATMENT J,

00180 REM &) AND THEN, THE OBSERVATIONS THEMSELVES, FIRST FOR
00190 REM TREATMENT 1) THEN TREATMENT 2, ETC.

00200 REM IF ANY N(J)> 20, CHANGE THE DIMS IN LINE 240

00210 REM IF M > 10,CHANGE THE DIMS IN LINE 240.

00220 REM SAMPLE DATA IS IN LINES

00230 REM 900 THROUGH 903

00240 DIM X(20,10),N(10),T(10),S(10)

00250 READ A,M

00260 MAT S = ZER
00270 LET U =0
00272 LET R = 0
00274 LET V = 0
00280 MAT T = ZER
00290 FOR I = 1 TOo #

00300 READ N(I)

00310 NEXT I

00320 FOR J =1 TO M

00330 FOR I = 1 TO N(J)

00340 READ X(I,J)

00350 NEXT I

00360 NEXT J -

00370 FOR J =1 TO M

00380 FOR I =1 TO N(J)

00390 LET T(J)=T(J)+X(1,J)

00410 LET $(J)=S(J)+X(I,J)*X(I,J)
00420 NEXT I
00430 LET U
00440 LET R
00450 LET V
00460 NEXT J

U+ T(J)
R+ S(J)
VH+T (J)XT(J)/N(J)

Houwon

00470 LET C = U*U/A
00480 LET W = V-C
00490 LET E = R~V

00500 PRINT “ANOVA TABLE"

00510 PRINT

00520 PRINT * ITEM "

00530 PRINT “CRAND TOTAL","S$S=",R,"DF="",A

00540 PRINT "GRAND MEAN","SS=*,C,"DF=","1"

00550 PRINT "TREATMENTS","SS=",W,"DF=" ,M~1,"MEAN SQUARE=",W/(M-1)
00560 PRINT " ERROR ML,US88=" E,"DF="",A-M, "MEAN SQUARE=",E/(A-M)
00570 LET F = W/(M=-1)/(E/(A=-M))

00580 PRINT

00590 PRINT "“F=",F,"ON",M=1,"AND" ,A-M,"DEGREES" ,"OF FREEDOM"
00900 DATA 20,4,5,5,5,5

00901 DATA 3.64,2,79,3.21,2.98,3.,48

00902 DATA 4.23,3.53,3.62,4,98,3.50

00903 DATA 4.1,3.87,3.87,4429,4.04,4,5,4.24,4,36,3.77,4,24

01000 END

*


https://36,3.77,4.24
https://4.23,3.53,3.62,4.98,3.50
https://3.64,2.79,3.21,2.98,3.48

11.2 Single- Factor Analysis of lariance

RUN
ANOVA TABLE

ITEM
GRAND TOTAL
GRAND MEAN
TREATMENTS
MEAN SQUARE=

ERROR
MEAN SQUARE=

16

SS8=

SS=

SS=
0.97241

SS=
0.15852

6.13443
DEGREES

303.754
298,301
2.91724

2.53628

ON
OF FREEDONM

401

AND
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the MSE an unbiased estimate. It is true that the resulting statis-
tic has Student's t distribution with t{(n - 1) degrees of freedom.

Hence

L
Y (usE/a) I°_2.2

i=1"1

t =

is computed. The rejection regions are the obvious ones with

>
el > 472, ¢ (a1
significance level .

) the appropriate region for a two-sided test with

Let us compare the grade averages of juniors and seniors using
the data given in Sec. 11.2.1. The GPA for five juniors was 4.03
and for five seniors was 4.22. From Table 11.2.4 we find the mean

square for error to be 0.1585. Hence

= 4,03 - 4.22 - =0.19 _ -0.75
> > > > 0.2518
/ (0.1585/5)(0% + 02 + 12 + (-1)?)
As t0.025,16 = 2.12 there is no significant difference at the 5%

level of significance. Suppose we wish to compare freshmen with all

other classes. We test H.: ul - (u2 + u3 + uh)/3 = Q0 versus

0
Hl: Wy o= (u2 + My + “h)/3 < 0. Here we obtain
4 = 3:22 = (3.97 + L.03 + 4.22)/3 _ _4.13
/(0.1585/5)(L/3)
Against Hl we reject HO if t < _t0.05,16 = -1.746. The statistical

evidence suggests that upperclassmen have higher GPAs on the average.
To obtain a confidence interval for a contrast we proceed as

previously and find

t
rvx o+ VEE §a %

=E n 0 a/2,t{n~-1)

oot

i
to be the endpoints for a (1 - 0.)100% confidence interval for the

corresponding contrast. The confidence interval for (u2 + u3 + uh)/3

- My in the example would be
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0.85 i_,/94l%§§-%~2.12 or 0.85 + 0.436

with confidence coefficient 0.95.
Finally if we have an unequal number of observations on a treat-
ment, the estimate of a contrast ZF_ AW, is still L = Z?_ X, .
o % 5 i=1"1"1 i=1"1i"1
However as Var(L) = ¢ Zi=lxi /ni the appropriate t statistic to
test Eq. (11.2.1) is

L

t 2
MSE Zi=lxi /ni

The correct degrees of freedom for the test is N -~ t. Similarly a

(1 - ©)100% confidence interval for the contrast becomes

1
n, t0./2,N—t

Problems 11.2

1. Consider the one-way classification model for which Xij = by +
€., 1=1,2, uayt3 5=1,2, .., n, with e,, ~ NID(0,0°).
b £ 1J

(a) Verify that by defining w = E/_ W/t and a; = W - W, that
t =
Zi=lai = 0.

(b) Prove that the identity (11.2.4) is correct.

2. In the model of Problem 11.2.1 prove
(a) E(SSE) = 02(n - 1)t.
(b) E(SSA) = 0°(t - 1) + n Z§=1ai
Note in part (b) that x,, - &, - Xx are NTD(0,0°/n).

2

3. Assume t = 2 in the model defined in Problem 11.2.1. Show the

following:
_ = =2
(a) sSA = f(xl - x2) /2.
(b) MSE = 0%, the pooled estimate of the common variance defined

in Sec. 8.3.
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(¢c) MSA/MSE =TF = t2, where t is the test statistic for the

two-sample test defined in Sec. 8.3 with n, = n,

(d) Using the result stated in Problem 10.2.10 concerning the

= n.

relationship between the t and F distributions, show that

the t test for HO: ul = u2 versus Hl: ul # u2 gives the
same result as the F test in the one-way classification

for t = 2 treatments and nl = n2 = n.
Exercises 11.2
the program ONEWAY as needed.

Current expenditures per pupil in six eastern, southern, and

midwestern states are given below. Is there statistical evidence

of differential expenditure in these regions (o = 0.05)%
East Expenditure($) South Expenditure($)
Conneticut 1241 Alabama 590
Maine 840 Florida 885
Massachusetts 1090 Georgia 782
New Jersey 129k Mississippi 689
New York 1584 North Carolina 802
Rhode Island 1113 South Carolina T51
Midwest Expenditure($)

Illinois 1234

Indiana 855

Iowa 1055

Kansas 969

Missouri 861

Nebraska 953

Source: The World Almanac 1975, data for 1972-1973.

In the previous question state, using the appropriate parameters,

the following hypotheses:
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(a) There is no difference in expenditure between eastern and
midwestern states.

(b) There is no difference between southern and midwestern
states.

(¢) There is no difference between southern states and the other
areas.

Test each of these hypothesis at level of significance o = 0.05.

3. It is argued by a large department at a university that its class
sizes in its senior undergraduate courses is increasing over time.
The following are the class sizes of five randomly selected senior

classes in each of four years.

Year Class sizes

197k 38, 19, 2k, 52, 23
1975 30, 36, 15, 54, 24
1976 4, 21, 12, 63, 29
1977 31, 35, 20, 58, 28

(a) Use the analysis of variance technique to test the null
hypothesis of equal average class size in these U years
(¢ = 0.05).

(b) Use the appropriate contrast to test the hypothesis that
class sizes in 1974 and 1977 are the same on the average

versus the alternative that they have increased.

4. A study is made to compare the costs of elementary calculus texts
published by companies A, B, and C. Company A publishes three
such texts, Company B publishes four, and Company C publishes

five. The following are the retail prices.
Company Prices

10.95, 12.95, 9.95
12.95, 14.95, 16.00, 8.95
10.95, 13.95, 15.95, 16.95, 18.95

(a) Test the null hypothesis of equal average price (o = 0.05).

(b) Test HO: (uA + uB)/2 = g and find a 95% confidence inter-

val for Mo - (uA + uB)/2.
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5. It is argued by some that the Central Division of the National
Football Conference is a low-scoring one. Data are given below

for the total points scored by each team in the NFC in 1973.

Eastern Division Points Western Division Points
Dallas 382 Los Angeles 388
Washington 325 Atlanta 318
Philadelphia 310 San Francisco 262
St. Louis 286 New Orleans 163
New York 226

Central Division Points

Minnesota 296

Detroit 271

Green Bay 202

Chicago 195

(a) Test the hypothesis of equal scoring for each of the three
divisions {a = 0.05).

(b) Test the hypothesis that teams in the Central Division score
as well as teams in the other divisions against the alterna-

tive of lower scoring {a = 0.05).

11.3 THE RANDOMIZED BLOCK DESIGN

Often in statistics it is of interest to compare the effect of treat-
ments, where we assume that we make observations on all the treatments
within homogeneous groups called blocks. For example, we may wish

to compare five institutions of higher education with regard to the
compensation of their faculty. We might then observe the following
table giving the average compensation at the five institutions in
thousands of dollars. Clearly it would be inappropriate to compare
the level of compensation of instructors at one institution with the
level of compensation of professors at another. In this case the
blocks are the instructors, assistant professors, associate professors,

and professors.
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Institution
1 2 3 4 5
Instructors 11.8 11.8 12.4 19.1 11.6
Assistant professors 16.0 15.9 15.1 23.4 15.3
Associate professors 19.2 19.0 20.9 30.0 17.8
Professors 27.1 24.8 29.1 37.4 22.5

The observations in the general randomized block design in which

we have t reatements and b blocks can be modeled as follows:

Xjg =W +ag + Byt e 1=21,2, veey t33=1,2, «uus b

t b

Za, =0 LB, =0 &y ~ NID(0,0

i=1 j=1 Y J
Here Xij represents the observation of the ith treatment in the jth
block. The expectation E(Xij) =u + ai + Bj. Thus the expectation
is assumed to be the sum of an overall effect, an effect due to the
treatment i and an effect due to the block j. We denote the actual

observations as xij and make the following definitions:

t b

o’

X s

_ X5 ; _ X5 _ t 5
x= L L - Xj,0% L35 %y I
i=1 j=1 J=1 i=]1

for the overall mean, the ith treatment mean, and the Jth block mean.
In general we are interested in testing hypotheses about the treatment
effects. Thus, as in the one-way classification, we wish to test
HO: ai =0,1=1, 2, ..., t and to make inference about contrasts
of the form ZF A0, .
i=1"i"1
The method of proceeding is analogous to the one-way classifi-

cation. We consider the identity

-x=(%x -+ (x.-%)+ - - +
Xg = X (x;, - x) (X-j x) (xij Xj. = X

L

which again results from the mimicking the model equation. Squaring

and summing first on j and then on i yields
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t b t b
I I(x, -0=b L(x, -0+t -0°
i=1 j=1 9 i=1 3=1
t b _ o
+ I Z(Xi'-xi-_x-+x)
j=1 g=1 Y J
or

SST = 88A + SSB + SSE

Again this is read "the total sum of squares equals the sum of squares
for treatments plus the sum of squares for.blocks plus the sum of
squares for error."

This information is summarized in an analysis of variance table
given in Table 11.3.1. The appropriate expected mean squares have
been found. Note that E(MSA) = o° + b E§=1“i2/(t - 1) involves o°
and the treatment effects only and not the block effects. This makes
possible again a test of HO: ai =0,1=1,2, «.., t using F =
MSA/MSE as the appropriate statistic. The rejection region for an
o level test is of the form F > F (¢t - 1, (t -~ 1)(b - 1))a.

Let us consider the compensation data presented above for the
faculties at five universities. The program RBLOCK performs the
required analysis for the randomized block design. In Table 11.3.2
we present the analysis of variance table for the example data. The

F test for the hypothesis of equal institutional compensation is

Table 11.3.1 ANOVA Table for the Randomized Block Design

Source of
Variation SS a.f. MS EMS

2 t 2
Treatments SSA t - 1 SSA/(t-1) "+ b Zi=lai /(t-1)
Blocks SSB b -1 SSB/ (b-1) o+t Z?=16j2/(b—l)
Error SSE  (t-1)(b~1) SSE/(t-1)(b-1) o°

Total 88T bt -1
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RBLOCK

00010 REM DESCRIPTION: COMPUTES THE ANALYSIS OF VARIANCE TABLE
00020 REM FOR A RANDOMIZED BLOCK DESIGN.

00030 REM INSTRUCTIONS: ENTER DATA IN LINE 900 AND FOLLOWINC
00040 REM ENTER DATA IN THE FOLLOWING ORDER:

00050 REM 1) B, THE NUMBER OF BLOCKS

00060 REM 2) T, THE NUMBER OF TREATMENTS

00070 REM 3) THE DATA THEMSELVES BY TREATMENTS, 1.E. FIRST 0OBS ON
00080 REM TREATMENT 1, BLOCKS 1,2,...,B, THEN TREATMENT 2,

00090 REM BLOCKS 1,2,...,B, ETC.

00095 REM IF B > 10 OR T >10 CHANCE DIMS IN LINE 100

00098 REM SAMPLE DATA IS IN LINES 900-902

00100 DIM X(10,10),V(10),W(10),S(10)

00110 READ B,T

00120 MAT X = ZER

00130 MAT V = ZER
00140 MAT S = ZER
00150 MAT W = ZER

00160 FOR J= | TO T

00170 FOR I = 1 TO 8

00180 READ X(I,J)

00190 NE¥ ' I

00200 NEXT J

00210 FOR J = 1 TO T

00220 FOR I = 1 TO 8

00230 LET V(J) = V(J)+X(I,J)

00240 LET S(J) = S(J)+X(I,J)*X(I,J)
00250 NEXT I

00260 LET & = A +V(J)

00270 LET E = E+S(J)

00275 LET C = C+V(J)*V(J)/B

00280 NEXT J

00290 FOR I = 1 TO 8

00300 FOR J =1 TO T

00310 LET W(I)=W(I)+X(I,J)

00320 NEXT J

00330 LET D = D +W(I)*W(I)/T

00340 NEXT I

00350 LET Cl = AXA/(B*T)

00360 LET C = C - C1

00370 LET D = D -~ Cl

00380 LET Tl E - Cl

00390 LET El = T1 -~ C - D

[}

00400 PRINT “ ANOVA TABLE"

00410 PRINT * SOURCE *

00420 PRINT “TREATMENTS","SS=",C,"DF=",T-1,"MS=",C/(T=1)

00430 PRINT "BLOCKS 4,t8S=" D, " DF=",B=1,"MS=",D/(B-1)

00440 PRINT * ERROR MLHSS=" Bl "DF=", (T-1)*(B=1),"M5=",ELl/((T-1)%(B=1))

00450 PRINT “TOTAL(CORR)","S$=",Tl,"DF=",B*xT~1

00460 PRINT “F FOR TREATMTS=",C/(T=-1)/(ELl/((T=-1)*(B=1)))

00470 PRINT “DOF ARE", T-l, " AND",(T~1)*(B~1)

00900 DATA 4,5

00901 DATA 11.8,16.0,19,2,27,1,11,8,15.,9,19,0,24.8,12.4,15,1,20.9,29.1
00902 DATA 19.1,23,4,30.0,37.4,11.6,15.3,17.8,22.5

01000 END
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RUN
ANOVA TABLE
SOURCE

TREATMENTS SS= 292,788 DF= 4
MS= 73,197
BLOCKS S8= 606.758 DF= 3
MS= 2024253

ERROR S§= 27.0919 DF= 12
MS= 2,25766
TOTAL(CORR) S8= 926,638 DF= 19

F FOR TREATMTS= 32,4216
DOF ARE 4 AND 12
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Table 11.3.2 ANOVA Table

Source SS d.f. MS EMS
Institutions 292.788 4 73.197  o°+ L3 ai2
Ranks 606.758 3 202.253  o° + 5L 832/3
Error © o 27.092 12 @

Total 926.638 19

based on F = MSA/MSE = 73.197/2.258 = 32.42. As the critical value

1?‘(&,]_2)0.05
tion is overwhelming. The F test for blocks would clearly also be

= 3.26, the evidence for differing levels of compensa-

significant at the 5% level. This test is not important however
because we expect that there will be different levels of compensa-
tion for the professorial ranks. The fact that the model permits a
test of treatment differences in the face of assumed block differ-
ences makes it a useful design in the analysis of variance.

If we consider a test of contrast in the randomized block design
of form

t t

H. : izlxiai 0 izlxi 0 (11.3.1)
we proceed generally as before. The statistic L = ZF A.X. has

t 2, vt o, 2 =171
expectation Zi=1xiai and Var(L) = (o /b)2i=l>\i . Thus

L

t =

Josem) b2 2)

i=1"1

has Student's distribution with (t - 1)(b - 1) degrees of freedom
under the hypothesis in Eq. (11.3.1). Thus if we wish to test the

hypothesis that the contrast o, - o, = 0, we obtain

3 2
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_ 19.375 - 17.875

t = 1.411
¢2.258z2/h)
= 2, . . . " . .
As t0.025,l2 2.179 institutions 2 and 3 cannot be sald to differ

with regard to faculty compensation at the 5% level.

Exercises 11.3
Use the program RBLOCK as required.

1. Three publishers are to be compared with regard to cost of math-
ematics and statistics texts. The costs of books in different

fields for each publisher is given below.

Publisher
Text A B c
Calculus 12.95 19.25 15.95
Elementary statistics 7.95 10.95 10.95
Time series 12.95 20.50 12.95
Statistical methods 16.95 19.00 15.00
Group theory 9.95 12.00 11.00

(a) Do the data indicate a true difference in the cost of books
produced by the three publishers? Carry out a test at level
a = 0.05.

(b) The first publisher is not located in the United States and
the other two are. Test the null hypothesis that the cost
of books published by the foreign publisher does not differ
from the U. S. publishers (o = 0.05).

2. The average monthly payment to various categories of individuals

for assistance is given below for five states for December 1973.

State
Group Alabama Georgia Massachusetts Utah Wisconsin
0ld age 72.92  58.56 121.21 46.73 89.49
Blind 102.54  75.36 156.53 87.19 92.63
Disabled 78.88  69.25 153.61 82.45 103.08
AFDC 21.72  32.22 95.93 61.86 95.42
General assistance 12.50 28.k40 106.149 73.01 56.66

Source: The World Almanac and Book of Facts, 1975.
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(a)

Do the data suggest a difference in the level of assistance
payments among these states (a = 0.05).
Compare the two southern states with the others (o = 0.05).

Compare Massachusetts with all others (a = 0.05).



APPENDIX A: THE BASIC LANGUAGE

A.1 AN INTRODUCTION TO BASIC

BASIC (beginner's all-purpose symbolic instruction code) is a
computer programming language developed initially at Dartmouth College
in 1963 and 1964 by Professors John G. Kemeny and Thomas E. Kurtz
(1972). It was designed to be used in the time-sharing mode, i.e.,
by users located at teletype terminals remote from the central
computer. Such a system permits the apparent simultaneous communi-
cation by many users with the computer. The language was developed
in order to permit easy access to the power of the digital computer
by persons without advanced training in computer technology. Hence
the grammar, format, and statements in the language are quite simple
and easy to learn. The language has proved to be quite popular for
these reasons and is now widely used.

It will be assumed that the reader has some familiarity with a
programming language. However, we review here certain elementary

definitions:

DEFINITION A.1.1. A computer program is a 1list of instructions,
which when executed causes the computer to perform a sequence of

operations in a given order.

414
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DEFINITION A.1.2. A statement is one line in a program, requiring

the computer to take a specific action.

DEFINITION A.1.3. A variable, written in BASIC as a single letter
(e.g., T) or a single letter followed by a digit (e.g., T2), can
take on various values. A variable is thus similar to a variable in

algebra.

DEFINITION A.1.4. A constant is a fixed numerical value.

DEFINITION A.1.5. A symbolic arithmetic operation, for example, *
causes two variables, two constants, or a variable and a constant to
be combined arithmetically. For example, A%B means to multiply A
by B.

To illustrate these definitions and some elementary BASIC gram-

mar, consider the following simple program in BASIC.

10 PRINT "N","A"
20 LET N=1

30 LET A=(1+1/N)*N
L0 PRINT N,A

50 LET N=N+1

60 IF N>10 THEN 80
70 GO TO 30

80 END

There are several properties of this simple program which are common
to all BASIC programs. First, all statements in the program are
numbered. They will be executed by the computer according to in-
creasing statement numbers. Secondly, the last statement is END,
which is true in all BASIC programs. We see that the variables N

and A have given values in the program. The constant 1 has been
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used in statements 20, 30, and 50. Finally the algebraic operators
+, /, and * standing for addition, division, and exponentiation,
respectively, have been employed.

Before making a systematic study of the types of statements
used in BASIC, let us consider what the preceding program achieves.
When the program is given the command RUN, the following output
results

N A
2

2.25
2.370370
2.441406
2.48832
2.521626
2.546500
2.565785
2.581174
2.593742

O o =N ON U FE oW N

]
(@]

The program has computed (1 + 1/N)" for N =1, 2, ..., 10. This
sequence converges to e = 2.718282 as N > », (Note that the conver-
gence is slow, so that this is not an efficient method of approxi-
mating e.)

Observing the statements in the program in order, we see that
the PRINT statement using quotation marks causes the printing of the
letters N and A. The LET statments in 20 and 30 assign numerical
values to the variables N and A. The PRINT statement in L0 causes
the current values of N and A to be printed. The statement LET N =
N + 1 shows that the equal sign should be interpreted as a replace-
ment. The variable N is replaced by the current value of N plus 1.
The IF ... THEN statement in 60 causes the statement 80 END to be
executed if N exceeds 10. If N is less or equal to 10, control passes
to statement T70. This GO TO statement transfers control to state-
ment 30. Note that if statement 60 were omitted, then a never-ending

loop would be created.
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A.2  ELEMENTARY STATEMENTS AND OPERATIONS IN BASIC

The elementary statements in BASIC can be classified into three types:
(1) those causing the computer to receive input or to produce output,
(2) those requiring the computer to perform a calculation, and (3)
those affecting the sequence in which the computer executes state-

ments in a program.

A.2.1 Input and Output Statements

1. The READ...DATA Statements: The READ statement causes a variable
or variables to be assigned a numerical value or values given in a

DATA statement. For example,

10 READ X, Y, Z
100 DATA 5, 9, 17

assigns the variable X the value 5, Y the value 9, and Z the value
17. The READ statement causes the values in DATA statements which
have not been read previously to be assigned to variables. Thus if
the value 5 in statement 100 had already been used as data and the

statement
110 DATA L, 2, 1

followed statement 100, then X would be given the value 9, Y the
value 17, and Z the value L. The READ statement must always be used
with a DATA statement. If a numerical value is not available to be
assigned to a variable, the program will terminate with the state-
ment OUT OF DATA.

2. The INPUT Statement: The INPUT statement causes the computer

to stop executing the program and request the value or values of
variables to be typed in from the terminal. For example, the state-

ments

10 PRINT "WHAT IS YOUR AGE AND WEIGHT?"
20 INPUT A, W

when executed result in the following:
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WHAT IS YOUR AGE AND WEIGHT?
?

The program will not continue until the programmer respons with two
numerical values, e.g., ? 24,160. (The underlined values indicate
that these are provided at the terminal.) Following transmission
of these values the variable A is assigned the value 24 and the

variable W is assigned the value 160.

3. The LET Statement: The LET statement directly assigns a value
to a variable. For example, LET T2 = 3.14159 assigns T2 the indicated

value.

4. The PRINT Statement: The PRINT statement causes either the
printing of the value of a variable, a constant, or some text.

Suppose the program in Sec. A.2.1.2 is completed with

10 PRINT "WHAT IS YOUR AGE AND WEIGHT?"
20 INPUT A, W

30 PRINT A, W

40 END

We have seen that line 10 causes the words in quotation marks to be
printed out. The PRINT statement in line 30 would cause the values
24 and 160 to be printed. The PRINT statement alone causes a line
to be skipped in the output.

A.2.2 Statements Causing a Calculation to be Performed

The symbols in BASIC which are used to perform the elementary arith-

metic operations are indicated below:

Symbol Expression Meaning
+ X+Y Add X to ¥
- X-X Subtract Y from X
X=*Y Multiply X by Y
X Y Divide X by Y
X4+ Y Raise X to power Y
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These symbols may be used to combine variables and constants. The
most common use is in a LET statement in which a variable is given
a value in terms of variables currently assigned values. The arith-
metic operations are allowed only on the right-hand side of the equal

sign. For example, consider
10 LET Z = (Xt2 + Y42)/2

The variable Z is assigned one-half of the sum of the squares of the
values currently assigned to X and Y.

The hierarchy of the operations is exponentiation, multiplica-
tion and division, and addition and subtraction. This means that
exponentiation will be carried out first. Multiplication and divi-
sion follow and will be performed in the order in which the symbols

appear. Addition and subtraction are performed last. As examples,

consider

Expression Value
3%243+1 25
(3%2)43+41 217
244/4 4
/442 0.125
EIT V) 32
(2#3)t2-Lu2 28
24(-2) 0.25
3/h#8 6
3ul-2 10
3#(L-2) 6

The reader should check to see that these expressions are cor-
rectly evaluated. If doubt exists as to how an expression is written,
then sufficient parentheses should be used to ensure that the correct
expression is being computed. Furthermore, it is not allowable to
use two symbolic operators adjacent to one another in an expression.
Hence in writing 3 to the power -4 in BASIC, 34-L4 is not permissible.

The correct expression is 3t{(-L4).
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A.2.3 Statements Controlling the Sequence in Which the Computer
Executes Program Statements
As remarked above, all statements in a BASIC program are numbered.
The statements will be executed by the program in the order of the
statement numbers. There need not be a statement for each number
and, in fact, this is a bad idea, as program corrections will often
involve the insertion of additional statements. It is of fundamental
importance to computing that a program can contain statements which
allow the determination of the order in which statements within the
program are executed. This permits the repetition of steps in a
program by the computer without a repetition of the statements in

the program.

1l. The GO TO Statement: The GO TO statement requires the computer
to break its normal sequence of execution and to execute the state-
ment indicated. In the example program of Sec. A.l, the statement
TO GO TO 30 requires statement 30 to be executed following this
instruction. Thereafter the computer would execute statements in

numerical order following 30.

2. THE IF...THEN... Statement: The IF...THEN... statement can be
thought of as a conditional GO TO statement. If the terms of the
conditional statement are met, then the control passes to the indi-
cated statement. If the terms are not met, the next statement in
numerical order is executed. In line 60 of the program in Sec. A.l

we have
60 IF N > 10 THEN 80

The conditional statement is N > 10. If this condition is met by
the current value of N, then the next statement executed is 80 END.
Otherwise, statement 7O is executed next.

The relational operators which may appear in the conditional

portion of the IF...THEN... statement are as follows:
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Symbol Meaning
= Equal
< Less than
> Greater than
<= Less or equal
>= Greater or equal
<> Unequal

3. The FOR..., NEXT... Statements: The ability of the digital
computer to perform repetitive calculations very swiftly and accurately
is one of the major factors in its widespread use. The statements
which permit the repeated execution of a certain sequence of state-
ments are the FOR and NEXT statements. We illustrate these in the

following program.

10 PRINT "APPROXIMATION,"NEXT TERM"

20 READ N
30 LET T =1
40 IET S = 0O
50 FOR I =1 TO N
60 LET S = S+T
70 LET T = T/I
80 PRINT S,T
90 NEXT I
100 DATA 10
110 END

Statements 50 through 90 constitute the FOR...,NEXT... "loop" in this
program. The variable I is set equal to 1 the first time that state-
ment 50 is executed. Statements 60 to 80 are then executed. At
statement 90 if I is less than N, control is returned to statement
50, I is increased by 1, and the loop continued until I = N at state-
ment 90. At this point control passes to the next statement in
numerical order following the NEXT statement.

Let us look at the output from this program.
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Approximation Next term
1 1
2 0.5
2.5 0.166667
2.66667 0.0L16667
2.70833 0.00833333
2.71667 0.00138889
2.71806 0.000198413
2.71825 0.0000248016
2.71828 0.00000275573
2.71828 0.000000275573

It is easy to check that this program computes the Maclaurin expan-

sion approximations to e, that is,
forn=1, 2, ..., 10

It is known that the error is less than 3/n! for such approximation.
Thus we see that for n = 10, the error is less than 3(0.000000275573)
= (0.000000826719. This program does provide an efficient method of
approximating the constant e, in contrast with the program of Sec.
A.1.

The FOR..., NEXT... statements provide greater flexibility in
looping than has been indicated. The step size for the "stepping
variable" I was 1 in the example program. However, this need not

be the case. The statements

10 FOR X = 0.0 TO 1.0 STEP 0.05

L0 NEXT X

cause the loop to be executed 21 times with X taking the values 0.0,
0.05, 0.10, ..., 1.00, successively. This is particularly useful

when it is desired to evaluate and print out the value of an expres-
sion depending upon X over a range of values of X. If the STEP por-

tion of a FOR command is omitted, the step size is assumed to be 1.
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A.3 ADDITIONAL INFORMATION ABOUT BASIC
A.3.1 The REM Statement

In order to make a BASIC program more readable, a remark in English
text may be included at any point in the program. For example, the

statement
5 REM COMPUTES AN APPROXIMATION OF e

might be the first statement of the program in Sec. A.2.3.3. The

computer lgnores remark statements in the execution of a program.

A.3.2 Functions Available in BASIC

There are some functions such as the elementary trigonometric func-
tions (the sine, cosine, and tangent) which are used so frequently
that BASIC provides the means of calculating these functions in a

single statement. For example the program

10 LET X = 1
20 LET Y = EXP(X)
30 PRINT X,Y

Lo END

produces the output
1 2.7182818

The function e* has been evaluated for X = 1.

The following functions are available in BASIC:

Function Mathematical meaning
ABS [xl
ATN Arctan x

(x)

(x)

(x) Cosine x
COT(X) Cotangent x

(X) e*

(x) [x]

(x)

1n x
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SGN(X) -1 if x< 0,1 if x> 0, and 0 if x = 0
SIN(X) Sine x

SQR(X) vx

TAN(X) Tangent x

Such a function has an argument in parentheses which must be either
a constant or a variable whose value is defined. The arguments of

the trigonometric functions are assumed to be in radians.

A.3.3 Subscripted Variables

When it is improtant to have a vector of numbers available for com-
putation the BASIC system allows the definition of a subscripted

variable. Consider the following example:

10 READ N

20 FOR I =1 TO N
30 READ X(I)

40 NEXT I

50 DATA 8

60 DATA 4, 8, 7, 16, 2, 1, 2, 5

This portion of a program will cause the subscripted variable X to
take on the values X(1) = 4, x(2) = 8, X(3) = 7, X(4) = 16, X(5) =
2, X(6) =1, X(7) = 2, and X(8) = 5. These values can then be used
in subsequent calculations, for example, for the mean, variance,
and standard deviation of the N numbers.

A subscripted variable may also have two subscripts. For
example, T(I,J) is a variable which can store an array or table of
values. The first subscript represents the row in the table and the
second subscript represents the column. The loop causing the read-

ing of a table with R rows and C columns would be

10 FORI =1 TOR
20 FOR J = 1 TO C
30 READ T(I,J)

40 NEXT J

50 NEXT I
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Note that the table is read by rows. If the index for a variable
with a single subscript takes on values exceeding 10, or if either
of the indexes exceed 10 for a double subscripted variable, it is
necessary to include a statement giving the maximum index or indexes.

The statement is of form
10 DIM X(100), T(20,20)

The dimension statement DIM may appear at any point in the program.

A.3.4 Definition of Functions

In some programs a certain function, not among those available in
BASIC, is used so frequently that it becomes efficient to define a
new function in the program. This is accomplished by the DEF command.
For example, suppose the calculation of the function f(x) = x + sin x
+ Vxe + 1 1s required repeatedly in a program. We use the following

statement
10 DEF FNF(X) = X + SIN(X) + SQR(X+2+1)

to define a new function FNF. The statement does not require the
calculation of any quantity, and the argument X is a dummy argument.
If the statement

20 Y = FNF(0)

appeared later in the program, then Y would be given the value of
£{0) = 1. The functions which can be defined in a program are of

form FN_, where the last character is a letter, e.g., FNA, FNT, FNW.

A.3.5 The GOSUB and RETURN Statements
We illustrate the use of these statements in the following example:

10 DEF FNF(X) = Xt2

20 READ A,B

30 GOSUB 200

0 PRINT "LOWER ENDPOINT","UPPER ENDPOINT","INTEGRAL APPROX"
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50 PRINT A,B,S

60 GO TO 20

190 REM SUBROUTINE FOR TRAPEZOIDAL RULE
200 LET H = (B-A)/100

210 LET 8 = 0

220 FOR I = 1 TO 99

230 LET S = S + FNF(A+H*I)

240 NEXT I

250 LET S = S + 0.5 # (FNF(A) + FNF(B))
260 LET S = H*S

270 RETURN

280 DATA 0,1

290 DATA 1,2

300 DATA 2,3

310 END

The effect of the GOSUB statement is to transfer control to the
statement indicated in the GOSUB command. In this case the state-
ments in lines 200 through 260 carry out an approximate integration
of the function FNF(X) on the interval with endpoints given by A
and B, using the trapezoidal rule (with 100 subintervals). When the
statement 270 RETURN is encountered, control is returned to the
statement immediately following the GOSUB statement. 1In the example
this would be the PRINT statement in line 4O.

This progrem computes approximations to the integral of x2 on
the intervals [0, 11, [1, 2], and [2, 3]. The values obtained from
a RUN of the program were 0.33335, 2.33335, and 6.33335. These are
approximations of 1/3, 7/3, and 19/3, the exact values. It is clear
that a simple change of line 10 would allow approximate integration
of other functions. The GOSUB... RETURN statements are useful when
a particular algorithm is to be used frequently in the program. The
values of any variables in the subroutine portion of the program
must either have been assigned in the main program itself or be

assigned in the subroutine.
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Table B.I Cumulative Normal Distribution®

2
F (z) = I —;—e_z /2dz

Z = Jor

.00 .01 .02 .03 Lok .05 .06 .07 .08 .09

“ e s e e

.

.

FWNOHO VOO0 FWHHFO VOI0W FWNRNRFO WVWOIO0W Fwhro

Wwwww PPOPPL PPPPY EEERE PR PR

L5000 | .5040 | .5080 |.5120 | .5160 |.5199 | .5239 {.5279 |.5319 |.5359
L5398 | L5438 | LS78 | .5517 | .5557 |.5596 | .5636 |.5675 |.571+ |.5753
L5793 | .5832 | .5871 |.5910 | .5948 |.5987 | .6026 |.606h |.6103 |.6141
L6179 | .6217 | .6255 | .6293 | .6331 |.6368 | .6406 |.644k3 |.6480 |.6517
L6554 | .6501 | .6628 | .6664 | .6TO0 |.6736 | .67T2 |.6808 |.684k |.6879

.6915 |.6950 | .6985 |.7019 |.70%4 |.7088 |.7123 |.T7157 |.T7190 1.722k
L7257 | .7291 | .732h | .7357 | .7389 |.722 | .7hsh .78 L7517 |.TSH9
L7580 | L7611 | L7642 |.7673 | .T7TOM {7734 | .776L | .79+ [ .7823 |.7852
L7881 1.7910 | .7939 |.7967 |.7995 |.8023 |.8051 |.8078 |.8106 |.8133
.8159 |.8186 | .8212 |.8238 | .826L4 |.8289 |.8315 |.83:0 |.8365 |.8389

L8113 L8438 | .81 | .8485 | .8508 |.8531 |.859%% |.8577 |.8599 !|.8621
.8643 | .8665 | .8686 |.8708 |.8729 |.8749 |.8770 |.8790 |.8810 |.8830
.88hg | .8869 | .8888 |.8907 |.8925 |.89uhk | .8962 |.8980 |.8997 |.9015
L9032 | .9049 | .,9066 }.9082 |.9099 |.9115 |.9131 |.9147 |.9162 |.9177
L9192 [.9207 | .9222 |.9236 |.9251 |.9265 |.9279 |.9292 |.9306 |.9319

.9332 |.9345 | .9357 |.9370 |.9382 |.939k |.Gh06 | .9418 |.9k29 |.9k1
LOh52 1L ok63 | Lok | GhBL | k95 1.9505 |.9515 | .9525 |.9535 |.9%H5
L9554 1.956k 1.9573 |.9582 1.9591 |.9599 |.9608 | .9616 |.9%25 |.9%33
L1 .96k | 9656 | . 966k | .96T1 |.9678 |.9686 | .9693 |.9699 |.9706
L9713 .9719 | .9726 |.9732 |.97138 |.97hk |.9750 | .97%6 |.9761 |.9767

L9772 |.9718 |.9783 |.9188 [.9793 [.9798 {.9803 | .9808 |.9812 |.9817
.9821 |.9826 |.9830 |.983% |.9838 |[.98k2 |.9846 | .9850 |.9854+ }.9857
L9861 |.986h | .9868 |.9871 |.9875 [.9878 |.9881 | .9884 |.9887 }.9890
.9893 |.9896 |.9898 |.9901 |.g90k |.9906 |.9909 | .9911 |.9913 |.9910
09918 |.9920 |.9922 |.9925 }.9927 1.9929 {.9931 | .9932 }.993+ |.9936

09938 | .9%0 |.99k1 |.9943 |.99k5 |.9ou6 |.9948 | .99%9 |.9951 |.9952
29953 1.9955 |.99%6 |.9957 [.9959 |.9960 |.9961 | .99%62 |.9963 |.99%6M4
L9965 1.9966 |.9967 |.99%68 |.99%9 |.9970 |.9971 | .9972 |.9973 |.997%
L9971+ 1.9975 |.9916 |.9977 |.9977 {.9918 |.9979 | .9979 |.9980 |.9981
L9981 |.9982 |[.9982 |.9983 |.998% |.998% [.9985 | .9985 |.9986 |.9986

L9987 1.9987 |.9987 |.9988 |.9988 |.9989 [.9989 | .9989 |.9990 |.9990
29990 1.9991 |.9991 [.999L |.9992 |[.9992 |.9992 | .9992 |.9993 |.9993
L9993 1.9993 |.999% |.999% |.999k |.999k [.999% | .9995 |.9995 |.9995
L9995 1.9995 |.9995 |.9996 [.9996 |.999%6 [.999% | .999% |.9996 {.9997
L9997 1.9997 |.9997 |.9997 [.9997 [-9997 |.9997 | 9997 1{.9997 |.9998

&pdapted from Table 1 of E. S. Pearson and H. 0. Hartley (eds.)
(1970), Biometrika Tables for Statisticians, Vol. 1, 3rd Ed.,
Cambridge University Press, Cambridge, England, with permission of
the Biometrika Trustees.
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Table B.IT  Student's t Distribution®

An entry in the table gives the area or probability P(t > ta V) = a,

b
where t has a Student's t distribution with v = degrees of freedom.

[¢] Yo,y

a
ﬁ§\\ .10 .05 .025 .01 . 005
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4,303 6.965 9.925
3 1.638 2.353 3.182 4,541 5,841
L 1.533 2.132 2,776 3. 747 L, 604
5 1.476 2,015 2,571 3.365 L, o032
6 1,440 1.943 2, bk 3,143 3.707
7 1.415 1.895 2,365 2.998 3,499
8 1.397 1.860 2,306 2.8% 3.355
9 1.383 1.833 2,262 2.821 3.250
10 1.372 1.812 2,228 2,76k 3.169
11 1.363 1.79% 2.201 2,718 3.106
12 1.3%6 1.782 2.179 2.681 3.055
13 1.350 1.771 2,160 2,650 3.012
14 1.345 1.761 2,145 2,624 2.977
15 1.3%1 1.753 2,131 2,602 2,947
16 1.337 1. 746 2,120 2.583 2.921
17 1.333 1.740 2.110 2,567 2.898
18 1.330 1,734 2,101 2,552 2.878
19 1.328 1.729 2,093 2,539 2.861
20 1.325 1.725 2.086 2,528 2,845
21 1.323 1.721 2,080 2,518 2.831
20 1.321 1.717 2,07k 2. 508 2,819
23 1.319 1. 71k 2,069 2.500 2,807
2h 1.318 1.711 2, 06k 2.hoe 2.797
25 1.315 1.708 2,060 2,485 2.787
26 1.315 1.706 2.0%6 2.479 2.779
27 1,314 1.703 2.052 2,473 2.771
28 1.313 1. 702 2.048 2.467 2.763
29 1.311 1.699 2.045 2,462 2.756
30 1.310 1.697 2,082 2,b57 2.750
Lo 1,303 1,684 2,021 2,423 2,704
60 1.29% 1.671 2.000 2.390 2,660
120 1.289 1.658 1.980 2.3%8 2.617
® 1.282 1.645 1.90 2.326 2.576

&From Table III of Fisher and Yates, Statistical Tables for Biological
Agricultural and Medical Research, published by Longman Group, Ltd.,
London, 197k. (Previously published by Oliver and Bond, Edinburgh)
with permission of the authors and publishers.
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Table B.III

The x> Distribution®

APPENDIX B:

Tables

An entry in the table gives the area or probability P(X2 > Xza V) = q,
3

where X2 has a chi-square distribution with v

= degrees of freedom.

° Xav
" g 0.995 0.990 0.975 0.950 0.050 0.025 0.010 0.005
11 0.0000393 0.0001571 0.0009821 0.0039321 3.84146 5.02389 6.63490 7.879%4k4
21 0.0100251 0.0201007 0.050635% 0.102587 5.99147  7.37776  9.2103% 10.5966
3] 0.0717212 0.114832 0.215795 0.351846 7.81473  9.3u840 11.3449 12.8381
L1 0.206990 0.297110 0.4L8k19  0,710721 9.48773 11.1433 13.2767 14,8602
51 0.411740 0.554300 0.831211 1.14s476 11,0705 12.8325 15.0863 16,7496
61 0.675727 0.872085 1.237347 1.63539 12.5916 14, 4hoh  16.8119 18.5476
T 0.989265 1.239043  1.68987 2.16735 14,0671 16,0128 18.4753  20.2777
8{ 1.3:4k19 1.646482 2,17973 2. 73264 15.5073 17.5346 20,0902 21,9550
9] 1.734926 2.087912 2.70039 3.32511 16.9190 19.0228 21,6660 23,5893
10} 2.15585  2.55821 3, 24697 3.94030 18.3070 20.4831 23,2093 25.1882
11} 2.60321 3.05347 3.81575 L, 57481 19.6751 21,9200 24,7250 26.7569
12 3.07382 3.57056 4. 40379 5. 22603 21,0261 23.3367 26.2170 28.2995
13} 3.56503 4, 10691 5. 00874 5.89186 22.3621 2Lk,735% 27.6883 29,8194
14} 4, 07468 4, 66043 5.62872 6.57063 23.6848 26,1190 29.1413  31.3193
151 k. 60054 5.22935 6.26214 7. 26094 24,9958 27.488%  30.5779 32.8013
16§ 5.14224 5. 81221 6.90766 7.96164 26,2962 28,8454  31.9999  3h4.2672
17} 5.69724 6.40776 7.56418 8.67176 27.5871 30,1910 33.4087 35.7185
181 6.26481 7.01491 8.23075 9. 39046 28.8693 31.5264  34.8053  37.1564
191 6.84398 7.63273 8.90655 10.1170 30.1435 32.8523 36.1908 38.5822
20| 7.43386 8.26040 9.59083  10.8508 31410k 34,1696 37.5662  39.9968
21} 8.03366 8.89720 10.28293 11.5913 32,6705 354789 38.9321 L41.k010
221 8.64272 9.54249  10.9823 12.3380 33,9244 36,7807 L0.289h  L2.7956
23( 9.26042  10.19%7 11.6885 13.0905 35.1725 38,0757 41.638:  L4h. 1813
2kl 9.88623 10.856% 12.%011 13.8:84 36.415  39.3641  42.9798 15,5585
25110.5197 11.5240 13.1197 14,6114 37.6525 L40.6465 Lk, 3141 16,9278
26 [11.1603 12,1981 13.8439 15.3791 38.8852 41,9232 Ls5.6h17 48,2899
27111. 8076 12.8786 k. 5733 16.1513 40,1133  L43.194% 46,9630 L9.64k9
28(12.4613 13.5648 15. 3079 16.9279 41,3372 L4, 4607 L48.2782  50.9933
29413.1211  1k.2%5 16,0471  17.7083 ho,5%69 45,7222 49,5879 52.33%
30113. 7867 14+.9535 16. 7908 18.4906 43,7729 46,9792 50.8922  53.6720
Lo{20.7065 22,1843 24,4331  26.5093 55,7585 59.3417 63.6907 66.7659
50 [27. 9907 29,7067 32,3574 34, 7642 67.5048 T7l.h202  76.1539 T79.4900
60135. 5346 37.4.848 ho.4817 43,1879 79.0819 83.2976 88.379%  91.9517
T043.2752 45,4418 48, 71576 51. 7393 90.5312 95.0231 100.k25 104.215
80}51.1720 53. 5400 57.1532 60. 3915 101.879 106.629 112.329 116,321
9059.1963 6L. 71 65. 6466 69. 1260 113.145 118,136 124,116 128,299
100}67. 3276 70.0648 T, 2219 T7.9295 124,32 129,561 135.807  140.169

a'From The Biometrika Tables for Statisticians, Vol. 1, 3rd Ed.
(E. S. Pearson and H. 0. Hartley, eds.), with permission of the
Biometrika Trustees.
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Table B.IV d-Factors for Wilcoxon Signed Rank Test and Confidence
Intervals for the Median@sb

n d v a” a’ n d it o'’ a’
3 1 .750 .250 Aa25 0 12 8 991 .009 .005
4 1 .875 125 062 9 .988 012 006
5 1 .938 .062 031 14 .958 .042 021
2 875 125 .063 15 .948 .052 026
6 1 .969 031 .016 18 .908 092 .046
2 937 063 .031 19 .890 110 .055
3 .906 094 047 13 10 .992 .008 .004
4 .844 .156 .078 11 .890 .010 .005
7 1 .984 .016 .008 18 .952 .048 024
3 .953 047 016 19 943 .057 .029
4 922 .078 .039 22 .906 094 .047
5 .891 109 .055 23 .890 110 .055
8 1 992 008 004 14 13 991 009 .004
2 .984 016 .008 14 .989 on 005
4 .961 039 020 22 .951 .049 025
5 .945 .055 .027 23 .942 .058 029
6 .922 .078 039 26 .909 091 .045
7 .891 109 055 27 .896 104 .052
9 2 992 .008 004 15 16 .992 .008 004
3 .988 012 .006 17 .990 010 .005
6 961 .039 .020 26 .952 .048 024
7 .945 .055 027 27 945 .055 028
9 902 .098 .049 31 .905 095 .047
10 871 129 .065 32 .893 107 .054
10 4 .990 010 005 16 20 991 .009 005
5 .986 .014 .007 21 .989 o1 006
9 951 .049 024 30 .956 .044 022
10 .936 .064 .032 3N .949 .051 .025
11 816 .084 042 36 807 .093 047
12 .895 105 .063 37 .895 105 052
11 6 .990 010 005 17 24 .991 009 005
7 .986 014 .007 25 989 011 .006
11 .958 .042 .021 35 .955 .045 .022
12 946 .054 027 36 949 0561 .025
14 917 .083 042 42 802 .098 049

15 .898 102 .051 43 .891 109 .054
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Table B.IV (Continued)

18 28 .99 .009 005 22 49 9N 009 005

29 990 010 .005 50 990 010 .005
41 952 .048 .024 66 954 .046 .023
42 946 .054 027 67 .950 .050 .025
48 .801 .099 .049 76 .902 .098 .049
49 .892 .108 .054 77 895 105 .053
19 33 991 .009 005 23 56 .991 .009 .005
34 .989 011 .005 56 990 .010 .005
47 .951 .049 .025 74 952 .048 .024
48 945 .055 .027 75 .948 .052 .026
54 .904 096 .048 84 802 .098 .043
55 896 104 062 85 .895 105 .052
20 38 991 .009 005 24 62 .990 .010 .005
39 .989 011 .005 63 .989 .01 .005
53 952 .048 .024 82 951 .049 .025
54 947 .053 027 83 947 .053 026
61 .903 .097 .049 92 905 .095 .048
62 .895 105 053 93 899 101 .051
pal 43 991 009 005 25 69 .990 .010 .008
44 .990 .010 .005 70 .989 011 .005
59 954 .046 .023 90 952 .048 .024
60 .950 .050 .025 91 .948 052 .026
68 .904 .096 .048 101 .904 096 .048
69 897 103 052 102 .899 101 .051

aFrom Introduction to Statistics: A Fresh Approach. Copyright 1971
by Houghton Mifflin Company. Used by permission of the publisher.

Y = confidence coefficient; a' = (1/2)(1 - y) = one-sided signifi-—
cance level; a" = 2a' = 1 - Yy = two-sided significance level.
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Table B.VI d-Factors for Wilcoxon-Mann-Whitney Test and Confidence
Intervals for the Shift Parameter A

m=3 m=4
7 v & o 7 v o o
7Y = confidence coefficient
;1 N
o = 3(1 =) = one-sided n=3 | 1 .800 .100 .050

significance level 4 1 .8943 .057 .029 17 971 .029 .014

"o e _ . n= . . . E K K
o =2a' =1 -7 = two-sided 2 886 114 057 2 943 057 .029
significance level 3 886 .114 057
n=5 1 .964 036 .018 1 .984 .016 .008
2 .929 071 .036 2 .968 .032 .016
3 .857 .143 .07 3 .837 .063 .032
4 889 .111 .056
n=6 1 976 .024 .012 1 .990 .010 .005
2 852 .048 .024 2 .981 .019 010
3 .905 .095 .048 3 .962 .038 .019
4 .833 .167 .083 4 .933 .067 .033
5 .886 .114 .057
n=7 1 .983 .017 .008 1 .994 .006 .003
2 .967 .033 .017 2 .988 .012 .006
3 .933 .067 .033 4 .,958 .042 .021
4 .883 .117 .058 5 .927 .073 .036
6 .891 .109 .055
n=8 1 .988 .012 .006 2 .992 .008 .004
3 .952 .048 .024 3 .984 .016 .008
4 915 .085 .042 5 .952 .048 .024
5 .867 .133 .067 6 .927 .073 .036
7 .8%1 .109 .055
n=9 1 .991 .009 .005 2 .9%4 006 .003
2 .982 .018 .008 3 .989 .011 .006
3 .964 .036 .018 5 .966 .034 .017
4 .936 .064 .032 6 .950 .050 .025
5 .900 .100 .050 7 .924 .076 .038
8 .894 .106 .053
n=10 1 993 .007 .004 3 .992 .008 .004
2 .986 .014 .007 4 986 .014 .007
4 951 .049 .025 6 .964 .036 .018
5 .923 .077 .039 7 .946 .054 .027
6 .888 .112 .056 8 .924 076 .038
9 .894 .106 .053
n=11 1 995 .005 .003 3 .994 .006 .003
2 .989 .011 .006 4 990 .010 .005
4 962 .038 .019 7 .960 .040 .020
5 .940 .060 .030 8 .944 .056 .028
6 .912 .088 .044 9 .922 078 .039
7 .874 .126 .063 10 .896 .104 .052
n=12 2 .991 .009 .004 4 .992 008 .004
3 .982 .018 .0039 5 .987 .013 .007
5 .,952 .048 .024 8 .958 .042 .021
Faor sample sizes m and n beyond the range ? ggg ?Z)E[) gg‘:’ 1% gg% 8;’2 ggg
of this table use o = % [mn+ 1~ - E : 11 857 103 02

zVmn{m + n + 1)7/3], where z is read from . : :

Table C.

aFrom Introduction to Statistics: A Fresh Approach by Gottfried
Noether. Copyright 1971 by Houghton Mifflin Company. Used by
permission of the publisher.
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Table B.VI (Continued)
m=5 m=6 m=7 m=28
d v o o d 7 "o d v " d 7 Y
n=5| 1 .992 .008 .004
2 .984 016 .008
3 .968 .032 .016
4 944 056 .028
5 .905 .095 .048
6 .849 .151 .075
n=6 2 .991 .009 .004 3 .991 009 .004
3 .983 017 .009 4 985 .015 .008
4 .970 .030 .015 6 .959 .041 .021
5 .948 052 .026 7 935 .065 .033
6 .918 .082 .041 8 .907 .093 .047
7 .874 126 .063 9 .868 .132 .066
n=17 2 .995 005 .003 4 992 .008 .004 5 .993 .007 .004
3 .990 .010 .005 5 .986 .014 .007 6 .989 .011 .006
6 .952 .048 .024 7 965 .035 .018 9 .962 .038 .019
7 927 073 .037 8 .949 051 .026 10 .947 .063 .027
8 .894 .106 .053 9 .927 073 037 12 .903 .097 .049
10 .899 101 051 13 .872 .128 .064
n=8 3 994 .006 .003 5 .992 .008 .004 7 .991 .009 .005 8 .993 .007 .004
4 983 011 .005 6 .987 .013 .006 8 .986 .014 .007 9 .990 .010 .005
7 .955 .045 .023 9 957 .043 .021 11 .960 .040 .020 14 .950 .050 .025
8 .935 065 ,033 10 .941 .069 .030 12 .946 .054 .027 15 .935 .0656 .033
9 .907 .093 .047 11 919 081 .041 14 .906 .094 .047 16 .917 .083 .042
10 873 127 .064 12 .892 .108 .054 15 .879 .121 060 17 .895 .105 .052
n=9 4 .993 .007 .004 6 .992 .008 .004 8 .992 .008 .004 10 .992 .008 .004
5 .988 .012 .006 7 .988 .012 .006 9 .988 .012 .006 11 .983 .011 .006
8 .958 042 .021 11 .950 .060 .026 13 .958 .042 .021 16 .954 .046 .023
9 .940 .060 .030 12 .934 .066 .033 14 .945 055 .027 17 .941 .069 .030
10 917 083 .042 13 912 .088 .044 16 .909 091 .045 19 907 .093 .046
11 888 112 056 14 887 .13 057 17 .886 .114 .057 20 .886 .114 .057
p=10| 5 .992 008 .004 7 .993 .007 .004 10 .990 .010 .005 12 .991 .009 .004
6 .987 .013 .006 8 .989 .011 .006 11 .986 .014 .007 13 .988 .012 .006
9 .960 .040 .020 12 .958 .042 .021 15 .957 .043 .022 18 .957 .043 .022
10 .945 055 .028 13 .944 056 .028 16 .945 056 .028 19 .945 .055 .027
12 901 .099 .050 15 907 .093 .047 18 .912 .088 .044 21 .917 .083 .042
13 871 129 065 16 .882 .118 059 19 .891 .109 .054 22 .89 .101 .051
n=11] 6 .991 .009 .004 8 .993 .007 .004 11 .992 .008 .004 14 .891 .009 .005
7 .987 .013 .007 9 990 .010 .005 12 .989 .011 .006 15 .988 .012 .006
10 .962 038 .019 14 952 .048 024 17 .956 .044 022 20 .959 .041 .020
11 948 052 026 15 .938 .062 .031 18 .944 .066 .028 21 .949 .051 .025
13 910 090 045 17 .902 .098 .049 20 .915 .085 .043 24 .909 .091 .045
14 885 .115 .058 18 .878 .122 .061 21 .896 .104 .052 25 .891 .109 .054
n=12] 7 991 .009 .005 10 .990 .010 .005 13 .990 .010 .005 16 .890 .010 .005
8 .986 .014 .007 11 .987 .013 .007 14 .987 .013 .007 17 .988 .012 .006
12 952 048 .024 15 959 041 .021 19 .955 .045 .023 23 .953 .047 .024
13 936 .064 032 16 .947 .053 .026 20 .944 .056 .028 24 .943 .057 .029
14 918 082 .041 18 917 .083 .042 22 .917 .083 .042 27 .902 .098 .049
15 .896 .104 .052 19 .898 .102 .051 23 .900 .100 .050 28 .885 .115 .058
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Table B.VI (Continued)
m=29 m=10 m=11 m =12
7 v w2 7 v o o 7 v o o 7 v o
n=9 | 12 992 .008 .004
13 .989 011 .005
18 .960 .040 .020
19 850 .050 .025
22 .906 .094 .047
23 .887 113 .057
n=10| 14 .992 008 .004 17 .991 .009 .005
16 .990 .010 .005 18 .989 .011 .006
21 .957 .043 .022 24 957 .043 .022
22947 063 .027 25 .948 .052 .026
25 905 .095 .047 28 .911 .08 .045
26 .887 .113 056 29 .895 .105 053
n=11] 17 .990 .010 .005 19 .992 008 .004 22 .992 ,008 .004
18 .988 .012 .006 20 .990 .010 .005 23 .983 .011 .005
24 954 046 .023 27 .957 .043 .022 31 .953 .047 .024
25 .944 056 .028 28 .949 .051 .026 32 .944 056 .028
28 .905 .095 .048 32 .901 .099 049 35 .912 .083 .044
29 .888 .112 .056 33 .886 .114 .057 36 .839 .101 .051
n=12| 19 .991 009 .005 22 .991 .009 .005 25 .991 .009 .004 28 .992 .008 .004
20 .988 .012 .006 23 .989 .011 .006 26 .989 .017 .005 29 .950 .010 .005
27 951 .043 .025 30 .957 .043 .021 34 956 .044 .022 38 955 045 .023
28 .942 .058 .029 31 .950 .050 .025 35 .949 .051 .626 39 .948 .052 .026
31 .905 .095 .048 35 .907 .093 .047 39 .909 .091 .045 43 .9i1 089 .044
32 .889 .111 .056 36 .,893 .107 .054 40 .896 .104 .052 44 .899 .101 .050
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SUBJECT INDEX

A

Analysis of variance, 392-413
completely randomized design,
393-403
ANOVA table, 395, 408

randomized block design, 406-413

Association (see Correlation)

B

BASIC language, 2-4, L414-L26
BASIC commands:
DEF, h25
DIM, L2s
END, 415
FOR...NEXT, 42l
GO TO, k16, hoo-hoo
IF...THEN, 416, 420
INPUT, L1T
LET, 416, 418
PRINT, 416, 418
READ...DATA, 417
RUN, 416
REM, 423

Binomial random variable, 6L-80

examples, T6~78

expectation of, 67

modal values, Tl, 76

probability function, 66

relation to hypergeometric,
85-86, 89-90

simulation of, 65

variance of, 68

C

Cauchy distribution, 149
Central limit theorem:
examples of, 185-192
statement of, 185
Chebyshev inequality, 12h4-126, 137
Chi-square distribution, 226-228
approximation of multinomial,
334-336
for contingency tables, 337-344
Conditional frequencies, 32-35, 38
Conditional probability, 32-37

assignment to S, 3k

442
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defined, 33 D
i i L . A
in geometric case, 34, 3T Deductive reasoning, 2
Coefficient of determination,

36L4-365, 380

Confidence intervals:

Distribution-free tests:
sign test, 279-281

Wilcoxon one-sample test, 28L-287
for contrasts, L02-403

for A, 314-315

Wilcoxon rank sum test, 312-315

Downton estimator of g, 233-235
in normal case

for Y, 217-222
for 02, 226-231
for o, 226-231
for Y, 194-196
for ul - u2, 300-301
for p, 236-239

E

Empty set, 22-25
Enumerative data, 331
Errors in prediction, 376-377
Estimation:
BLUE, 210-211

for p, - Pys 326
consistent, 208-209

relation to hypothesis tests,
269
for p, 381-382
Contingency tables, 337-3k4L

in large samples, 194-201
point estimation, 207
unbiased, 207

Continuity correction, 203-20L Event:

Contrasts, 399-403, L411-k12
Correlation, 377-383
Correlation coefficient:

bivariate normal case, 381

confidence interval for, 381-382

relation to ﬁ, 380

sample, 380

test for, 381-382

theoretical, 379
Covariance, 63, 378-379

Cumulative distribution function:

defined, 49, 115
properties of, 50

complement of, 22
defined, 19
Events:
disjoint, 2k
equivalent, 22
independent, 39-40, L1, Lk
intersection of, 22
union of, 22
Expected mean squares, 395, 408
Expected value:
in binomial case, 67
of a constant, 59
defined, 52-53, 121
in discrete uniform case, 53

failure to exist, 123
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of a function, 55-56, 122 for o2, 292-29L
in geometric case, 55 for o, 294
of a sum, 59 for p; = Pigo 334-335

power function, 249-251
F two-sample tests:

F distribution, 305 of A =0, 312-315

F test: of Wy = Uy 304-309
in one way ANOVA, 396-398 of Pl2= Py 325-329
in randomized block, 408-411 of 0, =0, , 305

Finite population correction type I error, 247-248

factor, 163 type II error, 247-249
Frequency table, 119-120
Functions (in BASIC), L423-1425 1
Independence, 38-45

G Independent events, 39-L40
Gamma function, 121-122 Independent trials:
Geometric distribution, 14-15, 20 binomial trials, 64

Goodness of Tit tests, 347-351 until success, bk
Indicator random variables, 68

H Inductive reasoning, 2

Inferential reasoning, 153
Hypergeometric distribution, 80-90

expectation, 85

relation to binomial, 85-86, -
89-90 Least squares line, 355-357
variance, 85
Hypothesis, statistical, 245 M
Hypothesis tests: Mean (see Sample mean)
critical region, 248 Median:
one-sample tests: confidence interval for, 213-215
for p, 254-259 test for, 345
for M: Moment generating function, 60-61
large sample case, 274-291 binomial case, 80

normal case, 261-269 examples of, 63



Subject Index

geometric case, 60

properties of, 61
Moments, 56-63, 122
Multinomial distribution, 331-333
Multiplicative law, 35-36

N

Nonparametric tests (see
distribution-free tests)
Normal distribution, 132-1k0
approximation to binomial,
201-204
importance of, 140
moment generating function, 133
moments, 133
probability density function,
132
standard normal case, 133-137

0

One-way classification, 393-403

P

P-value, 275, 278
Paired comparisons, 320-322
Poisson distribuiton, 90-98
axioms for, 97
expectation, 91
mode, 92
probability function, 90

relation to binomial, 90-92, 96

simulation of, 92
variance, 91

waiting times, 115-116

445

Population, 153-155
Probability:

assignment in continuous case,
112-11k

of complement, 25

defined, 2

of an event, 19

of union of k events, 27, 30-31

of union of two events, 24, 26
Probability density function, 113
Probability function, 48
Probability model:

defined, 5

discrete case, 13, 15-16
Program {computer), Llb

R

Random experiments, 5
Random sampling:
definition of, 155
with replacement, 86
without replacement 86, 156,
162-163
Random Varilable:
of continuous type, 11k
defined, 46
of discrete type, L46-52
probability function of, 48
transformations of, 142-1k47
Randomized block design (see
Analysis of variance)
Rank correlation, 384-385

Relative frequencies, 7-8
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S

Sample mean:

definition, 167

properties of, 167-168
Sample median, 171
Sample size:

to estimate u, 200

to estimate p, 205, 239-241
Semple variance:
of, 175
of, 175-182

definition
properties

Sample space:
continuous case, 103-112
discrete case, 13

Sets, 22-24

Shift alternative, 312

Significance level, 259

Simple linear regression, 353-378

ANOVA table for, 360-363
inference for o and B, 358-363
prediction, 373-378
program for calculations,
365-368
Simulation:
in BASIC, 4, 6-T
for continuous distributions,
148-150
of means, 55, T0
Standard deviation:
of sample, 182
theoretical, 99, 124

Subject Index

Statistic, 166
Statistices, 2
Student's t distribution:
definition of, 217-218
in hypothesis testing, 265-269
Subroutines (in BASIC), 425-426
Subscripted variable (BASIC), 42k

T
Tau coefficient, 382-383
Treatment comparisons, 399-403

Triangle test, 43, TO-T1

U

Uniform distribution, 127-128

v

Variables (in BASIC), k415
Variance:
of a constant, 59
of a random variable, 57-58
of a continuous random variable,
123

W

Waiting times (see Gamma

distribution)
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