

An Introduction

to Python

Programming:

A Practical Approach

Using Python to Solve Complex

Problems with a Burst of Machine Learning

Dr. Krishna Kumar Mohbey

Dr. Brĳesh Bakariya

www.bpbonline.com

FIRST EDITION 2022

Copyright © BPB Publications, India

ISBN: 978-93-91392-062

All Rights Reserved. No part of this publication may be

reproduced, distributed or transmitted in any form or by any

means or stored in a database or retrieval system, without the

prior written permission of the publisher with the exception to

the program listings which may be entered, stored and

executed in a computer system, but they can not be

reproduced by the means of publication, photocopy, recording,

or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and

the best of author’s and publisher’s knowledge. The author has

made every effort to ensure the accuracy of these publications,

but publisher cannot be held responsible for any loss or

damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as

properties of their respective owners but BPB Publications

cannot guarantee the accuracy of this information.

www.bpbonline.com

Dedicated to

Our family members who ever supported us in all

respects of life and career. This journey of ours

proved to be a boon by following their words and experiences.

About the Authors

Dr. Krishna Kumar Mohbey is an Assistant Professor of

Computer Science at the Central University of Rajasthan, India.

He received his Bachelor's degree in Computer Applications

from MCRPV Bhopal (2006), Master's in Computer Applications

from Rajiv Gandhi Technological University Bhopal (2009) and

Ph.D. from the Department of Mathematics and Computer

Applications from National Institute of Technology Bhopal, India

(2015). He has been teaching since 2009 and guiding Ph.D.

students. His areas of interest are Machine learning, data

mining, mobile web services, big data analysis and user

behavior analysis. He has authored three books on different

subjects and published more than 25 research articles in

reputed journals and conferences.

Dr. Brĳesh Bakariya is an Assistant Professor in the

Department of Computer Science and Engineering, I.K. Gujral

Punjab Technical University (IKGPTU) Jalandhar (Punjab). He

completed his Ph. D. from Maulana Azad National Institute of

Technology (NIT-Bhopal), Madhya Pradesh (2016). He received

MCA Degree from Devi Ahilya Vishwavidyalaya, Indore, Madhya

Pradesh (2009). He has been teaching since 2009 and guiding

M.Tech/Ph.D. students. In the meantime, he has authored 1

book and published more than 15 research papers in the

journals of international repute in the area of Data Mining,

Image Processing, Machine Learning, and so on. Currently,

three Ph.D. scholars are working with him. He has attended

various short-term training programmes, refresher courses,

workshops, seminars and conferences in India.

About the Reviewer

Riddhi Sahani is a strategic thinker who also happens to be an

entrepreneur. She can still code like the best of them and

understand what makes a product and business successful.

She is passionate about leading engineering groups that are

talented, healthy and motivated to achieve great results. She is

passionate about organizational health and principled

leadership, believing that these are the most important factors

for a team's ability to reach its full potential.

She believes that having a healthy, engaged and skilled team

managed by leaders with indisputable integrity and full

transparency makes success considerably more feasible and

enjoyable.

She feels herself fortunate for being a part of numerous

notable engineering teams, as well as having developed and

led some outstanding ones. She prioritizes strong interpersonal

ties and creates trust-based high-performing teams.

She is currently employed for News24 as a Senior Software

Developer and Technical Leader. She has more than 8 years of

software development experience with a variety of technologies,

including AWS, ML, and DL. She has worked for well-known

MNCs and a successful startup from stealth mode to

successful exit.

Acknowledgement

This book is the culmination of few years of intense learning

and research experience. We have been fortunate to interact

with many people who have influenced us greatly. One of the

pleasures of finally completing this book is getting an

opportunity to thank them. We would like to place on record

and acknowledge the works of all those great authors whose

work we have referred to in the preparation of this book.

We would like to thank a few people for the continued and

ongoing support they have given us during the writing of this

book. First and foremost, we would like to thank our family

members for continuously encouraging us to write the book —

we could have never completed this book without their

support.

We would like to express a deep sense of gratitude to Dr. G.

S. Thakur, National Institute of Technology Bhopal, Madhya

Pradesh, who constantly praised and inspired us to write books

on technical subjects and whose enthusiasm and guidance led

us to write this book.

Furthermore, we would like to thank the reviewers for providing

helpful feedback and critical suggestions during the book's

development.

We thank our colleagues, students and research scholars who

supported us by sharing their knowledge to write this book

successfully. We hope this book will be a good starting point

for the journey ahead.

We would extend our gratitude to the BPB Publications for

bringing out the book in its present form.

Any suggestions for improving the contents would be warmly

appreciated.

—Dr. Krishna Kumar Mohbey

— Dr. Brĳesh Bakariya

Preface

It gives us immense pleasure to bring the book "An

Introduction to Python Programming: A Practical Approach."

Python is the most popular programming language and is

widely used among programmers. The book is intended for the

students of various courses who can use this high-level

programming language as an effective tool for problem-solving.

Python is used to develop applications of any stream, and it is

not restricted only to computer science.

We believe that anyone with basic knowledge of computers and

ability of logical thinking can quickly learn Python

programming. With this motivation, we have lucidly written this

book. Once you go through the book, you will learn the basics

of python programming. Also, you will feel motivated to

develop applications using Python.

This book has been written considering the readers have no

prior knowledge of python programming. Following are some of

the reasons why one should learn the python language:

Python programming is simple and easy to learn.

It has simple syntax compared to other programming

languages.

It is an object-oriented programming language.

It is used to develop desktop, standalone and web-based

applications.

Python is open source. Due to its open nature, one can write

a program and deploy it on any platform.

This book is for everyone from the engineering and sciences

background. It is also for B.Tech. B.E., BCA, BSc, M.Tech,

PGDCA, M.E., MCA, M.Com., MSc, Ph.D., other UG and PG

graduates. In particular, the introduction, programming skills,

and learning concepts with simple examples would be good for

beginners.

The book is divided into 13 chapters covering all aspects of

Problem Solving with Python with a touch of Machine

Learning. The details are listed below.

Chapter 1, Basics of Python Programming: This chapter gives

you access to Python, from installing it to writing simple

programs.

Chapter 2, Operators and Expressions: This chapter describes

various operators used in Python with suitable examples.

Chapter 3, Control Flow Statements: This chapter describes the

program's control flow in the order in which the code for the

program is executed. It covers conditional statements, loops

and function calls governing a Python program's control flow.

Chapter 4, Functions: Functions are a handy way to break the

code into usable parts, enabling us to organize, make it more

readable, reuse and save some time. Functions are also a

crucial way of describing interfaces so that programmers can

share their code. This chapter covers various functions that can

be used in Python.

Chapter 5, Strings: This chapter provides descriptions and

various operations on the string using Python.

Chapter 6, Lists: The list is the most flexible datatype available

in Python and can be written between square brackets as a list

of comma-separated values (items). This chapter covers various

operations that can be applied on lists.

Chapter 7, Tuple: This chapter covers various operations that

can be applied to tuples.

Chapter 8, Dictionaries: This chapter covers a description of

dictionary data structure and various operations applied to the

dictionary.

Chapter 9, File Handling: Python provides a built-in feature to

build, write and read files. This chapter covers various

operations that are used on files.

Chapter 10, Exception Handling, Modules, and Packages: You

will learn Python's exception handling methods in this chapter.

This chapter highlights exceptionally built-in Python classes and

attempting and increasing excellent Python except in Python,

along with Python, try-finally clause. Even this chapter concerns

modules and packages.

Chapter 11, Object-oriented Programming: This chapter covers

various concepts of the object-oriented paradigm. It contains

multiple examples related to OOPs.

Chapter 12, Machine Learning with Python: This chapter covers

various concepts of machine learning. It contains multiple

models and examples of machine learning.

Chapter 13, Clustering with Python: This chapter covers

concepts of unsupervised learning and clustering. It contains

various models and examples of clustering approaches.

Downloading the coloured images:

Please follow the link to download the

Coloured Images of the book:

https://rebrand.ly/0a1496

Errata

We take immense pride in our work at BPB Publications and

follow best practices to ensure the accuracy of our content to

provide with an indulging reading experience to our

subscribers. Our readers are our mirrors, and we use their

inputs to reflect and improve upon human errors, if any, that

may have occurred during the publishing processes involved. To

let us maintain the quality and help us reach out to any

readers who might be having difficulties due to any unforeseen

errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated

by the BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book

published, with PDF and ePub files available? You can upgrade

to the eBook version at www.bpbonline.com and as a print

book customer, you are entitled to a discount on the eBook

copy. Get in touch with us at business@bpbonline.com for

more details.

At you can also read a collection of free technical articles, sign

up for a range of free newsletters, and receive exclusive

discounts and offers on BPB books and eBooks.

BPB is searching for authors like you

If you're interested in becoming an author for BPB, please visit

www.bpbonline.com and apply today. We have worked with

thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech

community. You can make a general application, apply for a

specific hot topic that we are recruiting an author for, or

submit your own idea.

The code bundle for the book is also hosted on GitHub at In

case there's an update to the code, it will be updated on the

existing GitHub repository.

We also have other code bundles from our rich catalog of

books and videos available at Check them out!

PIRACY

If you come across any illegal copies of our works in any form

on the internet, we would be grateful if you would provide us

with the location address or website name. Please contact us

at business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are

interested in either writing or contributing to a book, please

visit

REVIEWS

Please leave a review. Once you have read and used this book,

why not leave a review on the site that you purchased it from?

Potential readers can then see and use your unbiased opinion

to make purchase decisions, we at BPB can understand what

you think about our products, and our authors can see your

feedback on their book. Thank you!

For more information about BPB, please visit

Table of Contents

1. Basics of Python Programming

Structure

Objective

Understanding Python

Installing Python

Windows

Ubuntu

Linux Mint

Python IDLE

Anaconda open-source distribution

Writing and executing first Python program

Starting Python through command line

Starting Python IDLE

Starting Python through Spyder in Anaconda Prompt

Starting Python through Jupyter Notebook

Writing and saving Python programs

Value and types

Numbers

Getting input

Printing

Boolean

Lists

Strings

Variables and identifiers

Python identifiers

Data types

Statements

Keywords

Dictionary

Conclusion

Points to remember

Multiple choice questions

Answers

Questions

2. Operators and Expressions

Structure

Objective

What is an operator?

Arithmetic operators

Comparison operators

Assignment and shortcut operators

Unary operators

Bitwise operators

Logical operators

Membership operators

Identity operators

Operators precedence and associativity

Expressions in Python

Operations on strings

Accessing values in strings

Triple quotes

Type conversion

Implicit type conversion

Explicit type conversion

Python comments

Single line comments

Multiline comments

Functions in Python

Defining a function

Module

Use a module

Parameters or arguments

Conclusion

Points to remember

Multiple choice questions

Answers

Questions

3. Control Flow Statements

Structure

Objective

Understanding control flow statement

Sequential control structures

Selection control structures

if statements

if-else statements

nested if

if-elif-else

Repetition control structures

for loop

while loop

Nested loop

Break statement

Continue statement

The pass statement

Conclusion

Points to remember

Multiple choice questions

Answers

Questions

4. Functions

Structure

Objectives

Introduction to Function

Predefined functions

User-defined functions

Function call

Function parameters and arguments

Default arguments

Variable scope and lifetime

Scope of the variable

Local scope

Global scope

The lifetime of the variable

Local and global variables

Global variables

Global statement

Return statement

Lambda functions

Recursive functions

Advantages

Disadvantages

Function redefinition

Conclusion

Points to remember

Multiple choice questions

Answers

Questions

5. Strings

Structure

Objective

Concepts of String

String concatenation

Using + operator

Using join() method

Using % operator

Using format() function

Appending strings

Using += operator

Using join()

Multiplying strings

Immutable strings

String formatting operator

Built-in string functions

Slice operation

The ord() and chr() functions

The ord() function

The chr() function

Comparing strings

Using relational operators

Using is and is not

User-defined function

Iterating strings

Using split()

Using re.findall()

The string module

String module constants

String capwords() function

String module classes

Formatter

Template

Regular expression

Conclusion

Points to remember

Multiple choice questions

Answers

Questions

6. Lists

Structure

Objective

Basics of lists

Creating lists

Accessing values from a list

Using list index

Negative indexing

To slice, delete, remove, and clear a list of elements

Updating values in Lists

Nested list

Aliasing

Cloning lists

Using slicing

Using the extend() method

Using the list() method

Using list comprehension

Using the append() method

Using the copy() method

List parameters

Basic list operations

List methods

List as arrays

Looping in lists

Using for loop

Using loop and range()

Using while loop

Using list comprehension

Using enumerate()

Using Numpy

Passing list to function

Returning list from the function

filter() function

map() function

reduce() function

Searching in list

Sequential search

Binary search

Sorting

Types of sorting

Bubble sort

Selection sort

Insertion sort

Quicksort

Merge sort

Conclusion

Points to Remember

Multiple Choice Questions

Answers

Questions

7. Tuple

Structure

Objective

What is a tuple?

Creating tuple

Single element tuple

The tuple () function

Accessing values in tuple

Positive and negative indexes

Slicing tuple

Updating tuple

Deleting elements in tuple

Basic tuple operations and functions

Packing and unpacking a tuple/tuple assignment

Receiving tuples in functions

Returning multiple values as a tuple

Nested tuples

Creating tuple from string and list

The zip() function

The inverse zip(*) function

Tuple sorting

Conclusion

Points to remember

Multiple choice questions

Answers

Questions

8. Dictionaries

Structure

Objective

Basics of dictionary

Creating a dictionary

Method 1: Create empty dictionary and then add items

Method 2: By passing key-value pair literals

Method 3: Passing key-value pairs to dict() function

Method 4: Passing list of tuples to dict() function

Accessing dictionary values

Adding and modifying an item in a Dictionary

Deleting elements from a dictionary

The clear () function

Sorting elements in a dictionary

Sorting the dictionary by key

Sorting dictionary by value

Sorting dictionary in reverse order

Iterating over a Dictionary

Nested dictionaries

Adding another dictionary to the existing nested dictionary

Updating nested dictionary items

Deleting elements from a nested dictionary

Deleting a dictionary from nested dictionary

Iterating through a nested dictionary

Built-in dictionary functions

The copy()method

Formatting dictionaries

Conclusion

Points to remember

Multiple choice questions

Answers

Questions

9. File Handling

Structure

Objective

File handing

Need of file handling

File path

Opening a file

Closing a file

Writing into a file

writelines() method

Writing numbers to a file

Reading a file

readline() method

readlines() method

Reading file through a loop

Reading numbers from a file

Creating a new file

The file object attributes

File positions

Python directory operations

Current working directory

List of directories

Creating a directory

Change directory

Renaming a directory

Delete a directory

Renaming and deleting file

Binary files

Conclusion

Points to remember

Multiple choice questions

Answers

Questions

10. Exception Handling, Modules, and Packages

Structure

Objective

Errors and exceptions

Syntax error

Exception

Handling Exceptions

Single except block

Multiple except blocks

Multiple exceptions in one except

else and finally

Raising exceptions

Built-in exceptions

User-defined exceptions

Pre-defined clean–up action

Modules

Loading module

The import statement

The from…import statement

Renaming a module

The dir() built-in function

The reload() function

Python built-in modules

Packages in Python

Creating packages

__init__.py

Subpackages

Conclusion

Points to remember

Multiple choice questions

Answers

Questions

11. Object-oriented Programming

Structure

Objective

Object-Oriented Programming

Introduction to classes

Object

Method

Data abstraction and encapsulation

Inheritance

Polymorphism

Object-oriented versus procedure-oriented programming

languages

Python class and objects

Defining a class in Python

Creating an object

Deleting properties or object

Data abstraction

Constructors in Python

Non-parameterized constructor

Parameterized constructor

Default constructor

Multiple constructors in a class

Python inheritance

Types of inheritance

Single inheritance

Multilevel inheritance

Multiple inheritance

Hierarchical inheritance

The issubclass(sub,sup) method

The isinstance (obj, class) method

Polymorphism in Python

Polymorphism in operators

Function Polymorphism

Polymorphism in Class methods

Method overriding (polymorphism in inheritance)

Python built-in class functions

Python built-in class attributes

Class or static variables

Class method vs. static method

Class decorator

Recursive calls to functions

Conclusion

Points to remember

Multiple choice questions

Answers

Questions

12. Machine Learning with Python

Structure

Objective

Introduction to machine learning

Uses of machine learning

Traditional programming v/s machine learning

Applications of machine learning

Types of machine learning

Supervised learning

Unsupervised learning

Python libraries for machine learning

Numpy

Pandas

Scikit-learn

Matplotlib

Tensorflow

Keras

Pytorch

NLTK

Understanding regression

Linear regression

Non-linear regression

Introduction to classification

Binary classification

Multi-class classification

Multi-label classification

Imbalanced classification

Classification methods

K-Nearest Neighbors

Understanding decision trees

How do the decision trees work?

Steps in id3 algorithm

Issues in decision tree

Logistic regression

Sigmoid function

Hypothesis representation

Support vector machine

Model evaluation methods

Confusion matrix

Accuracy

Precision

Sensitivity/recall

Specificity

F1 score

ROC (Receiver operating characteristics) curve

AUC (Area under ROC curve)

Conclusion

Points to remember

Multiple choice questions

Answers

Questions

13. Clustering with Python

Structure

Objective

Introduction to unsupervised learning

Issues with unsupervised learning

Need for unsupervised learning

Clustering

Proximity measures

Distance measuring methods

Clustering methods

K-means clustering

Hierarchical Clustering (BIRCH)

Density-based Clustering (DBSCAN)

OPTICS

Conclusion

Points to remember

Multiple choice questions

Answers

Questions

Index

CHAPTER 1

Basics of Python Programming

Nowadays, Python is one of the most popular programming

languages. There are many reasons for this, but simply it is

easy to read and write Python code. Python provides vast

libraries for which you can efficiently make your program. In

this chapter, you will see various features, installation, and the

making of a simple program of Python.

Structure

In this chapter, we will cover the following topics:

Basic features and history of Python

Installing Python and running Python program to IDE

Writing and executing first Python program

Brief description about various concepts used in Python

Objective

The objective of this chapter is to introduce the concept of

Python, its features, and the Installation procedure in Windows

and Linux. After completing this chapter, you should be familiar

with Python IDE and editors. Also, you will be able to write

simple Python programs.

Understanding Python

Python is one of the high-level languages. There are various

advantages of high-level languages:

Program is easier and understandable which is written in a

high-level language

Program is shorter in a high-level language

The code written in a high-level language is portable, which

means it can run on different computers with some

modifications.

Due to these preceding advantages, almost all programs are

written in high-level languages. Guido van Rossum designed

Python in 1991; after that, Python released various versions as

shown in table

Table 1.1: Python versions with released year

The compiler completes the task which is involved in the

compilation process. Moreover, it converts a source code to

object code, and after that, the program will be converted to

machine understandable code. But an interpreter reads a high-

level program and executes it. Python does not follow the

compilation process; it is used only as an interpreter. That's

why from a computation point of view, Python is very fast. The

figures can easily understand it.

Here figure 1.1 shows the structure of the compiler. A compiler

translates source code into an object code, which a hardware

executor runs:

Figure 1.1: Structure of Compiler

Here figure shows the structure of the interpreter. An

interpreter processes the program in less time, and it also

takes less time to read lines and perform computations:

Figure 1.2: Structure of Interpreter

Python is an interpreted language because an interpreter

executes Python programs, but the compilation process is also

done in Python. The compilation part is hidden from the

programmer that is why it is known as an interpreted

language.

There are various reasons Python has become more popular:

It is easy to use because its coding is written in a simple

English language. Users can easily understand and write code

into Python, so it takes less time to write a program.

It is a very powerful language because it has many libraries

where you can easily make a program. An inbuilt library has

lots of inbuilt functions where you can insert as per your need.

It is an object-oriented programming language that is why it

follows all the object-oriented concepts.

It is integrated with other programming languages such as C,

C++, Java, etc.

It is platform-independent, which means if you created a

program in one operating system, you could also run that

program in another operating system.

It is free and open-source, which means you can install it on

your computer without any cost. It can be copied or modified

and resold accordingly. This is a solid reason why Python has

become more popular.

Installing Python

It works with various operating systems Windows, Linux,

macOS, etc. If you want to work in Python, it needs

permission from the Python interpreter. Python is available on

the website Download the right installer for your operating

system and run it on the computer. This figure shows a clear

understanding of the installer of Python. You can choose the

Python installer according to the operating system:

Figure 1.3: Installation Page of Python

Windows

There are various steps for installing Python in Windows.

Python does not come preinstalled in Windows systems.

However, installing Python is a straightforward process. All you

need to do is to download the Python installer from the

website, and then run the program. Here are the steps to

install it on Windows:

Downloading the Python installer from

Select a Python version:

Figure 1.4: Python versions

Select Windows 64-bit or 32-bit Windows:

Figure 1.5: Installation Setup of Python

Run the Installer.

Don't forget to click the box that indicates Add Python Version

to PATH this will confirm that the interpreter is added to the

execution path. The final step is to click Install and these are

all the required steps:

Figure 1.6: Running the Installer

The figure 1.6 shows various optional features during

installation. We can select these features as required:

Figure 1.7: Various Options in Python setup

After selecting various features next window shows advanced

options, which are shown in figure Here, installation location

also needs to be selected:

Figure 1.8: Processing of Python Setup

The figure 1.8 shows the installation setup progress; after

completion of this step, Python will be successfully installed in

the system:

Figure 1.9: Completion of Python setup

The figure 1.9 shows the completion of the Python setup in the

system. Now the system is ready to use Python. Python

application can be opened by searching from the taskbar; it is

shown in figure

Figure 1.10: Open Python application

Ubuntu

There are different versions of the Ubuntu distribution, and the

installations are different. Moreover, most factory versions of

Ubuntu 18.04 or Ubuntu 20.04 come with Python preinstalled;

first of all, check your version with the following commands

and enter this command on the terminal:

python -version

Update and refresh repository lists

The next step is to update and refresh the list of the

repository with the following command:

sudo apt update

Installation of supporting software

There is a following command:

sudo apt install software-properties-common

Add Deadsnakes PPA ((Personal Package Archive))

There is a following command:

sudo add-apt-repository ppa:deadsnakes/ppa

The system will prompt you to press Enter to continue. Do so,

and allow it to finish. Refresh the package lists again:

sudo apt update

Install Python 3

Now you can start the installation of Python 3.9 with the

command:

sudo apt install python3.9

Allow the process to complete and verify if the Python version

was installed successfully:

python -version

The preceding command shows the current version of Python:

Figure 1.11: Python installation through sudo command on Ubuntu

Linux Mint

Installation of Mint is similar to Ubuntu, and installation

instruction for Ubuntu can also be used in Mint. A

deadsnakes/ppa working well with Mint.

Python IDLE

Python introduces IDLE, which means Integrated Development

and Learning By default, Python contains the IDLE module for

windows, and it is not contained in Linux. A development

environment provides an interactive platform that contains

various tools that makes a program straightforward. There are

two types of modes in IDLE which is interactive mode and

script mode:

Figure 1.12: Python on Search Bar

The preceding figure 1.12 shows how Python IDE can search

through the search bar:

Figure 1.13: Python Shell

There are various types of IDEs are available for Python.

Various kinds of IDEs are commercial and freely available such

as PyCharm, Kite, Spyder, DLE, Visual Studio Code, Atom,

Jupyter, Pydev, Thonny, and many more. Here, we will learn

how to use some open-source editors to execute Python scripts

or statements.

Anaconda open-source distribution

It is for Python and R programming languages. This

distribution is freely available. It contains various applications

such as JupyterLab, Jupyter Notebook, QtConsole, Spyder, Glue,

Orange, RStudio, and Visual Studio Code.

This distribution is for large-scale data processing, predictive

analytics, and scientific computing. The advantage of Anaconda

is the massive amount of packages inside it. It would be very

easier to make a program and handle huge data under time

and space constraints.

Figure 1.14: Anaconda Navigator

Writing and executing first Python program

There are three ways to write and execute a Python program.

Starting Python through Command Line

Starting Python IDLE

Starting Python through Spyder/Jupyter Notebook in Anaconda

Prompt

Starting Python through command line

It can be writing a Python code through a command-line

approach. When we can execute Python expressions, statements,

or instructions from the command line then this type of mode

is called interactive mode or interactive prompt. There are the

following steps to start a Python code through the command

line.

Click the Start button as shown in figure

Figure 1.15: Start button

Type Python 3.9 in the search space bar beside the Start

button, as shown in figure

Figure 1.16: Python 3.9 (64-bit)

Click to open Python 3.9 (64-bit). After that, a command

prompt will be open, as shown in figure

Figure 1.17: Python 3.9 (64-bit) Command prompt

We can write any expression or statements over here. This is

an interactive mode of Python command prompt. Here, we are

writing our names through the command prompt, as shown in

figure

Figure 1.18: Python code through command prompt

To exit the command line of Python 3.9, you can press Ctrl +

z and press Enter key or type exit() then press Enter key.

Starting Python IDLE

Python IDLE is another way to write and execute a Python

program. It provides an interactive platform that contains

various tools that can be used to write a program.

There are the following steps to start a Python through Python

IDLE.

Type IDLE in the search space bar beside the start button, as

shown in figure

Figure 1.19: IDLE (Python 3.9 64 bit)

Click to open an IDLE (Python 3.9 64 bit). After that, an IDLE

Shell will open, as shown in figure

Figure 1.20: IDLE Shell

We can write any expression or statement over here. This is an

interactive mode of Python IDLE. Here, we are writing our

names and some basic expressions through this prompt, as

shown in figure

Figure 1.21: Python code through IDLE Shell

To exit from an IDLE (Python 3.9 64 bit), type exit() and press

Ctrl +

Starting Python through Spyder in Anaconda Prompt

In this section, we are writing the first program on one of the

IDE names Spyder. You can install Spyder separately or through

an anaconda prompt. Here we are using Spyder through an

anaconda prompt.

There are the following steps to start Python through Spyder in

Anaconda prompt.

First of all, we have to install an anaconda prompt, then we

simply type anaconda download on Google, as shown in figure

Figure 1.22: Anaconda search on Google

Click Individual Edition-Anaconda link, or you can go through

the following URL The webpage will open, and you can

download and install Anaconda, as shown in figure

Figure 1.23: Download Anaconda

After installing Anaconda, you can type Anaconda Navigator in

the search bar beside the start button, as shown in figure

Figure 1.24: Anaconda Navigator

Click to open Anaconda Navigator. After that, the Anaconda

Navigator will be open, as shown in figure

Figure 1.25: Anaconda Navigator Snippet

Click on the Spyder icon; after that, the Spyder application will

be launched, as shown in figure

Figure 1.26: Spyder in Anaconda Navigator

After clicking on Spyder applications, Spyder IDE will open, as

shown in figure

Figure 1.27: Spyder Home

In the Spyder IDE, the left window is used for writing codes.

Here we can write python codes as shown in figure

Figure 1.28: Code on Spyder

Starting Python through Jupyter Notebook

The following steps will be used to write a program in Jupyter

notebook.

Search Jupyter notebook from start menu as shown in the

figure

Figure 1.29: Searching Jupyter Notebook

After clicking on Jupyter Notebook, it will open as shown in

figure

Figure 1.30: Jupyter Notebook

Now, we will start a new notebook. For this, we will click on

the new Python 3 notebook. The new option is available at the

top-right corner of this window. The following figure 1.31 shows

an example of a new notebook:

Figure 1.31: Opening a Notebook in Jupyter

We can write Python codes in the notebook cells and execute

them by clicking the Run button. The following figure gives an

example of writing and executing Python codes:

Figure 1.32: Writing codes in Jupyter

Writing and saving Python programs

The following examples show how we create Python scripts,

save and execute them in different Python editors.

Example 1.1:

Display a Name

print ("Dr. Brĳesh Bakariya")

#Function displaying a name

Output:

Dr. Brĳesh Bakariya

The Python file's file extension is so it must be saved by the

.py extension and the code should be executed.

Example 1.2:

Program for the addition of two numbers

num1 = 10

num2 = 20

Add two numbers

sum = num1 + num2

Display the sum

print ('The sum of {0} and {1} is {2}'.format(num1, num2,

sum))

Output:

The sum of 10 and 20 is 30

Example 1.3:

Program for addition of two numbers with user input

input() for taking input from user

num1 = input('Enter first number: ')

num2 = input('Enter second number: ')

Add two numbers

sum = float(num1) + float(num2)

Display the sum

print ('The sum of {0} and {1} is {2}'.format(num1, num2,

sum))

Output:

The sum of 12.6 and 66.2 is 78.8

Value and types

A value is a small part of the program. It could be a number

or a letter. For example, we have an integer number 10, 20

that means this is a value and letter Bakariya is a letter or a

string. It is also called a string of letters, this is enclosed in

quotation marks.

The type() function tells the type of a value. Let us take some

examples where it could be clearly understood.

Example 1.4:

a=type('Amit Kumar')

print (a)

b=type(17)

print (b)

c= type(10.5)

print (c)

Output:

'str'>

'int'>

'float'>

Numbers

This is one of the data types which contain numeric values.

This is an immutable data type, which means you can change

the value of a number data type, and the result will change.

Python supports integers, floating-point numbers, and complex

numbers. There are the following representations of a number

data type in Python.

The integer represents as int

Floating-point numbers represent float

Complex numbers represent complex

Let us take an example.

Example 1.5:

a = 5

print (a)

print (type(a))

b=15.2

print (b)

print (type(b))

c = 3 + 2j

print (c + 3)

print (type(c))

Output:

5

'int'>

15.2

'float'>

(6+2j)

'complex'>

Getting input

Somewhere we have to interact with the user, the input()

method is used to get input from the user.

When you use input() method, then this method uses a dialog

box. It is a way of asking the user to provide some type of

input. There are two types of methods for getting input from

the user:

input (prompt)

raw_input (prompt)

This function first takes the input from the user and then

evaluates the expression.

This method's beauty is that it is automatically identified

whether the user entered a string or a number or list. If the

input provided is not correct, then either syntax error or

exception is raised by Python.

Let's understand how the input() function works?

input() function executes and waits until the user has given

input. The text or message displays on the output screen.

Whatever you enter as an input, the input() function converts

it into a string. If you enter an integer value, still the input()

function converts it into a string. You need to explicitly convert

it into an integer in your code using typecasting.

Python 3.6 uses the input() method, and here we are taking an

example of Python 3.6 or higher version.

Example 1.6:

input() for taking input from user

name = input('Enter your name: ')

age = input('Enter your age: ')

print (name)

print (age)

Output:

Enter your Name: Dr. Brĳesh Bakariya

Enter your age: 36

Dr. Brĳesh Bakariya

36

Example 1.7:

get input from a user

str1 = input()

Getting input from a user without a prompt

print ('The inputted string 1 is: ', str1)

str2 = input('Enter a string: ')

#Getting input from the user with a prompt

print ('The inputted string is:', str2)

Output:

Dr. Brĳesh Bakariya

The inputted string 1 is: Dr. Brĳesh Bakariya

Enter a string:Dr. Krishna Kumar Mohbey

The inputted string 2is: Dr. Krishna Kumar Mohbey

Printing

It is the simplest way to display the output on the screen.

Python has a print() method for output printing. We can pass

zero or more print() function expression, but commas should

separate the expressions. The print() function converts the

expressions into a string before writing on the screen.

There is the following system of print() function.

Syntax: print(value(s), sep= ' ', end = '\n', file=file, flush=flush)

The and flush are the parameters in which we can pass it.

There are the following descriptions of these parameters:

Any value, and as many as you like. It will be converted to a

string before printing.

(Optional) Specify how to separate the objects if there is more

than

(Optional) Specify what to print at the end.Default:

file : (Optional) An object with a write method.

Default:sys.stdout

flush : (Optional) A Boolean, specifying if the output is flushed

or buffered

It returns output to the screen.

Example 1.8:

Use of print() function

print("Python is a programming language")

n1 = 10

Two objects are passed

print ("n1 =", 10)

n2 = n1

Three objects are passed

print ('n1 =', n1, '= n2')

Output:

Python is a programming language

n1 = 10

n1 = 10 = n2

Example The print() function with separator and end

parameters:

n1 = 50

print ("n1 =", n1, sep='000', end='\n\n')

print ("n1 =", n1, sep='0', end='')

Output:

n1 =00050

n1 =050

Boolean

The bool() method is used to return or convert a value to a

Boolean value, that is, True or using the standard truth testing

procedure.

This method generally takes one parameter based on the truth

testing procedure. By default, this returns that is, no argument

is passing. It returns True if the parameter or value is passed.

There are various ways in which Python's bool() method

returns Except for these, all other values return

If a False value is passed.

If None is passed.

If an empty sequence is passed, such as etc.

If Zero is passed in any numeric type, such as 0, 0.0, etc.

If an empty mapping is passed, such as

If objects of classes having __bool__() or __len()__ method,

returning 0 or False

Example 1.10:

Different ways for printing Boolean values

Returns False as a is False

a = False

print(bool(a))

Returns True asa is True

a= True

print(bool(a))

Returns False as a is not equal to b

a= 7

b = 6

print (bool(a==b))

Returns False as a is None

a = None

print (bool(a))

Returns False as a is an empty sequence

a = ()

print (bool(a))

Returns False as a is an empty mapping

a = {}

print (bool(a))

Returns False as a is 0

a = 0.0

print(bool(a))

Returns True as a is a non-empty string

a = 'Brĳesh'

print (bool(a))

Output:

False

True

False

False

False

False

False

True

Lists

A list is for placing all the data items in one place. Moreover,

it is capable of storing different data items in a single variable.

All the variables in the list are contained in square brackets

separated by commas. Three more built-in data types work as

a list, but there are some differences among them. Such data

types are Tuple, Set, and Dictionary.

The list is a collection that is ordered and changeable. It

allows duplicate members.

A tuple is a collection that is ordered and unchangeable. It

also allows duplicate members.

Set is a collection that is unordered and unindexed. It does

not allow duplicate members.

Dictionary is a collection that is unordered and changeable. It

does allow No duplicate members.

We will discuss the details of every data type in further

chapters.

Example 1.11:

Creating a simple list

list_var1 = ["Brĳesh", "Krishna", "Ram", "Amit", "Rohit"]

print (list_var1)

list_var2 = ["Brĳesh", 35, "Krishna",36, "Ram",34, "Amit", 30,

"Rohit"]

print (list_var2)

Output:

['Brĳesh', 'Krishna', 'Ram', 'Amit', 'Rohit']

['Brĳesh', 35, 'Krishna', 36, 'Ram', 34, 'Amit', 30, 'Rohit']

Strings

The string is an array of characters. The string is created by

single quotation marks, double quotation marks, and triple

quotation marks. We can print the string with the help of the

print() function.

Example 1.12:

Creating a string

Single string

str1 = "Python"

print (str1)

Multiple string

str2 = """Python is good programming,

It is used for data analysis,

It is very faster in the computational point of view."""

print (str2)

Output:

Python

Python is good programming,

It is used for data analysis,

It is very faster in the computational point of view.

Variables and identifiers

A variable is a name that refers to a value. It is an essential

part of a programming language because a variable can hold

the value. The programming is significantly more comfortable

and understandable when you use a variable for holding a

value. In Python, a single value can be assigned to multiple

variables at the same time. It is also possible to initialize

various variables same time with different values.

Let us take some examples to understand more about the

variable.

Example 1.13:

multiple variables assignment with same value

x=y=10

print ('value of x is:',x)

print ('value if y is:',y)

Output:

value of x is: 10

value if y is: 10

Example 1.14:

Initializing multiple variables

x,y,z=10,'amit',123.52

print ('value of x is:',x)

print ('value if y is:',y)

print ('value if z is:',z)

Output:

value of x is: 10

value if y is: amit

value if z is: 123.52

Example 1.15:

str='Python is very easy and efficient programming language'

num=10

float_var=34.44

print (str)

print (num)

print (float_var)

Output:

Python is very easy and efficient programming language

10

34.44

In this example, we have defined three variables and float_var

for holding a string, number, and float value.

Example 1.16:

Showing variable and its type

str='Python is very easy and efficient programming language'

num=10

float_var=34.44

print (str)

print (num)

print (float_var)

print (type(str))

print (type(num))

print (type(float_var))

Output:

Python is very easy and efficient programming language

10

34.44

'str'>

'int'>

'float'>

A variable name should be meaningful while creating a variable

because it is more understandable when you use it to create a

meaningful variable. Variable names can be long and contain

letters and numbers, but they should start with a letter; special

characters are not allowed. Underscore is also allowed. Let's

take an example to understand the variable name.

Example 1.17: Variable name

This_is_for_storing_Name ="Dr. Brĳesh Bakariya"

_My_Qualification = "Ph.D."

print (This_is_for_storing_Name)

print (_My_Qualification)

Output:

Dr. Brĳesh Bakariya

Ph.D.

Python identifiers

An identifier is a name given to entities such as variables,

functions, etc.

A combination of upper-case letters (A to Z), Lower case

letters (a to z), and digits (0 to 9), underscore are allowed in

an identifier, but it cannot start with digits.

Example 1.18:

Identifier

Name1='Amit'

NAME='Raj'

N12='Ramesh'

_Name='Rohit'

print (Name1)

print (NAME)

print (N12)

print (_Name)

Output:

Amit

Raj

Ramesh

Rohit

Data types

Python has a data type for every value. Moreover, everything is

an object in Python, and data types can be classes and objects

of these classes. There are various categories of built-in data

types in Python:

Figure 1.33: Categories of Data Type

Example 1.19:

data types

#str

x1 = "Dr. Brĳesh Bakariya"

#int

x2= 35

#float

x3 = 205.2

#complex

x4 = 3j

#list

x5 = ["mango", "cherry", "apple"]

#tuple

x6 = ("mango", "cherry", "apple")

#range

x7 = range(3)

#dict

x8 = {"name" : "Brĳesh", "age" : 35}

#set

x9 = {"mango", "cherry", "cherry"}

#frozenset

x10 = frozenset({"apple", "banana", "apple"})

#bool

x11 = True

print (x1)

print (x2)

print (x3)

print (x4)

print (x5)

print (x6)

print (x7)

print (x8)

print (x9)

print (x10)

print (x11)

Output:

Dr. Brĳesh Bakariya

35

205.2

3j

['mango', 'cherry', 'apple']

('mango', 'cherry', 'apple')

range(0, 3)

{'name': 'Brĳesh', 'age': 35}

{'cherry', 'mango'}

frozenset({'banana', 'apple'})

True

Statements

The statement is an instruction that can be executed by the

Python interpreter. There are various types of statements that

we use, such as assignment statements, while statements, if

statements, etc.

Most of the statements use indentation for defining the scope

of a code. Here, indentation means putting whitespace at the

beginning of a line, similar to curly brackets for other

programming languages.

Example 1.20: Statement

a = 10

b = 20

if b > a:

print ("b is greater than a")

elif a == b:

print ("a and b are equal")

else:

print ("a is greater than b")

Output:

b is greater than a

Keywords

Keywords are not allowed in a variable name, function name,

or any other identifier. In Python 3.7, there are 35 keywords.

Those are given below:

False await else import pass

None break except in raise

True class finally is return

and continue for lambda try

as def from nonlocal while

assert del global not with

async elif if or yield

Dictionary

Dictionary is a collection of data values. It uses a two-element

key and value. It is an unordered collection of data because it

depends on the element defined in the dictionary. Each key is

separated from its value by a colon the items are separated by

commas, and it is enclosed in curly braces. An item can be

changeable.

Example 1.21: Dictionary

Creating a Dictionary

with Integer Keys

Dict = {1: 'Brĳesh', 2: 'Krishna', 3: 'Amit'}

print ("\nDictionary with the use of Integer Keys: ")

print (Dict)

Output:

Dictionary with the use of Integer Keys:

{1: 'Brĳesh', 2: 'Krishna', 3: 'Amit'}

Conclusion

In this chapter, we discussed the basics and various features

of Python. We also discussed installing and executing the

Python programs. Various IDEs that are used to write Python

code. Briefly description about various concepts of Python with

examples. Based on these examples, you can write your code

for a specific task. In the next chapter, we will discuss

operators as the next topic used in Python.

Points to remember

Python is a high-level and interpreted language

Python is a free and open-source language

There are 35 keywords in Python 3.7

Multiple choice questions

Who developed the Python language?

Zim Den

Guido van Rossum

Niene Stom

Wick van Rossum

In which language is Python written?

English

PHP

C

Java

Python was developed in which year?

1972

1995

1991

1981

Python 3.0 was released in which year?

2000

2008

2011

2016

By the use of which character, a single line is made a

comment in Python?

*

@

#

!

Which of the following statements is true?

Python is a high-level programming language.

Python is an interpreted language.

Python is an object-oriented language

All of the above

What is used to define a block of code in Python?

Parenthesis

Indentation

Curly braces

None of the above

What is the extension of a Python file?

.p

.py

.python

None of the above

Answers

b

c

c

b

c

d

b

b

Questions

What is Python? Describe various features of Python.

What do you mean by Python Interpreter?

Write Python code to display your name.

How to get input in Python? Write a code for getting input.

What do you mean by indentation? Write a code for it.

What do you mean by keywords? How many keywords are

there in Python 3?

Discuss variables and identifiers.

Discuss data type in Python.

CHAPTER 2

Operators and Expressions

Operator is a particular concept in Python that is carried out

from the computational point of view. Here, there are two

types of the terminology used - operator and operands. The

operator is a symbol that is performed with operands' help,

and the operand is the value that the operator operates.

Structure

In this chapter, we will cover the following topics:

Types of operators

Writing expression in Python

Use comments during a program

Working with function and modules

Objective

The objective of this chapter is to introduce Python operators,

expressions, functions, and modules. After completing this

chapter, you should be familiar with various Python operators

and their working. Also, you will be able to write Python

programs using operators and expressions.

What is an operator?

It is a particular type of symbol that performs some operations

on operands and returns the result. Let us take an example for

better understanding, 10+20 is an expression. Here, 10 and 20

are operands, and + is an operator. So, in this example, a

simple arithmetic expression is evaluated, and the result will be

the addition of the two values.

There are various types of operators used in Python. The table

2.1 shows the hierarchy of the operators available in Python:

Python:

Python: Python: Python: Python:

Python: Python:

Python: Python:

Python: Python:

Python:

Python: Python: Python:

Python: Python:

Python: Python: Python:

Table 2.1: Hierarchy of the operators

Arithmetic operators

It performs the basic mathematical operation on the numeric

operands. The arithmetic operators return the result, and the

outcome depends on which type of operands you are using in

programming.

Addition The symbol + is used while using this operator. It

uses between two operands and this operator adds the two

value. For example, a=4, b=2 then a + b returns 6.

Subtraction The symbol – (minus) is used while using this

operator. It uses between two operands, and this operator

subtracts the value and returns the result. For example, a=4,

b=2, then a - b returns 2.

Multiplication The symbol * is used while using this operator.

It operates between two operands, and this operator multiplies

these values and returns the result. For example, a=4, b=2,

then a*b returns 8.

Division The symbol / is used while using this operator. It

uses two operands, and this operator divides the value and

returns the result. For example, a=4, b=2 then a / b returns 2.

Modulus The symbol % is used while using this operator. It

uses between two operands, and this operator returns the

remainder. For example, a=4, b=2 then a % b returns 0.

Exponent The symbol ** is used while using this operator. It

operates between two operands. It performs exponential

(power) calculation on operators. For example, a=4, b=2, then

a ** b means (4)2. The result will be 8.

Floor Division Floor division is like regular division, but it

returns the highest possible integer. This integer is less than

or equal to the outcome of normal division. For example, 7//2

= 3 and 7.0//2.0 = -11//3 = -11.0//3 = -4.0

Example 2.1:

a=4

b=2

c=a+b #Addition (+)

print (c)

d=a-b #Subtraction (-)

print (d)

e=a*b #Multiplication (*)

print (e)

f=a/b #Division (/)

print (f)

g=a%b # Modulus (%)

print (g)

h=a**b #Exponent (**)

print (h)

i=a//b #Floor Division (//)

print (i)

Output:

6

2

8

2.0

0

16

2

Comparison operators

These operators compare the two values and also decide the

relation between them. It is also called a relational operator

because it shows the relation between two operands. This type

of operator returns a Boolean value There are various types of

relational operators.

Greater than It returns true if the left operand is greater than

the right. Example,

Greater than or equal to It returns true if the left operand is

greater than or equal to the right. Example,

Less than It returns true if the left operand is less than the

right. Example,

Less than or equal to It returns true if the left operand is less

than or equal to the right. Example,

Equal to It returns true if both operands are equal. Example,

Not equal to (! It returns true if operands are not equal.

Example, !=

Example 2.2:

x = 10

y = 20

print ("x is equal to y:", x == y)

print ("x is not equal to y:", x != y)

print ("x is less than y:", x < y)

print ("x is greater than y:", x > y)

x = 100

y = 200

print ("x is either less than or equal to y:", x <= y)

print ("y is either greater than or equal to y:", y >= x)

Output:

x is equal to y: False

x is not equal to y: True

x is less than y: True

x is greater than y: False

x is either less than or equal to y: True

y is either greater than or equal to y: True

Assignment and shortcut operators

It is used in Python to assign values to variables. Suppose x =

10 is a simple assignment operator that assigns the value 10

on the right to the variable x on the left. There are various

compound operators in Python, such as x += 10 that adds to

the variable and later assigns the same. It is equivalent to x =

x + It is also called a shortcut There are various types of

assignment and shortcut operators.

Assignment (=) This operator assigns values from right side

operands to left side operand z = x + y assigns x + y into

Add AND (+=) This operator adds the right operand to the left

operand and assigns the result to the left operand z += x is

equivalent to z = z +

Subtract AND (-=) This operator subtracts the right operand

from the left operand and assigns the result to the left

operand z -= x equals z = z –

Multiply AND (*=) This operator multiplies the right operand

with the left operand and assigns the result to the left

operand z *= x is equivalent to z = z *

Divide AND (/=) This operator divides the left operand with

the right operand and assigns the result to the left operand z

/= x is equivalent to z = z /

Modulus AND (%=) This operator takes modulus using two

operands and assigns the result to left operand z %= x is

equivalent to z = z %

Exponent AND (**=) This operator performs exponential

(power) calculation on operators and assign value to the left

operand z **= x is equivalent to z = z **

Floor division (//=) This operator performs floor division on

operators and assign value to the left operand z //= x is

equivalent to z = z //

Example 2.3:

x = 10

y = 20

z = 0

z = x + y

print (" 1 - Value of z is ", z)

z += x

print (" 2 - Value of z is ", z)

z *= x

print (" 3 - Value of z is ", z)

z /= x

print (" 4 - Value of z is ", z)

z = 2

z %= x

print (" 5 - Value of z is ", z)

z **= x

print (" 6 - Value of z is ", z)

z //= x

print (" 7 - Value of z is ", z)

Output:

1 - Value of z is 30

2 - Value of z is 40

3 - Value of z is 400

4 - Value of z is 40.0

5 - Value of z is 2

6 - Value of z is 1024

7 - Value of z is 102

Unary operators

It is used in Python, and it is performed on a single operand.

There are two types of unary operators such as unary and

unary Let us take an example to understand unary operators.

Example 2.4:

x = 10

print ("Unary positive operator", +x)

print ("Unary Negative operator", -x)

Output:

Unary positive operator 10

Unary Negative operator -10

Bitwise operators

Bitwise operator works on bits and performs bit-by-bit

operation.

Suppose x = 26 and y = then the binary conversion of x and

y is 11010, 10010. Let us understand the various bitwise

operations on x and y with their results:

x= 11010

y= 10010

x & y = 10010

x | y = 11010

x ^ y = 01000

~x = 00101

~y = 01101

There are the following Bitwise operators:

Binary AND This operator copies a bit to the result if it exists

in both operands.

Binary OR This operator copies a bit if it exists in either

operand.

Binary XOR This operator copies the bit if it is set in one

operand but not both.

Binary One's Complement It is unary and has the effect of

flipping bits.

Binary Left Shift In this operator, the left operand's value is

moved left by the number of bits specified by the right

operand.

Binary Right Shift In this operator the left operands value is

moved right by the number of bits specified by the right

operand.

Let us take an example to understand all bitwise operators.

Example 2.5:

x = 26 # 26 = 11010

y = 18 # 18 = 10010

z = 0

z = x & y,

print ("1 - Value of z is ", z)

z = x | y,

print ("2 - Value of z is ", z)

z = x ^ y,

print ("3 - Value of z is ", z)

z = ~x,

print ("4 - Value of z is ", z)

z = x << 2,

print ("5 - Value of z is ", z)

z = x >> 2,

print ("6 - Value of z is ", z)

1 - Value of z is 18

2 - Value of z is 26

3 - Value of z is 8

4 - Value of z is -27

5 - Value of z is 104

6 - Value of z is 6

Logical operators

Logical operators are used to perform arithmetic and logical

computations. These are special symbols and for accomplishing

the operations.

Logical This operator returns true when both the conditions

become true.

Logical This operator returns true when two operands are non-

zero.

Logical This operator returns the reverse result, or it can say

true condition becomes false and false condition becomes true.

Example 2.6:

x = 7

print (x > 3 and x < 10) # returns True because 7 is greater

than 3 AND 7 is less than 10

print (x > 3 or x < 4) # returns True because one of the

conditions are true (7 is greater than 3, but 7 is not less than

4)

print (not(x > 3 and x < 10)) # returns False because not is

used to reverse the result

Output:

True

True

False

Membership operators

A membership operator is used to test if a sequence is

presented in an object. Here, an object may be strings, lists,

or tuples. There are two types of membership operators in and

not. Let us take an example of using these operators.

Operator This operator evaluates to true if it finds a variable

in the specified sequence and false otherwise.

Operator This operator evaluates to true if it does not find a

variable in the specified sequence and false otherwise.

Example 2.7:

x= 10

y = 20

list = [10, 12, 23, 44, 35],

if (x in list):

print (" 1 - x is available in the given list")

else:

print (" 1 - x is not available in the given list")

if (y not in list):

print (" 2 - y is not available in the given list")

else:

print (" 2 - y is available in the given list")

x = 2

if (x in list):

print (" 3 - x is available in the given list")

else:

print (" 3 - x is not available in the given list")

Output:

1 - x is available in the given list

2 - y is not available in the given list

3 - x is not available in the given list

Identity operators

This operator is used to compare the objects, not if they are

equal, but if they are the same object, with the exact memory

location. There are two types of identity operators is and is Let

us take an example of using these operators.

Operator This operator returns true if both variables are the

same object.

Operator (is This operator returns true if both variables are not

the same object.

Example 2.8:

x = ["Amit", "Raj"]

y = ["Amit", "Raj"]

z = x

print (x is z) # returns True because z is the same object as

x

print (x is y) # returns False because x is not the same object

as y, even if they have the same content

print (x == y) # This comparison returns True because x is

equal to y

print (x is not z) # returns False because z is the same object

as x

print (x is not y) # returns True because x is not the same

object as y, even if they have the same content

print (x != y) # This comparison returns False because x is

equal to y

Output:

True

False

True

False

True

False

Operators precedence and associativity

Operator precedence means which operator should be executed

first. It is based on the priority of an operator. If two or more

operators have the same precedence, it will check the

associativity of an operator. Associativity means how to operate

the value either left to right or right to left.

Suppose an expression is 2*4+6 then first of all 2*4 will be

executed because * has higher precedence between * and +

operator.

Suppose an expression is then the operator's priority is the

same, it will check the associativity of an operator. Here

associativity of / and * is left to right, then 5/2 will be

executed first.

The following table lists all operators from the highest

precedence to the lowest precedence:

precedence:

precedence:

precedence:

precedence:

precedence:

precedence:

precedence:

precedence:

precedence:

precedence:

precedence:

precedence:

precedence:

precedence:

precedence:

precedence:

Table 2.2: Operators description and its associativity

Example 2.9:

x = 12

y = 14

x = 15

p = 6

q = 0

q = (x + y) * x / p #(30 * 15) / 5

print ("Value of (x + y) * x / p is ", q)

q = ((x + y) * x) / p # (30 * 15) / 5

print ("Value of ((x + y) * x) / p is ", q)

q = (x + y) * (x / p), # (30) * (15/5)

print ("Value of (x + y) * (x / p) is ", q)

q = x + (y * x) / p, # 20 + (150/5)

print ("Value of x + (y * x) / p is ", q)

Output:

Value of (x + y) * x / p is 72.5

Value of ((x + y) * x) / p is 72.5

Value of (x + y) * (x / p) is 72.5

Value of x + (y * x) / p is 50.0

Expressions in Python

It is a representation of value. Moreover, it is a combination of

values, variables, operators, and calls to functions. Expressions

need to be evaluated. If you ask Python to print an expression,

the interpreter evaluates it and displays the desired result.

Python expressions only contain three things, identifiers, literals

and, operators.

It can be any name that is used to define a class, function,

variable module, or an object.

It can be string literals, byte literals, integer literals, floating-

point literals, and imaginary literals.

Based on the token or symbol, it can evaluate an operation.

There are following operators, and their corresponding token

can be used to implement any expression:

add +

subtract –

multiply *

power **

Integer Division /

remainder %

decorator @

Binary left shift <<

Binary right shift >>

and &

or \

Binary XOR ^

Binary ones complement ~

Less than <

Greater than >

Less than or equal to <=

Greater than or equal to >=

Check equality ==

Check not equal !=

Example 2.10:

a = 9

b = 12

c = 3

x = a - b / 3 + c * 2 - 1

y = a - b / (3 + c) * (2 - 1)

z = a - (b / (3 + c) * 2) - 1

print ("X = ", x)

print ("Y = ", y)

print ("Z = ", z)

Output:

X = 10.0

Y = 7.0

Z = 4.0

Operations on strings

A string is an essential concept in Python because in many

places it can be used in coding. The string can be created

either in single quotation marks or double quotation marks. Let

us take an example of string creation:

string1= 'Python Programming.'

string2="Python Programming."

Both are the ways to create a string.

Accessing values in strings

An assignment is much easier than another programming

language because Python does not support character type. It is

treated as strings of length one. If we want to take a subpart

of a string, then we have to take a substring. We have to use

the square brackets for slicing, and index or indices to obtain

your substring.

String can also update and reassign the value into another

string. Let us take an example.

Example 2.11:

str1='Python Programming'

str2="Computer Science"

print ("str1[0]: ", str1[0])

print ("str2[0:5]: ", str2[0:5])

print ("Updated String :- ", str1[:7] + 'Book')

Output:

str1[0]: P

str2[0:5]: Compu

Updated String :- Python Book

There are various types of special symbol used in the string:

Concatenation It adds values on either side of the operator.

Repetition It creates a new string, concatenating multiple

copies of the same string.

Slice It gives the character from the given index.

Range slice It gives the characters from the given range.

Membership It returns true if a character exists in the given

string.

Membership (not It returns true if a character does not exist

in the given string.

There are various types of formatted string operators which

decide the formatting of string:

%c character

%s string conversion

%i signed decimal integer

%d signed decimal integer

%u unsigned decimal integer

%o octal integer

%x hexadecimal integer (lowercase letters)

%X hexadecimal integer (Uppercase letters)

%e exponential notation (with lowercase 'e')

%E exponential notation (with Uppercase 'E')

%f floating point real number

%g the shorter of %f and %e

%G the shorter of %f and %E

Let us take an example.

Example 2.12:

print ("My name is %s and age is %d years" % (Amit, 30))

Output:

My name is Amit and age is 30 years

Triple quotes

It is used for writing a string in multiple lines. It can be

written in triple quotes to three consecutive single or double

quotes.

Example 2.13:

Bio_Auth = """ Brĳesh Bakariya received Graduation degree

from Barkatullah University Bhopal M.P. in 2005, and Post-

Graduation Degree in Computer Applications from Devi Ahilya

Vishwavidyalaya Indore M.P. in year 2009. He has done Ph.D.

Degree in the Department of Computer Applications, Maulana

Azad National Institute of Technology Bhopal M.P"""

print (Bio_Auth)

))

Output:

Brĳesh Bakariya received Graduation degree from Barkatullah

University Bhopal M.P. in 2005, and Post-Graduation Degree in

Computer Applications from Devi Ahilya Vishwavidyalaya Indore

M.P. in year 2009. He has done Ph.D. Degree in the

Department of Computer Applications, Maulana Azad National

Institute of Technology Bhopal M.P bbbbb

There are various types of built-in functions which manipulate

strings:

It capitalizes the first letter of the string.

center(width, It returns a space-padded string with the original

string cantered to a total of width columns.

count(str, beg= It counts how many times str occurs in string

or in a substring of string if starting index beg and ending

index end are given.

It decodes the string using the codec registered for encoding.

It defaults to the default string encoding.

It returns encoded string version of string, on error, default is

to raise a ValueError unless errors is given with 'ignore' or

endswith(suffix, beg=0, It determines if a string or a substring

of string (if starting index beg and ending index end are given)

ends with suffix, returns true if so, and false otherwise.

expandtabs Expands tabs in the string to multiple spaces,

defaults to 8 spaces per tab if tab size is not provided.

find (str, beg=0 It determines if str occurs in string or a

substring of string if starting index beg and ending index end

are given, returns index if found, and -1 otherwise.

index(str, beg=0, It is same as but raises an exception if str

not found.

It returns true if the string has at least one character and all

characters are alphanumeric and false otherwise.

It returns true if the string has at least one character and all

characters are alphabetic and false otherwise.

It returns true if the string contains only digits and false

otherwise.

It returns true if the string has at least 1 cased character and

all cased characters are in lowercase and false otherwise.

It returns true if a Unicode string contains only numeric

characters and false otherwise.

It returns true if the string contains only whitespace characters

and false otherwise.

It returns true if the string is properly "title case" and false

otherwise.

It returns true if the string has at least one cased character

and all cased characters are uppercase and false otherwise.

It merges (concatenates) the string representations of elements

in sequence seq into a string, with separator string.

It returns the length of the string.

ljust(width[, It returns a space-padded string with the original

string left-justified to a total of width columns.

It converts all uppercase letters in a string to lowercase.

It removes all leading whitespace in a string.

It returns a translation table to be used in the translate

function.

It returns the max alphabetical character from the string

It returns the min alphabetical character from the string

replace(old, new [, It replaces all old in string with new or at

most max occurrences if max given.

rfind(str, It is same as but search backwards in string.

rindex(str, beg=0, It is same as but search backwards in string.

rjust(width,[, It returns a space-padded string with the original

string right-justified to a total of width columns.

It removes all trailing whitespace of a string.

split(str="", It splits a string according to delimiter str (space if

not provided) and returns list of substrings, split into at most

num substrings if given.

It splits a string at all (or NEWLINEs and returns a list of

each line with NEWLINEs removed.

startswith(str, It determines if a string or a substring of a

string (if starting index beg and ending index end are given)

starts with a substring returns true if so and false otherwise.

It performs both lstrip() and rstrip() on string.

It returns a string where all the upper case letters are lower

case and vice versa.

It returns version of a string, that is, all words begin with

uppercase and the rest are lowercase.

translate(table, It translates a string according to translation

table str(256 removing those in the del string.

It converts lowercase letters in a string to uppercase.

zfill It returns original string left padded with zeros to a total

of width characters, intended for numbers, zfill() retains any

sign given (less one zero).

Returns true if a Unicode string contains only decimal

characters and false otherwise.

Let us take an example to understand all the above built-in

functions.

Example 2.14:

text = "dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print ("text.capitalize() : ", text.capitalize())

print ("text.center(40, 'a') : ", text.center(40, 'a'))

sub = "i";

print ("text.count(sub, 4, 40) : ", text.count(sub, 4, 40))

sub = "wow";

print ("text.count(sub) : ", text.count(sub))

text1 = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

text2 = "NIT";

print (text1.find(text2))

print (text1.find(text2, 10))

print (text1.find(text2, 40))

text1 = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

text2 = "Ph.D.";

print (text1.index(text2))

print (text1.index(text2, 30))

print (text1.index(text2, 30))

text = "this2009"; # No space in this texting

print (text.isalnum())

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print (text.isalnum())

text = "this"; # No space & digit in this texting

print (text.isalpha())

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print (text.isalpha())

text = "123456"; # Only digit in this texting

print (text.isdigit())

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print (text.isdigit())

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print (text.islower())

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print (text.islower())

text = u"this2009";

print (text.isnumeric())

text = u"23443434";

print (text.isnumeric())

text = " ";

print (text.isspace())

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print (text.isspace())

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print (text.istitle())

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print (text.istitle())

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal";

print (text.isupper())

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print (text.isupper())

s = "-";

seq = ("a", "b", "c"); # This is sequence of textings.

print (s.join(seq))

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print ("Length of the texting: ", len(text))

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print (text.ljust(50, '0'))

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print (text.lower())

text = " Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print ("Max character: " + max(text))

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print ("Max character: " + max(text))

text = "this-is-real-texting-example….wow!!!"

print ("Min character: " + min(text))

text = "this-is-a-texting-example….wow!!!"

print ("Min character: " + min(text))

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal

this is really texting"

print (text.replace("is", "was"))

print (text.replace("is", "was", 3))

text1 = "this is really a texting example….wow!!!"

text2 = "is"

print (text1.rfind(text2))

print (text1.rfind(text2, 0, 10))

print (text1.rfind(text2, 10, 0))

print (text1.find(text2))

print (text1.find(text2, 0, 10))

print (text1.find(text2, 10, 0))

text1 = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

text2 = "from"

print (text1.rindex(text2))

print (text1.index(text2))

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print (text.rjust(50, '0'))

text = "Line1-abcdef \nLine2-abc \nLine4-abcd"

print (text.split())

print (text.split(' ', 1))

text = "1-a b c d e f\n 2-a b c\n\n 4-a b c d"

print (text.splitlines())

print (text.splitlines(0))

print (text.splitlines(3))

print (text.splitlines(4))

print (text.splitlines(5))

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print (text.startswith('this'))

print (text.startswith('is', 2, 4))

print (text.startswith('this', 2, 4))

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print (text.swapcase())

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print (text.swapcase())

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print (text.title())

text = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print ("text.capitalize() : ", text.upper())

var = "Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal"

print (var.zfill(40))

print (var.zfill(50))

var = u"this2009";

print (var.isdecimal())

text = u"23443434";

print (text.isdecimal())

Output:

text.capitalize() : Dr. brĳesh bakariya received ph.d. from nit

bhopal

text.center(40, 'a') : dr. Brĳesh Bakariya received Ph.D. from

NIT Bhopal

text.count(sub, 4, 40) : 3

text.count(sub) : 0

41

41

41

30

30

30

True

False

True

False

True

False

False

False

False

True

True

False

False

False

False

False

a-b-c

Length of the texting: 51

Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal

dr. brĳesh bakariya received ph.d. from nit bhopal

Max character: y

Max character: y

Min character: !

Min character: !

Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal thwas was

really texting Dr. Brĳesh Bakariya received Ph.D. from NIT

Bhopal thwas was really texting

5

5

-1

2

2

-1

36

36

Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal

['Line1-abcdef ', 'Line2-abc', 'Line4-abcd']

['Line1-abcdef ', '\nLine2-abc \nLine4-abcd']

['1-a b c d e f ', ' 2- a b c', '', ' 4- a b c d']

['1-a b c d e f ', ' 2- a b c', '', ' 4- a b c d']

['1-a b c d e f \n', ' 2- a b c\n', '\n', ' 4- a b c d']

['1-a b c d e f \n', ' 2- a b c\n', '\n', ' 4- a b c d']

['1-a b c d e f \n', ' 2- a b c\n', '\n', ' 4- a b c d']

False

False

False

dR. bRĲESH bAKARIYA RECEIVED pH.d. FROM nit bHOPAL

dR. bRĲESH bAKARIYA RECEIVED pH.d. FROM nit bHOPAL

Dr. Brĳesh Bakariya Received Ph.D. From Nit Bhopal

text.capitalize() : DR. BRĲESH BAKARIYA RECEIVED PH.D.

FROM NIT BHOPAL

Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal

Dr. Brĳesh Bakariya received Ph.D. from NIT Bhopal

False

True

Type conversion

It is the process of converting the value from one data type to

another data type. The data type may be an integer, string,

float, etc. There are two types of type conversion as implicit

type conversion and explicit type conversion.

Implicit type conversion

In this conversion, Python automatically converts one data type

to another data type. A user does not get involved in this type

of conversion. Let us take an example of implicit type

conversion.

Example 2.15:

num_int = 234

num_float = 23.4

num_new= num_int + num_float

print ("datatype of num_int:", type(num_int))

print ("datatype of num_flo:", type(num_float))

print ("Value of num_new:", num_new)

print ("datatype of num_new:", type(num_new))

Output:

datatype of num_int: 'int'>

datatype of num_flo: 'float'>

Value of num_new: 257.4

datatype of num_new: 'float'>

Explicit type conversion

In this conversion, users convert the data type of an object to

the required data type. It uses some predefined functions like

etc. to perform explicit type conversion. Moreover, it is also

called typecasting because the user casts (changes) the objects'

data type.

Typecasting can be done by assigning the required data type

function to the expression. There are following syntax of explicit

type casting:

(expression)

Example 2.16:

num_int = 345

num_str = "867"

print ("Data type of num_int:", type(num_int))

print ("Data type of num_str before Type Casting:",

type(num_str))

num_str = int(num_str)

print ("Data type of num_str after Type Casting:",

type(num_str))

num_sum = num_int + num_str

print ("Sum of num_int and num_str:", num_sum)

print ("Data type of the sum:", type(num_sum))

Output:

Data type of num_int: 'int'>

Data type of num_str before Type Casting: 'str'>

Data type of num_str after Type Casting: 'int'>

Sum of num_int and num_str: 1212

Data type of the sum: 'int'>

Python avoids the loss of data in implicit type conversion.

Explicit type conversion is also called type casting. The data

types of objects are converted using predefined functions by

the user.

In type casting, loss of data may occur as we enforce the

object to a specific data type.

Python comments

If we want to explain or understand the particular code, Python

provides the facility in comments. Moreover, comments can be

used to describe Python code. Comments do not execute, or it

is free from execution. Comments start with a # symbol, and

it can be placed at the end of a line. There are two types of

comments in Python. These are:

Single line comments

Multiline comments

Single line comments

It starts with a # symbol that means you have to write #

symbol in every line.

Multiline comments

A multi-line comment in Python is a block of text enclosed by

a delimiter at the beginning and end of the comment. There

should be no white space between the delimiters

Let us take an example to understand comments.

Example 2.17:

print ("Python Programming") # Single line comment

"""

This is a comment

written in

more lines

"""

print ("Book for Computer Science.")

Output:

Python Programming

Book for Computer Science.

Functions in Python

A function is a block of statements that performs a specific

task. It is used for code reusability because if you are using

some lines then in the place of this, you can use function and

function will do the same thing multiple times. There are two

types of function, as built-in function and user-defined function.

Built-in A built-in function is already defined, and you have to

call the types of function and function that will perform the

task.

User-defined We can create our function to perform a particular

task. This type of function will be created according to user

needs.

Defining a function

It starts with def keywords followed by the function name and

parentheses

def function_name()

An argument can be passed within parentheses of the function.

The code block within every function starts with a colon and is

indented.

Example

def fun_name (str): # Function definition

print (str)

return;

fun_name ("Python Programming") # Function calling

Output:

Python Programming

Module

It is used for understanding and organizing a code. It is a

group related to code that is called a module. Moreover, a

module is a file consisting of Python code. A module can

define functions, classes, and variables.

You have to save the code with the file extension This is a

module.

Example

Save this code in a file named

def fname(str):

print ("Dr.", " + str)

The following screenshot shows the code window for saving a

module file:

Figure 2.1: Module file

Use a module

Now we can use the module by using the import statement:

Example

Import the module named myname and call the name function:

import myname

myname.fname("Brĳesh Bakariya")

The following screenshot shows a code window in which

myname module is imported:

Figure 2.2: Import and use of module

Parameters or arguments

It is a piece of information that is passed into a function. A

parameter is the variable listed inside the parentheses in the

function definition. An argument is a value that is sent to the

function when it is called. The number of parameters should

be matched with several arguments with its data type.

Let us take an example to understand parameters and

arguments.

Example 2.21:

def name_fun(fname, lname): # Two Parameters

print (fname + " " + lname)

name_fun("Python", "Book") # Two arguments

Output:

Python Book

Conclusion

In this chapter, we discussed various types of operators. We

also discussed the operator's precedence and associativity for

the evaluation of an expression. We discussed a brief

description of various concepts of string operations, function,

and module creations. It is discussed how to pass parameters

in function and module. In the next chapter, we will discuss

control flow statements as the next topic used in Python.

Points to remember

Operator return actual or Boolean values.

The expression will be executed according to the operator's

precedence and associativity

Python avoids the loss of data in implicit type conversion.

Comments do not execute, or it is free from execution.

Multiple choice questions

print 9//2

4.5

4.0

4

Error

Which is the correct operator for power(xy)?

x^y

x**y

x^^y

None of the mentioned

Which one of these is floor division?

/

//

%

None of the mentioned

What is the output of this expression, 3*1**3?

27

9

3

1

Which one of the following has the same precedence level?

Addition and Subtraction

Multiplication, Division and Addition

Multiplication, Division, Addition and Subtraction

Addition and Multiplication

Which one of the following has the highest precedence in the

expression?

Exponential

Addition

Multiplication

Parentheses

Operators with the same precedence are evaluated from?

Left to Right

Right to Left

Depends on Compiler

None of the above

Is "in" an operator in Python?

True

False

Neither true nor false

None of the above

str1="6/4"

print("str1")

1

6/4

1.5

str1

str1="Information"

print(str1[2:8])

format

formatio

orma

ormat

Which keyword is used for function?

Fun

Define

Def

Function

Answers

b

b

b

c

a

d

a

a

d

a

c

Questions

What is an operator? Explain in detail.

How many types of operator are there? Explain each operator

in detail.

What do you mean by operators' precedence and associativity?

Explain in detail.

Discuss identifiers and literals.

Explain various types of operations performed on strings.

Discuss type conversion with example.

What do you mean by calling and called function?

What do you mean by comments in Python?

CHAPTER 3

Control Flow Statements

The control flow of a program is the order in which the code

for the program is executed. Conditional statements, loops, and

function calls govern the control flow of a Python program.

Structure

In this chapter, we will cover the following topics:

Types of control flow statements

Types of loops

Use of break and continue statements

Use of pass statements

Objective

The objective of this chapter is to introduce Python control

flow statements. After completing this chapter, you should be

familiar with various Python control statements such as break

and Also, you will be able to write Python programs using

these conditional and looping statements.

Understanding control flow statement

A control flow statement shows a program's control flow.

Moreover, it is the order in which the program's code executes.

The control flow of a Python program is regulated by

conditional statements, loops, and function calls.

There are three types of control structures

Sequential control structures

Selection control structures

Repetition control structures

Figure 3.1: Types of control flow statements

Sequential control structures

It uses a default mode because control moves line by line in a

program. Moreover, it is a series of statements that is

executed in a sequence.

Example

Python Program to find the area of triangle

a = 5

b = 6

c = 7

calculate the semi-perimeter

s = (a + b + c) / 2

calculate the area

area = (s*(s-a)*(s-b)*(s-c)) ** 0.5

print ('The area of the triangle is %0.2f ' %area)

Output:

The area of the triangle is 14.70

Selection control structures

A selection control statement is also known as decision control

statements or branching statements. The selection statements

are based on condition. If a condition is true, then it will be

executed. It is also used for checking and testing purposes.

There are various types of decision control statements:

if

if-else

nested if

if-elif-else

if statements

If statements are used for running a particular code based on

the condition. If a condition is true, then it will work;

otherwise, it won’t. The following figure 3.2 shows the flow

diagram of the if statement:

Figure 3.2: The if statements flow diagram

Example

If the number is positive and Negative

n = 17

if n > 0:

print (n, "is a positive number.")

n1 = -12

if n1<0:

print (n1, "is a Negative number.")

Output:

17 is a positive number.

-12 is a Negative number.

Example

n1 = 23

n2 = 56

if n2 > n1:

print ("n2 is greater than n1")

if n2 < n1:

print ("n2 is lesser than n1")

if n1 == n2:

print ("n1 and n2 are equal")

Output:

n2 is greater than n1

if-else statements

The if-else statement is used for running a particular code

based on the if and else statements. If a condition is true,

then it will execute the code within if block. If a condition is

not true, then it will execute the code within the else block.

The following figure 3.3 shows the flow diagram of the if-else

statement:

Figure 3.3: The if-else statements flow diagram

Example

Program to checks whether the number is positive or

negative

n = 7

if n >= 0:

print ("Positive or Zero")

else:

print ("Negative number")

Output:

Positive or Zero

Example 3.5:

price = 500

if price >= 1000:

print ("price is greater than 1000")

else:

print ("price is less than 1000")

Output:

price is less than 1000

nested if

A nested if statement means an if statement inside another if

statement. The following figure 3.4 shows the flow diagram of

nested if statement:

Figure 3.4: The nested if flow diagram

Example 3.6:

n = 23

if n >= 0:

if n == 0:

print("Zero")

else:

print ("Positive number")

else:

print ("Negative number")

Output:

Positive number

Example 3.7:

x = 32

if x > 10:

print ("Above ten")

if x > 20:

print ("and also above 20")

else:

print ("but not above 20.")

Output:

Above ten

and also above 20

if-elif-else

The if-elif-else statement is used to execute a statement or a

block of statements conditionally. The following figure 3.5 shows

the flow diagram of if-elif-else statement:

Figure 3.5: The if-elif-else flow diagram

Example 3.8:

n = 3.4

if n > 0:

print ("Positive number")

elif n == 0:

print ("Zero")

else:

print ("Negative number")

Output:

Positive number

Example 3.9:

price = 50

if price > 100:

print ("price is greater than 100")

elif price == 100:

print ("price is 100")

else :

print ("price is less than 100")

Output:

price is less than 100

Repetition control structures

It is used to repeat a group of code multiple times, that is,

looping. If we want to repeat some instructions according to a

particular condition, this control structure will be used.

There are two types of loops in Python:

for loop

while loop

for loop

A for loop is used to repeat over a sequence that is either a

list, tuple, dictionary, or a set. It is essential to note that the

in keyword is part of the for statement's syntax and is

functionally unrelated to the in operator used for membership

testing. The following figure 3.6 shows the flow diagram of for

loop:

Figure 3.6: The for-loop flow diagram

Example 3.10:

Python program to repeating over range 0 to n-1

n = 10

for i in range(0, n):

print (i)

Output:

0

1

2

3

4

5

6

7

8

9

Example 3.11:

list = [1,2,3,4,5,6,7,8,9,10]

n = 5

for i in list:

c = n*i

print (c)

Output:

5

10

15

20

25

30

35

40

45

50

Example 3.12:

for x in range(5): #print numbers from 0 to 4

print(x)

for x in range(3, 6): #print numbers from 3 to 5

print(x)

for x in range(3, 8, 2): #print numbers from 3 to 7, step by 2

print(x)

Output:

0

1

2

3

4

3

4

5

3

5

7

while loop

It repeats the statement until a given condition is satisfied. If

the condition is true, the while loop will work; otherwise, it

won’t. The flow diagram of the while loop is shown in figure

Figure 3.7: The while loop flow diagram

Example 3.13:

cnt = 0

while (cnt < 10):

print ("The count is:", cnt)

cnt = cnt + 1

Output:

The count is: 0

The count is: 1

The count is: 2

The count is: 3

The count is: 4

The count is: 5

The count is: 6

The count is: 7

The count is: 8

The count is: 9

Example 3.14:

n = 2

while n < 10:

print (n)

n = n + 3

Output:

2

5

8

Nested loop

A nested loop means one loop inside another loop. We can

put a for loop inside a or a while inside a or for inside or a

while inside a Let us take an example to understand the

nested loop.

Example 3.15:

This program uses a nested for loop to find the prime

numbers from 2 to 20

i = 2

while(i < 20):

j = 2

while(j <= (i/j)):

if not(i%j): break

j = j + 1

if (j > i/j) :

print (i, " is prime")

i = i + 1

Output:

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

Example 3.16:

#program to print a pattern

for i in range (1, 5):

for j in range(i):

print (j + 1, end = ' ')

print ()

Output:

1

1 2

1 2 3

1 2 3 4

Example 3.17:

#program to print a pattern

for i in range (1, 5):

for j in range(i):

print (j + 1, end = ' ')

print ()

Output:

1

1 2

1 2 3

1 2 3 4

Break statement

This statement is used to terminate a loop. The control will

switch out of the loop when the break statement is executed.

The flow diagram of the break statement is shown in figure If

the break statement is inside a nested loop, then the break

statement will terminate the innermost loop:

Figure 3.8: The break statement flow diagram

Example 3.18:

numbers = (1, 2, 3, 4, 5, 6, 7, 8, 9) # Declaring the tuple

num_sum = 0

count = 0

for x in numbers:

num_sum = num_sum + x

count = count + 1

if count == 6:

break

print ("Sum of first ",count,"integers is: ", num_sum)

Output:

Sum of first 6 integers is: 21

Example 3.19:

for i in range(100):

print(i)

if i == 7:

break

print ('Loop exited')

Output:

0

1

2

3

4

5

6

7

Loop exited

Continue statement

It is used to skip the rest of the code inside a loop for the

current iteration only. In a continue statement, the loop does

not terminate but continues with the next iteration. The flow

diagram of the continue statement is shown in figure

Figure 3.9: The continue statement flow diagram

Example 3.20:

for i in range(10):

if i==5:

continue

print (i)

Output:

0

1

2

3

4

6

7

8

9

Example 3.21:

for x in range(7):

if (x == 4 or x==6):

continue

print (x)

Output:

0

1

2

3

5

The pass statement

The pass statement means a null statement in Python. The

major difference between a comment and a pass statement is

that while the interpreter ignores a comment entirely, the pass

is not ignored. Moreover, nothing happens when the pass is

executed. It results in no operation (NOP). Let us take an

example to understand the pass statement.

Example 3.22:

a = 33

b = 200

if b > a:

pass

Output:

No output

Example 3.23:

sequence = {'b', 'g', 'd', 'k'}

for val in sequence:

pass

Output:

No output

Conclusion

This chapter discussed various types of control statements, that

is, sequential control structures, selection control structures,

and repetition control structures. It discusses each control

statement in detail. It is discussed how the loop will work? So,

this chapter contains every control statement with a suitable

example and diagram. In the next chapter, we will discuss

function as the next topic used in Python.

Points to remember

Sequential control structures use a default mode.

Selection control statements are also known as decision control

statements or branching statements.

Repetition control structures are also called loops.

A break statement is used for terminating a loop.

The pass statement means null statement.

Multiple choice questions

Which of the following is False regarding loops in Python?

Loops are used to perform certain tasks repeatedly.

While loop is used when multiple statements are executed

repeatedly until the given condition becomes False

While loop is used when multiple statements are executed

repeatedly until the given condition becomes true.

for loop can be used to iterate through the elements of lists.

Can we write if/else into one line in Python?

Yes

No

if/else not used in Python

None of the above

In a Python program, a control structure:

Defines program-specific data structures

Directs the order of execution of the statements in the

program

It dictates what happens before the program starts and after it

terminates

None of the above

for loop in Python works on

range

iteration

Both of the above

None of the above

In which of the following loops in Python can we check the

condition?

for loop

while loop

do-while loop

None of the above

To break the infinite loop, which keyword do we use?

continue

break

exit

None of the above

What do we put at the end of the loop?

semicolon

colon

comma

None of the above

Answers

b

a

b

c

b

b

b

Questions

What do you mean by control flow statement? Discuss its

types.

Discuss all the decision control statements with suitable

examples.

What do you mean by for and while loop? Discuss in detail.

Explain nested loop with example.

Write the difference between break and continue statements?

How are they used in programming?

Why pass statement is a null statement in Python?

CHAPTER 4

Functions

Functions are a useful way to divide code into manageable

pieces, allowing us to organize, make it more readable, reuse,

and save time. Furthermore, a function is a code block that

executes when it is called. It accepts data as a parameter or

an argument and returns the outcome.

Structure

In this chapter, we will cover the following topics:

Use of predefined and user-defined function

Use of local and global variables

Types of functions (lambda functions, recursive functions, etc.)

Use of parameter passing method into a function

Objectives

After studying this chapter, the concepts and working of

function in Python should be understood. You should be

familiar with parameter passing and returning values from

functions. Also, you will be able to write Python programs by

using functions.

Introduction to Function

A function contains a block of a statement that performs a

specific task. There are some essential rules for defining a

function:

Function blocks start with the def keyword. After that, the

function name and parentheses are used.

An argument or parameter should be pass inside the

parentheses.

Any function's code block begins with a colon and is indented.

Syntax

def function_name(parameters):

"Statements 1"

"Statements 2"

"Statements 3"

-

-

-

"Statements n"

return [expression]

There are two types of functions as shown in figure

Figure 4.1: Types of functions

Predefined functions

It is also called as built-in function because its functionality is

predefined in Python. The Python interpreter has several

functions that are always present for use. There are various

types of built-in functions. Some of the built-in functions are:

It returns the absolute value of a number.

It returns the binary version of a number.

It returns a floating-point number.

It converts a number into a hexadecimal value.

It returns an integer number.

It returns the length of an object.

It returns a list.

It returns the largest item in an iterable.

It returns the smallest item in an iterable.

It converts a number into an octal.

It returns the value of x to the power of

It prints to the standard output device.

It returns a sequence of numbers, starting from 0 and

increments by 1 (by default).

It rounds a numbers.

Let us take an example of the above built-in functions to

clearly understand their usage.

Example

#Return the absolute value of a number

x1 = abs(-5.37)

print (x1)

Return the binary version of 24

x2 = bin(24)

print (x2)

#Convert the number 7 into a floating-point number

x3 = float(7)

print (x3)

#Convert 321 into hexadecimal value

x4 = hex(321)

print (x4)

#Convert the number 7.2 into an integer

x5 = int(7.2)

print (x5)

#Return the number of items in a list

list1 = ["Brĳesh", "Krishna", "Amit", "Raj"]

x6 = len(list1)

print (x6)

#Return the largest number

x8 = max(245, 433)

print (x8)

#Return the lowest number

x9 = min(343, 434)

print (x9)

#Convert the number 12 into an octal value

x10 = oct(32)

print (x10)

x11 = pow(5, 5) #Return the value of 5 to the power of 5

(same as 5 * 5 * 5 * 5)

print (x11)

#Print a message onto the screen

Print ("It is a message")

#Create a sequence of numbers from 0 to 7, and print each

item in the sequence

x12 = range(8)

for n in x12:

print (n)

#Round a number to only two decimals

x13 = round(6.66543, 2)

print (x13)

Output:

5.37

0b11000

7.0

0x141

7

4

433

343

0o40

3125

It is a message

0

1

2

3

4

5

6

7

6.67

User-defined functions

When a function is written for a specific task, those functions

are called as user-defined function. Moreover, it is a function

created or written by the user. Let's take an example of user-

defined functions to clearly understand their working procedure.

Example

Declaring a show function

def show():

print ("Inside function")

Calling function

show()

Output:

Inside function

Example 4.3:

A simple Python function for checking even and odd

def evenOdd(var):

if (var%2 == 0):

print ("Number is Even")

else:

print ("Number is Odd")

Calling a function

evenOdd(12)

evenOdd(37)

Output:

Number is Even

Number is Odd

Function call

We may call a function to perform a task once it has been

specified. For calling a function, we type the name of the

function and the necessary parameters.

Syntax:

function_name (argument_1, argument_2)

Example 4.4:

Function Definition

def my_function():

print ("This function has created")

my_function() # Function Calling

Output:

This function has created

Example 4.5:

Function Definition

def my_name(name):

print (name)

my_name('Ankit') # Function Calling with argument

Output:

Ankit

Example 4.6:

Function for sum of three numbers

def sum_three_numbers(num1, num2, num3):

return num1 + num2 + num3

Function calling with three arguments

x= sum_three_numbers (10,20,30)

print (x)

Output:

60

Function parameters and arguments

A piece of information can be passed into a function based on

function arguments and parameters. Arguments are a specific

value which passes into a function. We can give many

arguments, but they should be separated with a comma. Both

the terms, parameter and argument can be used

interchangeably. Furthermore, data is passed through a function.

There is a slight distinction between the function parameters

and arguments.

The variable mentioned within the parentheses in the function

description is referred to as a parameter, while an argument is

a value passed to the function when it is called. Let's look at

an example to help you understand the meaning of function

arguments and parameters.

Example

Two parameters F_name and L_name

def Name_function(F_name, L_name): # Function Definition

print (F_name + " " + L_name)

Two arguments value (Brĳesh, Bakariya)

Name_function("Brĳesh", "Bakariya") # Function Calling

Output:

Brĳesh Bakariya

Default arguments

In Python, default values for function arguments are allowed.

The assignment operator can be used to provide a default

value for an argument. Consider the following scenario.

Example

def my_name(name, msg="how are you?"): # Function

Definition

print ("Hello", name + ', ' + msg)

my_name("Dr. Brĳesh Bakariya") # Function Calling

my_name("Brĳesh", "Welcome") # Function Calling

Output:

Hello Dr. Brĳesh Bakariya, how are you?

Hello Brĳesh, Welcome

Let's look at some other examples related to function.

Example 4.9:

#Python Arbitrary Arguments

def some_name(*names):

print("Hello", names)

some_name("Brĳesh", "Krishna", "Ram", "Amit")

#Arguments passing

def fun1(food):

for n in food:

print(n)

var = ["apple", "banana", "cherry"]

fun1 (fruits)

Output:

Hello ('Brĳesh', 'Krishna', 'Ram', 'Amit')

apple

banana

cherry

Variable scope and lifetime

Variable cannot be accessible from any part of the program.

Some of the variables may not even exist for the entire

duration of the program. The existence and accessibility

depends on the declaration of the variable.

Scope of the variable

It is a part of the program in which a variable is accessible.

There are two types of scope of the variable.

Local scope

Global scope

Local scope

A variable created in the nested function then the scope exists

in that function. Suppose the variable is declared in the

innermost function, then the scope of that variable is only in

the innermost function.

Global scope

A global variable is one that is generated in the main body of

the software and belongs to the global scope. Global variables

of this kind are available in any scope. Furthermore, the global

variable is easily understood by any function, method, or code.

The lifetime of the variable

It is the duration for which a variable exists. Let's take an

example to understand the concept of variable scope and

lifetime.

Example

Here a variable created inside a function i.e. local scope

def show():

x = 234 # Local variable

print (x)

show()

x = 234 # Global Variable

def show():

print (x)

show()

print (x) # Global scope

Output:

234

234

234

Local and global variables

Local variables are declared inside the method or block. Local

variables are assessable only within the declared method or

block and not outside that method or block.

Example

def my_fun():

x=10 #Local variable

print (x)

my_fun()

Output:

10

Example 4.12:

def my_fun():

x=10 #Local variable

my_fun()

print (x) # Here x is not local variable

Output:

name 'x' is not defined

Global variables

This type of variable is defined in the main body of a file. It

is available throughout the program. All kinds of functions or

blocks can easily understand and access a global variable.

Example 4.13:

x = 100

def my_fun():

print (x) # Calling variable ‘x’ inside my_fun()

my_fun()

print (x) # Calling variable ‘x’ outside my_fun()

Output:

100

100

Example 4.14:

x=100 # Global Variable and global scope

def my_fun():

x=50 # Local scope within my_fun()

print (x) # Print local variable

my_fun()

print (x) # Print Global variable

Output:

50

100

Global statement

The local variable's scope is limited to the block in which it is

specified. Furthermore, when we construct a variable within a

function, that variable is local. It can only be used within that

function, but we can construct a global variable within a

function using the global keyword. Let's look at an example of

a global statement using the global keyword to better

understand the definition.

Example

def my_func():

global x

x = 100 # x is not local it is global because of global

keyword

my_func()

print (x) # print a global variable

Output:

100

Suppose we have a variable with the same name as that of a

global variable in the program. In such a case, a new local

variable of that name is created, different from the global

variable.

Example 4.16:

x=100

def show():

x=50

print ("In Function x is=",x)

show()

print ("Outside function is=",x)

Output:

In Function x is= 50

Outside function is= 100

Return statement

It's used to finish the function call's execution and return the

result (value or expression). There are a few key points to

remember when it comes to return statements:

Return None is the same as a return statement with no

arguments.

The statements following the return statements are skipped.

If there is no expression in the return declaration, the unique

value None is returned.

You can't use a return statement outside of a function.

Syntax:

def fun_name():

function body

.

.

.

return [expression]

Example 4.17:

def fun():

return 10+20

print (fun())

Output:

30

Example 4.18:

Add both the parameters and return them

def addition(n1, n2):

total = n1+ n2

return total;

total = addition(10, 20);

print ("Addition is =", total)

Output:

Addition is = 30

Lambda functions

An anonymous function or function defined without a name is

called lambda functions. Generally, functions are defined using

the def keyword, but anonymous functions are defined using

the lambda keyword. Lambda functions have the following

syntax:

lambda arguments: expression

The following are some essential points about lambda

functions:

The number of arguments for a lambda function is infinite, but

there is only one expression.

If we need an anonymous function for a short time, we use

lambda functions.

The meaning of Lambda does not include a statement; instead,

it always includes an expression that is returned.

Example

Add 50 to argument n, and return the result:

res = lambda a : a + 50

print (res(15))

Output:

65

Example 4.20:

sum of three numbers

res = lambda n1, n2, n3 : n1 + n2 + n3

print (res(10, 20, 30))

Output:

60

Recursive functions

When a function called itself is called recursion. When we

define a function and call the same function in their definition

that means that code is recursive. Recursion is a very efficient

technique for programming but one thing is to be remembered

that the recursion should be terminated. If the terminating

condition is there in recursion that means the code is properly

working. If the terminating condition is not there, that means

the recursive code is going to infinite times.

Syntax:

def func_name(): <-

 |

 | (recursive call)

 |

func_name() ----

The following are the advantages and disadvantages of a

recursive function.

Advantages

Using recursion, this function can be broken down into smaller

sub-problems.

Often creating a sequence is simpler than nested iteration.

The use of recursive functions makes the code appear simple

and efficient.

Disadvantages

Recursive calls use a lot of memory and time, which is why

they are costly to use.

Debugging recursive functions is difficult.

The logic behind recursion can be difficult to understand at

times.

Example 4.21:

Program for fibonacci series up to k terms

def fib(k): # Recursive function

if k <= 1:

return k

else:

return(fib(k-1) + fib(k-2))

term=9

if term <= 0:

print ("Invalid input ! Please input a positive value")

else:

print ("Fibonacci series:")

for i in range(term):

print (fib(i))

Output:

0

1

1

2

3

5

8

13

21

Example 4.22:

Recursive program for factorial of a number

def fact(k): # Recursive function

if k == 1:

return k

else:

return k * fact(k-1)

n = 7

check if the input is valid or not

if n < 0:

print ("Invalid input ! Please enter a positive number.")

elif n == 0:

print ("Factorial of number 0 is 1")

else:

print ("Factorial of number", n, "=", fact(n))

Output:

Factorial of number 7 = 5040

Function redefinition

Python provides a facility for the redefinition of function

because Python is dynamic. Redefinition of function means

redefining an already defined function. Let's take an example to

understand the concept of function redefinition.

Example

Program for function redefinition

from time import gmtime, strftime

def show(msg): # Function definition

print (msg)

show("Ready.")

def show(msg): # Function redefinition

print (strftime("%H:%M:%S", gmtime()))

print (msg)

show ("Processing.")

Output:

Ready.

11:20:20

Processing.

Conclusion

In this chapter, we discussed function and how they are

important for modular programming. They are concerned about

the parameter passing method into a function. We have also

discussed local and global variable, statements, and their

scope. So, this chapter contains every variation of function and

its working procedure. In the next chapter, we will discuss

strings and its related features as the next topic used in

Python.

Points to remember

Function blocks start def keyword after the function name and

parentheses ().

Each function has an indented code block that begins with a

colon

Return None is equivalent to a return statement with no

arguments.

The number of arguments in a lambda function is unlimited,

but there is only one expression.

Multiple choice questions

Which keyword is used for function definition?

fun

define

def

function

Which of the following encloses the input parameters or

arguments of a function?

brackets

parentheses

curly braces

quotation marks

What is called when a function is defined inside a class?

class

function

method

Module

If the return statement is not used inside the function, the

function will return:

None

0

Null

Arbitrary value

What is a recursive function?

A function that calls other functions.

A function which calls itself.

Both A and B

None of the above

How is a function declared in Python?

def function function_name():

declare function function_name():

def function_name():

declare function_name():

What will be the output of the following Python code?

x = 50

def func():

global x

print ('x is', x)

x = 2

print ('Changed global x to', x)

func()

print ('Value of x is', x)

x is 50

Changed global x to 2

Value of x is 50

x is 50

Changed global x to 2

Value of x is 2

x is 50

Changed global x to 50

Value of x is 50

Error

What will be the output of the following Python code?

def show(message, times = 1):

print(message * times)

show('Hello')

show('World', 5)

Hello

WorldWorldWorldWorldWorld

Hello

World 5

Hello

World,World,World,World,World

Hello

HelloHelloHelloHelloHello

Answers

c

b

c

a

b

c

b

a

Questions

What is a function? Discuss its types.

What do you mean by function call? Discuss with an example.

Explain function parameters and arguments with examples.

What do you mean by the scope of the variable? Explain with

an example.

Discuss the global statement with an example

Discuss return statement with an example.

What do you mean by lambda functions? Explain with a

suitable example.

Write all the advantages and disadvantages of recursive

functions.

CHAPTER 5

Strings

Strings are arrays of bytes in Python that represent Unicode

characters. However, since Python lacks a character data type, a

single character is simply a string with one length. Square

brackets may be used to access the string's elements. Single

quotes ('…') or double quotes ("…") may be used to enclose

strings in Python.

Structure

In this chapter, we will cover the following topics:

Use of various types of string operations

Use of built-in string functions

Use of string formatting operator

Use of immutable strings

Objective

After studying this chapter, you should be able to understand

the working of strings and various strings operations in

Python. Also, you will be able to write programs with strings,

including string comparison, iterations, and immutable.

Concepts of String

A string is a sequence of characters. It is an essential concept

in Python. There are some important points about strings.

Strings are amongst the most popular types in Python.

Python can create strings simply by enclosing characters in

quotes (single, double, or triple).

Python treats single-quotes the same as double-quotes.

A string is a sequence of Unicode characters and a character

is simply a symbol.

If we want to create a string of names, then it has to write

the name within quotes like Write name The string can also

assign a variable for further operation and usage of that string.

Let us take a basic example to understand this concept of

string.

Example

str = "This is a sting."

print (str)

Output:

This is a string

The character data type is not available in Python. A single

character is considered as a string and its length would be

one. The individual elements of any string can be accessed

using square brackets

Example 5.2:

str = "Brĳesh"

print (str[0])

print (str[1])

print (str[2])

print (str[3])

print (str[4])

print (str[5])

print (str[6])

Output:

B

r

i

j

e

s

h

The string can use for loop, character by character.

Example

for i in "Krishna":

print (i)

Output:

K

r

i

s

h

n

a

Other concepts of strings such as len() function for getting the

length of a string, keyword not in for checking the substring or

character is present or not in a string. It can also use in an if

statement.

Example

print a length of a string

str = "Brĳesh"

print (len(str)) #String Length

print "simple" in a string

str1= "Python is so simple"

print ("simple" in str1)

#Print only if "simple" is present in a string:

str2 = "Python is so simple"

if "simple" in str2:

print ("Yes, 'simple' is present.")

print "simple" is not in a string

str3 = "Python is so simple"

print ("programming" not in str3)

Output:

7

True

Yes, 'simple' is present.

True

String concatenation

String concatenation means combining two strings. If we have

two strings and those strings have been assigned into two

variables str1 and they can be concatenated or combined str1

and

There are four ways to concatenate the strings.

Using + operator

Using join() method

Using % operator

Using format() function

Using + operator

It is a straightforward way to concatenate two strings. It can

add multiple strings together. Let us take an example to

understand this concept.

Example

Defining strings

fname = "Brĳesh"

lname = "Bakariya"

+ Operator is used to combine strings

name = fname + lname

print (name)

Output:

BrĳeshBakariya

Using join() method

The join() method is a string method that returns a string in

which the sequence elements have been joined using an str

separator.

Example

fname = "Brĳesh"

lname = "Bakariya"

print ("".join([fname, lname]))

join() method string with a separator Space(" ")

name = " ".join([fname, lname])

print (name)

Output:

BrĳeshBakariya

Brĳesh Bakariya

Using % operator

It can use a string formatting operator for concatenating the

strings.

Example 5.7:

fname = "Brĳesh"

lname = "Bakariya"

% operator

print ("% s % s" % (fname, lname))

Output:

Brĳesh Bakariya

Using format() function

It's an example of a string formatting method. Multiple

substitutions and value formatting are possible. To concatenate

the strings, it must use This method uses positional formatting

to concatenate elements inside a series. The format() function

in the following example combines the string stored in the

fname and lname variables and stores it in another variable

name. The curly braces are used to position strings in a

specific order. The first variable is stored in the first set of

curly braces, while the second set of curly braces is stored in

the second set of curly braces.

Example

fname = "Brĳesh"

lname = "Bakariya"

print ("{} {}".format(fname, lname))

result in name

name = "{} {}".format(fname, lname)

print (name)

Output:

Brĳesh Bakariya

Brĳesh Bakariya

Appending strings

Appending to string means adding one string to other.

Suppose we have two strings and those strings have been

assigned into two variables str1 and then it can be appended

or add str1 to There are two ways to append one string to

another.

Using += operator

Using join()

Using += operator

It is a more straightforward way than the traditional way

employed in other languages, like using a dedicated function to

perform this particular task. Let us take an example to

understand this concept.

Example

initializing string

str1 = "Brĳesh"

initializing add_string

str2 = "Bakariya"

printing original string

print ("The original string : " + str(str1))

printing original add string

print ("The add string : " + str(str2))

adding one string to another

str1 += str2 # Using += operator

print result

print ("The appended string is : " + str1)

Output:

The original string: Brĳesh

The add string: Bakariya

The appended string is: BrĳeshBakariya

Using join()

This method is used to join the strings. This method's

advantage over the above method can be realized when we

have many strings to concatenate rather than just two. Let us

take an example to understand this concept.

Example

initializing string

str1 = "Brĳesh"

initializing add_string

str2 = "Bakariya"

printing original string

print ("The original string : " + str(str1))

printing original add string

print ("The add string : " + str(str2))

adding one string to another

result = "".join((str1, str2)) # Using join()

print result

print ("The appended string is : " + result)

Output:

The original string : Brĳesh

The added string : Bakariya

The appended string is : BrĳeshBakariya

Multiplying strings

Multiplication of strings in Python is much easier because it is

similar to another data type (number value, etc.). There are

various methods that we can go to multiply strings. Let us

take an example to understand this concept.

Example

str1= "Python Programming"

str2= 2*str1 # Method 1

print (str2)

str3=4*(str1) # Method 2

print (str3)

str4= 3*('Python', 'Programming') # Method 3

print (str4)

Output:

Python ProgrammingPython Programming

Python ProgrammingPython Programming

('Python', 'Programming', 'Python', 'Programming', 'Python',

'Programming')

Immutable strings

An immutable string means that the string values cannot be

updated. Moreover, once we assign the string's value, it cannot

be reassigned when we perform this, it will produce an error.

Let us take an example to understand this concept.

Example

str= "Brĳesh"

print (str)

str[0] = "V" # Cannot reassign

Output:

str[0] = "V" # Cannot reassign

TypeError: 'str' object does not support item assignment

String formatting operator

It uses the % operator for string formatting operations. Various

symbols can be used along with as shown in table

Table 5.1: String formatting symbols and their description

Let us take an example to understand the concept of string

formatting operator.

Example

Initialize variable as a string

var = '27'

string = "Variable as string = %s" %(var)

print (string)

Printing as raw data

print ("Variable as raw data = %r" %(var))

Convert the variable to integer

And perform check other formatting options

var = int(var)

string = "Variable as integer = %d" %(var)

print (string)

print ("Variable as float = %f" %(var))

print ("Variable as printing with special char = %c Ram" %

(var))

print ("Variable as hexadecimal = %x" %(var))

print ("Variable as octal = %o" %(var))

Output:

Variable as string = 27

Variable as raw data = '27'

Variable as integer = 27

Variable as float = 27.000000

Variable as printing with special char = Ram

Variable as hexadecimal = 1b

Variable as octal = 33

Built-in string functions

There are various types of built-in string functions. We just use

those functions and get the desired results. One crucial point

is that these functions return new strings. It cannot change the

original string. Here are some essential built-in string functions.

It returns the number of times a specified value occurs in a

string.

It returns True if all characters in the string are in lower case.

It splits the string at the specified separator and returns a list.

It returns True if the string ends with the specified value.

It returns a centered string.

It returns True if all characters in the string are alphanumeric.

It returns True if all characters in the string are numeric.

It converts the first character of each word to upper case

Let us take an example to understand the above built-in string

functions.

Example

built-in string functions

txt = "Python is a good prog., Python is easy to learn, Python

is easy to understand."

cnt = txt.count("Python")

print (cnt)

low = txt.islower() # check if all the characters in the text are

in lower case

print (low)

spl= txt.split() #Split a string into a list where each word is a

list item

print (spl)

ew = txt.endswith(".") #Check if the string ends with a (.)

print (ew)

cen = txt.center(10) # space of 10 characters

print (cen)

an = txt.isalnum() #Check if all the characters in the text are

alphanumeric

print (an)

isn = txt.isnumeric() #Check if all the characters in the text

are numeric

print (isn)

tit = txt.title() # first letter in each word upper case

print (tit)

Output:

3

False

['Python', 'is', 'a', 'good', 'prog.,', 'Python', 'is', 'easy', 'to', 'learn,',

'Python', 'is', 'easy', 'to', 'understand.']

True

Python is a good prog., Python is easy to learn, Python is

easy to understand.

False

False

Python Is A Good Prog., Python Is Easy To Learn, Python Is

Easy To Understand.

Slice operation

The slice() function returns a slice object that can be used to

slice strings, lists, tuple, etc. Following is the syntax with

parameters description of slice() function.

slice(stop)

slice(start, stop, step)

A start parameter specifies the index at which an object's

slicing begins. A stop parameter sets the index at which an

object's slicing comes to a halt. The increment between each

index for slicing is determined by the step parameter, an

optional statement.

Following are some important points about the slice() function

The slice() function returns a sliced object that only contains

elements from the defined set.

If only one parameter is passed, then the start and step are

considered to be

Let us take an example to understand the concept of slice()

functions.

Example

It start the slice object at position 2, and slice to position

4, and return the result:

var = ("b", "r", "i", "j", "e", "s", "h")

sl = slice(2, 4)

print (var[sl])

#It use the step parameter to return every second item:

var = ("b", "r", "i", "j", "e", "s", "h")

sl = slice(0, 7, 2)

print (var[sl])

Output:

('i', 'j')

('b', 'i', 'e', 'h')

String slicing

str ='BrĳeshBakariya'

sl1 = slice(2)

sl2 = slice(1, 4, 3)

print ("String slicing")

print (str[sl1])

print (str[sl2])

List slicing

lst = [5, 6, 7, 8, 9]

sl1 = slice(2)

sl2 = slice(1, 4, 2)

print ("\nList slicing")

print (lst[sl1])

print (lst[sl2])

Tuple slicing

tpl = (4, 5, 6, 7, 8)

sl1 = slice(3)

sl2 = slice(1, 5, 2)

print ("\nTuple slicing")

print (tpl[sl1])

print (tpl[sl2])

Output:

String slicing

Br

r

List slicing

[5, 6]

[6, 8]

Tuple slicing

(4, 5, 6)

(5, 7)

The ord() and chr() functions

The ord() function

It's a built-in feature that returns the single Unicode character's

integer as an integer. The returned integer represents the

Unicode code point. Furthermore, the ord() function returns an

integer representing the character's Unicode code point when

passed a string of length 1. A TypeError will be raised if the

string length is greater than one. Let us take an example to

understand the concept of ord() functions.

Example

res1 = ord('A')

res2 = ord('a')

print (res1, res2) # prints the unicode value

Output:

65 97

The chr() function

From an integer, the chr() method returns a character or

string. The integer represents the character's Unicode code

point. Let us take an example to understand the concept of

chr() functions.

Example

res1 = chr(65) #return a character of unicode valve 65

res2 = chr(97) #return a character of unicode valve 97

print (res1, res2) # prints the character value

Output:

A

Comparing strings

Comparing strings means identifying whether the two strings

are equivalent to each other or not. There are three ways to

compare the strings.

Using relational operators

Using is and is not

User-defined function

Using relational operators

The relational operators compare the Unicode values of the

characters of the strings. It returns a Boolean value according

to the operator used. Following are the relational operators

available in Python.

Operator This operator checks whether two strings are equal.

Operator This operator checks if two strings are not equal.

Operator This operator checks if the string on its left is

smaller than that on its right.

Operator This operator checks if the string on its left is

smaller than or equal to that on its right.

Operator This operator checks if the string on its left is

greater than that on its right.

Operator This operator checks if the string on its left is

greater than or equal to that on its right.

Let us take an example to understand the concept of relational

operators for string.

Example

print ("Brĳesh" == "Brĳesh")

print ("Brĳesh" < "brĳesh")

print ("Brĳesh" > "brĳesh")

print ("Brĳesh" <= "brĳesh")

print ("Brĳesh" >= "brĳesh")

print ("Brĳesh" != "Brĳesh")

Output:

True

True

False

True

False

False

Using is and is not

This type of operator checks whether both the operands refer

to the same object or not. Let us take an example to

understand this concept.

Example

str1 = "Brĳesh"

str2 = "Brĳesh"

str3 = str1

print (str1 is not str1)

print (str1 is not str2)

print (str1 is not str3)

print (str1 is str1)

print (str1 is str2)

print (str1 is str3)

Output:

False

False

False

True

True

True

User-defined function

We can make user-defined functions for string comparison. A

user-defined function will compare the strings based upon the

number of digits. Let's take an example

Example

def str_cmp(str1, str2): #comparison of string based on the

number of digits

count1 = 0

count2 = 0

for i in range(len(str1)):

if str1[i] >= "0" and str1[i] <= "9":

count1 += 1

for i in range(len(str2)):

if str2[i] >= "0" and str2[i] <= "9":

count2 += 1

return count1 == count2

print (str_cmp("234", "5672"))

print (str_cmp("1246", "Brĳesh"))

print (str_cmp("22Brĳesh", "Brĳesh22"))

Output:

False

False

True

Iterating strings

Iterating over a string means accessing each of its characters

one at a time. There are various ways to iterate over the

characters of a string in Python. Let's take an example.

Example

Using simple iteration and range()

str1 = "Brĳesh"

for var in str1:

print (var, end=' ')

print ("\n")

str2 = "Bakariya"

for i in range(0, len(str2)): # Iterate over index

print (str2[i])

Output:

B r i j e s h

B

a

k

a

r

i

y

a

Example

#Using enumerate() function

str3 = "Brĳesh"

Iterate over the string

for i, v in enumerate(str3):

print (v)

B

r

i

j

e

s

h

Example 5.23:

#Using enumerate() function

str3 = "Brĳesh"

Iterate over the string

for i, v in enumerate(str3):

print (v)

Output:

B

r

i

j

e

s

h

In Python, we can also iterate over the words of a string. A

string of several words separated by spaces is given. In

Python, there are many methods for iterating over words in a

string.

Using split()

We can split the string into a list of words, but this method

fails if the string contains punctuation marks. Let us take an

example.

Example

str1 = "Python is a good prog., Python is easy to use, Python

is easy to understand"

print ("The original string is: " + str1)

result = str1.split() # using split() to extract words from

string

print ("\nThe words of string are")

for i in result:

print (i)

Output:

The original string is: Python is a good prog., Python is easy

to use, Python is easy to understand

The words of string are

Python

is

a

good

prog.,

Python

is

easy

to

use,

Python

is

easy

to

understand

Using re.findall()

This approach necessitates the use of regular expressions to

complete the job. After filtering the string and extracting words

while ignoring punctuation marks, the findall() function returns

the list. Let's look at an example.

Example

#findall() example

import re

str1= "Python is a good prog., Python is easy to use, Python

is easy to understand"

print ("The original string is: " + str1)

result = re.findall(r'\w+', str1)

print ("\nThe words of string are")

for i in result:

print (i)

Output:

The original string is: Python is a good prog., Python is easy

to use, Python is easy to understand

The words of string are Python

is

a

good

prog

Python

is

easy

to

use

Python

is

easy

to

understand

The string module

The string module is a built-in module for using classes and

constants. First of all, we have to import it so that it can be

used. Let us take an example.

String module constants

There are various types of string constants defined in this

module are:

The following constants are concatenated: ascii_lowercase and

The lowercase letters This value is not locale-dependent and

will not change.

The uppercase letters This value is not locale-dependent and

will not change.

The string

The string

String of ASCII characters which are considered punctuation

characters in the C locale:

Example 5.26:

import string library function

import string

Storing the value in variable result variables

result1 = string.ascii_letters

result2 =string.ascii_lowercase

result3 =string.ascii_uppercase

result4 =string.digits

result5 =string.hexdigits

result6 =string.punctuation

Printing the value

print (result1)

print (result2)

print (result3)

print (result4)

print (result5)

print (result6)

Output:

abcdefghĳklmnopqrstuvwxyzABCDEFGHĲKLMNOPQRSTUVWXYZ

abcdefghĳklmnopqrstuvwxyz

ABCDEFGHĲKLMNOPQRSTUVWXYZ

0123456789

0123456789abcdefABCDEF

!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

String capwords() function

This function splits the specified string into words and

capitalizes each word in it.

Example

import string library function

import string

str= 'My name is Dr. Brĳesh Bakariya'

result= string.capwords(str)

print (result)

Output:

My Name Is Dr. Brĳesh Bakariya

String module classes

There are two types of string module classes:

Formatter

Template

Formatter

This class becomes useful if we want to subclass it and define

your format string syntax. Moreover, it is same as str.format()

function. Let us take an example to understand the concept of

Formatter class.

Example

from string import Formatter

formatter = Formatter()

print (formatter.format('{Faculty}', Faculty='Dr. Brĳesh Bakariya'))

print (formatter.format('{} {Faculty}', 'Hello', Faculty='Dr. Brĳesh

Bakariya'))

print ('{} {Faculty}'.format('Hello', Faculty='Dr. Brĳesh Bakariya'))

it is same as format()

Output:

Dr. Brĳesh Bakariya

Hello Dr. Brĳesh Bakariya

Hello Dr. Brĳesh Bakariya

Template

The Template class enables us to construct output specification

syntax that is easier to understand. The format combines $

with valid Python identifiers, such as alphanumeric characters

and underscores, to create placeholder names. Let's look at an

example to understand the idea of the Template class.

Example

template example

from string import Template

Creating a template

temp = Template('P is $P')

Substitute value

print (temp.substitute({'P' : 1}))

List of faculty stores the name and their id

Faculty = [('Dr. Brĳesh Bakariya',11), ('Dr.Krishna K. Mohbey

',22), ('Dr. Amit Kumar',33)]

temp = Template('Hello $name, $id is your employee id')

for var in Faculty:

print (temp.substitute(name = var[0], id = var[1]))

Output:

P is 1

Hello Dr. Brĳesh Bakariya, 11 is your employee id

Hello Dr.Krishna K. Mohbey, 22 is your employee id

Hello Dr. Amit Kumar, 33 is your employee id

Regular expression

A regular expression is a special sequence of characters that

uses a specialized syntax to help you fit or locate other strings

or sets of strings. It also defines a set of strings (pattern) that

corresponds to it. The following metacharacters are available

for use in functions:

Metacharacters It used to drop the special meaning of a

character.

Metacharacters It represents a character class.

Metacharacters It matches the beginning.

Metacharacters It matches the end.

Metacharacters It matches any character except newline.

Metacharacter It matches zero or one occurrence.

Metacharacters It matches any of the characters separated by

it.

Metacharacters It shows any number of occurrences (including

0 occurrences)

Metacharacters It is for one or more occurrences.

Metacharacters It indicates several occurrences of a preceding

regular expression to match.

Metacharacters It encloses a group of regular expressions.

Let us take an example to understand the concept of regular

expression.

Example

import re

p = re.compile('[a-m]')

print (p.findall("My name is Brĳesh"))

Output:

['a', 'm', 'e', 'i', 'i', 'j', 'e', 'h']

The metacharacter plays a crucial function in signaling different

sequences. Following are the uses of metacharacter which is

shown in table

Table 5.2: Metacharacters along with backslash (\)

Example

import re

p1 = re.compile('\d') # \d is equivalent to [0-9].

print (p1.findall("My age is 36 year and my year of Birth is

1985"))

p2 = re.compile('\d+') # \d+ will match a group on [0-9],

group of one or greater size

print (p2.findall("My age is 36 year and my year of Birth is

1985"))

p3 = re.compile('\w') # \w is equivalent to [a-zA-Z0-9_].

print (p3.findall("Welcome to the world of python. *"))

p4 = re.compile('\w+') # \w+ matches to group of

alphanumeric character.

print (p4.findall("My age is 36 year and my year of Birth is

1985."))

p5 = re.compile('\W') # \W matches to non alphanumeric

characters.

print (p5.findall("Welcome to the world of python. *"))

p6 = re.compile('br*') # '*' replaces the no. of occurrence of

a character.

print (p6.findall("brbrbrbrbrbrbrbbbrrrrrr"))

Output:

['3', '6', '1', '9', '8', '5']

['36', '1985']

['W', 'e', 'l', 'c', 'o', 'm', 'e', 't', 'o', 't', 'h', 'e', 'w', 'o', 'r', 'l', 'd',

'o', 'f ', 'p', 'y', 't', 'h', 'o', 'n']

['My', 'age', 'is', '36', 'year', 'and', 'my', 'year', 'of ', 'Birth', 'is',

'1985']

[' ', ' ', ' ', ' ', ' ', '.', ' ', '*']

['br', 'br', 'br', 'br', 'br', 'br', 'br', 'b', 'b', 'brrrrrr']

Example 5.32:

import re

Upon matching, 'y' is replaced by '!!' and CASE has been

ignored

print (re.sub('y', '~*', 'My age is 36 year and my year of Birth

is 1985', flags = re.IGNORECASE))

Consider the Case Sensitivity, 'y' in "year", will not be

replaced.

print (re.sub('y', '!!', 'My age is 36 year and my year of Birth is

1985'))

As count has been given value 1, the maximum time

replacement occurs is 1

print (re.sub('y', '!!', 'My age is 36 year and my year of Birth is

1985', count=1, flags = re.IGNORECASE))

'r' before the patter denotes RE, \s is for start and end of

a String.

print (re.sub(r'\sAND\s', ' & ', 'Book and note book',

flags=re.IGNORECASE))

Output:

M~* age is 36 ~*ear and m~* ~*ear of Birth is 1985

M!! age is 36 !!ear and m!! !!ear of Birth is 1985

M!! age is 36 year and my year of Birth is 1985

Book & note book

Conclusion

This chapter discussed strings and their various operations like

concatenating, appending, multiplying, etc. It is concerned

about the string formatting operator and its working procedure.

It also discussed some built-in string functions and other

operations like comparing and iterating a string, further

explaining regular expression with a good example. In the next

chapter, we will discuss lists as the next topic used in Python.

Points to remember

A string can be created by enclosing characters in quotes

(single, double, or triple).

An immutable string means string value cannot be updated.

String uses % operator for string formatting operations.

The ord() function returns the value of a single Unicode

character as an integer.

A regular expression is a special sequence of characters for

matching purposes.

Multiple choice questions

Which of the following is False?

A string is immutable.

capitalize() function in a string is used to return a string by

converting the whole string into uppercase.

lower() function in a string is used to return a string by

converting the whole string into lowercase.

None of these.

Which of the following functions convert an integer to

hexadecimal string in Python?

unichr(x)

ord(x)

hex(x)

oct(x)

What is the output of for x in [2, 3, 4]: print x?

x

2 3 4

Error

None of the above.

Suppose a list with name arr contains 5 elements. You can get

the 2nd element from the list using:

arr[-2]

arr[2]

arr[-1]

arr[1]

Which of the following operations cannot be performed on a

Python string?

Deletion of a Python string

Splitting of a Python string

Adding elements in a Python string

Reassigning of a Python string

Which string method is used to check if all the given

characters in a Python string defined program are in lower

case?

isnumeric()

islower()

isdigit()

islwer()

str1="8/2"

print("str1")

1

6/4

1.5

str1

str1="Information"

print(str1[2:8])

format

formatio

orma

ormat

Python has a built-in package called?

reg

regex

re

regx

Which function returns a list containing all matches?

findall

search

split

find

Which character stands for Zero or more occurrences in regex?

*

#

@

|

Answers

b

c

b

d

c

b

d

a

c

a

a

Questions

What is a string? Write a program to display a string.

What do you mean by string concatenation? Discuss all

methods of string concatenation.

Discuss multiplying strings with suitable examples.

What do you mean by immutable strings? Explain with a

suitable example.

Discuss string formatting operator with proper explanation.

Write any five built-in string functions with an explanation

Explain and chr() method with example.

Discuss all the methods for comparing and iterating the strings

What do you mean by regular expression? Explain with a

suitable example.

CHAPTER 6

Lists

The list datatype in Python is the most powerful, and it can

be written as a list of comma-separated values between square

brackets. A list is often used to store the sequence of different

types of data. The list is mutable, which means it can modify

its element after it is created. This chapter covers multiple

operations that can be applied on lists.

Structure

In this chapter, we will cover the following topics:

Use the concept of lists.

Use the various type of list operations

Use list functions

Use list processing

Use of different sorting in list

Objective

This chapter's goal is to introduce the lists in Python. After

completing this chapter, you should be able to perform various

list-related operations. Also, you will be able to write Python

codes using the list. This chapter covers various types of list

sorting, such as bubble sort, selection sort, insertion sort,

quick sort, merge sort, and so on. You will also understand

the uses of various list functions in Python.

Basics of lists

List is a very important data type in Python, and it is written

as a comma-separated values enclosed with square brackets.

The following is the example of lists:

list1 = ['Brĳesh', 'Krishna', 36, 35];

list2 = [1, 2, 3, 4, 5];

list3 = ["a", "b", "c", "d"]

There are the following important points about lists:

List items are ordered, and that order will not change except

for some list methods.

The list allows duplicate values.

The list is changeable, which means we can add and delete

items in a list after it has been created.

The first item has index [0], and indexing will increase.

Let us take a basic example to understand the basic concept

of lists.

Example 6.1:

Basics of lists

l1 = ['Brĳesh', 'Krishna', 36, 35];

l2 = [1, 2, 3, 4, 5];

l3 = ["a", "b", "c", "d"]

print (l1)

print (l2)

print (l3)

#List allow duplicates values

dl = ["Brĳesh", "Krishna", "Krishna", "Krishna", "Brĳesh",

"Misthi"]

print (dl)

Output:

['Brĳesh', 'Krishna', 36, 35]

[1, 2, 3, 4, 5]

['a', 'b', 'c', 'd']

['Brĳesh', 'Krishna', 'Krishna', 'Krishna', 'Brĳesh', 'Misthi']

Example 6.2:

l1 = ['Brĳesh', 'Krishna', 36, 35];

print (type(l1))

lc = list (('Brĳesh', 'Krishna', 36, 35))

print (lc)

Output:

'list'>

['Brĳesh', 'Krishna', 36, 35]

Creating lists

It can make any list by putting the series in square brackets []

and separating it with commas. It may contain any number of

items of various kinds, such as integers, floats, strings, and so

on. Let us take a basic example.

Example 6.3:

empty list

l1 = []

list of integers

l2 = [4, 5, 6, 7]

list with mixed data types

l3 = [2, "Dr. Brĳesh Bakariya", "Dr. Krishna K. Mohbey", 88.9]

print (l1)

print (l2)

print (l3)

Output:

[]

[4, 5, 6, 7]

[2, 'Dr. Brĳesh Bakariya', 'Dr. Krishna K. Mohbey', 88.9]

Accessing values from a list

Every value in a list is indexed, and it can access them by

referring to the index number. There are various ways to

access a list of elements.

Using list index

It can access a list object using the index operator The

indexes begin from 0. Suppose the list has seven elements,

then it starts from 0 to 6. If you want to access out of index

values, it will raise an One of the essential things to

remember an index must be an integer value means to float,

and other types are not allowed. If you put another data type

in the index value, then it will raise Let us take an example to

understand this concept.

Example

List indexing

ListExample = ['b', 'r', 'i', 'j', 'e', 's', 'h']

print (ListExample [0])

print (ListExample [1])

print (ListExample [2])

print (ListExample [3])

print (ListExample [4])

print (ListExample [5])

print (ListExample [6])

Output:

b

r

i

j

e

s

h

Negative indexing

Negative indexing is also allowed for its sequences. In negative

indexing, -1 refers to the last item, -2 to the second last, -3 to

the third last, and so on. The following figure 6.1 shows the

negative indexing in Python.

Figure 6.1: Negative indexing in Python.

Let us take an example to understand this concept.

Example 6.5:

Example of negative list

ListExample = ['b','r','i','j','e','s','h']

print (ListExample [-1]) # Last index

print (ListExample [-2])

print (ListExample [-3])

print (ListExample [-4])

print (ListExample [-5])

print (ListExample [-6])

print (ListExample [-7]) # First Index

Output:

h

s

e

j

i

r

b

Example 6.6:

list1 = ['Brĳesh', 'Krishna', 36, 35]

print (list1[-1])

print (list1[-2])

print (list1[-3])

print (list1[-4])

Output:

35

36

Krishna

Brĳesh

To slice, delete, remove, and clear a list of elements

It can be accessed through the range of items in a list by

using the slicing operator. It is represented by colon Adding

and changing an element in the list is possible using the

assignment operator The keyword del can be used to remove

one or more items from a list. It can completely delete the

list. The delete() method can be used to remove a specific

object, while the pop() method can be used to remove an item

at a specific index. To empty a list, we can use the clear()

method. Let's look at an example to better understand the

operators and methods described.

Example 6.7:

ml = ['b', 'r', 'i', 'j', 'e', 's', 'h']

print(ml[2:5]) #elements 3rd to 5th

print(ml[:-6]) #elements beginning to 5th

print(ml[3:]) #elements 4th to end

print(ml[:]) #elements beginning to end

ml = ['b', 'r', 'i', 'j', 'e', 's', 'h']

del ml[2] # delete one item

print(ml)

del ml[1:5] # delete multiple items

print (ml)

mlist = ['b', 'r', 'i', 'j', 'e', 's', 'h']

mlist.remove('r')

print (mlist)

print (mlist.pop(1))

print (mlist)

print (mlist.pop())

print (mlist)

mlist.clear()

print (mlist)

del ml # delete entire list

print (ml) # Error: List not defined

Output:

['i', 'j', 'e']

['b']

['j', 'e', 's', 'h']

['b', 'r', 'i', 'j', 'e', 's', 'h']

['b', 'r', 'j', 'e', 's', 'h']

['b', 'h']

['b', 'i', 'j', 'e', 's', 'h']

i

['b', 'j', 'e', 's', 'h']

h

['b', 'j', 'e', 's']

[]

Traceback (most recent call last):

File "C:\Users\brĳe\.spyder-py3\temp.py", line 31, in

print(ml) # Error: List not defined

NameError: name 'ml' is not defined

Updating values in Lists

We can update single or multiple lists. It can use assignment

operator, append and extend the method for accomplishing the

task. Let us take an example to understand the mentioned

operators and methods

Example 6.8:

Add/Change List Elements

var = [1, 2, 3, 4]

var[0] = 9 # change the 1st item

print (var)

var[1:4] = [22, 33, 44] # change 2nd to 4th items

print (var)

Appending and Extending lists in Python using the append()

var = [11, 22, 33]

var.append(44)

print (var)

var.extend([55, 66, 77]) #Add several items using extend()

method

print (var)

print (var + [224,353,464]) # Add + operator to combine two

lists.

Output:

[9, 2, 3, 4]

[9, 22, 33, 44]

[11, 22, 33, 44]

[11, 22, 33, 44, 55, 66, 77]

[11, 22, 33, 44, 55, 66, 77, 224, 353, 464]

Nested list

A nested list means a list within a list. Moreover, a list

contains a sublist of elements. Suppose we have a list named

lst then it includes a list and sublist. A nested list is made up

of a series of sublists separated by commas.

lst = ['ab', ['cd', ['efg', 'hĳ'], 'kl', 'mn'], 'o', 'p']

The following figure 6.2 shows the hierarchical structures for

understanding above example:

Figure 6.2: Nested list in Python.

Example 6.9:

lst = ['ab', ['cd', ['efg', 'hĳ'], 'kl', 'mn'], 'o', 'p']

print (L[2]) # Prints' o'

print (L[2][2]) # Prints' kl'

print (L[2][2][0]) # Prints

Output:

o

kl

k

It can add and remove items in a nested list by using

remove() method. It can also find length using len() and iterate

through a nested list by using for loop. Let us take an example

to understand this concept.

Example 6.10:

lst = ['b', ['ri', 'je'], 'sh']

lst[1][1] = 0

print (lst)

lst[1].append('BB')

print (lst)

lst[1].insert(0,'PP')

print (lst)

lst[1].extend([77,88,99])

print (lst)

Output:

['b', ['ri', 0], 'sh']

['b', ['ri', 0, 'BB'], 'sh']

['b', ['PP', 'ri', 0, 'BB'], 'sh']

['b', ['PP', 'ri', 0, 'BB', 77, 88, 99], 'sh']

Aliasing

Variables are objects, and when we assign one to another, all

variables refer to the same object. Moreover, when two

identifiers refer to the same variable, then it is called aliasing.

Let us take an example to understand this concept.

Example 6.11:

var1 = [555, 666,777]

var2 = var1 #Aliasing

print (var1 is var2)

print (var1)

print (var2)

Output:

[True

[555, 666, 777]

[555, 666, 777]

The same list has two different names in the above example,

var1 and however, after executing the assignment statement

var2 = you can see that var1 and var2 relate to the same list.

This indicates that it is aliasing.

Example 6.12:

var1 = [555, 666,777]

var2 = [555, 666,777]

print (var1)

print (var2)

print (var1 == var2)

print (var1 is var2)

var2 = var1

print (var1 == var2)

print (var1 is var2)

var2[0] = 999

print (var1)

print (var2)

Output:

[555, 666, 777]

[555, 666, 777]

True

False

True

True

[999, 666, 777]

[999, 666, 777]

Cloning lists

If we want to change a list while keeping a copy of the

original, we must copy the entire list, not just the reference.

To prevent the ambiguity of the word clone, this method is

often referred to as cloning. The quickest and simplest way to

clone a list is to use the slicing process.

Example

list1 = [777, 888, 999]

list2 = list1[:] # make a clone using slice

print (list1 == list2)

print (list1 is list2)

list2[0] = 555

print (list1)

print (list2)

Output:

True

False

[777, 888, 999]

[555, 888, 999]

There are various types of ways to cloning a list.

Using slicing

It is the most straightforward method of cloning a list. When

we want to change a list while keeping a copy of the original,

we use this form. Let us take an example to understand this

concept.

Example

def cloning_List(li1):

lst1 = li1[:] #Slice Operator

return lst1

lvar1 = [55,66,77,88,99]

lvar2 = cloning_List(lvar1)

print ("Original List:", lvar1)

print ("After Cloning:", lvar2)

Output:

Original List: [55, 66, 77, 88, 99]

After Cloning: [55, 66, 77, 88, 99]

Using the extend() method

The extend() function can be used to copy the lists into a new

list. Let us take an example to understand this concept.

Example

def cloning_List(li1):

lst1 = []

lst1.extend(li1)

return lst1

lvar1 = [55,66,77,88,99]

lvar2 = cloning_List(lvar1)

print ("Original List:", lvar1)

print ("After Cloning:", lvar2)

Output:

Original List: [55, 66, 77, 88, 99]

After Cloning: [55, 66, 77, 88, 99]

Using the list() method

Using the built-in function list, it's also the simplest way to

clone a list Let us take an example to understand this

concept.

Example

def cloning_List(li1):

lst1 = list(li1)

return lst1

lvar1 = [55,66,77,88,99]

lvar2 = cloning_List(lvar1)

print ("Original List:", lvar1)

print ("After Cloning:", lvar2)

Output:

Original List: [55, 66, 77, 88, 99]

After Cloning: [55, 66, 77, 88, 99]

Using list comprehension

To copy all the elements from one list to another, a list

comprehension method is used. Let us take an example to

understand this concept.

Example

def cloning_List(li1):

lst1 = [i for i in li1]

return lst1

lvar1 = [55,66,77,88,99]

lvar2 = cloning_List(lvar1)

print ("Original List:", lvar1)

print ("After Cloning:", lvar2)

Output:

Original List: [55, 66, 77, 88, 99]

After Cloning: [55, 66, 77, 88, 99]

Using the append() method

The append() method can be used to append or add elements

to the list or copy them to a new list. It's used to add

elements to the list's last location. Let us take an example to

understand this concept.

Example 6.18:

def cloning_List(li1):

lst1 = []

for i in li1: lst1.append(i)

return lst1

lvar1 = [55,66,77,88,99]

lvar2 = cloning_List(lvar1)

print ("Original List:", lvar1)

print ("After Cloning:", lvar2)

Output:

Original List: [55, 66, 77, 88, 99]

After Cloning: [55, 66, 77, 88, 99]

Using the copy() method

To copy all the elements from one list to another, use this

method. Let us take an example to understand this concept.

Example

def cloning_List(li1):

lst1 =[]

lst1 = li1.copy()

return lst1

lvar1 = [55,66,77,88,99]

lvar2 = cloning_List(lvar1)

print ("Original List:", lvar1)

print ("After Cloning:", lvar2)

Output:

Original List: [55, 66, 77, 88, 99]

After Cloning: [55, 66, 77, 88, 99]

List parameters

The list() constructor takes a single argument; this argument

could be a sequence like string, tuples, set, dictionary, or an

iterator object. It can also pass a list as an argument. Let us

take an example to understand this concept.

Example

name_list = ['Brĳesh', 'Krishna', 'Ravi', 'Ram', 'Misthi']

print (list(name_list))

def list_Fun(l):

print (l)

name_list = ['Brĳesh', 'Krishna', 'Ravi', 'Ram', 'Misthi']

list_Fun(name_list)

Output:

['Brĳesh', 'Krishna', 'Ravi', 'Ram', 'Misthi']

['Brĳesh', 'Krishna', 'Ravi', 'Ram', 'Misthi']

Basic list operations

Generally, list support + and * operator for list concatenation

and list repetition. But there are other list methods to do the

same task. In the previous example, we have also used the

slice, append, and extend method performed on a string. Let

us take an example to understand this concept.

Example

lst1 = ['b', 'r', 'i', 'j', 'e', 's', 'h']

print (lst1 + ['p','q','r']) # A + operator to combine two lists.

print (2*lst1) # A * operator to repetition.

print (lst1[1:3]) #elements 1st to 3rd

Appending and Extending lists in Python using the append()

lst1.append('bakariya')

print (lst1)

lst1.extend(['x','y','z']) #Add several items using extend() method

print (lst1)

Output:

['b', 'r', 'i', 'j', 'e', 's', 'h', 'p', 'q', 'r']

['b', 'r', 'i', 'j', 'e', 's', 'h', 'b', 'r', 'i', 'j', 'e', 's', 'h']

['r', 'i']

['b', 'r', 'i', 'j', 'e', 's', 'h', 'bakariya']

['b', 'r', 'i', 'j', 'e', 's', 'h', 'bakariya', 'x', 'y', 'z']

There are various types of built-in functions which are

performed on the list. We can easily accomplish our tasks by

directly using these functions.

The built-in list functions:

cmp(list1, This function compares elements of both lists.

This function returns the length of the list.

This function returns an element from the list with max value.

This function returns an element from the list with min value.

This function converts a tuple into the list.

Let us take an example to understand the above built-in list

functions.

Example

list1 = ['Brĳesh', 'Krishna']

list2 = ['Ramesh', 'Rajesh']

def cmp(p, q):

return (p > q) - (p < q)

print (cmp(list1, list2)) # List comparison

print (len(list1)) # Length of list

list3 = [53535, 68868, 67656]

print ("Maximum value element : ", max(list3)) # Getting Max

value from list

print ("Minimum value element : ", min(list3)) # Getting Min

value from list

tuple_var = ('Brĳesh', 'Krishna', 123, 'xyz');

print ("Tuple elements : ", tuple_var)

list_var = list(tuple_var) # Converts a tuple into list.

print ("List elements : ", list_var)

Output:

-1

2

Maximum value element : 68868

Minimum value element : 53535

Tuple elements : ('Brĳesh', 'Krishna', 123, 'xyz')

List elements : ['Brĳesh', 'Krishna', 123, 'xyz']

List methods

Some other built-in methods are also performed on the list.

We can easily accomplish our task by directly using this

method.

The built-in list methods:

This method appends object obj to the list.

This method returns a count of how many times obj occurs in

the list.

This method appends the contents of seq to the list.

This method returns the lowest index in the list that obj

appears.

list.insert(index, This method inserts object obj into the list at

offset index.

This method removes and returns the last object or obj from

the list.

This method removes object obj from the list.

This method reverses objects of the list in place.

This method sorts objects of the list.

Let us take an example to understand the above built-in list

methods.

Example 6.23:

lst1 = ['b', 'r', 'i', 'j', 'e', 's', 'h']

lst1.append('bakariya')

print (lst1)

lst1.extend(['x','y','z'])

print (lst1)

print ("Count : ", lst1.count('bakariya'))

print ("Index for bakariya : ", lst1.index('bakariya'))

lst1.insert(3, 100)

print (lst1)

print ("Poped List : ", lst1.pop())

lst1.remove('bakariya')

print (lst1)

print (lst1.reverse())

lst2 = [44,464,686,313,668,242,575,1212,464]

lst2.sort()

print (lst2)

print (lst2.reverse())

print (lst2)

Output:

['b', 'r', 'i', 'j', 'e', 's', 'h', 'bakariya']

['b', 'r', 'i', 'j', 'e', 's', 'h', 'bakariya', 'x', 'y', 'z']

Count : 1

Index for bakariya : 7

['b', 'r', 'i', 100, 'j', 'e', 's', 'h', 'bakariya', 'x', 'y', 'z']

Poped List : z

['b', 'r', 'i', 100, 'j', 'e', 's', 'h', 'x', 'y']

None

[44, 242, 313, 464, 464, 575, 668, 686, 1212]

None

[1212, 686, 668, 575, 464, 464, 313, 242, 44]

List as arrays

We know about the list; it is a collection of items containing

elements of multiple data types, which may be either numeric,

logical character values, etc. It is also known as an array

because it is used in various programming languages like C,

C++, Java, etc. An array is a collection of homogeneous (same

type) elements. If the array elements belong to different data

types, an exception (incompatible data types) is thrown. Let us

take an example to understand this concept.

Example 6.24:

Simple list

list1 = ['Dr. Brĳesh Bakariya','Dr. Krishna K. Mohbey', 36, 35]

print (list)

Using array in Python

import array

sa = array.array('i', [33, 55, 77])

accessing elements of array

for i in sa:

print (i)

Output:

'list'>

33

55

77

There are a few differences between list and array in Python:

A list can consist of elements belonging to different data

types, but an array only consists of elements belonging to the

same data type.

A list does not need to import a module for declaration

explicitly, but an array needs to import a module for

declaration explicitly.

A list cannot directly handle arithmetic operations, but an array

can directly manage arithmetic operations

A list can be nested to contain different elements, but an array

must contain either all nested elements of the same size.

A list is preferred for a shorter sequence of data items, but an

array is preferred for a longer sequence of data items.

A modification is easier in the list compared to an array.

The entire list can be printed without any explicit looping but

array using a loop to be formed to print or access the

components.

Looping in lists

Looping in lists means accessing all the elements in a list one

by one. Moreover, it is an iteration through a list in Python.

There are various ways to iterate through a list in Python.

Using for loop

A for loop is used for showing all the elements in a list. Let

us take an example to understand this concept.

Example 6.25:

list = [11, 22, 33, 44, 55]

for var in list:

print (var)

Output:

11

22

33

44

55

Using loop and range()

Suppose we want to use the traditional for loop, which iterates

the element till the range specified. Let us take an example to

understand this concept.

Example 6.26:

list = [11, 22, 33, 44, 55]

length = len(list) # getting the length of a list

for var in range(length):

print (list[var])

Output:

11

22

33

44

55

Using while loop

It is similar to for loop, but its syntax is different. Let us take

an example to understand this concept. The following example

prints all the list values using a while loop.

Example

list = [11, 22, 33, 44, 55]

length = len(list) # getting length of list

x1 = 0

while x1 < length:

print (list[x1])

X1 += 1

Output:

11

22

33

44

55

Using list comprehension

It is used to iterate through a list in Python. It is another way

of generating a list of elements that possess a specific

property. Let us take an example to understand this concept.

Example

list = [11, 22, 33, 44, 55]

[print (i) for i in list] # Using list comprehension

Output:

11

22

33

44

55

Using enumerate()

This method can be used when we want to convert the list

into an iterable list of tuples. Let us take an example to

understand this concept.

Example

list = [11, 22, 33, 44, 55]

for i, val in enumerate(list): # Using enumerate()

print (i, "=",val)

Output:

0 = 11

1 = 22

2 = 33

3 = 44

4 = 55

Using Numpy

For huge n-dimensional lists, it is sometimes better to use an

external library such as NumPy. Let us take an example to

understand this concept.

Example

import numpy as np

var = np.arange(4)

var = var.reshape(2, 2)

for var1 in np.nditer(var): # iteration

print (var1)

Output:

0

1

2

3

Passing list to function

Passing a list to function means to pass a list variable to a

function, and the function copy the value of the list variable to

function parameters. So it is easy to show all the values of

the list through the function parameters. Let us take an

example to understand this concept.

Example

def faculty_name(f):

for i in f:

print (i)

faculty = ["Dr. Brĳesh", "Dr. Krishna", "Dr. Amit", "Dr. Raj"]

faculty_name(faculty)

Output:

Dr. Brĳesh

Dr. Krishna

Dr. Amit

Dr. Raj

Returning list from the function

Returning list to function means to return the value of the list

and catch to the calling function. It is assigned a calling

function to another variable for printing purposes. Let us take

an example to understand this concept.

Example

def faculty_name(f):

for i in f:

return(i)

faculty = ["Dr. Brĳesh", "Dr. Krishna", "Dr. Amit", "Dr. Raj"]

for i in faculty:

faculty_name(i)

print (i)

Output:

Dr. Brĳesh

Dr. Krishna

Dr. Amit

Dr. Raj

filter() function

A filter() function filters an iterable using a function that

checks if each element in the iterable is valid or not. A filter()

function returns an iterator that has passed and part of the

iterable through the function check.

filter(function, iterable)

There are two parameters of the filter() function as a function

and iterable.

It returns true if elements are iterable, false otherwise.

It means that the iterable to be filtered could be anything from

sets to lists to tuples to containers of any iterators.

Let us take an example to understand this concept.

Example 6.33:

Program to filter the list, and return a new list with only

the values equal to or above 18:

agesPerson = [16, 17, 23, 35, 19, 38]

def my_fun(n):

if n < 18:

return False

else:

return True

adults = filter(my_fun, agesPerson)

for i in adults:

print (i)

Output:

23

35

19

38

Example 6.34:

function that filters vowels

def fun_vowel(n):

vow = ['a', 'e', 'i', 'o', 'u']

if (n in vow):

return True

else:

return False

sequence

seq = ['b', 'r', 'i', 'j', 'e', 's', 'h', 'b', 'a', 'k', 'a', 'r', 'i', 'y', 'a']

fil= filter(fun_vowel, seq) # using filter function

print ('The filtered letters are:')

for i in fil:

print (i)

Output:

The filtered letters are:

i

e

a

a

i

a

map() function

For each item in an iterable, this function executes a given

function. As a parameter, the item is passed into the function.

Furthermore, after applying the defined function to each item

of a given iterable like a list, tuple, or other iterable, the map()

function returns a map object of the results.

Syntax:

map(function, iterables)

The map() function's first parameter executes for each

component, and the second parameter iterable requires a

sequence, collection, or iterator object. You can submit as

many iterables as you want, as long as each one has its

parameter in the function. Let us take an example to

understand this concept.

Example

def my_function(x, y):

return x + y

m = map(my_function, ('Brĳesh', 'Krishna', 'Ramesh'), ('Amit',

'Sumit', 'Mohit'))

print (m)

Add two lists using map and lambda

n1 = [11, 22, 33]

n2 = [44, 54, 66]

res = map(lambda a, b: a + b, n1, n2)

print (list(res))

List of strings

lst = ['Brĳesh', 'Krishna', 'Ramesh']

m = list(map(list, lst))

print (m)

Output:

object at 0x000001EA94A9B108>

[55, 76, 99]

[['B', 'r', 'i', 'j', 'e', 's', 'h'], ['K', 'r', 'i', 's', 'h', 'n', 'a'], ['R', 'a',

'm', 'e', 's', 'h']]

reduce() function

The reduce() function is defined in the functools module, and

it takes two arguments: one is a function, and the other is an

iterable. One important thing which you have to remember the

reduce() function does not return another iterable. Instead, it

returns a single value. The reduce() is useful when you need

to apply a function to iterable and reduce it to a single

cumulative value. Let us take an example to understand this

concept.

Syntax:

functools.reduce(myfunction, iterable, initializer)

Example 6.36:

import functools

def multiply_fun(a,b):

print ("a=",a," b=",b)

return a*b

factorial_var = functools.reduce(multiply_fun, range(1, 6))

print ('Factorial of 5: ', factorial_var)

Output:

a= 1 b= 2

a= 2 b= 3

a= 6 b= 4

a= 24 b= 5

Factorial of 5: 120

The multiply function is defined to return the product of two

numbers in the example above. This function is used in the

reduce() function along with a number range of 1, 2, 3, 4, and

5 between 1 and 6. The result is a 5 factorial value.

Example 6.37:

import functools

lst1 = [23, 76, 34, 87, 59, 66, 324]

print ("list elements sum : ",end="")

print (functools.reduce(lambda x,y : x+y,lst1))

print ("max from list: ",end="")

print (functools.reduce(lambda x,y : x if x > y else y,lst1))

Output:

list elements sum : 669

max from list : 324

Searching in list

It means searching whether your element is present in the list

or not. Moreover, it simply checks if a list contains a particular

item. We use operator for accomplishing this task. Let us take

an example to understand this concept.

Example 6.38:

names = ['Brĳesh', 'Krishna', 'Ramesh','Amit', 'Sumit', 'Mohit']

if 'Amit' in names:

print('Amit Found')

names = ['Brĳesh', 'Krishna', 'Ramesh','Amit', 'Sumit', 'Mohit']

amit_pos = names.index('Amit') #index of an item

print (amit_pos)

Output:

Amit Found

3

Example 6.39:

flowerList = ['lotus', 'rose', 'sunflower', 'lily', 'bluebell']

flowerName = input("Enter a flower name:") # input from user

if flowerName.lower() in flowerList:

print ("%s is found in the list" %(flowerName))

else:

print ("%s is not found in the list" %(flowerName))

Output:

Enter a flower name:lily

lily is found in the list

Sequential search

It is the process of searching an element sequentially. It is

also called a linear search. There are the following processes

of linear search

Begin with the list's leftmost element and compare x to each

of the list's elements one by one.

Return True if x matches an element.

Return False if x does not match any of the elements.

Let us take an example to understand this concept.

Example

def lin_search(list,n):

for var1 in range(len(list)):

if list[var1] == n:

return True

return False

list1 = [54, 99, 'Brĳesh', 335,'Krishna', 643]

n = 'Krishna'

if lin_search(list1, n):

print ("It is Found")

else:

print ("It is Not Found")

Output:

It is Found

Binary search

The binary search technique is to find search elements from a

list of elements. There are the following properties of binary

search.

It works only for a sorted sequence of an element.

The first searching process starts by comparing the search

element with the middle element in the list.

If the search element is smaller than the middle element, it

will search the left side of the list and repeat it.

If the search element is greater than the middle element, it will

search the right side of the list and repeat it.

The binary search process is implemented using recursion.

If an element is search middle, left, and right part of the list,

then it displays the element found.

The worst-case time complexity is log n. It is efficient than a

linear search algorithm.

There are the following steps for implementing a binary search

Start

Give a search element from the user

Sort the list of elements

In the sorted list, find the middle element.

Compare the search element to the sorted list's middle

element.

If both elements match, show "Element Found" and exit.

Check if the search element is smaller or larger than the

middle element if they don't match.

If the search element is smaller than the middle element,

repeat steps 3–5 for the middle element's left sublist.

If the search element is larger than the middle element, repeat

steps 3–5 for the middle element's right sublist.

Repeat the same steps until the search element is found in the

list or the sublist contains only one element.

Show "Element not found" and stop if that element does not

match the search element.

Let us take an example to understand the binary search

process:

Figure 6.3: Input linear List

Figure 6.4: Sorted linear List

The size of the list is 10 then the middle element is 5. The

element is 22. Suppose our search element is 19. Compare 19

to the middle element 22. If it is lesser, then it goes to the

left part of the list. Again find the middle element from the

left part of the list and follow this process until the element is

searched. Let us take an example to understand this concept.

Example 6.41:

Program for iterative Binary Search Function

def binary_search(list2, x):

beg = 0

end = len(list2) - 1

mid = 0

while beg <= end:

mid = (beg+ end) // 2

if list2[mid] < x:

beg = mid + 1

elif list2[mid] > x:

end = mid - 1

else:

return mid

return -1

Test list

list1 = [2, 3, 4, 10, 40]

x = 40

calling function

result = binary_search(list1, x)

if result != -1:

print ("Element is present at index", str(result))

else:

print ("Element is not present in list")

Output:

Element is present at index 4

Example 6.42:

Program for recursive binary search

def binary_search(list2, low, high, x):

Check base case

if high >= low:

mid = (high + low) // 2

if list2[mid] == x:

return mid

elif list2[mid] > x:

return binary_search(list2, low, mid - 1, x)

else:

return binary_search(list2, mid + 1, high, x)

else:

return -1 # Element is not present in the list

Test list

list1 = [2, 3, 4, 10, 40]

x = 10

Function call

result = binary_search(list1, 0, len(list1)-1, x)

if result != -1:

print ("Element is present at index", str(result))

else:

print ("Element is not present in list")

Output:

Element is present at index 3

Sorting

Sorting means arranging the data in either ascending or

descending order. The primary task of sorting algorithms is to

organize data elements in a particular order. If our data is

properly sorted in order, then it would search the element fast.

Moreover, sorting maintains the data structure. Sorting may

also be used to display data in a more readable format.

Sorting can be used in a variety of contexts, including the

dictionary, telephone directory, and so on.

Python uses the sort() method for sorting elements of a given

list in a specific ascending or descending order. The syntax of

the sort() method is:

Syntax:

list.sort(key=…, reverse=…)

sorted(list, key=…, reverse=…)

An important point which we have to remember is the basic

difference between sort() and sorted() is that the sort() method

changes the list directly and doesn't return any value, while

sorted() doesn't change the list and returns the sorted list.

In the sort() and sorted() methods, there are two parameters:

reverse and The sorted list is reversed if the reverse parameter

is true. A key parameter is used as a sort comparison key.

Let us take an example to understand this concept.

Example 6.43:

vowels_var = ['i', 'a', 'u', 'o', 'e'] # vowels list

vowels_var.sort() # sort the vowels

print ('Sorted list:', vowels_var) # print vowels

vowels_var = ['i', 'a', 'u', 'o', 'e'] # vowels list

vowels_var.sort(reverse=True) #Sort the list in Descending order

print ('Sorted list:', vowels_var) # print vowels

#Custom Sorting With key

list1 = ['ppp', 'aaaa', 'd', 'bb']

print (sorted(list1, key=len))

#Sort the list by the length of the values:

def my_sort_fun(n):

return len(n)

faculty = ['Brĳesh', 'Krishna', 'Amit', 'Zubin']

faculty.sort(key=my_sort_fun)

Output:

Sorted list: ['a', 'e', 'i', 'o', 'u']

Sorted list: ['u', 'o', 'i', 'e', 'a']

['d', 'bb', 'ppp', 'aaaa']

Types of sorting

The following are the various types of sorting:

In-place In this sorting technique, the elements are sorted

within a list. There is no extra space required for sorting an

element.

Not-in-place In this sorting technique, the elements are sorted,

but a different list is required. There is extra space needed for

sorting elements.

Stable In a sorting algorithm, stable sorting occurs when the

contents do not change the sequence of related content in

which they appear after sorting.

Unstable After sorting, if the contents change the sequence of

similar content in which they appear, it is called unstable

sorting in a sorting algorithm.

Bubble sort

Bubble sort is a comparison-based algorithm that compares

each pair of adjacent elements and swaps them if they are out

of order. Since the average and worst-case complexity of this

algorithm are O(n2), where n is the number of items, it is not

suitable for large data sets. The bubble sorting procedure is as

follows. To begin with, we'll make a list of an element that will

hold the integer numbers.

list1 = [5, 3, 8, 6, 7, 2]

There are following iterations for sorting.

First iteration

[5, 3, 8, 6, 7, 2]

It compares the first two elements and here 5>3 then swap

with each other. Now we get a new list that is [3, 5, 8, 6, 7,

2]

In the second comparison, 5 < 8, then swapping will happen

[3, 5, 8, 6, 7, 2]

In the third comparison, 8>6, then swap [3, 5, 6, 8, 7, 2]

In the fourth comparison, 8>7, then swap [3, 5, 6, 7, 8, 2]

In the fifth comparison, 8>2, then swap [3, 5, 6, 7, 2, 8]

Here, the first iteration is complete and we get the largest

element at the end. Now we need to the len(list1) –

Second iteration

[3, 5, 6, 7, 2, 8] - > [3, 5, 6, 7, 2, 8] here, 3<5 then no swap

taken place.

[3, 5, 6, 7, 2, 8] - > [3, 5, 6, 7, 2, 8] here, 5<6 then no swap

taken place.

[3, 5, 6, 7, 2, 8] - > [3, 5, 6, 7, 2, 8] here, 6<7 then no swap

taken place.

[3, 5, 6, 7, 2, 8] - > [3, 5, 6, 2, 7, 8] here 7>2 then swap their

position.

Now [3, 5, 6, 2, 7, 8] - > [3, 5, 6, 2, 7, 8] here 7<8 then no

swap taken place.

Third iteration

[3, 5, 6, 2, 7, 8] - > [3, 5, 6, 7, 2, 8] here, 3<5 then no swap

taken place

[3, 5, 6, 2, 7, 8] - > [3, 5, 6, 7, 2, 8] here, 5<6 then no swap

taken place

[3, 5, 6, 2, 7, 8] - > [3, 5, 2, 6, 7, 8] here, 6<2 then swap

their positions

[3, 5, 2, 6, 7, 8] - > [3, 5, 2, 6, 7, 8] here 6<7 then no swap

taken place.

Now [3, 5, 2, 6, 7, 8] - > [3, 5, 2, 6, 7, 8] here 7<8 then swap

their position.

It will iterate until the list is sorted.

Fourth iteration

[3, 5, 2, 6, 7, 8] - > [3, 5, 2, 6, 7, 8]

[3, 5, 2, 6, 7, 8] - > [3, 2, 5, 6, 7, 8]

[3, 2, 5, 6, 7, 8] - > [3, 2, 5, 6, 7, 8]

[3, 2, 5, 6, 7, 8] - > [3, 2, 5, 6, 7, 8]

[3, 2, 5, 6, 7, 8] - > [3, 2, 5, 6, 7, 8]

Fifth iteration

[3, 2, 5, 6, 7, 8] - > [2, 3, 5, 6, 7, 8]

Let us take an example to understand this concept.

Example 6.44:

def bubble_sort_fun(list2):

for i in range(0,len(list2)-1):

for j in range(len(list2)-1):

if(list2[j]>list2[j+1]):

temp = list2[j]

list2[j] = list2[j+1]

list2[j+1] = temp

return list1

list1 = [5, 3, 8, 6, 7, 2]

print ("The unsorted list is: ", list1)

print ("The sorted list is: ", bubble_sort_fun(list1)) # Calling

function

Output:

The unsorted list is: [5, 3, 8, 6, 7, 2]

The sorted list is: [2, 3, 5, 6, 7, 8]

Selection sort

It is used to sort a list of items into ascending or descending

order. In selection sort, the first element in the list is chosen

and compared to the rest of the list's elements repeatedly.

Both elements are swapped if one is smaller than the other

(in ascending order). The element in the second place in the

list is then selected and compared to the remaining elements

in the list. Both elements are swapped if one of them is

smaller than the other. This process is repeated until all of the

items in the list have been sorted. The selection sorting

procedure is as follows.

Suppose we have a list of the action of the following elements

with a list that contains the following elements: [3, 5, 1, 2, 4].

We'll start with the list that hasn't been sorted:

3 5 1 2 4

All of the elements can be found in the unsorted portion. We

examine each item and decide that the smallest element is 1.

As a result, we'll swap 1 with 3:

1 5 3 2 4 of the remaining unsorted elements, [5, 3, 2, 4], 2 is

the lowest number. We now swap 2 with 5:

1 2 3 5 4

This procedure is repeated until the list has been sorted:

1 2 3 5 4

1 2 3 4 5

1 2 3 4 5

Let us take an example to understand this concept.

Example

def selection_sort_fun(list1):

for i in range(len(list1)-1):

idx = i

for j in range(i+1, len(list1)-1):

if list1[j] < list1[idx]:

idx = j

list1[i], list1[idx] = list1[idx], list1[i]

list = [23, 12, 17, 34, 98, 77, 58]

print (list)

selection_sort_fun(list)

print (list)

Output:

[23, 12, 17, 34, 98, 77, 58]

[12, 17, 23, 34, 77, 98, 58]

Insertion sort

The insertion sort algorithm places elements in a specific order

in a list. In the insertion sort algorithm, each iteration

transfers an element from an unsorted portion to a sorted

piece until all of the elements in the list are sorted. To sort

the list using insertion sort, go through the steps below:

We split a list into two parts, i.e., sorted and unsorted.

Iterate from a list[1] to list[n] over the given list.

Compare the current element to the next element.

If the current element is smaller than the next element,

compared to the element before. Move to the greater elements

one position up to make space for the swapped element.

Suppose we have a list of following elements action with a list

that contains the following elements: [10, 4, 25, 1, 5]

The first step to add 10 to the sorted sub-list

[10, 4, 25, 1, 5]

Now we take the first element from the unsorted list, i.e., 4.

We store this value in a new variable temp. We can see that

the 10>4, then we move the 10 to the right and overwrite the

4 that was previously stored.

10, 25, 1, 5] (temp = 4)

Here 4 is lesser than all elements in the sorted sub-list, so we

insert it at the first index position.

10, 25, 1, 5]

We have two elements in the sorted sub-list

Now check the number 25. We have saved it into the temp

variable. 25> 10 and also 25> 4, then we put it in the third

position and add it to the sorted sub-list.

[4, 25, 1, 5]

Again we check the number 1. We save it in temp. 1 is less

than 25. It overwrites 25.

[4, 10, 25, 5] 10>1 then it overwrites again

[4, 25, 25, 5]

[25, 4, 25, 5] 4>1 now put the value of temp = 1

4, 10, 5]

Now, we have 4 elements in the sorted sub-list. 5<25, then

shift 25 to the right side and pass temp = 5 to the left side.

[1, 4, 10, 25] put temp = 5

Now, we get the sorted list by simply putting the temp value.

[1, 4, 5, 10, is sorted list.

Let us take an example to understand this concept

Example

creating a function for insertion

def insertion_sort_fun(list2):

for i in range(1, len(list2)):

value = list2[i]

j = i - 1

while j >= 0 and value < list2[j]:

list2[j + 1] = list2[j]

j -= 1

list2[j + 1] = value

return list2

list1 = [23, 16, 7, 88, 73]

print ("The unsorted list is:", list1)

print ("The sorted list1 is:", insertion_sort_fun(list1))

Output:

The unsorted list is: [23, 16, 7, 88, 73]

The sorted list1 is: [7, 16, 23, 73, 88]

Quicksort

Quicksort is an efficient sorting algorithm because it is based

on a partition of a list. It uses a divide and conquer approach

and divides a list into smaller parts. First of all, it picks the

pivot element from a list and applies a partition technique. The

result of the partition approach is to locate the pivot element

into its actual position. In this technique, there are two types

of partitions:

Figure 6.5: Divide an element by quicksort

Let us take an example of a quick sort. The key elements are:

45, 26, 177, 14, 68, 61, 97, 39, 99, 90

First of all, we chose an element as a pivot or a key value.

Suppose 45 is a key value. After that, it uses two indexes, low

and high. The elements in the low index are those elements

whose values are less than the key value. The elements in the

high index are those elements whose values are less than the

key value.

Figure 6.6: Process of sorting by quicksort

Let us take an example of a quick sort.

Example

def partitionMethod(list1,low,high): # divide function

i = (low-1)

pivot = list1[high] # pivot element

for j in range(low, high):

If current element is smaller

if list1[j] <= pivot:

increment

i = i+1

list1[i],list1[j] = list1[j],list1[i]

list1[i+1],list1[high] = list1[high],list1[i+1]

return (i+1)

sort

def quickSortMethod(list2,low,high):

if low < high:

index

pi = partitionMethod(list2,low,high)

sort the partitions

quickSortMethod(list2, low, pi-1)

quickSortMethod(list2, pi+1, high)

list3 = [22,44,21,12,56,87,35,23,66]

n = len(list3)

quickSortMethod(list3,0,n-1)

print ("Sorted list is:")

for i in range(n):

print (list3[i],end=" ")

Output:

Sorted list is:

12 21 22 23 35 44 56 66 87

Merge sort

Merge sorting employs the divide and conquer strategy. Since a

list with only one element is always sorted, the unsorted list is

divided into n sublists, each with one element. Then it merges

these sublists, again and again, to create new sorted sublists

until only one sorted list remains. Merge sort has an O(n log

n) time complexity. It is also a stable sort but not in place of

the sorting approach. Let us take an example of merge sort 85,

76, 46, 92, 30, 41, 12, 19, 93, 3, 50, 11. The following figure 6.7

and figure 6.8 shows the divide and conquer and merging

process of merge sort.

Figure 6.7: Process of divide and conquer in merge sort

Figure 6.8: Process of merging in merge sort

Let us take an example for understanding this concept.

Example

def merge_sort_fun(list1, left_index, right_index):

if left_index >= right_index:

return

middle = (left_index + right_index)//2

merge_sort_fun(list1, left_index, middle)

merge_sort_fun(list1, middle + 1, right_index)

merge_fun(list1, left_index, right_index, middle)

def merge_fun(list1, left_index, right_index, middle):

left_sublist = list1[left_index:middle + 1]

right_sublist = list1[middle+1:right_index+1]

left_sublist_index = 0

right_sublist_index = 0

sorted_index = left_index

while left_sublist_index < len(left_sublist) and right_sublist_index

< len(right_sublist):

if left_sublist[left_sublist_index] <=

right_sublist[right_sublist_index]:

list1[sorted_index] = left_sublist[left_sublist_index]

left_sublist_index = left_sublist_index + 1

else:

list1[sorted_index] = right_sublist[right_sublist_index]

right_sublist_index = right_sublist_index + 1

sorted_index = sorted_index + 1

while left_sublist_index < len(left_sublist):

list1[sorted_index] = left_sublist[left_sublist_index]

left_sublist_index = left_sublist_index + 1

sorted_index = sorted_index + 1

while right_sublist_index < len(right_sublist):

list1[sorted_index] = right_sublist[right_sublist_index]

right_sublist_index = right_sublist_index + 1

sorted_index = sorted_index + 1

list1 = [44, 65, 2, 3, 58, 14, 57, 23, 10, 1, 7, 74, 48]

merge_sort_fun(list1, 0, len(list1) -1)

print (list1)

Output:

[1, 2, 3, 7, 10, 14, 23, 44, 48, 57, 58, 65, 74]

Conclusion

This chapter discussed the lists and their creation, accessing,

and updating values in lists. It is concerned about nesting,

aliasing, and cloning of lists. Some list parameters, operations,

and methods are discussed. Also, passing and returning list

from function and some other list function like and reduce()

function also included. It also discusses searching and sorting

methods in the list such as linear search, binary search,

bubble, selection, insertion, quick, and merge sort. In the

further chapter, we will discuss tuple as the next topic used in

Python.

Points to Remember

In a list, values are enclosed with square brackets.

The first item on the list is indexed as

A slice is represented by a colon

A nested list means a list within a list.

The list() constructor takes a single argument.

A list is used in an operator for searching in a list.

The sort() method is used for sorting elements of a given list.

Multiple Choice Questions

Which of the following is True regarding lists in Python?

Lists are immutable.

The size of the lists must be specified before their initialization

Elements of lists are stored in a contagious memory location.

size(list1) command is used to find the size of lists.

What is the output of the following code:

list1=[1,3,5,2,4,6,2]

list1.remove(2)

print(sum(list1))

18

19

21

22

Which of the following commands will create a list?

list1 = list()

list1 = []

list1 = list([1, 2, 3])

all of the mentioned

What is the output when we execute the list("hello")?

['h', 'e', 'l', 'l', ‘o’].

[‘hello’].

[‘llo’].

[‘olleh’].

Suppose list Example is ['h',' e',' l',' l',’o’], what is

len(listExample)?

5

4

None

Error

Suppose list1 is [4, 2, 2, 4, 5, 2, 1, 0], which of the following

is the correct syntax for slicing operation?

print(list1[0])

print(list1[:2])

print(list1[:-2])

all of the mentioned

What is the output of the following code:

list1 = range(100, 110)

print (list1.index(105))

105

5

106

104

What is the output of the code?

list1 = [1, 2, 3, 4, 5]

list2 = list1

list2[0] = 0;

print(list1)

[1, 2, 3, 4, 5, 0]

[0,1, 2, 3, 4, 5]

[0, 2, 3, 4, 5]

[1, 2, 3, 4, 0]

Suppose list1 is [2, 33, 222, 14, 25], What is list1[-1]?

Error

None

25

2

What is the best time complexity of bubble sort?

N^2

NlogN

N

N(logN)^2

What is the best case for linear search?

O(nlogn)

O(logn)

O(n)

O(1)

What is the worst case for linear search?

O(nlogn)

O(logn)

O(n)

O(1)

Which of the following is a disadvantage of linear search?

Requires more space

Greater time complexities compared to other searching

algorithms

Not easy to understand

Not easy to implement

What is the worst-case complexity of selection sort?

O(nlogn)

O(logn)

O(n)

O(n2)

Answers

c

c

d

a

a

d

b

c

c

c

d

c

b

d

Questions

How to create a list? Explain with example.

How to access values from lists? Explain with example.

Explain slice, delete, remove and clear methods of a list. Give

a suitable example.

How to update the values in a list? Explain with example.

What do you mean by aliasing and cloning a list? Explain with

example.

Write any five built-in list functions with suitable examples.

What do you mean by the built-in list methods? Explain with

example.

How to use loops in lists? Explain with example.

Explain the working and reduce() methods with examples.

Explain linear and binary search with proper explanation.

Explain quick sort and merge sort with example.

CHAPTER 7

Tuple

The tuple is an important data type in Python, which stores

various elements as an object. It is also known as an

immutable data type that means its elements are fixed and

cannot be changed. In this chapter, you will see various

properties and operations that can be applied to tuples. Also,

various functions and operations of tuples are demonstrated

with the help of examples and codes.

Structure

In this chapter, we will cover the following topics:

The concepts and properties of tuples

Tuple creation and accessing elements

Various tuple operations

Packing and unpacking of tuple elements

Using tuples with functions

Objective

The objective of this chapter is to introduce the concept of

Python tuples. After completing this chapter, you should

understand the various operations and properties of tuples.

Also, you will be able to write various codes related to tuples.

What is a tuple?

A tuple is a group of objects that have been ordered and are

immutable. Tuples are like lists and strings. Here, the meaning

of immutable is that the tuple elements are fixed. Once a

tuple is created, elements addition and deletions are not

possible. Even we cannot shuffle the order of tuple elements.

The length of the tuple is also fixed. If we want to increase or

decrease a tuple, we need to create a new tuple.

The distinctions between tuples and lists are that, unlike lists,

tuples cannot be altered, and tuples use parentheses, while

lists use square brackets. Tuples are the type of sequence the

same as string. Strings can only store characters, but tuples

are able to store any kind of elements. It means that the tuple

either stores a group of student's names or stores the IDs of

employees. Tuples can also store elements of mixture types

that mean a tuple may have elements of numbers, characters,

and decimal formats together. Tuples can also store a

sequence of sound files, images, etc.

Difference between tuple and list

The following table describes the differences between tuples

and lists:

lists:

lists: lists: lists: lists: lists: lists: lists:

lists: lists: lists: lists: lists: lists: lists: lists:

lists: lists: lists: lists: lists: lists: lists: lists: lists: lists: lists:

lists: lists: lists: lists: lists: lists:

lists: lists: lists: lists: lists: lists: lists: lists: lists: lists: lists:

lists:

lists: lists: lists: lists:

lists: lists: lists:

lists: lists: lists: lists:

Table 7.1: Differences between tuples and lists

Creating tuple

To create a tuple in Python, all the elements are enclosed in ()

parenthesis, separated by a comma. A tuple can store

heterogeneous data elements. Below are the examples of

creating tuples:

Example 7.1:

Create an empty tuple

Tuple1 = ()

tuple with 5 elements

Tuple2 = (10,20,30,40,50)

print (Tuple2)

tuple of character elements

Tuple3 = ('x', 'y', 'z')

print (Tuple3)

tuple of strings

Tuple4 = ("Python", "Programming", "Book")

print (Tuple4)

tuple of heterogeneous data elements

Tuple5 = (100, 20.123, "Python Programming")

print (Tuple5)

tuple of string and list

Tuple6 = ("Python Book", [10, 20, 25])

print (Tuple6)

Output:

(10, 20, 30, 40, 50)

('x', 'y', 'z')

('Python', 'Programming', 'Book')

(100, 20.123, 'Python Programming')

('Python Book', [10, 20, 25])

Single element tuple

To create a tuple of single element, it should be followed by a

comma. The following example creates a tuple of a single

element:

Tup1 = (100,)

In the preceding case, if we do not put a comma after then

Python would treat Tup1 as an int rather than a tuple variable.

Example 7.2:

Tup1 = (100,)

type (Tup1)

Tup2=(100)

type (Tup2)

Output:

'tuple'>

'int'>

We have to add a comma after the element when a tuple has

just one element; otherwise, Python would not consider it as a

tuple.

The tuple () function

The tuple () function is a Python built-in function that can be

used to create a tuple. We can even create a tuple without

using this function, but it provides an alternative way of

creating tuples. The following example shows the use of tuple

() function to create a tuple:

Example 7.3:

example of tuple() function

creating an empty tuple

T1 = tuple()

print(T1)

creating a tuple from list

T2 = tuple([1,2,3,4,5])

print (T2)

creating a tuple from strings

T3 = tuple("Python Programming")

print (T3)

Output:

()

(1, 2, 3, 4, 5)

('P', 'y', 't', 'h', 'o', 'n', ' ', 'P', 'r', 'o', 'g', 'r', 'a', 'm', 'm', 'i', 'n',

'g')

Accessing values in tuple

In order to access the elements of a tuple, indexes are used.

Tuple indexes start at 0, like string indices, and can be sliced,

concatenated, and so on. Following examples shows how we

can access values in tuples:

Example 7.4:

tuple of characters

tup1 = ('A', 'B', 'C', 'D')

tuple of integers

tup2 = (10, 20, 30, 40, 50, 60, 70)

displaying first element of tuple1

print tup1[0]

displaying second to fifth elements of tuple 2

print tup2[1:5]

Output:

A

(20, 30, 40, 50)

The value of the index is always an integer. For example, print

tup1[2.0] will generate type error.

TypeError: tuple indices must be integers, not float

Positive and negative indexes

In Python, the same as list and string indexes can be positive

and negative. Positive indexes start from 0, while negative

indexes start from -1. Positive index access elements from the

beginning of the tuple, while negative indexes are used to

access elements from the tuple's end. The positive and negative

indexes are shown in the following figure:

Figure 7.1: Positive and negative indexing

The following example demonstrates the use of a negative

index:

Example 7.5:

Tuple1 = (10, 20, "Books", 108.92)

Accessing last element using negative index

print(Tuple1[-1])

Accessing third element from last

print(Tuple1[-3])

Output:

108.92

20

Slicing tuple

Slicing acts in the same manner as strings. We ought to have

a position for the beginning and end. The outcome is a tuple

between those two positions, containing every element. We

must use the [] operator on the tuple to slice a tuple. If we

have a positive integer when indexing a tuple, the index is

obtained from the tuple count on the left. In case of a

negative index, the index is obtained from the right tuple

count. The following code is an example of slicing operations

on the tuple:

Example 7.6:

T1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

print elements from 3rd to 6th

print(T1[2:6])

print elements from start to 4th position

print(T1[:4])

print elements from 4th to last

print(T1[3:])

print elements from 6th to second last

print(T1[5:-1])

print entire tuple

print(T1[:])

Output:

(3, 4, 5, 6)

(1, 2, 3, 4)

(4, 5, 6, 7, 8, 9, 10)

(6, 7, 8, 9)

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Updating tuple

Tuples are immutable, which indicates that the values of tuple

elements will not be changed or modified. However, we may

change the elements of nested items that are mutable. In the

following code, for example, we change the list element present

within the tuple. Elements in the list are mutable, so it is

permissible:

Example 7.7:

T1= (1, [2, 3, 4,5], "Python")

print(T1)

Updation is not valid for tuples

#T1[0] = 100 # It generates error

Changing the list element, this is valid because list is

mutable

T1[1][2] = 10

print(T1)

Output:

(1, [2, 3, 4, 5], 'Python')

(1, [2, 3, 10, 5], 'Python')

We can create a new tuple using a portion of an existing

tuple. The example below demonstrates the creation of a new

tuple:

Example 7.8:

T1 = (1, 2, 3, 4.5)

T2 = ('ABCD', 'XYZW')

New tuple creation from existing

T3 = T1 + T2[0:1]

print T3

Output:

(1, 2, 3, 4.5, 'ABCD')

Deleting elements in tuple

We have already demonstrated that tuple elements are

immutable, which implies that the elements in a tuple cannot

be deleted. However, deleting the whole tuple can be possible.

The del statement can be used to delete an entire tuple:

Example 7.9:

T2 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

printing whole tuple

print(T2)

#del T2[2] #it will generate an error

deleting an entire tuple

del T2

#print after deleting a tuple

print(T2) #it will generate error

Output:

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Traceback (most recent call last):

File "main.py", line 11, in

print(T2) #it generates error

NameError: name 'T2' is not defined

Basic tuple operations and functions

The different operations on tuples that we can perform are

very similar to lists. In general, with tuples, we just saw the +

operator. It works with tuples just like it works with a list.

Tuples behave much like strings to the + and * operators; they

also imply concatenation and repetition here, except that a new

tuple is a result, not a string. Tuples respond the same as

strings to all the general sequence operations.

Addition operators combine all the elements of two or more

tuples into a new tuple.

Example 7.10:

T1 = (1, 2, 3)

T2=(4, 5)

T3=(10,)

T4=T1+T2+T3

print (T4)

Output:

(1, 2, 3, 4, 5, 10)

If a tuple is multiplied by any integer, x would basically create

another tuple with all the elements repeated x times from the

first tuple. T*5 indicates, for instance, the elements of tuple T

will be replicated 5 times:

Example 7.11:

#tuple with three elements

T = (1, 2, 3)

#replicate 5 times

print(T*5)

#replicate string 3 times

print("Python"*3)

Output:

(1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3)

PythonPythonPython

len() This function is used to get the number of elements in

the tuple.

max() and min() These functions are used to get the maximum

and minimum value from the tuple.

sum() This function is used to get the sum of all the elements

of tuple.

in This keyword is used with tuple same as strings and lists.

It is used to check whether any element is present or not in

the tuple. If the element is present, it returns otherwise it

returns

Example 7.12:

#tuple with six elements

T = (10, -2, 300, 40, 302, 900)

length of the tuple

print ("Length:", len(T))

Max value from tuple

print ("Max:", max(T))

Min value from tuple

print ("Min:", min(T))

Sum of all elements of tuple

print ("Sum:", sum(T))

Check whether 40 is present or not in tuple

print (40 in T)

Check whether 500 is present or not in tuple

print (500 in T)

Output:

('Length:', 6)

('Max:', 900)

('Min:', -2)

('Sum:', 1550)

True

False

cmp() The cmp () function is used to compare two tuples.

Based on whether the two tuples being compared are similar

or not, it will return either 1, 0 or -1. This function takes two

tuples as arguments for comparison. If T1 and T2 are two

tuples then the following result will be produced based on the

comparison.

if T1 > then cmp(T1, T2) returns 1

if T1 = then cmp(T1, T2) returns 0

if T1 then cmp(T1, T2) returns -1

Example 7.13:

#first tuple

T1 = (100, 20,30,40)

#second tuple

T2=(100,2,3,4,5)

print("T1>T2:",cmp(T1,T2))

print("T1<__cmp_T2_T1__ _="" span=""/>

#third tuple

T3 = (100, 20,30,40)

print("T1=T3:",cmp(T1,T3))

Output:

('T1>T2:', 1)

('T1<__ _="" span="">-1)

('T1=T3:', 0)

index() index() is a built-in Python function which searches for

a given element in a tuple and returns the lowest index where

the element appears. The index() function takes maximum three

arguments and follows the given syntax:

tuple.index(element, start, end)

Here element is the first argument that must be searched in a

tuple. Start and end are an optional arguments that indicates

starting and ending point index of a searching element:

Example 7.14:

Tuple of four elements

T1 = (100, 20,30,40)

tuple of characters

T2=("PYTHON")

print the index of 100 in tuple T1

print("Index No.:",T1.index(100))

print the index of T in tuple T2

print("Index No.:",T2.index('T'))

search the index of 20, start from 1 to 4

print("Index No.:",T1.index(20,1,4))

Output:

('Index No.:', 0)

('Index No.:', 2)

('Index No.:', 1)

count() The count() function returns the number of occurrences

in the given tuple for an element.

Example 7.15:

#tuple 1

T1 = (1, 1, 1, 2, 2, 2, 1, 2, 3, 1, 1)

#tuple 2

T2 = ('a', 'a', 'a', 'b', 'b', 'a', 'c', 'b', 'a','b')

#tuple 3

T3 = ['Bat', 'Cat', 'Sat', 'Bat', 'cat', 'Bat']

Counts the number of times 1 appears in tuple 1

print("Count of 1:", T1.count(1))

Counts the number of times 'a' appears in tuple 2

print("Count of a:", T2.count('a'))

Counts the number of times 'Bat' appears in tuple 3

print("Count of Bat:", T3.count('Bat'))

Output:

('Count of 1:', 6)

('Count of a:', 5)

('Count of Bat:', 3)

Packing and unpacking a tuple/tuple assignment

Python has a very useful function known as tuple assignment,

which allows values to be assigned to a tuple of variables on

the left-hand side of an assignment from a tuple on the right-

hand side of the assignment. It is also called unpacking a

tuple of values into a variable. We put values into a new tuple

while while we extract those values into a single variable while

unpacking. This feature helps more than one variable to be

assigned at a time while a sequence is on the left. In the

example below, one tuple T1 assigns values to five different

variables. In this assignment, the number of variables on the

left-hand side must be equal to the number of tuple elements

on the right-hand side. Otherwise, this assignment generates

an error.

Example 7.16:

tuple with five elements/Packing

T1= ('David', 'India', 1990, 1001)

print ("Tuple Elements are:", T1)

tuple assignment to different variables/Unpacking

(EmpName, Country, BirthYear, EmpId)=T1

printing individual variables

print("--------------------------")

print ("EmpName:",EmpName)

print ("Country:", Country)

print ("BirthYear:", BirthYear)

print ("EmpId:",EmpId)

Output:

Tuple Elements are: ('David', 'India', 1990, 1001)

EmpName: David

Country: India

BirthYear: 1990

EmpId: 1001

In the example above, we have a tuple T1 which contains five

elements and assign different values to the variables and

EmpId in a single statement. We can also assign individual

element values to variables such as:

Example 7.17:

tuple with five elements

T1= ('David', 'India', 1990, 1001)

print ("Tuple Elements are:", T1)

assigning one value at a time

EmpName=T1[0]

Country=T1[1]

BirthYear=T1[2]

EmpId=T1[3]

#printing individual values

print ('-------------------')

print (EmpName)

print (Country)

print (BirthYear)

print (EmpId)

Output:

Tuple Elements are: ('David', 'India', 1990, 1001)

David

India

1990

1001

Receiving tuples in functions

There is a special way of receiving parameters using the *

prefix for a function as a tuple. This is helpful when taking the

number of arguments in the function as a function. All extra

arguments passed to the function are stored in args as a tuple

due to the * prefix on the args variable:

Example 7.18:

This function receives a tuple as an argument

def fun1(*args):

print(type(args)) #printing the type of args

Print(args)

creating a tuple

T1=("Python", "Book", 2020)

passing tuple to a function

fun1(T1)

Output:

'tuple'>

(('Python', 2020),)

Returning multiple values as a tuple

In C and other programming languages, returning multiple

values from a function is impossible, but it is quite simple to

do with Python. In Python, by simply returning statements

separated by commas, we can return multiple values. In the

example below, a function fun1() is defined to return a string

and a number:

Example 7.19:

#Returning multiple values as tuple

This function returns a tuple

def fun1():

s1 = "Python"

x = 2020

return (s1, x)

calling function

T1= fun1() #T1 is a tuple

print(type(T1))

print(T1)

Output:

'tuple'>

('Python', 2020)

Nested tuples

We may declare a tuple inside a tuple in Python, and this is

called a nesting tuple. To arrange data into hierarchical

structures, nesting tuples are used. If only one element is

present in a tuple, then it is not called as a To show to the

interpreter that it is a tuple, it should be a trailing comma. We

have declared a tuple inside another tuple in the following

example:

Example 7.20:

Nested tuples create

Tuple1 = ("Python", [1,2,3,4], (5, 5.6, "Programming"))

Print all elements of tuple

print ("Tuple values are:", Tuple1)

Print first element

print ("first Element:", Tuple1[0])

#print second element or sub-tuple

print ("sub tuple:", Tuple1[1])

#print third element or sub-tuple

print ("sub tuple:", Tuple1[2])

Output:

Tuple values are: ('Python', [1, 2, 3, 4], (5, 5.6, 'Programming'))

first Element: Python

sub tuple: [1, 2, 3, 4]

sub tuple: (5, 5.6, 'Programming')

Creating tuple from string and list

In Python, a tuple can be created from list as well as string.

We need this kind of conversion when there are different types

of data available and new tuple must be created. The tuple ()

function is used to convert string or list to a tuple. This

concept is illustrated in the following example:

Example 7.21:

creating list and string

L1 = ['Python',1,2,3,4]

S1 = "Programming"

printing original list and string

print ("The original list : ", L1)

print ("The original string : ", S1)

print (type(L1))

print(type(S1))

#concert list to tuple

result1 = tuple(L1)

#concert string to tuple

result2=tuple(S1)

print("Converted List : ", result1)

print (type(result1))

print("Converted String : ", result2)

print (type(result2))

Output:

The original list : ['Python', 1, 2, 3, 4]

The original string : Programming

'list'>

'str'>

Converted List : ('Python', 1, 2, 3, 4)

'tuple'>

Converted String : ('P', 'r', 'o', 'g', 'r', 'a', 'm', 'm', 'i', 'n', 'g')

'tuple'>

The zip() function

Python zip () function is mainly used to combine data of two

different container elements together. This function takes

iterables and aggregates their elements based on their order in

the iterables. As an input it takes any number of iterables and

returns an iterator of tuples. Iterables may be list, string, etc.

The following example groups items of two different list based

on the same index:

Example 7.22:

#creating two lists

List1 = ['A', 'B', 'C', 'D']

List2 = [10, 20, 30, 40]

#combine using zip

Result = tuple(zip(List1, List2))

print (Result)

print (type(Result))

Output:

(('A', 10), ('B', 20), ('C', 30), ('D', 40))

'tuple'>

The returned iterator takes the length of the shortest iterator

passed to the function if the passed iterables are of different

lengths. In the example below, we have two lists of size four

and two, respectively. The result tuple has length two, based

on the shortest list

Example 7.23:

#creating two lists

List1 = ['A', 'B', 'C', 'D']

List2 = [10, 20]

#combine using zip

Result = tuple(zip(List1, List2))

print (Result)

print (type(Result))

Output:

(('A', 10), ('B', 20))

'tuple'>

The zip() function also works for more than two iterables, such

as:

Example 7.24:

#creating three tuples

T1 = ('Amit', 'Sumit', 'Joy', 'Dev')

T2 = (50000, 20000, 25000, 80000)

T3=('HR', 'Clerk','IT', 'Manager')

#combine using zip

Result = tuple(zip(T1, T2, T3))

print (Result)

print (type(Result))

Output:

(('Amit', 50000, 'HR'), ('Sumit', 20000, 'Clerk'), ('Joy', 25000,

'IT'), ('Dev', 80000, 'Manager'))

'tuple'>

The inverse zip(*) function

The * operator can be used with the zip () function. It unzips

the tuples into independent lists. In other words, the *

operator with zip () function unpacks a sequence into

positional arguments. The following example shows the concept

of unzipping tuples:

Example 7.25:

using zip() and * operator to unpack sequences

creating tuple

T1 = [('A', 100), ('B', 200), ('C', 300), ('D', 4000)]

Original tuple

print ("Original tuple is : ", T1)

using zip() and * operator to perform unzipping

T2,T3 = zip(*T1)

T4=zip(*T1)

Printing modified tuple 1

print ("Modified Tuple1 : ", T2)

print (type(T2))

Printing modified tuple 2

print ("Modified Tuple2 : ", T3)

print (type(T3))

Printing modified tuple 3

print ("Modified Tuple2 : ", tuple(T4))

Output:

Original tuple is : [('A', 100), ('B', 200), ('C', 300), ('D', 4000)]

Modified Tuple1 : ('A', 'B', 'C', 'D')

'tuple'>

Modified Tuple2 : (100, 200, 300, 4000)

'tuple'>

Modified Tuple2 : (('A', 'B', 'C', 'D'), (100, 200, 300, 4000))

Tuple sorting

We have an in-built function named sorted() in python to sort

the tuple elements. This function takes one argument as a

parameter to sort tuples.

sorted(arg1)

By default, the tuple is sorted in ascending order using

sorted() function. If we want to sort in descending order, we

need to set the parameter reverse to True.

sorted(arg1, reverse=True)

Example

Create a tuple

Tuple1 = (20, 4, 6, -1, 4, 7.8, 2.79, 5.90)

Sorting in ascending order

TDefault=sorted(Tuple1)

Sorting in descending order

TReverse=sorted(Tuple1, reverse=True)

Printing original tuple

print ("Original tuple:", Tuple1)

Printing sorted tuple-Ascending

print ("Sorted tuple:", TDefault)

Printing sorted tuple-Descending

print ("Sorted tuple in reverse order:", TReverse)

Output:

Original tuple: (20, 4, 6, -1, 4, 7.8, 2.79, 5.9)

Sorted tuple: [-1, 2.79, 4, 4, 5.9, 6, 7.8, 20]

Sorted tuple in reverse order: [20, 7.8, 6, 5.9, 4, 4, 2.79, -1]

Example 7.27:

def TupleSort(t):

sort1 = sorted(t)

sort2= sorted(t, reverse=True)

return sort1, sort2

Create a tuple

Tuple1 = (20, 4, 6, -1, 4, 7.8, 2.79, 5.90,900)

passing parameter to function for sorting

TDefault, TReverse=TupleSort(Tuple1)

Printing original tuple

print ("Original tuple:", Tuple1)

Printing sorted tuple-Ascending

print ("Sorted tuple:", TDefault)

Printing sorted tuple-Descending

print ("Sorted tuple in reverse order:", TReverse)

Output:

Original tuple: (20, 4, 6, -1, 4, 7.8, 2.79, 5.9, 900)

Sorted tuple: [-1, 2.79, 4, 4, 5.9, 6, 7.8, 20, 900]

Sorted tuple in reverse order: [900, 20, 7.8, 6, 5.9, 4, 4, 2.79,

-1]

Conclusion

In this chapter, we discussed the concepts and various

properties of tuples. We also discussed how different

operations can be applied on the tuples. Various examples and

Python codes are given to understand tuple systematically.

Based on these examples you can write your own code for a

specific task. In the next chapter, we will discuss dictionary as

the next data type used in Python.

Points to remember

Tuples are immutable data type.

In Python, tuples are written with round brackets.

The elements of the tuples are not changeable.

Tuples' operations are very similar to list and strings.

Multiple choice questions

Choose the correct option.

Both tuples and lists are immutable.

Tuples are immutable, while lists are mutable.

Both tuples and lists are mutable.

Tuples are mutable while lists are immutable.

Suppose T = (1, 2, 3, 4,5), which of the following is incorrect?

T[2] = 50

print(T[2])

print(max(T))

print(len(T))

What will be the output of the below code?

tuple1=(1,2,3)

tuple3=tuple1*2

print(tuple3)

(2,4,6)

(1,2,3,1,2,3)

(1,1,2,2,3,3)

Error

Which is a correctly declared tuple?

T = ("orange", "yellow", "red")

T = "orange", "yellow", "red"

T = ["orange", "yellow", "red"]

T = "orangeyellowred"

What will be the output of the following program?

Tuple1 = (10, 20, 40, 30)

Tuple2 = (10, 20, 30, 40)

print(Tuple1

Error

True

False

Unexpected

Answers

b

a

b

a

c

Questions

What is the difference between a list and a tuple?

How would you convert a list into a tuple?

Discuss built-in function supported by tuples?

How does packing and unpacking work on the tuple? Give a

suitable example.

What is positive and negative index in a tuple? Write an

example.

How can a tuple be passed to a function?

Write Python code to sort tuple elements.

Write Python code to copy the first and second elements of a

tuple into a new tuple.

Write code to count the number of occurrences of an item

from a tuple.

Write code to unpack the following tuple into five variables.

Tuple1 = (100, 200, 300, 400, 500)

CHAPTER 8

Dictionaries

Dictionary is another data type in Python, which is similar to

lists and tuples. It is also known as an associative array. A

dictionary consists of a collection of key-value pairs. Each key-

value pair maps the key to its associated value. In this

chapter, you will see various properties and operations that can

be applied to dictionaries. Besides, we have demonstrated

various functions and operations of dictionaries with the help

of examples and codes.

Structure

In this chapter, we will cover the following topics:

The basic concepts of the dictionary

Dictionary creation and accessing elements

Various operations related to dictionaries

The concepts of nested dictionaries

Formatting dictionary elements

Objective

The objective of this chapter is to introduce the concept of

Python dictionaries. After completing this chapter, you should

be able to understand the various operations and properties of

the dictionaries. Also, you will be able to write various codes

related to dictionaries.

Basics of dictionary

Dictionary is another important built-in data type in Python. It

is used to store data as collections. Dictionaries are not

commonly used, such as arrays and lists. In Python, a

dictionary is a collection that keeps information or value

associated with some specific keys. The combination of values

along with keys is known as mapping relation. Hence Python

dictionaries follow mapping relations among elements.

Dictionaries work differently as compared to lists and arrays.

List stores and retrieves elements from the collection using

index positions. It means that we can look up by the index

number whenever we want to access an element in a list or

array.

Many applications require a more flexible way of getting

information from the collection, and programmers are not

interested in working with indexing structures. Hence,

dictionaries can provide a better solution. The concept of

dictionaries can be understood by some real examples. If we

want to get the phone number of an employee based on their

name or want to know the city name according to the given

pin code, then we have an efficient structure known as a

dictionary that follows mapping between values and keys. In

programming, this combination is referred to as a key-value

pair. In this combination, we access any information/value (city

name) associated with a particular key (pin code). The

following figure shows the simple structure of the dictionary

with a key-value example:

Figure 8.1: Simple structure of a dictionary

Hash and associative array are also another name of a

dictionary used in some other programming languages. The

following example shows the concept of a dictionary that stores

city names associated with pin codes:

{"110001":"Delhi", "400008": "Mumbai", "700052":" Kolkata"}

In Python dictionary, all the elements are enclosed in curly

brackets such as { and A colon is used to join the key-value

pair. The following is the syntax of the dictionary:

dictionary = {

: ,

: ,

.

.

.

:

}

Creating a dictionary

A dictionary can be created in Python by placing element

sequences inside the curly brackets of { and separated by

comma There are several values in the dictionary: the key and

the other corresponding part of the pair being the value.

Values in a dictionary can be of any data type and can be

duplicated, while keys cannot be repeated and must be

immutable. Dictionary keys are case-sensitive, which means

different cases represent distinct keys. There are several

methods to create a dictionary.

Method 1: Create empty dictionary and then add items

The first method of dictionary creation is to create an empty

dictionary and then add items to it:

Example 8.1:

Creating an empty dictionary

Dict1 = {}

Adding items to dictionary

Dict1["key1"] = [1, 2, 3]

Dict1["key2"] = ["Code", "From", "Home"]

print (Dict1)

Checking type of Dict1

print (type(Dict1))

Output:

{'key1': [1, 2, 3], 'key2': ['Code', 'From', 'Home']}

'dict'>

Method 2: By passing key-value pair literals

Another way of creating a dictionary by passing key-value pairs

literals:

Example 8.2:

Creating a dictionary

Dict1 = {

110001 : "Delhi",

400008 : "Mumbai",

700052 : "Kolkata",

600001 : "Chennai",

}

Printing dictionary

print (Dict1)

Checking type of Dict1

print (type(Dict1))

Output:

{110001: 'Delhi', 400008: 'Mumbai', 700052: 'Kolkata', 600001:

'Chennai'}

'dict'>

Method 3: Passing key-value pairs to dict() function

We can create a dictionary by passing key-value pairs todict()

function:

Example 8.3:

Creating a dictionary

Dict2 = dict(

Name='Joy',

Age=25,

Address='Delhi',

Salary=50000)

Printing dictionary

print(Dict2)

Checking type of Dict1

print (type(Dict2))

Output:

{'Name': 'Joy', 'Age': 25, 'Address': 'Delhi', 'Salary': 50000}

'dict'>

Method 4: Passing list of tuples to dict() function

The next method of creating dictionaries is to pass a list of

tuples to dict () function:

Example 8.4:

Passing list of tuples

Dict3= dict(

[('Name', 'John'),

('Age', 25),

('Address', 'Delhi'),

('Salary', 50000)])

Printing dictionary

print(Dict3)

Checking type of Dict1

print (type(Dict3))

Output:

{'Name': 'John', 'Age': 25, 'Address': 'Delhi', 'Salary': 50000}

'dict'>

Dictionary does not contain any duplicate keys.

Accessing dictionary values

A dictionary uses key names to access any value, while

indexing is used for other data types to reach values. Key

names can be used within square brackets [] to access

associated values. The following syntax is used to retrieve any

value associated with the key in the dictionary:

Dictionaryname[keyname]

Example 8.5:

Creating a dictionary

Dict1= {

110001 : "Delhi",

400008 : "Mumbai",

700052 : "Kolkata",

600001 : "Chennai",

}

Retrieving values associated with keys

print (Dict1[110001])

print (Dict1[400008])

print (Dict1[600001])

Output:

Delhi

Mumbai

Chennai

An alternate way is to use get() function with key to retrieve

associated value from the dictionary. This function can be used

as follows:

Example 8.6:

Creating a dictionary

Dict1= {

110001 : 'Delhi',

400008 : "Mumbai",

700052 : "Kolkata",

600001 : "Chennai",

}

Retrieving values associated with keys

print (Dict1.get(110001))

print (Dict1.get(400008))

print (Dict1.get(600001))

Output:

Delhi

Mumbai

Chennai

If square brackets [] are used, KeyError will be raised if a key

is not present in the dictionary. The get() function, on the

other hand, returns None if the key is not present.

Adding and modifying an item in a Dictionary

Dictionaries are a mutable data type that means element

values can be changed. Using an assignment operator with

keys, we can add new elements or modify existing elements'

value. If the key is already present, then it will change the

current value. A new key-value pair is added to the dictionary

if the key is not present. The following syntax is used to add

a new element to a dictionary.

Dictionaryname[keyname]=value

Example 8.7:

Adding and modifying dictionary elements

dict1 = {'name': 'Amit', 'age': 30, 'city': 'Mumbai'}

Print the elements

print (dict1)

Add a new element

dict1['Post'] = 'Manager'

After adding new element, print all values

print (dict1)

modifiying an existing value

dict1['age'] = 32

After modifying value, print all values

print (dict1)

Output:

{'name': 'Amit', 'age': 30, 'city': 'Mumbai'}

{'name': 'Amit', 'age': 30, 'city': 'Mumbai', 'Post': 'Manager'}

{'name': 'Amit', 'age': 32, 'city': 'Mumbai', 'Post': 'Manager'}

As we have seen in the above example, if a key is existing in

a dictionary, then it modifies or replaces old value with the

new value

Deleting elements from a dictionary

Any elements can be deleted from the dictionary using its

associated keys. You may use the del operator to delete a

component that is present in the dictionary. The downside that

can be thought of using this is that an exception is raised if

the key is not present. The following syntax is used to delete

an element from a dictionary:

del Dictionaryname[keyname]

The following example deletes an element such as age with the

associated value from the dictionary

Example 8.8:

Adding and modifying dictionary elements

dict1 = {'name': 'Amit', 'age': 30, 'city': 'Mumbai'}

Add a new element

dict1['Post'] = 'Manager'

Print the elements

print ("Available Elements are:", dict1)

After adding new element, print all values

print ("Before Deletion:",dict1)

deleting an element age

del dict1['age']

Values after deleted an element

print ("After Deletion:", dict1)

Output:

Available Elements are: {'name': 'Amit', 'age': 30, 'city':

'Mumbai', 'Post': 'Manager'}

Before Deletion: {'name': 'Amit', 'age': 30, 'city': 'Mumbai',

'Post': 'Manager'}

After Deletion: {'name': 'Amit', 'city': 'Mumbai', 'Post':

'Manager'}

The del operator can even completely delete the dictionary

such as:

del dict1

After deleting dictionary if we try to access it will cause an

error because dict1 no longer exists.

An alternative method is to delete a key and its corresponding

value from a dictionary using the pop() function. The

advantage of using the del operator is that if tried to delete a

non-existent element, it can print the desired value or message.

Second, in addition to completing a basic delete operation, it

also returns the value of a key that is being deleted:

Example 8.9:

Example of deleting dictionary element using pop() function

Initializing a dictionary

D1= {"Amit" : 20, "Sumit" : 25, "John" : 28, "David" : 29,

"Bob" :30}

Printing dictionary before element deletion

print ("The dictionary before performing deletion is : ", D1)

Using pop() function to delete an element such as John

del_value = D1.pop('John')

Printing dictionary after element deletion

print ("The dictionary after deletion is : ", D1)

print ("The removed key's value is : ", del_value)

Again deleting an element which is not present

assigns 'Not available' to del_value

del_value1 = D1.pop('Jai', 'Not available')

Printing dictionary after element deletion

print ("The dictionary after remove is : ", D1)

print ("The removed key's value is : ", del_value1)

Output:

The dictionary before performing deletion is : {'Amit': 20,

'Sumit': 25, 'John': 28, 'David': 29, 'Bob': 30}

The dictionary after deletion is : {'Amit': 20, 'Sumit': 25,

'David': 29, 'Bob': 30}

The removed key's value is : 28

The dictionary after remove is : {'Amit': 20, 'Sumit': 25, 'David':

29, 'Bob': 30}

The removed key's value is : Not available

The clear () function

Using the clear () function, we can delete all elements from

the dictionary at once. Following example deletes all the entries

from the dictionary

Example 8.10:

Example of deleting all element using clear () function

Initializing a dictionary

D1= {"Amit" : 20, "Sumit" : 25, "John" : 28, "David" : 29,

"Bob" :30}

Printing dictionary before element deletion

print ("The dictionary before performing deletion is : ", D1)

Deleting all elements

D1.clear()

Printing dictionary after element deletion

print ("The dictionary after remove is : ", D1)

Output:

The dictionary before performing deletion is : {'Amit': 20,

'Sumit': 25, 'John': 28, 'David': 29, 'Bob': 30}

The dictionary after remove is : {}

Sorting elements in a dictionary

A key and its corresponding value consist of a dictionary

element. Sorting for a dictionary may then be carried out as a

parameter by using any of the key or value components. The

sorted() function is used to sort dictionary elements either by

keys or by values.

Sorting the dictionary by key

We can sort a dictionary directly using the built-in sorted()

function. This can be achieved by passing the dictionary itself

and a function specifying the key parameter that the sorting is

to be performed based on:

Example 8.11:

Initializing a dictionary

D1= {"Amit" : 20, "Sumit" : 25, "John" : 28, "David" : 29,

"Bob" :30}

print (type(D1))

Printing dictionary before sorting

print ("The original dictionary is: ", D1)

Sorting by key

D2= dict(sorted(D1.items(), key=lambda x: x[0]))

print ("After sorting by key: ", D2)

print (type(D2))

Output:

'dict'>

The original dictionary is: {'Amit': 20, 'Sumit': 25, 'John': 28,

'David': 29, 'Bob': 30}

After sorting by key: {'Amit': 20, 'Bob': 30, 'David': 29, 'John':

28, 'Sumit': 25}

'dict'>

Here, the function D1.items() returns a list of tuples containing

the keys and their respective values. For a particular item

tuple, the lambda function returns the key (0th element of the

dictionary). Once these are passed to the sorted() function, a

sorted sequence is returned, which is then typed into a

dictionary.

In versions of Python 3.6+, this function can be used as it

treats dictionaries as ordered sequences. For older versions, we

may substitute the lambda function from the operator module

with the itemgetter() as follows:

Example 8.12:

from operator import itemgetter

Initializing a dictionary

D1= {"Amit" : 20, "Sumit" : 25, "John" : 28, "David" : 29,

"Bob" :30}

print (type(D1))

Printing dictionary before sorting

print ("The original dictionary is: ", D1)

Sorting by key

D2= dict(sorted(D1.items(), key=itemgetter(0)))

print ("After sorting by key: ", D2)

print (type(D2))

Output:

'dict'>

The original dictionary is: {'Amit': 20, 'Sumit': 25, 'John': 28,

'David': 29, 'Bob': 30}

After sorting by key: {'Amit': 20, 'Bob': 30, 'David': 29, 'John':

28, 'Sumit': 25}

'dict'>

Sorting dictionary by value

It is like sorting a dictionary by value to sorting by key. The

only distinction is that the parameter based on which the

sorting will be carried out is the value component of this

kind's corresponding element. The following example sorts the

dictionary according to the value parameter:

Example 8.13:

Initializing a dictionary

D1= {"Amit" : 20, "Sumit" : 25, "John" : 28, "David" : 29,

"Bob" :30}

print (type(D1))

Printing dictionary before sorting

print ("The original dictionary is: ", D1)

Sorting by value

D2= dict(sorted(D1.items(), key=lambda x: x[1]))

print ("After sorting by key: ", D2)

print (type(D2))

Output:

'dict'>

The original dictionary is: {'Amit': 20, 'Sumit': 25, 'John': 28,

'David': 29, 'Bob': 30}

After sorting by key: {'Amit': 20, 'Sumit': 25, 'John': 28, 'David':

29, 'Bob': 30}

'dict'>

In the preceding example, the dictionary D1 is sorted according

to the values returned by the lambda function value for x

element). We use the following code for the older versions of

Python:

Example 8.14:

from operator import itemgetter

Initializing a dictionary

D1= {"Amit" : 20, "Sumit" : 25, "John" : 28, "David" : 29,

"Bob" :30}

print (type(D1))

Printing dictionary before sorting

print ("The original dictionary is: ", D1)

Sorting by value

D2= dict(sorted(D1.items(), key=itemgetter(1)))

print ("After sorting by key: ", D2)

print (type(D2))

Output:

'dict'>

The original dictionary is: {'Amit': 20, 'Sumit': 25, 'John': 28,

'David': 29, 'Bob': 30}

After sorting by key: {'Amit': 20, 'Sumit': 25, 'John': 28, 'David':

29, 'Bob': 30}

'dict'>

Sorting dictionary in reverse order

The sorted() function uses another argument known as reverse.

This may be used to determine the order in which the sorting

should be conducted. The sorting takes place in reverse order

(descending) if True is passed. And if False (default) is passed,

the sorting will be performed in ascending order.

Example 8.15:

Initializing a dictionary

D1= {"Amit" : 20, "Sumit" : 25, "John" : 28, "David" : 29,

"Bob" :30}

Printing dictionary before sorting

print ("The original dictionary is: ", D1)

Sorting by key in reverse order

D2= dict(sorted(D1.items(),reverse=True, key=lambda x: x[0]))

print ("After Reverse order Sorting by key: ", D2)

Sorting by value in reverse order

D3= dict(sorted(D1.items(),reverse=True, key=lambda x: x[1]))

print ("After Reverse order Sorting by value: ", D3)

Output:

The original dictionary is: {'Amit': 20, 'Sumit': 25, 'John': 28,

'David': 29, 'Bob': 30}

After Reverse order Sorting by key: {'Sumit': 25, 'John': 28,

'David': 29, 'Bob': 30, 'Amit': 20}

After Reverse order Sorting by value: {'Bob': 30, 'David': 29,

'John': 28, 'Sumit': 25, 'Amit': 20}

Iterating over a Dictionary

The dictionary itself is not an iterable object, the functions

keys() and values return iterable view objects that can be used

for dictionary iteration. To traverse all the key-value pairs, we

can use for loop. A list of tuples is returned by the items()

function, each tuple being a key and value pair:

Example 8.16:

Creating a dictionary

Dict1= {0 : 'Zero', 1 : 'One', 2 : 'Two', 3 : 'Three', 4 :'Four', 5:

'Five'}

Printing dictionary

print ("The original dictionary is: ", Dict1)

Iterating with for loop

print ('Iterating with for loop:')

for t in Dict1.items():

print (t)

Output:

The original dictionary is: {0: 'Zero', 1: 'One', 2: 'Two', 3:

'Three', 4: 'Four', 5: 'Five'}

Iterating with for loop:

(0, 'Zero')

(1, 'One')

(2, 'Two')

(3, 'Three')

(4, 'Four')

(5, 'Five')

We can also iterate dictionary by storing key and value out of

each pair in two separate variables such as:

Example 8.17:

Creating a dictionary

Dict1= {0 : 'Zero', 1 : 'One', 2 : 'Two', 3 : 'Three', 4 :'Four', 5:

'Five'}

Printing original dictionary

print ("The original dictionary is: ", Dict1)

Iterating with for loop and storing key and value separately

print ('Iterating with storing separate values:')

for key,value in Dict1.items():

print (key,value)

Output:

The original dictionary is: {0: 'Zero', 1: 'One', 2: 'Two', 3:

'Three', 4: 'Four', 5: 'Five'}

Iterating with storing separate values:

0 Zero

1 One

2 Two

3 Three

4 Four

5 Five

Another way of dictionary iteration is to use the key() function.

Using key() function, the associated value can be obtained as

follows:

Example 8.18:

Creating a dictionary

Dict1= {0 : 'Zero', 1 : 'One', 2 : 'Two', 3 : 'Three', 4 :'Four', 5:

'Five'}

Printing original dictionary

print ("The original dictionary is: ", Dict1)

Iterating with key() function

print ('Iterating using key() function:')

for k1 in Dict1.keys():

print (k1, Dict1.get(k1)) #or print(k1, Dict1[k1])

Output:

The original dictionary is: {0: 'Zero', 1: 'One', 2: 'Two', 3:

'Three', 4: 'Four', 5: 'Five'}

Iterating using key() function:

0 Zero

1 One

2 Two

3 Three

4 Four

5 Five

Nested dictionaries

As we have seen earlier, that unordered set of elements is

known as a dictionary. It contains various elements in the key-

value pairs embedded in {} curly brackets:

Dictionary = {'key1' : 'value1','key2': 'value2'}

If a dictionary is stored inside another dictionary is known as

a nested dictionary. It is like nested records and nested

structures used in other languages. In other words, we can say

that it is a collection of dictionaries into one single dictionary.

It can be represented as:

Nested_Dict1 = {

'Dict1': {'key1': 'value1'},

'Dict2': {'key1': 'value1'},

'Dict3': {'key1': 'value1'}

}

Here, the Nested_Dict1 is a nested dictionary with the

dictionary and Dictionary and Dict3 are separate dictionaries

that contain their key-value pairs. The following code shows the

creation and accessing elements from nested dictionaries:

Example 8.19:

Creating a nested dictionary

Emp = {'D1' : {'name': 'Amit', 'age': '30', 'Post': 'Manager'},

'D2' : {'name': 'Joy', 'age': '25', 'Post': 'Clerk'},

'D3' :{'name': 'David', 'age': '35', 'Post': 'HR'}

}

Printing complete nested dictionary

print (Emp)

Printing values of D1 dictionary

print ('-----Details of D1 dictionary-------')

print (Emp['D1']['name'])

print (Emp['D1']['age'])

print (Emp['D1']['Post'])

Printing values of D2 dictionary

print ('-----Details of D2 dictionary-------')

print (Emp['D2']['name'])

print (Emp['D2']['age'])

print (Emp['D2']['Post'])

Printing values of D3 dictionary

print ('-----Details of D3 dictionary-------')

print (Emp['D3']['name'])

print (Emp['D3']['age'])

print (Emp['D3']['Post'])

Output:

{'D1': {'name': 'Amit', 'age': '30', 'Post': 'Manager'}, 'D2':

{'name': 'Joy', 'age': '25', 'Post': 'Clerk'}, 'D3': {'name': 'David',

'age': '35', 'Post': 'HR'}}

-----Details of D1 dictionary-------

Amit

30

Manager

-----Details of D2 dictionary-------

Joy

25

Clerk

-----Details of D3 dictionary-------

David

35

HR

Adding another dictionary to the existing nested dictionary

The following code shows an example of adding a

subdictionary to the existing nested dictionary. For adding a

new dictionary, we have to use element by its key and assign

an associated value:

Example 8.20:

Creating a nested dictionary

Emp = {'D1' : {'name': 'Amit', 'age': '30', 'Post': 'Manager'},

'D2' : {'name': 'Joy', 'age': '25', 'Post': 'Clerk'},

'D3' :{'name': 'David', 'age': '35', 'Post': 'HR'}

}

Printing dictionary elements before adding a sub dictionary

print ('Nested Dictionary before adding a sub dictionary:', Emp)

Adding a sub dictionary

Emp['D4'] = {'name': 'Bob', 'age': '32', 'Post': 'Manager'}

Printing dictionary elements after adding a sub dictionary

print ('Nested Dictionary after adding a sub dictionary:', Emp)

Output:

Nested Dictionary before adding a sub dictionary: {'D1':

{'name': 'Amit', 'age': '30', 'Post': 'Manager'}, 'D2': {'name':

'Joy', 'age': '25', 'Post': 'Clerk'}, 'D3': {'name': 'David', 'age': '35',

'Post': 'HR'}}

Nested Dictionary after adding a sub dictionary: {'D1': {'name':

'Amit', 'age': '30', 'Post': 'Manager'}, 'D2': {'name': 'Joy', 'age':

'25', 'Post': 'Clerk'}, 'D3': {'name': 'David', 'age': '35', 'Post':

'HR'}, 'D4': {'name': 'Bob', 'age': '32', 'Post': 'Manager'}}

Updating nested dictionary items

Nested dictionary elements can easily be updated. Simply refer

to the item by the key and assign a new value. If the key is

already in the dictionary, the value of that key is replaced by a

new one. Following example updates the values of D1

dictionary inside the Emp dictionary:

Example 8.21:

Creating a nested dictionary

Emp = {'D1' : {'name': 'Amit', 'age': '30', 'Post': 'Manager'},

'D2' : {'name': 'Joy', 'age': '25', 'Post': 'Clerk'},

'D3' :{'name': 'David', 'age': '35', 'Post': 'HR'}

}

Printing dictionary elements before update

print ('Nested Dictionary before update:', Emp)

Updating values of D1

Emp['D1'] = {'name': 'Bob', 'age': '32', 'Post':'Director'}

Printing dictionary elements after update

print ('Nested Dictionary after updating values:', Emp)

Output:

Nested Dictionary before update: {'D1': {'name': 'Amit', 'age':

'30', 'Post': 'Manager'}, 'D2': {'name': 'Joy', 'age': '25', 'Post':

'Clerk'}, 'D3': {'name': 'David', 'age': '35', 'Post': 'HR'}}

Nested Dictionary after updating values: {'D1': {'name': 'Bob',

'age': '32', 'Post': 'Director'}, 'D2': {'name': 'Joy', 'age': '25',

'Post': 'Clerk'}, 'D3': {'name': 'David', 'age': '35', 'Post': 'HR'}}

Deleting elements from a nested dictionary

We can use del operator to delete elements from the nested

dictionary. The following example deletes the value of age

according to given key from D2 dictionary:

Example 8.22:

Creating a nested dictionary

Emp = {'D1' : {'name': 'Amit', 'age': '30', 'Post': 'Manager'},

'D2' : {'name': 'Joy', 'age': '25', 'Post': 'Clerk'},

'D3' :{'name': 'David', 'age': '35', 'Post': 'HR'}

}

Printing dictionary elements before delete

print ('Nested Dictionary before delete:')

print (Emp)

Deleting element from D2

del Emp['D2']['age']

Printing dictionary elements after Delete

print ('Nested Dictionary after Deleting values:')

print (Emp['D2'])

Output:

Nested Dictionary before delete:

{'D1': {'name': 'Amit', 'age': '30', 'Post': 'Manager'}, 'D2':

{'name': 'Joy', 'age': '25', 'Post': 'Clerk'}, 'D3': {'name': 'David',

'age': '35', 'Post': 'HR'}}

Nested Dictionary after Deleting values:

{'name': 'Joy', 'Post': 'Clerk'}

Deleting a dictionary from nested dictionary

We can delete a complete subdictionary from nested dictionary

using del operator same as elements. Following example

deletes D2 sub dictionary from the nested dictionary

Example 8.23:

Creating a nested dictionary

Emp = {'D1' : {'name': 'Amit', 'age': '30', 'Post': 'Manager'},

'D2' : {'name': 'Joy', 'age': '25', 'Post': 'Clerk'},

'D3' :{'name': 'David', 'age': '35', 'Post': 'HR'}

}

Printing dictionary elements before Deleting a sub dictionary

print ('Nested Dictionary before delete:')

print (Emp)

Deleting D2

del Emp['D2']

Printing dictionary after Deleting a sub dictionary

print ('Nested Dictionary after Deleting D2:')

print (Emp)

Output:

Nested Dictionary before delete:

{'D1': {'name': 'Amit', 'age': '30', 'Post': 'Manager'}, 'D2':

{'name': 'Joy', 'age': '25', 'Post': 'Clerk'}, 'D3': {'name': 'David',

'age': '35', 'Post': 'HR'}}

Nested Dictionary after Deleting D2:

{'D1': {'name': 'Amit', 'age': '30', 'Post': 'Manager'}, 'D3':

{'name': 'David', 'age': '35', 'Post': 'HR'}}

Iterating through a nested dictionary

We can traverse through each element in a nested dictionary

using for loops such as:

Example 8.24:

Creating a nested dictionary

Emp = {'D1' : {'name': 'Amit', 'age': '30', 'Post': 'Manager'},

'D2' : {'name': 'Joy', 'age': '25', 'Post': 'Clerk'},

'D3' :{'name': 'David', 'age': '35', 'Post': 'HR'}

}

Iterating dictionary elements using for loop

for Dict_id, value in Emp.items():

print ("\n Dict ID:", Dict_id)

for key in value:

print (key + ':', value[key])

print ("------------------")

Output:

Dict ID: D1

name: Amit

age: 30

Post: Manager

Dict ID: D2

name: Joy

age: 25

Post: Clerk

Dict ID: D3

name: David

age: 35

Post: HR

In the previous example, the first loop returns all the keys in

the nested dictionary It consists of the Dict ID of each

employee. We have used these IDs to unpack the values of

each employee. The second loop goes through the values of

each employee. Then, it returns all the keys Post of each

employee's dictionary. Then the keys of the employees and the

associated values are printed.

Built-in dictionary functions

There are various built-in functions and methods available in

Python that are used to perform various operations on

dictionaries. The following are some important functions:

len () This function returns the total length of the dictionary

elements. This would be equal to the number of elements in

the dictionary. It can be used as follows:

len(dict)

str() This function produces a printable string representation of

a given dictionary. It has the following syntax:

str(dict)

type () The function type() returns the type of the passed

parameter. If the passed parameter is a dictionary, then it

would return type as a dictionary:

type(dict)

Example 8.25:

Built-in dictionary functions

Creating a dictionary

D1= {"Amit" : 20, "Sumit" : 25, "John" : 28, "David" : 29,

"Bob" :30}

Finding the length of the dictionary

print ("The length of dictionary is : ", len(D1))

String representation of dictionary

D2=str(D1)

print ("The String representation of dictionary is : ", D2)

print (type(D2))

print ('The type of D1 is:', type(D1))

Output:

The length of dictionary is : 5

The String representation of dictionary is : {'Amit': 20, 'Sumit':

25, 'John': 28, 'David': 29, 'Bob': 30}

'str'>

The type of D1 is: 'dict'>

cmp () The function cmp compares two dictionary elements

based on key and values. Based on whether the two

dictionaries being compared are similar or not, it will return

either 1, 0, or -1. This function takes two dictionaries as

arguments for comparison. If D1 and D2 are two dictionaries,

then following result will be produced based on the

comparison. In Python 3.x, this feature is not available.

if D1 = then cmp (D1, D2) returns 0

if D1 < then cmp (D1, D2) returns -1

if D1 > then cmp (D1, D2) returns 1

Example 8.26:

D1 = {'name': 'Amit', 'age': 25};

D2 = {'name': 'Amit', 'age': 25};

D3 = {'name': 'Sumit', 'age': 20};

D4 = {'name': 'Rahul', 'age': 30};

print ("Return Value : %d" % cmp(D1, D2))

print ("Return Value : %d" % cmp(D2, D3))

print ("Return Value : %d" % cmp(D1, D4))

Output:

Return Value : 0

Return Value : 1

Return Value : -1

any () This function checks whether any key is True or not. It

takes an iterable parameter such as dictionary. If all keys are

False or the dictionary is empty, it returns If at least one key

is true, it returns

Example 8.27:

0 or False

D1 = {0: 'It is False'}

print (any(D1))

1 or True

D2 = {0: 'It is False', 1: 'It is True'}

print (any(D2))

Both keys are false

D3 = {0: 'It is False', False: 'It is False'}

print (any(D3))

Empty Dictionary

D4 = {}

print (any(D4))

All are True

D5 = {True: 'It is True', 1: 'It is True'}

print (any(D5))

Output:

False

True

False

False

True

all () When all elements are True in the given dictionary, this

function returns If not, False will return it. In other words, If

all keys are True or the dictionary is empty, True is returned by

all() function. Else, like all other cases, this returns

Example 8.28:

0 or False

D1 = {0: 'It is False'}

print (all(D1))

1 or True

D2 = {0: 'It is False', 1: 'It is True'}

print (all(D2))

Both keys are false

D3 = {0: 'It is False', False: 'It is False'}

print (all(D3))

Empty Dictionary

D4 = {}

print (all(D4))

1 or True

D5 = {True: 'It is True', 1: 'It is True'}

print (all(D5))

Output:

False

False

False

True

True

The copy()method

The copy() method returns a shallow copy of the dictionary.

The original dictionary does not change it. The following

example illustrates the use of copy() method:

Example 8.29:

D1 = {'name': 'Python', 'year': 2021}

print ('Original Value of D1:', D1)

creating a copy of D1

D2 = D1.copy()

print ('Copied Version :', D2)

Output:

Original Value of D1: {'name': 'Python', 'year': 2021}

Copied Version: {'name': 'Python', 'year': 2021}

Formatting dictionaries

We can interpolate strings using dictionaries. They have a

syntax in which, between the % operator and the conversion

character, we need to include the key in the parentheses. For

instance, if we have an int stored in a salary key and we want

to format it as xxxx.xx then we can put %(salary).2fat in the

position we want it to be shown.

Example 8.30:

Creating a dictionary

D1= {'name': 'Amit', 'salary': 30000, 'Post': 'Manager'}

Printing dictionary

print (D1)

print ('--------------')

print ('----------Formatted dictionary-----------')

Formatted printing

print ("My Name is: %(name)s" %D1)

print ("My Salary is: %(salary).2f and POST is: %(Post)s "

%D1)

Output:

{'name': 'Amit', 'salary': 30000, 'Post': 'Manager'}

----------Formatted dictionary-----------

My Name is: Amit

My Salary is: 30000.00 and POST is: Manager

Conclusion

In this chapter, we discussed the concepts and various

functionalities of dictionaries. We also discussed how

dictionaries could be created in different ways. Various

examples and Python code are given for dictionary

implementations. Based on these examples, you can write your

own code to use dictionaries. In the next chapter, we will

discuss the file handling concepts in Python.

Points to remember

Dictionaries are an unordered and changeable collection of data

values that hold key-value pairs.

In Python, dictionaries are written inside curly braces

Dictionaries operations are very similar to lists and tuples.

We can shrink or grow a nested dictionary as need.

Multiple choice questions

Which of the following statements create a dictionary in

Python?

D = {}

D = {'David':50, 'Alex':35}

D = {35: 'David', 50: 'Alex'}

All of the mentioned

Which one of the following is correct with respect to

dictionaries?

In Python, a dictionary can have two same keys with different

values.

In Python, a dictionary can have two same values with

different keys

In Python, a dictionary can have two same keys or same

values but cannot have two same key-value pair

In Python, a dictionary can neither have two same keys nor

two same values.

If we write the below code, which of the following will give an

error?

Suppose D1={"A":1,"B":2,"C":3, "D":4, “E":5}

print(len(D1))

print(D1.get("B"))

D1["A"]=5

None of these

Which one of the following is correct to empty a dictionary?

Student = {

"name": "Amit",

"age": 30,

"percent": 85

}

del Student

del Student[0:2]

Student.clear()

empty Student

What will be the output of the following Python code?

a={1:"A",2:"B",3:"C"}

b=a.copy()

b[2]="D"

print(a)

Error, copy () method does not exist for dictionaries

{1: 'A', 2: 'B', 3: 'C'}

{1: 'A', 2: 'D', 3: 'C'}

"None" is printed

Answers

d

b

d

c

b

Questions

What is the difference between a list, tuple, and a dictionary?

What are the features of python dictionaries? Discuss.

What is meant by key-value pairs in a dictionary?

How to create a dictionary in Python? Give an example.

Discuss built-in functions supported by dictionaries?

How does del operation work on dictionaries? Give an

example.

Explain nested dictionary with suitable example.

Write a Python program to sort dictionary elements in reverse

order.

Write a program to input students' names and phone numbers

and store them in the dictionary as the key-value pair. Perform

the following operations on the dictionary:

Display name and phone number of all the students.

Add a new key-value pair in this dictionary and display the

modified dictionary.

Delete a particular student from the dictionary.

Modify the phone number of an existing student.

Check if a student is present in the dictionary or not

Display the dictionary in descending order of names

CHAPTER 9

File Handling

When data must be saved permanently in a file, file handling

is essential. A file is a named location on the disc where

relevant data is stored. After the program has been terminated,

we can access the data that has been saved. The idea of file

handling has been extended to various other languages, but

the implementation is either complicated or lengthy. However,

like other Python concepts, this concept is simple and

straightforward. In this chapter, you will see various concepts

and functions related to file handling. Besides, we have

demonstrated various file operations with the help of examples

and codes.

Structure

In this chapter, we will cover the following topics:

The need for file handling

Types of files

Opening and closing files

Reading and writing in files

Various methods of file handling

Objective

The objective of this chapter is to introduce the concept of file

handling in Python. After completing this chapter, you should

be able to perform various file-related operations. Also, you will

be able to write Python codes to manage files on a disk. You

will also understand the uses of different file-related methods

in Python.

File handing

A file is a collection of bytes used to store information. This

information is organized in a particular format, ranging from a

simple text file to a complex program executable. Finally, these

byte files are converted into binary 1 and 0 for faster computer

processing.

Python, like many other programming languages, supports file

handling and allows its users to read and write files and

perform a variety of other file-related tasks. Python handles

files differently depending on whether they are text or binary,

which is crucial. Each line of code consists of a series of

characters that together form a text file. A unique character

called as the EOL or End of Line character, such as the

comma, or a newline character, is used to end each line of a

file. It signals to the interpreter that the current line has ended

and that a new one has started. On most modern file

systems, files are divided into three parts:

Details about the file's contents (file name, size, type, and so

on).

The file's contents as written by the author or writer.

End of A special character that denotes the file's termination.

Need of file handling

In programming, we need a particular piece of input data to

be generated multiple times. It is not always sufficient to

simply show data on the console. The data to be displayed

can be huge. Only a limited amount of data can be displayed

on the console; additionally, since memory is volatile, it is

challenging to recover programmatically generated data

repeatedly. If we need to store something, we can do so on

the local file system, which is volatile and accessible at any

time. This necessitates the use of Python's file handling

functionality. File handling in Python allows us to use our

Python program to create, edit, read, and delete files on the

local file system. On a file, you can perform the following

operations:

Creating a new file

Opening previously saved file

Closing an opened file

Reading from a file

Writing into a file

File deletion

File path

A file path is required when accessing a file on an operating

system. A file path is a string that defines a file's location. It

is divided into three major segments:

Directory The location of a file or folder on a file system,

separated by a forward slash in Linux or Unix or a backslash

in Windows.

File The file's real name.

It defines the file type.

The following figure shows a file path example. Assume you

needed to access the abc.jpeg file, and your current location

was the same as the path. To get to the file, you must first

navigate to the path folder, then to the dir1 directory, and

finally to the abc.jpeg file. Path/dir1/ is the folder path. Abc is

the name of the file. .jpeg is the file extension. So

path/dir1/abc.jpeg is the complete path:

Figure 9.1: Example of file path

Opening a file

To perform reading and writing operations on a file, it needs

to be opened first. To open a file in Python, the user needs to

create a file object associated with a physical file. In addition,

the open() function is used to open a file in Python. The

open() function in Python takes two arguments: the file name

and the access mode. The function returns a file object, which

can be used for reading, writing, and other operations. The

following syntax is used to open a file in Python.

Syntax:

File_object_Name = open(, ,)

Various modes, such as read, write, and append are available

for accessing the files. The access mode to open a file is

defined as follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows:

Table 9.1: File access modes

Example 9.1:

fileobj = open("file1.txt","r") #Opening file1.txt in read mode

if filobj:

print ("File opened.")

Output:

File opened.

We passed file name as the first argument and opened the file

in read mode with r as the second argument in the above

example. The fileobj holds the file object, and if the file is

successfully opened, the print statement is executed.

We have stored file1.txt in the same directory.

Closing a file

We can perform any operation on the file using the file system

that is currently open in Python; thus, it is best to practice

closing the file once all processes have been completed. After

we've completed all of the files' operations, we'll use the

close() method to close it. When the close() method on a file

object is called, any unwritten data is deleted.

Syntax:

File_Object_Name.close()

Example 9.2:

fileobj = open("file1.txt","r") #Opening file1.txt in read mode

if fileobj:

print ("File opened.")

fileobj.close() # Closing file1.txt

Output:

File opened.

Writing into a file

A string is written to a file using the write() method. To write

text to a file, we must first open it with the open method and

one of the access modes mentioned below:

w: If the file already exists, it will be overwritten. The file

pointer is located at the start of the file.

a: The file will be appended to the current one. The file

pointer is at the file's end. If no such file exists, it creates one.

Example 9.3:

opening f1.txt in write mode. If this file is not present, a

new file will be created.

Obj1= open ("f1.txt", "w")

writing contents in this file

Obj1.write("Python programming \n")

Obj1.write("It is a programming language \n")

Obj1.write("It supports file handling \n")

closing this file

Obj1.close()

Output:

File Name: f1.txt

Python programming

It is a programming language

It supports file handling

Screenshot of f1.txt

Figure 9.2: Screenshot of f1.txt

Example 9.4:

opening f1.txt in Append mode. If this file is not present, a

new file will be created.

Obj1= open ("f1.txt", "a")

Appending contents in this file

Obj1.write("Python is easy to learn \n")

Obj1.write(“It is an object-oriented programming language”)

closing this file

Obj1.close()

Output:

File Name: f1.txt

Python programming

It is a programming language

It supports file handling

Python is easy to learn

It is an object-oriented programming language

Screenshot of f1.txt

Figure 9.3: Screenshot of f1.txt

writelines() method

The writelines() method is a Python built-in method for writing

a list of strings or list items to a file.

Syntax:

fileobject.writelines(list_of_items)

Example 9.5:

file creation

fobj = open("f2.txt", "w")

writing multiple strings

fobj.writelines(["Python programming ","Programming book \n"])

list

list1 = ["Krishna ","Brĳesh ","Arvind ","Joy "]

writing list

fobj.writelines(list1)

closing the file

fobj.close()

again opening file in read mode

fobj = open("f2.txt", "r")

print (fobj.read())

closing the file

fobj.close()

Output:

Python programming book

Krishna Brĳesh Arvind Joy

Writing numbers to a file

Python reads files as strings by default, and the write() function

expects only to write strings. If we want to write numbers to a

file, we'll need to use the str() function to cast them as

strings.

Example 9.6:

n= range(0, 25)

fn = "fundemo.txt"

open file to write

obj= open(fn, 'w')

for i in n:

obj.write(str(i) + " ")

obj.close() #Close the file

Output:

Figure 9.4: fundemo output

Reading a file

In Python, there are several ways to read a text file. The read()

method can be used to retrieve a string that includes all the

characters in a file.

Syntax:

File_Object.read()

Before reading a file, it is required to open that file in (read)

mode.

Example The contents of the test.txt file are shown as follows:

Figure 9.5: test.txt file

opening test.txt file in read mode.

Obj1= open ("test.txt", "r")

reading whole content

Data=Obj1.read()

print (Data)

closing this file

Obj1.close()

Output:

Python programming book.

It is a programming language.

It supports file handling.

It is easy to learn.

Using a certain number of characters is another way to read a

text. The interpreter will, for example, read the first twenty

characters of stored data and return it as a string using the

following code:

Example 9.8:

opening test.txt file in read mode.

Obj1= open ("test.txt", "r")

reading whole content

Data=Obj1.read(20)

print (Data)

closing this file

Obj1.close()

Output:

Python programming b

readline() method

The readline() function in Python makes it easy to read a file

line by line. The readline() method reads the file's lines starting

at the beginning, so if we call it three times, we'll get the first

three lines of the file. This method will return a string of

characters containing a single line of data from the file each

time it is called:

Obj1= open ("test.txt", "r")

print Obj1.readline()

This will return the file's first line, as follows:

Python programming book.

If we just wanted to return the file's fourth line, we'd do it like

this:

Obj1= open ("test.txt", "r")

print Obj1.readline(4)

It is easy to learn.

Example 9.9:

opening test.txt file in read mode.

Obj1= open ("test.txt", "r")

reading first line

Line1=Obj1.readline()

reading second line

Line2=Obj1.readline()

printing lines

print (Line1)

print (Line2)

closing this file

Obj1.close()

Output:

Python programming book.

It is a programming language.

readlines() method

If we wanted to get back every line in the file, separated

properly. The same function will be used but in a different

format. The FileObject.readlines() method is used to accomplish

this. It returns a list of lines up to the end of the file

Example 9.10:

opening test.txt file in read mode.

Obj1= open ("test.txt", "r")

reading whole content

Data=Obj1.readlines()

print (Data)

closing this file

Obj1.close()

Output:

['Python programming book.', 'It is a programming language.',

'It supports file handling.', 'It is easy to learn.']

Reading file through a loop

The loop-over method can be used to read all the lines from a

file in a more memory accessible and fast manner. The

corresponding code is simple and easy to read, which is a

benefit of using this method.

Example 9.11:

opening test.txt file in read mode.

Obj1= open ("test.txt", "r")

reading content through loop

for x in Obj1:

print (x)

closing this file

Obj1.close()

Output:

Python programming book.

It is a programming language.

It supports file handling.

It is easy to learn.

Reading numbers from a file

To read numbers from a file, read() method is used. Firstly, we

have to open a file in reading mode then; the numbers can be

easily read. The following example reads stored numbers from

the fundemo.txt file.

Example 9.12:

fn = "fundemo.txt"

open file to write

obj= open(fn, 'r')

data=obj.read()

print (data)

obj.close() #Close the file

Output:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

23 24

Creating a new file

With the help of the open() function, you can create a new file

by using one of the following access modes.

x: it creates a new file with the name you specify. It throws an

error if a file with the same name already exists.

a: If no such file exists, it creates a new one with the

specified name. If the file with the given name already exists,

it appends the content to it.

w: If no such file exists, it creates a new one with the

specified name. If a file exists, it overwrites.

Example 9.13:

#creating a new empty file

fileobj= open("myfile1.txt", "x")

#close this file

fileobj.close()

The preceding code will create a new file in the current

working directory. If you want your file to be created at an

absolute path on the disc, you can also give it a complete

path.

Example 9.14: Creating a new file with an existing name

#creating a new file, but myfile1.txt is already exist

fileobj= open("myfile1.txt", "x")

Output:

Traceback (most recent call last):

File "main.py", line 2, in

fileobj= open("myfile1.txt", "x")

FileExistsError: [Errno 17] File exists: 'myfile1.txt'

In the previous example, we tried to create a new file

However, this file already exists in the same directory. We get

The file object attributes

You can get different file-related details once a file is opened

and you have one file object. The following is a list of all file

object attributes:

It is a bool value that indicates the current state of the file

object.

The encoding details of the file.

It returns the file mode of the file in which the file is opened.

It returns the file name.

Example 9.15:

Opening a file in read mode

Fileobj = open("fundemo.txt", "r")

print ("File Name:", Fileobj.name)

print ("File closed or not : ", Fileobj.closed)

print ("File Mode : ", Fileobj.mode)

print ("File Encoding", Fileobj.encoding)

Output:

File Name: fundemo.txt

File closed or not : False

File Mode : r

File Encoding UTF-8

File positions

When we use Python to open a file for reading, we get a file

handle those points to the file's beginning. The pointer always

points to the end of the reading as we read from the file, and

the next read will begin there. The following methods are used

to get file position and change position, respectively:

The tell() method returns the current file position; in other

words, the next read or write will occur at that many bytes

from the file's beginning.

The seek(offset[, from]) method is used to adjust the file's

current location. The number of bytes to be moved is defined

by the offset statement. The from statement determines the

starting point for the bytes to be transferred from.

If from is set to 0 in the seek() function, the file's beginning

will be used as the reference position, 1 the current position

will be used as the reference position, and 2 the file's end will

be used as reference position.

Example 9.16:

Creating a file`

Obj1= open ("testfile.txt", "w")

writing contents in this file

Obj1.write("Python programming \n")

Obj1.write("It is a programming language \n")

Obj1.write("It supports file handling \n")

Obj1.write("I like Python.")

closing this file

Obj1.close()

Opening a file in read mode

Fileobj = open("testfile.txt", "r")

#initially the filepointer is at 0

print ("Pointer Position: ",Fileobj.tell()) #0

#reading the content of the file

Line1= Fileobj.readline()

print (Line1)

print ("Pointer Position:", Fileobj.tell()) # 20

Line2= Fileobj.readline()

print (Line2)

print ("Pointer Position:", Fileobj.tell()) # 50

Line3= Fileobj.readline()

print (Line3)

print ("Pointer Position:", Fileobj.tell()) # 77

Line4= Fileobj.readline()

print (Line4)

print ("Pointer Position:", Fileobj.tell()) # 91

Output:

Pointer Position: 0

Python programming

Pointer Position: 20

It is a programming language

Pointer Position: 50

It supports file handling

Pointer Position: 77

I like Python.

Pointer Position: 91

Example 9.17:

Creating a file`

Obj1= open ("testfile1.txt", "w")

writing contents in this file

Obj1.write("Python programming \n")

Obj1.write("It is a programming language \n")

Obj1.write("It supports file handling \n")

Obj1.write("I like Python.")

closing this file

Obj1.close()

Opening a file in read mode

Fileobj = open("testfile1.txt", "r")

#initially the filepointer is at 0

print ("Pointer Position: ",Fileobj.tell())

#reading the content of the file

Line1= Fileobj.readline()

print (Line1)

print ("Pointer Position:", Fileobj.tell())

Line2= Fileobj.readline()

print (Line2)

#changing the file pointer location to 10.

Fileobj.seek(10);

print ("Pointer Position:", Fileobj.tell())

Line3= Fileobj.readline()

print (Line3)

print ("Pointer Position:", Fileobj.tell())

Line4= Fileobj.readline()

print (Line4)

print ("Pointer Position:", Fileobj.tell())

#changing the file pointer location to 10.

Fileobj.seek(20);

print ("Pointer Position:", Fileobj.tell())

Output:

Pointer Position: 0

Python programming

Pointer Position: 20

It is a programming language

Pointer Position: 10

gramming

Pointer Position: 20

It is a programming language

Pointer Position: 50

Pointer Position: 20

Python directory operations

A directory is a structure that holds all of the documents, files,

and directories associated with it. In Python, the OS module

offers functions for communicating with the operating system.

This module provides access to various operating-system-

specific functions for manipulating processes, files, file

descriptors, folders, and other low-level OS features.

Current working directory

getcwd() returns the current working directory's path. This is

the location where the operating system converts a relative file

name to an absolute file name.

Example 9.18 :

#importing os module

import os

#print the current working directory

print (os.getcwd())

Output:

/home/Krishna

List of directories

You can get a directory list from a specific location. You must

use the listdir(location) function to accomplish this. The

function will return a list of strings containing the names of

the directories in the specified location if you pass it in the

location. The simple listdir() function will return the contents of

the current directory.

Example 9.19:

import os

data = os.listdir() #list of contents from current directory

print (data)

print (os.listdir('/usr')) # list of contents from usr directory

Output:

['main.py']

['games', 'local', 'include', 'share', 'lib', 'bin', 'src', 'sbin']

Creating a directory

The os.mkdir() method is used to create a directory. Let's make

a new directory called The os.listdir() method will then print a

list of directories along the path.

Example 9.20:

import os

#create directory

os.mkdir("mydir")

print (os.listdir()) # list of contents

Output:

['mydir', 'main.py']

Change directory

To change the directory, we must first import the os module

and then use the os.chdir() method to change our program's

base path.

Example 9.21:

import os

#change directory

os.chdir('/Users/Krishna/')

#print current working directory

print (os.getcwd())

Output:

/Users/Krishna

Renaming a directory

The os.rename() method allows you to rename a folder from

one name to another.

Example 9.22:

import os

#rename directory

os.mkdir('mydir1')

print (os.listdir(os.getcwd()))

#rename

os.rename("mydir1","mydir2")

print (os.listdir(os.getcwd()))

Output:

['mydir1', 'main.py']

['mydir2', 'main.py']

Delete a directory

The rmdir() function is used to remove an already empty

directory. The directory will not be removed if it is not empty.

Example 9.23:

import os

os.mkdir('mydir1')

print ('Before deletion:',os.listdir(os.getcwd()))

#delete directory

os.rmdir("mydir1")

print ('After deletion:',os.listdir(os.getcwd()))

Output:

Before deletion: ['mydir1', 'main.py']

After deletion: ['main.py']

Renaming and deleting file

The os module in Python provides methods for performing file-

processing operations, including renaming and removing files.

To use this module, you must first import it before calling any

related functions. The renaming and deletion of files are the

same as the directories. The os.rename() function is used to

rename a file with a new name and os.remove() function can

delete a specific file.

Syntax for rename:

os.rename(Previous_file_name, new_file_name)

Syntax for delete:

os.remove(file_name)

Example 9.24:

File rename example

import os

print ('Before rename:',os.listdir(os.getcwd()))

Rename a file from myfile1.txt to newfile1.txt

os.rename("myfile1.txt", "newfile1.txt")

print ('After rename:',os.listdir(os.getcwd()))

Output:

Before rename: ['f1.txt', 'myfile1.txt', 'main.py', 'myfile2.txt']

After rename: ['f1.txt', 'newfile1.txt', 'main.py', 'myfile2.txt']

Example 9.25:

#file delete example

import os

print ('Before Delete:', os.listdir(os.getcwd()))

Delete a file newfile1.txt

os.remove("newfile1.txt")

print ('After Delete:', os.listdir(os.getcwd()))

Output:

Before Delete: ['f1.txt', 'myfile1.txt', 'newfile1.txt', 'main.py',

'myfile2.txt']

After Delete: ['f1.txt', 'myfile1.txt', 'main.py', 'myfile2.txt']

Binary files

In Python, there are two kinds of files: text and binary. Binary

files make up the majority of the files we see on our

computers. Working with binary files is easy with Python's

tools. Strings of form bytes are used in binary files. It means

that you'll get a byte's object back when reading binary data

from a file. We must use the same modes (as before) with

the letter b at the end when working with binary files. Such

that Python recognizes that we're dealing with binary files. The

wb mode is used to write the binary file. Similarly, rb and ab

modes are used to read and append data in binary files,

respectively.

Example 9.26: Writing into binary files

data = [12,34,100,240,255]

#printing data

print (data)

#converts to bytes

bdata = bytes(data)

print (bdata)

fileobj = open("myfile1.bin", "wb")

fileobj.write(bdata)

fileobj.close()

Output:

[12, 34, 100, 240, 255]

b'\x0c"d\xf0\xff '

Example 9.27: Reading from binary file

Open binary file

fobj = open('myfile1.bin', 'rb')

read string from binary file

result = fobj.read()

print (result)

Output:

b'\x0c"d\xf0\xff '

Conclusion

In this chapter, we discussed the file handling concepts in

Python. We also discussed various file modes in which it can

be opened for processing. Multiple examples and Python code

are given for file processing, such as read, write, delete,

rename, etc. Based on these examples, you can write your

code for file processing. In the next chapter, we will discuss

the exception handling concept in Python with various

examples.

Points to remember

Primary modes of files are read, write, and append.

The os module can be used to process various files and

directories.

Binary files can be processed, including b at the end of file

modes.

The read() method returns all the data as one string.

Multiple choice questions

To read three characters from a file object Obj, we use

Obj.read(3)

Obj.read()

Obj.readline()

Obj.readlines()

To read the next line of the file from a file object Obj, we use

Obj.read(3)

Obj.read()

Obj.readline()

Obj.readlines()

Assuming file1.txt contains:

This is line 1

This is line 2

This is line 3

This is line 4

Code snippet:

f1= open("file1.txt",'a')

print (f1.read())

f1.close()

What is the output of the program snippet?

This is line 1

This is line 4

Entire file contents

None, IOError

Which one of the following is not an attribute of the file?

closed

encoding

rename

mode

What is the use of the tell() method in Python?

tells you the current position within the file

tells you the end position within the file

tells you the file is opened or not

none of the mentioned

Answers

a

c

d

c

a

Questions

What do you mean by file handling?

Explain the open() function with its syntax in detail.

List out the basic file modes available in Python.

Discuss various file object attributes.

What are the various directory operations available in Python?

Explain.

What is a binary file? Write code to read data from a binary

file.

What are the uses of tell() and seek() functions?

How can a file be deleted using a Python code? Discuss.

Write a function in Python to read the content from a text file

line by line and display it on the screen.

Write a Python program to count the number of lines in a text

file.

CHAPTER 10

Exception Handling, Modules, and Packages

Exception handling enhances your code and helps you avoid

potential errors that would cause your application to fail

unexpectedly. In this chapter, we will look at how Python

handles exceptions. This chapter focuses on Python classes that

are highly well-built, as well as the try-finally clause. Besides,

we have demonstrated various error handling codes with the

help of examples. Modules and packages are discussed in this

chapter, as well.

Structure

In this chapter, we will cover the following topics:

The basic concept of errors and exceptions

Python exception and its hierarchy

Exception handling

Built-in and user-defined exceptions

Modules

Packages

Objective

The objective of this chapter is to introduce exception handling

in Python. After completing this chapter, you should be able to

handle exceptions using built-in Python functions. Also, you will

be able to write Python codes for handling exceptions. You will

also be able to understand the uses of modules and packages

in Python.

Errors and exceptions

Error handling improves the robustness of your code,

protecting it from possible errors that might cause your

application to exit unexpectedly. Errors cannot be dealt with,

but Python exceptions can. An error can be a syntax error, but

several different types of exceptions can occur during execution,

which aren't always inoperable. An Error may indicate crucial

issues that a reasonable application should avoid, while an

Exception may indicate circumstances that an appropriate

application should try to capture. Errors are a type of

uncontrolled exception that is unrecoverable, such as an which

a programmer should avoid handling. Consider what would

happen if you wrote code deployed in production but still

terminated due to an exception. The client would be unhappy,

so it's best to treat the exception ahead of time and prevent

the uncertainty. Syntax errors and exceptions are two distinct

types of errors.

Syntax error

Syntax errors, often known as parsing errors, occur when the

parser detects a syntactic error in your code. To better

understand it, let's look at an example.

Example

#Syntax error example

x = 8

y = 10

z = x y

Output:

File "", line 3

z = x y

^

SyntaxError: invalid syntax

When the parser encounters an error while executing the code,

the arrow above (in output) indicates it. The failure is caused

by the token preceding the arrow. Python will do much of the

work for you in resolving such basic errors since it will print

the file name and line number where the error occurred.

Exception

An exception is an error that occurs when a program is being

executed. Non-programmers understand exceptions as instances

that do not follow a general rule. Even if a sentence or

expression's syntax is correct, it can still produce an error

when executed. Exceptions in Python are errors that are

observed during execution but are not always serious. When a

Python code throws an error, an exception object is formed.

The program will be forced to end suddenly if the code does

not explicitly handle the exception. Exceptions are usually

ignored by programs, resulting in error messages like this:

Example 10.2:

Example of type error

name= 'amit'

age=30

age+name

Output:

Traceback (most recent call last):

File "", line 3, in

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Example 10.3:

#Example of division by zero exception

100 * (10/0)

Output:

Traceback (most recent call last):

File "", line 1, in

ZeroDivisionError: division by zero

>

Python exceptions come in various forms, and the form is

written alongside the message: in the above two cases, the

types are TypeError and The name of the Python built-in

exception is printed in both error strings as the exception type.

Based on the type of exception, the remaining portion of the

error line contains information about what caused the error.

Handling Exceptions

Python's exception handling is close to Java's. A try block

contains the code, which can throw an exception. The catch

clauses catch exceptions in Java, but statements added by the

except keyword catch exceptions in Python. It is possible to

make customized exceptions. It's possible to force an exception

to occur using the raise statement. If you have some

suspicious code that might throw an exception, you can protect

your program by putting it in a block. Have an except

declaration after the try: block, followed by a block of code

that as elegantly as possible solves the problem. The syntax for

try….except…else blocks is as follows.

Syntax:

try:

Our code

except Exception_1:

#If Exception_1 occurs, this block will be executed.

except Exception_2:

If Exception_2 occurs, this block will be executed.

else:

If No exception occurs, this block will be executed.

The main components of exception handling are as follows:

It will execute the code block in which you expect an error.

It catches the exception, which occurs in a try block.

This block of code will be executed if there are no exceptions.

This block of code will always be executed, regardless of

whether there is an exception.

There can be several except statements in a single, try block.

A generic except clause may also be used to handle any

exception.

You may add an else clause after the except clause(s). This

else block runs when no exception occurs in the try block.

Example 10.4:

#Example of ValueError exception

try:

my_var = input ("Enter a Number: ")

my_var = int(my_var)

print(my_var)

except ValueError:

print("Exception occurs")

else:

print('No exception occurred')

Output:

----------------------Run program with following input---------------------------

Enter a Number: 5

5

No exception occurred

----------------------Run program with following input---------------------------

Enter a Number: amit

Exception occurs

Example 10.5:

#Example of ZeroDivisionError exception

try:

My_var1=int (input ("Enter Value for 1st variable:"))

My_var2=int (input ("Enter Value for 2nd variable:"))

print (My_var1/My_var2) # It will run if My_var2 is not zero

except ZeroDivisionError:

It will execute if My_var2=0

Print ("Zero Division Exception Occurred")

else:

print ('No exception occurred')

Output:

----------------------Run program with following input---------------------------

Enter value for 1st variable: 12

Enter value for 2nd variable: 2

6.0

No exception occurred

----------------------Run program with following input---------------------------

Enter value for 1st variable:123

Enter value for 2nd variable: 0

Zero Division Exception Occurred

Example 10.6:

#Example of LookupError exception

try:

x = ['a', 'b', 'c', 'd']

print (x[5])

except LookupError:

print ("Index Error Exception Occurred")

else:

print ('No exception occurred')

Output:

Index Error Exception Occurred

Single except block

A single except statement can be used with a try block. This

block can catch all types of exceptions. In this type of

exception handling, the programmer cannot find the actual

reason for the problems.

Example 10.7:

try:

var1 = int (input("Input 1st number:"))

var2 = int (input("Input 2nd number:"))

var3 = var1/var2

print ("var1 divided var2 =", var3)

except:

print ("Any Exception.")

else:

print ("Else block.")

Output:

----------------------Run program with following input---------------------------

Input 1st number:5

Input 2nd number:2

x divided y = 2.5

Else block.

----------------------Run program with following input---------------------------

Input 1st number:5

Input 2nd number:0

Any Exception.

Multiple except blocks

For a single try block, several except blocks are possible.

However, only one of the exception clauses will be carried out.

Let's look at the Python example of having multiple except

blocks for a single try block. When the interpreter detects an

exception, it seems to the except blocks that are related to the

try block. The types of exceptions that these except blocks

manage can be defined. The interpreter executes the except

block when it detects a corresponding exception.

Example 10.8:

X1=int (input ("Input 1st value:")

Y1=int (input ("Input 2nd value: "))

try:

print (X1/Y1) # It will run if Y1 is not zero

print ('10'+10) # It will not print

except TypeError:

print ("Type Exception")

except ZeroDivisionError:

print ("You divided by 0")

Output:

----------------------Run program with following input---------------------------

Input 1st value: 5

Input 2nd value: 0

You divided by 0

----------------------Run program with following input---------------------------

Input 1st value: 100

Input 2nd value: 25

4.0

Type Exception

Multiple exceptions in one except

We can also handle multiple exceptions with a single except

block using parentheses to do this. The interpreter will return

a syntax error if this is not done.

Example 10.9:

#Multiple exceptions in one except

X1=int (input ("Input 1st value:"))

Y1=int (input ("Input 2nd value: "))

try:

print (X1/Y1) # It will run if Y1 is not zero

print ('10'+10) # It will not print

except (TypeError,ZeroDivisionError):

print ("Either Type or Division by zero exception")

Output:

----------------------Run program with following input---------------------------

Input 1st value: 1

Input 2nd value:0

Either Type or Division by zero exception

----------------------Run program with following input---------------------------

Input 1st value: 55

Input 2nd value: 11

5.0

Either Type or Division by zero exception

else and finally

The keywords else and finally can be used with the try and

except clauses in Python. During program execution, if an

exception occurs in the try block, then except block is

executed. But if there is no exception found in the try block,

then else block is executed. Another statement is finally used

in exception handling. All the codes written inside the finally

block are always executed either when the exception occurs or

not. As a result, the error-free try block skips the except clause

and reaches the finally block before executing the rest of the

code.

Syntax:

try:

#Code which we want to run

except:

#This code will run if an exception occurs

else:

#This code will run if no exception occurs

finally:

#This code will always run

Example 10.10:

#Exception handling with else and finally

a=int (input ('Enter 1st value: '))

b=int (input ('Enter 2nd value: '))

try:

print ('Code in try block')

c=a/b

except ZeroDivisionError:

print ("Except block.")

print ("Division by zero error.")

else:

print ("else block.")

print ("a/b= ", c)

finally:

print ("finally block. Always run.")

Output:

----------------------Run program with following input---------------------------

Enter 1st value: 200

Enter 2nd value: 13

Code in try block

else block.

a/b= 15.384615384615385

finally block. Always run.

----------------------Run program with following input---------------------------

Enter 1st value: 200

Enter 2nd value: 0

Code in try block

Except block.

Division by zero error.

finally block. Always run.

Raising exceptions

In the sense of exception handling, Python also includes the

raise keyword. It results in an explicit exception being thrown.

Built-in errors are raised implicitly. During execution, however,

you can force a built-in or custom exception. For instance, if a

program needs 1GB of memory to run, we may raise an

exception to prevent the program from running. The following

is the syntax for using the raise statement.

Syntax:

raise Exception_class ()

Example 10.11:

#raise exception example

try:

val=int(input('Enter a number between 1 to 50 :'))

if val > 50:

raise ValueError(val)

except ValueError:

print (val, "Number is not between 1 to 50")

else:

print (val, "Number is between 1 to 50")

Output:

----------------------Run program with following input---------------------------

Enter a number between 1 to 50 :56

56 Number is not between 1 to 50

----------------------Run program with following input---------------------------

Enter a number between 1 to 50 :20

20 Number is between 1 to 50

Example 10.12:

#raise exception with message

try:

val = int(input("Please enter a positive number: "))

if(val<= 0):

raise statement with message

raise ValueError("Negative number.")

except ValueError as e:

print (e)

Output:

Please enter a positive number: -52

Negative number.

Example 10.13:

#raise exception

try:

x = int (input ("Enter first number:"))

y= int (input ("Enter second number:"))

if y == 0:

raise ArithmeticError(y)

else:

print ("x/y= = ",x/y)

except ArithmeticError as e:

print ("value of y is=",e)

Output:

----------------------Run program with following input---------------------------

Enter first number:5

Enter second number:2

x/y= = 2.5

----------------------Run program with following input---------------------------

Enter first number:12

Enter second number:0

value of y is= 0

Built-in exceptions

When errors occur in Python, a number of built-in exceptions

are raised. The local() built-in functions can be used to display

these built-in exceptions as follows:

print (dir(locals()['__builtins__']))

Output:

Figure 10.1: Built-in exceptions

Some important built-in exceptions are described below:

If an assert argument fails, this exception is raised.

When an attribute assignment or relation fails, this exception is

raised.

When the input() function encounters an end-of-file state, this

exception is raised.

When a floating-point operation fails, this exception is raised.

It is raised when the close() method of a generator is called.

When the imported module cannot be found, this exception is

raised.

When the index of a series is out of control, it is raised.

When a key isn't found in a dictionary, this exception is raised.

When the user presses the interrupt key + C or this exception

is raised.

When an action runs out of memory, this exception is raised.

When a variable isn't found in either local or global scope, this

exception is raised.

Abstract techniques were used to raise it.

When a system operation results in a system-related mistake,

this exception is raised.

When the product of an arithmetic operation is too high to be

expressed, this exception is raised.

When a weak reference proxy is used to access a garbage

collection, this exception is raised.

If an error does not fit into any of the other categories, it is

raised.

The next() function raises this exception to mean that the

iterator has no more items to return.

When a parser encounters a syntax error, it raises this

exception.

If the indentation is wrong, it is raised.

When the indentation consists of a mix of tabs and spaces,

the indentation is raised.

When the interpreter senses an internal error, this exception is

raised.

The sys.exit() function raised this exception.

When a function or procedure is applied to an object of the

wrong kind, this exception is raised.

When a reference to a local variable is made in a function or

procedure, but no value has been bound to that variable, this

exception is raised.

When a Unicode-related encoding or decoding error occurs, this

exception is raised.

When a Unicode-related error occurs during encoding, this

exception is raised.

When a Unicode-related error occurs, this exception is raised.

When a Unicode-related mistake occurs during translation, this

exception is raised.

It occurs when a function receives an argument with the

correct type but the wrong value.

When the second operand of a division or modulo operation is

zero, this exception is raised.

User-defined exceptions

You can also build your own exceptions by deriving classes

from the built-in exceptions in Python. By creating a new

exception class, programmers can call their exceptions.

Exceptions must be either directly or indirectly inherited from

the Exception class. The below code shows an example of a

user-defined exception.

Example 10.14:

#User-defined exception example

class MyException(Exception):

#constructor

def __init__(self, a):

self.a = a

display function

def __str__(self):

return (repr(self.a))

try:

raise(MyException("My Exception"))

exception value stored in e

except MyException as e:

print ('New Exception occurred:',e.a)

Output:

New Exception occurred: My Exception

In the preceding example, we have created a new exception

class, Exceptions must be either directly or indirectly derived

from the built-in Exception class.

Example 10.15:

#User-defined exception example

class MyClass(RuntimeError):

def __init__(self, a):

self.a = a

try:

raise MyClass("It is a user defined exception")

except MyClass as e:

print (e)

Output:

It is a user defined exception

A runtime error is a built-in class that is raised when a

generated error does not fall into one of the categories listed

above. The preceding code demonstrates how to use runtime

error as the base class and user-defined error as the derived

class.

Pre-defined clean–up action

There are various situations in which we want our program to

perform a particular job, regardless of whether it runs perfectly

or throws an error. We use the try and except block to catch

any errors or exceptions. The try statement provides a

beneficial optional clause that is intended for specifying clean-

up actions that must be executed in any circumstances. The

finally clause would be executed no matter what; however, the

else clause runs only if an exception was not raised.

Example 10.16:

clean up actions example

def div(x, y):

try:

z = x // y

except ZeroDivisionError:

print ("Divide by zero. ")

else:

print ("Division value is :", z)

finally:

print (" It is Finally clause, always run. ")

passing parameters to function

div(50, 4)

div(30, 0)

Output:

Division value is : 12

It is Finally clause, always run.

Divide by zero.

It is Finally clause, always run.

Modules

In modular programming, a complex and unmanageable

program is divided into multiple subprograms known as a

module. Each of the modules can be used to perform some

specific task. In Python, modules can be created by using

Python files that may contain definitions and various

statements. Functions, classes, and variables can all be defined

in a module. Runnable code can also be used in a module.

The code is easier to understand and use when it is structured

into modules. It also organizes the code logically.

Our Python code file with the extension is treated as the

module. The Python module can contain executable code. We

must import the particular module to use the functionality of

one module in another. Assume you've created a file called

mymodule.py that includes the following code:

mymodule.py

Example of a module (mymodule.py)

def fun_add (x, y):

return (x+y)

def fun_sub (x, y):

return (x-y)

To call the functions and fun_sub() specified in the module

named file we must include this module in our main module.

Loading module

To use the module's functionality, we must first load it into

our Python code. Python has two types of statements, which

are listed below.

The import statement

The from-import statement

The import statement

A module can be linked with our Python program using an

import statement. With a single import statement, we can

import several modules, but a module is only loaded once,

regardless of how many times it has been imported into our

register. The import statement's syntax is mentioned as follows:

Syntax:

import module1, module2, module3, …….. module n

If an import statement is identified, the interpreter imports the

module if it is included in the search path. When importing a

module, the interpreter searches all the directories in the

search path. For example, to import the module add the

following command to the program's top.

Example

importing module mymodule.py

import mymodule

print (fun_add (10, 20))

print (fun_sub (100, 50))

Output:

30

50

The from…import statement

Python allows you to import only the specific attributes of a

module, rather than the whole module, into the namespace.

The from import statement can be used for this. The from…

import expression is used in the following syntax.

Syntax:

from import , ….

Consider the following module, which includes the functions

fun_add() and fun_sub().

Example

File mymodule.py

mymodule.py

def fun_add(x, y):

return (x+y)

def fun_sub(x, y):

return (x-y)

If we want to import only fun_add() function from this

module, then following code will be used.

File main.py

importing fun_add() from mymodule.py

from mymodule import fun_add

print (fun_add(10, 20))

Output:

30

Example 10.19:

importing pi from math module

from math import pi

print ("pi value=", pi)

Output:

pi value= 3.141592653589793

When we know the attributes to be imported from the module

in advance, we can use the from…import statement. Our code

will not get heavier as a result of this. The * may also be

used to import all of a module's attributes. Consider the

following example, in which all the functions of mymodule are

imported.

Example

File name: main.py

importing all attributes from mymodule.py

from mymodule import *

print (sub(100, 20))

print (add(100, 20))

Output:

80

120

Renaming a module

Python allows us to import a module with a particular name

and then use that name to reference that module in our

Python source code. The following is the syntax for renaming a

module.

Syntax:

import as

Example 10.21:

importing from mymodule.py

import mymodule as mm # rename mymodule to mm

print (mm.sub(20, 10))

print (mm.add(100, 20))

Output:

10

120

The dir() built-in function

The dir() function can be used to find names specified within

a module. In the module for example, we've specified two

functions: add() and In the mymodule module, we can use

dir() as follows:

>>> dir(mymodule)

['__builtins__',

'__cached__',

'__doc__',

'__file__',

'__initializing__',

'__loader__',

'__name__',

'__package__',

'add',

'sub']

We can see a sorted list of names here (along with add and

All other names that begin with an underscore are the

module's default Python attributes. The dir() function can be

used without any arguments to find all the names specified in

our current namespace.

Example 10.22:

> a=10

> b=30

> import math

> dir()

['__annotations__', '__builtins__', '__doc__', '__loader__',

'__name__', '__package__', '__spec__', 'a', 'b', 'math']

The reload() function

As previously mentioned, regardless of how many times a

module is imported into the Python source file, it is only

loaded once. However, Python provides us with the reload()

function to reload an already imported module and re-run the

top-level code. The reload() function is used in the following

syntax.

Syntax:

reload()

Example

reload(mymodule)

Python built-in modules

Many pre-defined functions are also available as a part of

libraries bundled with Python distributions, in addition to built-

in functions. Built-in modules describe the functions that are

specified in modules. The Python shell is integrated with built-

in modules, which are written in C. Each built-in module

includes resources for system-specific functions like OS

management, disc IO, and so on. Many Python scripts (with

extension) containing useful utilities can also be found in the

standard library. Use the following command in the Python

console to see a list of all the available modules:

help('modules')

Following are some examples of built-in modules:

Example 10.24:

Example of built-in module math

import math as m

using square (sqrt) function

print (m.sqrt(100))

using pi function

print (m.pi)

degree

print (m.degrees(3))

radians

print (m.radians(60))

Sin

print (m.sin(60))

Cosine

print (m.cos(30))

Tangent

print (m.tan(90))

factorial

print (m.factorial(6))

Output:

10.0

3.141592653589793

171.88733853924697

1.0471975511965976

-0.3048106211022167

0.15425144988758405

-1.995200412208242

720

Example 10.25:

datetime built-in module

from datetime import time

from datetime import date

d = date(2000, 1, 1)

print ("Given date is:", d)

print (date.today()) #It will show current date

Time = time(5, 30, 10)

print ("hour =", Time.hour)

print ("minute =", Time.minute)

print ("second =", Time.second)

print ("microsecond =", Time.microsecond)

Output:

Given date is: 2000-01-01

2021-04-21

hour = 5

minute = 30

second = 10

microsecond = 0

Example 10.26:

built-in module random

import random

random integer between 0 and 10

print ('Random number between 0 and 10:',random.randint(0,

5))

random float between 0 and 1

print ('Random float between 0 and 1:',random.random())

random number between 0 and 100

print ('Random number between 0 and 100:',random.random()

* 100)

List = [2, 4, True, 80, "Python", 20, "Book", 45]

random element from a list

print ('Random element from list',random.choice(List))

Output:

Random number between 0 and 10: 3

Random float between 0 and 1: 0.7476231433619301

Random number between 0 and 100: 46.881247400915406

Random element from list 80

Packages in Python

We organize a large number of files into various folders and

subfolders based on specific parameters so that they are easier

to locate and handle. On the other hand, a module in Python

brings the principle of modularity to the next logical level. As

you might know, a module can contain a variety of objects

such as classes, functions, and so on. One or more related

modules can be included in a package. A package is a folder

that contains one or more module files on a physical level.

Packages help us store other sub-packages and modules to be

used by the user when needed, much as drives and directories

allow us to store files in an operating system.

Creating packages

We build a file called __init__.py within a directory to inform

Python that it is a package, and then it is considered a

package, and we can create other modules and subpackages

inside it. This __init__.py file may be left blank or filled in

with the package's initialization code.

We can follow these three basic steps to build a package in

Python:

First, we create a directory and name it a package, preferably

the one related to its function.

After that, we add the required classes and functions.

Finally, inside the directory, we construct an __init__.py file to

inform Python that it is a package.

Example 10.27:

First, we'll make a directory called After that, we must build

modules. To do so, create a file called Oppo.py and write the

below code.

File name: Oppo.py

Creating Modules

class Oppo:

constructor

def __init__(self):

self.phone = ['Android', '8GB', '32MP']

function

def show(self):

print ('Features of Oppo')

for s in self.phone:

print (s)

Then we make a new file called Vivo.py and put the same

code into it, but with different members.

File name: Vivo.py

Creating Modules

class Vivo:

constructor

def __init__(self):

self.phone = ['Android ', '16GB', '64MP']

function

def show(self):

print ('Features of Vivo')

for s in self.phone:

print (s)

Then we make a new file called iphone.py and copy the same

code into it, but with different members.

File name: iPhone.py

Creating Modules

class iPhone:

constructor

def __init__(self):

self.phone = ['IOS', '128GB', '12MP']

function

def show(self):

print ('Features of iPhone')

for s in self.phone:

print (s)

The __init__.py file is finally created. This file will be located in

the Mobiles directory and can either be left blank or filled with

the initialization code.

File name: __init__.py

from Oppo import Oppo

from Vivo import Vivo

from iPhone import iPhone

Now it's time to put our new package to work. To do so,

create a Test.py file in the same directory as the Mobiles

package and write the following code:

File name: Test.py

Import classes from Mobiles package

from Mobiles import Oppo

from Mobiles import Vivo

from Mobiles import iPhone

Create an object of Oppo class and call its functions

obj1 = Oppo()

obj1.show()

Create an object of Vivo class and call its functions

obj2 = Vivo()

obj2.show()

Create an object of iPhone class and call its function

obj3 = iPhone()

obj3.show()

Output:

Features of Oppo

Android

8GB

32MP

Features of Vivo

Android

16GB

64MP

Features of iPhone

IOS

128GB

12MP

The following figure 10.2 shows the folder structure of the

Mobiles package:

Figure 10.2: Mobiles package folder structure

__init__.py

The content of the package is stored in a special file named

which is found in the package folder. It has two functions:

If a folder contains the __init__.py file, the Python interpreter

recognizes it as a package.

__init__.py makes resources from its modules available for

import.

When this package is imported, an empty __init__.py file

makes all modules' functions accessible. It's worth noting that

the folder's __init__.py file is needed for Python to recognize it

as a package.

Subpackages

Packages may have any number of nested sub-packages. The

figure 10.3 shows an example of a subpackage inside a Mobiles

package:

Figure 10.3: Mobiles package folder structure with subpackages

Like earlier, the three modules and are identified. They are now

separated into two subpackage folders, Sub_package1 and

rather than being grouped in the Mobiles directory. Importing

continues to operate in the same manner as before. The

syntax is similar, but a dot separates the package name and

subpackage name.

import Mobiles.Sub_package1.Oppo

import Mobiles.Sub_package2.Vivo

import Mobiles.Sub_package2.iPhone

Conclusion

In this chapter, we discussed exception handling, modules, and

packages in Python. We also discussed the uses of and finally

blocks for managing exceptions. Module implementations and

their importing are also presented. Besides, package creations

and services are also discussed with Python codes. Based on

these examples, you can write your code. In the next chapter,

we will discuss the concepts of object-oriented programming in

Python.

Points to remember

An exception is a type of error that occurs during the

execution of a program.

To handle exceptions, four keywords are used: and

To raise an exception, use the raise keyword.

A module is a smaller part of a larger program.

__init__.py file indicates that a particular folder is a package.

Multiple choice questions

The import statement is used for?

Creating package

Handling Exception

Linking module

None of the above

How many except statements can a try-except block have?

0

1

More than one

More than zero

What will be the output for the following code?

x = ""hello""

if not type(x) is int:

raise TypeError(""Only integers are allowed"")

hello

garbage value

Only integers are allowed

Error

When is the finally block executed?

When there is no exception

When there is an exception

Only when some condition that has been specified is satisfied

Always

What will be the output of the following Python code?

from math import factorial

print(math.factorial(5))

120

Nothing is printed

Error, method factorial doesn't exist in the math module

Error, the statement should be: print(factorial(5))

To obtain a list of all the functions defined under sys module,

which of the following functions can be used?

print(dir(sys))

print(sys)

print(dir.sys)

print(dir[sys])

What is the output of the code shown below?

import random

random.choice(2,3,4)

An integer other than 2, 3 and 4

Either 2, 3 or 4

Error

2 only

Answers

c

d

c

d

d

a

c

Questions

What do you mean by exception handling?

How exceptions can be handled. Discuss?

What is a package?

Create a package and import it into a Python file. Also, write

steps to create it.

What is the importance of finally block in exception handling?

What is a module? How can we create a module?

Write a Python program to demonstrate the example of raise

keywords.

Discuss the importance of some built-in modules.

Write a Python program to handle arithmetic exceptions.

Discuss the uses of multiple except blocks with a single

CHAPTER 11

Object-oriented Programming

Object-oriented programming as a discipline has gained

widespread acceptance among programmers. Python, a popular

programming language, adheres to the object-oriented

programming style as well. It is concerned with declaring

Python classes and properties, which is the core of OOPs

concepts. In this chapter, you will see various concepts of

object-oriented programming about Python. Besides, we have

demonstrated different OOPs concepts with the help of

examples and codes.

Structure

In this chapter, we will cover the following topics:

The basic concepts of object-oriented programming

Objects and classes creation

Concepts and Types of constructors

Concepts of inheritance and polymorphism

Various Python methods to achieve OOPs

Objective

The objective of this chapter is to introduce the concept of

object-oriented programming in Python. After completing this

chapter, you should be able to understand classes, objects,

constructors, inheritance, and polymorphism. Also, you will be

able to write Python codes related to OOPs.

Object-Oriented Programming

Object-oriented programming is a way of structuring a program

by grouping associated properties and functionalities into

separate objects. Object-oriented programming is based on

classes and objects. Class is the blueprint, while objects are

real entities and are able to perform various tasks. Data

elements, also known as properties, and behavior, such as

actions or functions, make up an object. Another popular

programming paradigm is procedural programming, which

structures a program like a recipe by providing a series of

steps, such as functions and code blocks that flow sequentially

to complete a task.

Python, like other general-purpose programming languages, has

been an object-oriented language. It enables us to build

applications in an object-oriented manner. We can easily

develop and use classes and objects in Python. Using classes

and objects to construct the software is an object-oriented

paradigm. The object is linked to real-world objects such as a

computer, a home, a mobile, etc. The OOPS definition

emphasizes the development of reusable code. It is a common

method of resolving a problem by creating objects. The

following are the key concepts of an object-oriented

programming paradigm:

Class

Object

Method

Data Abstraction and Encapsulation

Inheritance

Polymorphism

Introduction to classes

A set of objects can be described as a class. It's a logical

entity with some unique properties and methods. For instance,

if you have a student class, it should have an attribute and a

method, such as name, age, address, and course.

Object

The object is a self-contained entity with state and actions. It

could be a laptop, a purse, a phone, a table, a pencil, or

something else. In Python, everything is an object, with

attributes and methods on almost everything. A class must

construct an object to assign memory when it is defined.

Method

In Python, a method is like a function, except that it is linked

to objects and classes. Except for two big variations, Python

methods and functions are similar.

For the object for which it is named, the method is used

implicitly.

Data in the class is accessible to the method.

Data abstraction and encapsulation

In object-oriented programming, encapsulation is also essential.

It's used to limit access to variables and methods.

Encapsulation protects code and data from accidental

modification by wrapping them together in a single device.

Abstraction is a technique for hiding internal information and

displaying only the functionalities. The term abstract refers to

the process of giving items names that capture the essence of

what a function or a program does. Both data abstraction and

encapsulation are often used interchangeably. Since data

abstraction is accomplished by encapsulation, the terms are

nearly interchangeable.

Inheritance

The most fundamental component of object-oriented

programming is inheritance, which simulates the process of

inheritance in real life. It states that the child object inherits

all of the parent object's properties and behaviors. We may

construct a class that inherits all the properties and behaviors

of another class by using inheritance. The new class is a

derived class or a child class, whereas the base class or parent

class is known as the one whose properties are acquired. It

ensures that the code can be reused.

Polymorphism

Polymorphism is made up of the words poly and Poly stands

for and morph stands for We consider polymorphism as the

ability to execute a task in many forms. It uses a single type

of entity (method, operator, or object) to represent multiple

types in various scenarios. For instance, we have one addition

operator that can add different kinds of values.

Object-oriented versus procedure-oriented programming

languages

The following is a description of the differences between

object-oriented and procedural programming:

programming: programming:

programming: programming: programming: programming:

programming: programming: programming: programming:

programming: programming: programming: programming:

programming:

programming: programming: programming: programming:

programming: programming: programming: programming:

programming: programming: programming: programming:

programming: programming: programming: programming:

programming: programming: programming: programming:

programming: programming: programming: programming:

programming: programming: programming: programming:

programming: programming: programming: programming:

programming: programming: programming: programming:

programming: programming: programming: programming:

programming: programming: programming: programming:

programming:

programming: programming: programming: programming:

programming: programming: programming: programming:

programming: programming: programming: programming:

programming:

programming: programming: programming: programming:

programming: programming: programming: programming:

programming:

Table 11.1: Differences between object-oriented and procedural

programming

Python class and objects

A class is a virtual entity that serves as an object's blueprint.

After creating an object, it occupies memory and came into

existence. For example, assume a class is a model for a

building structure. A building includes all the information about

the rooms, gardens, area, and balcony. Based on these data

items, we can construct as many houses as we want. As a

result, the structure can be thought of as a class or a

blueprint of the building, and we can make as many objects

(houses) as we want.

The object is known as the instance of a class. The process of

constructing an object is referred to as instantiation. In the

above example, all the individual houses will be the objects of

the class, i.e., the building.

Defining a class in Python

The keyword followed by the class name, is used to build a

class in Python. The following is the syntax for creating a

class.

class

data members

member functions

A class declares all its attributes in a new local namespace.

Data members or functions may be included as attributes.

It also contains unique attributes that start with double

underscores. For example, __doc__ returns the class's

docstring. The following statement can access it:

. __doc__.

When we define a class, a new class object with the same

name is generated. We may use this class object to access the

various attributes and create new objects of that class.

Example 11.1:

Creating a class

class Student:

"This is an example of student class"

age = 25

def fun(self):

print('Python')

display age

print (Student.age)

#call function

print (Student.fun)

display docstring

print (Student.__doc__)

Output:

25

Student.fun at 0x7f4fbdb88e50>

This is an example of student class

Example 11.2:

Creating a student class

class Student:

stuid = 1001

stuname = "Amit"

def show (self):

print (self.stuid,self.stuname)

Creating an object

obj=Student()

Calling a member function

obj.show()

Output:

1001 Amit

In the above example, a Student class is created with two

fields: stuid and This class also contains a function show

which can show the student information.

The is used here as a reference variable to the current class

object. In the function description, it is always the first

argument. In the function call, however, using self is optional.

The accesses the class variables and corresponds to the

current instance of the class. Instead of self, we can use

anything, but it must be the first parameter of any class

function.

Creating an object

If we want to use a class's attributes in another class or

method, we must first instantiate it. A class can be

instantiated by calling its name. The syntax for creating a class

instance (object) is mentioned below:

= ()

The following code shows an example of creating objects of

the book class.

Example 11.3:

Creating a class book

class Book:

defining attribute

name= "Python Programming"

author = "Krishna"

year=2021

creating function

def show(self):

print ("Book Name:", self.name)

print ("Author:", self.author)

print ("Year:", self.year)

Object creation

B1 = Book()

B2 = Book()

Accessing class attribute and method through objects

print (B1.name)

print ('----------')

B2.show()

Output:

Python Programming

Book Name: Python Programming

Author: Krishna

Year: 2021

Deleting properties or object

Using the del keyword, we can delete the object's properties or

the object itself. The following examples demonstrate the

deletion of some properties and objects, respectively.

Example 11.4:

Deleting properties of a class

class Book:

defining attribute

name= "Python Programming"

author = "Krishna"

year=2021

creating function

def show(self):

print ("Book Name:", self.name)

print ("Author:", self.author)

print ("Year:", self.year)

Object creation

B1 = Book()

Accessing class attribute and method through objects

print ('-----Before Deletion-----')

B1.show()

deleting a property (name)

del B1.name

print ('-----After Deletion-----')

B1.show()

Output:

-----Before Deletion-----

Book Name: Python Programming

Author: Krishna

Year: 2021

Traceback (most recent call last):

File "", line 19, in

AttributeError: name

Since we deleted the name property, it will throw an Attribute

error: name.

Example 11.5:

Example of object deletion

Creating a class book

class Book:

defining attribute

name= "Python Programming"

author = "Krishna"

year=2021

creating function

def show(self):

print ("Book Name:", self.name)

print ("Author:", self.author)

print ("Year:", self.year)

Object creation

B1 = Book()

Accessing class attribute and method through objects

print ('-----Before Deletion of Object-----')

B1.show()

deleting object B1

del B1

print ('-----After Deletion of Object-----')

B1.show()

Output:

-----Before Deletion of Object-----

Book Name: Python Programming

Author: Krishna

Year: 2021

-----After Deletion of Object-----

Traceback (most recent call last):

File "", line 21, in

NameError: name 'B1' is not defined

Since we deleted the B1 object, it will throw a NameError.

Data abstraction

In object-oriented programming, data abstraction is an

important feature. We can also hide Python data by prefixing

the attribute to be hidden with a double underscore The

attribute will no longer be available outside the class via the

object after performing this. The following Python code shows

the concept of data abstraction.

Example 11.6:

class Student:

__n = 0;

def __init__(self):

Student.__n+=1

def show(self):

print ("Total Students:",Student.__n)

s1 = Student()

s2 = Student()

s3 = Student()

s1.show()

s2.show()

print (s1.__n) # It will generate error because n is not

available to access outside class

Output:

Total Students: 3

Total Students: 3

Traceback (most recent call last):

File "", line 12, in

AttributeError: 'Student' object has no attribute '__n'

Constructors in Python

A constructor is a particular type of function that is used to

initialize the class's instance members. The constructor in C++

or Java has the same name as the class, but Python handles

constructors differently. When we create an object of a class,

the constructor function executes it. There are two kinds of

constructors such as parameterized constructors and non-

parameterized constructors. In Python, the constructor is

defined using the __init__() method. It takes the self keyword

as a first argument, allowing access to the class's attributes

and methods. Depending on the __init__() definition, we can

pass any number of arguments when constructing the class

object. It's mainly used to set up the class attributes. Every

class must have a default constructor if we have not defined

any other constructor.

Example 11.7:

Creating a class book

class Book:

#defining constructor

def __init__(self, n, a, y):

print ('Constructor example')

self.name = n

self.author = a

self.year=y

creating function

def show(self):

print ("Book Name:", self.name)

print ("Author:", self.author)

print ("Year:", self.year)

Object creation and passing arguments to constructor

B1 = Book("Python Programming", "John",2021)

B2 = Book("Java Programming", "David",2020)

Accessing class attribute and method through objects

print ('-----Values are-----')

B1.show()

B2.show()

Output:

Constructor example

Constructor example

-----Values are-----

Book Name: Python Programming

Author: John

Year: 2021

Book Name: Java Programming

Author: David

Year: 2020

Example 11.8:

#Program for counting number of objects in a class

class Test:

#Defining data member

count = 0

#Defining constructor

def __init__(self):

Test.count += 1

Creating objects

T1=Test()

T2=Test()

T3=Test()

T4=Test()

T5=Test()

print ("The number of objects:",Test.count)

Output:

The number of objects: 5

Non-parameterized constructor

When we don't want to update the value or just have self as

an argument, we use the non-parameterized constructor. The

following code shows an example of the non-parameterized

constructor.

Example 11.9:

Class creation

class Test:

Defining non-parameterized constructor

def __init__(self):

print ("Non parameterized constructor")

def display(self,s):

print ("Python",s)

Creating objects

T1=Test()

calling function

T1.display("Programming")

Output:

Non parameterized constructor

Python Programming

Parameterized constructor

Along with the self, the parameterized constructor has several

parameters. The following Python code demonstrates

parameterized constructor.

Example 11.10:

Class creation

class Test:

Defining Parameterized constructor

def __init__(self,arg1):

print ("Parameterized constructor")

self.arg1=arg1

def display(self,s1):

print ("Python",self.arg1,s1)

Creating objects and passing a parameter

T1=Test("Programming")

calling function with one argument

T1.display("Book")

Output:

Parameterized constructor

Python Programming Book

Default constructor

The default constructor is used when no constructor is

included in the class, or when it is not declared. It defines the

objects' initial values. The following example demonstrates the

concept of a default constructor.

Example 11.11:

Default constructor example

#Class Declaration

class Employee:

Emp_id = 5001

Emp_name = "David"

Function definition

def show(self):

print(self.Emp_id,self.Emp_name)

Object creation

obj= Employee()

Function calling

obj.show()

Output:

5001 David

Multiple constructors in a class

We can include two or more similar constructors in a class. In

the following example, we have included two constructors of

the same type. The object T1 is called the second constructor

in the following code, even though both have the same

configuration. The T1 object does not have access to the first

constructor. If the class has many constructors, the object of

the class will always call the last constructor.

Example 11.12:

Multiple constructor example

#Class Declaration

class Test:

defining first constructor

def __init__(self):

print ("First Constructor")

defining second constructor

def __init__(self):

print ("Second Constructor")

defining third constructor

def __init__(self):

print ("Third Constructor")

Creating an object

T1 = Test()

Output:

Third Constructor

Constructor overloading is not permitted in Python.

Python inheritance

The object-oriented framework includes inheritance as a key

component. Since we can use an existing class to build a new

class instead of starting from scratch, inheritance allows us to

reuse the program's code. The child class inherits the parent

class's properties and has access to all of the data members

and functions specified in the parent class. A child class may

also have its implementation for the parent class's functions. A

derived class can inherit a base class in Python by simply

mentioning the base class after the derived class name in

brackets. To inherit a base class into a derived class, use the

syntax as shown below:

class (base-class_Name):

derived class body

A derived class can inherit properties of multiple base classes.

This kind of inheritance can be achieved by mentioning all

base classes inside the brackets. The following syntax is used

to inherit properties of multiple classes.

Syntax:

class (1>, 2>, ….. n>):

derived class body

Example 11.13:

Inheritance example

#Creating a base class

class Base():

defining function inside base class

def fun1(self):

print ('Base class function')

Creating a derived class

class Derived(Base):

defining function inside derived class

def fun2(self):

print ('Derived class function')

Creating object of derived class

obj = Derived()

accessing functions of both base and derived classes

obj.fun1()

obj.fun2()

Output:

Base class function

Derived class function

Types of inheritance

There are four types of inheritances in Python, depending upon

the number of child and parent groups involved. These are as

follows:

Single inheritance

Multi-level inheritance

Multiple inheritance

Hierarchical inheritance

Single inheritance

A derived class can inherit properties from a single base class,

allowing for code reuse and new features to existing code. The

following figure 11.1 shows the concept of single inheritance.

Figure 11.1: Single inheritance

Example 11.14:

Single inheritance example

#Creating a base class

class Base():

defining function inside base class

def fun1(self,a):

print ('Base class function')

self.a=a

print ('Base class:', self.a)

Creating a derived class

class Derived(Base):

defining function inside derived class

def fun2(self,b):

print ('Derived class function')

self.b=b

print ('Derived class:',self.b)

Creating object of derived class

obj = Derived()

accessing functions of both base and derived classes

obj.fun1(10)

obj.fun2(20)

Output:

Base class function

Base class: 10

Derived class function

Derived class: 20

Multilevel inheritance

Features from the base and derived classes are passed down

to the new derived class in multi-level inheritance. In Python,

there is no limit to the number of levels to which multi-level

inheritance can be archived. The following figure 11.2 represents

the concept of multi-level inheritance:

Figure 11.2: Multilevel inheritance

Example 11.15:

Multilevel inheritance example

#Creating a base class

class Base():

def __init__(self):

print ('Base constructor')

defining function inside base class

def funB(self,a):

print ('Base class function')

self.a=a

print ('Base class:', self.a)

class Intermediate (Base):

defining function inside intermediate class

def funI(self,b):

print ('Intermediate class function')

self.b=b

print ('Intermediate class:', self.b)

Creating a derived class

class Derived(Intermediate):

defining function inside derived class

def funD(self,c):

print ('Derived class function')

self.c=c

print ('Derived class:',self.c)

Creating object of derived class

obj = Derived()

accessing functions of all three classes

obj.funB(10)

obj.funI(20)

obj.funD(30)

Output:

Base constructor

Base class function

Base class: 10

Intermediate class function

Intermediate class: 20

Derived class function

Derived class: 30

Multiple inheritance

Multiple inheritance is a type of inheritance in which a class

may be derived from multiple base classes. In multiple

inheritance, the derived class inherits all of the properties of

the base classes. An example of multiple inheritances is shown

in figure in which a derived class inherits properties of two

base classes.

Figure 11.3: Multiple inheritance

Example 11.16:

Multiple inheritance example

#Creating first base class

class Base1():

defining function inside base class

def funB1(self,a):

print('Base class 1 function')

self.a=a

print('Base class 1 value:', self.a)

#Creating second base class

class Base2():

defining function inside base class

def funB2(self,a):

print('Base class 2 function')

self.a=a

print('Base class 2 value:', self.a)

Creating a derived class

class Derived(Base1, Base2):

defining function inside derived class

def funD(self,c):

print('Derived class function')

self.c=c

print('Derived class value:',self.c)

Creating object of derived class

obj = Derived()

accessing functions of both base and derived classes

obj.funB1(10)

obj.funB2(20)

obj.funD(30)

Output:

Base class 1 function

Base class 1 value: 10

Base class 2 function

Base class 2 value: 20

Derived class function

Derived class value: 30

Hierarchical inheritance

Hierarchical inheritance is a form of inheritance in which

multiple derived classes are inherited from a single base class.

The following figure 11.4 shows an example of hierarchical

inheritance in which three derived classes are inherited from

one base class:

Figure 11.4: Hierarchical inheritance

Example 11.17:

Hierarchical inheritance example

#Creating base class

class Base():

defining funtion inside base class

def funB(self,a):

print ('Base class 1 function')

self.a=a

print ('Base class 1 value:', self.a)

Creating first derived class

class Derived1(Base):

defining function inside derived class

def funD1(self,c):

print ('Derived class 1 function')

self.c=c

print ('Derived class 1 value:',self.c)

Creating second derived class

class Derived2(Base):

defining function inside derived class

def funD2(self,c):

print ('Derived class 2 function')

self.c=c

print ('Derived class 2 value:',self.c)

Creating third derived class

class Derived3(Base):

defining function inside derived class

def funD3(self,c):

print ('Derived class 3 function')

self.c=c

print ('Derived class 3 value:',self.c)

Creating object of first derived class

obj1 = Derived1()

accessing functions from derived classes

print (' --------First derived class-----')

obj1.funB(10)

obj1.funD1(20)

Creating object of second derived class

obj2 = Derived2()

accessing functions from derived classes

print (' --------Second derived class-----')

obj2.funB(100)

obj2.funD2(200)

Creating object of third derived class

obj3 = Derived3()

accessing functions from derived classes

print (' --------Third derived class-----')

obj3.funB(1000)

obj3.funD3(2000)

Output:

--------First derived class-----

Base class 1 function

Base class 1 value: 10

Derived class 1 function

Derived class 1 value: 20

--------Second derived class-----

Base class 1 function

Base class 1 value: 100

Derived class 2 function

Derived class 2 value: 200

--------Third derived class-----

Base class 1 function

Base class 1 value: 1000

Derived class 3 function

Derived class 3 value: 2000

The issubclass(sub,sup) method

To check the relationships between the defined classes, use the

issubclass(sub, sup) method. If the first class is a subclass of

the second, it returns true; otherwise, it returns false.

Example 11.18:

class A:

def fun1(self):

print ('Base class 1')

class B:

def fun2(self):

print ('Base class 2')

class D(A,B):

def fun3(self):

print ('Derived class')

obj = D()

print ('D is sub class of B:',issubclass(D,B))

print ('A is sub class of B', issubclass(A,B))

Output:

D is sub class of B: True

A is sub class of B False

The isinstance (obj, class) method

To check the relationship between objects and classes, use the

isinstance() method. If the first parameter, is an instance of

the second parameter, class, it returns true.

Example 11.19:

class A:

def fun1(self):

print ('Base class 1')

class B:

def fun2(self):

print ('Base class 2')

class D:

def fun3(self):

print ('Derived class')

obj = D()

print ('obj is instance of A:',isinstance(obj,A))

print ('obj is instance of B', isinstance(obj,B))

print ('obj is instance of D', isinstance(obj,D))

Output:

obj is instance of A: False

obj is instance of B False

obj is instance of D True

Polymorphism in Python

Polymorphism is an object-oriented programming term that

refers to the concept of having many forms. Polymorphism

allows you to use a single interface for inputs of various data

types, classes, or even for a different number of inputs.

Polymorphism can be defined in a variety of ways in Python.

Polymorphism in operators

In Python programs, we know that the + operator is frequently

used. It does not, however, have a single application. The +

operator is used to perform arithmetic addition on integer data

types. Similarly, the + operator is used to concatenate string

data.

Example 11.20:

x = 11

y = 22

print (x+y)

A = "Python"

B = "Programming"

C= "Book"

print (A+" "+B+ ' '+C)

Output:

33

Python Programming Book

Function Polymorphism

Several Python functions can work for a variety of data types.

The len() function is an example of such a function. Python

allows it to work with a variety of data types. The len()

function will operate with various data types, including string,

list, tuple, set, and dictionary. It does, however, return specific

information about specific data types.

Example 11.21:

print (len("Python Programming"))

print (len(["Amit", "Sumit", "Rohit"]))

print (len({"Id": 10001, "Address": "Mumbai"}))

print (len('1234'))

Output:

18

3

2

4

Polymorphism in Class methods

Since Python allows various classes to have the same name

methods, we may use the principle of polymorphism when

constructing class methods. We may construct a for loop that

iterates over a tuple of objects in this case. After that, we call

the methods without regard to the class type of each object.

We presume that each class has these methods.

Example 11.22:

Polymorphism in classes

class A():

def fun1(self):

print ("function 1 of A")

def fun2(self):

print ("function 2 of A")

class B():

def fun1(self):

print ("function 1 of B")

def fun2(self):

print ("function 2 of B")

obj1 = A()

obj2 = B()

for i in (obj1, obj2):

i.fun1()

i.fun2()

Output:

function 1 of A

function 2 of A

function 1 of B

function 2 of B

Method overriding (polymorphism in inheritance)

Polymorphism in Python allows one to identify methods in the

child class with the same name as the parent class's methods.

In inheritance, the methods of the parent class are passed on

to the child class. However, a child class method that has

inherited from the parent class may be modified. This is

especially useful when the parent class's inherited method

doesn't quite suit the child class. In such instances, the

method is re-implemented in the child class. Method overriding

is the process of re-implementing a method in a child's class.

Example 11.23:

Example of method overriding

class Emp:

def b1(self):

print ('It is Base Class')

def fun1(self):

print ('Employee Class')

class Dept(Emp):

def fun1(self):

print ('Department class')

class Sale(Emp):

def fun1(self):

print ('Sales class')

e1 = Emp()

e1.b1()

e1.fun1()

print('------------')

d1 = Dept()

d1.b1()

d1.fun1()

print ('------------')

sl = Sale()

d1.b1()

sl.fun1()

Output:

It is Base Class

Employee Class

It is Base Class

Department class

It is Base Class

Sales class

Python built-in class functions

The following are a class's built-in functions:

getattr(obj, name, It's used to get the object's attribute.

setattr(obj, name, It's used to give a specific value to an

object's attribute.

delattr(obj, It deletes a specific attribute.

hasattr(obj, If the object has a particular attribute, it returns

true.

Example 11.24:

class Emp:

def __init__(self, Emp_name, Emp_id, Emp_age):

self.Emp_name = Emp_name

self.Emp_id = Emp_id

self.Emp_age = Emp_age

object of the class Emp

E= Emp("Amit", 1001, 30)

printing attribute name of the object E

print (getattr(E, 'Emp_name'))

Changing the value of attribute Emp_age to 40

setattr(E, "Emp_age", 40)

Display modified value of Emp_age

print (getattr(E, 'Emp_age'))

prints true if the Emp contains the attribute with Emp_id

print (hasattr(E, 'Emp_id'))

deleting one attribute

delattr(E, 'Emp_id')

It will show an error since the attribute Emp_id has been

deleted

print (E.Emp_id)

Output:

Amit

40

True

Traceback (most recent call last):

File "", line 26, in

AttributeError: 'Emp' object has no attribute 'Emp_id'

Python built-in class attributes

In addition to the other attributes, a Python class has several

built-in class attributes that provide information about the

class. The built-in class attributes are below:

It provides a dictionary with class namespace details.

It has a string with the documentation for the class.

It's used to get the name of the class.

It allows you to get to the module where this class is defined.

It has a tuple that includes all base classes.

Example

class Emp:

def __init__(self, Emp_name, Emp_id, Emp_age):

self.Emp_name = Emp_name

self.Emp_id = Emp_id

self.Emp_age = Emp_age

def show(self):

print (self.Emp_name)

print (self.Emp_age)

obj = Emp("Joy",1001,30)

print (obj.__doc__)

print (obj.__dict__)

print (obj.__module__)

print (show.__name__)

print (Emp.__bases__)

Output:

None

{'Emp_name': 'Joy', 'Emp_id': 1001, 'Emp_age': 30}

__main__

show

('object'>,)

Class or static variables

All objects share the class or static variables. For different

objects, non-static variables or instance variables vary. Class

variables have a value assigned to them in the class

declaration, while instance variables or non-static are variables

that have values assigned to them within methods.

Example 11.26:

Class declaration

class Student:

fees = 50000 # Class or static variable

def __init__(self,id,name):

self.id = id # Instance or non-static Variable

self.name = name

Objects creation

s1 = Student(101,'Amit')

s2= Student(102,'Sumit')

print (s1.fees) # prints 50000

print (s2.fees) # prints 50000

print (s1.id) # prints 101

print (s2.id) # prints 102

print (s1.name) # prints Amit

print (s2.name) # prints Sumit

Class variables can be accessed using class name also

print (Student.fees) # prints 50000

we change the fees for just s1 it won't be changed for s2

s1.fees = 25000

print (s1.fees) # prints 25000

print (s2.fees) # prints 50000

To change the fees for all we can change them directly from

the class

Student.fees = 40000

print (s2.fees) # prints 40000

Output:

50000

50000

101

102

Amit

Sumit

50000

25000

50000

40000

Class method vs. static method

The @classmethod decorator is a built-in function decorator

that evaluates after your function is specified. The outcome of

that analysis casts a shadow over your function definition. The

class is implicitly passed as the first argument to a class

method, just as the instance is implicitly passed to an instance

method.

Syntax:

class :

@classmethod

def (cls, arg1, afr2,…):

#Function Body

return value

Class method properties are described below:

A class method is bound to the class rather than the class's

object.

Since it takes a class parameter those points to the class

rather than the object instance, they have access to the class's

state.

It can change the state of a class that affects all of its

instances. It can, for instance, change a class variable that

affects all instances.

An implicit first argument is not passed to a static method.

The @staticmethod decorator is used for static methods.

Syntax:

class :

@staticmethod

def (cls, arg1, afr2,…):

#Function Body

return value

The following are static method properties:

A static method is one that is bound to the class rather than

the class's object.

A static method can't access or change the state of the class.

It is present in a class since the method makes sense to be

present in a class.

Example 11.27:

Example of class method and static method.

from datetime import date

class Student:

def __init__(self, name, age):

self.name = name

self.age = age

a class method to create a Student object by birth year.

@classmethod

def fromBOD(cls, name, year):

return cls(name, date.today().year - year)

a static method to check if a Student is adult or not.

@staticmethod

def isAdult(age):

return age > 18

s1 = Student('Ankit', 25)

s2 = Student.fromBOD('Ankit', 1996)

print (s1.age)

print (s2.age)

print the result

print (s2.isAdult(25))

Output:

25

25

True

Class decorator

Decorators are a potent and valuable Python tool because they

enable programmers to change a function or class's behavior.

Decorators allow us to wrap another feature to expand its

behavior without changing it permanently. We may describe a

decorator as a class by using the __call__ method. When a

user wants to construct an object that acts like a function, the

function decorator must return an object that acts like a

function, which is where __call__ comes into use.

Example 11.28:

class DecoratorExample:

def __init__(self, fun):

print ('This is constructor')

self.fun = fun

def __call__(self):

Before function call code.

print ('Before function call')

self.fun()

After function calls code.

print ('After function call')

adding class decorator to the fun

@DecoratorExample

def fun():

print ("Class decorator")

function call

fun()

Output:

This is constructor

Before function call

Class decorator

After function call

Recursive calls to functions

A method of programming or coding a problem in which a

function calls itself one or more times in its body is known as

Typically, it returns the function call's return value. We call a

function recursive if its description meets the recursion

condition. In Python, we can call a function inside another

function. In the same way, we can call a function recursively

inside its body.

Example 11.29:

Recursive function example

Function to compute factorial of a given number

def fact(n):

if n == 1:

return 1

else:

return (n * fact(n-1))

x = 6

print ("The factorial value of", x, "is", fact(x))

Output:

The factorial value of 6 is 720

Conclusion

In this chapter, we discussed the concepts of object-oriented

programming and their implementation in Python. We

discussed constructor, inheritance, polymorphism, etc. Various

built-in class functions and attributes are described with the

help of examples. Based on these examples, you can write your

code for object-oriented programming. In the next chapter, we

will discuss machine learning concepts and their

implementations in Python.

Points to remember

Python is object-oriented programming.

In Python, almost everything is an object with its own set of

properties and methods.

Decorators are a powerful and valuable Python tool. They allow

programmers to modify the behavior of a function or a class,

We can implement hybrid inheritance with the help of other

inheritances.

Multiple choice questions

Which of the following is not an OOPs concept?

Encapsulation

Polymorphism

Exception

Abstraction

What type of inheritance is illustrated in the following Python

code?

class A():

pass

class B():

pass

class C(A,B):

pass

Multi-level inheritance

Multiple inheritance

Hierarchical inheritance

Single-level inheritance

Which of the following is not a type of inheritance?

Double level

Multi-level

Single level

Multiple

The _________ keyword defines a template indicating what data

and code will be contained in each object of type.

class

object

Class

Instance

_____ is used to create an object.

class

constructor

User-defined functions

In-built functions

Answers

c

b

a

a

b

Questions

What is object-oriented programming? List some of its

advantages.

What are the main features of OOPs?

Differentiate between an object and a class.

Define constructor in Python? Also, give an example.

What is the difference between multiple and multi-level

inheritance?

What is the concept of the overriding method? Give an

example for the same.

What are Python decorators?

Write the difference between a class method and a static

method.

Describe polymorphism with a suitable example.

Write code to use the __init__() method to assign values to

data attributes in Python?

CHAPTER 12

Machine Learning with Python

Machine learning is a branch of computer science that allows

computers to use data in the same way that humans do. It is

a form of artificial intelligence that uses an algorithm or a

method to extract patterns from raw data. The goal of machine

learning is to encourage computers to learn from their

experiences without being specifically programmed or requiring

human interaction. In this chapter, you will be familiar with

various machine learning approaches and applications. Besides,

we have demonstrated various machine learning algorithms

with the help of examples and codes.

Structure

In this chapter, we will cover the following topics:

The basic concepts of machine learning

Applications of machine learning

Types of machine learning

Various Python libraries for machine learning

Python codes to implement machine learning approaches

Objective

The objective of this chapter is to introduce the concept of

machine learning. After completing this chapter, you will be

able to implement and analyze the existing learning algorithms,

including well-studied methods for classification, regression,

prediction, and clustering learning. Also, you will be able to

write Python codes for machine learning approaches.

Introduction to machine learning

Machine learning is the science (and art) of programming

computers so they can learn from data. It is the field of study

that gives computers the ability to learn without being explicitly

programmed. A computer program is said to learn from

experience E concerning some task T and some performance

measure P, if its performance on as measured by improves

with experience For example, through experience gained by

playing games against itself, a computer program that learns to

play checkers may improve its performance, measured by its

ability to win in the class of tasks involving playing checkers

games.

The concept of self-learning is the key attribute of machine

learning. This refers to implementing statistical modeling, all

without direct programming, instructions, identifying

correlations, and enhancing performance based on data and

analytical knowledge. This is what is described as the ability to

learn without being explicitly programmed. The machine can

perform a task using input data rather than relying on a direct

input command. To construct a decision model, machine

learning uses data as feedback. Decisions are generated by

deciphering relationships and patterns in the data using

probabilistic reasoning, trial and error, and other computation-

intensive techniques. It means that the decision model's output

is decided not by any pre-set rules specified by a human

programmer but rather by the input data's quality. To minimize

prediction errors, the human programmer always responds to

feeding the data into the model, choosing an appropriate

algorithm, and tweaking its settings (called hyper-parameters)

and standard programming, the computer and the developer

work a layer apart.

Input data is usually split into training data and test data in

machine learning. The first split of data is the training data,

which is the initial reserve of data used to develop the model.

After developing the model, we can test the remaining data

model known as the test data by using patterns extracted from

the training data, satisfied with its prediction accuracy. If the

model's performance is satisfactory by using the test data then

the model is ready to use with the applications.

Uses of machine learning

Problems for which existing solutions require many fine-tuning

or long lists of rules: one machine learning algorithm can

often simplify code and perform better than the traditional

approach.

Complex problems using a traditional approach yields no right

solution: the best machine learning techniques can perhaps

find a solution.

Fluctuating environments: a machine learning system can adapt

to new data.

We get insights into complex problems and large amounts of

data.

Traditional programming v/s machine learning

As a unique way to program machines, one genuine way to

think about machine learning is that most programming that is

not machine learning is procedural and is a set of rules

defined by humans. This ruleset is called as an algorithm. The

following figure shows the concepts of the traditional

programming approach:

Figure 12.1: Traditional programming approach

In machine learning, a person chooses the underlying algorithm

or designs it. However, the algorithms learn about the

parameters that shape a mathematical model for making

predictions from knowledge rather than direct human

interference. Humans do not know certain conditions or set

them-the computer does. Put another way, train a mathematical

model, and use a data set when it sees something similar. The

concepts of machine learning approaches are shown in figure

Figure 12.2: A machine learning approach

The following figure illustrates how machine learning integrates

into data science and computer science's broader landscape:

Figure 12.3: Integration of machine learning into a data science

and computer science

Applications of machine learning

There are different areas where machine learning is commonly

used. Some of the machine learning applications and their

techniques are described as follows:

Image Before performing any tasks related to images, it is

almost necessary to process the images to make them more

suitable as input data. It is the conversion of JPEG or PNG

file format images to usable data for neural networks. To

process the image into data, we may use the TensorFlow

library in the Python programming language as it provides a

variety of tools to retrieve the data from an image file. We can

resize the image file or even act on a large set of images all

at once.

Speech Speech recognition saves us time by speaking instead

of typing. It enables us to communicate with machines without

even writing the programming code. Speech recognition is a

great instance of using machine learning in real life. A suitable

example is the Google Meet web application. CMU Sphinx,

Kaldi, SpeechRecognition, and Wav2letter++ are the speech

recognition libraries that we can use to process the audio file.

Traffic RNN Neural deep learning may be used to find patterns

from traffic datasets to predict if severe traffic jams will

happen shortly. Using the Geopandas package of Python, we

can differentiate the traffic event of a given huge traffic

dataset. Three forms of traffic incidents are seen, including

road delays, collisions, and "stopped cars on the shoulder." We

require GPU or TPU Processing and Google Colaboratory

service offers this free for deep learning. On Google Chrome,

we may install a plugin called Collaboratory.

Self-driving Train an end-to-end deep learning model in a

driving simulator that would make a car drive around the track

by itself. The regression problem between the vehicle steering

angles and the road images from a car's cameras is tracked in

real-time. The driving simulator saves frames from three

different front-facing cameras, records data from the vehicle's

point of view, and different driving data like speed, throttle,

reverse, and steering angle. We may use matplotlib, Keras,

NumPy, pandas, or scikit-learn environment and tools.

Email spam and malware An email is one of the most useful

networking methods, and one of the essential features is

efficient communication, Spam, and malware filtering. The

outline for a spam filtering system with scratch is 1.) EDA

(Exploratory Data Analysis), 2.) Data Processing, 3.) Feature

Extraction, 4.) Scoring & Metrics, 5.) Improvement by using

Embedding and Neural Network, 6.) Comparison of ML &

Deep Learning algorithms. We can avail the data set from UC

Irvine Machine Learning Repository, Kaggle Datasets, AWS

Datasets, or from Spam Assassin. Two types of data present in

the repository are Ham (not Spam) and Spam data. The Ham

data is complicated or straightforward, meaning that specific

non-spam data have a strong resemblance to spam data, which

could cause some trouble deciding for the system.

Detecting tumors in brain Basically, a tumor is an excessive

proliferation of cells in some portion of the body, and a brain

tumor is a collection or mass accumulated in the brain of

these irregular cells. It is classified as primary in two

categories, arising in the brain and secondary brain tumor that

develops in the brain but arises from the spread of a

malignant tumor anywhere in the body.

Magnetic resonance imaging is a widely used medical

technology for diagnosing various tissue anomalies, including

brain tumor detection and diagnosis. The active growth in

computerized image segmentation allows doctors to recognize

and imagine abnormalities to take the necessary steps to

optimize fast decision-making therapy. The main challenges

associated with medical imaging training machine learning

models are the high cost of acquiring each dataset, receiving

patient consent, and an expert's cost analysis of the image.

Creating a chatbot or a personal Chat-bot is software for

computers that helps to communicate via messages. To imitate

human behavior, they are formulated. ALICE is one of the

most popular chatbots that work on pattern matching strategy.

Pattern matching strategy is the Artificial Linguistic Internet

Computer Entity ALICE's AIML files are accessible online and

include categories such as music, art, philosophy, meetings,

etc. for the pattern matching system of chat-bot, AIML files are

used.

Fraud Bank purchases via credit or debit cards have risen

dramatically in recent years, and an increase has also followed

this in identity fraud. Financial institutions need to develop

efficient and proactive fraud detection systems to manage this

problem. To deal with this problem, machine learning is a

promising solution. In the issue of fraud detection, transaction

data is categorized and evaluated as legitimate or fraudulent.

The fraud detection method is split into two general categories:

fraud analysis (detection of misuse) and user behavior analysis

(Anomaly detection).

Stock market Python can be used to illustrate the idea that

stock prices obey a random The random walk does not

eliminate the likelihood of beating the market, nor does it

support tossing investment models, but it suggests that these

models should be constructed and continuously re-evaluated

with extreme care and diligence. The random-walk principle

notes that it is not possible to forecast stock prices because

stock price movements are random.

Medical Machine learning diagnosis works when the disorder

can be reduced to a physiological data classification task in

places where we currently rely on the clinician to be able to

visually distinguish patterns that suggest the condition's

presence or form.

Automatic language The use of software to translate text or

speech from one language to another is investigated by

automatic language translation or automatic translation

abbreviated by the MT. For MT, we can use a deep neural

network. We can figure out how to build a translation model

for neural machines to translate one language into another

(For example, English to French). The model accepts English

text as input and returns the other translation of the language.

To run the code that has access to GPU instances, we can

use the AWS EC2 case.

Automatically classifying news We need to know what the news

stories are about - we need to identify them to link people

with the right content. The articles can be classified into over

80 categories, such as music, culture, architecture, opinion,

food, etc. When an article is written, the first step in the

pipeline is to remove all the article elements, such as text,

title, images, writers, and URLs, and what the article is all

about is the classification part.

Forecasting your company's revenue next year, based on many

performance The SpringML app simplifies forecasting by

running ML models that automatically run and include a

monthly or quarterly revenue metric forecast for a consumer

(Example, Revenue, ACV, and Quantity). Sales leaders will use

these historical data-consuming models to gauge pattern and

seasonality and current opportunities pipeline for the next 6 to

12 months to forecast. A precise forecast helps companies to

make informed business choices. Some of the forecast

methods are given below: 1.) Forecasting time series using

Bayesian models. 2.) Provide the time series predictors. 3.)

Evaluate current pipeline data on open opportunities by running

classification algorithms. 4.) Before finalizing the best set of

models to use, evaluate the ensemble over the previous few

months.

Segmenting clients based on their purchases so that you can

design a different marketing strategy for each Based on specific

essential attributes that may help a business sell more goods

at lower marketing prices, market segmentation distinguishes

the target market or consumers. We can use ML algorithms

based on multiple trees for segmentation. Multiple Additive

Regression Random and Boosting Stochastic Gradient are

techniques that render predictions using a multitude of trees

and an ensemble of the same.

A client may be interested in recommending a product based

on past Using various algorithms, a recommendation engine

filters the data and recommends to users the most important

things. It first captures a customer's past actions and based

on that, suggests items that users would be willing to

purchase. We may suggest products to a customer who is the

most common among all users. Based on their interests, we

can break the users into different segments and suggest

products based on the segment to which they belong.

Building an intelligent bot for a We can use Reinforcement

Learning basics, or we can assume that the game Snake

applies Deep Reinforcement Learning (Neural Network + Q-

Learning). We can create an AI Agent capable of learning how

to play the iconic Snake from Scratch game, and we use Keras

on top of Tensorflow to implement a Deep Reinforcement

Learning Algorithm. Reinforcement learning is an approach to

making decisions based on the Markov Decision Process.

Instead of a conventional supervised ML approach, we could

use Deep-Q-Learning. We have two main components in

Reinforcement Learning: the environment (game) and the agent

(Snake). The environment rewards the agent each time the

agent acts, which can be positive or negative based on how

successful the state's action was.

Types of machine learning

Machine learning systems are mainly categorized into two types

based on the procedure of their learning. If the machine is

trained under human supervision with label data, it is classified

as a supervised learning system. If the machine is trained

without human or any label data, the system classifies the data

based on similarity or a pattern, it is called an unsupervised

learning system. Supervised learning is the most exploited form

of machine learning system and requires extensive data but is

the easiest form of machine learning.

Supervised learning

In supervised learning, machines learn under the supervision of

label data in which the data set comprises input variables that

correspond to the output variables on which the machine

learns. There is training data on the which machine is trained

by entering some data as an input and giving output according

to its training, for example, credit risk, the machine gives

outcomes based on the credit history as an input and gives a

result corresponding to the credit risk. The machine learns to

construct a model by providing consistent input-output samples

and is trained on it. It is the type of machine learning in

which we have an input corresponds to output variables and

the model is supervised to learn the correlation of the

variables. Supervised learning is also classified as:

A machine learning model helps us differentiate the data into

separate categories and classify the data as input into specific

categories. For example, in medical cases, if a patient is

diagnosed with cancer, the machine gives outcomes based on

symptoms as its input and gives output positive or negative.

Another example is to categorize the pictures of animals into a

cat group and a dog group.

Regression is like classification, but the only difference between

them is that classification is done only on the discrete values,

but in regression, we use continuous values to categorize the

data. For example, a model predicts how many years the

person will be sick or healthy by giving a radiological image as

an input.

Unsupervised learning

In unsupervised learning, the output variables corresponding to

input variables are not given. The variables are unlabeled. In

unsupervised learning, the model tries to identify the pattern in

the given variables and find the hidden pattern that can help

create new labels regarding possible outputs. In supervised

learning, we train the machine by using input data and no

association with output variables. The motive of using

unsupervised learning is to find the hidden pattern of the data.

This is called an unsupervised learning because there is no

labeled data, and the machine learns without the human's

supervision. The machine automatically finds the pattern

between the data, and it is classified into two groups

clustering and association problems.

A clustering issue is where you want to discover the inherent

groupings in the data, such as by buying activity and grouping

customers.

The learning issue of an association rule is that you want to

find rules that explain large portions of your data, such as

individuals who buy X also tend to buy

Python libraries for machine learning

Python is now one of the most popular programming

languages for machine learning tasks, and it has largely

replaced many other languages in the field, due to its extensive

library of functions. Machine Learning Python libraries include:

Numpy

It is one of the most popular libraries in Python for machine

learning. It is used to process matrix and multi-dimensional

arrays. In this mathematics, functions are present in large

quantities that are very useful for the scientific computation of

scientific data in machine learning.

Example 12.1:

import numpy as np

Creating two arrays of rank 2

p = np.array([[1, 2], [3, 4]])

q = np.array([[5, 6], [7, 8]])

print (p)

print (q)

Output:

[[1 2]

[3 4]]

[[5 6]

[7 8]]

Pandas

It is a data analysis library in Python that is mainly used to

manipulate and analyze data. It comes into play before the

dataset is prepared for training. It is a Python library that gives

us a set of tools to analyze data. In Pandas, we can load,

prepare, manipulate, model, analyze data, join data, merge

data, reshape data, and take data from different databases, put

it together, and analyze it.

Example 12.2:

importing pandas as pd

import pandas as pd

data = {"state": ["Delhi", "Rajasthan", "Maharashtra", "Gujarat",

"Punjab"],

"capital": ["New Delhi", "Jaipur", "Mumbai", "Gandhinagar",

"Chandigarh"]

}

data_table = pd.DataFrame(data)

print (data_table)

Output:

state capital

0 Delhi New Delhi

1 Rajasthan Jaipur

2 Maharashtra Mumbai

3 Gujarat Gandhinagar

4 Punjab Chandigarh

Scikit-learn

With the help of the scikit library in Python, we can use

various machine learning algorithms like classification,

regression, clustering, reduction of dimensionality, selection of

the model and preprocessing, etc. It is one of the most

concerning machine learning libraries in Python. It can easily

collaborate with different libraries of machine learning

programming, for example, Numpy, and Pandas.

Example

Sample Decision Tree Classifier

from sklearn import datasets

from sklearn import metrics

from sklearn.tree import DecisionTreeClassifier

load the iris datasets

dataset = datasets.load_iris()

fit a CART model to the data

model = DecisionTreeClassifier()

model.fit(dataset.data, dataset.target)

print (model)

make predictions

expected = dataset.target

predicted = model.predict(dataset.data)

summarize the fit of the model

print (metrics.classification_report(expected, predicted))

print (metrics.confusion_matrix(expected, predicted))

DecisionTreeClassifier(class_weight=None, criterion='gini',

max_depth=None,

max_features=None, max_leaf_nodes=None,

min_impurity_decrease=0.0, min_impurity_split=None,

min_samples_leaf=1, min_samples_split=2,

min_weight_fraction_leaf=0.0, presort=False, random_state=None,

splitter='best')

precision recall f1-score support

0 1.00 1.00 1.00 50

1 1.00 1.00 1.00 50

2 1.00 1.00 1.00 50

avg / total 1.00 1.00 1.00 150

[[50 0 0]

[0 50 0]

[0 0 50]]

Matplotlib

It is a 2D plotting library for Python programming that is used

for data visualization to generalize various figures and high-

quality image plots; with the help of the Matplot library, we

can easily generalize the various diagrams like histogram,

scatter plots, plot error charts, bar charts with just only a few

lines of code.

Example 12.4:

import matplotlib.pyplot as plt

import numpy as np

Prepare the data

x = np.linspace(0, 20, 200)

Plot the data

plt.plot(x, x, label ='linear')

Add a legend

plt.legend()

Show the plot

plt.show()

Output:

Figure 12.4: Example of a plot

Tensorflow

It was initially developed for internal use by the Google brain

team. And came into existence in November 2015 under

Apache licenses 2D. It helps to produce a machine learning

models framework. It supports different types of toolkits for

constructing machine learning models that provide different

levels of abstraction.

Example

import `tensorflow`

import tensorflow as tf

with tf.compat.v1.Session() as sess:

x = tf.constant(10.0)

y = tf.constant(8.0)

z = tf.multiply(x, y)

result = sess.run(z)

print (result)

Output:

80.0

Keras

Keras is widely used in Python programming. It provides us

with a high-level neural network API capable of running on top

of CNTK, TensorFlow, or Theano.

Example

import numpy as np

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

Pytorch

Python has a large number of tools and libraries that helps us

with working computer vision, machine learning, and

processing of natural language. It is one of the open-source

libraries which can easily be used and learned quickly. Python

can easily combine with the Python data science stack, even

with the Numpy. There is a little bit of difference between the

functioning of Numpy and Pytorch. It can also perform

computation on tensors.

If Pytorch is not installed earlier, then it can be installed by

the following command: > pip install torch

Example 12.7:

import torch

import math

dtype = torch.float

device = torch.device("cpu")

Create random input and output data

x = torch.linspace(-math.pi, math.pi, 3000, device=device,

dtype=dtype)

y = torch.sin(x)

print (x)

print (y)

p=torch.linspace(3, 10, steps=5)

print (p)

q=torch.linspace(-10, 10, steps=5)

print (q)

Output:

tensor([-3.1416, -3.1395, -3.1374, …, 3.1374, 3.1395, 3.1416])

tensor([8.7423e-08, -2.0949e-03, -4.1901e-03, …, 4.1901e-03,

2.0949e-03, -8.7423e-08])

tensor([3.0000, 4.7500, 6.5000, 8.2500, 10.0000])

tensor([-10., -5., 0., 5., 10.])

NLTK

NLTK stands for natural language toolkit and a library used in

Python that helps us process natural language. NLTK is the

most popular library for Python programming that helps in

working with human languages. It offers to use the frame net,

Wordvec, WordNet, and some others to the programmer, and it

provides us with the interface and some lexical resources.

Some of the primary functions of the NLTK is to find the

keywords in documents, voice recognition, stemming of words,

and lemmatizing and handwriting.

You can install NLTK 3.0, downloadable free of charge from

before going on. To download the version needed for your

platform, follow the instructions there.

Start the Python interpreter as before, after you have installed

NLTK, and install the necessary data for the book by typing

the following two commands at the Python prompt, then

selecting the book set as shown in figure

>>> import nltk

>>> nltk.download()

Figure 12.5: Downloading the NLTK Book Collection using

nltk.download().

Example 12.8:

import nltk

sentence = """At Five o'clock on Monday morning

… John didn't feel very good and want to do rest."""

tokens = nltk.word_tokenize(sentence)

print (tokens)

Output:

['At', 'Five', "o'clock", 'on', 'Monday', 'morning', '…', 'John', 'did',

"n't", 'feel', 'very', 'good', 'and', 'want', 'to', 'do', 'rest', '.']

Example: Loading Text

from nltk.book import *

Output:

*** Introductory Examples for the NLTK Book ***

Loading text1, …, text9 and sent1, …, sent9

Type the name of the text or sentence to view it.

Type: 'texts()' or 'sents()' to list the materials.

text1: Moby Dick by Herman Melville 1851

text2: Sense and Sensibility by Jane Austen 1811

text3: The Book of Genesis

text4: Inaugural Address Corpus

text5: Chat Corpus

text6: Monty Python and the Holy Grail

text7: Wall Street Journal

text8: Personals Corpus

text9: The Man Who Was Thursday by G . K . Chesterton

1908

Example 12.9: Searching Text

from nltk.book import *

text1.concordance("women")

Output:

Displaying 11 of 11 matches:

At creation's final day. And the women of New Bedford, they

bloom like the

here these silent islands of men and women sat steadfastly

eyeing several marble

Fishery, and so plainly did several women present wear the

countenance if not, and a still slighter shuffling of women' s

shoes, and all was quiet again

the bitterest threat of your night - women, that beat head -

winds round crone

soon. Now would all the waves were women, then I'd go

drown, and chassee

by small tame cows and calves; the women and children of

this routed host. N

the bowels, I suppose, as the old women talk Surgeon's

Astronomy in the ba

up the live bodies of all the men, women, and children who

were alive sevents. Lord! What an affection all old women have

for tinkers. I know an old wom

ever would work for lonely widow old women ashore, when I

kept my job - shop i

Understanding regression

Regression finds the relationships between the variables. For

example, if we want to determine the dependency of the

salaries on the other features like experience, education level,

their role, and the city in which they work, etc., we can use

regression. In regression, we relate the data of each employee.

The data of each employee denotes the one observation in

regression. In this, we assume the experience, city, education

level, and role as independent features.

Linear regression

Our goal is to find the relationship between one or more. Our

main motive is to find the relationship between one or more

independent features and dependent features that are the

continuous target in the linear regression model. If there is

one feature, it is known as univariate linear regression, and if

there is more than one feature, it is known as multiple linear

regressions.

Example

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, r2_score

generate random data-set

np.random.seed(0)

x = np.random.rand(50, 1)

y = 2 + 3 * x + np.random.rand(50, 1)

sckit-learn implementation

Model initialization

regression_model = LinearRegression()

Fit the data(train the model)

regression_model.fit(x, y)

Predict

y_predicted = regression_model.predict(x)

model evaluation

rmse = mean_squared_error(y, y_predicted)

r2 = r2_score(y, y_predicted)

printing values

print ('Slope:', regression_model.coef_)

print ('Intercept:', regression_model.intercept_)

print ('Root mean squared error: ', rmse)

print ('R2 score: ', r2)

plotting values

data points

plt.scatter(x, y, s=20)

plt.xlabel('x')

plt.ylabel('y')

predicted values

plt.plot(x, y_predicted, color='b')

plt.show()

Output:

Slope: [[2.90625874]]

Intercept: [2.45805209]

Root mean squared error: 0.08296096126059752

R2 score : 0.8830014727436024

Figure 12.6: Regression plot

Non-linear regression

Non-linear regression is a type of polynomial regression. It is a

method to create a mode that finds a non-linear relationship

between the dependent and independent variables. We used

non-linear regression when the data had a curving trend, and

it produced more accurate findings than linear regression. This

is because we already assume that the data is linear.

Example

import numpy, scipy, matplotlib

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

from scipy.optimize import differential_evolution

import warnings

xData = numpy.array([20.1647, 19.019, 16.9580, 15.7683, 14.7044,

13.6269, 12.6040, 11.4309, 10.2987, 9.23465, 8.18440, 7.89789,

7.62498, 7.36571, 7.01106, 6.71094, 6.46548, 6.27436, 6.16543,

6.05569, 5.91904, 5.78247, 5.53661, 4.85425, 4.29468, 3.74888,

3.16206, 2.58882, 1.93371, 1.52426, 1.14211, 0.719035, 0.377708,

0.0226971, -0.223181, -0.537231, -0.878491, -1.27484, -1.45266,

-1.57683, -1.61717])

yData = numpy.array([0.644557, 0.641059, 0.637555, 0.634059,

0.634135, 0.631825, 0.631899, 0.627209, 0.622516, 0.617818,

0.616103, 0.613736, 0.610175, 0.606613, 0.605445, 0.603676,

0.604887, 0.600127, 0.604909, 0.588207, 0.581056, 0.576292,

0.566761, 0.555472, 0.545367, 0.538842, 0.529336, 0.518635,

0.506747, 0.499018, 0.491885, 0.484754, 0.475230, 0.464514,

0.454387, 0.444861, 0.437128, 0.415076, 0.401363, 0.390034,

0.378698])

def func(x, a, b, Offset):

return 1.0 / (1.0 + numpy.exp(-a * (x-b))) + Offset

function for genetic algorithm to minimize (sum of squared

error)

def sumOfSquaredError(parameterTuple):

do not print warnings by genetic algorithm

warnings.filterwarnings("ignore")

val = func(xData, *parameterTuple)

return numpy.sum((yData - val) ** 2.0)

def generate_Initial_Parameters():

min and max used for bounds

maxX = max(xData)

minX = min(xData)

maxY = max(yData)

minY = min(yData)

parameterBounds = []

parameterBounds.append([minX, maxX]) # search bounds for a

parameterBounds.append([minX, maxX]) # search bounds for b

parameterBounds.append([0.0, maxY]) # search bounds for

Offset

"seed" the numpy random number generator for repeatable

results

result = differential_evolution(sumOfSquaredError,

parameterBounds, seed=5)

return result.x

generate initial parameter values

geneticParameters = generate_Initial_Parameters()

curve fit the test data

fittedParameters, pcov = curve_fit(func, xData, yData,

geneticParameters)

print ('Parameter are:', fittedParameters)

modelPredictions = func(xData, *fittedParameters)

absError = modelPredictions - yData

SE = numpy.square(absError) # squared errors

MSE = numpy.mean(SE) # mean squared errors

RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE

Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))

print ('RMSE value is:', RMSE)

print ('R-squared is:', Rsquared)

graph

def ModelAndScatterPlot(graphWidth, graphHeight):

f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0),

dpi=100)

axes = f.add_subplot(111)

first the raw data as a scatter plot

axes.plot(xData, yData, 'D')

create data for the fitted equation plot

xModel = numpy.linspace(min(xData), max(xData))

yModel = func(xModel, *fittedParameters)

now the model as a line plot

axes.plot(xModel, yModel)

axes.set_xlabel('X Data') # X axis data label

axes.set_ylabel('Y Data') # Y axis data label

plt.show()

plt.close('all')

w = 500

h = 500

ModelAndScatterPlot(w, h)

Output:

Parameter are: [0.21593498 -6.66784414 -0.35271173]

RMSE value is: 0.008432181989377313

R-squared is: 0.9886129643523501

Figure 12.7: Non-linear regression plot

Introduction to classification

Classification refers to predictive models' problems that classify

the input data into a class label. The task of a predictive

model is mapping function from the input to the output

Classification is a type of supervised learning where we have

the output variables corresponding to the input variables.

Classification is used in various domains such as in medical

diagnosis, credit approval, target marketing, etc. For example,

In Email, the message's detection as spam or non-spam is a

classification problem. In this problem, we use binary

classification that classifies messages as spam or non-spam in

only two classes. In this classifier, we use the input variable as

training data. So, in this case, the spam and non-spam known

emails are used as the training data, and after the training, it

can be used to detect the unknown emails by giving it as an

input. The different types of classification predictive modeling

problems are:

Binary classification

Multi-class classification

Multi-label classification

Binary classification

In binary classification, we classify the data into two class

labels, for example:

Classification of emails as Spam or not.

Prediction of conversion buys or not.

Prediction of churn or not.

Some popular algorithms which are used for binary

classification are:

Logistic regression

K-Nearest neighbors

Decision trees

Support vector machine

Naïve Bayes

Multi-class classification

Multi-class classification, unless binary classification, classifies

the data into more than two classes, for example:

Classification of face

Classification of plant species

Recognition of optical character

The most widely used algorithm for machine learning

algorithms are:

K-Nearest Neighbors

Decision Trees

Naïve Bayes

Random forest

Gradient Boosting

A binary classification algorithm can be used for multi-class

problems. This can be done by using the various strategies of

fitting multiple binary classification modes.

That fits for binary classification model for each class vs. all

other classes.

That fits for binary classification model for every pair of

classes.

We can also use these strategies of binary classification for

multi-class classification includes:

Logistic regression

Support vector machine

Multi-label classification

In this type of classification, there are two or more class

labels, where one or more class label is used to predict the

examples. If we consider the photo classification, in which we

have multiple objects in the photo, the model will predict the

presence of various objects like bicycle, person, apple, etc.

Multi-class classification is unlike binary classification, in which

a single label of the class is predicted for any example. Multi-

label classification is commonly used in predicting the multiple

outputs in which every output is predicted by using Bernoulli

probability distribution. For multi-label classification, we cannot

directly use the binary classification algorithm or multi-class

classification. We used a specialized version of the multi-label

classification are:

Multi-label Decision tree

Multi-label Random forests

Multi-label Gradient boosting

Imbalanced classification

An imbalanced classification task is somewhat similar to a

binary classification task in which the majority of examples in

the training dataset belongs to the normal class and the

minority belongs to the abnormal class. For example:

Fraud detection

Detection of outlier

Diagnosis tests in medical

The binary classification solves this problem; even some may

require specialized techniques. From changing the composition

of samples in the binary data set using the specialized

technique to under-sampling the majority class or oversampling

the minority class. For example:

Random sampling

Smote oversampling

A minority class was used to fit the model on the training

dataset. Specialized modeling algorithm is used to train the

dataset with minority classes such as cost-sensitive machine

algorithm. For examples:

Cost-sensitive logistic Regression

Cost-sensitive Decision trees

Cost-sensitive support vector machine

Classification methods

K-Nearest Neighbors

One of the simplest classification algorithms is KNN that

stands for the K-Nearest Neighbor, which classifies the data

based on its similarities. This algorithm assigns the objects to

the nearest class. In this, K represents the number of

neighboring objects in the space of feature compared to

classification of the object. For the classification of inputs, we

need to perform some actions that are:

Measurement of the distance between the objects in the

training samples.

Select the numbers of objects K that are classified in the class,

which frequently occurs among the K-nearest neighbor.

Figure 12.8: KNN classification

The figure 12.8 shows an example of KNN classification. In this

figure, the test sample (blue circle) should be classified as

either class 1 or class 2. If K=3 (single line), the test sample

was assigned to class 1 because there are two class elements

of class 1 and only one element of class 2.

If K=5 (dotted line), the test sample is assigned to class 2

because it has three elements and class 1 has two elements.

Implementation of this algorithm is very simple, robust for

noisy training data, and if the training data is large, it is very

effective.

The accuracy of the model depends on K's value, and its

implementation cost is high as it needs to compute the

distance between the objects to all the training samples.

Example

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import confusion_matrix, accuracy_score

from sklearn.model_selection import cross_val_score

from sklearn import datasets

dataset = pd.read_csv('Iris.csv')

#Summarize the Dataset

print ('dataset shape is :', dataset.shape)

print ('dataset head :', dataset.head(5))

print ('dataset description :', dataset.describe())

dataset.groupby('Species').size()

#Dividing data into features and labels

feature_columns = ['SepalLengthCm', 'SepalWidthCm',

'PetalLengthCm','PetalWidthCm']

X = dataset[feature_columns].values

y = dataset['Species'].values

#Spliting dataset into training set and test set

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =

0.2, random_state = 0) yu

Instantiate learning model (k = 3)

classifier = KNeighborsClassifier(n_neighbors=5)

Fitting the model

classifier.fit(X_train, y_train)

Predicting the Test set results

y_pred = classifier.predict(X_test)

cm = confusion_matrix(y_test, y_pred)

print ('confusion matrix:\n',cm)

accuracy = accuracy_score(y_test, y_pred)*100

print ('Accuracy of our model is equal ' + str(round(accuracy,

2)) + ' %.')

dataset shape is : (150, 6)

dataset head : Id SepalLengthCm …

PetalWidthCm Species

0 1 5.1 … 0.2 Iris-setosa

1 2 4.9 … 0.2 Iris-setosa

2 3 4.7 … 0.2 Iris-setosa

3 4 4.6 … 0.2 Iris-setosa

4 5 5.0 … 0.2 Iris-setosa

[5 rows x 6 columns]

dataset description

: Id SepalLengthCm …

PetalLengthCm PetalWidthCm

count 150.000000

150.000000 … 150.000000 150.000000

mean 75.500000

5.843333 … 3.758667 1.198667

std 43.445368

0.828066 … 1.764420 0.763161

min 1.000000

4.300000 … 1.000000 0.100000

25% 38.250000

5.100000 … 1.600000 0.300000

50% 75.500000

5.800000 … 4.350000 1.300000

75% 112.750000

6.400000 … 5.100000 1.800000

max 150.000000

7.900000 … 6.900000 2.500000

[8 rows x 5 columns]

confusion matrix:

[[11 0 0]

[0 12 1]

[0 0 6]]

The accuracy of our model is equal to 96.67 %.

Copy Iris.csv file into the current working directory before

executing this program. You can get this file from a web

search if not available.

Understanding decision trees

Decision trees help to build a classification model of machine

learning in the form of tress structure. The decision tree splits

the data into subsets in a hierarchal structure, and at the

same time associated decision tree is incrementally developed.

In the decision tree, the final output is decision nodes and

leaf nodes. The decision tree has two or more branches and in

leaf node gives the final result or classification of data into

classes. The topmost decision mode in a decision tree is a

root node. We can use both numerical and categorical data in

the decision tree.

Assumptions while creating a decision tree:

We consider the whole training data set as the root in the

beginning.

Mostly preferred feature values are categorical.

Before building the model, continuous values are discretized.

Based on attribute values, records are distributed recursively.

Ordering of attributes as root or internal nodes is done by

using a statistical approach.

How do the decision trees work?

The accuracy of a decision tree depends on the strategy which

splits the dataset. For both classification and regression, the

criteria decision is different. In decision trees, we can use

multiple algorithms to split the data from a node into two or

more sub-nodes. The homogeneity increases between the sub-

node by following splitting criteria, or we can say that the

efficiency of the node increases concerning the target variable.

In the decision, the tree splits the node based on given

variables and selects the split, which gives us the most

homogenous sub-nodes.

The selection of the algorithm is typically based on the type of

target variables. Let us see some algorithms used in the

decision tree:

ID3-which is an extended form of D3

C4.5-it is a successor of D3

CART-used for the classification and Regression Trees

MARS-multivariable adaptive regression splines

The top-down greedy search approach is used for the building

of the ID3 algorithm for the possible branches and without

backtracking. We choose in case of a greedy algorithm which is

the best at that moment.

Steps in id3 algorithm

It starts with the set S as the root node.

With every iteration of the algorithm. We calculate the Entropy

and information gain of every attribute.

Select those attributes which have the largest information gain

or smallest entropy.

Then the selected attribute is used to split the set S to

produce a subset of the data.

The algorithm is continuous to recur on the unselected subset.

Attribute selection measures:

If the dataset consists of many attributes, then to decide which

attribute is used to split the data and place it at the root or

the internal node at a different level is a complex task, and it

cannot be solved by choosing any node randomly as the root

node. It will give us a bad result with low accuracy. For this

problem, the researcher finds the following solutions:

Entropy

Information gain

Gini index

Gain Ratio

Reduction in variance

Chi-square

Issues in decision tree

The following are some important issues in the decision tree:

Working with continuous attributes.

Avoiding overfitting

Super Attributes

Working with missing values.

Example 12.13:

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score

from sklearn.datasets import load_iris

from matplotlib import pyplot as plt

from sklearn import datasets

from sklearn import tree

import sklearn.metrics as metrics

#Loading datasets

iris_data = load_iris()

iris=pd.DataFrame(iris_data.data)

#priting features name of iris data

print ("Name of features : ", iris_data.feature_names)

#shape of datasets

print ("Dataset Shape: ", iris.shape)

#first six sample

print ("Dataset: \n",iris.head())

#priting samples and target

X = iris.values[:, 0:5]

Y = iris_data.target

#print (X)

#print (Y)

Splitting the dataset into train and test

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size =

0.3, random_state = 100)

Decision tree classifier

clf= DecisionTreeClassifier(class_weight=None, criterion='gini',

random_state = 100)

#fitting the training data

clf.fit(X_train, y_train)

prediction on random data

X=[[6.4,1.8,6.6,2.1]]

Y_pred=clf.predict(X)

print (Y_pred)

prediction on X_test (testing data)

Y_pred=clf.predict(X_test)

print (Y_pred)

#Accuray of the model

print ('Accuracy:',metrics.accuracy_score(y_test, Y_pred))

#Decision making in decision tree

text_representation = tree.export_text(clf)

print (text_representation)

tree.plot_tree(clf)

Output:

Name of features : ['sepal length (cm)', 'sepal width (cm)',

'petal length (cm)', 'petal width (cm)']

Dataset Shape: (150, 4)

Dataset:

 0 1 2 3

0 5.1 3.5 1.4 0.2

1 4.9 3.0 1.4 0.2

2 4.7 3.2 1.3 0.2

3 4.6 3.1 1.5 0.2

4 5.0 3.6 1.4 0.2

[2]

[2 0 2 0 2 2 0 0 2 0 0 2 0 0 2 1 1 2 2 2 2 0 2 0 1 2 1 0

1 2 1 1 1 0 0 1 0

1 2 2 0 1 2 2 0]

Accuracy: 0.9555555555555556

|--- feature_2 <= 2.45

| |--- class: 0

|--- feature_2 > 2.45

| |--- feature_3 <= 1.65

| | |--- feature_2 <= 5.00

| | | |--- class: 1

| | |--- feature_2 > 5.00

| | | |--- feature_0 <= 6.05

| | | | |--- class: 1

| | | |--- feature_0 > 6.05

| | | | |--- class: 2

| |--- feature_3 > 1.65

| | |--- feature_2 <= 4.85

| | | |--- feature_1 <= 3.10

| | | | |--- class: 2

| | | |--- feature_1 > 3.10

| | | | |--- class: 1

| | |--- feature_2 > 4.85

| | | |--- class: 2

Figure 12.9: Example of a decision tree

If the following error occurs in plotting treeè AttributeError:

module 'sklearn.tree' has no attribute then update scikit-learn by

the following command.

>pip install -U scikit-learn

The following parameters can be used in the decision tree

classifier:

Logistic regression

It is a classification algorithm used to classify discrete data, for

example, for the classification of email as spam or non-spam,

fraud detection in online transactions, and classifying malignant

tumor or Benign tumor. Logistic regression converts its output

by using a logistic sigmoid function that returns a probability

value.

A logistic regression algorithm is used for the classification of

problems in machine learning. It is a predictive analysis

algorithm by bussing the concept of probability. We can also

call it a linear regression model, but we can use a more

complex cost function in logistic regression. This function is

called a sigmoid function or logistic function instead of a

linear function. The limit of the cost function of the hypothesis

of logistic regression is between 0 and 1. Therefore, if the

linear function fails to represent it as the value greater than 1

or less than 0 that is not possible according to the hypothesis

of linear regression, logistic regression hypothesis expectation

can be represented as:

0 < hθ (x) < 1

Sigmoid function

The sigmoid function is used to map the predicted values to

probabilities—this function helps to map the real value to

other values between 0 and 1. In machine learning, for the

mapping of predicted values to the probabilities, we use the

sigmoid function.

Hypothesis representation

We used the hypothesis's formula by using linear regression;

that is, we modify it for logistic regression, which means we

expect the hypothesis value between 0 and 1. When using

linear regression, we used a formula of the hypothesis, that is:

hΘ(x) = β₀ + β₁X

For logistic regression, we are going to modify it a little bit

i.e.

σ (Z) = σ (β₀ + β₁X)

We have expected that our hypothesis will give values between

0 and 1.

Z = β₀ + β₁X

hΘ (x) = sigmoid(Z)

i.e. hΘ (x) = 1/(1 + e^ - (β₀ + β₁X)

The Hypothesis of logistic regression can be represented as:

Example 12.14:

import seaborn as sns

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

#Load the data set

data = sns.load_dataset("iris")

data.head()

#Prepare the training set

X = feature values, all the columns except the last column

X = data.iloc[:, :-1]

y = target values, last column of the data frame

y = data.iloc[:, -1]

Plot the relation of each feature with each species

#Split the data into 80% training and 20% testing

x_train, x_test, y_train, y_test = train_test_split(X, y,

test_size=0.3, random_state=42)

#Train the model

model = LogisticRegression()

model.fit(x_train, y_train) #Training the model

#Test the model

predictions = model.predict(x_test)

print (predictions)# printing predictions

#Check precision, recall, f1-score

print (classification_report(y_test, predictions))

print (accuracy_score(y_test, predictions))

Output:

['versicolor' 'setosa' 'virginica' 'versicolor' 'versicolor' 'setosa'

'versicolor' 'virginica' 'versicolor' 'versicolor' 'virginica' 'setosa'

'setosa' 'setosa' 'setosa' 'versicolor' 'virginica' 'versicolor'

'versicolor' 'virginica' 'setosa' 'virginica' 'setosa' 'virginica'

'virginica' 'virginica' 'virginica' 'virginica' 'setosa' 'setosa'

'setosa' 'setosa' 'versicolor' 'setosa' 'setosa' 'virginica'

'versicolor'

'setosa' 'setosa' 'setosa' 'virginica' 'versicolor' 'versicolor'

'setosa'

'setosa']

 precision recall f1-score support

 setosa 1.00 1.00 1.00 19

versicolor 1.00 1.00 1.00 13

virginica 1.00 1.00 1.00 13

accuracy 1.00 45

macro avg 1.00 1.00 1.00 45

weighted avg 1.00 1.00 1.00 45

1.0

Support vector machine

The support vector machine is a machine learning model that

is very powerful and versatile, capable of performing linear and

non-linear data classification. SVM is the popular and most

widely used model in machine learning, and if anyone is

interested in machine learning, they should have this model in

their toolbox. Support vector machine is well suited for the

classification of complex medium-sized and small datasets. The

figure 12.10 demonstrates SVM classification:

Figure 12.10: Support vector machine classification

To find a hyperplane in an N-dimensional space is the SVM

algorithm's primary objective, which classifies the data. There

may be more than one hyperplane chosen to separate the two

classes of the data points and our objectives are to find a

hyperplane that has the maximum margin, which means there

should be maximum distance that helps for the future data

point's classification by providing some reinforcement.

Hyperplanes and Support Vectors

Hyperplanes are decision boundaries that classify the data.

Data points that fall under either side of the plane can be

attributed to different classes and the plane's dimension

depending on the number of features. The hyperplane is a

simple line in case the number of input features is 2 and a

hyperplane is a two-dimensional plane if the number of input

features is 3. If the number of features exceeds 3, it becomes

difficult to imagine the hyperplane. Support vectors are data

points close to the plane and impacts the hyperplane's

positions and orientation. We can maximize the margin of the

hyperplane by using support vectors. By deleting the support

vectors the position of the hyperplanes will be changed. These

points help us in the building of SVM. In SVM, we take the

output of a linear function, and if the output is less than -1,

we classify it as another class. That means the range of

threshold values is 1 and -1 in SVM. We can obtain the

reinforcement range of value ([1, -1]) as a margin. In the SVM

algorithm, we try to maximize the margin between the data

points and the plane.

Example 12.15:

#Import scikit-learn dataset library

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn import svm

from sklearn import metrics

from sklearn.metrics import confusion_matrix

#Load dataset

cancer = datasets.load_breast_cancer()

print the names of features

print ("Features: ", cancer.feature_names)

print the label type of cancer('malignant' 'benign')

print ("Labels: ", cancer.target_names)

print data(feature)shape

cancer.data.shape

Split dataset into training set and test set

X_train, X_test, y_train, y_test = train_test_split(cancer.data,

cancer.target, test_size=0.3,random_state=109) # 70% training

and 30% test

clf = svm.SVC(kernel='linear') # Linear Kernel

#Train the model using the training sets

clf.fit(X_train, y_train)

#Predict the response for test dataset

y_pred = clf.predict(X_test)

Print Model Accuracy

print ("Confusion matrix:\n ",confusion_matrix(y_test, y_pred))

print ("Accuracy:",metrics.accuracy_score(y_test, y_pred))

Output:

Features: ['mean radius' 'mean texture' 'mean perimeter' 'mean

area'

'mean smoothness' 'mean compactness' 'mean concavity'

'mean concave points' 'mean symmetry' 'mean fractal

dimension'

'radius error' 'texture error' 'perimeter error' 'area error'

'smoothness error' 'compactness error' 'concavity error'

'concave points error' 'symmetry error' 'fractal dimension error'

'worst radius' 'worst texture' 'worst perimeter' 'worst area'

'worst smoothness' 'worst compactness' 'worst concavity'

'worst concave points' 'worst symmetry' 'worst fractal

dimension']

Labels: ['malignant' 'benign']

Confusion matrix:

[[61 2]

[4 104]]

Accuracy: 0.9649122807017544

Model evaluation methods

To measure model efficiency, model evaluation metrics are

required. The choice of measurement criteria depends on the

role of machine learning (such as classification, regression,

ranking, clustering, topic modeling, and others). For several

tasks, specific metrics are beneficial, such as precision-recall.

The bulk of machine learning programs are supervised learning

functions, such as classification and regression. We concentrate

on metrics for these two supervised models of learning. The

following are some of the metrics used in classification

problems.

Confusion matrix

Accuracy

Precision

Sensitivity/ Recall

Specificity

F1 score

ROC (Receiver operating characteristics) curve

AUC (Area under ROC curve)

Confusion matrix

Compared to the actual results (target value) in the data, a

confusion matrix shows the number of right and wrong

predictions made by the classification model. The matrix is

NxN, where the number of destination values is N. (classes).

Using the data in the matrix, the output of such models is

generally evaluated. A 2x2 confusion matrix for two groups

(positive and negative) is shown in the following table:

Table 12.1: Confusion matrix

Accuracy

The percentage of the total number of predictions was correct.

For classification issues, accuracy is a standard assessment

metric. It's the number of accurate forecasts made as a

percentage of all forecasts made.

Accuracy = (TP+TN)/total

Misclassification: (FP+FN)/total or (1-Accuracy)

Precision

What is the percentage of real true, out of the total expected

true, as in how much the model correctly predicts? Accuracy

can become an inaccurate criterion for assessing our success

when we have a class imbalance.

Precision=TP/(TP+FP)

Sensitivity/recall

Recall calculates how many of the actual positives our model

capture through labeling it as True Positive. Regarding all the

examples that belong in the class, recall is defined as the

fraction of examples predicted to belong to a class.

Recall: TP/(TP+FN)

Specificity

It is the percentage out of the overall real negative instances

of negative instances. Therefore, here is the actual number of

negative instances present in the dataset denominator (TN +

FP). It is equivalent to recall, but the change is on the

negative side.

Specificity: FP/(FP+TN)

F1 score

It is the harmonic means of accuracy and recall. It takes both

of them into account, so the higher the F1 score, the better.

See that if one goes low, the final F1 score drops considerably

because of the numerator item. So in the F1 score, a model

does well if the positive predicted is positive (precision) and

does not skip positive and predict negative ones (recall).

F1: (2*Recall*Precision)/(Recall+Precision)

ROC (Receiver operating characteristics) curve

The ROC chart is similar to the charts of gain or rise. They

provide a means of comparison between models of

classification. The ROC chart displays the false positive rate (1-

specificity) on the X-axis, the probability of target=1 when the

true value is 0, against the true positive rate (sensitivity) on

the Y-axis, the probability of target=1 when the true value is 1.

Ideally, the curve would ascend rapidly to the top-left, meaning

the model correctly predicts the cases. For a random construct,

the diagonal red line is an example of the ROC graph is

shown as follows:

Figure 12.11: ROC Curve

AUC (Area under ROC curve)

The region under the ROC curve is also used as a measure of

the classification models' consistency. There is a region under

the curve of 0.5 for a random classifier, while AUC equals 1

for a perfect classifier. Most of the classification models have

an AUC between 0.5 and 1 in action. An example of the AUC

graph is shown as follows:

Figure 12.12: Area under ROC Curve

Conclusion

In this chapter, we discussed the concepts, applications, and

methods of machine learning. Various examples and Python

code are given for implementing machine learning approaches.

Based on these examples, you can write your code for machine

learning methods by setting different parameters and different

datasets. In the next chapter, we will discuss clustering

concepts in Python.

Points to remember

Machine learning just informs how computers do tasks on

their own.

Machine learning systems are mainly categorized as supervised

learning and unsupervised learning.

Regression is like classification, which uses the continuous

value to categorize the data.

The number of accurate and inaccurate assumptions made by

the classification model is seen in the confusion matrix.

Multiple choice questions

What is machine learning?

Machine Learning is a field of computer science.

Machine Learning is a type of artificial intelligence that extracts

patterns out of raw data by using an algorithm.

Machine Learning focuses on allowing computer systems to

learn from experience without being explicitly programmed or

human intervention.

All the above

Which of the following is NOT supervised learning?

PCA

Decision Tree

Linear Regression

Naive Bayes

Which one of the following is used to build a model?

Validation data

Training data

Test data

Hidden data

The most widely used metrics and tools to assess a

classification model are:

Confusion matrix

AUC

ROC

All the above

Which of the following Python libraries are used for data

analysis and scientific computations?

Numpy

Scipy

Pandas

All the above

Answers

d

a

b

d

d

Questions

What are the popular algorithms uses in machine learning?

What is the difference between supervised and unsupervised

machine learning?

Define precision and recall.

What is the ROC curve, and what does it represent?

Write some advantages and disadvantages of decision trees?

What is a confusion matrix, and why do you need it?

What is the difference between classification and regression?

What is meant by 'Training set' and 'Test Set'?

Discuss various Python libraries for machine learning.

Write a basic machine learning program to check a model's

accuracy by importing any dataset using any classifier?

CHAPTER 13

Clustering with Python

Cluster analysis, also known as clustering, is an unsupervised

machine learning approach for grouping unlabeled datasets. It

aims to build clusters or groups from data points in a dataset

with high intra-cluster similarity and low inter-cluster similarity.

In this chapter, you will be familiar with various clustering

methods and applications. Besides, we have demonstrated

various clustering algorithms with the help of examples and

codes.

Structure

In this chapter, we will cover the following topics:

The basic concepts of unsupervised learning

Various issues and applications of unsupervised learning

Types of clustering methods

Python codes to implement clustering methods

Objective

You can perform clustering using different approaches. This

chapter demonstrates various clustering approaches with

suitable examples. Also, you will be able to write Python codes

for unsupervised machine learning approaches using different

datasets and parameters.

Introduction to unsupervised learning

Unsupervised machine learning algorithms, without reference to

known or labeled results, infer patterns from a dataset. With

the exception of supervised machine learning, unsupervised

machine learning techniques should not be best applied to a

problem of regression or classification since we have no idea

what the output data values may be. This makes it difficult for

us to train the algorithm the way we would usually do.

Instead, unsupervised learning can be used to find the data's

inner principle. Such applications of techniques for

unsupervised machine learning include:

Clustering helps us to divide the dataset into different groups

automatically per the resemblance. Cluster analysis sometimes

overestimates the correlation between groups and does not

treat data sets as persons. For this purpose, cluster analysis is

a bad option for client segmentation and targeting applications.

In the dataset, anomaly detection will automatically determine

irregular data points. It helps detect fraudulent purchases, finds

defective hardware pieces, or identifies an outlier during data

entry triggered by a user mistake.

Sets of things that often occur together in your dataset are

found through Association It is also used by retailers for

basket research, as it enables analysts to discover items often

bought at the same time and create more successful sales and

marketing strategies.

For data pre-processing, latent variable models are frequently

used, such as minimizing the cost function in a dataset

(decreasing dimensional space) or decaying the dataset into

different pieces.

Issues with unsupervised learning

In contrast to supervised learning assignments, unsupervised

learning is complex.

How would we realize if the findings are relevant when there

are no response labels available?

Let the specialist look at the outcomes (external evaluation).

Describing an objective clustering feature (internal evaluation)

Need for unsupervised learning

All sorts of unexplained trends in knowledge are identified

through unsupervised machine learning.

Unsupervised approaches help you identify characteristics that

can be beneficial for classification.

It occurs in real-time to evaluate and mark all the input data

among students.

Unlabeled data from a computer is better to get than labeled

data, which requires manual involvement.

Clustering

Cluster analysis, used for inferential statistical analysis to

identify hidden trends or data grouping, is the most popular

unmonitored form of learning. The clusters are simulated using

a measure of similarity identified by metrics such as Euclidean

or probabilistic distance. Clustering is the most critical

unsupervised learning problem, and it deals with finding a

structure in a set of unlabeled data, just like any other

problem of this kind. The method of arranging objects into

groups whose members are similar in some way, according to a

broad concept of clustering. A cluster is thus a group of

objects that are similar to one another but dissimilar to objects

from other clusters. The figure 13.1 shows the concept of the

clustering process:

Figure 13.1: Clustering process

Clustering is used to figure out how a collection of unlabeled

data is organized internally. But how do you know if clustering

is good? It can be shown that there is no single best criterion

that is independent of the clustering's goal. As a result, the

user's responsibility is to include this condition for the

clustering result to meet their requirements. To find a specific

clustering solution, we must first identify the clusters' similarity

measures.

Proximity measures

We need to specify a proximity measure for two data points to

cluster them. The term "proximity" refers to how similar or

dissimilar the samples are to one another. It can be defined as

Similarity measure and distance. It is also shown in figure

Similarity measure S Large if and are similar.

Distance or dissimilarity measure D Small if and are similar.

Figure 13.2: Proximity measures

Distance measuring methods

The selection of distance measures is an essential part of

clustering. It controls the clusters' shape by defining how the

similarity of two elements is determined. The Euclidean and

Manhattan distances are the two most common distance

measurement methods, and they are defined as follows:

Euclidean distance

Manhattan distance

Where, x and y are two vectors of length

Clustering methods

Density-based methods: These techniques perceive the clusters

as a dense area with some resemblance and separate them

from the lower density space area. Such techniques have

substantial precision and the potential to combine two clusters.

Examples include DBSCAN Spatial Clustering of Noise OPTICS

Points for Clustering Structure etc.

Hierarchical-based The clusters generated in this process form

a hierarchy-based tree-type structure. The previously created one

is used to shape new clusters. It is categorized into two parts:

Agglomerative (Bottom-up approach)

Divisive (Top-down approach)

Examples of hierarchical-based clustering methods are CURE

Using BIRCH Iterative Reducing Clustering and using etc.

Partitioning Such techniques group the artifacts into k clusters,

and each partition one cluster forms. This approach is used to

optimize the similarity function of an objective criterion, such

as when the distance is a significant parameter, such as K-

means, CLARANS Large Applications based on Randomized etc.

Grid-based In this step, the data space is formulated into a

finite number of cells that form a grid-like structure. All

clustering operations performed on these grids are quick

regardless of the number of data items, such as STING

(Statistical Information Grid), wave cluster, CLIQUE (CLustering

In Quest), etc.

K-means clustering

K-means is an algorithm for classifying or grouping the objects

into K category numbers based on attributes/features. K is a

positive integer number. The grouping is achieved by reducing

the total of squares of distances between data and the

corresponding vector cluster. Therefore, the object of K-mean

clustering is to classify information.

The primary step of clustering with k-means is clear. We

evaluate the amount of cluster K initially, and we presume the

centroid or middle of these clusters. We can take any random

objects as the original centroids, or the first K objects'

sequence can also service such as the original vector. Then the

algorithm K implies that the three steps below will be

completed before convergence.

Example

k-means clustering example

from numpy import unique

from numpy import where

from sklearn.datasets import make_classification

from sklearn.cluster import KMeans

from matplotlib import pyplot

dataset defining

Data, _ = make_classification(n_samples=10000, n_features=2,

n_informative=2, n_redundant=0, n_clusters_per_class=1,

random_state=4)

defining model

model = KMeans(n_clusters=3)

Model fitting

model.fit(Data)

assign a cluster

Assign = model.predict(Data)

retrieving unique clusters

clusters = unique(Assign)

create scatter plot for samples from each cluster

for c in clusters:

get row indexes for samples with this cluster

ri = where(Assign == c)

create scatter of these samples

pyplot.scatter (Data[ri, 0], Data[ri, 1])

show the plot

pyplot.show()

Figure 13.3: K-mean clustering

The number of clusters must be defined when using K-means

clustering.

When clusters are of varying sizes, densities, and non-globular

forms, K-means has issues.

Hierarchical Clustering (BIRCH)

Usually, hierarchical-based clustering is being used on

hierarchical data, as you might get from a database of

businesses or taxonomies. It constructs a tree of clusters to

arrange everything from the top to bottom. It is more stringent

than the other types of clustering, but it is ideal for particular

types of data sets.

Example

Example of birch clustering

from numpy import unique

from numpy import where

from sklearn.datasets import make_classification

from sklearn.cluster import Birch

from matplotlib import pyplot

define dataset

Data, _ = make_classification(n_samples=10000, n_features=2,

n_informative=2, n_redundant=0, n_clusters_per_class=1,

random_state=4)

defining model

model = Birch(threshold=0.5, n_clusters=4)

Model fitting

model.fit(Data)

assign a cluster

Assign = model.predict(Data)

retrieve unique clusters

clusters = unique(Assign)

create scatter plot for samples from each cluster

for c in clusters:

get row indexes for samples with this cluster

ri = where(Assign == c)

create scatter of these samples

pyplot.scatter(Data[ri, 0], Data[ri, 1])

show the plot

pyplot.show()

Figure 13.4: BIRCH Clustering

Density-based Clustering (DBSCAN)

In density-based clustering, data is clustered by high data point

concentration areas, surrounded by low data point

concentration areas. The algorithm essentially finds the sites

with data points that are dense, and those clusters are named.

The best thing about this is that there can be any form in the

clusters. You are not limited to anticipated circumstances.

Under this method, the clustering algorithms do not attempt

to allocate cluster outliers, so they are neglected.

Example

Example of DBSCAN clustering

from numpy import unique

from numpy import where

from sklearn.datasets import make_classification

from sklearn.cluster import DBSCAN

from matplotlib import pyplot

define dataset

Data, _ = make_classification(n_samples=1000, n_features=2,

n_informative=2, n_redundant=0, n_clusters_per_class=1,

random_state=4)

define the model

model = DBSCAN(eps=0.30, min_samples=10)

fitting model and predicting clusters

a = model.fit_predict(Data)

retrieve unique clusters

clusters = unique(a)

create scatter plot for samples from each cluster

for c in clusters:

get row indexes for samples with this cluster

ri = where(a == c)

create scatter of these samples

pyplot.scatter(Data[ri, 0], Data[ri, 1])

show the plot

pyplot.show()

Figure 13.5: DBSCAN Clustering

OPTICS

OPTICS clustering is a simplified variant of DBSCAN. OPTICS

stands for Ordering Points To Identify the Clustering Structure.

It does not generate an actual clustering of a data set; instead,

it provides an augmented ordering of the database representing

the density-based clustering structure. This cluster-ordering

includes knowledge that corresponds to density-based

clustering's across a wide variety of parameter settings. Python

code for OPTICS clustering is given below.

Example

Example of OPTICS clustering

from numpy import unique

from numpy import where

from sklearn.datasets import make_classification

from sklearn.cluster import OPTICS

from matplotlib import pyplot

define dataset

Data, _ = make_classification(n_samples=1000, n_features=2,

n_informative=2, n_redundant=0, n_clusters_per_class=1,

random_state=4)

define the model

model = OPTICS(eps=0.5, min_samples=9)

fit model and predict clusters

Assign = model.fit_predict(Data)

retrieve unique clusters

clusters = unique(Assign)

create scatter plot for samples from each cluster

for c in clusters:

get row indexes for samples with this cluster

row_in = where(Assign == c)

create scatter of these samples

pyplot.scatter(Data[row_in, 0], Data[row_in, 1])

showing the plot

pyplot.show()

Output:

Figure 13.6: OPTICS Clustering

Conclusion

In this chapter, we discussed the concepts and various

methods of clustering. Various examples and Python code are

given for implementing clustering methods. Based on these

examples, you can write your code for various clustering

methods by setting different parameters and different datasets.

Points to remember

Clustering is an unsupervised problem of defining natural

groups in the input data's feature space.

There are many clustering algorithms available, and no single

approach is best for all datasets.

The term proximity refers to the degree of similarity or

dissimilarity between the samples.

Multiple choice questions

Which of the following is required by K-means clustering?

Distance metric

Number of clusters

Initial guess of cluster centroids

All the above

Which of the following is NOT a clustering method?

K-Mean

Decision Tree

DBSCAN

OPTICS

For clustering, we do not require.

Labeled data

Unlabelled data

Numerical data

Categorical data

Which of the following(s) are applications of unsupervised

machine learning?

Anomaly detection

Clustering

Association mining

All the above

Which of the following uses the merging approach?

Hierarchical clustering

Partitional clustering

Density-based clustering

All of the above

Answers

d

b

a

d

a

Questions

What do you mean by unsupervised learning?

Discuss various issues of unsupervised learning?

What are the distance measuring methods?

Write the difference between clustering and classification.

Write some advantages and disadvantages of K-Mean clustering.

Write applications of clustering in different fields.

Explain clustering methods.

Discuss various parameters required for implementing a

clustering method.

Index

Symbols

@classmethod decorator 323

__init__.py file 288

A

abstraction 295

accuracy 366

aliasing 150

Anaconda open-source distribution 11

arguments

about 66

example 66

arithmetic operators

addition (+) 40

division (/) 40

exponent (**) 41

floor division (//) 41

modulus (%) 41

multiplication (*) 40

subtraction (-) 40

array 159

Artificial Linguistic Internet Computer Entity (ALICE) 334

assignment and shortcut operators

add AND (+=) operator 43

assignment (=) operator 43

divide AND (/=) operator 43

exponent AND (**=) operator 43

floor division (//=) operator 43

modulus AND (%=) operator 43

multiply AND (*=) operator 43

subtract AND (-=) operator 43

associativity 48

AUC (Area under ROC curve) 368

B

binary classification 350

binary files

reading from 259

working with 259

writing into 259

binary search

about 169

example 170

implementing 170

properties 169

BIRCH (Balanced Iterative Reducing Clustering and using

Hierarchies) 375

bitwise operators

binary AND (&) 45

binary left shift (<<) 45

binary one's complement (~) 45

binary OR (|) 45

binary right shift (>>) 45

binary XOR (^) 45

example 45

Boolean 27

bool() method 27

break statement

about 83

flow diagram 84

bubble sort 175

built-in class attributes

__bases__ 321

__dict__ 321

__doc__ 321

__module__ 321

__name__ 321

built-in class functions

delattr(obj, name) 320

getattr(obj, name, default) 320

hasattr(obj, name) 320

setattr(obj, name, value) 320

built-in dictionary functions

all() function 234

any() function 233

cmp() function 233

len() function 232

str() function 232

type() function 232

built-in exceptions

AssertionError 274

AttributeError 274

displaying 274

EOFError 275

FloatingPointError 275

GeneratorExit 275

ImportError 275

IndentationError 275

IndexError 275

KeyboardInterrupt 275

KeyError 275

MemoryError 275

NameError 275

NotImplementedError 275

OSError 275

OverflowError 275

ReferenceError 275

RuntimeError 275

StopIteration 275

SyntaxError 275

SystemError 275

SystemExit 276

TabError 275

TypeError 276

UnboundLocalError 276

UnicodeDecodeError 276

UnicodeEncodeError 276

UnicodeError 276

UnicodeTranslateError 276

ValueError 276

ZeroDivisionError 276

built-in functions

capitalize() 54

center(width, fillchar) 54

count(str, beg= 0,end=len(string)) 54

decode(encoding='UTF-8',errors='strict') 54

encode(encoding='UTF-8',errors='strict') 54

endswith(suffix, beg=0, end=len(string)) 54

example 56

expandtabs (tabsize=8) 54

find (str, beg=0 end=len(string)) 54

index(str, beg=0, end=len(string)) 54

isalnum() 54

isalpha() 54

isdecimal() 56

isdigit() 54

islower() 54

isnumeric() 54

isspace() 54

istitle() 55

isupper() 55

join(seq) 55

len(string) 55

ljust(width[, fillchar]) 55

lower() 55

lstrip() 55

maketrans() 55

max(str) 55

min(str) 55

replace(old, new [, max]) 55

rfind(str, beg=0,end=len(string)) 55

rindex(str, beg=0, end=len(string)) 55

rjust(width,[, fillchar]) 55

rstrip() 55

splitlines(num=string.count('\n')) 55

split(str="", num=string.count(str)) 55

startswith(str, beg=0,end=len(string)) 55

string.title() 56

strip([chars]) 55

swapcase() 56

translate(table, deletechars="") 56

upper() 56

zfill (width) 56

built-in list functions

cmp(list1, list2) 156

len(list) 156

list(seq) 156

max(list) 156

min(list) 156

built-in list methods

example 157

list.append(obj) 157

list.count(obj) 157

list.extend(seq) 157

list.index(obj) 157

list.insert(index, obj) 157

list.pop(obj=list[-1]) 157

list.remove(obj) 157

list.reverse() 157

list.sort([func]) 157

built-in modules

about 282

examples 283

built-in string functions

center() 120

count() 120

endswith() 120

example 120

isalnum() 120

islower() 120

isnumeric() 120

split() 120

title() 120

C

chr() function 124

class

about 296

defining, in Python

multiple constructors 306

class decorator 325

classification

about 350

binary classification 350

imbalanced classification 352

multi-class classification 350

multi-label classification 351

types 350

classification methods

decision trees 355

K-Nearest Neighbors 353

logistic regression 360

class method

properties 323

versus, static method 323

class, OOP

about 294

method 295

object 294

class variables 322

clear () function

using 219

clustering

about 373

distance measuring method 374

K-means clustering 375

process 373

proximity measures 374

clustering methods

density-based methods 375

grid-based methods 375

hierarchical-based methods 375

partitioning methods 375

comments, in Python

about 63

multiline comments 63

single line comments 63

comparison operators. See also relational operators

compiler

structure 3

confusion matrix 366

constructor

about 302

default constructor 305

non-parameterized constructor 304

parameterized constructor 304

continue statement

about 85

flow diagram 85

control flow statements

about 72

selection control structures 73

sequential control structures 72

copy() method 235

CURE (Clustering Using Representatives) 375

D

data abstraction 295

data abstraction, OOP 301

data types

categories 33

DBSCAN (Density-Based Spatial Clustering of Noise

Applications) 375

decision control statements

about 73

if-elif-else statement 77

if-else statements 74

if statements 73

nested if statement 76

decision trees

about 355

assumptions 356

id3 algorithm 357

issues 357

working 356

default arguments 98

default constructor 305

density-based clustering (DBSCAN) 378

dictionary

about 211

basics 212

built-in functions 232

creating 213

creating, by passing key-value pair literals 214

creating, by passing key-value pairs to dict() function 214

creating, by passing list of tuples to dict() function 215

elements, deleting 219

elements, sorting 220

elements, sorting by key 221

elements, sorting by value 222

elements, sorting in reverse order 223

empty dictionary, creating 213

formatting 235

item, adding 217

item, modifying 217

iterating over 225

nested dictionary 226

structure 212

syntax 213

values, accessing 216

dir() built-in function 282

directory 255

distance measuring methods

Euclidean distance 374

Manhattan distance 374

E

else block 271

encapsulation 295

error handling 264

errors

about 264

syntax errors 264

Euclidean distance 374

exception

about 265

raising 272

user-defined exceptions 277

exception handling

about 266

components 266

explicit type conversion

about 62

syntax 63

expressions

about 50

identifiers 50

implementing 50

literals 50

operations 50

F

F1 score 367

file 240

file handling

about 240

binary files 259

file, closing 243

file, creating 251

file, deleting 258

file object attributes 251

file, opening

file, reading 248

file, reading through loop 249

file, renaming 258

file, writing into 244

need for 240

numbers, reading from file 250

numbers, writing to file 246

file object attributes

closed 251

encoding 251

mode 251

name 251

file path

about 241

directory path 241

extension 241

file name 241

file positions 252

filter() function

about 164

function parameter 164

iterable parameter 164

finally block 271

for loop

about 78

flow diagram 79

Formatter class 133

from-import statement 280

function

about 92

built-in function 64

calling 96

defining 65

essential rules for defining 92

predefined functions 92

recursive calls to 326

user-defined function 64

user-defined functions 95

function arguments 97

function parameters 97

function redefinition 106

functions, tuple

cmp() function 198

count() function 199

index() function 198

in keyword 197

len() function 197

max() and min() function 197

sum() function 197

G

global statement

example 101

global variables

about 100

global statement 102

H

hierarchical-based methods

agglomerative 375

divisive 375

hierarchical clustering (BIRCH) 377

hierarchical inheritance 312

hypothesis representation, logistic regression 361

I

identifier 32

identity operators

about 48

operator (is) 48

operator (is not) 48

if-elif-else statement 77

if-else statements 74

if statements

about 73

flow diagram 73

imbalanced classification 352

immutable string

about 118

example 118

implicit type conversion 62

import statement 279

inheritance 295

input() function

about 24

working 25

insertion sort 178

Integrated Development and Learning Environment 9

interpreter

structure 3

inverse zip(*) function

about 206

example 206

isinstance (obj, class) method 315

issubclass(sub,sup) method 315

K

Keras 341

keywords 35

K-means clustering 375

K-Nearest Neighbor

about 353

advantages 353

disadvantage 353

L

lambda functions 103

linear regression

about 345

multiple linear regressions 345

univariate linear regression 345

linear search 168

Linux Mint

Python, installing 9

list

about 142

basics 142

cloning 151

creating 143

example 142

looping 160

nested list 148

passing, to function 163

returning, from function 163

searching in 168

values, accessing from 144

list, as arrays

example 159

list, cloning

append() method, using 154

copy() method, using 154

extend() method, using 152

list comprehension, using 153

list() method, using 153

slicing, used 152

ways 151

list index

clear() method, used for emptying list 146

delete() method, used for removing specific object 146

elements, removing 146

negative indexing 145

pop() method, used for removing item 146

slicing operator, using 146

using 144

list methods

built-in list methods 157

list parameters

about 155

basic list operations 156

example 155

list as arrays 159

list methods 157

local variables 100

logical operators

about 46

example 46

logical AND 46

logical NOT 46

logical OR 46

logistic regression

about 361

hypothesis representation 361

sigmoid function 361

support vector machine 363

looping, in list

about 160

enumerate(), using 162

for loop, using 160

list comprehension, using 161

loop and range(), using 160

Numpy, using 162

while loop, using 161

M

machine learning

about 330

Python libraries 337

supervised learning 336

types 336

unsupervised learning 337

uses 331

machine learning applications

automatic language translation 335

chatbot 334

classification 335

email spam and malware filtering 333

forecasting 335

fraud detection 334

image recognition 333

intelligent bot, building for game 336

magnetic resonance imaging (MRI) 334

medical diagnosis 335

recommendation engine 336

segmentation 335

self-driving cars 333

speech recognition 333

stock market trading 334

traffic prediction 333

tumor detection in brain scans 334

Manhattan distance 374

map() function 166

Matplotlib 340

membership operators

about 47

operator (in) 47

operator (not) 47

merge sort

about 182

example 183

metacharacters

using, in regular expression 134

model evaluation methods

about 365

accuracy 366

AUC (Area under ROC curve) 368

confusion matrix 366

F1 score 367

precision 366

ROC (Receiver operating characteristics) curve 367

sensitivity/recall 367

specificity 367

module

about 278

built-in modules 282

example 65

from-import statement 279

import statement 279

loading 279

renaming 281

using 66

multi-class classification 351

multi-label classification

about 351

specialized version 351

multi-level inheritance 309

multiline comments 64

multiple constructors, in class 306

multiple except blocks 269

multiple exceptions

handling, with single except block 270

multiple inheritance 311

multiply function 167

N

nested dictionary

about 226

another dictionary, adding 227

dictionary, deleting from 230

elements, deleting from 229

items, updating 228

iterating through 231

nested if statement 76

nested list

about 148

example 149

nested loop 82

nested tuples 203

NLTK 343

URL 343

non-linear regression 347

non-parameterized constructor 304

numbers 23

Numpy 337

O

object

about 296

creating 298

properties, deleting 300

object-oriented programming (OOP)

about 294

classes 294

data abstraction 301

encapsulation 295

inheritance 295

key concepts 294

versus, procedure-oriented programming 296

operations, on strings

about 51

values, accessing 52

operations, tuple

addition 196

multiplication 196

operator precedence

about 48

associativity 49

operators

about 39

arithmetic operators 40

assignment and shortcut operators 43

bitwise operators 45

comparison operators 42

identity operators 48

logical operators 46

membership operators 47

types 40

unary operators 44

OPTICS clustering 379

OPTICS (Ordering Points for Clustering Structure Identification)

375

ord() function 124

os.remove() function 258

os.rename() function 258

P

packages

about 285

creating

__init__.py 288

subpackages 289

Pandas 338

parameterized constructor 304

parameters

about 66

example 66

parsing errors 264

pass statement

about 86

example 86

polymorphism 295

about 316

function polymorphism 317

in class methods 317

in inheritance 318

in operators 316

method overriding 318

positive and negative indexes 193

precision 366

pre-defined clean–up action 277

predefined functions

about 92

example 93

print() function 26

Python

about 1

advantages 3

Boolean 27

built-in class attributes 321

built-in class functions 319

comments 63

constructor 302

control flow statements 71

data types 33

dictionary 36

expressions 50

features 4

function 64

identifiers 32

input() function 24

installing 4

installing, in Linux Mint 9

installing, in Ubuntu 9

installing, in Windows

keywords 35

list 28

numbers 23

operators 39

packages 285

print() function 25

statement 35

string 29

URL 5

variable 30

Python directory operations

about 255

current working directory 255

directory, changing 256

directory, creating 256

directory, deleting 257

directory, renaming 257

list of directories 256

Python IDE

searching, through search bar 10

various types 11

Python IDLE

about 9

Anaconda open-source distribution 11

interactive mode 10

script mode 10

Python inheritance

about 307

hierarchical inheritance 312

multi-level inheritance 309

multiple inheritance 311

single inheritance 308

types 307

Python libraries, for machine learning

Keras 341

Matplotlib 340

NLTK 343

Numpy 337

Pandas 338

Pytorch 342

Scikit-learn 339

Tensorflow 341

Python program

executing 11

Python IDLE, starting 15

Python, starting through command line

Python, starting through Jupyter Notebook 21

Python, starting through Spyder in Anaconda prompt

saving 22

value 23

writing 11

Pytorch 342

Q

quicksort

about 180

example 181

R

raise keyword 272

readline() function 248

readlines() method 249

recursion 326

recursive functions

about 104

advantages 104

disadvantages 104

reduce() function 166

re.findall()

using 130

regression

about 345

linear regression 345

non-linear regression 347

regular expression

about 134

example 135

metacharacters, using 134

relational operators

equal to (==) 42

example 125

greater than (>) 42

greater than or equal to (>=) 42

less than (<) 42

less than or equal to (<=) 42

not equal to (! =) 42

operator (!=) 125

operator (<) 125

operator (<=) 125

operator (==) 125

operator (>) 125

operator (>=) 125

reload() function 282

repetition control structures

about 78

break statement 84

continue statement 85

for loop 79

nested loop 82

pass statement 86

while loop 81

return statement 102

RNN (Recurrent Neural Network) 333

ROC (Receiver operating characteristics) curve 367

S

Scikit-learn 339

scope of variable

global scope 99

local scope 99

selection control structures. See decision control statements

selection sort

about 176

example 177

sensitivity/recall 367

sequential search

about 168

example 169

set 29

shortcut operator 43

sigmoid function 361

single element tuple 191

single except block 268

single inheritance 308

single line comments 64

slice() function

about 122

example 122

important points 122

sorted() function 220

sorting

about 173

bubble sort 174

example 173

in-place sorting 174

insertion sort 177

merge sort 182

not-in-place sorting 174

quicksort 179

selection sort 176

stable sorting 174

types 174

unstable sorting 174

specificity 367

split()

using 129

statement 35

static method

properties 324

static variables 322

string

about 112

concepts 113

example 112

immutable string 118

important points 112

iterating 127

multiplying 118

operations 51

types of formatted string operators 53

types of special symbol 52

string concatenation

about 114

format() function, using 116

join() method, using 115

% operator, using 115

+ operator, using 114

string formatting operator

about 119

example 119

string module

about 131

constants 131

string capwords() function 132

string module classes

about 132

Formatter 133

Template 133

strings, appending

about 116

join() method, using 117

+= operator, using 116

strings, comparing

about 124

is and is not, using 125

relational operators, using 125

user-defined function 126

supervised learning

about 336

classification 337

regression 337

support vector machine

about 364

hyperplanes 364

syntax error 264

T

Template class 133

Tensorflow 341

TPU (Tensor Processing Unit) 333

traditional programming

versus, machine learning 332

triple quotes 53

tuple

about 190

basic operations and functions 196

creating 190

creating, from string and list 203

elements, deleting 195

multiple values, returning as 202

nested tuples 203

positive and negative indexes 193

receiving, in functions 201

single element tuple 191

slicing 194

updating 195

values, accessing 193

versus, list 190

tuple assignment

about 200

example 201

packing 200

unpacking 200

tuple () function 192

tuple sorting 207

type conversion

about 62

explicit type conversion 62

implicit type conversion 62

U

Ubuntu

Python, installing 8

unary operators

unary (-) 44

unary (+) 44

unsupervised learning

about 372

applications of techniques 372

association 337

clustering 337

issues 372

need for 373

user-defined functions 95

V

value

about 23

types 23

values, accessing from list

aliasing 150

list index, using 144

values, updating 147

variable

about 30

examples

variable scope and lifetime

about 99

lifetime of variable 99

scope of variable 99

W

while loop

about 81

flow diagram 81

Windows

Python, installing 5

writelines() method 245

Z

zip () function 205

	Start

