

75 Python
Object Oriented

Programming Exercises
Volume 1

75 Python

Object Oriented
Programming Exercises

Volume 1

Edcorner Learning

Table of Contents

Introduction
Module 1 Local Enclosed Global Built-In Rules

Module 2 Namespaces and Scopes
Module 3 Args and Kwargs

Module 4 Classes
Module 5 Classes Attributes

Module 6 Instance Attributes
Module 7 The _Init_() Method

Module 8 Visibility of Variables
Module 9 Encapsulation

Module 10 Computed Attributes

Introduction

Python is a general-purpose interpreted, interactive, object- oriented, and a
powerful programming language with dynamic semantics. It is an easy language
to learn and become expert. Python is one among those rare languages that would
claim to be both easy and powerful. Python's elegant syntax and dynamic typing
alongside its interpreted nature makes it an ideal language for scripting and robust
application development in many areas on giant platforms.

Python helps with the modules and packages, which inspires program modularity
and code reuse. The Python interpreter and thus the extensive standard library are
all available in source or binary form for free of charge for all critical platforms
and can be freely distributed. Learning Python doesn't require any pre- requisites.
However, one should have the elemental understanding of programming
languages.

This Book consist of 75 python Object Oriented Programming coding
exercises to practice different topics.

In each exercise we have given the exercise coding statement you need to
complete and verify your answers. We also attached our own input output screen
of each exercise and their solutions.

Learners can use their own python compiler in their system or can use any online
compilers available.

We have covered all level of exercises in this book to give all the learners a good
and efficient Learning method to do hands on python different scenarios.

Module 1 Local Enclosed Global Built-In Rules

1. The stock_info() function is defined. Using the appropriate attribute of the stock_info() function, display
the names of all arguments to this function to the console.

An example of calling the function:

print(stock_info('ABC', 'USA', 115, '$'))

Company: ABC

Country: USA

 Price: $ 115

Tip: Use the code attribute of the function.

Expected result:

('company', 'country', 'price', 'currency')

def stock_info(company, country, price, currency):

 return f'Company: {company}\nCountry: {country}\nPrice: {currency} {price}'

2. Using the built-ins module import the sum() function. Then display its documentation of this function.
Call the function on the list below and print the result to the console.

[-4, 3, 2]

Expected result:

Help on built-in function sun in nodule built-ins:

sum(iterable, /, start=0)

Return the sun of a 'start' value (default: 0) plus an iterable of numbers

When the Iterable is empty, return the start value.

This function is intended specifically for use with numeric values and may reject non-numeric types.

1

Solution:

import builtins

help(builtins.sum)

print(builtins.sum([-4, 3, 2]))

 3. A global variable counter is given with an incorrectly implemented update_counter() function.
Correct the implementation of the update_counter () function so that you can modify the counter
variable from this function. Then call the update_counter () function.

Tip: Use the global statement.

Expected result:

 2

 counter = 1

def update_counter():

 counter += 1

 print(counter)

4. The following global variables are given:

• counter

• dot_counter

and incorrectly implemented update_counters () function. Correct the implementation of the
update_counters () function so that you can modify the values of the given global variables from this
function. Then call update_counters() 40 times.

In response, print the value of the counter and dot_counter global variables to the console as shown below.

Tip: Use the global statement.

Expected result:

40

..

counter = 0

dot_counter = ''

def update_counter():

 counter += 1

 dot_counter += '.'

 Solution:

5. A display_info() function was implemented. This function has an incorrectly implemented internal
update_counter() function. Correct the implementation of this function so that you can modify non-local
variables: counter and dot_counter from the internal function

update_counter() .

In response, call dispiay_info() with the number_of_updates argument set to 10.

Tip: Use the nonlocal statement.

Expected result:

110

..........

def display_info(number_of_updates=1):

 counter = 100

 dot_counter = ''

 def update_counter():

 counter += 1

 dot_counter += '.'

 [update_counter() for _ in range(number_of_updates)]

 print(counter)

 print(dot_counter)

 Solution:

Module 2 Namespaces and Scopes

6. Import the built-in datetime module and display the namespace of this module (sorted alphabetically) as
given below.

Tip: Use the _dict_ attribute of the datetime module.

Expected result:

MAXYEAR

MINYEAR

builtlns

cached

doc

file

loader

name

package

spec

date

datetime

datetime_CAPI

sys

time

timedelta

timezone

tzinfo

 Solution:

7. The Product class is given below. Display the namespace (value of the _dict_ attribute) of

this class as shown below.

Expected result:

__module__

__init__

__repr__

get_id

__dict__

__weakref__

__doc__

import uuid

class Product:

 def __init__(self, product_name, price):

 self.product_id = self.get_id()

 self.product_name = product_name

 self.price = price

 def __repr__(self):

 return f"Product(product_name='{self.product_name}', price={self.price})"

@staticmethod

 def get_id():

 return str(uuid.uuid4().fields[-1])[:6]

8. The Product class is specified. An instance of this class named product was created. Display the
namespace (value of the _dict_ attribute) of this instance as shown below.

Expected result:

{'product_name': 'Mobile Phone1, 'product_id': '54274', 'price': 2900}

import uuid

class Product:

 def __init__(self, product_name, product_id, price):

 self.product_name = product_name

 self.product_id = product_id

 self.price = price

 def __repr__(self):

 return f"Product(product_name='{self.product_name}', price={self.price})"

product = Product('Mobile Phone', '54274', 2900)

 Solution:

Module 3 Args and Kwargs

9. Implement a function called stick() that takes any number of bare arguments and return an object of type
str being a concatenation of all arguments of type str passed to the function with the '#' sign (see below).

Example:

[IN]: stick('sport', 'summer', 4, True)

[OUT]: 'sport#summer’

As an answer call the stick() function in the following ways (print the result to the console):

• stick('sport', 'summer')

• stick(3, 5, 7)

stick(False, 'time'. True, 'workout', [], 'gym')

Expected result:

Sport#sumer

time#workout#gym

 Solution:

10. Implement a function called dispiay_info() which prints the name of the company (as shown below) and
if the user also passes an argument named price , it prints the price (as shown below).

Example I:

[IN]: dlsplay_info(company='Amazon')

Company name: Apple

Example II:

[IN]: display_info(company='Amazon', price=1140)

Company name: Amazon Price: $ 1140

In response, call display_info() as shown below:

display_info(company='CD Projekt', price=100)

Expected result:

Company name: CD Projekt Price: $ 100

def display_info(company, **kwargs):

 pass

 Solution:

Module 4 Classes

11. Create the simplest class in Python and name it Vehicle.

Tip: Use the pass statement.

Solution:

class Vehicle:

 pass

12. Create the simplest Python class named Phone and display its type to the console.

Expected result:

<class ‘type’>

 Solution:

class Phone:

 pass

print(type(Phone))

13. Create a class named Vehicle and add the following documentation:

"""This is a Vehicle class."""

Solution

class Vehicle:

 """This is a Vehicle class."""

 14. The implementation of the Vehicle class is given:

class Vehicle:

This is a Vehicle class.

Display the value of the name attribute of the Vehicle class to the console.

Expected result:

 Vehicle

 class Vehicle:

 """This is a Vehicle class."""

 15. The implementation of the Container class is given:

class Container:

"""This is a Container class."""

Display all _dict_ attribute keys of the Container class to the console.

Expected result:

dict_keys(['__module__', '__dict__', '__weakref__', '__doc__'])

 class Container:

 """This is a Container class."""

16. The implementation of the Container class is given:

class Container:

"""This Is a Container class.

Display the value of the module attribute of the Container class to the console.

Note: The solution that the user provides is in a file named exercise.py, while the checking code (which is
invisible to the user) is executed from a file named evaluate.py from the level where the

Container class is imported. Therefore, instead of the name of the module _main_ , the

response will be the name of the module in which this class is implemented, exercise in this case.

Expected result:

exercise

class Container:

 """This is a Container class."""

Solution:

class Container:

 """This is a Container class."""

print(Container.__module__)

 17. The implementation of the Container class is given:

class Container:

"""This Is a Container class.

Create an instance of the Container class and assign it to the container variable. Print the type of
container variable to the console.

Note: The solution that the user provides is in a file named exercise.py, while the checking code
(which is invisible to the user) is executed from a file named evaluate.py from the level where the
Container class is imported. Therefore, instead of the name of the module _main_ , the
response will be the name of the module in which this class is implemented, exercise in this case.

 Expected result:

<class 'exercise.Container’>

 class Container:

 """This is a Container class."""

 Solution:

 class Container:

 """This is a Container class."""

container = Container()

print(type(container))

18. The implementation of the Container class is given:

class Container:

"""This Is a Container class.

Create an instance of the Container class and assign to the container variable. Then print the _class _
attribute value of the container instance.

Note: The solution that the user provides is in a file named exercise.py, while the checking code (which is
invisible to the user) is executed from a file named evaluate.py from the level where the Container class is
imported. Therefore, instead of the name of the module _main_ , the response will be the name of
the module in which this class is implemented, exercise in this case.

Expected result:

<class 'exercise.Container’>

class Container:

 """This is a Container class."""

Solution:

class Container:

 """This is a Container class."""

container = Container()

print(container.__class__)

 19. Define a simple class named Model. Then create an instance of this class named model.

Using the built-in function isinstance() check if the model is an instance of the Model class. Print the
result to the console.

Expected result:

True

20. Define two empty classes named:

• Model

• View

Then create two instances (one for each class):

• model for the Model class

• view for the View class

Using the built-in function isinstance() check whether the model and view objects are instances of the
Model class. Print the result to the console.

Expected result:

True

False

21. Two empty classes are defined:

• Model

• View

Three objects were created (object1, object2, object3).

Using the built-in function is instance () check whether object1, object2 and object3 are instances of the
Model class or of the View class. Print the result to the console.

Expected result:

True

False

False

class Model:

 pass

class View:

 pass

object1 = Model()

object2 = [Model(), Model()]

object3 = {}

22. Implement an empty class named Container. Then create an instance of this class named container. In
response, display the type of dictionary attribute _dict_ for the Container class and for the container instance.

Expected result:

<class ‘mappingproxy’>

<class 'dict’>

 23. Two empty classes are defined:

• Model

• View

Using the built-in function issubclassQ check if the classes Model and View are derived classes
(subclasses) of the built-in object class.

Expected result:

 True

True

 class Model:

 pass

class View:

 pass

Module 5 Classes Attributes

 24. Implement a class named Brandname. In the Phone class, define a class attribute named brand
and set its value to ‘Amazon’. Then, using dot notation and print () function, display the value of the
brand attribute of the Phone class to the console.

Expected result:

Amazon

25. Implement a class named Phone. In the Phone class, define two class attributes with names:

• brand

• model

and set their values to:

• 'Apple'

• ‘iPhone X'

Then use the built-in functions getattr() and print () to display the values of the given attributes of the Phone
class to the console as shown below.

Expected result:

Apple

iPhone X

26. A class named Phone is defined below. Using dot notation, modify the value of the attributes:

• brand to 'Samsung'

• model to 'Galaxy'

In response, print the values for the brand and model attributes to the console as shown below.

Expected result:

brand: Samsung

model: Galaxy

class Phone:

 brand = 'Apple'

 model =
'iPhone X'

27. A class named Laptop is defined below. Using the setattr() built-in function modify the value of
attributes:

• brand to 'Acer'

• model to 'Predator'

In response, using the built-in function getattr() and print() .print the values of the brand and model
attributes to the console as shown below.

Expected result:

 brand: Acer

model: Predator

 class Laptop:

 brand = 'Lenovo'

 model = 'ThinkPad'

28. Implement a class named OnlineShop with the class attributes set appropriately:

• Sector to the Value 'electronics'

• sector_code to the value 'ele'

• is_public_company to the value False

Then, using dot notation, add a class attribute called country and set its value to 'usa' . In response,
print the user-defined OnlineShop class attribute names as shown below.

Expected result:

 ['sector', 'sector_code', 1is_public_company','country']

29. A class named OnlineShop was defined with the class attributes set accordingly:

• Sector to the Value 'electronics'

• sector_code to the value 'ele'

• is_public_company to the value False

Using the del statement remove the class attribute named sector_code. In response, print the rest of the user-
defined OnlineShop class attribute names as a list as shown below.

Expected result:

[' sector',‘is_public_company’]

class OnlineShop:

 sector = 'electronics'

 sector_code = 'ELE'

 is_public_company = False

30. A class named OnlineShop was defined with the class attributes set accordingly:

• Sector to the Value 'electronics'

• sector_code to the value 'ele'

• is_public_company to the value False

Using the builtin deiattrQ function remove the class attribute sector_code. In response, print the rest of the
user-defined OnlineShop class attribute names as a list as shown below.

Expected result:

[‘sector','is_public_company’]

class OnlineShop:

 sector = 'electronics'

 sector_code = 'ELE'

 is_public_company = False

31. A class named OnlineShop was defined with the class attributes set accordingly:

• Sector to the Value 'electronics'

• sector_code to the value 'ele'

• is_public_company to the value False

Display all user-defined OnlineShop class attribute names with their values as shown below.

Expected result:

sector -> electronics

sector_code -> ELE

 is_public_company -> False

class OnlineShop:

 sector = 'electronics'

 sector_code = 'ELE'

 is_public_company = False

32. A class named OnlineShop was defined with the class attributes set accordingly:

• Sector to the Value 'electronics'

• sector_code to the value 'ele'

• is_public_company to the value False

Outside of the class, implement a function called describe_attrs() that displays the names of all user-defined
class attributes and their values as shown below. In response, call the

describe_attrs() function.

Expected result:

sector -> electronics

 sector_code -> ELE

 is_public_conpany -> False

class OnlineShop:

 sector = 'electronics'

 sector_code = 'ELE'

 is_public_company = False

33. A class named OnlineShop was defined with the class attributes set accordingly:

• Sector to the Value 'electronics'

• sector_code to the value 'ele'

• is_public_company to the value False

Implement a function (class callable attribute) named get_sector() that returns the value of the sector
attribute of OnlineShop class. You only need to implement this function.

class OnlineShop:

 sector = 'electronics'

 sector_code = 'ELE'

 is_public_company = False

Solution:

class OnlineShop:

 sector = 'electronics'

 sector_code = 'ELE'

 is_public_company = False

 def get_sector():

 return OnlineShop.sector

 34. Implement the HouseProject class with class attributes respectively:

• number_of_floors = 3

• area = 100

Then, in the HouseProject class implement a function (class callable attribute) called
describe_project(), which displays basic information about the project as follows:

Floor number: 3

Area: 100

 In response, call describe_project() function.

Expected result:

Floor number: 3

Area: 100

Module 6 Instance Attributes

35. The Book class is defined. Create an instance of the Book class named book. Display the value
of the _dict_ attribute for the book instance. Then assign two attributes to the book
instance:

• author to the Value 'Dan Brown'

• title to the value ' Inferno '

In response, display the _dict_ attribute for the book instance again.

Expected result:

 {}

 {'author': 'Dan Brown','title','Inferno'}

 class Book:

 language = 'ENG'

 is_ebook = True

 36. The Book class is defined. Create two instances of the Book class named book_1 and
book_2. Then assign instance attributes to these objects (using dot notation) as follows:

• to object book_1:

• author = 'Edcorner Learning'

title = 'Python Programming Exercises'

• to object book_2:

author = 'Edcorner Learning'
title = 'Python OOPS Exercises'

• year_of_publishment = 2021

In response, print the value of the _dict_ attribute of book_1 and book_2.

Expected result:

{'author': 'Edcorner Learning', 'title': 'Python Programming Exercises'}

{'author': 'Edcorner Learning', 'title': 'Python OOPS Exercises', 'year_of_publishment': 2021}

class Book:

 language = 'ENG'

 is_ebook = True

 37. The Book class is defined. Two instances of the Book class named book_1 and book_2 was
created. Then the instance attributes were assigned to these objects (using the dot notation),
respectively:

• to object book_1:

• author = 'Dan Brown'

• title = 'Inferno'

to object book_2:

title = 'The Da Vinci Code'

• year_of_publishment = 2003

Then a books list was created. Create a loop to list all the attributes of the book_l and book_2
instances with their values as shown below (separate each instance with a line of 30 1 - ' characters
as shown below).

Expected result:

 author -> Dan Brown

title -> Inferno

author -> Dan Brown

title -> The Da Vinci Code

year_of_publishment -> 2003

 class Book:

 language = 'ENG'

 is_ebook = True

book_1 = Book()

book_2 = Book()

book_1.author = 'Dan Brown'

book_1.title = 'Inferno'

book_2.author = 'Dan Brown'

book_2.title = 'The Da Vinci Code'

book_2.year_of_publishment = 2003

books = [book_1, book_2]

38. The Book class is defined. A list books_data is also given.

books_data = [

{'author': 'Dan Brown', 'title': 'Inferno'},

{'author': 'Dan Brown', 'title': 'The Da Vinci Code', 'year_of_publishnent': 2003}

]

Based on this data, create two instances of the Book class, where the instance attributes will be the keys from
the given dictionaries (books_data list) with their corresponding values.

In response, print the _dict_ attributes of the objects to the console as shown below.

Expected result:

{'author': 'Dan Brown', 'title': 'Inferno'}

{'author': 'Dan Brown', 'title': 'The Da Vinci Code', 'year_of_publishment': 2003}

class Book:

 language = 'ENG'

 is_ebook = True

books_data = [

 {'author': 'Dan Brown', 'title': 'Inferno'},

 {'author': 'Dan Brown', 'title': 'The Da Vinci Code', 'year_of_publishment': 2003}

]

39. The Book class is defined. Implement a method called set_title() that allows you to set an instance
attribute called title (without validation). Then create an instance of the Book class named book and set the
title attribute to ' inferno' using the set_title() method.

In response, print the value of the title attribute of the book instance.

Expected result:

Python OOPS Exercises

class Book:

 language = 'ENG'

 is_ebook = True

40. The Book class is defined. Implement a method named set_title() that sets an instance attribute named
title. Before setting the value, check if it's an object of str type, if not raise a TypeError with the following
message:

'The value of the title attribute must be of str type.'

Then create an instance of the Book class named book and set the title attribute to ' inferno ' using the
set_title() method.

In response, print the value of the title attribute of the book instance.

Expected result:

Python OOPS Exercises

class Book:

 language = 'ENG'

 is_ebook = True

41. The Book class is defined. A method called set_title() was implemented that allows you to set an
instance attribute called title. Create an instance of the Book class named book. Then, using the try ... except
... clause, try using the set_title()method to set the value of the title attribute to False . In case of a TypeError
, print the error message to the console.

Expected result:

The value of the title attribute must be of str type.

class Book:

 language = 'ENG'

 is_ebook = True

 def set_title(self, value):

 if not isinstance(value, str):

 raise TypeError('The value of the title attribute must be of str '

 'type.')

 self.title = value

Module 7 The _Init_() Method

42. Implement a class called Laptop that sets the following instance attributes when creating an instance:

• brand

• model

• price

Then create an instance named laptop with the following attribute values:

• brand = 'Acer'

model = 'Predator'

price = 5490

Tip: Use the special method init

In response, print the value of the _dict_ attribute of the laptop instance.

Expected result:

{'brand ' :'Acer', 'model': 'Predator1, 'price': 5490}

43. A class called Laptop was implemented.

Implement a method in the Laptop class called display_instance_attrs() that displays the names of all the
attributes of the Laptop instance.

Then create an instance named laptop with the given attribute values:

• brand = 'Dell'

• model = 'Inspiron'

• price = 3699

In response, call display_instance_attrs() method on the laptop instance.

Expected result:

brand

model

price

class Laptop:

 def __init__(self, brand, model, price):

 self.brand = brand

 self.model = model

 self.price = price

44. A class called Laptop was implemented.

Implement a method in the Laptop class called display_attrs_with_values() , which displays the names of all
the attributes of the Laptop class with their values as shown below (attribute name -> attribute value).

Then create an instance named laptop with the following values:

• brand = 'Dell'

model = 'Inspiron'
price = 3699

In response, call display_attrs_with_values() method on the laptop instance.

Expected result:

brand - Dell

model - Inspiron

price -3699

 class Laptop:

 def __init__(self, brand, model, price):

 self.brand = brand

 self.model = model

 self.price = price

45. Implement a class named Vector that takes any number of n-dimensional vector coordinates as arguments
when creating an instance (without any validation) and assign to instance attribute named components. Then
create two instances with following coordinates:

• (1, 2)

• (4, 5, 2)

and assign to variables v7 and v2 respectively.

In response, print the value of the components attribute for v1 and v2 instance as shown below.

Expected result:

V1 -> (1, 2)

v2 -> (4, 5, 2)

46. Implement a class called Bucket that takes any number of named
arguments (keyword arguments - use **kwargs) when creating an instance.
The name of the argument is the name of the instance attribute, and the value
for the argument is the value for the instance attribute.
Example:
[IN]: bucket = Bucket(apple=3.5)
[IN]: print(bucket. _dict_)

[OUT]: {'apple': 3.5}

Then create instance named bucket by adding the following attributes with
their values:
• apple = 3.5

• milk = 2.5
• juice = 4.9
• water = 2.5
In response, print the value of _dict_ attribute for the bucket instance.

Expected result:
{'apple': 3.5, 'milk': 2.5, 'juice': 4.9, 'water1: 2.5}

47. Implement a class called Car that sets the following instance attributes when
creating an instance:
• brand
• model
• price
• type_of_car, by default ‘sedan '
Then create an instance named car with the given values:
• brand = 'Opel'

• model = 'Insignia'
• price = 115000
In response, print the value of the _dict_ attribute of the car instance.

Expected result:

{'brand': 'Opel', 'model': 'Insignia', 'price': 115000, 'type_of_car': 'sedan'}

48. Implement a class called Car that sets the following instance attributes when
creating an instance:
• brand
• model
• price
• type_of_car, by default ‘sedan '
Then create an instance named car with the given values:

brand = 'BMW
• model = 'X3'
• price = 200000
• type_of_car = 'SUV'
In response, print the value of the diet attribute of the car instance.

Expected result:

{'brand': 'BMW, 'model': 'X3', 'price': 200000, 'type_of_car': 'SUV'}

class Car:

 def __init__(self, brand, model, price, type_of_car=None):
 self.brand = brand
 self.model = model
 self.price = price

 self.type_of_car = type_of_car if type_of_car else 'sedan'

49. Implement a class called Laptop that sets the following instance
attributes when creating an instance:
• brand
• model
• price
When creating an instance, add validation for the price attribute. The value
of the price attribute must be an int or float type greater than zero. If it is
not, raise the TypeError with the following message:

The price attribute must be a positive int or float.'

Then create an instance called laptop with the given attributes:

• brand = 'Acer'

• model = 'Predator'

• price = 5490

In response, print the value of the _dict_ attribute of the laptop instance.

Expected result:

{'brand ' :'Acer', 'model': 'Predator', 'price': 5490}

50. A class called Laptop was implemented.

Try to create an instance named laptop with the given attribute values:

• brand = 'Acer'

• model = 'Predator'

• price = '5900'

Note that in this case the value of the price attribute is passed as a str type. In case
of error, print the error message to the console (use the try ... except ... clause).

Expected result:

The price attribute must be a positive int or float.

class Laptop:

 def __init__(self, brand, model, price):

 self.brand = brand

 self.model = model

 if isinstance(price, (int, float)) and price > 0:

 self.price = price

 else:

 raise TypeError('The price attribute must be a positive int or float.')

Module 8 Visibility of Variables

51. Implement a class called Laptop that sets the following instance attributes
when creating an instance:

• brand as a bare instance attribute

• model as a protected attribute

• price as a private attribute

Then create an instance named laptop with the following arguments:

• 'Acer'
• 'Predator'

• 5490

In response, print the value of the _dict_ attribute of the laptop instance.

Expected result:

{'brand': 'Acer', '_model': 'Predator', '_Laptop__price': 5490}

52. A class called Laptop was implemented. Then, an instance of the Laptop class
named laptop was created with the following arguments:

• 'Acer'

• 'Predator'

• 5490

In response, print the value for each instance attribute (on a separate line) of the
laptop instance as shown below.

Expected result:

brand -> Acer

model -> Predator

price -> 5490

class Laptop:

 def __init__(self, brand, model, price):

 self.brand = brand

 self._model = model

 self.__price = price

laptop = Laptop('Acer', 'Predator', 5490)

53. An implementation of the Laptop class is given. Implement a method in the
Laptop class called dispiay_private_attrs() that displays the names of all private
attributes of the instance. Then create an instance with the given arguments:

• 'Acer'

• 'Predator'

• 'AC-100'

• 5490

• 0.2

and assign it to the variable laptop. In response, call dispiay_private_attrs() on the
laptop instance.

Expected result:

_Laptop__price

_Laptop__margin

 def __init__(self, brand, model, code, price, margin):

 self.brand = brand

 self._model = model

 self._code = code

 self.__price = price

 self.__margin = margin

54. An implementation of the Laptop class is given. Implement a method in the
Laptop class called dispay_private_attrs() that displays the names of all private
attributes of the instance. Then create an instance with the given arguments:

• 'Acer'

• 'Predator'

• 'AC-100'

• 5490

• 0.2

and assign it to the variable laptop. In response, call display_protected_attrs() on
the laptop instance.

Expected result:

_model

_code

class Laptop:

 def __init__(self, brand, model, code, price, margin):

 self.brand = brand

 self._model = model

 self._code = code

 self.__price = price

 self.__margin = margin

Module 9 Encapsulation

55. Implement a class called Laptop which in the init () method sets the value of
the price

protected attribute that stores the price of the laptop (without any validation).
Then implement a method to read that attribute named get_price() and a method
to modify that attribute named set_price() without validation as well.

Then create an instance of the Laptop class with a price of 3499 and follow these
steps:

• using the get_price() method print the value of the price protected attribute to
the console

• using the set_price() method, set the value of the price protected attribute to
3999

• using the get_price() method print the value of the price protected attribute to th
e console

Expected result:

3499

3999

56. A class called Laptop was implemented. Implement a method named
set_price() to modify price attribute that validates the value. Validation checks:

• whether the value is an int or float type, if it is not raise a TypeError with the
following message:

'The price attribute must be an int or float type.'

whether the value is positive, if it is not raise vaiueError

with the following message:

The price attribute must be a positive int or float value.'

Then create an instance of the Laptop class with a price of 3499 and try to set 1 -
3000 ■ to the price using set_price() method. If an error is raised, print the error
message to the console. Use a try ... except ... clause in your solution.

Expected result:

The price attribute must be an int or float type.

class Laptop:

 def __init__(self, price):

 self._price = price

 def get_price(self):

 return self._price

57. A class called Laptop was implemented. The _init_() method sets the value
of the price

protected attribute that stores the price of the laptop (without any validation).

Create an instance of the Laptop class with a price of 3499 and try to set the price
to -3000 using the set_price() method. If an error is raised, print the error
message to the console. Use a try ... except ... clause in your solution.

Expected result:

The price attribute must be a positive int or float value.

class Laptop:

 def __init__(self, price):

 self._price = price

 def get_price(self):

 return self._price

 def set_price(self, value):

 if not isinstance(value, (int, float)):

 raise TypeError('The price attribute must be an int or float type.')

 if not value > 0:

 raise ValueError('The price attribute must be a positive int or '

 'float value.')

 self._price = value

58. A class called Laptop was implemented.

Add validation of the price attribute also at the stage of creating the instance (in
 init()

method).

Then try to create an instance of the Laptop class with a price of -3499. If an error
is raised, print the error message to the console. Use a try ... except ... clause in
your solution.

Expected result:

The price attribute must be a positive int or float value.

class Laptop:

 def __init__(self, price):

 self._price = price

 def get_price(self):

 return self._price

 def set_price(self, value):

 if not isinstance(value, (int, float)):

 raise TypeError('The price attribute must be an int or float type.')

 if not value > 0:

 raise ValueError('The price attribute must be a positive int or '

 'float value.')

 self._price = value

59. Implement a class named Person that has one protected instance attribute
named first_name. Next, implement a method get_first_name() which reads the
value of the firstname protected attribute. Then, using the get_first_name()
method and the property class (do it in the standard way) create a property named
firstname (read-only property).

Create an instance of the Person class and set the firstname attribute to ' john ' .
Print the value of the firstname attribute of this instance to the console.

Expected result:

John

 60 . Implement a class named Person that has two instance
protected attributes named first_name and lastname, respectively. Then
implement methods named get_first_name() and get_last_name() , which
reads the protected attributes: firstname and lasLname.

Then, using the get_first_name() and get_last_name() methods and the
property class (do it in the standard way) create two properties named
firstname and lastname (read-only properties).

Create an instance of the Person class and set the following attributes:

• firstname to the value 'John'

• lastname to the value 'Dow'

 Print the value of the firstname and last_name attribute of this instance
to the console.

Expected result:

John

Dow

 61 . Implement a class named Person that has two instance protected
attributes named first_name and lastname, respectively. Then implement
methods named get_first_name() and get_last_name() , which reads the
protected attributes: firstname and lasLname.

Then, using the get_first_name() and get_last_name() methods and the
property class (do it in the standard way) create two properties named
firstname and lastname (read-only properties).

Create an instance of the Person class and set the first_name attribute to ■
Dohn ' . Then, using the set_first_name() method, Set new value 'Mike' .

In response, print the value of the first_name attribute to the console.

Expected result:

Mike

 62. Implement a class named Person that has two instance protected
attributes named first_name and lastname, respectively. Then implement
methods named get_first_name() and get_last_name() , which reads the
protected attributes: firstname and lastname.

Then, using the get_first_name() and get_last_name() methods and the
property class (do it in the standard way) create two properties named
firstname and lastname (read-only properties).

Create an instance of the Person class with the following values:

• first_name = 'John'

• last_name = 'Dow'

Then print the values of these attributes to the console as shown below.

Using the dot notation, modify the attribute values for this instance,
respectively:

• firstname to the value 'Tom'

• lastname to the value 'Smith'

In response, print the _dict_ attribute of the created instance to the console.

 Expected result:

John

Dow

{'_first_name': 'Tom', '_last_name': 'Smith'}

Solution:

class Person:

 def __init__(self, first_name, last_name):

 self._first_name = first_name

 self._last_name = last_name

 def get_first_name(self):

 return self._first_name

 def set_first_name(self, value):

 self._first_name = value

 def get_last_name(self):

 return self._last_name

 def set_last_name(self, value):

 self._last_name = value

 first_name = property(fget=get_first_name, fset=set_first_name)

 last_name = property(fget=get_last_name, fset=set_last_name)

person = Person('John', 'Dow')

print(person.first_name)

print(person.last_name)

person.first_name = 'Tom'

person.last_name = 'Smith'

print(person.__dict__)

 63. A class named Person was implemented.

Implement the del_first_name() method to remove the firstname protected
attribute.

Then, Using the methods get_first_name() , set_first_name() ,
del_first_name() and the property class (do this in the standard way) create
property named firstname (properties to read, modify and delete).

Create an instance of the Person class named person and assign the value '
Tom1 to firstname. Use the del_first_name() method to delete the firstname
attribute of the person instance. Display the _dict_ attribute of the person
instance to the console.

Expected result:

{}

``class Person:

 def __init__(self, first_name):

 self._first_name = first_name

 def get_first_name(self):

 return self._first_name

 def set_first_name(self, value):

 self._first_name = value

 64. Implement a class named Pet that has one protected instance
attribute name. Then implement a method name() which reads the value of
the protected name attribute.

Create a property name (read-only) using the @property decorator.

Create an instance of the Pet class named pet and set name attribute to
'Max' . In response, print the contents of the _dict_
attribute of this instance.

 Expected result:

{'_name': 'Max'}

65. Implement a class named Pet that has two protected instance attributes: name
and age, respectively. Next implement the methods: name() and age(), which
reads the value of the protected attributes: name and age.

Using the @property decorator, create properties: name and age, respectively
(read-only properties).

Create an instance of the Pet class named pet and set the name attribute to ' Max '
and age to

In response, print the contents of the _dict_ attribute of pet instance to the
console.

Expected result:

{'_name': 'Max', '_age': 5}

66. Implement a class named Pet that has one protected instance attribute name.
Then, using the @property decorator, create a property name (property to read
and modify, without validation).
Create an instance of the Pet class named pet and set the name attribute to
'Max’. Then, using dot notation, modify the value of the name attribute to
'Oscar’.
In response, print the contents of the _dict_ attribute of this instance to the
console.
Expected result:
{'_name': 'Oscar'}

 67. Implement a class named Pet that has one protected instance
attribute name. Then, using the @property decorator, create a property
name (property to read and modify, without validation).

Create an instance of the Pet class with the name pet and attributes:

• name = 'Max'

• age = 5

Print the _dict_ attribute of the pet instance to the console. Then modify the
attributes using the dot notation:

• name to the value 'Tom’

• age to the value 8

Again, print the _dict_ attribute of the pet instance to the console again.

 Expected result:

{'_name': 'Max', '_age1 : 5}

{'_name': 'Ton', '_age1 : 8}

68. A class called Pet is implemented that has two properties: name and age
(see below). Add validation to the age property at the stage of object
creation and attribute modification:

• the value of the age attribute must be an int type, otherwise raise a
TypeEmor with the following message:

'The value of age must be of type int.’

the value of the age attribute must be positive, otherwise raise valueEmor
with the

following message:

 'The value of age must be a positive integer.'

Then try to create an instance of the Pet class named pet and set the
following values:

• 'Max'

• 'seven'

If there is an error, print an error message to the console. Use a try ...
except ... clause your solution.

 If there is an error, print an error message to the console. Use a try
... except . . clause in your solution.

Expected result:

The value of age must be of type Int.

class Pet:

 def __init__(self, name, age):

 self._name = name

 self._age = age

 @property

 def name(self):

 return self._name

 @name.setter

 def name(self, value):

 self._name = value

 @property

 def age(self):

 return self._age

 @age.setter

 def age(self, value):

 self._age = value

 Solution:

class Pet:

 def __init__(self, name, age):

 self._name = name

 self.age = age

 @property

 def name(self):

 return self._name

 @name.setter

 def name(self, value):

 self._name = value

 @property

 def age(self):

 return self._age

 @age.setter

 def age(self, value):

 if not isinstance(value, int):

 raise TypeError('The value of age must be of type int.')

 if not value > 0:

 raise ValueError('The value of age must be a positive integer.')

 self._age = value

try:

 pet = Pet('Max', 'seven')

except TypeError as error:

 print(error)

except ValueError as error:

 print(error)

69. A class called Pet is implemented that has two properties: name and age (see
below). Create an instance of the Pet class with the name pet and attribute values
respectively:

• 'Max'

• 7

Then try to modify the value of the age attribute to -10. If there is an error, print
this error message to the console. Use a try ... except ... clause in your solution.

Expected result:

The value of age must be a positive integer.

class Pet:

 def __init__(self, name, age):

 self._name = name

 self.age = age

 @property

 def name(self):

 return self._name

 @name.setter

 def name(self, value):

 self._name = value

 @property

 def age(self):

 return self._age

 @age.setter

 def age(self, value):

 if not isinstance(value, int):

 raise TypeError('The value of age must be of type int.')

 if not value > 0:

 raise ValueError('The value of age must be a positive integer.')

 self._age = value

Solution:

class Pet:

 def __init__(self, name, age):

 self._name = name

 self.age = age

 @property

 def name(self):

 return self._name

 @name.setter

 def name(self, value):

 self._name = value

 @property

 def age(self):

 return self._age

 @age.setter

 def age(self, value):

 if not isinstance(value, int):

 raise TypeError('The value of age must be of type int.')

 if not value > 0:

 raise ValueError('The value of age must be a positive integer.')

 self._age = value

pet = Pet('Max', 7)

try:

 pet.age = -10

except TypeError as error:

 print(error)

except ValueError as error:

 print(error)

70. Implement a class named TechStack that has one protected instance
attribute named tech_names. Then, using the @property decorator, create a
property named tech_names (read, modify, and delete property, without
validation).

Create an instance of the class named tech_stack and the
tech_names attribute value:

• 'python,java,sql'

Print the content of the tech_names attribute. Then, modify this
attribute to value:

• ‘python,sql'

Also print the contents of the tech_names attribute to the console.

Remove the tech_names attribute of the tech_stack instance.

Print the contents of the diet attribute of the tech_stack instance to the
console.

Expected result:

python,java,sql

python,sql

{}

71. Implement a class Game that has a property named level (read and
modify property, defaults to 0). The value of the level attribute should be an
integer in the range [0, 100] . Add validation at the instance creation and
attribute modification stage. If the value is not of the int type, raise a
TypeError with the following message:

'The value of level must be of type int.'

If the value is outside the range [0, 100] , set the exceeded boundary value
(0 or 100 respectively). Then create a list called games consisting of four
instances of the Game class:

 games = [GameQ, Game(10), Game(-lO), Game(120)]

Iterate through the games list and print the value of the level attribute for
each instance.

Expected result:

0

10

0

 100

Module 10 Computed Attributes

 72. Implement a class named Circle that will have the protected instance
attribute radius - the radius of the circle (readable and modifiable property).
Use the @property decorator.

Then create an instance named circle with radius=3.

In response, display the _dict_ attribute of circle instance.

Expected result:

 {'_radius': 3}

 73. A class named Circle is given. Add a property called area (read-
only) to the class that calculates the area of a circle with a given radius.
This property should only be computed at first reading or after modifying
the radius attribute. To do this, also modify the way of setting the value of
the

radius attribute in the _init_() method. Make sure that the value of the area
attribute is

recalculated after changing the radius attribute.

Then create an instance named circle with radius=3 .

In response, display the value of the area attribute to the console (round the
result to four decimal places).

 Expected result:

28.2743

 import math

class Circle:

 def __init__(self, radius):

 self.radius = radius

 @property

 def radius(self):

 return self._radius

 @radius.setter

 def radius(self, value):

 self._radius = value

Solution:

74. A class named Circle is given. Add a property called area (read-only) to the
class that calculates the area of a circle with a given radius. This property should
only be computed at first reading or after modifying the radius attribute. To do
this, also modify the way of setting the value of the

radius attribute in the _init_() method. Make sure that the value of the area
attribute is

recalculated after changing the radius attribute.

Then create an instance named circle with radius=3 .

In response, display the value of the perimeter attribute to the console (round the
result to four decimal places).

Expected result:

18.8496

 import math

class Circle:

 def __init__(self, radius):

 self.radius = radius

 self._area = None

 @property

 def radius(self):

 return self._radius

 @radius.setter

 def radius(self, value):

 self._radius = value

 self._area = None

 @property

 def area(self):

 if self._area is None:

 self._area = math.pi * self._radius * self._radius

 return self._area

 75. Implement a class named Rectangle which will have the following
properties:

• width

• height

The width and height of the rectangle, respectively (for reading and for
modification). Also add a property named area that stores the area of the
rectangle (read-only). This property should be computed only at the first

reading or after modifying any of the rectangle sides. Skip attribute
validation.

Then create an instance named rectangle with a width = 3 and a height = 4
and print the information about the rectangle instance to the console as
shown below.

Expected result:

width: 3, height: 4 -> area: 12

ABOUT THE AUTHOR

“Edcorner Learning” and have a significant number of students on
Udemy with more than 90000+ Student and Rating of 4.1 or above.

Edcorner Learning is Part of Edcredibly.

Edcredibly is an online eLearning platform provides Courses on all trending
technologies that maximizes learning outcomes and career opportunity for
professionals and as well as students. Edcredibly have a significant number

of 100000+ students on their own platform and have a Rating of 4.9 on
Google Play Store – Edcredibly App .

Feel Free to check or join our courses on:

Edcredibly Website - https://www.edcredibly.com/

Edcredibly App –

https://play.google.com/store/apps/details?id=com.edcredibly.courses

Edcorner Learning Udemy - https://www.udemy.com/user/edcorner/

Do check our other eBooks available on Kindle Store.

https://www.edcredibly.com/
https://play.google.com/store/apps/details?id=com.edcredibly.courses
https://www.udemy.com/user/edcorner/

	Introduction
	Module 1 Local Enclosed Global Built-In Rules
	Module 2 Namespaces and Scopes
	Module 3 Args and Kwargs
	Module 4 Classes
	Module 5 Classes Attributes
	Module 6 Instance Attributes
	Module 7 The _Init_() Method
	Module 8 Visibility of Variables
	Module 9 Encapsulation
	Module 10 Computed Attributes

