
 



Introduction to 
Statistics 
AN INTUITIVE GUIDE 

 

Jim Frost 

  



3 

 

Copyright © 2019 by Jim Frost. 

All rights reserved. No part of this publication may be reproduced, distributed 
or transmitted in any form or by any means, including photocopying, record-
ing, or other electronic or mechanical methods, without the prior written per-
mission of the publisher, except in the case of brief quotations embodied in 
critical reviews and certain other noncommercial uses permitted by copyright 
law.  

To contact the author, please email: jim@statisticsbyjim.com. 

Visit the author’s website at statisticsbyjim.com. 

Ordering Information: 

Quantity sales. Special discounts are available on quantity purchases by edu-
cators. For details, contact the email address above. 

Introduction to Statistics: An Intuitive Guide / Jim Frost. —1st ed. 

 





 

i 
 

Contents 

Prepare for an Adventure! .................................................. 7 

The Importance of Statistics ............................................. 10 

Draw Valid Conclusions ................................................ 11 

Avoid Common Pitfalls .................................................. 12 

Make an Impact in Your Field ....................................... 13 

Protect Yourself with Statistics ..................................... 14 

Statistics versus Anecdotal Evidence ........................... 14 

Organization of this Book .............................................. 20 

Data Types, Graphs, and Finding Relationships ............. 22 

Quantitative versus Qualitative Data ............................ 23 

Continuous and Discrete Data ...................................... 24 

Qualitative Data: Categorical, Binary, and Ordinal ..... 30 

Next Steps ....................................................................... 35 

Histograms in More Detail ............................................ 35 

Skewed Distributions ..................................................... 39 

Identifying Outliers ........................................................ 41 

Multimodal Distributions .............................................. 42 

Identifying Subpopulations ........................................... 43 



 

Comparing Distributions between Groups .................. 45 

Histograms and Sample Size ......................................... 47 

Boxplots vs. Individual Value Plots .............................. 48 

Two -Way Contingency Tables .................................... 53 

Cautions About Graphing .............................................. 56 

Graphing and Philosophy .............................................. 59 

Summary and Next Steps .............................................. 64 

Summary Statistics and Relative Standing ...................... 67 

Percentiles....................................................................... 68 

Special Percentiles ......................................................... 69 

Calculating Percentiles Using Values in a Dataset ...... 70 

Measures of Central Tendency ..................................... 73 

Measures of Variability .................................................. 83 

Comparing Summary Statistics between Groups ........ 94 

Correlation ...................................................................... 95 

Interpreting Correlation Coefficients .......................... 97 

Pearson’s Measures Linear Relationship .................... 103 

Correlation Does Not Imply Causation ...................... 103 

How Strong of a Correlation is Considered Good? ... 105 

Summary and Next Steps ............................................ 106 

Probability Distributions ................................................. 107 



iii 

Discrete Probability Distributions .............................. 109 

Types of Discrete Distribution .................................... 110 

Binomial and Other Distributions for Binary Data ... 110 

Modelling Flu Outcomes Over Decades ..................... 117 

Continuous Probability Distributions ........................ 120 

Normal Distribution in Depth ..................................... 124 

Parameters of the Normal Distribution ...................... 126 

Population parameters versus sample estimates ....... 127 

Properties of the Normal Distribution ....................... 128 

The Empirical Rule ....................................................... 128 

Standard Normal Distribution and Standard Scores . 129 

Calculating Z-scores ..................................................... 130 

Using a Table of Z-scores ............................................. 133 

Why the Normal Distribution is Important ............... 135 

Summary and Next Steps ............................................. 136 

Descriptive and Inferential Statistics ............................. 139 

Descriptive Statistics .................................................... 140 

Example of Descriptive Statistics................................ 141 

Inferential Statistics ..................................................... 142 

Pros and Cons of Working with Samples ................... 143 

Populations.................................................................... 144 



 

Subpopulations ............................................................. 145 

Population Parameters versus Sample Statistics ....... 146 

Tools for Inferential Statistics ..................................... 148 

Properties of Good Estimates ..................................... 151 

Sample Size and Margins of Error............................... 151 

Sampling Distributions of the Mean ........................... 153 

Confidence Intervals and Precision ........................... 157 

Random Sampling Methodologies .............................. 161 

Example of Inferential Statistics ................................. 165 

Summary and Next Steps ............................................ 166 

Statistics in Scientific Studies ......................................... 169 

Step 1: Research Your Study Area .............................. 170 

Step 2: Operationalize Your Study ............................. 173 

Step 3: Data Collection ................................................ 176 

Step 4: Statistical Analysis ........................................... 177 

Step 5: Writing the Results .......................................... 178 

Summary and Next Steps ............................................ 178 

Experimental Methods .................................................... 180 

Types of Variables in an Experiment ......................... 182 

Causation versus Correlation ...................................... 183 

Confounding Variables ................................................ 185 



v 

Why Determining Causality Is Important ................. 187 

Causation and Hypothesis Tests ................................. 188 

True Randomized Experiments .................................. 189 

Random Assignment .................................................... 190 

Flu Vaccination Experiment ........................................ 193 

Drawbacks of Randomized Experiments ................... 194 

Quasi-Experiments ....................................................... 195 

Pros and Cons of Quasi-Experiments ......................... 196 

Observational Studies .................................................. 197 

When to Use Observational Studies ........................... 198 

Accounting for Confounders in Observational Studies

 ........................................................................................ 199 

Vitamin Supplement Observational Study ................. 202 

Evaluating Experiments................................................... 205 

Hill’s Criteria of Causation .......................................... 206 

Properties of Good Data .............................................. 209 

Reliability ...................................................................... 210 

Validity .......................................................................... 212 

Data Validity ................................................................. 213 

Experimental Validity .................................................. 216 

Internal Validity ........................................................... 216 



 

External Validity .......................................................... 221 

Relationship Between Internal & External Validity.. 225 

Checklist for Good Experiments ................................ 226 

Review ........................................................................... 226 

Wrapping Up and Your Next Steps ............................... 229 

Review of What You Learned in this Book ............... 230 

Next Steps for Further Study ...................................... 231 

References ........................................................................ 233 

About the Author ............................................................. 234 



 

  7 

I N T R O D U C T I O N  

 

Prepare for an 
Adventure! 

I love statistics and analyzing data! I also love talking and writing 

about it. I was a researcher at a major university. Then, I spent over a 

decade working at a major statistical software company. During my 

time at the software company, I learned how to present statistics in a 

manner that makes it more intuitive. I want you to understand the es-

sential concepts, practices, and knowledge for statistics so you can an-

alyze your data confidently. That’s the goal of my book. 

 

Over the years, I've literally received thousands of requests from as-

piring data scientists for statistical guidance. This book is my answer - 

years of knowledge and thousands of hours of hard work distilled into 

a thorough, practical guide for understanding statistics. 

 

I hope this book helps you see statistics through my eyes―as a key that 

can unlock discoveries trapped in your data. Discovery is a bumpy 

road. There might be statistical challenges en route, but they can be 

exciting and rewarding to resolve. Sometimes it is the perplexing mys-

tery in your data that prompts you to play detective and leads you to 

surprising discoveries! 
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I hope you’ll view this book as a voyage. We start with the practical 

nuts and bolts about the field of statistics and data analysis. Then we 

move to the broader context of the process and challenges of using 

statistics to expand human knowledge. Now, that’s an adventure in 

statistics! 

 

In this book, you'll learn about the many facets of the field of statistics. 

We’ll start with an overview of statistics and why it is so important. 

Then, we’ll move on to the necessary skills and knowledge about the 

different types of data, and how to summarize data both graphically 

and numerically. Importantly, I’ll show you how to discover relation-

ships between your variables. After that, we go to the next level and 

learn about populations and how to estimate their properties using 

samples.  

 

Finally, we look at how statistics are part of the scientific method and 

help expand the scope of human knowledge. This process includes de-

signing experiments that identify causation, rather than mere correla-

tion, by accounting for challenges that all studies face. The book closes 

with criteria you can use to evaluate the quality of both the data and 

the design of the experiment itself. These criteria are useful for cri-

tiquing your research or other researchers' experiments. 

 

Reading this book will allow you to take your skills to the next level. 

You’ll be able to proceed onto more advanced statistical studies such 

as hypothesis testing, regression analysis, and experimental design. 

Alternatively, you’ll have a solid foundation for a career in data sci-

ence and machine learning. 

 

You’ll notice that there are not many equations in this book. After all, 

you should let your statistical software handle the calculations while 

you instead focus on understanding your results. Consequently, I fo-

cus on the concepts and practices that you’ll need to know to perform 

the analysis and interpret the results correctly. I’ll use more graphs 
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than equations! If you need the equations, you’ll find them in most 

textbooks. 

 

Please note that throughout this book I use Minitab statistical soft-

ware. However, this book is not about teaching particular software but 

rather how to perform basic graphing and analysis. All common sta-

tistical software packages should be able to perform the analyses that 

I show. There is nothing in here that is unique to Minitab. 
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C H A P T E R  1  

 

The Importance of 
Statistics 

Statistics are everywhere today. You’ll run across them in your every-

day life. Four of five dentists prefer this toothpaste! On the news. This 

scientific poll used random sampling and has a margin of error of 3%. 

In school. Your grades were averages of scores. Perhaps you were 

graded on a curve? Then, you took the SAT, ACT, or GRE and received 

your results with percentiles. You’ll find statistics in almost every as-

pect of life: Nielsen TV ratings, surveys, political polls, insurance 

rates, and so on. And then, of course, there are the ubiquitous sports 

statistics, batting averages, third-down conversions, and countless 

more! Politicians and policy wonks use statistics to make their cases. 

Companies use statistics to use data to make decisions and increase 

their profits. 

 

The field of statistics is crucial for expanding scientific knowledge. 

Statistical analyses are present in virtually every scientific study. In-

deed, these analyses determine whether the results of the study are 

significant and worthy of being published. It’s powerful stuff. But 

what is the field of statistics exactly?  
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The field of statistics is the science of learning from data. Statistical 

knowledge helps you use the proper methods to collect the data, em-

ploy the correct analyses, and effectively present the results. Statistics 

is a crucial process behind how we make discoveries in science, make 

decisions based on data, and make predictions. Statistics allows you to 

understand a subject much more deeply. Surprisingly, the field isn’t 

only about numeric results. It also involves a wide range of practices, 

decisions, and methodologies for both collecting data and analyzing 

them in a manner that produces valid findings and sound conclusions. 

 

Let’s start by covering two main reasons why studying the field of sta-

tistics is crucial in modern society. First, statisticians are guides for 

learning from data and navigating common problems that can lead you 

to incorrect conclusions. Second, given the growing importance of de-

cisions and opinions based on data, it’s crucial that you can critically 

assess the quality of analyses that others present to you. 

 

In my view, statistics is an exciting field about the thrill of discovery, 

learning, and challenging your assumptions. Statistics facilitates the 

creation of new knowledge. Bit by bit, we push back the frontier of 

what is known.  

Draw Valid Conclusions 

Statistics are not just numbers and facts. You know, things like 4 out 

of 5 dentists prefer a specific toothpaste. Instead, it’s an array of 

knowledge and procedures that allow you to learn from data reliably. 

Statistics enable you to evaluate claims based on quantitative evidence 

and help you differentiate between reasonable and dubious conclu-

sions. That aspect is particularly vital these days because data are so 

plentiful along with interpretations presented by people with an 

agenda. 

 

Statisticians offer critical guidance in producing trustworthy analyses 

and predictions. Along the way, statisticians can help investigators 

avoid a wide variety of analytical traps. 
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When analysts use statistical procedures correctly, they tend to pro-

duce accurate results. In fact, statistical analyses account for uncer-

tainty and error in the results. Statisticians ensure that all aspects of a 

study follow the appropriate methods to produce reliable results.  

 

These methods include: 

 

• Collecting reliable data. 

• Analyzing the data appropriately. 

• Drawing reasonable conclusions. 

Avoid Common Pitfalls 

Please notice that statistical practices begin before the analysis phase! 

Using statistical analyses to produce findings for a study is the culmi-

nation of a long process. This process includes constructing the study 

design, selecting and measuring the variables, devising the sampling 

technique and sample size, cleaning the data, and determining the 

analysis methodology among numerous other issues. The overall qual-

ity of the results depends on the entire chain of events. A single weak 

link might produce unreliable results. The following list provides a 

small taste of potential problems and analytical errors that can affect 

a study. 

 

Biased samples: An incorrectly drawn sample can bias the conclu-

sions from the start. For example, if a study uses human subjects, the 

subjects might be different than non-subjects in a way that affects the 

results.  

 

Overgeneralization: Findings from one population might not apply to 

another population. Statistical inferences are always limited, and you 

must understand the limitations. 

 

Causality: How do you determine when X causes a change in Y? Stat-

isticians need tight standards to assume causality, whereas others ac-

cept causal relationships more easily. When A precedes B, and A 
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correlates with B, many mistakenly believe it is a causal connection! 

However, you’ll need to use an experimental design that includes ran-

dom assignment to assume confidently that the results represent cau-

sality. 

 

Incorrect analysis: Are you analyzing a multivariate study area with 

only one variable? Or, using an inadequate set of variables? Perhaps 

you’re assessing the mean when the median might be better? You can 

use a wide range of analytical tools, but not all of them are correct for 

a specific situation. 

 

Violating the assumptions for an analysis: Most statistical analyses 

have assumptions. These assumptions often involve properties of the 

sample, variables, data, and the model. Adding to the complexity, you 

can waive some assumptions under specific conditions—sometimes 

thanks to the central limit theorem. When you violate an essential as-

sumption, you risk producing misleading results. 

 

Data mining: Even when analysts do everything else correctly, they 

can produce falsely significant results by investigating a dataset for 

too long. When analysts conduct many tests, some will be statistically 

significant due to chance patterns in the data. Fastidious statisticians 

track the number of tests performed during a study and place the re-

sults in the proper context. 

 

Numerous considerations must be correct to produce trustworthy 

conclusions. Unfortunately, there are many ways to mess up analyses 

and produce misleading results. Statisticians can guide others through 

this swamp! We’ll cover everything, and more, on that list above. 

Make an Impact in Your Field 

Researchers us statistical analyses in almost all fields to make sense of 

the vast amount of available data. Even if the field of statistics is not 

your primary field of study, it can help you make an impact in your 

chosen field. Chances are very high that you’ll need working 
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knowledge of statistical methodologies both to produce new findings 

in your area and to understand the work of others. 

 

Conversely, as a statistician, there is a high demand for your skills in 

a wide variety of areas: universities, research labs, government, indus-

try, etc. Furthermore, statistical careers often pay quite well. One of 

my favorite quotes about statistics is the following by John Tukey: 

 

“The best thing about being a statistician is that you get to play in eve-

ryone else’s backyard.” 

 

My interests are quite broad, and statistical knowledge provides the 

tools to understand all of them. 

Protect Yourself with Statistics 

I’m sure you’re familiar with the expression about damned lies and 

statistics, which was spread by Mark Twain among others. Is it true? 

 

Unscrupulous analysts can use incorrect methodologies to draw un-

warranted conclusions. That long list of accidental pitfalls can quickly 

become a source of techniques to produce misleading analyses inten-

tionally. But how do you know? If you’re not familiar with statistics, 

these manipulations can be hard to detect. Statistical knowledge is the 

solution to this problem. Use it to protect yourself from manipulation 

and to react to information intelligently. 

 

The world today produces more data and more analyses designed to 

influence you than ever before. Are you ready for it? 

Statistics versus Anecdotal Evidence 

One way to appreciate the power of statistical analysis is to compare 

it to an alternative method for learning. Statistics and anecdotal evi-

dence are almost directly opposite methodologies. Let’s see how they 

compare! 
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Anecdotal evidence is a story told by individuals. It comes in many 

forms that can range from product testimonials to word of mouth. It’s 

often testimony, or a short account, about the truth or effectiveness 

of a claim. Typically, anecdotal evidence focuses on individual results, 

is driven by emotion, and presented by individuals who are not sub-

ject area experts. 

 

The following are examples of anecdotal evidence: 

 

• Wow! I took this supplement and lost a lot of weight! This pill 

must work! 

• I know someone who smoked for decades, and it never pro-

duced any significant illness. Those claims about smoking are 

exaggerated! 

• This anti-aging cream took years off. It must be the best! 

 

I’m sure you’ve heard that you can’t trust anecdotal evidence. How-

ever, we still ask our friends for recommendations about restaurants, 

travel destinations, auto mechanics, and so on. The tricky thing about 

anecdotal evidence is that even when an individual story is true, it can 

still be entirely misleading. How does that work? 

 

The table below shows how statistical methodology is the opposite of 

anecdotal evidence.   
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Statistics Anecdotal Evidence 

Samples are large and representa-

tive. Using proper methodologies, 

they are generalizable outside the 

sample. 

Small, biased samples are not 

generalizable. 

Scientists take precise measure-

ments in controlled environments 

with calibrated equipment. 

Unplanned observations are 

described orally or in writing. 

Other relevant factors are meas-

ured and controlled. 

Pertinent factors are ignored. 

Strict requirements for identify-

ing causal connections. 

Anecdotes assume causal rela-

tionships as a matter of fact. 

 

A quick look at the table should be enough to convince you that anec-

dotal evidence is not trustworthy! However, it’s even worse thanks to 

psychological factors that prime us for believing these stories. 

 

Humans are more likely to tell and remember dramatic, extraordinary 

personal stories. Throw in some emotion, and you’re more likely to 

believe the story. In psychological terms, statistical analysis of data 

that scientists collect carefully from well-designed experiments lacks 

that emotional kick. Sad but true. 

 

Furthermore, if B follows A, our brains are wired to assume that A 

causes B. 

 

Finally, anecdotal evidence cherry-picks the best stories. You don’t 

hear about all of the unsuccessful cases because people are less likely 

to talk about them. 

 

When Fred tells an emotional story about taking a supplement and 

losing a lot of weight, we’ll remember it and assume the supplement 

caused the weight loss. Unfortunately, we don’t hear from the other 
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ten people who took the supplement and didn’t lose weight. We also 

don’t know what else Fred might be doing to lose weight. 

 

Collectively, these factors bias conclusions drawn from anecdotal ev-

idence towards abnormal outcomes and unjustified causal connec-

tions. 

 

Next, I’ll illustrate the problems graphically and explain how statistics 

and the scientific method deals with them. 

 

The graph below displays the results from anecdotal stories of people 

who took a hypothetical weight loss supplement. Think of this chart 

as a summary of the results presented in a TV commercial. We’ll even 

assume that these people are telling the complete truth. The supple-

ment looks effective, right? They’ve lost a lot of weight! When you 

see the individuals and hear their emotional stories about weight loss, 

we want to believe that the supplement worked. 

 

 
Regrettably, the graph doesn’t provide the full story. Remember, an-

ecdotal evidence uses small non-random samples that aren’t general-

izable beyond the sample. The individuals might have been cherry-

picked for their narratives, or perhaps they presented the tales on 
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their own. Either way, it is a sample based on having a dramatic and 

emotionally compelling story. As the fine print says, their results are 

not typical! 

 

Unfortunately, our minds are wired to believe this type of evidence. 

We place more weight on dramatic, personal stories. 

A scientific study of the weight loss supplement 

Now, let’s imagine that we conduct a scientific experiment using a 

more substantial, random sample that represents the broader popula-

tion. We’ll also include a treatment and control group for comparison. 

We must go beyond a few compelling stories and get the bigger pic-

ture that scientific studies can provide. 

 

 
In this graph, blue dots represent the supplement takers, and red dots 

represent those who didn’t take the supplement. 

 

These results are not as impressive as the other graph. Some who took 

the supplement lost the weight shown in the TV ad, but many more 

lost much less weight. Those people didn’t come forward with their 

less exciting stories! 
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Furthermore, those who did not take the supplement fit the same pat-

tern as those who did. Collectively, taking the supplement didn’t pro-

duce more significant weight loss than the control group. 

 

Because this study uses a random sample rather than a self-selected 

sample, we have reason to believe that we can apply these results out-

side the sample. 

 

How Statistics Beats Anecdotal Evidence 

In statistics, there are two basic methods for determining whether a 

dietary supplement causes weight loss: observational studies and ran-

domized controlled trials (RCTs). 

 

In an observational study, scientists measure all pertinent variables in 

a representative sample and then generate a statistical model that de-

scribes the role of each variable. For each subject, you measure varia-

bles such as basal metabolic rate, exercise, diet, health, etc., and the 

consumption of dietary supplements. After you factor in the role of 

all other relevant variables, you can determine whether the supple-

ment correlates with weight loss. Anecdotal evidence provides none 

of this critical, contextual information. 

 

Randomized controlled trials (RCTs) is the other method. RCTs are 

the gold standard because they allow you to draw causal conclusions 

about the treatment effect. After all, we want to determine whether 

the supplement causes weight loss. RCTs assign subjects to treatment 

and control groups randomly. This process helps ensure that the 

groups are comparable when treatment begins. Consequently, treat-

ment effects are the most likely cause for differences between groups 

at the end of the study. 

 

Don’t worry. We’ll cover all of this information about experiments in 

much greater detail starting in chapter 7. For now, understand that 

using data to identify causal relationships (the supplement causes the 
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weight loss) and being able to generalize the results beyond the origi-

nal sample requires the researchers to use various data collecting pro-

cedures and experimental designs. 

 

Making decisions based on anecdotal evidence might not always be 

harmful. For example, if you ask a friend for a restaurant recommen-

dation, the risk is low, especially if you know his/her tastes. However, 

if you’re making important decisions about things like finances, 

healthcare, and fitness, don’t base them anecdotal evidence. Look at 

scientific data and expert analysis even though they’re not as flashy as 

emotionally charged stories presented by relatable people! 

 

If you find yourself being won over by anecdotal evidence, remind 

yourself that the results are not typical! 

Organization of this Book 

Unless you are involved data analysis, you’re probably more familiar 

with the graphical and numeric results that someone else produced. 

However, the field of statistics covers much more than that, including 

a wide variety of processes and methodologies for producing trust-

worthy results. 

 

Consequently, I’ve split this book into two major parts.  

 

The first portion covers the essential tools of the trade, including data 

types, summarizing the data, and identifying relationships between 

variables. I’ll describe the types of data and how to present them 

graphically. Learn how summary statistics represent an entire dataset 

and describe where an observation falls within it. These statistics in-

clude measures of central tendency, measures of variability, percen-

tiles, and correlation. Then, we’ll move onto probability distributions. 

Probability distributions help you understand the distribution of val-

ues and calculate probabilities. We’ll pay extra attention to the crucial 

Normal Distribution. 
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Collectively, this knowledge allows you to understand the basics of 

the different types of data, how to summarize a dataset, identify rela-

tionships between different types of variables, and use probabilities to 

know how the values are distributed. These skills will allow you to 

summarize a dataset and explain relationships between variables to 

others. 

 

The second portion covers the practices and procedures for inferen-

tial statistics and using statistics in the scientific process. Inferential 

statistics allow you to use a relatively small sample to learn about an 

entire population. However, making this leap from a sample to the 

population requires additional procedures and methodologies. I’ll also 

cover how the field of statistics fits in with the scientific method along 

with the essentials of designing experiments to answer questions. 
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C H A P T E R  2  

 

Data Types, Graphs, and 
Finding Relationships 

In the field of statistics, data are vital. Data are the information that 

you collect to learn, draw conclusions, and test hypotheses. After all, 

statistics is the science of learning from data. However, there are dif-

ferent types of variables, and they record various kinds of infor-

mation. Crucially, the type of information determines what you can 

learn from it, and, importantly, what you cannot learn from it. Conse-

quently, you must understand the different types of data. 

 

The term “data” carries strong preconceived notions with it. It almost 

becomes something separate from reality. Throughout this book, I 

want you to think about data as information that you are gathering for 

an inquiry. Data are evidence you can use to answer questions. For 

example: 

 

• Do flu shots prevent the flu? 

• Does exercise improve your health? 

• Does a gasoline additive improve gas mileage? 
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When you assess any of these questions, there’s a wide array of char-

acteristics that you can record. For example, in a study that uses hu-

man subjects, you can log numerical measurements such as height and 

weight. However, you can also assign categories, such as gender, mar-

ital status, and health issues. You can record counts, such as the num-

ber of children. Or, use binary data to record whether a person has the 

flu or not. 

 

For some characteristics, you can record them in multiple ways. For 

instance, you can measure a subject’s body fat percentage, or you can 

indicate whether they are medically obese or not. 

 

In this chapter, you’ll learn about the different types of variables, what 

you can learn from them, and how to graph the values using intuitive 

examples. We’ll start with individual variables. Then, I’ll show how to 

use graphs to look for relationships between pairs of different types 

of variables. For now, we’ll only use graphs to gain insights about our 

data. In chapter 3, we’ll start calculating numeric summary statistics. 

 

A relationship between a pair of variables indicates the value of one 

variable depends on the value of another variable. In other words, if 

you know the value of one variable, you can predict the value of the 

other variable more accurately.  

 

Different fields and analysts use several taxonomies for classifying 

data. For each type of data, I’ll provide several synonyms to cover the 

various classification schemes. Additionally, I’ll include small snippets 

of the data sheet so you can see how the data can appear in your soft-

ware. 

Quantitative versus Qualitative Data 

The distinction between quantitative and qualitative data is the most 

fundamental way to divide types of data. Is the characteristic some-

thing you can objectively measure with numbers or not? 
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Quantitative: The information is recorded as numbers and represents 

an objective measurement or a count. Temperature, weight, and a 

count of transactions are all quantitative data. Analysts also refer to 

this type as numerical data. 

 

Qualitative: The information represents characteristics that you do 

not measure with numbers. Instead, observations fall within a count-

able number of groups. This type of variable can capture information 

that isn’t easily measured and can be subjective. Taste, eye color, ar-

chitectural style, and marital status are all types of qualitative varia-

bles. 

 

Within these two broad divisions, there are various subtypes. 

Continuous and Discrete Data 

When you can represent the information you’re gathering with num-

bers, you are collecting quantitative data. This class encompasses two 

categories. 

Continuous data 

Continuous variables can take on any numeric value, and the scale can 

be meaningfully divided into smaller increments, including fractional 

and decimal values. There are an infinite number of possible values 

between any two values. And differences between any two values are 

always meaningful. Typically, you measure continuous variables on a 

scale. For example, when you measure height, weight, and tempera-

ture, you have continuous data.  

 

Statisticians divide continuous data into two types that you measure 

using the following scales: 

 

Interval scales: On interval scales, the interval, or distance, between 

any two points is meaningful. For example, the 20-degree difference 

between 10 and 30 Celsius is equivalent to the difference between 50 

and 70 degrees. However, these scales don’t have a zero measurement 
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that indicates the lack of the characteristic. For example, Celsius has a 

zero measure, but it does not mean there is no temperature.  

 

Due to this lack of a true zero, measurement ratios are not valid on 

interval scales. Thirty degrees Celsius is not three times the tempera-

ture as 10 degrees Celsius. You can add and subtract values on an in-

terval scale, but you cannot multiply or divide them. 

 

Ratio scales: On ratio scales, intervals are still meaningful. Addition-

ally, these scales have a zero measurement that represents a lack of 

the property. For example, zero kilograms indicates a lack of weight. 

Consequently, measurements ratios are valid for these scales. 30 kg is 

three times the weight of 10 kg. You can add, subtract, multiply, and 

divide values on an interval scale. 

 

With continuous variables, you can assess properties such as the 

mean, median, distribution, range, and standard deviation. For exam-

ple, the mean height in the U.S. is 5 feet 9 inches for men and 5 feet 4 

inches for women. The next chapter covers these summary statistics. 

Histograms: Distributions 

 
Histograms are an excellent way to graph continuous variables be-

cause they show the distribution of values. Understanding the distri-

bution allows you to determine which values are more and less 

common amongst other properties. 

 

Each histogram bar spans a range of values for the continuous variable 

on the horizontal X-axis. These ranges are also known as bins. The 
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height of each bar represents either the number or proportion of ob-

servations that fall within each bin.  

 

The histogram below allows you to assess the distribution of body fat 

percentage values for adolescent girls. These properties include deter-

mining whether the distribution is symmetric or skewed, understand-

ing the spread of values, and identifying where the most common 

values fall. I’ll cover histograms in more detail later in this chapter. 

 

 
This histogram shows that body fat percentages for most pre-adoles-

cent girls fall between 23-27%. There are no values observed below 

around 16%. It is also a right-skewed distribution with the right-hand 

tail of values extending all the way up to 47%. 

 

Please notice that continuous variables allow you to assess the wide 

variety of properties that I illustrated above. These include the central 

tendency, spread, shape of the distribution, and outliers. You’ll see a 

contrast when we get to qualitative variables. 

Scatterplots: Trends 

When you have two continuous variables, you can graph them using 

a scatterplot. Scatterplots are great for displaying the relationship 
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between two continuous variables. Each dot on the graph has an X and 

Y coordinate that corresponds to a pair of values for one subject or 

item.  

 

On scatterplots, statisticians have guidelines for which variable you 

place along each axis. 

 

• X-axis: This is the horizontal axis on the chart. Typically, an-

alysts place the explanatory variable on this axis. This variable 

explains the changes in the other variable. 

• Y-axis: This is the vertical axis on a graph. By tradition, ana-

lysts place the outcome variable on this axis. The other varia-

ble explains changes in this variable. 

 

In cases where there isn’t a clear explanatory and outcome relation-

ship between variables, it does not matter where you place each vari-

able. 

 

In the chart below, a dot represents the body mass index (BMI) and 

body fat percentage for one research subject in an experiment that I 

administered.  
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The scatterplot shows how body fat percentage tends to rise as BMI 

increases. Use correlation to describe the strength of this relationship 

numerically. We’ll cover correlation in chapter 3. 

Time Series Plots 

 
Scatterplots display relationships between pairs of continuous varia-

bles. Time series plots do the same, except one of the continuous var-

iables is time. These plots display the continuous variable over time 

and allow you to determine whether the continuous variable changes 

over time. You can look for both trends and patterns over time. Time 

series plots typically take measurements at regular intervals, such as 

daily, weekly, monthly, and annually.  

 

These graphs display time on the X-axis. The Y-axis shows the contin-

uous measurement scale. 
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This time series plot displays an upward trend in trade. A cyclical pat-

tern is also apparent.  

Discrete data 

 
Discrete quantitative data are a count of the presence of a character-

istic, result, item, or activity. These counts are nonnegative integers 

that cannot be divided into smaller increments. For example, a single 

household can have 1 or 2 cars, but it cannot have 1.6. There are a 

finite number of possible values between any two values. Other ex-

amples of discrete variables include class sizes, number of candies in 

a jar, and the number of calls that a call center receives. 

 

With discrete variables, you can calculate and assess a rate of occur-

rence or a summary of the count, such as the mean, sum, and standard 
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deviation. For example, U.S. households had an average of 2.11 vehi-

cles in 2014. 

Bar Charts 

Bar charts are a standard way to graph discrete variables. Each bar 

represents a distinct value, and the height represents its proportion in 

the entire sample. Use bar charts to indicate which values occur are 

more and less frequently. 

 

Bar charts and histograms look similar. However, the bars on a histo-

gram touch while they are separate on a bar chart. Each bar on histo-

gram represents a range of values that continuous measurements fall 

within. On a bar chart, a bar represents one of the discrete values. 

 

 
This bar indicates that California households with two cars comprise 

nearly 70% of the sample and are, by far, the most common. 

Qualitative Data: Categorical, Binary, and Ordinal 

When you record information that categorizes your observations, you 

are collecting qualitative data. There are three types of qualitative var-

iables—categorical, binary, and ordinal. With these data types, you’re 
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often interested in the proportions of each category. Consequently, 

bar charts and pie charts are conventional methods for graphing qual-

itative variables because they are useful for displaying counts and rel-

ative percentages of each group. 

 

As I mentioned in the section about continuous variables, notice how 

we learn much less from qualitative data. I highlight this aspect in a 

later section about binary variables. In cases where you have a choice 

about recording a characteristic as a continuous or qualitative varia-

ble, the best practice is to record the continuous data because you can 

learn so much more. 

 

Categorical data 

 
Categorical data have values that you can put into a countable number 

of distinct groups based on a characteristic. For a categorical variable, 

you can assign categories, but the categories have no natural or-

der. Categorical variables can define groups in your data that you want 

to compare, such as the experimental conditions of treatment and 

control. Analysts also refer to categorical data as both attribute and 

nominal variables.  

 

For example, college major is a categorical variable that can have val-

ues such as psychology, political science, engineering, biology, etc. 

 

The categorical data in the pie chart below are the results of a PPG 

Industries study of new car colors in 2012. 
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Pie charts are great for highlighting the proportions that groups com-

prise of the whole. You can use them with categorical, binary, and or-

dinal data that define groups in your sample. 

 

 
This chart indicates that black, silver, and white cars comprise nearly 

two-thirds of new cars in the sample. Six other colors cover the re-

maining third. 

Binary data 

 
Binary data can have only two values. If you can place an observation 

into only two categories, you have a binary variable. Statisticians also 

refer to binary data as both dichotomous data and indicator variables. 

For example, pass/fail, male/female, and the presence/absence of a 

characteristic are all binary data. 
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From binary variables, analysts can calculate proportions or percent-

ages, such as the proportion of defective products in a sample. Simply 

take the number of faulty products and divide by the sample size. 

 

The binary yes/no data for the pie chart recodes the continuous body 

fat percentage data in the histogram above. Compare how much we 

learn from the continuous data that the histogram displays as a distri-

bution to the simple proportion that the binary data provides in the 

pie chart below. 

 

 
The pie chart indicates that 75% of the sample are not obese, while 

25% of the sample are obese.  

Ordinal data 
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Ordinal data have at least three categories, and the categories have a 

natural order. Examples of ordinal variables include overall status 

(poor to excellent), agreement (strongly disagree to strongly agree), 

and rank (such as sporting teams). 

 

Ordinal variables have a combination of qualitative and quantitative 

properties. On the one hand, these variables have a limited number of 

discrete values like categorical variables. On the other hand, the dif-

ferences between the values provides some information like qualitive 

variables. However, the difference between adjacent values might not 

be consistent. For example, first, second, and third in a race are ordi-

nal data. The difference in time between first and second place might 

not be the same the difference between second and third place. 

 

Analysts often represent ordinal variables using numbers, such as a 1-

5 Likert scale that measures satisfaction. In number form, you can cal-

culate average scores as with quantitative variables. However, the 

numbers have limited usefulness because the differences between 

ranks might not be constant. 

 

The bar chart below displays the proportion of each service rating cat-

egory in their natural order. 
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Next Steps 

From that overview, you should understand the different types of 

data, what you can learn from them, and how to graph them.  

 

Previously, I showed how scatterplots display relationships between 

pairs of continuous variables. In chapter 3, we’ll revisit relationships 

between continuous variables in more detail when we get to correla-

tion.  

 

Up next, let’s revisit histograms and see what you can learn from them 

in more detail. Additionally, I’ll also show you how to find relation-

ships between a categorical variable and a continuous variable, and 

pairs of categorical variables. 

Histograms in More Detail 

Use histograms when you have continuous measurements and want 

to understand the distribution of values and look for outliers. They are 

fantastic exploratory tools because they reveal properties about your 

sample data in ways that summary statistics cannot.  
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In the field of statistics, we often use summary statistics to describe 

an entire dataset. These statistics use a single number to quantify a 

characteristic of the sample. For example, a measure of central ten-

dency is a single value that represents the center point or typical value 

of a dataset, such as the mean. A measure of variability is another type 

of summary statistic that describes how spread out the values are in 

your dataset. The standard deviation is a conventional measure of dis-

persion. Chapter 3 covers these statistics. 

 

Because I’m a statistician, you probably think I prefer these numeric 

summaries, but I always recommend that you graph your data before 

assessing the numbers. The problem with summary statistics is that 

they are simplifications of your dataset. Graphing the data brings it to 

life much more fully and intuitively. Generally, I find that using graphs 

in conjunction with statistics provides the best of both worlds!  

 

In this section, I’ll show you how histograms reveal the shape of the 

distribution, its central tendency, and the spread of values in your 

sample data. You’ll also learn how to identify outliers, how histograms 

relate to probability distribution functions, and why you might need 

to use hypothesis tests with them. 

 

I’ll also show you how to use histograms to contrast different groups. 

Comparing properties across groups is a fundamental statistical 

method that can help you learn about a subject area. As you’ll read 

later in the book, the primary way scientific experiments create new 

knowledge is by carefully setting up contrasts between groups, such 

as a treatment and control group. 

 

Amongst other learning objectives, the next several sections illustrate 

how you can use histograms, boxplots, and individual value plots to 

compare groups in your data. These types of plots graphically illus-

trate relationships between a categorical grouping variable and a con-

tinuous variable. 

 



In t roduct ion  to  Stat ist ics :  An  Intu it ive  Gu ide 

37 

Download the CSV data file to make most of the histograms in this 

section: Histograms. 

Central Tendency 

Use histograms to understand the center of the data. In the histogram 

below, you can see that the center is near 50. Most values in the da-

taset will be close to 50, and values further away are rarer. The distri-

bution is roughly symmetric, and the values fall between 

approximately 40 and 64. 

 

 
A difference in means shifts the distributions horizontally along the 

X-axis. In the histograms below, one group has a mean of 50 while the 

other has a mean of 65. 
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Additionally, histograms help you grasp the degree of overlap be-

tween groups. In the above histograms, there’s a relatively small 

amount of overlap. 

Variability 

Suppose you hear that two groups have the same mean of 50. It sounds 

like they’re practically equivalent. However, after you graph the data, 

the differences become apparent, as shown below. 
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The histograms center on the same value of 50, but the spread of val-

ues is notably different. The values for group A mostly fall between 

40 – 60 while for group B that range is 20 – 90. The mean does not tell 

the entire story! At a glance, the difference is evident in the histo-

grams. 

 

In short, histograms indicate which values occur more and less fre-

quently along with their dispersion. You can’t gain this understanding 

from the raw list of values. Summary statistics, such as the mean and 

standard deviation, will get you partway there. But histograms make 

the data pop! 

Skewed Distributions 

Histograms are an excellent tool for identifying the shape of your dis-

tribution. So far, we’ve been looking at symmetric distributions pri-

marily. However, not all distributions are symmetrical. You might 

have asymmetrical data, also known as a skewed distribution. 

 

The shape of the distribution is a fundamental characteristic of your 

sample that can determine which measure of central tendency best 

reflects the center of your data. In this manner, histograms are 
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informative about the summary statistics that are appropriate for your 

data. 

 

For skewed distributions, the direction the longer tail points defines 

the direction of skew. The direction of skew indicates where you’ll 

find more values that are further away from the most common values 

of the distribution.  

 

For right-skewed distributions, the long tail extends to the right while 

most values cluster on the left, as shown below. These are real data 

from a study I conducted. 

 

 
Conversely, for left-skewed distributions, the long tail extends to the 

left while most values cluster on the right. 
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Remember, the direction that the longer tail points defines the type of 

skew! 

Identifying Outliers 

Outliers are unusual values in your dataset. Histograms are a handy 

way to identify outliers. In an instant, you’ll see if there are any ex-

treme values. If you identify potential outliers, investigate them. Are 

they data entry errors, or do they represent observations that oc-

curred under abnormal conditions? On the other hand, they might be 

legitimate observations that accurately describe the variability in the 

study area. 

 

Identifying, investigating, and potentially removing outliers is a nec-

essary process when performing statistical analyses. Outliers present 

problems for several reasons including the following:  

 

• Outliers might not represent the population or research ques-

tion that you are studying.  

• Their extreme values can significantly bias the results of your 

analyses.  

• They might be data entry errors. 
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However, it’s also not always appropriate to remove outliers. You 

need a sound rationale for doing so. 

 

I cover this process in much greater detail in my ebook about regres-

sion analysis and my upcoming book about hypothesis tests. 

 

 
On a histogram, outliers appear as an isolated bar.  

Multimodal Distributions 

A multimodal distribution has more than one peak. It’s easy to miss 

multimodal distributions when you focus on summary statistics, such 

as the mean and standard deviations. Consequently, histograms are 

the best method for detecting multimodal distributions. 

 

Imagine your dataset has the properties shown below. 

 

 
That looks relatively straightforward, but when you graph it, you see 

the histogram below. 
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I bet that bimodal distribution was not quite what you were expecting! 

This histogram illustrates why you should always graph your data ra-

ther than just calculating summary statistics! 

Identifying Subpopulations 

Sometimes these multimodal distributions reflect the actual distribu-

tion of the phenomenon that you’re studying. In other words, there 

are genuinely different peak values in the distribution of one popula-

tion. However, in other cases, multimodal distributions indicate 

you’re combining subpopulations with different characteristics. His-

tograms can help confirm the presence of these subpopulations and 

illustrate how they’re different from each other. 

 

Suppose we’re studying the heights of American citizens. They have a 

mean height of 168 centimeters with a standard deviation of 9.8 CM. 

The histogram is below. There appears to be an unusually broad peak 

in the center—it’s not quite bimodal. 
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When we divide the sample by gender, the reason for it becomes 

clear. 

 

 
Notice how two narrower distributions have replaced the single broad 

distribution? The histograms help us learn that gender is an essential 

categorical variable in studies that involve height. Each gender’s dis-

tribution clusters more tightly around its central point than the overall 

distribution around its center. The tighter clustering indicates that the 
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subpopulations provide more precise estimates than the whole popu-

lation. In this light, the mean for the entire population does not equal 

the mean for either subpopulation. It’s misleading! 

 

In this graph, gender is the categorical variable, and height is the con-

tinuous variable. It’s another example of contrasting groups in your 

data to learn about the subject area. 

Comparing Distributions between Groups 

To compare distributions between groups using histograms, you’ll 

need both a continuous variable and a categorical variable. The cate-

gorical variable defines the groups in your data, such as male and fe-

male. The continuous variables are measurements. Using a grouping 

variable in conjunction with continuous data allows you to compare 

the center and spread of the different distributions. 

 

There are two common ways to display groups in histograms. You can 

either overlay the groups or graph them in different panels, as shown 

below. 
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It can be easier to compare distributions when the chart overlays 

them, but sometimes they get messy. Histograms in separate panels 

display each distribution more clearly, but the comparisons and de-

gree of overlap aren’t quite as clear. In the examples above, the pan-

eled distributions are more legible. However, overlaid histograms can 

work nicely in other cases, as you’ve seen. Experiment to find the best 

approach for your data! 

 

While I think histograms are the best graph for understanding the dis-

tribution of values for a single group, they can get muddled with mul-

tiple groups. Histograms are usually pretty good for displaying two 

groups, and up to four groups if you present them in separate panels. 

If your primary goal is to compare distributions and your histograms 

are challenging to interpret, consider using boxplots or individual 

plots. In my opinion, those other plots are better for comparing distri-

butions when you have more groups. But they don’t provide quite as 

much detail for each distribution as histograms. 

 

Again, experiment and determine which graph works best for your 

data and goals! 
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Histograms and Sample Size 

As fantastic as histograms are for exploring your data, be aware that 

sample size is a significant consideration when you need the shape of 

the histogram to resemble the population distribution. Typically, I 

recommend that you have a sample size of at least 20 per group for 

histograms. With fewer than 20 observations, you have too little data 

to represent the population distribution accurately. 

 

Both histograms below use samples drawn from a population that has 

a mean of 100 and a standard deviation of 15. These characteristics 

describe the distribution of IQ scores. However, one histogram uses a 

sample size of 20 while the other uses a sample size of 100. Notice that 

I’m using percent on the Y-axis to compare histogram bars between 

different sample sizes. 

 

 
That’s a pretty huge difference! It takes a surprisingly large sample 

size to get a good representation of an entire distribution. When your 

sample size is less than 20, consider using an individual value plot. 
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Boxplots vs. Individual Value Plots 

Graphing your data before performing statistical analysis is a crucial 

step. Graphs bring your data to life in a way that statistical measures 

do not because they display the relationships and patterns. In this sec-

tion, you’ll learn about using boxplots and individual value plots to 

compare distributions of continuous measurements between groups.  

 

Use boxplots and individual value plots when you have a categorical 

grouping variable and a continuous outcome variable. The categorical 

variables form the groups in your data, and the researchers measure 

the continuous variable. These graphs display relationships between a 

categorical variable and a continuous variable. 

 

Both graphs allow you to compare the distribution of values between 

the groups in your sample data. You can assess properties such as the 

center, spread, and shapes of the distributions while looking out for 

outliers. These types of graphs are often precursors to hypothesis tests 

that assess differences between means. These plots compare distribu-

tions like the histograms with groups you saw previously. However, 

in some cases, they highlight differences more clearly. 

 

The partial datasheet below shows how researchers record data for 

both types of charts. Material is the categorical variable, while 

Strength is the continuous variable. We’ll use the full version of this 

dataset for the individual value plot example that follows. 
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Note that the graphs in this section are best for comparing distribu-

tions between groups. When you need to assess a single continuous 

distribution, histograms are often better choices.  

Individual Value Plots 

As the name suggests, individual value plots display the value of each 

observation. This graph is best when you have fewer than 50 data 

points per group. With a larger sample size, the data points can be-

come packed close together, jumbled, and hard to evaluate. 

 

• Assess the central tendency by noting the vertical position of 

each group’s center. 

• Assess the variability by gauging the vertical range of data 

points within each group. 

 

Let’s take a look at the example below. This chart displays the 

strengths of four different materials. To create this graph yourself, 

download the CSV data file: IndividualValuePlot. Material type is our 

categorical grouping variable, and Strength is the continuous outcome 

variable that the researchers measured. 
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It appears that several different things are happening in this graph. We 

can compare the central tendencies of the groups. Material 1 has the 

highest central tendency of the four groups, while Material three has 

the lowest. Regarding variability, Material 3 has a broader range than 

the other groups.  

 

In short, Material 1 has the highest average strength while Material 3 

has both the lowest strength and the most variable strength. 

Boxplots 

Like individual value plots, use boxplots to compare the shapes of dis-

tributions, find central tendencies, assess variability, and identify out-

liers. Boxplots are also known as box and whisker diagrams. While 

boxplots have the same goals as individual value plots, they look very 

different. 

 

Instead of displaying the raw data points, boxplots take your sample 

data and present ranges of values based on quartiles and display aster-

isks for outliers that fall outside the whiskers. Boxplots work by break-

ing your data down into quarters. When your sample size is too small, 

the quartile estimates might not be meaningful. Consequently, these 

graphs work best when you have at least 20 data points per group. 

 

Let’s take a look at the anatomy of a boxplot before getting to an ex-

ample. Boxplots display what statisticians refer to as a five-number 

summary, which are five vital descriptive statistics for samples. These 

values are the minimum, first quartile, median, third quartile, and 

maximum. These five values divide your data into quarters—at least 

approximately because the upper and lower whiskers do not include 

outliers, which the chart displays separately. Outliers display as aster-

isks beyond the upper and lower whiskers. 
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Using Boxplots to Assess Distributions 

When you’re assessing a single distribution, using a histogram is prob-

ably better. However, for comparing multiple distributions, boxplots 

are an excellent method. I find that they’re easier to interpret than 

individual value plots when you have a sufficiently large sample size. 

 

To compare central tendencies, use the median line in the boxes. 

 

For the variability, remember that half your data for each group falls 

within the interquartile box. The longer the box and whiskers, the 

greater the variability of the distribution.  

 

To determine whether a distribution is skewed, look at where the data 

fall compared to the median. For symmetric distributions, the length 
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of the box and whiskers on both sides of the median should be ap-

proximately equal. If the two sides are not roughly equivalent, your 

distribution is skewed. 

Example of Using a Boxplot to Compare Groups 

Suppose we have four groups of scores and we want to compare them 

by teaching method. To create this graph yourself, download the CSV 

data file: Boxplot. Teaching method is our categorical grouping varia-

ble, and Score is the continuous outcome variable that the researchers 

measured. 

 

 
Method 1 and 2 have nearly identical medians, but Method 1 has 

somewhat more variability. The second method also has an outlier 

that we should investigate. Method 3 has the highest variability in 

scores and is potentially left-skewed because it has a longer tail going 

towards lower values. Method 4 has the highest median.  

 

This graph displays the relationship between teaching method and the 

outcome score. If you know the teaching method, it helps you under-

stand and explain the differences in the scores. 
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Histograms, individual value plots, and boxplots can contrast the dis-

tributions for groups within your dataset. They illustrate relationships 

between a categorical and continuous variable. However, what do you 

use when you have a pair of categorical variables? Use two-way con-

tingency tables and bar charts! 

Two -Way Contingency Tables 

Two-way contingency tables represent the frequency of combinations 

for two categorical variables. These tables help identify relationships 

between a pair of categorical variables. You can also graph them using 

bar charts. Each value in a table cell indicates the number of times re-

searchers observed a particular combination of categorical values. 

 

In the table below, the two categorical variables are gender and ice 

cream flavor preference. Each cell represents the number of times 

members of one gender preferred a particular ice cream flavor. The 

CSV datasheet shows one format you can use to enter the data into 

your software: Flavor Preference. 

 

Gender Chocolate Strawberry Vanilla Total 

Female 37 17 12 66 

Male 21 18 32 71 

Total 58 35 44 137 

 

For example, the Female/Chocolate cell indicates that 37 females 

identified chocolate as their favorite flavor. Conversely, only 21 males 

liked chocolate ice cream the best. 

 

If there is a relationship between ice cream preference and gender, 

we’d expect the values in the two gender rows for each flavor to be 

different. From the table, it appears that females are more likely to 

prefer chocolate, while males prefer vanilla. Both genders have an 

equal preference for strawberry. Overall, the table suggests that males 

and females have different ice cream preferences.  
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The Total column indicates the researchers surveyed 66 females and 

71 males. Because we have roughly equal numbers, we can compare 

the raw counts directly. However, when you have unequal groups, use 

percentages to compare them.  

 

For example, the percentage of females who prefer chocolate is 

simply the number of observations in the Female/Chocolate cell di-

vided by the total number of women (37 / 66 = 56%). We can do the 

same for males and see that 29.6% (21 / 71) of men prefer chocolate. 

These two percentages don’t add up to 100% because they are row 

percentages. Each value represents the percentage of each cell out of 

the total for the row. Consequently, the total for each row sums to 

100%--but the columns won’t add to 100%. 

 

You can also calculate column percentages. For column percentages, 

you’d use the total for each column. For example, 58 subjects pre-

ferred chocolate. Of those who prefer chocolate, 63% are women (37 

/ 58) and 36% (21 / 58) are men. Use row and/or column percentages 

as they make sense for your analysis.  

 

The table below uses the same raw data as the previous contingency 

table, but it also displays both row and column percentages. Note how 

the row percentages sum to 100% while the column percentages sum 

to 100%.   
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Gender Chocolate Strawberry Vanilla Row  

Total 

Female Raw: 37 

Row%: 56% 

Col%: 63.8% 

Raw: 17 

Row%: 25.8% 

Col%: 48.6% 

Raw: 12 

Row%: 18.2% 

Col%: 28.8% 

Raw: 66 

Row%: 

100% 

Male Raw: 21 

Row%:29.6% 

Col%: 32.2% 

Raw: 18 

Row%: 25.4% 

Col%: 51.4% 

Raw: 32 

Row%: 45.0% 

Col%: 71.2% 

Raw: 71 

Row%: 

100% 

 

Total Raw: 58 

Col%: 100% 

Raw: 35 

Col%: 100% 

Raw: 44 

Col%: 100% 

137 

 

Using percentages is crucial when groups sizes aren’t equal. Focusing 

on row percentages or column percentages depends on the question 

you want to answer. In our case, we want to know whether flavor 

preference depends on gender. Because the two genders display in 

separate rows, we’ll look for differences in the row percentages. 

 

You can also use bar charts to display the results of a contingency ta-

ble. The clustered bar chart below displays the row percentages for 

the table above. I’ve set the graph to cluster the female and male pairs 

of bars together for each flavor, which makes comparisons easier. I 

think it gives a nice oomph to the tabular results. 
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This bar chart reiterates our conclusions from the first contingency 

table. Women in this sample prefer chocolate, men favor vanilla, and 

both genders have an equal preference for strawberry. 

Cautions About Graphing 

I’m sure you can tell that I love graphs! When you want a good, intui-

tive view of the data, graphs are great choices. However, I have two 

cautions about them. 

Manipulating Graphs 

Graphs are subject to manipulation. There might even be good moti-

vations behind the manipulation, such as making it look more dra-

matic. By changing aspects like the axes, or bin sizes on histograms, 

you can change the appearance of graphs substantially. The same data 

can look very different and seem to convey different interpretations. 

 

For example, the relationships in the two scatterplots below look very 

different. However, they’re displaying the same data. The first graph 

is more dramatic. 
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The following two boxplots also display the same dataset. The differ-

ence between the two groups appears more significant in the first plot. 

 



J im Frost  

58 

 
 

 
Anytime you look at a graph, carefully evaluate the scales! 

 

Numeric measures are more objective and not as easy to manipulate. 

Correlation coefficients and the difference between means don’t 

change based on the graph’s axes! That’s why I’ll often use summary 

statistics and graphs together. 
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Drawing Inferences About a Population Requires Additional 
Testing 

Graphs can help identify relationships in the data. You’ve seen exam-

ples of relationships between different types of variables.  

 

Graphs are excellent tools for bringing all of these relationships to life 

visually. However, if your goal is to use the sample to estimate rela-

tionships in a population, you’ll need to use a hypothesis test. There 

are other requirements as well, which we’ll explore later in the book.  

 

Hypothesis testing is beyond the scope of this book. In broad strokes, 

these tests determine whether relationships in your sample data are 

likely to exist in the population. The patterns you see in the graphs 

might be flukes based on random sampling error rather than denoting 

a real relationship in the population. Hypothesis tests play a critical 

role in separating the signal (real effects in the population) from the 

noise (random sampling error). This protective function helps pre-

vent you from mistaking random error for a real effect. 

 

Chapter 5 discusses many of these topics, including inferential statis-

tics, representative sampling, populations, and random sampling er-

ror. For now, understand that seeing patterns in graphs requires 

follow-up tests when you want to use a sample to estimate relation-

ships in a population.  

 

We’ll close this chapter with a bit of fun about changing the axes on 

graphs. It’s fun, but there’s a good point behind it all! 

Graphing and Philosophy 

As my family and I were being rattled around in a four-wheel drive 

vehicle in the remote Osa Peninsula in Costa Rica, it struck me that 

traveling to exotic locations is just like manually adjusting the scales 

on graphs! That’s probably not what you were expecting, but let me 

explain!  
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We love to travel. My family and I particularly enjoy traveling abroad. 

For us, you just can’t beat experiencing new customs, cultures, sights, 

and food. In fact, we joke that we have a case of chronic travel itch! 

The experiences and memories are priceless and last a lifetime. 

 

One of our favorite places is Costa Rica. We have hiked through rain-

forests, cloud forests, and up a volcano! In the process, we saw many 

tropical birds, monkeys, colorful frogs, snakes, and reptiles. On a night 

hike through the rainforest, we saw the deadliest snake in Costa Rica, 

the Bothrops asper. Our favorite place to stay is an ecolodge where we 

stay in a hut in the middle of the rainforest! 

 

What I realized during that bouncy ride is that travel provides a new 

perspective on life, just like adjusting the scales on graphs provides a 

new view of data. 

Automatic versus Manual Graph Scales 

I’ll explain this concept using the idea of a local view and a global view. 

When we were shopping for a new car, the salesman emphasized the 

smooth ride. Rough rides can be annoying. At that time, we were near 

home and just comparing the journey in the context of the smooth 

local roads. 

 

Those bumps were on a vastly different scale than the bumps on the 

rough road in remote Costa Rica. This contrast still makes me smile 

because we loved that fun ride in Costa Rica. Perhaps it’s not so im-

portant to eliminate all of the bumps from your life? That’s an im-

portant realization right there! 

 

Let’s graph the intensity of the bumps near home and the bumps in 

the jungle on time series plots. When you use automatic scaling in sta-

tistical software, the data fill the plot in a pleasant, visually appealing 

manner. I consider this the local view of your data. The data you meas-

ure fill your entire perspective. The graph is not taking a broader 
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perspective from outside the data into account. That’s like when 

you’re near home, and your daily life fills your entire view. 

 

The two graphs below look reasonably similar because they each use 

the automatically generated scale. The data fill the charts perfectly. 

Each one seems nice and normal. It’s that comfortable feeling of fa-

miliar surroundings. 
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However, the similarity disguises the vastly different experiences be-

tween the bumps near home versus those in the jungle! These graphs 

are analogous to how a local person in each place considers their 

bumps to be normal. Looking at the y-axes very carefully is the only 

way to notice the different scaling. Visually, the difference does not 

make an impact. 

When You Should Change Graph Scales 

Ideally, a chart should make differences in the data visually apparent. 

In the case of the roads, having traveled roads in both places, it was 

easy for me to compare them mentally. I used the broader perspective 

gained by going to the rainforest and applied it to my experiences at 

home. 

 

To do this with graphs, you need to adjust the scales manually. I’ll use 

the scale from the Jungle Bounces graph and apply it to my Home 

Bounces graph. The chart below uses the same home data but with the 

new y-axis scale. 
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This graph might look awkward or odd. All of the data are jammed 

down at the bottom with a large unused area above. However, it cer-

tainly brings the difference to life! It makes an impact. 

 

That, my friends, is what traveling is all about. You might feel a bit 

awkward or uncomfortable in a very different setting, but the new 

perspective makes an impact on you! 

Don’t Limit Yourself by Always Using Automatic Scaling 

In our daily lives, our minds construct a world view using something 

like automatic scaling. Whatever we experience regularly becomes 

the picture that fills our perspective. It’s what we consider normal. 

Everything gets neatly resized to fit the mental box—just like those 

first two graphs. 

 

The upside is that it produces that comfortable feeling. However, it’s 

also limiting because it doesn’t let you see the full picture. 

 

Travel to put your life data into a broader context and learn by com-

parison. 

 

Manually adjust your graph scales to place your numeric data into a 

larger context and make the graphs easier to compare. 

 

Exploring new environments and cultures is a fantastic way to stop 

using your mind’s automatic scaling and obtain a new perspective! 

You’ll learn new things, feel energized, and possibly be more creative 

because you can draw upon a broader range of experiences. 

 

With this broader context, you might find that things which look cru-

cial at first glance are actually trivial. Or vice versa. Explore, experi-

ence new things, and manually adjust your graph scales to gain new 

insights! 
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Summary and Next Steps 

This chapter covered the different types of data and how to graph 

them. In particular, you learned how to use graphs to understand the 

properties of the dataset and to look for relationships between differ-

ent types of variables.  

 

Type You can assess 

Continuous Spread, center, skew, order, infinite number of val-

ues between any two points, differences between 

values (intervals), and sometimes ratios. 

Discrete Counts. Nonnegative integers. Similar to continuous. 

However, cannot divide them into smaller compo-

nents. Finite number of points between two values. 

Categorical Finite number of values that do not have an order. No 

distances between values. Counts and percentages of 

values. 

Binary Categorical data with only two values. 

Ordinal Categorical data with a natural order. No fixed dis-

tances between values. 
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We also learned how various graphs can help us explore the proper-

ties of different data types. 

 

Graph Goals and Data 

Scatterplots Assess the relationship between pairs of continuous 

variables. 

Time series 

plot 

Assess changes in continuous variables over time. 

Histogram Assess distribution properties of a continuous varia-

ble. Optionally, include a categorical variable that 

defines groups to compare distributions. 

Boxplots Assess distribution properties of a continuous varia-

ble. Typically, include a categorical variable that de-

fines groups to compare distributions. Larger 

datasets are better. 

Individual 

value plots 

Assess distribution properties of a continuous varia-

ble. Optionally, include a categorical variable that 

defines groups to compare distributions. Smaller da-

tasets are better. 

Bar charts Compare counts or proportions of discrete, categor-

ical, binary, and ordinal data. 

Pie charts Show proportions of a whole for categorical, binary, 

and ordinal data. 

 

The process of setting up contrasts between groups in your data and 

seeing how the values of one variable depend on the value of another 

is a fundamental building block of identifying relationships and de-

signing experiments. We’ll explore that in much more detail later in 

the book. 
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Graphs provide an intuitive view of your dataset, but there are several 

cautions about using them. 

 

• Scaling can either amplify or diminish the appearance rela-

tionships between variables.  

• Making inferences about a population requires a hypothesis 

test. 

 

While this chapter focused on graphical representations of datasets 

and relationships, the next chapter details numeric measures of these 

properties.



 

  67 

C H A P T E R  3  

 

Summary Statistics and 
Relative Standing 

So far, we’ve looked at the big-picture view of the field of statistics, 

learned about the different types of data, how to graph them, and us-

ing graphs to describe datasets and find relationships. Graphs summa-

rize a dataset visually. Now we’ll move on to summarizing datasets 

with numbers.  

 

A summary statistic is a number derived from a dataset that summa-

rizes a property of the entire dataset. There are four categories of sum-

mary statistics: 

 

• Measures of central tendency or location, such as the mean. 

• Measures of spread or dispersion, such as the standard devia-

tion. 

• Measures of correlation or dependency, such as Pearson’s 

correlation coefficient. 

• Measures of the shape of a distribution, such as skewness or 

thickness of the tails. 
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In this chapter, we’ll go over the first three. Summary statistics about 

the shape of a distribution are not used as commonly and generally 

not covered in basic statistics. 

 

For good measure, you’ll also learn about percentiles, which measures 

the relative standing of an observation. Technically, it’s not a sum-

mary statistic, but it does indicate where a particular observation falls 

relative to the entire dataset. Although, as you’ll see, you can also use 

percentiles as a measure of central tendency and a measure of varia-

bility. 

 

In the previous chapter, I described how graphs provide a more intu-

itive feel for your data. I highly recommend using charts to explore 

your data and get a real sense for what it is saying. However, as you 

saw at the end of the chapter, graphs can give the wrong impression 

by changing the scaling of the axes. These problems are particularly 

prevalent when you’re comparing groups or assessing correlations be-

tween variables. 

 

Summary statistics help avoid these problems by providing an objec-

tive number. For example, the difference between means and corre-

lation coefficients do not change for a dataset. They are what they are 

because they use a consistent calculation method. 

Percentiles 

Percentiles are a great tool to use when you need to know the relative 

standing of a value. Where does a value fall within a distribution of 

values? While the concept behind percentiles is straight forward, 

there are different mathematical methods for calculating them. In this 

section, learn about percentiles, special percentiles and their surpris-

ingly flexible uses, and the various procedures for calculating them. 

 

Percentiles tell you how a value compares to other values. The general 

rule is that if value X is at the kth percentile, then X is greater than K% 

of the values. Let’s see how this information can be helpful. For 
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example, a person with an IQ of 120 is at the 91st percentile, which 

indicates that their IQ is higher than 91 percent of other scores. 

 

Often the units for raw test scores are not informative. When you ob-

tain a score on the SAT, ACT, or GRE, the units are meaningless by 

themselves. A total SAT score of 1340 is not inherently meaningful. 

Instead, you really want to know the percentage of test-takers that you 

scored better than. For the SAT, a total score of 1340 is approximately 

the 90th percentile. Congratulations, you scored better than 90% of the 

other test-takers. Only 10% scored better than you. Now that’s help-

ful! 

 

Sometimes measurement units are meaningful, but you still would like 

to know the relative standing. For example, if your one-month-old 

baby weighs five kilograms, you might wonder how that weight com-

pares to other babies. For a one-month old baby girl, that equates to 

the 77th percentile. Your little girl weighs more than 77% of other girls 

her age, while 23% weigh more than her. You know right where she 

fits in with her cohort! 

 

Special Percentiles 

We give names to particular percentiles. The 50th percentile is the me-

dian. This value splits a dataset in half. Half the values are below the 

50th percentile, and half are above it. The median is a measure of cen-

tral tendency in statistics. 

 

Quartiles are values that divide your data into quarters, and they are 

based on percentiles. 
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• The first quartile, also known as Q1 or the lower quartile, is 

the value of the 25th percentile. The bottom quarter of the 

scores fall below this value, while three-quarters fall above it. 

• The second quartile, also known as Q2 or the median, is the 

value of the 50th percentile. Half the scores are above and half 

below. 

• The third quartile, also known as Q3 or the upper quartile, is 

the value of the 75% percentile. The top quarter of the scores 

fall above this value, while three-quarters fall below it. 

 

The interquartile range (IQR) is a measure of dispersion in statistics. 

This range corresponds to the distance between the first quartile and 

the third quartile (IQR = Q3 – Q1). Larger IQRs indicate that the data 

are more spread out. The interquartile range represents the middle 

half of the data. One-quarter of the values fall below the IQR while 

another quarter of the values are above it. 

 

Percentiles are surprisingly versatile because you can use them pur-

poses other than just obtaining a relative standing. They can also di-

vide your dataset into portions, identify the central tendency, and 

measure the dispersion of a distribution. 

Calculating Percentiles Using Values in a Dataset 

Percentile is a fairly common word. Surprisingly, there isn’t a single 

standard definition for it. Consequently, there are multiple methods 

for calculating percentiles. In this chapter, I’ll cover three methods 

that analysts use to calculate percentiles when looking at the actual 

data values in a dataset. In chapter 4, I show how to calculate percen-

tiles using probability distributions. 

 

The following three definitions for percentiles based on data points 

define the kth percentile in the following different ways: 
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• The smallest value that is greater than k percent of the values. 

• The smallest value that is greater than or equal to k percent of 

values. 

• An interpolated value between the two closest ranks. 

 

While the first two definitions might not seem drastically different, 

they can produce significantly different results, particularly when you 

are working with a small dataset. As you will see, this difference oc-

curs because the first two definitions use different ranks that corre-

spond to different scores. The third definition mitigates this concern 

by interpolating between two ranks to estimate a percentile value that 

falls between two values. 

 

To calculate percentiles using these three approaches, start by ranking 

your dataset from the lowest to highest values. 

 

Let’s use these three methods with the following dataset (n=11) to 

find the 70th percentile. 
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Definition 1: Greater Than 

Using the first definition, we need to find the value that is greater than 

70% of the values, and there are 11 values. Take 70% of 11, which is 

7.7. Then, round 7.7 up to 8. Using the first definition, the value for 

the 70th percentile must be greater than eight values. Consequently, 

we pick the 9th ranked value in the dataset, which is 40. 

Definition 2: Greater Than or Equal To 

Using the second definition, we need to find the value that is greater 

than or equal to 70% of the values. Thanks to the “equal to” portion of 

the definition, we can use the 8th ranked value, which is 35. 

 

Using the first two definitions, we have found two values for the 70% 

percentile—35 and 40. 

Definition 3: Using an Interpolation Approach 

As you saw above, using either “greater” or “greater than or equal to” 

changes the results. Depending on the nature and size of your dataset, 

this difference can be substantial. Consequently, a third approach in-

terpolates between two data values. 

 

To calculate an interpolated percentile, do the following: 

 

1. Calculate the rank to use for the percentile. Use: rank = 

p(n+1), where p = the percentile and n = the sample size. For 

our example, to find the rank for the 70th percentile, we take 

0.7*(11 + 1) = 8.4. 

2. If the rank in step 1 is an integer, find the data value that cor-

responds to that rank and use it for the percentile. 

3. If the rank is not an integer, you need to interpolate between 

the two closest observations. For our example, 8.4 falls be-

tween 8 and 9, which corresponds to the data values of 35 and 

40. 
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4. Take the difference between these two observations and mul-

tiply it by the fractional portion of the rank. For our example, 

this is: (40 – 35)0.4 = 2. 

5. Take the lower-ranked value in step 3 and add the value from 

step 4 to obtain the interpolated value for the percentile. For 

our example, that value is 35 + 2 = 37. 

 

Using three standard calculations for percentiles, we find three differ-

ent values for the 70th percentile: 35, 37, and 40. 

 

Percentiles are a very intuitive way to understand where a value falls 

within a distribution of values. However, if you need to calculate a 

percentile, you’ll need to decide which method to use! 

Measures of Central Tendency 

A measure of central tendency is a summary statistic that represents 

the center point or typical value of a dataset. These measures indicate 

where most values in a distribution fall. In other words, it’s the central 

location of a distribution. You can think of it as the tendency of data 

to cluster around a middle value. In statistics, the three most common 

measures of central tendency are the mean, median, and mode. Each 

of these measures calculates the location of the central point using a 

different method. 

 

Choosing the best measure of central tendency depends on the type 

of data you have. In this section, I explore these measures of central 

tendency, show you how to calculate them, and how to determine 

which one is best for your data. 

 

Most texts you’ll read about the mean, median, and mode focus on 

how you calculate each one—and I’ll get to that as well. However, I’m 

going to start with a slightly different approach. My philosophy is to 

help you intuitively grasp statistics by focusing on concepts. Conse-

quently, I’m going to start by illustrating the central point of several 

datasets graphically—so you understand the goal. Then, we’ll move on 
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to choosing the best measure of central tendency for your data and 

the calculations. 

 

The three distributions below represent different data conditions. In 

each distribution, look for the region where the most common values 

fall. Even though the shapes and type of data are different, you can 

find that central location. That’s the area in the distribution where the 

most common values are located. 
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As the graphs highlight, you can see where most values tend to occur. 

That’s the concept. Measures of central tendency represent this idea 

with a value. Coming up, you’ll learn that as the distribution and type 

of data changes, so does the best measure of central tendency. Conse-

quently, you need to know the kind of data you have, and graph it, 

before choosing a measure of central tendency! 

Mean 

The mean is the arithmetic average, and it is probably the measure of 

central tendency with which you are most familiar. Calculating the 

mean is very simple. You just add up all of the values and divide by 

the number of observations in your dataset. 

 

 
 

The calculation of the mean incorporates all values in the data. If you 

change any value, the mean changes. However, the mean doesn’t al-

ways locate the center of the data accurately. Observe the histograms 

below where I display the mean in the distributions. 
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In a symmetric distribution, the mean locates the center accurately. 

 

 
However, in a skewed distribution, the mean can miss the mark. In 

the histogram above, it starts to fall outside the central area. This prob-

lem occurs because outliers have a substantial impact on the mean. 

Extreme values in an extended tail pull the mean away from the cen-

ter. As the distribution becomes more skewed, the mean is drawn fur-

ther away from the center. Consequently, it’s best to use the mean as 

a measure of the central tendency when you have a symmetric distri-

bution. 
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When to use the mean: Symmetric distribution, Continuous data 

Median 

The median is the middle value. It is the value that splits the dataset 

in half. To find the median, order your data from smallest to largest, 

and then find the data point that has an equal amount of values above 

it and below it. The method for locating the median varies slightly de-

pending on whether you have an even or odd number of values. I’ll 

show you how to find the median for both cases. In the examples be-

low, I use whole numbers for simplicity, but you can have decimal 

places. 

 

In the dataset with the odd number of observations, notice how the 

number 12 has six values above it and six below it. Therefore, 12 is 

the median of this dataset. 

 

 
When there is an even number of values, you count in to the two in-

nermost values and then take the average. The average of 27 and 29 is 

28. Consequently, 28 is the median of this dataset. 
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Outliers and skewed data have a smaller effect on the median. To un-

derstand why, imagine we have the Median dataset below and find 

that the median is 46. However, we discover data entry errors and 

need to change four values, which I’ve shaded in the Median Fixed 

dataset. We’ll make them all significantly higher so that we now have 

a skewed distribution with large outliers. 
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As you can see, the median doesn’t change at all. It is still 46. Unlike 

the mean, the median value doesn’t depend on all the values in the 

dataset. Consequently, when some of the values are more extreme, 

the effect on the median is smaller. Of course, with other types of 

changes, the median can change. When you have a skewed distribu-

tion, the median is a better measure of central tendency than the 

mean. 

Comparing the mean and median 

Now, let’s test the median on the symmetrical and skewed distribu-

tions to see how it performs, and I’ll include the mean on the histo-

grams so we can make comparisons. 

 

 
In a symmetric distribution, the mean and median both find the center 

accurately. They are approximately equal. 
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In skewed distributions, outliers in the tail pull the mean from the cen-

ter towards the longer tail. For this example, the mean and median 

differ by over 9000, and the median better represents the central ten-

dency for the distribution. 

 

These data are based on the U.S. household income for 2006. Income 

is a classic example of when to use the median because it tends to be 

skewed. The median indicates that half of all incomes fall below 

27581, and half are above it. For these data, the mean overestimates 

where most household incomes fall. 

 

When to use the median: Skewed distribution, Continuous data, Or-

dinal data 

Mode 

The mode is the value that occurs the most frequently in your data set. 

On a bar chart, the mode is the highest bar. When the data have mul-

tiple values that tie for occurring most often, you have a multimodal 

distribution. If no value repeats, the data do not have a mode. 

 

In the dataset below, the value 5 occurs most frequently, which makes 

it the mode. These data might represent a 5-point Likert scale. 
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Typically, you use the mode with categorical, ordinal, and discrete 

data. In fact, the mode is the only measure of central tendency that 

you can use with categorical data—such as the most preferred flavor 

of ice cream. However, with categorical data, there isn’t a central 

value because you can’t order the groups. With ordinal and discrete 

data, the mode can be a value that is not in the center. Again, the mode 

represents the most common value. 

 

 
In the graph of service quality, Very Satisfied is the mode of this dis-

tribution because it is the most common value in the data. Notice how 

it is at the extreme end of the distribution. I’m sure the service pro-

viders are pleased with these results! 
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Finding the mode for continuous data 

In the continuous data below, no values repeat, which means there is 

no mode. With continuous data, it is unlikely that two or more values 

will be exactly equal because there are an infinite number of values 

between any two values. 

 

 
When you are working with the raw continuous data, don’t be sur-

prised if there is no mode. However, you can find the mode for con-

tinuous data by locating the maximum value on a probability 

distribution plot. If you can identify a probability distribution that fits 

your data, find the peak value, and use it as the mode. In chapter 4, 

you’ll learn probability distributions in much more detail. For now, 

just note that probability distribution plots are the best way to find a 

mode for continuous data. 

 

The probability distribution plot displays a lognormal distribution that 

has a mode of 16700. This distribution corresponds to the U.S. house-

hold income example in the median section. 
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When to use the mode: Categorical data, Ordinal data, Count data, 

Probability Distributions 

Which One to Use? 

When you have a symmetrical distribution for continuous data, the 

mean, median, and mode are equal. In this case, analysts tend to use 

the mean because it includes all of the data in the calculations. How-

ever, if you have a skewed distribution, the median is often the best 

measure of central tendency. 

 

When you have ordinal data, the median or mode is usually the best 

choice. For categorical data, you have to use the mode. 

Measures of Variability 

A measure of variability is a summary statistic that represents the 

amount of dispersion in a dataset. How spread out are the values? 

While a measure of central tendency describes the typical value, 

measures of variability define how far away the data points tend to fall 

from the center. We talk about variability in the context of a distribu-

tion of values. A low dispersion indicates that the data points tend to 

be clustered tightly around the center. High dispersion signifies that 

they tend to fall further away. 
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In statistics, variability, dispersion, and spread are synonyms that de-

note the width of the distribution. Just as there are multiple measures 

of central tendency, there are several measures of variability. In this 

section, you’ll learn why understanding the variability of your data is 

critical. Then, I explore the most common measures of variability—

the range, interquartile range, variance, and standard deviation. I’ll 

help you determine which one is best for your data. 

 

The two plots below show the difference graphically for distributions 

with the same mean but more and less dispersion. The panel on the 

left shows a distribution that is tightly clustered around the average, 

while the distribution in the right panel is more spread out. 

 

 

Why Understanding Variability is Important 

Let’s take a step back and first get a handle on why understanding var-

iability is so essential. Analysts frequently use the mean to summarize 

the center of a population or a process. While the mean is relevant, 

people often react to variability even more. When a distribution has 

lower variability, the values in a dataset are more consistent. How-

ever, when the variability is higher, the data points are more dissimilar 
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and extreme values become more likely. Consequently, understand-

ing variability helps you grasp the likelihood of unusual events. 

 

In some situations, extreme values can cause problems! Have you 

seen a weather report where the meteorologist shows extreme heat 

and drought in one area and flooding in another? It would be nice to 

average those together! Frequently, we feel discomfort at the ex-

tremes more than the mean. Understanding that variability around the 

mean provides critical information. 

 

Variability is everywhere. Your commute time to work varies a bit 

every day. When you order a favorite dish at a restaurant repeatedly, 

it isn’t exactly the same each time. The parts that come off an assembly 

line might appear to be identical, but they have subtly different 

lengths and widths. 

 

These are all examples of real-life variability. Some degree of variation 

is unavoidable. However, too much inconsistency can cause prob-

lems. If your morning commute takes much longer than the mean 

travel time, you will be late for work. If the restaurant dish is much 

different than how it is usually, you might not like it at all. And, if a 

manufactured part is too much out of spec, it won’t function as in-

tended. 

 

Distributions with greater variability produce observations with unu-

sually large and small values more frequently than distributions with 

less variability. 

Example of Different Amounts of Variability 

Let’s take a look at two hypothetical pizza restaurants. They both ad-

vertise a mean delivery time of 20 minutes. When we’re ravenous, 

they sound equally good! However, this equivalence can be deceptive! 

To determine the restaurant that you should order from when you’re 

hungry, we need to analyze their variability. 
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Suppose we study their delivery times, calculate the variability for 

each place, and determine that their variation is different. We’ve com-

puted the standard deviations for both restaurants—which is a meas-

ure that we’ll come back to later. How significant is this difference in 

getting pizza to their customers promptly? 

 

The graphs below display the distribution of delivery times and pro-

vide the answer. The restaurant with more variable delivery times has 

a broader distribution curve. I’ve used the same scales in both graphs 

so you can visually compare the two distributions. 
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In these graphs, we consider a 30-minute wait or longer to be unac-

ceptable. We’re hungry after all! The shaded area in each chart repre-

sents the proportion of delivery times that surpass 30 minutes. Nearly 

16% of the deliveries for the high variability restaurant exceed 30 

minutes. On the other hand, only 2% of the deliveries take too long 

with the low variability restaurant. They both have an average deliv-

ery time of 20 minutes, but I know where I’d place my order when I’m 

hungry! 

 

As this example shows, the central tendency doesn’t provide com-

plete information. We also need to understand the variability around 

the middle of the distribution to get the full picture. Now, let’s move 

on to the different ways of measuring variability! 

Range 

Let’s start with the range because it is the most straightforward meas-

ure of variability to calculate and the simplest to understand. The 

range of a dataset is the difference between the largest and smallest 

values in that dataset. For example, in the two datasets below, dataset 

1 has a range of 20 – 38 = 18 while dataset 2 has a range of 11 – 52 = 

41. Dataset 2 has a broader range and, hence, more variability than 

dataset 1. 

 

 
While the range is easy to understand, it is based on only the two most 

extreme values in the dataset, which makes it very susceptible to out-

liers. If one of those numbers is unusually high or low, it affects the 

entire range even if it is atypical. 
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Additionally, the size of the dataset affects the range. In general, you 

are less likely to observe extreme values. However, as you increase 

the sample size, you have more opportunities to obtain extreme val-

ues. Consequently, when you draw random samples from the same 

population, the range tends to increase as the sample size increases. 

Accordingly, use the range to compare variability only when the sam-

ple sizes are similar. 

The Interquartile Range (IQR) . . . and other Percentiles 

As you learned before, the interquartile range is the middle half of the 

data. To visualize it, think about the median value that splits the da-

taset in half. Similarly, you can divide the data into quarters. Statisti-

cians refer to these quarters as quartiles and denote them from low to 

high as Q1, Q2, and Q3. The lowest quartile (Q1) contains the quarter 

of the dataset with the smallest values. The upper quartile (Q3) in-

cludes the quarter of the dataset with the highest values. The inter-

quartile range is the middle half of the data that is in between the 

upper and lower quartiles. In other words, the interquartile range in-

cludes the 50% of data points that fall between Q1 and Q3. The IQR is 

the red area in the graph below. 
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The broader the IQR, the higher the variability in your dataset. Addi-

tionally, the interquartile range is a robust measure of variability like 

the median is a robust measure of central tendency. Outliers don’t dra-

matically influence either measure because neither depends on every 

value. Additionally, the interquartile range is excellent for skewed dis-

tributions, just like the median. As you’ll learn, when you have a nor-

mal distribution, the standard deviation tells you the percentage of 

observations that fall specific distances from the mean. However, this 

doesn’t work for skewed distributions, and the IQR is an excellent al-

ternative. 

 

I’ve divided the dataset below into quartiles. The interquartile range 

extends from the low end of Q2 to the upper limit of Q3. For this da-

taset, the IQR is 21 – 39. 

 

 

Using other percentiles 

When you have a skewed distribution, I find that reporting the me-

dian with the interquartile range is a particularly good combination. 
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The interquartile range is equivalent to the region between the 75th 

and 25th percentile (75 – 25 = 50% of the data). You can also use other 

percentiles to determine the spread of different proportions. For ex-

ample, the range between the 97.5th percentile and the 2.5th percen-

tile covers 95% of the data.  

Variance 

Variance is the average squared difference of the values from the 

mean. Unlike the previous measures of variability, variance includes 

all values in the calculation by comparing each value to the mean. To 

calculate this statistic, you calculate a set of squared differences be-

tween the data points and the mean, sum them, and then divide by the 

number of observations. Hence, it’s the average squared difference. 

 

There are two formulas for variance depending on whether you are 

calculating variance for an entire population or using a sample to esti-

mate the population variance. The equations are below, and then I 

work through an example in a table to help bring it to life. 

Population variance 

The formula for the variance of an entire population is the following: 

 

 
In the equation, σ2 is the population parameter for the variance, μ is 

the parameter for the population mean, and N is the number of data 

points, which should include the entire population. 

Sample variance 

To use a sample to estimate the variance for a population, use the fol-

lowing formula. Using the previous equation with sample data tends 

to underestimate the variability. Because it’s usually impossible to 

measure an entire population, statisticians use the equation for sample 

variances much more frequently. 
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In the equation, s2 is the sample variance, and M is the sample mean. 

N-1 in the denominator corrects for the tendency of a sample to un-

derestimate the population variance. 

Example of calculating the sample variance 

I’ll work through an example using the sample variance formula on a 

dataset with 17 observations in the table below. The numbers in pa-

rentheses represent the corresponding table column number. The 

procedure involves taking each observation (1), subtracts the sample 

mean (2) to calculate the difference (3), and squares that difference 

(4). Then, I sum the squared differences at the bottom of the table. 

Finally, I take the sum and divide by 16 because I’m using the sample 

variance equation with 17 observations (17 – 1 = 16). The variance 

for this dataset is 201. 

 



J im Frost  

92 

 
Because the calculations use the squared differences, the variance is 

in squared units rather the original units of the data. While higher val-

ues of the variance indicate greater variability, there is no intuitive 

interpretation for specific values. Despite this limitation, various sta-

tistical tests use the variance in their calculations.  

 

While it is difficult to interpret the variance itself, the standard devi-

ation resolves this problem! 

Standard Deviation 

The standard deviation is the standard or typical difference between 

each data point and the mean. When the values in a dataset are 
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grouped closer together, you have a smaller standard deviation. On 

the other hand, when the values are spread out more, the standard 

deviation is larger because the standard distance is greater. 

 

Conveniently, the standard deviation uses the original units of the 

data, which makes interpretation easier. Consequently, the standard 

deviation is the most widely used measure of variability. For example, 

in the pizza delivery example, a standard deviation of 5 indicates that 

the typical delivery time is plus or minus 5 minutes from the mean. 

It’s often reported along with the mean: 20 minutes (s.d. 5). 

 

The standard deviation is just the square root of the variance. Recall 

that the variance is in squared units. Hence, the square root returns 

the value to the natural units. The symbol for the standard deviation 

as a population parameter is σ while s represents it as a sample esti-

mate. To calculate the standard deviation, calculate the variance as 

shown above, and then take the square root of it. Voila! You have the 

standard deviation! 

 

In the variance section, we calculated a variance of 201 in the table. 

 

 
 

Therefore, the standard deviation for that dataset is 14.177. 

 

When you have normally distributed data, or approximately so, the 

standard deviation becomes particularly valuable. You can use it to 

determine the proportion of the values that fall within a specified 

number of standard deviations from the mean. In chapter 4, I describe 

the Empirical Rule, which is how statisticians refer to this property, in 

the section about the Normal distribution. 
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Which One to Use? 

First off, I’m crossing variance off the list because it is in squared units 

and doesn’t provide an intuitive interpretation. Let’s consider the oth-

ers. 

 

When you are comparing samples that are the same size, consider us-

ing the range as the measure of variability. It’s a reasonably intuitive 

statistic. Just be aware that a single outlier can throw the range off. 

The range is particularly suitable for very small samples that don't 

have enough data to calculate the other measures reliably. Further-

more, the likelihood of obtaining an outlier is also lower for small sam-

ples. 

 

When you have a skewed distribution, the median is a better measure 

of central tendency. Because the median is the 50th percentile, it 

makes sense to pair it with either the interquartile range or other per-

centile-based range. 

 

For normally distributed data, or even data that aren’t terribly 

skewed, using the tried and true combination reporting the mean and 

the standard deviation is the way to go. This combination is by far the 

most common.  

Comparing Summary Statistics between Groups 

In chapter 2, you saw how to assess the relationship between a cate-

gorical variable and a continuous variable using a boxplot. We saw 

how the central tendency and variability differs between groups. For 

reference, that boxplot is below. Now, let’s do the same analysis but 

using the numeric measures of the mean and standard deviation.  
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Now, let’s calculate the mean and standard deviation for these groups. 

 

 
When assessing the boxplot visually, we noticed the following simi-

larities and differences. Method 1 and 2 have nearly identical medians, 

but Method 1 has somewhat more variability. Method 3 has the high-

est variability. Method 4 has the highest median.  

 

The summary statistics reflect the boxplot findings, although the box-

plot displays medians while we’re calculating the mean. Method 4 has 

the highest mean. Method 3 has the highest standard deviation. 

Method 1 and 2 have nearly identical means and standard deviations. 

These values quantify the patterns in the graph.  

Correlation 

A correlation between variables indicates that as one variable changes 

in value, the other variable tends to change in a specific direction. Or, 
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you can state it as a dependency. The value of one variable depends, 

to some degree, upon the value of another variable. Correlation 

measures the strength of that association. 

 

Understanding that relationship is useful because we can use the value 

of one variable to predict the value of the other variable. For example, 

height and weight are correlated—as height increases, weight also 

tends to increase. Consequently, if we observe an unusually tall indi-

vidual, we can predict that his weight is also above the average. 

 

In statistics, correlation coefficients are a quantitative assessment that 

measures both the direction and the strength of this tendency to vary 

together. There are different types of correlation that you can use for 

different kinds of data. In this section, I cover the most common type 

of correlation—Pearson’s correlation coefficient. Pearson’s measures 

the strength of the relationship between a pair of continuous varia-

bles. 

 

Before we get into the numbers, let’s graph some data first so we can 

understand the concept behind what we are measuring. 

 

As I showed in chapter 2, scatterplots are a great way to check for 

relationships between pairs of continuous data. The scatterplot below 

displays the height and weight of pre-teenage girls that we saw before. 

Each dot on the graph represents an individual girl and her combina-

tion of height and weight. These data are actual data that I collected 

during an experiment. 
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At a glance, you can see that there is a relationship between height and 

weight. As height increases, weight also tends to increase. However, 

it’s not a perfect relationship. If you look at a specific height, say 1.5 

meters, you can see that there is a range of weights associated with it. 

You can also find short people who weigh more than taller people. 

However, the general tendency that height and weight increase to-

gether is unquestionably present. 

 

Pearson’s correlation takes all of the data points on this graph and rep-

resents them as a single number. In this case, the statistical output be-

low indicates that the Pearson’s correlation coefficient is 0.694. 

 

 
What does the correlation mean? We’ll interpret the output soon. 

First, let’s look at a range of possible correlation coefficients so we can 

understand how our height and weight example fits in. 

Interpreting Correlation Coefficients 

Pearson’s correlation coefficient is represented by the Greek letter 

rho (ρ) for the population parameter and r for a sample statistic. This 
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correlation coefficient is a single number that measures both the 

strength and direction of the linear relationship between two contin-

uous variables. Values can range from -1 to +1. 

 

• Strength: The greater the absolute value of the correlation co-

efficient, the stronger the relationship.  

o The extreme values of -1 and 1 indicate a perfectly 

linear relationship where a change in one variable is 

accompanied by a perfectly consistent change in the 

other. For these relationships, all of the data points 

fall on a line. In practice, you won’t see either type of 

perfect relationship. 

o A coefficient of zero represents no linear relation-

ship. As one variable increases, there is no tendency 

in the other variable to either increase or decrease. 

o When the value is in-between 0 and +1/-1, there is a 

relationship, but the points don’t all fall on a line. As 

r approaches -1 or 1, the strength of the relationship 

increases, and the data points tend to fall closer to a 

line. 

 

• Direction: The sign of the correlation coefficient represents 

the direction of the relationship.  

o Positive coefficients indicate that when the value of 

one variable increases, the value of the other variable 

also tends to increase. Positive relationships produce 

an upward slope on a scatterplot. 

o Negative coefficients represent indicate that when 

the value of one variable increases, the value of the 

other variable tends to decrease. Negative relation-

ships produce a downward slope. 
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Examples of Positive and Negative Correlation Coefficients 

An example of a positive correlation is the relationship between the 

speed of a wind turbine and the amount of energy it produces. As the 

turbine speed increases, electricity production also increases. 

 

An example of a negative correlation is the relationship between out-

door temperature and heating costs. As the temperature increases, 

heating costs decrease. 

Graphs for Different Correlation Coefficients 

Charts always help bring concepts to life. The scatterplots below rep-

resent a spectrum of different correlation coefficients. I’ve held the 

horizontal and vertical scales of the scatterplots constant to allow for 

valid comparisons between them. 

 

Correlation Coefficient = +1: A perfect positive relationship. 
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Correlation Coefficient = 0.8: A fairly strong positive relationship. 

 
Correlation Coefficient = 0.6: A moderate positive relationship. 

 
Correlation Coefficient = 0: No relationship. As one value increases, 

there is no tendency for the other value to change in a specific direc-

tion. 
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Correlation Coefficient = -1: A perfect negative relationship. 

 
Correlation Coefficient = -0.8: A fairly strong negative relationship. 

 
Correlation Coefficient = -0.6: A moderate negative relationship. 

 

Discussion about the Scatterplots 

For the scatterplots above, I created one positive relationship between 

the variables and one negative relationship between the variables. 
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Then, I varied only the amount of dispersion between the data points 

and the line that defines the relationship. That process illustrates how 

correlation measures the strength of the relationship. The stronger 

the association, the closer the data points fall to the line. I didn’t in-

clude plots for weaker correlations that are closer to zero than 0.6 and 

-0.6 because they start to look like blobs of dots and it’s hard to see 

the relationship. 

 

A common misinterpretation is assuming that negative correlation co-

efficients indicate there is no relationship. After all, a negative corre-

lation sounds suspiciously like no relationship. However, the 

scatterplots for the negative correlations display real relationships. 

For negative correlation coefficients, high values of one variable are 

associated with low values of another variable. For example, there is 

a negative correlation between school absences and grades. As the 

number of absences increases, the grades decrease. 

 

Earlier I mentioned how crucial it is to graph your data to understand 

them better. However, a quantitative measurement of the relationship 

does have an advantage. Graphs are a great way to visualize the data, 

but the scaling can exaggerate or weaken the appearance of a relation-

ship. Additionally, the automatic scaling in most statistical software 

tends to make all data look similar. 

 

Fortunately, Pearson’s correlation coefficients are unaffected by scal-

ing issues. Consequently, a statistical assessment is better for deter-

mining the precise strength of the relationship. 

 

Graphs and the relevant statistical measures often work better in tan-

dem. 

Interpreting our Height and Weight Correlation Example 

Now that we have seen a range of positive and negative relationships, 

let’s see how our correlation coefficient of 0.694 fits in. We know that 

it’s a positive relationship. As height increases, weight tends to 



In t roduct ion  to  Stat ist ics :  An  Intu it ive  Gu ide 

103 

increase. Regarding the strength of the relationship, the graph shows 

that it’s not a very strong relationship where the data points tightly 

hug a line. However, it’s not an entirely amorphous blob with a very 

low correlation. It’s somewhere in between. That description matches 

our moderate correlation coefficient of 0.694. 

Pearson’s Measures Linear Relationship 

Pearson’s correlation coefficients measure only linear relationships. 

Consequently, if your data contain a curvilinear relationship, the cor-

relation coefficient will not detect it. For example, the correlation for 

the data in the scatterplot below is zero. However, there is a relation-

ship between the two variables—it’s just not linear. 

 
This example illustrates another reason to graph your data! Just be-

cause the coefficient is near zero, it doesn’t necessarily indicate that 

there is no relationship. 

Correlation Does Not Imply Causation 

I’m sure you’ve heard this expression before, and it is a crucial warn-

ing. Correlation between two variables indicates that changes in one 

variable are associated with changes in the other variable. However, 

correlation does not mean that changes in one variable actually cause 

changes in the other variable. 



J im Frost  

104 

 

Sometimes it is clear that there is a causal relationship. For the height 

and weight data, it makes sense that adding more vertical structure to 

a body causes the total mass to increase. Or, increasing the wattage of 

lightbulbs causes the light output to increase. 

 

However, in other cases, a causal relationship does not exist. Instead, 

it’s merely an association. As the value of variable A increases, the 

value of variable B also increases. However, if it is correlation but not 

causation, then the changes in variable A are not causing the changes 

in variable B.  

 

How does it come to be that variables are correlated but do not have 

a causal relationship? A common reason is a spurious correlation. A 

spurious correlation is a situation where two variables appear to have 

an association, but in reality, a third factor causes that association. 

That third factor is known as a confounding variable. A confounding 

variable correlates with both of your variables of interest and can cre-

ate confusion about which relationships are causal and which are 

merely spurious associations. In a study, the confounding variable 

might be the real causal factor!  

 

For example, ice cream sales and shark attacks have a positive corre-

lation. Clearly, selling more ice cream does not cause shark attacks (or 

vice versa).  

 

In this example, the number of people at the beach is a confounding 

variable. Again, a confounding variable correlates with both variables 

of interest—ice cream and shark attacks in our example. 

 

In the diagram below, imagine that as the number of people increases, 

ice cream sales also tend to increase. In turn, more people at the beach 

cause shark attacks to increase because the sharks have more oppor-

tunities. The correlation structure creates an apparent, or spurious, 



In t roduct ion  to  Stat ist ics :  An  Intu it ive  Gu ide 

105 

correlation between ice cream sales and shark attacks, but it isn’t cau-

sation. 

 

 
Confounders are a common reason for non-causal associations be-

tween variables. In statistics, you typically need to perform a random-

ized, controlled experiment to determine that a relationship is causal 

rather than merely correlation—which we’ll cover in chapter 7. 

How Strong of a Correlation is Considered Good? 

What is a good correlation? How high should it be? I am frequently 

asked these questions. I have seen several schemes that attempt to 

classify correlations as strong, medium, and weak. 

 

However, there is only one correct answer. The correlation coeffi-

cient should accurately reflect the strength of the relationship. Take a 

look at the correlation between the height and weight data, 0.694. It’s 

not a very strong relationship, but it accurately represents our data. 

Accurate representations are the best-case scenario for using a statis-

tic to describe an entire dataset. 

 

The strength of any relationship naturally depends on the specific pair 

of variables. Some research questions involve weaker relationships 

than other subject areas. Case in point, humans are hard to predict. 
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Studies that assess relationships involving human behavior tend to 

have correlation coefficients weaker than +/- 0.6. 

 

However, if you analyze two variables in a physical process, and have 

very precise measurements, you might expect correlations near +1 or 

-1. There is no one-size-fits-all best answer for how strong a relation-

ship should be. The correct correlation value depends on your study 

area. 

Summary and Next Steps 

In this chapter, we covered measures of central tendency, measures 

of variability, and correlation coefficients. They are summary statis-

tics that describe a dataset using a single number. Importantly, you 

learned how the properties of your dataset play a role in determining 

which measures to use. Additionally, the chapter showed how these 

measures relate to, and complement, the graphs we’ve been using. 

 

We also covered percentiles. Percentiles represent the relative stand-

ing of a value within a dataset or population. Percentiles are helpful 

when you need to know where a specific value falls within a distribu-

tion of values. Percentiles are especially flexible because you can also 

use them as measures of central tendency (median) and variability 

(IQR). 

 

Up to this point, we’ve discussed the center and spread of distribu-

tions by using graphs and summary statistics to reveal these proper-

ties. The next chapter focuses on probability distributions, which are 

mathematical functions that describe distributions and calculate prob-

abilities. 
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C H A P T E R  4  

 

Probability Distributions 

In statistics, random variables are characteristics that you can observe, 

but you don’t control them. They can be a characteristic, measure-

ment, or a count that varies randomly according to a function. Ran-

dom in this context indicates that you don’t know the value of the next 

observation, but you do know the probability associated with values 

and ranges of values.  

 

A probability distribution is a mathematical function that describes 

the probabilities for all possible outcomes of a random variable. In 

other words, the frequency of the observed values varies based on the 

underlying probability distribution. 

 

These technical descriptions make the concept sound more compli-

cated than it actually is. Just imagine any characteristic that you meas-

ure for an experiment, a study, or just something in which you’re 

interested. The values for this characteristic that you observe will vary 

based on underlying probabilities. Probability distributions display 

the probabilities for all possible values. 

 

Suppose you draw a random sample and measure the heights of the 

subjects. As you measure heights, you’ll notice that some heights are 

more common while others are rare. Probability distributions are use-

ful when you need to know which outcomes are most likely, the 
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spread of potential values, and the likelihood of different results. 

What is the probability that the next height measurement will be taller 

than two meters? 

 

We’ve discussed the properties of distributions in histograms, and 

probability distributions are similar. They have a shape, center, and 

spread. However, the focus for probability distributions is, unsurpris-

ingly, on the probabilities of the outcomes. Importantly, probability 

distributions describe populations while histograms represent sam-

ples.  

 

In this chapter, you’ll learn about probability distributions for both 

discrete and continuous variables. I’ll show you how they work and 

examples of how to use them. But first, some notation and rules. 

 

Probability distributions indicate the likelihood of an event or out-

come. Statisticians use the following notation to describe probabili-

ties: 

 

p(x) = the likelihood that random variable takes a specific value of x. 

 

The sum of all probabilities for all possible values must equal 1. Fur-

thermore, the probability for a particular value or range of values must 

be between 0 and 1, inclusive. 

 

Probability distributions describe the dispersion of the values for a 

random variable. Consequently, the kind of variable determines the 

type of probability distribution. For a single random variable, statisti-

cians divide distributions into the following two types: 

 

• Discrete probability distributions for discrete variables 

• Probability density functions for continuous variables 

 

You can use equations and tables of variable values and probabilities 

to represent a probability distribution. However, I prefer to graph 



In t roduct ion  to  Stat ist ics :  An  Intu it ive  Gu ide 

109 

them using probability distribution plots. As you’ll notice in the ex-

amples that follow, the differences between discrete and continuous 

probability distributions are immediately apparent. You’ll see why I 

love these graphs! 

Discrete Probability Distributions 

Discrete probability functions are also known as probability mass 

functions and can assume a set of distinct values. For example, coin 

tosses and counts of events are discrete functions. These are discrete 

distributions because there are no in-between values. For example, 

you can have only heads or tails in a coin toss. Similarly, if you’re 

counting the number of books that a library checks out per hour, you 

can count 21 or 22 books, but nothing in between. 

 

For discrete probability distribution functions, each possible value has 

a non-zero likelihood. Furthermore, the probabilities for all possible 

values must sum to one. Because the total probability is 1, one of the 

values must occur for each opportunity. 

 

For example, the likelihood of rolling a specific number on a die is 1/6. 

The total probability for all six values equals one. When you throw a 

die, you inevitably obtain one of the possible values. 

 

If the discrete distribution has a finite number of values, you can dis-

play all the values with their corresponding probabilities in a table. 

For example, according to a study, the likelihood of the number of 

cars in a California household is the following: 
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Types of Discrete Distribution 

There are a variety of discrete probability distributions that you can 

use to model different types of data. The correct discrete distribution 

depends on the properties of your data. For example, use the: 

 

• Binomial distribution to model binary data, such as coin 

tosses. 

• Poisson distribution to model count data, such as the count of 

library book checkouts per hour. 

• Uniform distribution to model multiple events with the same 

probability, such as rolling a die. 

 

Analysts use discrete distributions for binary data most frequently. 

Consequently, they’ll be my focus in this chapter. 

Binomial and Other Distributions for Binary Data 

Binary data occur when you can place an observation into only two 

categories. It tells you that an event occurred or that an item has a 

particular characteristic. For instance, an inspection process produces 

binary pass/fail results. Or, when a customer enters a store, there are 

two possible outcomes—sale or no sale. In a flu vaccination study, the 

binary outcomes for the human subjects are either “infected” or “not 

infected” with the flu. 

 

At a basic level, binary data allow you to calculate proportions and 

percentages easily. What is the proportion of items that pass the in-

spection? What percentage of customers make a purchase?  

 

In this section, I show you how to use the binomial, geometric, nega-

tive binomial, and the hypergeometric distributions to glean more in-

formation from your binary data. Use these distributions to model 

probabilities and the frequency of occurrences. For example: 
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• How many times is an event likely to occur? 

• When is the first instance probable? 

• How many opportunities do I need to produce a specific num-

ber of events? 

 

Being able to answer these questions can be quite valuable. How do 

you provide these answers? All you need are several convenient, dis-

crete probability distributions designed for binary data. I’ll show you 

the benefits of using the binomial, geometric, negative binomial, and 

hypergeometric distributions. Each of these distributions allows you 

to answer different questions about your binary data. 

Assumptions for Using Probability Distributions for Binary 
Data 

To use the binomial, geometric, negative binomial, and the hypergeo-

metric distributions, you need to satisfy the following assumptions. 

 

1. There are only two possible outcomes per trial. For exam-

ple, accept or reject, sale or no sale, etc. 

2. Each trial is independent (except for hypergeometric). The 

result of one trial does not affect the results of another trial. 

For instance, when flipping a coin, the outcome of a coin toss 

doesn’t influence the next coin toss. 

3. The probability remains constant over time (except for hy-

pergeometric). In some cases, this assumption is valid based 

on the physical properties, such as flipping a coin. However, 

if there is a chance the probability can change over time, you 

can use the P chart (a control chart) to confirm this assump-

tion. For example, the likelihood that a process produces de-

fective products might change over time. 

 

Throughout most of these distributions, I’ll use a die rolling example. 

Assume that we’re playing a game where rolling a 6 is very advanta-

geous. In this scenario, rolling a 6 is binary because an observation can 

be either a 6 or not a 6. The probability of rolling a 6 is 1/6, or about 
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0.1667. We’ll use the binomial, geometric, and negative binomial dis-

tributions to calculate probabilities for how many 6s we’ll roll, when 

they’ll first appear, and the likelihood of observing a certain number 

of 6s. 

 

In the examples, I’ll show you when to use each distribution and how 

to interpret the results. I’ll cover both how to understand the proba-

bility for a specific outcome and the cumulative probability for a range 

of outcomes. Consequently, it’s essential to notice differences be-

tween the probabilities for discrete values (each bar in the graphs) 

and cumulative probabilities that sum probabilities for all bars in a 

shaded region. 

Binomial Distribution 

Use the binomial distribution to calculate probabilities that an event 

occurs a certain number of times in a set number of trials. Specifically, 

it calculates the probability of X events happening within N trials. 

 

Suppose you want to determine how likely it is to roll 6s on a die when 

you roll it ten times. Additionally, let’s learn the cumulative probabil-

ity of rolling 6s four or more times. 

 

I’ll use statistical software to graph the results using the binomial dis-

tribution and enter a probability of 0.1667 and specify ten trials. 
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The graph displays the probability of rolling a 6 each number of times 

when you roll the die ten times. For example, the highest probability 

(0.32) occurs with rolling a 6 precisely one time in ten rolls. We have 

a 16% chance of rolling no 6s. We also want to determine the proba-

bility of rolling 6s four or more times. The shaded area sums the prob-

abilities for four events and higher to calculate this cumulative 

probability. The cumulative probability of rolling at least four 6s is 

0.06977. 

Geometric Distribution 

Use the geometric distribution when you know the probability of an 

event occurring and want to calculate the likelihood of the event first 

occurring during a specific trial. In other words, if you keep drawing 

random samples, what is the probability of the event/characteristic 

first appearing on each draw? 

 

With the die example, we’ll use the geometric distribution to deter-

mine the probability of rolling the first 6 on different numbers of rolls. 

Additionally, we want to learn the cumulative probability that the first 

6 appears on the 7th roll or later. 
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Each bar in the graph represents the probability of rolling the first six 

on a specific trial. For instance, the likelihood of rolling the first 6 on 

the third roll specifically is 0.11. Interestingly, you might think you’re 

virtually guaranteed to get a 6 when you roll the die six times. How-

ever, the red shaded region indicates that you have a 33% cumulative 

chance of rolling the first 6 on the 7th roll or later. 

Negative Binomial Distribution 

Use the negative binomial distribution to calculate the number of tri-

als that are required to observe the event a specific number of times. 

In other words, given a known probability of an event occurring and 

the number of events that you specify, this distribution calculates the 

probability for observing that number of events within N trials. 

 

For the die example, suppose we want to determine the probability of 

rolling 6s five times based on the number of total rolls. Additionally, 

we want to assess the cumulative probability to determine the number 

of rolls necessary to have a 50% chance of rolling five 6s. 

 

In the statistical software, I enter the probability and specify 5 events. 
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In the plot, each bar represents the probability of rolling precisely five 

6s in the specified number of rolls. For example, the maximum likeli-

hood (0.04) of rolling exactly five 6s occurs at 24 rolls, which is the 

peak of the histogram. Additionally, the shaded area indicates that the 

cumulative probability of obtaining five 6s in the first 27 rolls is nearly 

0.5. 

Hypergeometric Distribution 

Use the hypergeometric distribution when you are drawing from a 

small population without replacement, and you want to calculate 

probabilities that an event occurs a certain number of times in a set 

amount of trials. Like the binomial distribution, the hypergeometric 

distribution calculates the probability of X events in N trials. How-

ever, unlike the binomial distribution, it does not assume that the like-

lihood of an event’s occurrence is constant. Instead, the 

hypergeometric distribution assumes that the probability changes be-

cause you are drawing from a small population without replacement. 

 

To illustrate how to use this distribution, we have to move away from 

rolling 6s on our die. Instead, we’ll draw candy blindly from a jar. Sup-

pose there are 15 candies of various colors in the jar and our favorite 

candies are red. 
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For this scenario, the binary data values are “red” and “not red.” At 

the start, 5 out of the 15 (33%) candies are red. We’ll use the hyper-

geometric distribution to calculate the probabilities of drawing red 

candies when we draw five candies from the jar. 

 

The probabilities in this scenario are not constant because each draw 

from the jar affects the probabilities for the next draw. For instance, 

if you draw a red candy, that reduces the total number of red candies 

remaining in the jar, which reduces the probability of drawing another 

one the next time. The hypergeometric distribution accounts for these 

changing probabilities. 

 

In the statistical software, I specify the following: 

 

• The population size is 15. 

• There are five red candies. 

• We’ll draw 5 candies from the jar randomly. 

 

 
The graph displays the probability of drawing each possible number 

of red candies when you draw 5 candies altogether. For example, the 
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highest probability is approximately 0.4 and occurs with obtaining 

two red candies. There is an 8% chance of getting no red candies. And, 

you have a cumulative probability of 0.1668 for drawing at least three 

red candies. More likely than not, you’ll have to be content with 1 or 

2 red candies! 

 

The binomial, geometric, negative binomial, and hypergeometric dis-

tributions describe the probabilities associated with the number of 

events and when they occur. This information can be invaluable for 

planning purposes. I kept the die and candy examples intentionally 

simple so they are easy to understand. However, for a science-based, 

real-world example, read about the effectiveness of flu shots in the 

next section. 

Modelling Flu Outcomes Over Decades 

Flu shots benefits are like investing year-after-year. The cumulative 

effect magnifies the differences over time. I’m going to model flu out-

comes over decades in the same manner that financial planners illus-

trate the differences between different courses of action. 

 

Investment return rates fluctuate over the years, just like influenza 

rates. Financial planners use reasonable long-term averages to provide 

an estimate of different outcomes. Similarly, I’ll use the average infec-

tion rate for those who are vaccinated and those who are not. This 

approach produces comparative results for annual flu vaccinations 

versus no flu vaccinations over decades. 

 

To model this statistically, I’ll use probability distribution plots. Be-

cause the data are binary (infected or not infected), I’ll use discrete 

probability distributions designed for binary data—the binomial and 

geometric distributions. For the graphs, the assumptions are that the 

average infection rate for the: 

 

• Unvaccinated is 7.0% annually. 

• Vaccinated is 1.9% annually. 
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I based these average infection rates on multiple randomized con-

trolled studies of flu shots. See the references at the end of the book 

for a listing. 

 

We’ll learn what effect that 5.1% difference has over decades. I’ll com-

pare two different scenarios—getting the flu shot every year versus 

never getting the influenza vaccination. Using our estimates, I’ll an-

swer two questions: 

 

• How long until my first case of the flu on average? 

• How many times will I get the flu? 

 

In both plots, the left panel displays the no flu shot scenario while the 

right panel shows the annual influenza vaccine scenario. 

How long until my first case of the flu on average? 

I’ll use the geometric distribution to model the probability of first 

catching the flu. Each bar in the graph indicates the likelihood of first 

getting the flu in a specific year. The risk for any given year is small. 

More importantly, I’ve shaded the graphs to indicate the number of 

years until the cumulative probability reaches 50%. The chart stops at 

65 years because flu shot effectiveness decreases around that age. 
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The chart shows how your probability of first contracting the flu is 

much higher early on when you aren’t vaccinated (left) than when 

you are regularly vaccinated. 

 

The left panel indicates that without flu shots, you have a 50/50 

chance of getting the flu in 11 years. On the other hand, the right panel 

displays the probabilities when you are vaccinated annually. You 

don’t reach a 50% cumulative probability until 38 years. Furthermore, 

when you never get the flu shot, you have only a 6.8% chance of not 

catching the flu in 38 years (not shown)! 

How often will I catch the flu? 

Let’s statistically model the number of times you can expect to catch 

the flu in 20 years. For this graph, I’ll use the binomial distribution. 

Each bar indicates the likelihood of catching the flu the specified num-

ber of times. I’ve shaded the bars to represent the cumulative proba-

bility of catching the flu at least twice in 20 years. 
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A significant difference jumps out at you—which demonstrates the 

power of probability distribution plots! The tallest bar on the graph is 

the one in the right panel that represents zero cases of the flu in 20 

years when you get flu shots. When you vaccinate annually, you have 

a 68% chance of not catching the flu within 20 years! Conversely, if 

you don’t vaccinate, you have only a 23% of escaping the flu entirely. 

 

In the left panel, the distribution spreads out much further than in the 

right panel. Without vaccinations, you have a 41% chance of getting 

the flu at least twice in 20 years compared to 5% with annual vaccina-

tions. Some unlucky unvaccinated folks will get the flu four or five 

times during that period! 

 

Now, let’s switch gears and move on to continuous data! 

Continuous Probability Distributions 

Continuous probability functions are also known as probability den-

sity functions. You know that you have a continuous distribution if 

the variable can assume an infinite number of values between any two 

values. Continuous variables are often measurements on a scale, such 

as height, weight, and temperature. 
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Unlike discrete probability distributions where each particular value 

has a non-zero likelihood, specific values in continuous distributions 

have a zero probability. For example, the likelihood of measuring a 

temperature that is exactly 32 degrees is zero. 

 

Why? Consider that the temperature can be an infinite number of 

other temperatures that are infinitesimally higher or lower than 32. 

Statisticians say that an individual value has an infinitesimally small 

probability that is equivalent to zero. 

How to Find Probabilities for Continuous Data 

Probabilities for continuous distributions are calculated for ranges of 

values rather than single points. A probability indicates the likelihood 

that a value will fall within an interval. This property is simple to 

demonstrate using a probability distribution plot—which we’ll get to 

soon! 

 

On a probability plot, the entire area under the distribution curve 

equals 1. This fact is equivalent to how the sum of all probabilities 

must equal one for discrete distributions. The proportion of the area 

under a curve that falls within a range of values along the X-axis rep-

resents the likelihood a value will fall within that range. Finally, you 

can’t have an area under the curve with only a single value, which ex-

plains why the probability equals zero for an individual value. 

Characteristics of Continuous Probability Distributions 

Just as there are different types of discrete distributions for different 

kinds of discrete data, there are different distributions for continuous 

data. Each probability distribution has parameters that define its 

shape. Most distributions have between 1-3 parameters. Specifying 

these parameters establishes the shape of the distribution and all of its 

probabilities entirely. These parameters represent essential proper-

ties of the distribution, such as the central tendency and the variabil-

ity. 
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The most well-known continuous distribution is the normal distribu-

tion, which is also known as the Gaussian distribution or the “bell 

curve.” This symmetric distribution fits a wide variety of phenomena, 

such as human height and IQ scores. It has two parameters—the mean 

and the standard deviation. The Weibull distribution and the lognor-

mal distribution are other common continuous distributions. Both of 

these distributions can fit skewed data. 

 

Distribution parameters are values that apply to entire populations. 

Unfortunately, population parameters are generally unknown because 

it’s usually impossible to measure an entire population. However, you 

can use random samples to calculate estimates of these parameters 

and use them with probability distributions. 

 

To determine which distribution provides the best fit for your sample 

data, you’ll need to perform hypothesis tests and use special graphs. 

Learn more about this process in my upcoming book about hypothesis 

testing. 

Example of Using the Normal Probability Distribution 

Let’s start with the normal distribution to show how to use continuous 

probability distributions. 

 

The distribution of IQ scores is defined as a normal distribution with 

a mean of 100 and a standard deviation of 15. We’ll create the proba-

bility plot of this distribution. Additionally, let’s determine the likeli-

hood that an IQ score will be between 120-140. 
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Examine the properties of the probability plot above. We can see that 

it is a symmetric distribution where values occur most frequently 

around 100, which is the mean. The probabilities drop-off equally as 

you move away from the mean in both directions. The shaded area for 

the range of IQ scores between 120-140 contains 8.738% of the total 

area under the curve. Therefore, the likelihood that an IQ score falls 

within this range is 0.08738. 

Example of Using the Lognormal Probability Distribution 

As I mentioned, I really like probability distribution plots because 

they make distribution properties crystal clear. In the case above, we 

used the normal distribution. Because that distribution is so well-

known, you might have guessed the general appearance of the chart. 

Now, let’s look at a less intuitive example. 

 

Suppose you are told that the body fat percentages for teenage girls 

follow a lognormal distribution with a location of 3.32317 and a scale 

of 0.24188. Furthermore, you’re asked to determine the probability 

that body fat percentage values will fall between 20-24%. Huh? It’s 

probably not clear what the shape of this distribution is, which values 

are most common, and how often values fall within that range! 
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Most statistical software packages allow you to plot probability distri-

butions and answer all of these questions at once. 

 

 
The graph displays both the shape of the distribution and how our 

range of interest fits within it. We can see that it is a right-skewed 

distribution, and the most common values fall near 26%. Furthermore, 

our range of interest falls below the curve’s peak and contains 18.64% 

of the occurrences. 

 

As you can see, these graphs are an effective way to report complex 

distribution information to a lay audience. 

Normal Distribution in Depth 

The normal distribution is the most important probability distribution 

in statistics because it fits many natural phenomena. For example, 

heights, blood pressure, measurement error, and IQ scores follow the 

normal distribution. It is also known as the Gaussian distribution and 

the bell curve. 
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The normal distribution is a probability function that describes how 

the values of a variable are distributed. It is a symmetric distribution 

where most of the observations cluster around the central peak and 

the probabilities for values further away from the mean taper off 

equally in both directions. Extreme values in both tails of the distribu-

tion are similarly unlikely. 

 

In this section, you’ll learn how to use the normal distribution, its pa-

rameters, and how to calculate Z-scores to standardize your data and 

find probabilities. 

Height data are normally distributed. The distribution in this example 

fits real data that I collected from 14-year-old girls during a study. 

 

 
As you can see, the distribution of heights follows the typical pattern 

for all normal distributions. Most girls are close to the average (1.512 

meters). Small differences between an individual’s height and the 

mean occur more frequently than substantial deviations from the 

mean. The standard deviation is 0.0741m, which indicates the typical 

distance that individual girls tend to fall from mean height. 

 

The distribution is symmetric. The number of girls shorter than aver-

age equals the number of girls taller than average. In both tails of the 
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distribution, extremely short girls occur as infrequently as extremely 

tall girls. 

Parameters of the Normal Distribution 

As with any probability distribution, the parameters for the normal 

distribution define its shape and probabilities entirely. The normal 

distribution has two parameters, the mean and standard deviation. 

The normal distribution does not have just one form. Instead, the 

shape changes based on the parameter values, as shown in the graphs 

below. 

Mean 

The mean is the central tendency of the distribution. It defines the 

location of the peak for normal distributions. Most values cluster 

around the mean. On a graph, changing the mean shifts the entire 

curve left or right on the X-axis. 

 

 

Standard deviation 

The standard deviation is a measure of variability. It defines the width 

of the normal distribution. The standard deviation determines how far 
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away from the mean the values tend to fall. It represents the typical 

distance between the observations and the average. 

 

On a graph, changing the standard deviation either tightens or spreads 

out the width of the distribution along the X-axis. Larger standard de-

viations produce distributions that are more spread out. 

 

 
When you have narrow distributions, probabilities are higher that val-

ues won’t fall far from the mean. As you increase the spread, the like-

lihood that observations will be further away from the mean also 

increases. 

Population parameters versus sample estimates 

The mean and standard deviation are parameter values that apply to 

entire populations. For the normal distribution, statisticians signify 

the parameters by using the Greek symbol μ (mu) for the population 

mean and σ (sigma) for the population standard deviation. 

 

Unfortunately, population parameters are usually unknown because 

it’s generally impossible to measure an entire population. However, 

you can use random samples to calculate estimates of these 
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parameters. Statisticians represent sample estimates of these parame-

ters using x̅ for the sample mean and s for the sample standard devia-

tion. The next chapter focuses on this process. 

Properties of the Normal Distribution 

Despite the different shapes, all forms of the normal distribution have 

the following characteristic properties. 

 

• They’re all symmetric. The normal distribution cannot model 

skewed distributions. 

• The mean, median, and mode are all equal. 

• Half of the population is less than the mean and half is greater 

than the mean. 

• The Empirical Rule allows you to determine the proportion of 

values that fall within certain distances from the mean. More 

on this below! 

 

While the normal distribution is essential in statistics, it is just one of 

many probability distributions, and it does not fit all data. The weights 

in the previous section came from the same individuals as the heights 

in this section. However, while their heights are normally distributed, 

their weights are not. Instead, the weights are right-skewed and follow 

the lognormal distribution. 

The Empirical Rule 

When you have normally distributed data, the standard deviation be-

comes particularly valuable. You can use it to determine the propor-

tion of the values that fall within a specified number of standard 

deviations from the mean. For example, in a normal distribution, 68% 

of the observations fall within +/- 1 standard deviation from the mean. 

This property is part of the Empirical Rule, which describes the per-

centage of the data that fall within specific numbers of standard devi-

ations from the mean for bell-shaped curves. 
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Mean +/- standard deviations Percentage of data contained 

1 68% 

2 95% 

3 99.7% 

 

Let’s look at a pizza delivery example. Assume that a pizza restaurant 

has a mean delivery time of 30 minutes and a standard deviation of 5 

minutes. Using the Empirical Rule, we can determine that 68% of the 

delivery times are between 25-35 minutes (30 +/- 5), 95% are be-

tween 20-40 minutes (30 +/- 2*5), and 99.7% are between 15-45 

minutes (30 +/-3*5). The chart below illustrates this property graph-

ically. 

 

 

Standard Normal Distribution and Standard Scores 

As we’ve seen above, the normal distribution has many different 

shapes depending on the parameter values. However, the standard 

normal distribution is a special case of the normal distribution where 

the mean is zero and the standard deviation is 1. This distribution is 

also known as the Z-distribution. 
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A value on the standard normal distribution is known as a standard 

score or a Z-score. A standard score represents the number of stand-

ard deviations above or below the mean that a specific observation 

falls. For example, a standard score of 1.5 indicates that the observa-

tion is 1.5 standard deviations above the mean. On the other hand, a 

negative score represents a value below the average. The mean has a 

Z-score of 0. 

 

 
Suppose you weigh an apple and it weighs 110 grams. There’s no way 

to tell from the weight alone how this apple compares to other apples. 

However, as you’ll see, after you calculate its Z-score, you know 

where it falls relative to other apples. 

Calculating Z-scores 

Standard scores are a great way to understand where a specific obser-

vation falls relative to the entire distribution. They also allow you to 

take observations drawn from normally distributed populations that 

have different means and standard deviations and place them on a 

standard scale. This standard scale enables you to compare observa-

tions that would otherwise not be possible. 
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This process is called standardization, and it allows you to compare 

observations and calculate probabilities across different populations. 

In other words, it permits you to compare apples to oranges. Isn’t sta-

tistics great! 

 

To standardize your data, you need to convert the raw measurements 

into Z-scores. 

 

To calculate the standard score for an observation, take the raw meas-

urement, subtract the mean, and divide by the standard deviation. 

Mathematically, the formula for that process is the following: 

 

 
 

X represents the raw value of the measurement of interest. Mu and 

sigma represent the parameters for the population from which the ob-

servation was drawn. 

 

After standardizing your data, you can place them within the standard 

normal distribution. In this manner, standardization allows you to 

compare different types of observations based on where each obser-

vation falls within its own distribution. 

 

Suppose we literally want to compare apples to oranges. Specifically, 

let’s compare their weights. Imagine that we have an apple that weighs 

110 grams and an orange that weighs 100 grams. 

 

If we compare the raw values, it’s easy to see that the apple weighs 

more than the orange. However, let’s compare their standard scores. 

To do this, we’ll need to know the properties of the weight distribu-

tions for apples and oranges. Assume that the weights of apples and 

oranges follow a normal distribution with the following parameter 

values: 
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 Apples Oranges 

Mean weight grams 100 140 

Standard deviation 15 25 

 

Now we’ll calculate the Z-scores: 

• Apple = (110-100) / 15 = 0.667 

• Orange = (100-140) / 25 = -1.6 

 

The Z-score for the apple (0.667) is positive, which means that our 

apple weighs more than the average apple. It’s not an extreme value 

by any means, but it is above average for apples. On the other hand, 

the orange has a fairly negative Z-score (-1.6). It’s pretty far below the 

mean weight for oranges. I’ve placed these Z-values in the standard 

normal distribution below. 

 

 
While our apple weighs more than our orange, we are comparing a 

somewhat heavier than average apple to a downright puny orange! 

Using Z-scores, we’ve learned how each fruit fits within its own dis-

tribution and how they compare to each other. 
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Using a Table of Z-scores 

The normal distribution is a probability distribution. As with any 

probability distribution, the proportion of the area that falls under the 

curve between two points on a probability distribution plot indicates 

the probability that a value will fall within that interval.  

 

Typically, I use statistical software to find areas under the curve. How-

ever, when you’re working with the normal distribution and convert 

values to standard scores, you can calculate areas by looking up Z-

scores in a Standard Normal Distribution Table. 

 

Because there are an infinite number of different normal distributions, 

publishers can’t print a table for each distribution. However, you can 

transform the values from any normal distribution into Z-scores, and 

then use a table of standard scores to calculate probabilities. 

 

Let’s take the Z-score for our apple (0.667) and use it to determine its 

weight percentile. A percentile is the proportion of a population that 

falls below a specific value. Consequently, to determine the percen-

tile, we need to find the area that corresponds to the range of Z-scores 

that are less than 0.667. In the portion of the table below, the closest 

Z-score to ours is 0.65, which we’ll use. 
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The trick with these tables is using the values in conjunction with 

properties of the normal distribution to calculate probabilities that 

you need. The table value indicates that the area of the curve between 

-0.65 and +0.65 is 48.43%. However, that’s not what we want to know. 

We want the area that is less than a Z-score of 0.65. 

 

We know that the two halves of the normal distribution are mirror 

images of each other. So, if the area for the interval from -0.65 and 

+0.65 is 48.43%, then the range from 0 to +0.65 must be half of that: 

48.43/2 = 24.215%. Additionally, we know that the area for all scores 

less than zero is half (50%) of the distribution. 

 

Therefore, the area for all scores up to 0.65 = 50% + 24.215% = 

74.215% 

 

Our apple is at approximately the 74th percentile. 
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Below is a probability distribution plot produced by statistical soft-

ware that shows the same percentile along with a graphical represen-

tation of the corresponding area under the curve. The value is slightly 

different because we used a Z-score of 0.65 from the table while the 

software uses the more precise value of 0.667. 

 

 
In chapter 3, you learned several different ways to calculate percen-

tiles for values in a dataset. Now, you know how to use Z-scores to 

calculate percentiles for normal distributions! Additionally, the prob-

ability distribution method works for all continuous probability dis-

tributions—not just the normal distribution—as long as you know 

which distribution fits your data. 

Why the Normal Distribution is Important 

In addition to all the above, there are several other reasons why the 

normal distribution is crucial in statistics. 

 

• Some statistical hypothesis tests assume that the data follow a 

normal distribution.  

• Linear and nonlinear regression both assume that the residu-

als follow a normal distribution.  
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• The central limit theorem states that as the sample size in-

creases, the sampling distribution of the mean follows a nor-

mal distribution even when the underlying distribution of the 

original variable is non-normal. 

 

That was quite a bit about the normal distribution! Hopefully, you see 

that it is crucial because of the many ways that analysts use it. 

Summary and Next Steps 

Probability distributions are great tools when you need to understand 

the probabilities associated with values and ranges of values. These 

distributions apply to populations and use estimates for the popula-

tion parameters. 

 

You learned about discrete distributions with an emphasis on binary 

data.  

 

Then we covered continuous data and saw examples of both skewed, 

non-normal distributions and the symmetric normal distribution. The 

normal distribution is fundamental in statistics because many phe-

nomena follow it. Using the normal distribution, you learned about 

the Empirical Rule, how to calculate Z-scores to standardize data, and 

use a table of Z-scores to calculation percentiles. 

 

In my upcoming book about hypothesis tests, I’ll show you how prob-

ability distributions are the basis for hypothesis testing. Additionally, 

you’ll learn how to test your data to determine which probability dis-

tribution provides the best fit for your continuous sample data. In 

other words, for the population you’re studying, you can identify the 

probability distribution that is most likely to have produced your ran-

dom sample given the properties you observe.  

 

Probability distributions fall in the domain of inferential statistics for 

the following reasons: 
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• Analysts use representative samples to estimate the parame-

ters of the population distribution. 

• Probability distributions draw inferences about the probabil-

ities of values in the population. 

 

The next chapter explores the differences between descriptive and 

inferential statistics. We’ll start diving into the concepts, procedures, 

and challenges associated with inferential statistics. Most of the rest 

of the book focuses on inferential statistics. This set of methods is cru-

cial for scientists because they aspire to make discoveries that apply 

beyond just their sample. For instance, experimenters do not want to 

test the effectiveness of a new medication on a sample of 50 individ-

uals and then be able to apply the findings to only that small group! 

However, generalizing your results from a sample to a population re-

quires that you understand certain concepts and implement various 

practices and procedures.  
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C H A P T E R  5  

 

Descriptive and 
Inferential Statistics 

Descriptive and inferential statistics are two broad categories in the 

field of statistics. In this chapter, I show you how both types of statis-

tics are essential for different purposes. Interestingly, while some of 

the statistical measures are similar, the goals and methodologies are 

very different. 

 

Here’s the difference in a nutshell: 

 

• Descriptive statistics describe a dataset for a particular group 

of objects, observations, or people. They don’t attempt to gen-

eralize beyond the set of observations. 

• Inferential statistics use a dataset to make conclusions about 

the larger population from which the sample was drawn. 

These statistics generalize beyond the specific observations 

that are in the dataset to a larger group or population. 
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Descriptive Statistics 

Both descriptive and inferential statistics help you make sense out of 

row after row of data!  

 

Use descriptive statistics to summarize and graph the data for a group 

that you choose. This process allows you to understand that specific 

set of observations. 

 

Descriptive statistics describe a sample. That’s pretty straightforward. 

You simply take a group that you’re interested in, record data about 

the group members, and then use summary statistics and graphs to 

present the group properties and relationships. With descriptive sta-

tistics, there is little uncertainty because you are describing only the 

people or items that you actually measure. You’re not trying to infer 

properties about a larger population. 

 

The process involves taking a potentially large number of data points 

in the sample and reducing them down to a few meaningful summary 

values and graphs. This procedure allows us to gain more insights and 

visualize the data than merely pouring through row upon row of raw 

numbers! 

 

Descriptive statistics frequently use statistical measures that you 

should be very familiar with by now to describe a particular group: 

 

Central tendency: Use the mean or the median to locate the center of 

the dataset. This measure tells you where most values fall. 

 

Dispersion: How far out from the center do the data extend? You can 

use the range or standard deviation to measure the dispersion. Low 

dispersion indicates that values cluster more tightly around the cen-

ter. Higher dispersion signifies that data points fall further away from 

the center. We can also graph the frequency distribution. 
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Skewness: The measure tells you whether the distribution of values is 

symmetric or skewed. 

 

Correlation: The strength of the tendency for two variables to change 

together. 

 

You can present this summary information using both numbers and 

graphs. These are the standard descriptive statistics, but there are 

other descriptive analyses you can perform. These techniques include 

assessing the relationships of paired data using correlation and scat-

terplots and graphing differences between groups using boxplots. 

Example of Descriptive Statistics 

Suppose we want to describe the test scores in a specific class of 30 

students. We record all of the test scores and calculate the summary 

statistics and produce graphs. Here is the CSV data file: Descrip-

tive_statistics. 

 

 
 

Statistic Class value 

Mean 79.18 
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Standard deviation 7.76 

Proportion >= 70 86.7% 

 

These results indicate that the mean score of this class is 79.18. The 

scores range from 66.21 to 96.53, and the distribution is symmetri-

cally centered around the mean. A score of at least 70 on the test is 

acceptable. The data show that 86.7% of the students have acceptable 

scores. 

 

Collectively, this information gives us a pretty good picture of this 

specific class. The process was very straightforward. We simply rec-

orded the test scores for everyone in the class. There is no uncertainty 

surrounding these statistics because we gathered the scores for eve-

ryone in the class. However, we can’t take these results and extrapo-

late to a larger population of students. 

Inferential Statistics 

Inferential statistics takes data from a sample and makes inferences 

about the larger population from which the sample was drawn. Be-

cause the goal of inferential statistics is to take a sample and generalize 

its properties to a population, we need to have confidence that our 

sample accurately reflects the population. This requirement affects 

our process. At a broad level, we must do the following: 

 

1. Define the population we are studying. 

2. Draw a representative sample from that population. 

3. Use analyses that incorporate the sampling error. 

 

We don’t get to pick a convenient group. For the descriptive example 

above, we measured students in the class in which we were interested. 

However, selecting students becomes more complex for inferential 

statistics. Using a handy class is unlikely to produce a representative 

sample. 
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Instead, we need a sampling procedure that tends to produce a sample 

that accurately reflects the population from which you draw it. Ran-

dom sampling is a procedure that allows us to have confidence that 

the sample represents the population. The random nature of this pro-

cess helps avoid any systematic bias that would invalidate our results. 

 

Random sampling is a primary method for obtaining samples that mir-

rors the population on average. This type of sampling produces statis-

tics, such as the mean, that are not systematically too high or too low. 

In other words, the critical characteristic of random samples is that 

they produce sample statistics that tend to be correct on average. 

 

Consequently, when we obtain a random sample, we can generalize 

from the sample to the broader population. Unfortunately, gathering 

a genuinely random sample can be a complicated process. Yeah, I 

know, the word “random” makes it sound simple and half-hazard, but 

a random sample can be challenging to collect! Later sections in this 

chapter describe several random sampling methodologies. 

Pros and Cons of Working with Samples 

In most cases, it is simply impossible to measure the entire population 

to understand its properties. The alternative is to gather a random 

sample and then use the methodologies of inferential statistics to an-

alyze the sample data. 

 

While samples are much more practical and less expensive to work 

with, there are tradeoffs. Typically, we learn about the population by 

drawing a relatively small sample from it. We are a very long way off 

from measuring all people or objects in that population. Consequently, 

when you estimate the properties of a population from a sample, the 

sample statistics are unlikely to equal the actual population value ex-

actly. For instance, your sample mean is unlikely to equal the popula-

tion mean exactly.  
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Sampling error is the difference between the sample statistic and the 

population value. Inferential statistics incorporate estimates of this er-

ror into the statistical results. 

 

In contrast, summary values in descriptive statistics are straightfor-

ward. The average score in a specific class is a known value because 

we measured all individuals in that class. There is little uncertainty. 

 

To gain the benefits of inferential statistics, you must understand the 

relationship between populations, subpopulations, population param-

eters, samples, and sample statistics. 

Populations 

Populations can include people, but other examples include objects, 

events, businesses, and so on. In statistics, there are two general types 

of populations. 

 

Populations can be the complete set of all similar items that exist. For 

example, the population of a country includes all people currently liv-

ing within that country. It’s a finite but potentially extensive list of 

members. 

 

However, a population can be a theoretical construct that is poten-

tially infinite in size. For example, quality improvement analysts often 

consider all current and future output from a manufacturing line to be 

part of a population. 

 

Populations share a set of attributes that you define. For example, the 

following are populations: 

 

• Stars in the Milky Way galaxy. 

• Parts from a production line. 

• Citizens of the United States. 

• 8th grade students in the State of Pennsylvania. 
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Before you begin a study, you must carefully define the population 

that you are studying. These populations can be narrowly defined to 

meet the needs of your analysis.  

 

For example, your population can be adult Swedish women who are 

otherwise healthy but have osteoporosis. 

Subpopulations 

Subpopulations share additional attributes. For instance, the popula-

tion of the United States contains the subpopulations of men and 

women. You can also subdivide it in other ways such as region, age, 

socioeconomic status, and so on. Different studies that involve the 

same population can divide it into different subpopulations depending 

on what makes sense for the data and the analyses. 

 

Understanding the subpopulations in your study helps you grasp the 

subject matter more thoroughly. They can also help you produce sta-

tistical models that fit the data better. Subpopulations are particularly 

important when they have characteristics that are systematically dif-

ferent than the overall population. When you analyze your data, you 

need to be aware of these deeper divisions. In fact, you can treat the 

relevant subpopulations as additional factors in later analyses. 

 

Let’s revisit an example that we looked at in the section about histo-

grams. Now assume we’re conducting a scientific study of the height 

of full-grown, adult, American citizens. Let’s further assume that we 

don’t know much about the subject. Because we can’t possibly meas-

ure in the population, we’ll need to use inferential statistics to use a 

sample to learn about the population. We collect a random sample, 

measure the heights in centimeters, and calculate the sample mean 

and standard deviation. Here is the CSV data file: Heights. 

 

Because we gathered a random sample, we can assume that these sam-

ple statistics are unbiased estimates of the population parameters. 
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Now, suppose we learn more about the study area and include male 

and female as subpopulations. We obtain the following results. 

 
During this process, we learn that gender is a crucial subpopulation 

that relates to height and increases our understanding of the subject 

matter. In future studies about height, we can include gender as a var-

iable. That’s how scientists think about research questions and add to 

their knowledge. 

 

This example is intentionally easy to understand but imagine a study 

about a less obvious subject. This process helps you gain new insights 

and produce better statistical models. 

Population Parameters versus Sample Statistics 

A parameter is a value that describes a characteristic of an entire pop-

ulation, such as the population mean. Because you can rarely measure 

a population as a whole, you usually don’t know the real value of a 

parameter. Consequently, parameter values are nearly always un-

knowable. While we can’t measure the parameter value, it exists. 

 

For example, the average height of adult women in the United States 

is a parameter that has an exact value—we just don’t know what it is! 
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While we’ll never know the precise value of these population param-

eters, we can use inferential statistics to estimate them and incorpo-

rate a margin of error. 

 

The population mean and standard deviation are two common param-

eters. In statistics, Greek symbols usually represent population param-

eters, such as μ (mu) for the mean and σ (sigma) for the standard 

deviation. 

 

A statistic is a characteristic of a sample. If you collect a sample and 

calculate the mean and standard deviation, these are sample statistics. 

Inferential statistics allow you to use sample statistics to make conclu-

sions about a population. However, to draw valid conclusions, you 

must use random sampling techniques, as discussed earlier.  

 

Type 
Population Parameter 

Sample Statis-

tic 

Mean Mu (μ) x̅ (x-bar) 

Standard deviation Sigma (σ) s 

Correlation Rho (ρ) r 

 

In inferential statistics, sample statistics are estimates of population 

parameters. For example, if we collect a random sample of adult 

women in the United States and measure their heights, we can calcu-

late the sample mean and standard deviation and use them as unbiased 

estimates of the population parameters. 

 

You can calculate the following types of estimates for population pa-

rameters: 

 

Point estimates: These estimates use the sample data to produce a sin-

gle value that is the most likely value for the population parameter. 

Sample statistics, such as the mean, are typically the point estimate for 

the population. Unfortunately, point estimates are always wrong by 

an unknown amount because of random sampling error. 
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Interval estimates: A range of values that likely contains the value of 

the population parameter. These intervals include a margin of error 

around the point estimate to account for random sampling error. 

 

In short, point estimates are the best guess value but are guaranteed 

to be wrong by at least a little bit because you’re working with a sam-

ple that is small in comparison to the population. Intervals estimates 

are ranges of values that probably contain the parameter value. I’ll 

show you these in action later in this chapter! 

 

In this book, you first encountered the term “parameter” in chapter 4 

in the context of probability distribution plots. After estimating pop-

ulation parameters from a representative sample, you can input the 

parameter estimates into a probability function and, voila, estimate 

probabilities for values and ranges of values. While it goes beyond the 

scope of this book, probability distributions are at the heart of hypoth-

esis testing and confidence intervals. 

Tools for Inferential Statistics 

Inferential methods can produce similar summary values as descrip-

tive statistics, such as the mean and standard deviation. However, as 

I’ll show you, we use them very differently when making inferences.  

 

I'll touch upon hypothesis tests, confidence intervals, and regression 

analysis briefly. This book discusses these tools only in a very general 

sense. You’ll learn a bit more about these procedures throughout the 

rest of this book, but we won’t get into the nuts and bolts of how they 

work. For now, you only need to understand the general purpose of 

these tools.  

Hypothesis tests 

Hypothesis tests use sample data answer questions about point esti-

mates, such as the following: 
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• Is the population mean greater than or less than a particular 

value? 

• Are the means of two or more populations different from each 

other? 

 

Suppose we study the effectiveness of a new medication by comparing 

the outcomes in a treatment and control group. Hypothesis tests can 

tell us whether the drug’s effect, which is the mean difference be-

tween the treatment and the control group, that we observe in the 

sample is likely to exist in the population. It’s possible that the sample 

effect is random error rather than a real effect. After all, we don’t want 

to use the medication if it is effective only in our specific sample.  

 

Instead, we need evidence that it’ll be useful in the entire population 

of patients. Hypothesis tests allow us to draw these types of conclu-

sions about whole populations. 

 

For example, is the proportion of flu cases among the vaccinated dif-

ferent than the unvaccinated?  

Confidence intervals (CIs) 

In inferential statistics, a primary goal is to estimate population pa-

rameters. These parameters are the unknown values for the entire 

population, such as the population mean and standard deviation. 

These parameter values are not only unknown but almost always un-

knowable. The sampling error I mentioned earlier produces uncer-

tainty, or a margin of error, around our estimates. 

 

Suppose we define our population as all high school basketball play-

ers. Then, we draw a random sample from this population and calcu-

late the mean height of 181 cm. This sample estimate of 181 cm is our 

point estimate of the mean height of the population. However, it’s vir-

tually guaranteed that our estimate of the population parameter is not 

exactly correct. 

 



J im Frost  

150 

Confidence intervals incorporate the uncertainty and sample error to 

create a range of values the actual population value is like to fall 

within. For example, a confidence interval of [176 186] indicates that 

we can be confident that the real population mean falls within this 

range. 

Regression analysis 

Regression analysis describes the relationship between a set of inde-

pendent variables and a dependent variable. This analysis incorpo-

rates hypothesis tests that help determine whether the relationships 

we observe in the sample data also exist in the population. 

 

For example, the fitted line plot below displays the relationship in the 

regression model between height and weight in adolescent girls. Be-

cause the relationship is statistically significant, we have sufficient ev-

idence to conclude that this relationship exists in the population 

rather than just our sample. 
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Properties of Good Estimates 

Our goal is to draw a random sample from a population and use it to 

estimate the properties of that population. While we’ll never know 

the actual population parameters, we want our sample to produce 

good estimates of them.  

 

What properties do the best estimates have?  

 

Suppose you request an estimate—say for the cost of a service that you 

are considering. How would you define a reasonable estimate? 

 

The estimates should tend to be right on target. They should not be 

systematically too high or too low. In other words, they should be un-

biased or correct on average. 

 

Recognizing that estimates are almost never exactly correct, you want 

to minimize the discrepancy between the estimated value and actual 

value. Large differences are bad! 

 

Unbiased estimates with a small amount of error are what we need! 

 

How do you obtain estimates with these properties? 

 

Random sampling helps you obtain unbiased estimates.  

 

Your sample size and the variability in the population determine the 

size of the error.  

 

The upcoming sections of this chapter look at these issues in more 

detail. 

Sample Size and Margins of Error 

I’m sure you’ve heard that having a large sample size is a good thing. 

In this section, you’ll learn why! 
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Here’s some shocking information for you—sample statistics are al-

ways wrong! When you use samples to estimate the properties of pop-

ulations, you never obtain the correct values exactly. Don’t worry. I’ll 

help you navigate this issue using a simple statistical tool! 

 

For example, when we read survey results, we are not learning about 

just the opinions of those who responded to the survey, but about an 

entire population. Or, when we see averages, such as health measures 

and salaries, we’re learning about them on the scale of a population, 

not just the few subjects in a study. Consequently, inferential statistics 

can provide valuable information. 

 

Inferential statistics is a powerful tool because it allows you to use a 

relatively small sample to learn about an entire population. However, 

to have any chance of obtaining good results, you must follow sam-

pling procedures that help your sample to represent the population 

faithfully. 

 

Unfortunately, even when you diligently follow the proper method-

ology for performing a valid study, your estimates will almost always 

be at least a little wrong. I’m not referring to unscrupulous manipula-

tion, mistakes, or methodology errors. I’m talking about cases where 

researchers use the correct sampling methodology and legitimate sta-

tistical calculations to produce the best possible estimates. 

 

Why does this happen? Random error is present in all samples. By 

sheer chance alone, your sample contains error that causes the statis-

tics to be off by at least a little bit. Your data are not 100% representa-

tive of the population because they are not the entire population! 

Samples never provide a perfect depiction of the population from 

which it is drawn. 

 

All estimates are at least a little wrong, but sometimes they can be very 

wrong. Unfortunately, the media and other sources forget this point 
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when they present statistics. Upon seeing an estimate, you should 

wonder—how large is the difference between the estimate and the ac-

tual population value? What is the margin of error?  

 

The margin of error relates to the sample size. Let’s explore why larger 

samples are better. 

 

The primary goal of inferential statistics is to generalize from a sample 

to a population. To accomplish this objective, the sample must be sim-

ilar to the population. The simple truth is that it’s more difficult for a 

small sample to approximate an entire population closely. Larger sam-

ples tend to better represent the full complexities of a population. 

 

Additionally, larger sample sizes help you avoid unusual samples. 

Think about coin tosses. You expect to obtain heads 50% of the time. 

If you have four coin tosses, it is not be surprising to get heads 3 out 

of 4 times (75%). That’s a considerable distance from 50%—but it’s 

just one extra heads. However, if you have 100 coin tosses, it’s im-

probable that you’d get heads 75% of the time. It’s possible, but you’d 

need very fluky luck to get those 25 extra heads (50 + 25 = 75). 

 

The same thing occurs when you’re drawing a random sample. Imag-

ine you’re conducting an IQ study. You’ll obtain a random sample of 

people and measure their IQs. If you have a sample of five people, just 

one unusually high or low IQ score will throw off the mean. However, 

if you have a sample size of 50, a few unusual scores won’t impact the 

mean much.  

 

The next section explains sampling distributions, which illustrate how 

sample sizes relate to margin error. 

Sampling Distributions of the Mean 

A vital concept in inferential statistics is that the particular random 

sample that you draw for a study is just one of a large number of pos-

sible samples that you could have pulled from your population of 
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interest. Understanding this broader context of all possible samples 

and how your study’s sample fits within it provides valuable infor-

mation. 

 

Suppose we draw a substantial number of random samples of the same 

size from the same population and calculate the sample mean for each 

sample. During this process, we’d observe a broad spectrum of sample 

means, and we can graph their distribution. 

 

By using simulation software, you can see this in action. Imagine that 

you obtain random samples of people and measure their IQs. We’ll 

assume the distribution of IQ scores in the population follows a nor-

mal distribution that has a mean of 100 and a standard deviation of 15. 

These parameters define the properties of the distribution from which 

we’ll be drawing random samples. Now, imagine that we’re hyperac-

tive researchers and that instead of obtaining one sample, we’ll collect 

hundreds of thousands! 

 

Here's our process. We’ll start with a sample size of five and draw 

500,000 random samples of that size. That gives us 500,000 samples 

with five IQ scores in each sample. For each of those samples, we’ll 

calculate the average IQ and plot them on a histogram. Then we’ll fol-

low the same process for a sample size of 20 and 60.  

 

Statisticians refer to this type of distribution as a sampling distribution 

of the mean. These are distributions of sample means for samples of a 

particular size that you draw from a population with specific proper-

ties. These distributions represent the idea of conducting the same ex-

periment many times and observing the distribution of sample means. 

Sampling distributions also exist for other population properties such 

as the standard deviation, median, and proportion.  

 

The histogram below displays the sampling distributions for our re-

peated IQ study. The bars are tiny because we collected 500,000 
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samples of each size! Keep in mind that these distributions represent 

the distribution of sample means rather than individual scores. 

 

 
The first thing to notice is that all three distributions center on the 

population’s mean IQ of 100 and they are distributed symmetrically 

around that mean. These properties indicate that the sample means 

are unbiased because they are not systematically too high or too low. 

Stated another way, samples have an equal probability of being too 

high or too low. They’re correct on average. That’s good! These sam-

ple means are unbiased because the simulation used random sampling. 

 

However, the spreads of the distributions are clearly different. The 

variability of these distributions reflects the amount of sampling error 

associated with different sample sizes.  

 

Let’s start with the grey distribution for a sample size of five, which is 

the widest. While this distribution centers on 100, the broader spread 

indicates that a greater percentage of sample means will fall further 

away from the population value in the center and instead be out in the 

tails. Consequently, obtaining a sample mean as low as 88 or as high 

as 112 is not surprising when the sample size is five. In fact, you could 

get even higher or lower means; it’s just less likely.  
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Suppose you obtain a sample mean of 110. You must have had a fluky 

luck of the draw and collected several unusually high IQ scores that 

affected your small sample. The wider spread of this distribution 

shows that you are more likely to obtain an unusual sample mean with 

a small sample size. In other words, you have greater uncertainty that 

your sample mean is close to the actual population value.  

 

Estimates from smaller samples have a larger margin of error. 

 

Now, let’s look at the blue distribution, which represents samples of 

size 60. It’s still centered on 100, but the narrow distribution indicates 

that you are unlikely to obtain sample means far from 100. It would 

be implausible to obtain sample means less than 95 or higher than 105. 

Most sample means are packed close to the population value in the 

center while few are out in the tails. The narrower spread of this dis-

tribution shows that you are less likely to obtain an unusual sample 

mean when you have a large sample size. In other words, you have 

more confidence that your sample mean is close to the actual popula-

tion value. 

 

Estimates from larger samples have a smaller margin of error. 

 

The red distribution for samples of size 20 has a width that is in-be-

tween the other two. 

 

The wider distributions for small sample sizes indicate your sample 

mean has a higher probability of falling further away from the popu-

lation mean. As you increase the sample size, the sampling distribu-

tions tighten up, which signifies you can be more confident that the 

sample mean is relatively close to the population mean. For example, 

with a sample size of 60, your sample mean is probably at most a few 

IQ points away from the actual population mean of 100. 
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In statistics, we refer to this concept as the precision of the estimates. 

More precise estimates have smaller margins of error around the esti-

mate. Conversely, less precise estimates have larger margins of error 

and provide a vaguer idea about a population’s characteristics. You 

want greater precision because you’ll have better information about 

the actual value of the population parameter.  

 

Precision is a function of both the variability in the population and the 

size of the sample. However, we can usually control only the sample 

size in our studies. Consequently, increasing the sample size is the 

method to use improve the precision of your sample estimates. 

 

Fortunately, for real studies, you don’t need to collect many samples. 

Statistical procedures can estimate the sampling distribution from a 

single sample. Aren’t statistics great! These sampling distributions are 

a special type of probability distribution and are at the core of hypoth-

esis testing and confidence intervals. While those procedures are be-

yond the scope of this book, I want to take a quick look at how you 

can use confidence intervals to assess the precision of sample esti-

mates. They give us an idea of how wrong the estimate might be. 

 

Note: The simulation software I used is Statistics 101. It is giftware 

that is free to use, but they ask for donations. Here’s the script I cre-

ated for the IQ example: IQ Precision. 

Confidence Intervals and Precision 

Confidence intervals help you assess the precision of your estimates. 

While working with hundreds of thousands of samples in the simula-

tion above was fun, let’s see how you assess precision for individual 

samples. We’ll again use an IQ study to illustrate this point. This time 

I’ll have my statistical software draw a sample of size 10 and another 

of size 100 from the same population we used for the simulations. 

We’ll use confidence intervals to compare the precision of the esti-

mates for both samples. 
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Here’s how the distribution of IQ scores in the population appears on 

a normal probability distribution plot.  

 

 
You can download the CSV data file here: SimulatedIQData. Or, use 

statistical software and try it yourself! 

Example: Sample Statistics and CIs for 10 Observations 

For the sample size of 10, here are the summary statistics for my ran-

dom sample. 
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Statisticians usually consider a sample size of 10 to be a bit on the small 

side. From the histogram, the data do not look much like the original 

population. The estimates for the mean and standard deviation are 

103.25 and 12.89, respectively. They are the point estimates for the 

population parameters, which are both in the right ballpark for the 

correct values of 100 and 15. 

 

We have our point estimates, but we know that those aren’t exactly 

correct. Let’s check the confidence intervals to see the ranges for 

where the actual parameter values are likely to fall. 

 

The confidence interval for the mean is [94.03 112.46], and for the 

standard deviation it is [8.86 23.52]. The population parameters usu-

ally fall within their confidence intervals. Typically, we don’t know 

the actual parameter values, but for this illustration we can see that 

both estimates fall within their intervals. The sample does not provide 

an exact representation of the population, but the estimates are not 

too far off. If we didn’t know the actual values, the CIs would give us 

useful guidance. 
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Example: Sample Statistics and CIs for 100 Observations 

Now, let’s look at the sample size of 100. Those results are below. 

 

 
For this larger sample, this histogram is beginning to look more like 

the underlying population distribution. The estimates for the mean 

and standard deviation are 99.553 and 15.597, respectively. Both of 

these point estimates are closer to the actual population values than 

their counterparts in the smaller sample. 

 

For the confidence intervals, both of the CIs again contain the param-

eters. However, notice that these intervals are tighter than for the 

sample size of 10. For example, the CI for the mean is [96.458 

102.648] compared to [94.03 112.46] for the sample size of 10. That’s 

a range of about 6 IQ points rather than 18. The tighter intervals indi-

cate that these estimates are more precise than those from the smaller 

sample. In other words, the difference between the sample estimate 

and actual parameter value is likely to be smaller for the larger sample. 

 

Narrower confidence intervals represent more precise estimates. 
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In summary, use confidence intervals to evaluate the precision of your 

sample estimates. If your intervals are too broad to be meaningful, 

you’ll need to increase your sample size.  

Random Sampling Methodologies 

In statistics, sampling refers to selecting a subset of a population. After 

drawing the sample, you measure one or more characteristics of all 

items in the sample, such as height, income, temperature, opinion, etc. 

If you want to generalize these characteristics from the sample to the 

whole population, it imposes restrictions on how you collect the sam-

ple. If you use an incorrect methodology, the sample might not repre-

sent the population, which can lead you to erroneous conclusions. 

 

When a researcher intentionally picks people to include in their sam-

ple, it’s likely their choices will somehow skew the sample based on 

their preferences and convenience. The biases that the researcher in-

troduces might be entirely unintended. 

 

A sample based on convenience is a prime example of what not to do. 

This process occurs when researchers recruit subjects who are easier 

to obtain. For example, imagine that a researcher goes to a local mall 

to recruit study participants who should represent an entire state. 

These shoppers are likely to have more similar demographic charac-

teristics, incomes, and other attributes than the overall state popula-

tion. 

 

Most inferential statistical procedures assume that you have a random 

sample. Randomness helps ensure that you obtain a sample that accu-

rately represents the population. Nonrandom methodologies are 

prone to produce unreliable estimates of the population parameters.  

 

While sampling methodologies can cover an entire book, I’ll highlight 

several fundamental methods that illustrate some of the issues, ap-

proaches, and goals. 
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The following random sampling approaches minimize bias, but they 

do not indicate that your sample statistics exactly equal the population 

parameters. Instead, estimates from a specific sample are likely to be 

a bit high or low, but the process produces accurate estimates on av-

erage. Random sampling can yield samples that don’t represent the 

population—it’s just not the expected result. 

 

Additionally, random sampling might sound a bit haphazard and easy 

to do—both of which are not true. Random sampling often requires a 

lot of planning and work! 

Simple Random Sampling 

The most well-known method to obtain an unbiased, representative 

sample is simple random sampling. With this method, all items in the 

population have an equal probability of being selected, and there is no 

connection between those who researchers include in the sample. 

This process helps ensure that the sample contains the full range of 

the population. Additionally, all relevant subpopulations should be in-

corporated into the sample and represented accurately on average. 

Simple random sampling minimizes the bias and simplifies data anal-

ysis.  

 

Typically, simple random sampling requires that you have a complete 

roster for the population, and then you randomly choose participants 

from that list. However, depending upon your population, it can be 

challenging to obtain that complete list! And, you might have other 

constraints. 

 

For example, earlier in this chapter, I presented an example of as-

sessing a standardized test that 8th graders in the State of Pennsylvania 

take. To conduct a simple random sample, we’d need a list of all 8th 

grade students in the state and then randomly choose from that list 

without regard to which school they attend. 
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Stratified Sampling 

Use stratified sampling to ensure that you obtain precise population 

estimates for relevant subpopulations (strata) in your population. The 

method ensures specific subgroups are present in the sample with a 

sufficient sample size for these groups. Strata are subpopulations 

whose members are relatively similar to each other compared to the 

broader population. Researchers can create strata based on income, 

gender, and race among many other possibilities. For example, if your 

research question required you to compare outcomes between in-

come levels, you might base the strata on income.  

 

Stratified sampling involves multiple steps. First, break down the pop-

ulation into strata. From each stratum, use simple random sampling to 

draw a fixed sample size. This process ensures that you obtain a spe-

cific number of observations per stratum, which produces precise es-

timates for all strata and facilitates comparisons between them. 

 

For example, let’s go back to our standardized testing example. Sup-

pose our research requires us to compare test scores by income. We 

can use income level for our strata. Students from households with 

similar incomes should be relatively similar compared to the overall 

state population.  

 

While we want a random sample for unbiased estimates overall, we 

also want to ensure that we obtain precise estimates for each income 

level in our population. If we use simple random sampling, income 

levels with a small number of students and random chance could con-

spire to provide small sample sizes for some income levels. These 

smaller sample sizes produce relatively imprecise estimates for them.  

 

To counter this problem, we decide to use stratified sampling. Our 

sampling plan might dictate that we’ll select 100 students from each 

income level using simple random sampling. Of course, this plan pre-

supposes that we know the household income level for each student, 

which might be problematic. 
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The benefit of stratified sampling is that you obtain reasonably precise 

estimates for all subgroups that relate to your research question. The 

drawback is that analyzing these datasets is more complicated. When 

you use stratified random sampling, you can’t simply take the overall 

sample average and use it for the overall population mean because you 

know that the smaller strata are overrepresented. 

Cluster Sampling 

Use cluster sampling as a cost savings alternative to other methods. 

Clusters are groups that mirror the diversity of the whole population. 

Additionally, clusters are like each other. Because clusters reflect the 

population and are themselves comparable, researchers do not need 

to obtain samples from all clusters, which simplifies the process. Re-

searchers choose the clusters randomly and then either use simple 

random sampling to pick subjects from the selected clusters or use 

entire clusters.  

 

Geographic clusters are the most common type of clusters. The ra-

tionale for using them is that it is impractical to obtain samples from 

wide-ranging geographic regions. Cluster sampling reduces the geo-

graphic areas from which you recruit subjects. 

 

For example, imagine that we are studying rural communities in a 

state. Simple random sampling requires us to travel to all these com-

munities, which could be cost and time prohibitive. However, we can 

divide rural communities into similar clusters. Then, we pick the com-

munity clusters randomly. After we have a set of randomly chosen 

clusters, we can use simple random sampling to select subjects from 

them.  

 

The benefit of cluster sampling is that we don’t need to travel to all 

geographic regions, only a randomly selected subset. However, like 

stratified sampling, the drawback is that analyzing clustered datasets 

is more complicated.  
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Example of Inferential Statistics 

In the descriptive statistics section at the start of this chapter, I de-

tailed a study about test scores for a specific class. We’ll close the 

chapter by performing an inferential statistics study for that same test. 

By using the same test, but with the new goal of drawing inferences 

about a population, I can show you how that changes the way we con-

duct the study and the results that we present. 

 

In descriptive statistics, we picked the specific class that we wanted 

to describe and recorded all of the test scores for that class. We then 

calculated the exact mean, standard deviation, and passing proportion 

for that class. Nice and simple.  

 

For inferential statistics, we need to define the population and then 

draw a random sample from that population. 

 

Let’s define our population as 8th-grade students in public schools in 

the State of Pennsylvania in the United States. We need to devise a 

random sampling plan to help ensure a representative sample. This 

process can be quite arduous. For the sake of this example, assume 

that we are provided a list of names by the state for the entire popula-

tion of 8th grade students. From this list, we use a simple random pro-

cedure to select 100 students. Note that these students will not be in 

one class, but from many different classes in different schools across 

the state. We’ll be travelling all over the state to get their test scores! 

 

For inferential statistics, we can calculate the point estimate for the 

mean, standard deviation, and proportion for our random sample. 

However, it is staggeringly improbable that any of these point esti-

mates are precisely correct, and there is no way to know for sure an-

yway. Because we can’t measure all subjects in this population, there 

is a margin of error around these statistics. Consequently, I’ll report 

the confidence intervals for the mean, standard deviation, and the 

proportion of satisfactory scores (>=70). Here is the CSV data file: In-

ferential_statistics. 
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Statistic Population Parameter Estimate (CIs) 

Mean 77.4 – 80.9 

Standard deviation 7.7 – 10.1 

Proportion scores >= 70 77% – 92% 

 

Given the uncertainty associated with these estimates, we can be con-

fident that the population mean is between 77.4 and 80.9. The popu-

lation standard deviation is likely to fall between 7.7 and 10.1. And the 

population proportion of satisfactory scores is expected to be be-

tween 77% and 92%. 

Summary and Next Steps 

In this chapter, you learned how the difference between descriptive 

and inferential statistics lies in the process as much as it does the sta-

tistics that you report. 

 

For descriptive statistics, we choose a group that we want to describe 

and then measure all subjects in that group. Outside of measurement 

error, the statistical summary describes this group with complete cer-

tainty. 

 

A study using descriptive statistics is simpler to perform. However, if 

you need evidence that an effect or relationship between variables ex-

ists in an entire population rather than only your sample, you need to 

use inferential statistics. 

 

Inferential statistics use many of the same summary statistics and 

graphs as descriptive statistics. However, now you need to think about 

sampling methodologies, representative samples, point estimates, and 

margins of error. Additionally, the statistical results incorporate the 

uncertainty inherent when using a sample to understand an entire 

population. 
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For inferential statistics, you need to define the population. Then de-

vise a random sampling methodology to help ensure that you obtain a 

representative sample that produces unbiased estimates. Unbiased es-

timates are not systematically too high or too low. Representative 

samples allow you generalize from the sample to the population.  

 

Increasing the sample size tends to improve the precision of the esti-

mates. In other words, you can expect the sampling error to be smaller 

when you use a larger sample. 

 

Use confidence intervals to estimate the range of likely values for the 

population parameters. If this range is too broad to be meaningful, in-

crease your sample size! 

 

As you get into hypothesis testing, sufficiently large sample sizes are 

vital because they give tests a greater ability to detect differences be-

tween groups. This improved capability occurs thanks to the in-

creased precision. Less precise estimates hamper the test's ability to 

determine whether groups are different. 

 

As we move forward, the book focuses on using statistics in scientific 

studies. Scientific studies invariably use inferential statistics. There is 

little value to science in determining whether an effect exists only in 

a sample rather than the entire population. Whether the study is about 

medication effectiveness or an opinion poll, the findings are unim-

portant if they apply only to the specific group of subjects in the study. 

To be a valuable addition to science, the results must generalize be-

yond that small group. Consequently, the rest of this book stays with 

inferential statistics. 

 

As you will learn, using statistics to answer scientific questions in an 

experiment requires a design that mitigates a variety of complications. 

Consequently, including statistical analyses in the scientific method 

requires yet another layer of knowledge about processes and proce-

dures.
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C H A P T E R  6  

 

Statistics in Scientific 
Studies 

The scientific method is a proven procedure for expanding knowledge 

through experimentation and analysis. It is a process that uses careful 

planning, rigorous methodology, and thorough assessment. Statistical 

analysis plays an essential role in this process. 

 

When you’re talking about scientific studies or experiments, you’re 

invariably using inferential statistics. Science doesn’t generally care if 

an effect exists only in the sample.  

 

In an experiment that includes statistical analysis, the analysis is at the 

end of a long series of events. To obtain valid results, it’s crucial that 

you carefully plan and conduct a scientific study for all steps up to and 

including the analysis. In this chapter, I map out five steps for scien-

tific studies that include statistical analyses. 

 

It’s vital that you understand the scientific method and know how to 

design a scientifically rigorous study that includes statistical analysis. 

Mistakes along the way can invalidate the results of your analysis. I’ve 
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divided the process into five stages. Depending on the nature of your 

experiment, you might need to emphasize or deemphasize certain as-

pects. 

 

For example, studies of physical phenomena will look very different 

than those in the social sciences. In the same vein, studies that use 

designed factorial experiments, observational studies, and surveys 

will all look different from each other. While studies can differ dras-

tically, they all use aspects of the same roadmap I lay out. 

 

This roadmap relates to scientific studies that include statistical anal-

ysis. However, even purely qualitative studies will share many of the 

same steps. 

 

The steps in a scientifically rigorous study are the following: 

 

1. Research Phase.  

• Define the Problem and Research Question. 

• Literature Review. 

2. Operationalize Phase.  

• Define your variables and measurement techniques. 

• Design the experimental methods and determine sample 

size. 

3. Data Collection. 

4. Statistically analyze data and draw conclusions. 

5. Communicate the results. 

Step 1: Research Your Study Area 

Good scientific research depends on gathering a lot of information be-

fore you even start collecting data. You’ll need to investigate your sub-

ject-area to write a research question that your study can reasonably 

answer. Then, you’ll need to develop in-depth knowledge about other 

studies to devise a plan for conducting your study. 
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Define Your Research Question 

The first step of your study is to formulate a research question. This 

is the question you want your study to answer. Research questions 

focus your experiment, help guide your decision-making process, and 

helps prevent side issues from distracting you from your goal. 

 

Typically, researchers start with a broad topic and research the sub-

ject area. Determine what types of questions researchers have and 

have not answered. This process helps to narrow the broad topic 

down to a more specific research question. Determine what studies 

researchers have already performed and what literature already ex-

ists. Will you answer a new question or try to replicate previous re-

search? If you’re trying to replicate previous results, will your study 

address any weaknesses identified in previous experiments? 

 

Your research question should be appropriate for your discipline. 

Consequently, the properties of suitable research questions vary sig-

nificantly by subject area. For example, acceptable research questions 

look different for physics, psychology, biology, and political science. 

However, they have some common qualities. 

 

Research questions must be clear and concise. Readers of your short 

research question should clearly understand the goal of your study. 

Additionally, ensure the scope of the inquiry is narrow enough that 

your research can reasonably answer it using available time and re-

sources. 

 

Typically, developing your research question often starts with a topic 

that you are interested in and involves some initial research. This pre-

liminary research helps you craft an actionable research question. 

However, after you devise your question, you’ll need to conduct a 

much more in-depth review of the literature. And, you will likely per-

form some iterative fine-tuning. During the literature review, you 

might find yourself tweaking the research question. 



J im Frost  

172 

Literature Review 

A literature review is a very extensive background investigation into 

your research question. There are two primary goals of a literature 

review for a scientific study that involves statistical analysis. 

 

First, you need to understand fully the subject-area that contains your 

research question. What have other studies found? Identify the signif-

icant relationships and effects that the literature recognizes along with 

their size and direction. What variables and factors play a role? 

 

In short, define the current state of scientific knowledge surrounding 

your research question. This process helps you determine how your 

study fits within the field, enables you to understand the thought pro-

cesses behind similar studies, and provides you with a general sense 

of the findings thus far. 

 

Secondly, you need information that helps you operationalize your 

study. Operationalization is the process of taking the general idea of 

your research question and creating an actionable plan that allows an 

experiment to answer the question. If your study includes statistical 

analysis, you’ll need to determine how other studies have used statis-

tics to answered similar questions. 

 

With that in mind, determine the following: 

 

• What data did similar studies collect? Which variables? 

• How did they measure the variables? 

• How did they draw their sample? 

• What methods did they use to analyze the data? Which anal-

yses and experimental designs? 

 

You’ll also want to learn about the strengths, weaknesses, and mis-

takes that other studies have made. Avoid the mistakes of others and 

build on their strengths! 
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The research phase should produce a research question, in-depth 

knowledge of the subject-area and relevant findings, and a thorough 

understanding of how other researchers have operationalized similar 

studies. This background information helps you design your own ex-

periment. 

Step 2: Operationalize Your Study 

Operationalizing a study is the process of taking your research ques-

tion, using the background information you gathered, and a formulat-

ing an actionable plan. This plan includes everything from defining 

variables to how you’ll analyze the data. 

Variables: What Will You Measure? 

Studies that use statistics to answer questions require you to collect 

data in the form of variables that you’ll analyze. Consequently, you 

must define the variables that you will measure and decide how you’ll 

measure them. If you do not collect the correct data or measure it in-

accurately, you might not be able to answer your research question. 

In fact, thanks to confounding variables, the variables you do not 

measure can impact the results for the variables that you do measure! 

Take your time determining which variables you’ll need to measure 

to answer your research question. 

 

For example, if you are studying depression, how will you define and 

measure depression? Your literature review should inform your deci-

sion about using an accepted definition for depression and choosing a 

scientifically validated methodology for assessing depression. Science 

builds on itself! 

 

If you’re trying to predict depression, describe its relationships with 

other variables, or evaluate treatments, you’ll need to define those 

variables operationally and determine how you’ll measure them. 
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Types of Variables and Treatments 

Typically, studies want to understand how changes in one or more 

variables affect the outcome variable. Depending on the type of ex-

periment, the researchers will either control or not control the varia-

bles. If you control the variables, you’ll need to decide on the settings 

for the controllable variables. 

 

Most studies include a treatment, intervention, or some other com-

parison it wants to make. You’ll need to define the treatment and en-

sure a system is in place to deliver it as required. That’s true not only 

for medical treatments but with any intervention. 

 

For example, I participated in an exercise intervention study to deter-

mine whether it affects bone density. We defined our intervention as 

sessions that occur three times a week and consist of 30 impacts that 

are six times the subjects’ body weights. We had the procedures, 

equipment, and training in place to ensure our subjects received the 

intervention as we defined it. 

Measurement Methodology: How Will You Take Measure-
ments? 

You’ll also need to specify how you will take measurements. What 

equipment will you use? How will you reduce other sources of varia-

tion? 

 

Precision and accuracy are essential in research. Ensure that your plan 

describes how to obtain good measurements. For example, I once 

wrote a detailed equipment calibration document to ensure high qual-

ity measurements over the course of the study. For that study, good 

measurements depended on daily, standardized calibrations. 

Create a Sampling Plan: How Will You Collect Samples for 
Studying? 

Researchers must specify the particular population they’re studying. 

For example, will you include all levels of depression or only mild to 
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severe cases? What ages, socioeconomic statuses, and other factors 

will define your population.  

 

Perhaps you’re studying the strength of products from a manufactur-

ing process. You’ll still need to ensure that you obtain a representative 

sample. You might need to incorporate different manufacturing lines, 

shifts, and other relevant conditions. 

 

After you define your population, you need to devise a plan for col-

lecting a sample from that population. Your sample contains the peo-

ple or objects that your study assesses. Studies that use inferential 

statistics take sample data and draw inferences about a population. 

However, these studies must gather samples in a manner that pro-

duces unbiased estimates. This process often involves random sam-

pling because a convenience method can introduce bias. 

 

Literature reviews often reveal sample collection methodologies 

other researchers have used in your study area. Determine where and 

how you’ll collect the sample, including the date and time, location, 

and so on. 

 

Finally, how much data should you collect? On the one hand, you want 

to collect enough data to have a reasonable chance of detecting a prac-

tically significant effect. On the other hand, you don’t want to obtain 

such a large sample that it wastes your time and resources. A power 

analysis helps you choose a sample size that strikes a balance between 

these two competing goals. However, to perform a power analysis, 

you need estimates for effect size and variability in the data. Again, 

look at your literature review! 

Design the Experimental Methods 

You’ll need to define your hypothesis in a form amenable to statistical 

analysis and choose the appropriate analysis. Your hypothesis must be 

testable, which means that the data you collect will either support or 

reject the hypothesis. Determine the statistical analyses that can 
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adequately test your hypotheses. These methodology decisions start 

at a very high level, such as choosing between a randomized experi-

ment or an observational study. From there, you can work your way 

down to more fundamental questions. We’ll focus on these designs in 

the next chapter. 

 

For example, will you compare means, medians, proportions, or rates 

between groups? Or perhaps assess the relationship between nominal 

variables or continuous variables? All these issues affect the statistical 

analyses you can perform. 

 

Additionally, there are the nuts and bolts for each type of analysis that 

you’ll need to decide. What significance level will you use? One-tailed 

or two-tailed hypothesis tests? If you use ANOVA, will you follow up 

with a post hoc test? If so, which one? 

 

Your plan should limit the number of analyses and models you’ll use. 

Each statistical test has an error rate. The more tests you perform, the 

higher the overall chances of a false result. Making these methodology 

decisions in advance helps reduce data mining. It prevents you from 

using multiple techniques and then cherry picking the best results. In 

this manner, a data analysis plan lowers the probability of false posi-

tives caused by running into chance correlations. 

 

The operationalization stage should produce a plan that tells you what 

you’ll measure, how you’ll measure it, how you will collect a sample, 

the size of the sample, and how you’ll analyze the data. 

Step 3: Data Collection 

At this point, you’ve operationalized your study and have a plan of 

action. After you make the necessary arrangements, you should be 

ready to collect data! Depending on the nature of your research, this 

can be quite a long process. Whether you’re in the lab measuring, out 

administering surveys in the field, or working with human subjects, 
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data collection is often the portion of the study that takes the most 

time and work. Hurray! You’re doing science! 

 

Often, you’ll need to set up the proper conditions to take measure-

ments and verify that everything is working correctly. Perhaps you 

need to get the lab conditions just right and ensure the equipment is 

functioning properly to obtain valid measurements. Or, you’re going 

through a detailed process to obtain a truly random sample. Some-

times it is difficult to recruit a sufficient number of human subjects. 

The procedures might also involve training other personnel to per-

form tasks precisely as prescribed. I once had to create a training 

video to obtain consistent results! 

 

While you’re generally working from your operational plan, it’s not 

uncommon to encounter surprises, and you’ll need to adapt. Hope-

fully, your subject-area knowledge and literature review help you an-

ticipate most surprises, but the thing about science is that you’re often 

studying something that researchers haven’t fully studied before. Ex-

pect surprises! 

Step 4: Statistical Analysis 

Like the data collection stage of your study, you should already have 

the analysis phase defined. If you’re “winging it,” you’re not doing it 

right! In a nutshell, be sure that you’re analyzing the data correctly, 

satisfying the assumptions where necessary, and drawing the proper 

conclusions. 

 

However, there is a vital point to make here. Problems anywhere in 

this process can prevent you from making discoveries or invalidate 

the findings well before you even get to the statistical analysis. As the 

old saying goes, garbage in, garbage out. If you put garbage data into 

the statistical analysis, it’ll spit out garbage results. If all the steps lead-

ing up to your analysis are not carefully thought out and performed, 

you might not be able to trust the results or miss important findings. 

Science is all about getting all the details correct. 
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Step 5: Writing the Results 

After you collect the data and analyze it, you need to write up the re-

sults to inform other researchers about what you’ve found. Indicate 

which hypotheses the data support, the overall conclusions, and what 

they represent in the framework of the scientific field or real-world 

setting. However, it involves more than just writing up the findings. 

 

The scientific method works by replicating results—or the failure to 

do so. The scientific process tends to cause the correct answers for 

research questions to rise the top over time through successful repli-

cation. Conversely, it weeds out incorrect results after they fail to rep-

licate. 

 

Consequently, you’ll need to provide enough information about how 

you conducted your study so other researchers can repeat it and, 

hopefully, replicate the results. Typically, you’ll include aspects of the 

first four steps (background research, operationalization, data collec-

tion, and analysis) in the final write up. The standards vary by field, 

so you should see how studies in your area document themselves. In 

this manner, your research becomes part of the knowledgebase for 

future studies to build on—just like you did during your literature re-

view! Additionally, all the details help other researchers determine 

the strengths and weaknesses of your study so they can interpret the 

results while understanding the context. 

Summary and Next Steps 

This chapter provides an overview of how statistical analyses fits into 

the scientific process. Statistical analysis is a crucial step in the scien-

tific process because it objectively tells you which hypothesis the data 

favor. However, there is a long list of items before the statistical anal-

ysis that must all proceed correctly for you to be able to trust the re-

sults. 
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The next chapter focuses on designing experiments and the different 

options that are available. Researchers design experiments to make 

discoveries and test hypotheses. 
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C H A P T E R  7  

 

Experimental Methods 

Throughout this book, you’ve learned about the different types of 

data, the different types of relationships that can exist between varia-

bles, and how to graph and identify these relationships. All of that in-

formation is at the core of how we can use numbers to learn. For 

instance, you can compare groups to see how they differ by central 

tendencies and variability. 

 

Then, you learned about using inferential statistics to learn about a 

population, along with the need to use a sampling methodology that 

produces a representative sample.  

 

After that, we looked at the broad picture of the scientific process and 

saw how statistical analyses fit into it. Now, we’ll zoom in on that pro-

cess and take a look at experimental methods, which is how we use 

numbers, statistics, and analyses to expand the frontiers of human 

knowledge. 

 

An experiment is a procedure to make a discovery or test a hypothe-

sis. To conduct an experiment, researchers manipulate, measure, and 

control variables. Typically, the goal is to establish a causal 
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relationship between variables. Researchers want to influence, pre-

dict, and explain outcomes. Experiments push back the boundaries of 

science by creating new knowledge. They can improve lives by creat-

ing knowledge that enhances products, services, methods, or just by 

increasing the overall understanding of how things work in the world. 

 

For experiments to create new knowledge, scientists use designs that 

include procedures and variables that allow them to identify relation-

ships that answer their research questions. For example, they might 

want to investigate the effectiveness of a new vaccine by comparing 

infection rates in vaccinated and unvaccinated groups. They must en-

sure that their experimental design allows them to pinpoint the cause 

to the variables, treatments, and processes that they are testing while 

ruling out other possible explanations. They also want to be sure that 

the effect they observe doesn’t exist only in their small sample but 

also exists in a larger population. 

 

The term experiment covers many different types of design. The 

strictest definition of an experiment is known as a true experiment. In 

a true experiment, the researchers randomly select subjects from the 

population, randomly assign subjects to the treatment groups, and 

controls the treatments and all relevant conditions they experience in 

a lab setting.  

 

However, there are broader definitions of experiments. These defini-

tions include quasi-experimental designs that don’t use representative 

samples or random assignment. Researchers might not even control 

the treatments and other conditions that the subjects experience. 

 

How people within a field think about experiments depends on the 

area.  

 

Physical sciences, such as chemistry and physics, can frequently per-

form true, randomized experiments. Researchers in these areas can 

complete their investigations in labs where they can control 
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experimental samples and conditions more easily than researchers in 

social sciences.  

 

In the social sciences, it’s more difficult, or even impossible, to ran-

domly assign subjects and control the treatments and other variables. 

Experimenting in a lab is often not possible. Consequently, areas such 

as psychology and sociology often use quasi-experiments, such as ob-

servational studies. 

 

Physical objects are easier to randomize and control in a lab. People 

are much more difficult! 

 

There are many different types of experimental designs. Statisticians 

have written entire textbooks about the various processes. In this in-

troductory book, I’ll cover two broad types of experimental designs—

true experiments and quasi-experiments. Fundamentally, these two 

approaches are dramatically different, but they have the same ulti-

mate goals and similar challenges. 

Types of Variables in an Experiment 

Let’s define the two fundamental types of variables that you’ll include 

in your experiment. 

Dependent Variables 

The dependent variable is a variable in the experiment that you want 

to explain or predict. The values of this variable depend on other var-

iables. It’s also known as the response variable, outcome variable, and 

it is commonly denoted using a Y. Traditionally, analysts graph de-

pendent variables on the vertical, or Y, axis. Frequently, you’ll com-

pare the outcome variable between groups to estimate the effect size 

of your treatment, intervention, or process. 

Independent Variables 

Independent variables are the variables that you include in the exper-

iment to explain or predict changes in the dependent variable. In true 
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experiments, independent variables are systematically set and 

changed by the researchers. However, in observational studies, the 

values of the independent variables are not set by researchers but ob-

served instead. These variables are also known as predictor variables, 

input variables, experimental factors, and are commonly denoted us-

ing Xs. On graphs, analysts place independent variables on the hori-

zontal, or X, axis. 

 

For example, in a vaccination study, the infection rate is the depend-

ent variable. That’s the outcome we measure. The independent varia-

ble is a categorical grouping variable that defines the treatment and 

control group. In this experiment, we’ll control who receives vaccina-

tion treatment. To estimate the effectiveness of the vaccines, we com-

pare the infection rates between the treatment and control groups. 

Causation versus Correlation 

Before getting into the experimental methods themselves, we need to 

look at a potential problem that all experiments face. When you con-

duct an experiment, you typically want to identify causal relation-

ships. Does event A cause outcome B? However, determining that an 

event causes an outcome, rather than merely being correlated, re-

quires your experiment to include design elements that control or rule 

out other possible explanations. 

 

Causation indicates that an event affects an outcome. Do fatty diets 

cause heart problems? If you study for a test, does it cause you to get 

a higher score? 

 

You’ll read a lot about confounding variables and how to manage 

them. All the experimental designs that we cover have different meth-

ods for addressing them because it is such a critical issue. To get 

started on that topic, we need to revisit the old chestnut about corre-

lation versus causation! 
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The expression is, “correlation does not imply causation.” Conse-

quently, you might think that it applies to things like Pearson’s corre-

lation coefficient. And, it does apply to that statistic. However, we’re 

really talking about relationships between variables in a broader con-

text. Pearson’s is for two continuous variables. However, a relation-

ship can involve different types of variables such as categorical 

variables, counts, binary data, and so on. 

 

For example, in a medical experiment, you might have a categorical 

variable that defines which treatment group subjects belong to—a 

control group and several different treatment groups. If the health 

outcome is a continuous variable, you can assess the differences be-

tween group means. If the means differ by group, then you can say 

that mean health outcomes depend on the treatment group. There’s a 

correlation, or relationship, between the type of treatment and health 

outcome. Or, perhaps the outcome is binary, say infected and not in-

fected. In that case, we’d compare group proportions of the in-

fected/not infected between groups to determine whether treatment 

correlates with infection rates. 

 

Throughout this section, I’ll refer to correlation and relationships in 

this broader sense—not just literal correlation coefficients. But rather 

relationships between variables, such as differences between group 

means and proportions, regression coefficients, associations between 

pairs of categorical variables, and so on. 

 

In statistics, causation is a bit tricky. Correlation doesn’t necessarily 

imply causation. An association or correlation between variables indi-

cates that the values vary together. It does not necessarily suggest that 

changes in one variable cause changes in the other variable. Proving 

causality can be difficult. 

 

If correlation does not prove causation, what statistical test do you use 

to assess causality? That’s a trick question because no statistical 
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analysis can make that determination. In this section, learn about why 

you want to determine causation and how to do that. 

Confounding Variables 

As a critical component of the scientific method, experiments typi-

cally set up contrasts between a control group and one or more treat-

ment groups. The idea is to determine whether the effect, which is 

often the difference between a treatment group and the control group, 

is statistically significant. If the effect is significant, group assignment 

correlates with different outcomes. 

 

However, as you have read, correlation does not necessarily imply 

causation. In other words, the experimental groups can have different 

mean outcomes, but the treatment might not be causing those differ-

ences even when the differences are statistically significant. 

 

The difficulty in establishing causality is the potential existence of 

confounding variables or confounders. As you read about in chapter 

3, confounders are alternative explanations for differences between 

the experimental groups. Remember the spurious correlation be-

tween ice cream sales and shark attacks? 

 

Confounding variables correlate with both the experimental groups 

and the outcome variable. In this situation, confounding variables can 

be the actual cause for the outcome differences rather than the treat-

ments themselves. As you’ll see, if an experiment does not account for 

confounding variables, they can bias the results and make them un-

trustworthy. 

Example of Confounding in an Experiment 

An example will help clarify how confounding can obscure your re-

sults. Suppose we want to determine whether regular vitamin con-

sumption improves health outcomes. To keep things simple, we have 

the following two experimental groups: 
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• Control group: Does not consume vitamin supplements 

• Treatment group: Regularly consumes vitamin supplements. 

 

In this experiment, we measure a specific health outcome. After the 

experiment is complete, we perform a hypothesis test to determine 

whether the mean outcomes for these two groups are different. As-

sume the test results indicate that the mean outcome in the treatment 

group is significantly better than the control group. 

 

Why can’t we assume that the vitamins improved the health out-

comes? After all, only the treatment group took the vitamins. 

 

Answering that question depends on how we assigned the subjects to 

the experimental groups. If we let the subjects decide which group to 

join based on their existing vitamin habits, it opens the door to con-

founding variables. It’s reasonable to assume that people who take vit-

amins regularly also tend to have other healthy habits. These habits 

are confounders because they correlate with both vitamin consump-

tion and the health outcome measure. 

 

In fact, studies have found that supplement users are more physically 

active, have healthier diets, have lower blood pressure, and so on 

compared to those who don’t take supplements. If subjects who al-

ready take vitamins regularly join the treatment group voluntarily, 

they bring these healthy habits disproportionately to the treatment 

group. Consequently, these habits will be much more prevalent in the 

treatment group than the control group. 

 

The healthy habits are the confounding variables—the potential alter-

native explanations for the difference in our study’s health outcome. 

These systematic differences between groups at the start of the study 

might cause the difference in the health outcome at the end of the 

study—and not the vitamin consumption itself! 
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If our experiment doesn’t account for these confounding variables, we 

can’t trust the results. While we obtained differences in health out-

comes, we don’t know for sure whether the vitamins, the systematic 

differences in habits, or some combination of the two caused the im-

provements. 

Why Determining Causality Is Important 

What is the big deal in the difference between correlation and causa-

tion? For example, if you observe that as one variable increases, the 

other variable also tends to increase—isn’t that good enough? After 

all, you’ve quantified the relationship and learned something about 

how they behave together. 

 

If you’re only predicting events, not trying to understand why they 

happen, and do not want to alter the outcomes, correlation can be per-

fectly fine. For example, ice cream sales correlate with shark attacks. 

If you just need to predict the number of shark attacks, ice creams 

sales might be a good thing to measure even though it’s not causing 

the shark attacks. 

 

However, if you want to reduce the number of attacks, you’ll need to 

find something that genuinely causes a change in the attacks. As far as 

I know, sharks don’t like ice cream! 

 

There are many occasions where you want to affect the outcome. For 

example, you might want to do the following: 

 

• Improve health by using medicine, exercising, or flu vaccina-

tions. 

• Reducing the risk of adverse outcomes, such as procedures for 

reducing manufacturing defects. 

• Improving outcomes, such as studying for a test. 

 

For intentional changes in one variable to affect the outcome variable, 

there must be a causal relationship between the variables. After all, if 
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studying does not cause an increase in test scores, there’s no point for 

studying. If the medicine doesn’t cause an improvement in your 

health or ward off disease, there’s no reason to take it. 

 

Before you can state that some course of action will improve your out-

comes, you must be sure that a causal relationship exists between your 

variables. 

Causation and Hypothesis Tests 

Let’s take a moment to reflect on why statistically significant hypoth-

esis test results do not signify causation. 

 

Hypothesis tests are inferential procedures. They allow you to use rel-

atively small samples to draw conclusions about entire populations. 

For the topic of causation, we need to understand what statistical sig-

nificance means. 

 

Use a hypothesis test to determine whether your data provide suffi-

cient evidence to conclude that a relationship in your sample exists in 

the population. Tests exist for correlation coefficients, differences be-

tween group means, and regression coefficients among many other 

relationships. You might observe a relationship in your sample, but 

you need to know whether it exists in the population. Random sam-

pling error (i.e., the luck of the draw) might have created the appear-

ance of a “relationship” in your sample. 

 

Statistical significance indicates that you have sufficient evidence to 

conclude that the relationship you observe in the sample also exists in 

the population. 

 

That’s it. It doesn’t address causality at all.  
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There’s a critical separation between significance and causality: 

 

• Statistical procedures indicate whether you have sufficient 

evidence to conclude that a sample effect exists in the popu-

lation. 

• Experimental designs determine how confidently you can as-

sume that a treatment causes the effect. 

 

How do experiments determine that a relationship is causal?  

 

In short, to have a chance at asserting that a relationship is causal, your 

study must have a design that helps rule out other explanations for the 

association. Scientific studies commonly use the following two meth-

ods to handle confounders: 

 

• Use random assignment in a true experiment to reduce the 

likelihood that systematic differences exist between experi-

mental groups when the investigation begins. 

• Statistically control for them in quasi-experiments and obser-

vational studies. 

 

I’ll cover quasi-experiments and observational studies later in this 

chapter. For now, let’s take a look at how random assignment works 

in an experimental design. 

True Randomized Experiments 

To classify as a true experiment, the researchers must do the follow-

ing: 

 

• Uses a representative sample of the population under study. 

• Randomly assign subjects to the experimental groups ran-

domly. 

• Have a control group. 

• Control the treatment or process that they are testing. 
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True experiments are the best way to identify causal relationships. 

These studies often occur in lab settings that control other sources of 

variation effectively. This stringent design is frequently more expen-

sive and harder to implement than the less strict forms we’ll discuss 

later. 

 

Random assignment uses chance to assign subjects to the control and 

treatment groups in an experiment. This process helps ensure that the 

groups are equivalent at the beginning of the study. Having compara-

ble groups increases your confidence that the treatments caused the 

differences between groups at the end of the study.  

 

Additionally, researchers must be able to control the treatment or 

process that each group experiences and control other sources of var-

iation. True experiments typically have a control group that serves as 

a baseline to compare to the outcomes of the treatment groups. If the 

infection rate for a vaccine is 10%, you don’t know if that’s an im-

provement unless you can compare it to an unvaccinated control 

group. 

 

Random assignment is the magic ingredient that gives true experi-

ments powerful abilities to detect causal relationships. Let’s see how 

that works! 

Random Assignment 

Note that random assignment is different than random sampling. Ran-

dom sampling is a process for obtaining a sample that accurately rep-

resents a population. 

 

Random assignment uses a chance process to assign subjects to exper-

imental groups. Using random assignment requires that the experi-

menters can control the group assignment for all study subjects. To 

illustrate how this works, let’s return to our vitamin supplement 

study. For our research, we must be able to assign our participants to 
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either the control group or the supplement group. Obviously, if we 

can’t assign subjects to the groups, we can’t use random assignment! 

 

Additionally, the process must have an equal probability of assigning 

a subject to any of the groups. For example, in our vitamin supplement 

study, we can use a coin toss to assign each person to either the con-

trol group or supplement group. For more complex experimental de-

signs, we can use a random number generator or even draw names out 

of a hat. 

 

The random assignment process distributes confounding properties 

amongst your experimental groups equally. In other words, random-

ness helps eliminate systematic differences between groups. For our 

study, flipping the coin tends to equalize the distribution of subjects 

with healthier habits between the control and treatment group. Con-

sequently, these two groups should start roughly equal for all con-

founding variables, including healthy habits! 

 

When a study ends, we compare outcomes between groups to see if 

there are differences. For example, we might use a hypothesis test to 

determine whether the differences between groups means are statis-

tically significant. 

 

Random assignment is a simple, elegant solution to a complex prob-

lem. For any given study area, there can be a long list of confounding 

variables to worry about. However, using random assignment, you 

don’t need to know what they are, how to detect them, or even meas-

ure them. Instead, use random assignment to equalize them across 

your experimental groups so they’re not a problem. 

 

Because random assignment helps ensure that the groups are compa-

rable when the experiment begins, you can be more confident that the 

treatments caused the post-study differences. 
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Comparing the Vitamin Study With and Without Random As-
signment 

Let’s compare two scenarios involving our hypothetical vitamin 

study. Assume that it obtains statistically significant results in both 

cases. 

 

Scenario 1: We don’t use random assignment and, unbeknownst to us, 

subjects with healthier habits disproportionately end up in the supple-

ment treatment group. The experimental groups differ by both 

healthy habits and vitamin consumption. Consequently, we can’t de-

termine whether it was the habits or vitamins that improved the out-

comes. 

 

Scenario 2: We use random assignment and, consequently, the treat-

ment and control groups start with roughly equal levels of healthy 

habits. The intentional introduction of vitamin supplements in the 

treatment group is the primary difference between the groups. Con-

sequently, we can more confidently assert that the supplements 

caused an improvement in health outcomes. 

 

For both scenarios, the statistical results could be identical. However, 

the methodology behind the second scenario makes a stronger case 

for a causal relationship between vitamin supplement consumption 

and health outcomes. 

 

How important is it to use the correct methodology? If the relation-

ship between vitamins and health outcomes is not causal, then con-

suming vitamins won’t cause your health outcomes to improve 

regardless of the results. Instead, it’s probably all the other healthy 

habits! 

 

Let’s take a look at a real experiment that used random assignment 

along with a “blinding” design to help rule out confounders. 
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Flu Vaccination Experiment 

The Monto et al. study is a randomized experiment that evaluates flu 

vaccinations during the 2007-2008 flu season. (Monto, et al., 2009) 

Participants are 18-49 years old and healthy. The study follows them 

from January to April. Researchers drew a random sample from this 

population. For those who agreed to participate, the researchers ran-

domly assigned them to the vaccination group or control group. We’d 

expect the random assignment to equalize other characteristics that 

can influence infection rates between the two groups. 

 

For this experiment, the control group received a placebo, which was 

a fake shot. Neither the subjects nor the researchers who worked with 

them know their group assignment. This double-blind design helps 

prevent researcher and participant expectations from affecting the 

outcome. These expectations are potential confounders. 

 

Flu shots contain vaccine for three or four strains of the influenza vi-

rus that scientists predict will be the most common strains in a flu sea-

son. However, there are many other viruses (other strains of flu and 

non-flu) that can make you sick. Some of these are flu-like illnesses 

that are not the flu but can make you feel like you have the flu. 

 

Consequently, the best flu vaccination studies use a lab to identify the 

specific viruses that makes their subjects sick. These studies count 

participants as being infected with the flu only when he or she catches 

an influenza strain in the vaccine. Flu shot effectiveness is the reduc-

tion in cases involving these particular strains among those who were 

vaccinated compared to those who were not. 
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The table below displays the counts of infections by group. I’ve in-

cluded the percentages to facilitate comparison. 

 

Group Flu count Group size 

Vaccinated 28 (3.4%) 813 

Placebo 35 

(10.8%) 

325 

 

The vaccinated group had an infection rate of 3.4% compared to 10.8% 

in the placebo group. The difference, or treatment effect, is a 7.4% re-

duction in the infection rate. The researchers performed a hypothesis 

test, which determined that this difference is statistically significant. 

In other words, the study provides sufficient evidence to conclude 

that this effect exists in the population. The confidence interval for 

this estimate is 3.7% to 10.9%. 

 

Because we know that this was a randomized experiment, it provides 

solid evidence that the vaccine caused the reduction in the infection 

rate. 

Drawbacks of Randomized Experiments 

Scientists consider randomized experiments to be the best for identi-

fying causal relationships. However, despite being the perfect experi-

ment, it can have a variety of problems. 

 

Researchers strictly control true experiments. In fact, they might be 

too controlled and not represent real-world conditions. An effect ap-

parent in a highly controlled lab might not occur in real-world situa-

tions. This type of experiment can also be relatively expensive to set 

up due to the lab setting and highly controlled environments.  

 

In the physical sciences, it’s easier to control the variability of the rel-

atively few conditions that can affect the outcome. However, in social 

sciences, there might be so many potential variables that research can-

not control that a true experiment is impossible. Researchers working 
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with human subjects might have reason to worry about the natural 

tendency for people to behave differently in a lab setting. 

 

Random assignment helps reduce the chances of systematic differ-

ences between the groups at the start of an experiment and, thereby, 

mitigates the threats of confounding variables and alternative expla-

nations. However, the process does not always equalize all of the con-

founding variables. Its random nature tends to eliminate systematic 

differences, but it doesn’t always succeed. 

 

Sometimes random assignment is impossible because the experiment-

ers cannot control the treatment or independent variable. For exam-

ple, if you want to determine how individuals with and without 

depression perform on a test, you cannot randomly assign subjects to 

these groups. The same difficulty occurs when you’re studying differ-

ences between genders. 

 

In other cases, there might be ethical issues. For example, in a ran-

domized experiment, the researchers would want to withhold treat-

ment for the control group. However, if the treatment is a vital 

medication, it would be unethical to withhold it. 

 

Other times, random assignment might be possible, but it is very chal-

lenging. For example, with vitamin consumption, it’s generally 

thought that if vitamin supplements cause health improvements, it’s 

only after very long-term use. It’s hard to enforce random assignment 

with a strict regimen for usage in one group and non-usage in the other 

group over the long-run. Or imagine a study about smoking. The re-

searchers would find it challenging to assign subjects to the smoking 

and non-smoking groups randomly! 

Quasi-Experiments 

Quasi-experiments are similar to true experiments in their attempt to 

establish causality, but they do not meet all the requirements of a true 

experiment. Quasi-experiments can bear a strong resemblance to true 
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experiments. They typically have an outcome/dependent variable, at 

least one independent variable, and designs that compare treatment 

groups to a control group.  

 

There are a wide variety of types of quasi-experiments to handle dif-

ferent situations. However, the common characteristic for all quasi-

experiments is that they do not use random assignment. In some 

cases, it is impossible or unethical to assign subjects to treatment 

groups randomly. Perhaps the researchers cannot assign subjects to 

the experimental groups. Or, maybe they can assign them to the 

groups but cannot use a random process. For example, the researchers 

might need to assign the subjects by alphabetical order, ability, cut-off 

scores, or some other non-random attribute.  

 

Typically, the researchers do not control all the relevant variables in 

a quasi-experiment. In fact, they might not control the treatment or 

intervention itself. Instead, the subjects might choose the treatment 

groups themselves or be assigned by a non-random process—which 

might not be under the experimenter’s control.  

 

Quasi-experiments often include pre-tests that allow researchers to 

determine whether there are differences between the experimental 

groups at the beginning of the experiment that might affect the out-

comes. Unlike true experiments, quasi-experimental designs often re-

quire the researchers to observe and measure confounding variables 

and then account for them using a statistical model. 

Pros and Cons of Quasi-Experiments 

True experiments tend to occur in labs where researchers control all 

conditions, but generalizability to the real world might suffer. On the 

other hand, quasi-experiments frequently occur in more natural set-

tings outside of the lab. Consequently, statisticians refer to this type 

of experiment as a natural experiment. Subjects are in their natural 

environments and often making their own decisions about the treat-

ments and other factors that are relevant to the researcher’s outcome 
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variable. Consequently, generalizability to the real-world is less of a 

concern for quasi-experiments.  

 

However, moving away from random assignment increases questions 

about causality. Differences in outcomes might be attributable to con-

founding variables and alternative explanations rather than the treat-

ment itself. 

 

As the previous section explained, true experiments are typically 

more expensive and complicated to set up. Consequently, limited re-

sources can prevent researchers from conducting a true experiment, 

but they might be able to afford a less stringent design. 

 

In cases where random assignment is impossible or unethical, true ex-

periments are not an option. The standard examples for when to use 

quasi-experiments are for situations where random assignment is not 

possible, such as educational interventions, public policy changes, and 

large-scale health interventions. You simply can’t assign subjects ran-

domly or even test them in a lab! 

 

Next, we’ll look much more deeply into observational studies. These 

are a type of quasi-experiment that you use when you can’t assign sub-

jects to the groups randomly, and you do not control the treatment or 

intervention. The researchers simply observe. It’s the very definition 

of a natural experiment. Observational studies reduce the problem of 

confounding variables by incorporating confounders into a statistical 

model of the experimental design.  

Observational Studies 

For a myriad of reasons, researchers might not be able to use random 

assignment. Observational studies use samples to draw conclusions 

about a population when the researchers do not control the treatment, 

or independent variable, that relates to the primary research question. 
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Previously, I showed how random assignment reduces systematic dif-

ferences between experimental groups at the beginning of the study. 

This process increases your confidence that the treatments caused 

any differences between groups you observe at the end of the study. 

 

Unfortunately, using random assignment is not always possible. For 

these cases, you can conduct an observational study. In this section, 

you will learn about observational studies, why these studies must ac-

count for confounding variables, and how to do so. Finally, we’ll re-

view a published observational study about vitamin supplement usage 

so you can see how it works. 

 

In an observational study, the researchers only observe the subjects 

and do not interfere or try to influence the outcomes. In other words, 

the researchers do not control the treatments or assign subjects to ex-

perimental groups. Instead, they observe and measure variables of in-

terest and look for relationships between them. Usually, researchers 

conduct observational studies when it is difficult, impossible, or un-

ethical to assign study participants to the experimental groups ran-

domly. If you can’t randomly assign subjects, then you observe them 

in their self-selected states. 

 

Randomized studies are better, and you should usually randomize 

whenever possible. However, if randomization is not possible, science 

should not come to a halt. After all, we still want to learn things, dis-

cover relationships, and make discoveries. For these cases, observa-

tional studies are a good alternative. 

When to Use Observational Studies 

Let’s start by looking at cases where random assignment is problem-

atic. Despite that constraint, we can still conduct observational studies 

and draw conclusions about effects. 

 

If you’re studying how depression affects the performance of an ac-

tivity, it’s impossible to assign subjects to the depression and control 
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group randomly. However, you can have subjects with and without 

depression perform the activity and compare the results. 

 

Or, imagine trying to assign subjects to cigarette smoking and non-

smoking groups randomly?! However, you can observe people in both 

groups and assess the differences in health outcomes. 

 

Suppose you’re studying a treatment for a disease. Ideally, you recruit 

a group of patients who all have the disease, and then randomly assign 

them to the treatment and control group. However, it’s unethical to 

withhold the treatment, which rules out a control group. Instead, you 

can compare patients who voluntarily do not use the medicine to 

those who do use it. 

 

We’ll examine an observational study about vitamin supplement con-

sumption and how that affects the risk of death. For this experiment, 

you can conceivably design an experiment that uses random assign-

ment to place each subject in either the vitamin treatment group or 

the control group. However, the study we’ll look at assesses vitamin 

consumption in 40,000 participants over two decades. It’s unrealistic 

to enforce the treatment and control protocols over such a long time 

for so many people! 

 

In all these examples, the researchers do not assign subjects to the ex-

perimental groups. Instead, they observe people who are already in 

these groups and compare the outcomes. 

Accounting for Confounders in Observational Stud-
ies 

While observational studies get around the inability to assign subjects 

randomly, as you saw earlier, the lack of random assignment opens 

the door to the problem of confounding variables. Because there is no 

random process that equalizes the experimental groups in an observa-

tional study, confounding variables can systematically differ between 

groups when the investigation begins. Consequently, confounders can 
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be the actual cause for differences in outcome at the end of the study 

rather than the primary variable of interest. If an experiment does not 

account for confounding variables, confounders can bias the results 

and make them untrustworthy. 

 

Despite the limitations, observational studies can be a valid approach. 

However, you must ensure that your design accounts for confounding 

variables. Fortunately, there are several methods for doing just that! 

 

In the section about random assignment, I describe that process as an 

elegant solution for confounding variables. You don’t need to measure 

or even know which variables are confounders, and randomization 

will still mitigate their effects. 

 

On the other hand, observational studies don’t use random assign-

ment and confounders can be distributed disproportionately. Conse-

quently, experimenters need to know which variables are 

confounders, measure them, and then use a method to account for 

them. It involves more work, and the additional measurements can 

increase the costs. And there’s always a chance that researchers will 

fail to identify a confounder, not account for it, and produce biased 

results. However, if randomization isn’t an option, consider an obser-

vational study. 

 

Trait matching and statistically controlling confounders using multi-

variate procedures are two standard approaches for incorporating 

confounding variables. 

Matching  

Matching is a technique that involves selecting study participants with 

similar characteristics outside the variable of interest or treatment. 

Rather than using random assignment to equalize the experimental 

groups, the experimenters do it by matching observable characteris-

tics. The researchers use subject-area knowledge to identify charac-

teristics that are critical to match. For every participant in the 
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treatment group, the researchers find a participant with comparable 

traits to include in the control group. Matching facilitates valid com-

parisons between similar groups.  

 

For example, a vitamin supplement study using matching will select 

subjects who have similar health-related habits and attributes. The 

goal is that vitamin consumption will be the primary difference be-

tween the groups, which helps you attribute differences in health out-

comes to vitamin consumption. However, the researchers are still 

observing participants who decide whether they consume supple-

ments. 

 

Matching has some drawbacks. The experimenters might not be aware 

of all the relevant characteristics they need to match. In other words, 

the groups might be different in an essential aspect that the research-

ers don’t recognize. For example, in the hypothetical vitamin study, 

there might be a healthy habit or attribute that affects the outcome 

that the researchers don’t measure and match. These unmatched char-

acteristics might cause the observed differences in outcomes rather 

than vitamin consumption. 

Multiple Regression 

Random assignment and matching use different methods to equalize 

the experimental groups. However, statistical techniques, such as 

multiple regression analysis, don’t try to balance the groups but in-

stead use a model that accounts for confounding variables. These stud-

ies statistically control for confounding variables. 

 

In multiple regression analysis, including a variable in the model holds 

it constant while the treatment variable fluctuates.  

 

As with matching, the challenge is to identify, measure, and include 

all confounders in the regression model. Failure to include a con-

founding variable in a regression model can bias your results. 
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Next, we’ll look at a published study that uses multiple regression to 

account for confounding variables. 

 

Multiple regression goes beyond the scope of this book. For more in-

formation, read my book: Regression Analysis: An Intuitive Guide. 

Vitamin Supplement Observational Study 

Mursu et al. use a longitudinal observational study that ran 22 years to 

evaluate differences in death rates for subjects who used vitamin sup-

plements regularly compared to those who did not use them (Mursu, 

2011). This study used surveys to record the characteristics of ap-

proximately 40,000 participants. The surveys asked questions about 

potential confounding variables such as demographic information, 

food intake, health details, physical activity, and, of course, supple-

ment intake. 

 

Because this is an observational study, the subjects decided for them-

selves whether they were taking vitamin supplements. Consequently, 

it’s safe to assume that supplement users and non-users might be dif-

ferent in other ways. From their article, the researchers found the fol-

lowing pre-existing differences between the two groups: 

 

“Supplement users had a lower prevalence of diabetes mellitus, high 

blood pressure, and smoking status; a lower BMI and waist to hip ratio, 

and were less likely to live on a farm. Supplement users had a higher 

educational level, were more physically active, and were more likely 

to use estrogen replacement therapy. Also, supplement users were 

more likely to have a lower intake of energy, total fat, and monoun-

saturated fatty acids, saturated fatty acids and to have a higher intake 

of protein, carbohydrates, polyunsaturated fatty acids, alcohol, whole 

grain products, fruits, and vegetables.” 

 

Whew! That’s a long list of differences! Supplement users were dif-

ferent from non-users in a multitude of ways that are likely to affect 

their risk of dying. The researchers must account for these 
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confounding variables when they compare supplement users to non-

users. If they do not, their results can be biased. 

Using Multiple Regression to Statistically Control for Con-
founders 

To account for these initial differences, the researchers use regression 

analysis and include the confounding variables in the model. 

 

The researchers present three regression models. The simplest model 

accounts only for age and caloric intake. Next, are two models that 

include additional confounding variables beyond age and calories. The 

first model adds various demographic information and seven health 

measures. The second model includes everything in the previous 

model and adds several more specific dietary intake measures. Using 

statistical significance as a guide for specifying the correct regression 

model, the researchers present the model with the most variables as 

the basis for their final results. 

 

It’s instructive to compare the raw results and the final regression re-

sults. 

Raw results 

The raw differences in death risks for consumers of folic acid, vitamin 

B6, magnesium, zinc, copper, and multivitamins are NOT statistically 

significant. However, the raw results show a reduction in the death 

risk for users of B complex, C, calcium, D, and E. 

 

However, these raw results do not control for the long list of differ-

ences between groups. After using the regression model to control for 

the confounding variables statistically, the results change dramati-

cally. 

Adjusted results 

Of the 15 supplements that the study tracked, researchers found con-

suming seven of these supplements were linked to a statistically 
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significant INCREASE in death risk (p-value < 0.05): multivitamins 

(increase in death risk 2.4%), vitamin B6 (4.1%), iron (3.9%), folic 

acid (5.9%), zinc (3.0%), magnesium (3.6%), and copper (18.0%). 

Only calcium was associated with a statistically significant reduction 

in death risk of 3.8%. 

 

In short, the raw results suggest that those who consume supplements 

either have the same or lower death risks than non-consumers. How-

ever, these results do not account for the multitude of healthier habits 

and attributes in the group that uses supplements. 

 

In fact, these confounders seem to produce most of the apparent ben-

efits in the raw results because, after you statistically control the ef-

fects of these confounding variables, the results worsen for those who 

consume vitamin supplements. The adjusted results indicate that most 

vitamin supplements actually increase your death risk! 

 

This study illustrates how confounders biased the raw results to make 

vitamin consumption outcomes look better than they are. 

 

In conclusion, if you can’t randomly assign subjects to the experi-

mental groups, an observational study might be right for you. How-

ever, be aware that you’ll need to identify, measure, and account for 

confounding variables in your experimental design. 
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C H A P T E R  8  

 

Evaluating Experiments 

You learned the basics about experimental designs and the different 

ways they strive to identify causal relationships. This chapter pro-

vides you with criteria to evaluate experiments, whether it’s your ex-

periment or one performed by someone else.  

 

These criteria include the nitty-gritty details, such as what instrument 

did you use to measure an item. And they extend to thought exercises 

that force you to step back and look at an experiment in a broader 

context. Collectively, these criteria help you determine whether ex-

perimental results depict what the analysts think they do.  

 

The issue we’ll start with is causation. Yes, we covered it thoroughly 

from the angle of designing experiments. However, there are different 

ways of thinking about causality in a broader context rather than just 

from the relatively narrow standpoint of a single study. 

 

Then, we’ll move on to determining whether experimental data qual-

ifies as “good data.” Good data are reliable and valid. These two con-

cepts have special meanings in a statistical context. If you don’t have 

reliable and valid data, you can’t draw sound conclusions.  

 



J im Frost  

206 

When the data are reliable and valid, you need to evaluate the validity 

of the study itself using different criteria. If you have good data but do 

not have experimental validity, you still can’t draw reasonable conclu-

sions. Assessing experiments is a multilayered process! 

Hill’s Criteria of Causation 

Determining whether a causal relationship exists requires far more in-

depth subject area knowledge and contextual information than you 

can include in a hypothesis test or a single experiment. In 1965, Austin 

Hill, a medical statistician, tackled this question in a paper that’s be-

come the standard (Hill, A., 1965). While he introduced it in the con-

text of epidemiological research, you can apply his ideas to other 

fields. 

 

Hill describes nine criteria to help establish causal connections. The 

goal is to satisfy as many criteria possible. No single guideline is suffi-

cient. However, it’s often impossible to meet all the criteria. These 

guidelines are an exercise in critical thought. They show you how to 

think about determining causation and highlight essential qualities to 

consider. 

Strength 

A strong, statistically significant relationship is more likely to be 

causal. The idea is that causal relationships are likely to produce sta-

tistical significance. If you have significant results, at the very least 

you have reason to believe that the association in your sample also 

exists in the population—which is a good thing. After all, if the rela-

tionship only appears in your sample, you don’t have anything mean-

ingful! Correlation still does not imply causation, but a statistically 

significant relationship is a good starting point. 

 

However, there are many more criteria to satisfy! There’s a critical 

caveat for this criterion as well. Confounding variables can mask a cor-

relation that actually exists. They can also create the appearance of 
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correlation where causation doesn’t exist, as shown with the ice cream 

and shark attack example. A significant relationship is simply a hint. 

Consistency 

When there is a real, causal connection, the result should be repeata-

ble. Other experimenters in other locations ought to be able to repro-

duce the results. It’s not one and done. Replication builds up 

confidence that the relationship is causal. Preferably, the replication 

efforts use other methods, researchers, and locations. 

Specificity 

It’s easier to determine that a relationship is causal if you can rule out 

other explanations. I write about ruling out other reasons in the sec-

tions about randomized experiments and observational studies. In a 

more general sense, it’s essential to study the literature, consider 

other plausible hypotheses, and, hopefully, be able to rule them out or 

otherwise control for them. You need to be sure that what you’re stud-

ying is causing the observed change rather than something else of 

which you’re unaware. 

 

It’s important to note that you don’t need to prove that your variable 

of interest is the only factor that affects the outcome. For example, 

smoking causes lung cancer, but it’s not the only thing that causes it. 

However, you do need to perform experiments that account for other 

relevant factors and be able to attribute some causation to your varia-

ble of interest specifically. 

Temporality 

Causes should precede effects. Ensure that what you consider to be 

the cause occurs before the effect. Sometimes it can be challenging to 

determine which way causality runs. Hill uses the following example. 

A particular diet might lead to an abdominal disease. However, it’s 

also possible that the disease leads to specific dietary habits. 
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Biological Gradient 

Hill was a biologist, hence the focus on biological questions. He sug-

gests that for a genuinely causal relationship, there should be a dose-

response type of relationship. If a little bit of exposure causes a little 

bit of change, a larger exposure should cause more change. Hill uses 

cigarette smoking and lung cancer as an example—smoking more fre-

quently corresponds with a greater risk of lung cancer. You can apply 

the same type of thinking in other fields. Does more studying lead to 

even higher scores? 

 

However, be aware that the relationship might not remain linear. As 

the dose increases beyond a threshold, the response can taper off. 

Plausibility 

If you can find a plausible mechanism that explains the causal nature 

of the relationship, it supports the notion of a causal relationship. For 

example, biologists understand how antibiotics inhibit microbes on a 

biological level.  

 

However, Hill points out that you should be careful because there are 

limits to scientific knowledge at any given moment. A causal mecha-

nism might not be known at the time of the study even if one exists. 

Consequently, Hill says, “we should not demand” that a study meets 

this requirement. 

Coherence 

The probability that a relationship is causal is higher when it is con-

sistent with related causal relationships that are generally known and 

accepted as facts. If your results outright disagree with accepted facts, 

it’s more likely to be correlation. Assess causality in the broader con-

text of related theory and knowledge. 
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Experiment 

Randomized experiments are the best way to identify causal relation-

ships. Experimenters control the treatment (or factors involved), ran-

domly assign the subjects, and help manage other sources of variation. 

Hill calls satisfying this criterion the most reliable support for causa-

tion. However, randomized experiments are not always possible as I 

write about in my post about observational studies. 

Analogy 

If there is an accepted, causal relationship that is similar to one in your 

research, it supports causation for the current study. Hill writes, 

“With the effects of thalidomide and rubella before us we would 

surely be ready to accept slighter but similar evidence with another 

drug or another viral disease in pregnancy.” 

 

Determining whether a correlation represents causation requires 

much deliberation. Properly designing experiments and using statisti-

cal procedures can help you make that determination. But there are 

many other factors to consider. 

 

Use your critical thinking and subject-area expertise to think about 

the big picture. If there is a causal relationship, you’d expect to see 

replication with consistent results, other causes ruled out, results that 

fit with established theory, a plausible mechanism, and the cause pre-

cedes the effect. 

Properties of Good Data 

Measuring a person or item involves assigning scores to represent an 

attribute. This process creates the data that we analyze. However, to 

provide meaningful results, that data must be good. And, not all data 

are good! 
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How do researchers assess data quality? Typically, researchers need 

to collect data using an instrument and evaluate the quality of meas-

urements. In other words, they conduct a study before the main study. 

 

For data to be good enough to use in inferential statistics, they must 

be reliable and valid.  

Reliability 

Reliability refers to the consistency of the measure. Reliable measures 

are reproducible. High reliability indicates that the measurement sys-

tem produces similar results under the same conditions. If you meas-

ure the same item or person multiple times, you want to obtain 

comparable values.  

 

If you take measurements multiple times and obtain very different 

values, your data are not reliable. Numbers are meaningless if re-

peated measures do not produce similar values. What’s the correct 

value? No one knows! This inconsistency hampers your ability to 

draw conclusions and understand relationships. 

 

Suppose you have a bathroom scale that displays very inconsistent re-

sults from one time to the next. It would be hard to use your scale to 

determine your correct weight and whether you were losing weight. 

 

Inadequate data collection procedures and low quality or defective 

data collection tools can produce unreliable data. Additionally, some 

characteristics are more challenging to measure. For example, the 

length of an object is concrete. On the other hand, a psychological 

construct, such as conscientiousness, can be trickier to measure relia-

bly. 

 

When assessing studies, evaluate data collection methodologies and 

consider whether any issues undermined their reliability. 
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Analysts assess three types of reliability—test-retest, internal, and in-

ter-rater reliability. Typically, appraising these forms of reliability in-

volves taking multiple measures of the same person, object, or 

construct and assessing scatterplots and correlations of the measure-

ments. Reliable measurements have high correlations because the 

scores are similar. 

Test-Retest Reliability 

Analysts often assume that measurements should be consistent across 

a short time period. If you measure your height twice over a couple of 

days, you should obtain roughly the same measurements.  

 

To assess test-retest reliability, the experimenters typically measure a 

group of participants on two occasions within a few days. Usually, 

you’ll evaluate the reliability of the repeated measures using scatter-

plots and correlation coefficients. You expect to see high correlations 

and tight lines on the scatterplot when the characteristic you are 

measuring is consistent over a short period and you have a reliable 

measurement system. 

 

This type of reliability establishes the degree to which a test can pro-

duce stable, consistent scores across time. However, in practice, 

measurement instruments are never entirely consistent. 

 

Keep in mind that some characteristics are not expected to be con-

sistent across time. A good example is your mood, which can change 

from moment to moment. A test-retest assessment of mood is not 

likely to produce a high correlation even though it might be a useful 

measurement instrument. 

Internal Reliability 

This type of reliability assesses consistency across items within a sin-

gle instrument. Researchers evaluate internal reliability when they’re 

using instruments such as a survey or personality inventories. In these 

instruments, multiple items relate to a single construct. Questions that 
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measure the same characteristic should have a high correlation. Peo-

ple who indicate they are risk-takers should also note that they partic-

ipate in dangerous activities. If items that supposedly measure the 

same underlying construct have a low correlation, they are not con-

sistent with each other and might not measure the same thing. 

Inter-rater reliability 

This type of reliability assesses consistency across different observ-

ers, judges, or evaluators. When different observers produce similar 

measurements for the same item or person, there is a high correlation 

between scores. Inter-rater reliability is essential when subjectivity or 

skill of the evaluator plays a role. For example, assessing the quality of 

a writing sample involves subjectivity. Researchers can employ rating 

guidelines to reduce subjectivity. Comparing the scores from different 

evaluators for the same writing sample helps establish the reliability 

of the measure. 

Validity 

Validity refers to whether the measurements reflect what they’re sup-

posed to measure. This concept is a broader issue than reliability. Re-

searchers need to consider whether they’re measuring what they 

think they’re measuring. Or, do the measurements reflect something 

else? Does the instrument measure what it claims to measure? It’s a 

question that addresses the appropriateness of the data rather than 

whether measurements are repeatable.  

 

To be valid, a measurement must be reliable. After all, if you don’t 

obtain consistent measurements for the same object or person under 

similar conditions, it can’t be valid. If every time you step on your 

bathroom scale it says something different, it’s unreliable and it is also 

invalid.  

 

Now, suppose you have a reliable measurement. You step on your 

scale a few times in a short period and it displays very similar weights. 

It’s reliable. But the weight might be incorrect. 
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Just because you can measure the same object multiple times and get 

consistent values, it does not necessarily indicate that the measure-

ments reflect the desired characteristic. 

 

Validity is usually less of a concern for tangible measurements like 

height and weight. You might have a biased bathroom scale if it tends 

to read too high or too low—but it still measures weight. Validity is 

often a more significant concern in the social sciences where you can 

measure intangible constructs such as self-esteem and positive out-

look. If you’re assessing the psychological construct of conscientious-

ness, you need to ensure that the measurement instrument asks 

questions that evaluate this characteristic rather than, say, obedience. 

 

There are many different types of validity. Many refer to the dataset 

itself, as discussed above, but several other types refer to the conclu-

sions that researchers make from an experiment. Let’s take a look at 

several of the more common types. We’ll start with types of data va-

lidity and then move on to experimental validity. 

Data Validity 

Face Validity 

Face validity is the simplest and weakest type of validity. Does the 

measurement instrument appear “on its face” to measure the intended 

construct? For an instrument that assesses thrill-seeking behavior, 

you’d expect it to include questions about seeking excitement, getting 

bored quickly, and about risky behaviors. If the survey contains these 

types of questions, then “on its face,” it seems like the instrument 

measures the construct that the researchers intend. 

 

While this is a low bar, it’s an important issue to consider. Never over-

look the obvious. Ensure that you understand the nature of the instru-

ment and how it assesses a construct. Look at the questions. After all, 

if an instrument can’t clear this fundamental requirement, the other 
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types of validity are a moot point. However, when a measure satisfies 

face validity, understand it is an intuition or a hunch that it feels cor-

rect. It’s not a statistical assessment. If your instrument passes this low 

bar, you still have more validation work ahead of you. 

Content Validity 

Content validity is similar to face validity in that you assess it qualita-

tively—but it’s a more rigorous form of face validity. The process of-

ten involves assessing individual questions on a test and asking 

experts whether each item appraises the characteristics that the in-

strument is designed to cover. This process compares the test against 

the researcher’s goals and the theoretical properties of the construct. 

Researchers systematically determine whether each question contrib-

utes and that no aspect is overlooked.  

 

For example, if researchers are designing a survey to measure the at-

titudes and activities of thrill-seekers, they need to determine 

whether the questions sufficiently cover both of those aspects. 

Criterion Validity 

Criterion validity relates to the relationships between the variables in 

your dataset. If your data are valid, you’d expect to observe a particu-

lar correlation pattern between the variables. Researchers typically 

assess criterion validity by correlating different types of data. For 

whatever you’re measuring, you expect it to have particular relation-

ships with other variables.  

 

For example, measures of anxiety should correlate positively with the 

number of negative thoughts. Anxiety measure might also correlate 

positively with depression and eating disorders. If we see this pattern 

of relationships, it supports criterion validity. Our measure for anxiety 

correlates with other variables as expected. 

 

On the other hand, if we have a measure of thrill-seeking and a meas-

ure of sedentariness, we’d expect there to be a negative correlation 
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between them. High thrill-seeking scores should correspond with low 

sedentary scores. Additionally, thrill-seekers should participate in a 

higher number of risky activities. If you see that overall pattern, it sup-

ports the notion that the data are valid. 

 

Conversely, if you observe a pattern of relationships that goes against 

what theory and other research suggests, the instrument might not 

measure the characteristic that the researcher expects. In this case, 

the correlation pattern casts doubt on criterion validity.  

 

Criterion validity is also known as convergent validity because scores 

for different measures converge or correspond with each other as the-

ory suggests. You should observe high correlations (either positive or 

negative). 

Discriminant Validity 

This type of validity is the opposite of criterion validity. If you have 

valid data, you expect particular pairs of variables to correlate posi-

tively or negatively. However, for other pairs of variables, you expect 

no relationship.  

 

For example, if self-esteem and locus of control are not related in re-

ality, your measures of them should also not be related. You should 

observe a low correlation between scores.  

 

Discriminant validity is also known as divergent validity because it 

relates to how different constructs are differentiated. Low correla-

tions (close to zero) indicate that the values of one variable do not 

relate to the values of the other variables. The measures are differen-

tiating between different constructs. 

 

Having data that are reliable and valid are both necessary conditions 

for drawing causal conclusions from experimental results. However, 

satisfying these conditions are not enough by themselves. As you’ll 
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learn about next, you need to assess the validity of the experiment 

itself. 

Experimental Validity 

Experimental validity relates to the design of the study. You must 

have a valid experimental design to be able to draw sound scientific 

conclusions. Are the conclusions valid? 

 

Regarding reliability, data validity, and experimental validity, keep in 

mind that these properties build on each other. We saw that for data 

to be valid, they must start by being reliable and then also satisfy the 

requirements for being valid. Likewise, for an experiment to be valid, 

you must start with valid data and also have a valid experimental de-

sign. This chain of reliable data, valid data, and a valid experimental 

design allows you to draw sound conclusions. It takes only one weak 

link to invalidate experimental results. 

 

Experimental validity has two broad types—internal and external va-

lidity. Let’s learn more about them! 

Internal Validity 

Internal validity is the degree of confidence that a causal relationship 

exists between the treatment and the difference in outcomes. In other 

words, how likely is it that your treatment caused the differences in 

results that you observe? Are the researcher’s conclusions correct? 

Or, can changes in the outcome be attributed to other causes? 

 

Establishing interval validity involves assessing data collection proce-

dures, the reliability and validity of the data, the experimental design, 

and even things such as the setting and duration of the experiment. It 

could involve understanding events and natural process the occur out-

side of the investigation. In other words, it’s the whole thing. Does the 

entirety of the experiment allow you to conclude that the treatment 

causes the differences in outcomes?  
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Studies that have a high degree of internal validity provide strong ev-

idence of causality. On the other hand, studies with low internal va-

lidity provide weak evidence of causality. 

 

Typically, highly controlled experiments that occur in a lab setting, 

use random assignment, and include a control group have the highest 

internal validity. Removing these properties, such as moving from the 

lab to the real world, not being able to randomize, or not having a con-

trol group reduces internal validity.  

 

Internal validity relates to causality for a single study. For the study in 

question, did the treatment cause changes in the outcomes? Internal 

validity does not address generalizability to other settings, subjects, or 

populations. It only assesses causality for one study. 

 

In chapter 7, we looked at experimental designs and saw how they 

account for confounding variables that provide alternative explana-

tions for the experimental results. All the designs we covered use two 

or more groups, including a control group, and compare the outcomes 

between groups. For internal validity, we’ll start with single group de-

signs and then proceed to multiple group designs. This approach will 

help you see the benefits of using multiple groups.  

 

Threats to internal validity are types of confounding variables because 

they provide alternative explanations for changes in outcomes. They 

are threats because they make us doubt causality. The real reason for 

the differences in results might be these potential threats. 

Single Group Studies 

When studies have a single experimental group, researchers typically 

conduct a pretest to obtain a baseline score, administer a program or 

intervention, and then perform a posttest. By comparing the pretest 

and posttest scores, researchers can assess how subjects have changed 

since the beginning of the experiment. For example, imagine a weight 

loss program where the researchers measure the subjects’ weights at 



J im Frost  

218 

the beginning, conduct the program, and then measure weights at the 

end. If the intervention causes weight loss, you’d expect to see de-

creases between the pretest and posttest. 

 

However, there are various threats to attributing a causal connection 

between the weight loss program and the changes in weights. The fol-

lowing are causality threats for single group studies: 

 

History: An outside event occurred between the pretest and posttest 

that affected the outcomes. Perhaps a fitness program became popular 

in town, and many subjects participated. It might be the fitness pro-

gram that caused the weight loss rather than the weight loss program 

we’re studying. 

 

Maturation: The change between pretest and posttest scores might 

represent a process that occurs naturally over time. Imagine if instead 

of a weight loss program, we are studying an educational program. If 

the posttest scores are higher at the end, we might be observing regu-

lar knowledge acquisition rather than the program causing the in-

crease. If it’s a natural process, we would have seen the same change 

even if the subjects did not participate in the experiment. 

 

Testing: The pretest influences outcomes by increasing awareness or 

sensitivity among test takers. Suppose that the mere fact of weighing 

the subjects makes them more weight conscious and increases their 

motivation to lose weight. 

 

Instrumentation: The change between tests is an artifact of a differ-

ence between the pretest and posttest assessment instruments rather 

than an actual change in outcomes. This threat can involve a change 

in the instrument, different instructions for administering the test, or 

researchers using different procedures to take measurements. If the 

scale stops working correctly at some point after the pretest and dis-

plays lower weights in the posttest, the subjects’ weights appear to de-

crease. 
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Mortality: Mortality refers to an experiment’s attrition rates amongst 

its subjects—not necessarily actual deaths! It becomes a problem 

when subjects with specific characteristics drop out of the study more 

frequently than other subjects. If these characteristics are associated 

with changes in the outcome variable, the systematic loss of subjects 

with these characteristics can bias the posttest results. For example, 

in an experiment for an educational program, if the more dedicated 

learners have more extracurricular activities, they might be more 

likely to drop out of the study. Losing a disproportionate number of 

dedicated learners can deceptively reduce the apparent effectiveness 

of an educational program. This threat is higher for studies that have 

relatively high attrition rates. 

 

Regression: Regression to the mean. If you get an unusual average in 

the pre-test, the group will tend to regress to the mean in the posttest. 

Suppose we’re assessing an education program and the pretest pro-

duces unusually low means. Regression to the mean will tend to cause 

the posttest to be higher even if the intervention doesn’t cause an in-

crease. 

Multiple Groups 

We covered multiple group experiments in chapter 7. These experi-

ments have a control group that does not receive the treatment or in-

tervention and at least one treatment group. By moving from a single 

group to two or more groups, experimental designs can avoid many 

threats to internal validity. 

 

Suppose we are studying an educational program and can randomly 

assign subjects to a control group and a treatment group. We can be 

relatively confident that the two groups start with similar characteris-

tics. 

 

Additionally, we can eliminate single group threats to internal validity 

because we’d expect them to affect both groups. For example, 
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maturation issues, such as the normal development of skills over time, 

should occur in both the control group and treatment group. Similarly, 

if the pretest affects the outcomes, it’ll affect them for both groups. 

The same logic applies to the other threats to validity for single 

groups. To the extent that any of these threats exist, they should be 

present in both groups. Comparing the treatment to control groups 

reveals the effect of the educational program that occurs in addition to 

these other possible explanations.  

 

In other words, if a threat occurs across all experimental groups, that 

threat does not cause the difference in outcomes between groups. 

 

However, for this to all work out as describe above, the experimental 

groups must be similar. As you learned in the previous chapter, ran-

dom assignment helps ensure that the groups start the same. Unfortu-

nately, random assignment isn’t always feasible or even possible. 

Consequently, as you move away from random assignment, selection 

bias becomes a concern and introduces its own set of threats to inter-

nal validity. 

 

Threats to internal validity for designs with multiple groups are vari-

ations of the threats for single group designs. Threats for multiple 

groups often depend on the introduction of selection bias that causes 

the groups to be different. Selection bias is more likely to occur in ob-

servational studies than true experiments. 

 

Let’s do a quick run through to see how it works. 

 

History with selection bias: An event affects the two groups differ-

ently because the groups themselves are different. 

 

Maturation with selection bias: The normal process occurs differ-

ently between the experimental groups because the groups are differ-

ent. 

 



In t roduct ion  to  Stat ist ics :  An  Intu it ive  Gu ide 

221 

Testing with selection bias: The pretest affects the groups differently 

because the groups are different. 

 

Instrumentation with selection bias: Changes in the instrumentation 

affects the groups differently. 

 

Mortality with selection bias: The groups experience different attri-

tion rates because the groups differ. 

 

In short, when groups differ initially, these threats can affect them dif-

ferently and change the outcomes. 

 

For some of these threats, the groups might start out being compara-

ble, but these threats can affect them differently for other reasons. For 

example, with instrumentation, the scale can malfunction when one 

group is weighted but not the other group. Or, if the groups start out 

being equivalent, one group might experience a higher attrition rate 

by chance rather than a pre-existing difference between the groups. 

External Validity 

External validity relates to the ability to generalize the results of the 

experiment to other people, places, or times. We talked about this is-

sue in a more limited manner back when we covered inferential sta-

tistics. Scientific studies generally do not want findings that apply only 

to the relatively few subjects who participated in the study. Instead, 

studies want to be able to use the experimental results and apply them 

to a larger population.  

 

For example, if you’re assessing a new medication or a new educa-

tional program, you don’t want to know that it’s effective for a handful 

of people. You want to apply those results beyond just the experi-

mental setting and the particular individuals that participated. That’s 

generalizability—and the heart of the matter for external validity. 

 



J im Frost  

222 

There are two broad types of external validity—population validity 

and ecological validity. 

 

Population validity relates to how well the experimental sample rep-

resents a population. Sampling methodology addresses this issue. If 

you use a random sampling technique to obtain a representative sam-

ple, it greatly helps you generalize from the sample to the population 

because they are similar. Population validity requires a sample that re-

flects the target population.  

 

On the other hand, if the sample does not represent the population, it 

reduces external validity and you might not be able to generalize from 

the sample to the population. 

 

Ecological validity relates to the degree of similarity between the ex-

perimental setting and the setting to which you want to generalize. 

The greater the similarity of key characteristics between settings, the 

more confident you can be that the results will generalize to that other 

setting. In this context, “key characteristics” are factors that can influ-

ence the outcome variable. Ecological validity requires that the meth-

ods, materials, and environment in the experiment approximate the 

relevant real-world setting to which you want to generalize. 

 

Threats to external validity are differences between experimental 

conditions and the real-world setting. Threats indicate that you might 

not be able to generalize the experimental results beyond the experi-

ment. You performed your research in a particular context, at a par-

ticular time, and with specific people. As you move to different 

conditions, you lose the ability to generalize. The ability to generalize 

the results is never guaranteed. This issue is one that you really need 

to think about. If another researcher conducted a similar study in a 

different setting, would it obtain the same results? 
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Overall, to assess the degree of external validity, evaluate the similar-

ities of the following characteristics between the experimental setting 

and the real-world setting: 

 

• People 

• Places 

• Times 

• Materials 

• Methods 

• Conditions 

 

In short, the more similar the experimental environment is to another 

setting, the more likely you can generalize the results to the other set-

ting. For example, if the study involves human subjects, how do their 

characteristics and relevant demographic information compare to dif-

ferent contexts? 

 

The relevant characteristics that we’re assessing for similarity vary 

based on the nature of the experiment. For studies that involve human 

subjects, the participants might behave differently in a tightly con-

trolled lab setting than in a more natural environment. That reduces 

the external validity. 

 

On the other hand, if we’re studying the strength of new material, we 

don’t need to worry about it behaving differently when researchers 

observe it in an artificial lab setting! However, we do need to ensure 

that lab conditions approximate the actual conditions in which the 

material will be used. For example, the heat, pressure, humidity, and 

forces that the material experiences in the lab should represent the 

actual operating conditions for the material in a real-world setting. 

 

There aren’t hard and fast rules when it comes to generalizability. 

Even when the experimental conditions are similar to a different set-

ting, you might not be able to generalize the results for unexpected 

reasons. Perhaps the pretest interacted with the treatment to produce 
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an effect that would not occur without the pretest? Or, maybe a unique 

event happened during the experiment that influenced the results. For 

example, the researchers’ behavior can affect the results.  

 

Conversely, it can be uncertain where you draw the line for when a 

setting becomes dissimilar enough to rule out generalizability. You’ll 

need to apply subject-area knowledge and critical thinking.  

 

For example, many studies that relate to medical issues, medicine, and 

vaccination will use a sample of subjects who are healthy overall. The 

results from these studies might not apply to people with particular 

diseases or conditions. In a bone density study that I helped run, we 

excluded subjects with conditions that affected bone growth, such as 

diabetes. Consequently, our results probably apply only to people 

without those conditions. 

 

There can be a wide array of conditions to consider. For example, does 

performing a study with human subjects from rural locations produce 

different results than if they are from a metropolitan area? It depends 

on what you’re studying! 

 

The following practices can help increase external validity: 

 

• Use random sampling to obtain a representative sample from 

the population you are studying. 

• Understand how your experiment is similar to and different 

from the setting(s) to which you want to generalize the re-

sults. Identify the factors that are particularly relevant to the 

research question and minimize the difference between ex-

perimental conditions and the real-world setting. 

• Replicate your study. If you or other researchers replicate 

your experiment at different times, in various settings, and 

with different people, you can be more confident about gen-

eralizability. 
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I want to expand on the importance of that last point about replicating 

studies. We often want to find a definitive study that concretely an-

swers a research question. However, one study never completely re-

solves a research question. Even when researchers have an exquisite 

experimental design, have reliable and valid data, excellent internal 

validity, and no reason to doubt external validity, there’s still a linger-

ing question. Can other researchers in a different setting replicate 

those results? You just don’t know for sure until someone attempts to 

replicate it! 

Relationship Between Internal & External Validity 

There tends to be a negative correlation between internal and external 

validity in experiments. Experiments that have high internal validity 

tend to have lower external validity. And, vice versa.  

 

Why does this happen? 

 

To understand the reason, you must think about the experimental 

conditions that produce high degrees of internal validity and external 

validity. They’re diametrically opposed! 

 

To produce high internal validity, you need a highly controlled envi-

ronment the minimizes variability in extraneous variables. By control-

ling the environmental conditions, implementing strict measurement 

methodologies, using random assignment, and using a standardized 

treatment, you can effectively rule out alternative explanations for 

differences in outcomes. That produces a high degree of confidence 

in causality, which is high internal validity. 

 

However, that artificial lab environment is a far cry from any real-

world setting! To have high external validity, you want the experi-

mental conditions to match the real-world setting. Think back to the 

natural experiments in chapter 7. These observational studies are 

much more realistic than a lab setting. You experience the full impact 

of real-world variability! That creates high external validity because 
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the experimental conditions are virtually the real-world setting. How-

ever, as we discussed, those types of studies open the door to con-

founding variables and alternative explanations for differences in 

outcomes—in other words, lower internal validity! 

 

So, what’s the answer? 

 

Replication! Researchers can conduct multiple experiments in differ-

ent places and use different methodologies—some true experiments 

in a lab and other observational studies in the field. This point reiter-

ates the importance of replicating studies because no single study is 

ever enough.  

Checklist for Good Experiments 

Many things go into a well-designed and well-performed experiment. 

The following checklist spans the entire contents of the book. Good 

experiments have the following properties: 

 

1. Has a defined population that is the focus of the investigation. 

2. Uses a representative sampling technique to draw a sample 

from that population. 

3. Has a sufficiently large sample to detect effects. 

4. Collects good data—reliable, valid, and unbiased. 

5. Makes comparisons between control and treatment groups. 

6. Controls for confounders using random assignment, statisti-

cal modeling, or other techniques. 

7. Uses proper inferential statistical methodologies to test re-

sults to determine if there is sufficient evidence to conclude 

that the effect exists in the population—not just the sample. 

Review 

This chapter covered a chain of linked topics. These topics included 

criteria for causation, the validity and reliability of your data, and the 

validity of your experiment. One weak link can hamper your ability to 

make sound conclusions from experimental results. 
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Reliability indicates that when you measure the same person or object 

multiple times under similar conditions, you’ll obtain similar measure-

ments. Reliable data are usually a prerequisite for valid data. 

 

Validity indicates that your measurements reflect the characteristic 

you intend. For example, you’re measuring self-esteem rather than 

something else, such as a positive outlook. 

 

When your data are both reliable and valid, you can start to assess the 

validity of your experiment. Experimental validity assesses the con-

clusions that the researchers draw from their experiment. 

 

Internal validity relates to your confidence that an experiment iden-

tifies a causal relationship—that the treatment caused the difference 

in outcomes. Threats to internal validity reduce your assurance that 

the relationship is causal because they introduce alternative explana-

tions for the differences. In general, the following conditions improve 

internal validity: 

 

• Multiple group designs are better than single group designs. 

• Random assignment is better than other assignment methods. 

• Experiments that occur in highly controlled conditions in a 

lab setting are better than less controlled, real-world environ-

ments. 

 

External validity relates to your confidence in the ability to generalize 

the results from your study to other settings. The greater the similar-

ity between the experimental conditions and the real-world setting, 

the higher your confidence that you can generalize experimental find-

ings to other groups and settings. 

 

We also noted how internal validity and external validity tend to have 

a negative correlation.  

 



J im Frost  

228 

Finally, replication is crucial! No single experiment conclusively 

proves anything regardless of its design strengths. 
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C H A P T E R  9  

 

Wrapping Up and Your 
Next Steps 

This book serves as an introduction to statistics. It opens many 

doors—doors that have more behind them than I can explain in a sin-

gle book. Let’s quickly review what this book covered and highlight 

potential avenues for further exploration. 

 

I hope I conveyed that the field of statistics contains a wide array of 

knowledge and methodologies. People outside of statistics tend to 

think of it as just calculating the numbers, such as the mean or corre-

lation. It does include those types of things.  

 

However, if you want to use samples to learn about a population and 

identify causal relationships with confidence, you need to have 

knowledge that goes well beyond just calculating the numbers. You’ll 

need to know how to collect the data, how to design experiments, how 

to avoid confounding variables, and how to assess the reliability and 

validity of your results.  
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Review of What You Learned in this Book 

We started by learning about the field of statistics. This field is the 

science of learning from data.  

 

For data analysis, we started by learning about different types of data 

and how to graph them. You learned how to assess the center and 

spread of datasets and how to identify relationships between variables 

using different types of graphs. Graphs often convey results more in-

tuitively but can mislead. 

 

Then, we moved on to summary statistics that use a single number to 

describe an entire dataset and answering the same types of questions 

that we did with the graphs. These summary statistics included 

measures of central tendency, measures of variability, percentiles, and 

correlation. These numeric measures often complement the graphical 

representations. 

 

Up next was probability distributions. Probability distributions help 

you understand the distribution of values, calculate probabilities, and 

are the foundation of hypothesis testing.  

 

Collectively, this knowledge allows you to understand the basics of 

the different types of data, how to summarize a dataset, identify rela-

tionships between variables, and use probabilities to assess the distri-

bution of values. These skills will allow you to summarize a dataset 

and convey its essence to others. 

 

After covering the nitty-gritty details of working with data, we moved 

onto some broader concepts. We explored the differences between 

descriptive and inferential statistics. Both branches often use the same 

numeric summaries. However, there are additional requirements for 

being able to use a sample to learn about a population. For example, 

you’ll need to use a random sampling technique and an analysis that 

accounts for random sampling error. You also learned about sample 

estimates versus population parameters, different sampling 
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methodologies, random sampling error, and the importance of a large 

sample size. 

 

Then, the book began to focus exclusively on scientific studies and 

how scientific studies require the use of inferential statistics. We 

looked at the scientific method and how to incorporate statistical anal-

yses into a study. We progressed on to experimental designs and the 

importance of identifying causal relationships rather than just corre-

lation. Different types of experiments face various challenges in ruling 

out alternative explanations. This portion of the book focuses on how 

science uses statistical methodologies to learn and expand the fron-

tiers of human knowledge.  

 

Finally, we finished the book by looking at different ways to critique 

scientific experiments, whether they’re your own or another re-

searcher’s. We looked at criteria for establishing causality, the relia-

bility and validity of the data, and the validity of the experiment.  

 

To be able to draw sound scientific conclusions using an experiment, 

there is a long list of considerations, requirements, and methodologies 

that go well beyond just calculating the numbers. 

Next Steps for Further Study 

So, what’s left to study? Plenty! 

 

A logical place to continue is learning about hypothesis testing in more 

detail. This topic covers a variety of hypothesis tests, how they work, 

their assumptions, and proper interpretations. These procedures are 

essential, and we discussed them only briefly. They’re the next step in 

using data to learn. 

 

In this book, we covered how to set up contrasts in experimental de-

signs and assess differences in outcomes. Hypothesis tests are the pro-

cedures that determine whether those differences, the effects, are 

statistically significant. Are the effects that you see in your sample 
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data likely to exist in the population or can they be explained away as 

random sampling error?  

 

In 2020, I plan to publish a book about hypothesis testing that explains 

how they work, how to use them correctly, and how to be sure you 

can trust the results. There are many different tests, and you must be 

sure that you’re using the correct one for any given situation. It also 

includes confidence intervals, determining which probability distri-

bution fits your data, and performing power analyses to estimate the 

correct sample size. 

 

Regression analysis is another type of analysis that researchers use 

with inferential statistics and experimental designs. Regression cre-

ates statistical models that define the mathematical relationship be-

tween the independent and dependent variables. These models can 

contain many continuous and categorical variables and model differ-

ent types of effects and curvature. Analysts can also use regression 

models to make predictions. 

 

Researchers use regression for scientific studies, from true experi-

ments with multiple factors to observational studies, when they need 

to understand the role of each variable and account for confounding 

variables. In this book, we looked at how an observational study about 

vitamin supplement consumption used regression analysis to control 

for a multitude of confounding variables.  

 

If you’re interested in learning about regression analysis, consider my 

ebook: Regression Analysis: An Intuitive Guide. 

 

Many of the other topics we’ve covered, you can learn about in much 

greater depth. For example, there are entire books written about var-

ious sampling methodologies to cover special needs and cases. Other 

books have been written about experimental designs, including those 

for very specialized uses.  
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About the Author 
I’m Jim Frost, and I have extensive experience in academic research 

and consulting projects. In addition to my statistics website, I am a 

regular columnist for the American Society of Quality’s Statistics Di-

gest. Additionally, my most recent journal publication as a coauthor is 

The Neutral Gas Properties of Extremely Isolated Early-Type Galaxies III 

(2019) for the American Astronomical Society (abstract). 

 

I’ve been the “data/stat guy” for research projects that range from os-

teoporosis prevention to analysis of online user behavior. My role has 

been to design the proper research settings, collect a large amount of 

valid measurements, and figure out what it all means. Typically, I’m 

the first person on the project to learn about new findings while inter-

preting the results of the statistical analysis. Even if the findings are 

not newsworthy, that thrill of discovery is an awesome job perk! 

 

I love statistics and analyzing data! I’ve been performing statistical 

analysis on-the-job for 20 years and helping people learn statistics for 

over ten years at a statistical software company. I love talking and 

writing about statistics. While working at the statistical software com-

pany, I learned how to present statistics in a manner that makes sta-

tistics more intuitive.  

 

I want to help you learn statistics. But I’m not talking about learning 

all the equations. Don’t get me wrong. Equations are necessary. Equa-

tions are the framework that makes the magic, but the truly fascinat-

ing aspects are what it all means. I want you to learn the true essence 

of statistics. I’ll help you intuitively understand statistics by focusing 

on concepts and graphs. After all, you use statistical software so you 

don’t have to worry about the formulas and instead focus on under-

standing the results. 

 



In t roduct ion  to  Stat ist ics :  An  Intu it ive  Gu ide 

235 

I’ve spent over a decade working at a major statistical software com-

pany. When you work on research projects, you generally use a regu-

lar group of statistical analyses. However, when you work at a 

statistical software company, you need to know of all the analyses that 

are in the software! I helped people use our software to gain insights 

and maximize the value of their own data regardless of their field. 

 

Statistics is the field of learning from data. That’s amazing. It gets to 

the very essence of discovery. Statistics facilitates the creation of new 

knowledge. Bit by bit, we push back the frontier of what is known. 

That is what I want to teach you! My goal is to help you to see statistics 
through my eyes―as a key that can unlock discoveries that are in your 

data. 

 

The best thing about being a statistician is that you get to play in eve-

ryone’s backyard. —John Tukey 

 

I enthusiastically agree! If you have an inquisitive mind, statistical 

knowledge, and data, the potential is boundless. You can play in a 

broad range of intriguing backyards! 

 

That interface between a muddled reality and obtaining orderly, valid 

data is an exciting place. This place ties together the lofty goals of sci-

entists to the nitty-gritty nature of the real world. It’s an interaction 

that I’ve written about extensively in this book and on my blog, and I 

plan to continue to do so. It’s where the rubber meets the road. 

 

One of the coolest things about the statistical analysis is that it pro-

vides you with a toolkit for exploring the unknown. Christopher Co-

lumbus needed many tools to navigate to the New World and make 

his discoveries. Statistics are the equivalent tools for the scientific ex-

plorer because they help you navigate the sea of data that you collect. 
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You’ll be increasingly thankful for these tools when you see a work-

sheet filled with numbers and you’re responsible for telling everyone 

what it all means. 

 

Read more on my website: Statistics By Jim! 
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