

Learn Human-Computer
Interaction

Solve human problems and focus on rapid prototyping and
validating solutions through user testing

Christopher Reid Becker

BIRMINGHAM - MUMBAI

Learn Human-Computer Interaction
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Devika Battike
Content Development Editor: Joseph Sunil
Senior Editor: Ayaan Hoda
Technical Editor: Sonam Pandey
Copy Editor: Safis Editing
Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Jyoti Chauhan

First published: September 2020

Production reference: 1180920

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83882-032-9

www.packt.com

http://www.packt.com

To my son, Helios, for showing me how learning every day is part of growth, and to
my wife, Voula, for listening to me and supporting the process.

– Chris R. Becker

Contributors

About the author
Christopher Reid Becker is a senior UX designer/lead curriculum architect (UX/UI) at 2U
Inc. He comes with extensive experience in building web-based software and commercial
projects accessing design thinking, human-centered user research, UX strategies, UI best
practices, and interaction design to build relevant, usable, and useful human-computer
interactions.

About the reviewer
Philippe Renevier Gonin has been an assistant professor at the University Nice Sophia
Antipolis, France, since 2005. Philippe teaches web technologies, software engineering
(architecture and development), and Human-Computer Interaction (HCI).

On the research side of things, Philippe works on connections between user-centered
design (that is, users and task models) and software engineering (such as component
architecture and UI development). For his projects, Philippe often develops software and
tools in Javascript/HTML/CSS and Java (Android).

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Table of Contents
Preface 1

Section 1 : Learn Human-Computer Interaction
Chapter 1: Introducing HCI and UX Design 7

Prologue 7
HCI challenges 8

Introducing HCI and UX design 9
Challenge 1 – Capturing conceptual relationships – binary and beyond 9
Following the leader – HCI pioneers 12
Operating in the HCI sandbox 12

Why HCI? 14
Documenting HCI jargon 14
Challenge 2 – Highlighting and collecting all HCI jargon 15

Exploring HCI jargon and their acronyms 15
Exploring the history of computers 17

Very early history – the 17th century 17
Early history – the 17th to 19th centuries 17
Recent history – the 20th century 19
The 21st century – the internet, smartphones, cloud computing, and IoT 22

Evolving from T-person into a π person 23
Hermeneutic loops 25

The author's perspective 26
HCI is a vocation 27
Challenge 3 – What do you know about a lawnmower? 27

The HCI professions 28
Challenge 4 – Self-guided questions 31

Summary 31

Chapter 2: Human-Centered Design Principles 33
Understanding the HCI ethos 34

Challenge 5 – Questions refresher 34
The heart of HCI technology 35

Usability factor 36
Accessibility factor 36
Time-on-task factor 38

The holy trinity (mirepoix) of HCI 38
Some HCI professions 40
Challenge 6 – Profession of interest 42
Challenge 7 – Software naming and shaming 43

Table of Contents

[ii]

Challenge 8 – Human needs identification table 44
Case 1 – the crosswalk 48
Challenge 9 – Observing humans and technology 48
How software shapes its users 50

How HCI is standing on the shoulders of giants 52
HCI principles are rooted in humans, technology, culture, and data 57
User research – gathering data on humans 58

Iterative solutions and agile development 59
Summary 61

Chapter 3: Interface Design Values 62
Solving a problem with computer software 63

Positive software example – the alarm 63
Negative software example – text messaging 64

Using computer software to build software 65
Text editors 66
Challenge 10 – Technology coding challenge 67

Human-centered software origins 67
Design and development tools 70

HCI design roles 71
Code, roles, and tools 72

Coding – markup syntax and object-oriented syntax 74
Hypertext markup language 75
Cascading style sheets 76
Object-oriented programming 77

Continually better software 77
Summary 80

Section 2: How to Build Human-Centered Software
Chapter 4: Human-Centered Thinking 82

Understanding the HCI designer's role 83
Challenge 11 – User research – a design mindmap 83
Challenge 12 – Product and software inspiration 86
Challenge 13 – First computer experience 87
The long tail of software design 88
The short tail of software design 91

Considering the developer's role in software design 92
Challenge 14 – A 2x2 matrix – your code experience 94

Using agile development cycles 97
The waterfall design and development process 97
Design thinking, agile design, and the development process 99
Agile design cycle 100
Design thinking and the agile development process 102

Executing prototypes first as a design ethos 103

Table of Contents

[iii]

Paper prototypes 104
Challenge 15 – Sketching and prototyping challenge 106
Interactive and clickable prototypes 107
Challenge 16 – Clickable paper prototype with the InVision app 108
Native and coded prototypes 109

Validating with users 113
Stage 1 – idea validation 114
Stage 2 – usability validation 115
Stage 3 – market validation 117
Challenge 17 – Prototype validation 118

Summary 119

Chapter 5: Human-Centered Methods for User Research 120
Gathering research data on our users 121
The human side of data collection 125
Exploring qualitative user research methods 126

Qualitative method 1 – observation – fly-on-the-wall method 127
Challenge 18 – Observation – fly on the wall 128
Qualitative method 1.1 – micro-observations 129
Qualitative method 2 – moderated observation 129
Challenge 19 – Moderated observation script 130
Qualitative method 3 – user interviews 131

Open question types 132
Probing questions types 133

Challenge 20 – Interview candidate script 135
One-to-one interview sessions 136

Challenge 21 – One-on-one interview 137
One-to-many interview sessions 138

Qualitative method 4 – user recording, tracking analysis, and interview 139
Challenge 22 – Observation recording 141

The numbers side of data collection 141
Examining four quantitative research methods 142

Quantitative survey method 143
Challenge 23 – Quick-and-dirty survey 144
A/B testing (split testing) 145
Challenge 24 – A/B survey results 148
Usability analytics 149
Challenge 25 – Analytics data gathering 150
Quantitative method 4 – accessibility compliance 151
Challenge 26 – Accessibility for all via ANDI testing using WCAG 2.0 152

Using qualitative and quantitative data 153
Summary 153

Chapter 6: User Insights for Software Solutions 155
Synthesizing data into action 156

Part 1 – analysis of user research data 156

Table of Contents

[iv]

Collection and organization of user research data 157
Mining the user research data 158
Sorting, clustering, and categorizing the user research data 158

Part 2 – user insights 159
Identifying user insights 159

Rooting action to deeper user purpose 161
Challenge 27 – The deep purpose of people challenge 162
Identifying and writing user insights 163
Challenge 28 – IDEO's POV mad lib 164
Challenge 29 – IDEO's POV mad lib iteration 165

Aligning a solution to users 166
Summary 168

Chapter 7: Storytelling and Rapid Prototyping 169
Prototyping first 170

Challenge 30 – Idea/concept generation 172
Laseau's funnel 173
Dot voting 174
2x2 opportunity matrix 175
Paper prototyping (low fidelity) 176
Challenge 31 – Paper prototype sketching 179
Clickable prototyping (mid-fidelity) 181
Challenge 32 – Clickable paper prototype 182
Challenge 33 – Clickable wireframe prototype 183
Motion prototyping (high fidelity) 184
Frontend prototyping (low to high fidelity) 186
Challenge 34 – Frontend clickable prototype 187
The prototyper (developer) 188

System diagramming 189
Challenge 35 – System diagram 190

HCI interface best practices 191
Challenge 36 – Researching HCI user interface best practices 191
Challenge 37 – Researching software tips and tricks 192
Interface design guidelines 193
Challenge 38 – Researching popular user interface guidelines 194

Software prototyping tools 195
Summary 195

Chapter 8: Validating Software Solutions 196
Establishing a software hypothesis 197

Challenge 39 – Software hypothesis 199
Informal user feedback 200
Challenge 40 – Informal feedback guerilla user testing 201
Formal user feedback 202

Formative assessment and user feedback 204
Expert feedback 204

Table of Contents

[v]

Self-feedback and reflection 206
Critique feedback 206
Summary of user feedback 207

Challenge 41 – Formal user feedback 207
Validating prototyping solutions 208

Challenge 42 – Prototype validation 210
Executing usability tests 211

Challenge 42 – Prototype usability testing challenge 213
Iterating software solutions 214

Challenge 43 – Iterate your prototype challenge 215
Summary 216
HCI resources 216

Section 3 : When to Improve Software Systems
Chapter 9: Improving Software Systems with Data 219

Designing software for all users with universal design principles 220
Challenge 44 – Research universal design principles 222

Applying usability for all users 223
Learnability 225
Efficiency 225
Memorability 226
Low error rate 227
User satisfaction 227
Utility 228

Valuing accessibility 229
Disability impairments 229

Cognitive impairment 230
Challenge 45 – Research Miller's law 230

Mobility impairment 231
Hearing/auditory impairment 232
Visual impairments 232

Challenge 46 – Screen reader tool 233
Designing useful interfaces 234
Summary 235

Chapter 10: Human-Centered Solutions 236
Exploring open source software culture 236

Open source projects 238
Bootstrap (Twitter) 239
Angular 239
Node.JS 239
NPM (Node Package Manager) 239
React Native (Facebook) 240
VS Code (Microsoft) 240

Challenge 47 – Research an open source project and contribute 241
MVC, not MVP 242

Table of Contents

[vi]

Iterative loops for improving software, which improves culture 245
Summary 247

Chapter 11: Extending HCI 248
Contributing to software development as a collective community 249

UX, UI, frontend dev, backend dev, PM, business, and ops 251
Team handoff and responsibility 254
Communication tools – Zeplin, Figma/XD/Sketch, InVision 256
Challenge 48 – Add a Zeplin.io project 256

Exploring how great solutions should be shared and scaled 258
Challenge 49 – Software scale research 258

Evangelizing to your team and sharing common goals 260
Challenge 50 – Educate yourself 260
Diversify your team's skills 261

Demonstrating how you care 262
Summary 263

Chapter 12: The Future of HCI 264
Designing software is an awesome responsibility 265

Challenge 51 – SWOT analysis of a software feature 267
Creating solutions that are net positive for culture 269
Evaluating what is off-limits 272

Challenge 52 – Zones of interest and worthwhile pursuits 273
Empowering computers 274
Designing software for the future 276

Education software (embedded systems) 277
Collaboration software systems for work and creativity (ubicomp and
seamless interactions) 279
Communication/media software systems (digital affordance and seamless
interactions) 281
 Automation software systems (ubicomp and embedded systems) 282
Logistics/analytics software systems (knowledge data) 283
Democratic power software systems (ubicomp and security) 285
Challenge 53 – Which software future? 287

Summary 288

Other Books You May Enjoy 289

Index 292

Preface
Human-Computer Interaction (HCI) is a field of study that researches, designs, and
develops software solutions that solve human problems. This book will help you
understand various aspects of the software development phase, from planning and data
gathering through to the design and development of software solutions. The book guides
you through implementing methodologies that will help you build robust software.

In this book, you will learn why human-centered methodologies are winning in software
development, and how to develop unique insights into your users through practical
research processes you can try from home. You will then embark on how to translate your
human understanding into software solutions through validation methods and rapid
prototyping, leading to usability testing. In the end, you will learn how to build and deploy
a software prototype that will allow you to test and iterate your human-centered solution
as well as tell a better story about why we implement human-centered values into software
solutions. The practice and skills will be contextualized through the book with historical
figures, mistakes, and successes from the software industry. The concepts and stories will
sharable and resonate throughout your software development path.

By the end of this book, you will be well versed in HCI strategies and methodologies to
design effective User Interfaces (UIs).

Who this book is for
This book is for software engineers, User Experience (UX) designers, entrepreneurs, or
anyone who is just getting started with user interface design and looking to gain a solid
understanding of HCI and UX design. Readers who are budding software engineers, UX
designers, UI engineers, entrepreneurs, graphic designers, and others looking for a solid
understanding of how to approach digital products, and people who are curious, self-
driven, and motivated to take their education in their own hands, will also all benefit from
reading this book. Who will benefit the most is a person willing to be enthusiastic about
learning new things and self-guided in mining their past knowledge to gain new
perspectives. This book will deliver the best experience if you meet the following
prerequisites:

Have familiarity with HCI, UX, UI, Interaction Design (IxD), visual design,1.
computer science, or other related software building professions
Want to know how to build better software2.

Preface

[2]

Are curious about how computers work3.
Are open to new ideas4.

What this book covers
Chapter 1, Introducing HCI and UX Design, outlines the goals the reader will work toward
throughout the book, as well as an introduction to the author's perspective. It will frame the
space and professions that the knowledge in this book is relevant to and will ask some key
questions that will guide the reader throughout their journey.

Chapter 2, Human-Centered Design Principles, focuses on the explosion of software made
possible through the introduction of the internet in 1990. It will also explore samples of how
the principle is applied to software, and explore various tools we can use.

Chapter 3, Interface Design Values, focuses on the tools and approaches used by software
teams to tackle various problems.

Chapter 4, Human-Centered Thinking, talks about how design and development cycles lead
to better outcomes.

Chapter 5, Human-Centered Methods for User Research, focuses on qualitative and
quantitative user research methods that you will be able to apply in your own projects.

Chapter 6, User Insights for Software Solutions, shows us how user research data builds trust
and relationships. It will show us how to align our software solutions according to the
users' needs.

Chapter 7, Storytelling and Rapid Prototyping, acts as a review of how systems diagramming
and user input builds testable experiments.

Chapter 8, Validating Software Solutions, demonstrates how we can employ human-centered
methods to gather user testing data. It also shows us how to use data to capitalize on our
solutions.

Chapter 9, Improving Software Systems with Data, outlines the process of validating the
usability and accessibility of a software solution. Throughout this chapter, we will look at
how we can reinforce our software solutions with the help of data.

Chapter 10, Human-Centered Solutions, showcases software solutions as a feedback loop to
culture. It also shows us how to use the past to capitalize on and improve our solutions.

Preface

[3]

Chapter 11, Extending HCI, continues by discussing education, team values, and the design
community. It shows us why HCI is valuable for teams, and why we should evangelize the
value of human-centered design to each team member.

Chapter 12, The Future of HCI, explores embedded systems, ubiquitous computing, and
seamless interactions that are pushing the future of HCI into new frontiers.

To get the most out of this book
Successful software is used by billions of humans around the globe. Understanding how to
approach, model, and generate software solutions that your users need and want will make
you more employable, and make the software you analyze, design, and code work better
for your users. This book does the following:

Introduce the reader to HCI and UX by discussing the origins of the profession
and why learning HCI is essential for the 22nd century.
Review how HCI is connected to a long history of humans making tools to solve
problems.
Articulate how HCI considers when the software will help its users.
Discuss how HCI starts with valuing humans, and how, just as software
improves, so do humans evolve too.
Execute qualitative and quantitative methodologies for establishing humans as a
feedback loop in the software design process.
Implement a rapid prototype through software to create human-centered
solutions and validate these solutions through quantitative testing methods.
Articulate the possibilities of software’s reach into the future.

Software/hardware covered in the book OS requirements

 Figma/Abobe XD/Sketch or equivalent UI/vector
software

 Mac - Catalina
 PC - Windows 10
 Browser - Chrome

Google Chrome and Google Drive applications
 Mac - Catalina

 PC - Windows 10
 Browser - Chrome

The InVision app
 Mac - Catalina

 PC - Windows 10
 Browser - Chrome

VS Code or equivalent text editor software
 Mac - Catalina

 PC - Windows 10
 Browser - Chrome

Preface

[4]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​static. ​packt- ​cdn. ​com/​downloads/
9781838820329_​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"We will discuss a wide set of Human-Computer Interaction (HCI) topics that address how
to design, build (code), and test the vast amounts of software that ultimately run the
world."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

https://static.packt-cdn.com/downloads/9781838820329_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838820329_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838820329_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838820329_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838820329_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838820329_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838820329_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838820329_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838820329_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838820329_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838820329_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838820329_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838820329_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838820329_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838820329_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838820329_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838820329_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838820329_ColorImages.pdf
https://www.packtpub.com/support/errata

Preface

[5]

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://www.packt.com/

1
Section 1 - Learn Human-

Computer Interaction
This section is a starting place for considering and thinking about people (humans),
technology (computers), and how we interact. We will discuss a wide set of topics that
address how to think about, design, and even code the vast amounts of software that run
our interfaces and ultimately run the world. Throughout the next 12 chapters, we will
discuss how our lives have been fundamentally reorganized around technology and
software interfaces.

This section comprises of the following chapters:

Chapter 1, Introducing HCI and UX Design
Chapter 2, Human-Centered Design Principles
Chapter 3, Interface Design Values

1
Introducing HCI and UX Design

Learn Human-Computer Interaction is a starting place for considering and thinking about
people (humans), technology (computers), and how we interact. We will discuss a wide set
of Human-Computer Interaction (HCI) topics that address how to design, build (code),
and test the vast amounts of software that ultimately run the world. Throughout this
chapter, you will be introduced to the foundations of HCI, which will set the stage for
growing your skills and joining HCI practitioners on software design teams.

The topics you will learn about in this chapter are as follows:

Prologue
Introducing HCI and UX design
Why HCI?
Exploring HCI jargon and their acronyms
Exploring the history of computers
Evolving from a T-person into a π person
The author's perspective
The HCI professions
Self-guided questions

Prologue
The core of this book covers three pillars:

HCI skills, theory, and historical context:1.
Use of stories, contextual examples, and some brief history of widening your HCI
knowledge.
HCI Activities and practical challenges:2.
A series of hands-on methods to deepen your HCI understanding.

Introducing HCI and UX Design Chapter 1

[8]

HCI Community resources and source materials:3.
A vast set of knowledge and experience that I could never surpass but am happy
to share and grow with you as you read in the share your experience:

As the author of this book, my background comes from the Design point of view via user
experience (UX)/graphic design/human-centered research into computers rather than via
computer science, mathematics, engineering, or computer coding, however, I have gained
much of this knowledge over time. Therefore, the content of the book will focus more on
the human component of HCI over the computer component.

However, the framing of skills and considerations are designed to improve either side. So
read on.

Since you have continued reading, you are along for the ride, and we will start out by
considering HCI from the beginning and why HCI inside software has become successful.

HCI challenges
Throughout this book, you will be given a series of challenges designed to get you to
practice the skills and knowledge necessary to apply HCI in the world. Each challenge will
take between 10 min up to 2+ hours. I highly recommend you create a folder in Google
Drive or on your computer to store your work and label all your files. Activities will
combine physical making (paper, pen, pencil, sticky-notes, etc) to more digital executions
(Google Docs, Adobe XD/Figma/InVision) and will combine together over time. Take the
challenges seriously as they can be applied to your HCI portfolio as well as be tangible
representations of the skills and experience outline in this book.

As you continue to grow your HCI skills, understand that there is a lot to take in and no
one book will capture the entire field. I promise to help you establish a solid foundation but
you must also take this information I am covering and run with it.

Introducing HCI and UX Design Chapter 1

[9]

Do not be scared to mark up this book with your notes, sketches, doodles,
and underlines. Dog-ear pages, take a highlighter to quotes, tear out pages
as long as it helps you approach HCI. Learn HCI is a learn-by-doing
document and should be treated that way. The goal is to gain new skills in
HCI.

Introducing HCI and UX design
In the beginning, there was nothing but darkness, and then there was light, a binary
relationship understood by all—zero (0) and one (1). Binary means related to or composed
of two things. Binary relationships dictate a vast majority of our decisions: up or down, left
or right, yes or no, like or don't like. Let's practice thinking about some binary concepts
through a challenge. The challenges in this book are designed to get you to practice the HCI
skills and knowledge necessary to function as an HCI practitioner in the real world. Each
challenge will take between 10 minutes and 2 hours to complete.

Challenge 1 – Capturing conceptual relationships
– binary and beyond
Setup:

Get out a sheet of paper or a Google Doc/Word doc.1.

Part 1: Binary concepts:

Think of some binary relationships in your own life.1.
Write them down.2.

Binary relationships:
_______________________________ versus ______________________________

Part 2: Other relevant concepts:

Think of other conceptual relationships (such as logic/emotion, frontend/backend, and so1.
on).
Write them down.2.

Relevant concepts:
_______________________________ + ______________________________

Introducing HCI and UX Design Chapter 1

[10]

Part 3: Write a short paragraph (~300 words) on why "concepts" are valuable to HCI
designers:

Lots of concepts are useful to HCI designers and the creation of great software.
Documenting these over time will help you use many of the concepts we will discuss in
the future.

If you do not like writing in books, you can do the following instead:
1. Create a Google Drive/Computer folder in which to create docs to
capture any challenge/activity issued throughout this book.
2. Follow along and label your docs with the book chapters and the
challenge title, using something similar to the following syntax, for
example, 01-Binary-Relationships.doc.

The binary relationship in computing is expressed in a system of numerical notation that
has two digits (zero - 0 and one - 1) or ON and OFF. Binary is how a computer operates
a transistor, where "0" represents no flow of electricity, and "1" represents electricity is
allowed to flow. In this way, numbers are represented physically inside the computing
device, permitting calculation. A computer processes 1s and 0s in the trillions allowing the
creation of software to be possible which is deeply connected with the practice of HCI.
Computers utilize this essential binary truth to create something entirely new:
computation. Computation is the ability of a computing machine (comprising both
software and hardware) to evaluate a binary logic to produce a variety of solutions based
on the computational outcome. Binary is the root of all computer processing. Luckily for
you and me, binary code has been made easier to program over time through computer
programming languages including HTML, CSS, C++, JavaScript, and so on, and we will be
discussing how an HCI designer can use tools and computer coding languages to build
software solutions throughout this book.

At its core, a computer is just crunching away a bunch of 1s and 0s. When the software
systems and user interfaces we use and design get more complicated, it's still just 1s and 0s.
The computer in all its forms has limitations, and how we use this binary processing power
is also constrained. The constraints of the computer are incredibly useful as they start to
define what is possible and impossible with computer technology. We will discuss in
greater detail some of these computing constraints, including size, modes of interaction,
connectivity, and others, as we explore all the possibilities of designing technology as an
HCI designer.

Introducing HCI and UX Design Chapter 1

[11]

HCI is a vast field of multidisciplinary study, as shown in the following diagram:

The areas of study in the field of HCI include the following:

Computer science and engineering: The computer component, including the
concepts, theories, and coding languages that allow us to build computer
software.
Behavioral science and psychology: The human component, including the
concepts, theories, behavior, and ways people think about systems.
Design and media (product design, visual design, and content): The design and
interaction component including methodologies, theories, concepts, and best
practices that make up the products that are used by people.
Human factors and ergonomics: The interaction component of HCI, including
the concepts, best practice, form factors, and physical constraints of products so
that people can use them without any injury.
Other professions: HCI also extends into professions such as information
architecture, informatics, cultural anthropology, user research, education, and
business, which all overlap with HCI.

Introducing HCI and UX Design Chapter 1

[12]

HCI focuses on the design of computer technology and the interaction between humans
and computer software systems. HCI is situated at the intersection of computer science and
engineering, design and media, human factors and ergonomics, behavioral sciences and
psychology, and several other fields of study and research.

Personal computing started turning up in homes and offices during the 1980s, as computer
technology started to get smaller, faster, and cheaper. These sophisticated electronic
systems started to become widely available to the general public for the first time. The
explosion of the usefulness of computers, as well as the need to create human-computer
interactions that are easy and meaningful, has lead to the adoption of HCI not just among
academic institutions but generally by all of society.

HCI has been essential in propagating the idea of interaction between a user and a
computer. HCI further investigates how the experience between a user and a computer
should model human-to-human communication and foster an open-ended dialogue. We
will discuss this in greater depth later in the book, but at its core, HCI believes in the
computer as an extension of human empathy and our ability to infuse software
solutions with human values to ultimately makes those solutions more valuable and
scalable in our culture.

Following the leader – HCI pioneers
HCI has many thought leaders and academic institutions that continue to add to the canon
of knowledge. Throughout the book, I will be referencing and pointing you to designers
and authors to pay attention to. For example, John M. Carroll (https:/ ​/​jcarroll. ​ist.
psu.​edu/​) is a faculty member at Penn State's College of Information Sciences and
Technology, an author, and a founder of the field of HCI with many good things to say
about how HCI design has come to develop and mature. I highly recommend reading some
of his thinking and paying attention to the other founders of our field.

Operating in the HCI sandbox
HCI is a sandbox in which we get to play. The reality is that technology is not limitless; the
HCI designer operates inside technological constraints. The constraints of the computer
give us some rules and boundaries that we will define and help you define yourself. Your
computer sandbox is made up of your HCI tools, your thoughts on HCI, your ideas for
software, and the software you will create:

https://jcarroll.ist.psu.edu/
https://jcarroll.ist.psu.edu/
https://jcarroll.ist.psu.edu/
https://jcarroll.ist.psu.edu/
https://jcarroll.ist.psu.edu/
https://jcarroll.ist.psu.edu/
https://jcarroll.ist.psu.edu/
https://jcarroll.ist.psu.edu/
https://jcarroll.ist.psu.edu/
https://jcarroll.ist.psu.edu/
https://jcarroll.ist.psu.edu/

Introducing HCI and UX Design Chapter 1

[13]

How you choose to manipulate these rules and technology constraints is where your
creativity, ingenuity, and pure curiosity about humans and computers can thrive and
influence people's lives and professional practices.

Learn Human-Computer Interaction will help you define your computer sandbox as you build
your knowledge of HCI, your HCI tools, activities, understanding of your users, how the
computer works, and more. An expectation as you continue to read this book is that you
are willing and able to jump into the HCI computer sandbox. The edges of your sandbox
are undefined at the moment, but we will start by defining some boundaries and then
rolling around in the sand. I promise that while reading this book, we will not make you
"comb the desert" to find what you are looking for, but it will require some effort on your
part.

Watch Spaceballs, a Mel Brooks film, in order to gain context on the "comb
the desert" reference: https:/ ​/​www. ​imdb. ​com/ ​title/ ​tt0094012/ ​.

However, if you are willing to get your hands dirty, we will dig some holes in the sand and
uncover many HCI skills. Some skills are right on the surface of your sandbox, and others
will require some digging, but the outcome of your journey nonetheless will be to build
your digging skills and improve yourself as an HCI designer.

https://www.imdb.com/title/tt0094012/
https://www.imdb.com/title/tt0094012/
https://www.imdb.com/title/tt0094012/
https://www.imdb.com/title/tt0094012/
https://www.imdb.com/title/tt0094012/
https://www.imdb.com/title/tt0094012/
https://www.imdb.com/title/tt0094012/
https://www.imdb.com/title/tt0094012/
https://www.imdb.com/title/tt0094012/
https://www.imdb.com/title/tt0094012/
https://www.imdb.com/title/tt0094012/
https://www.imdb.com/title/tt0094012/
https://www.imdb.com/title/tt0094012/
https://www.imdb.com/title/tt0094012/

Introducing HCI and UX Design Chapter 1

[14]

Why HCI?
The profound impact of computing stands among humankind's greatest achievements
alongside the wheel, refrigeration, and sliced bread. The publication of this book itself in
both printed and digital formats would be rendered impossible without computation. The
reality is that our world is full of technology run by computers. They are here to stay, so
let's figure out how they impact our lives and how we can design with them and for them.
A big part of understanding computers is that humans make them for other humans and,
therefore, can be changed based on how humans evolve. Technology moves at an
incredible speed, and the way it impacts our society, our behaviors, and our education are
sometimes hard to understand; however, this is HCI's role. We will explore the vast set of
opportunities that can come out of harnessing technology and how to keep up with the
rapid change.

Documenting HCI jargon
HCI jargon is a collection of unique words or expressions that are used by people in our
particular profession and are difficult for others to understand. Here are a few HCI terms to
get you up to speed:

Operating System (OS)
The mouse
Windows
Graphical User Interface (GUI)
What You See Is What You Get (WYSIWYG)

If you want to learn more HCI jargon with some history, check
out https:/ ​/​www. ​cs. ​cmu. ​edu/ ​~amulet/ ​papers/ ​uihistory. ​tr. ​html.

There are hundreds of terms in HCI and if I listed them all here, you would be
overwhelmed and bored out of your mind, as this is not a glossary book nor is it an
almanack for HCI. I highly recommend reviewing the HCI community jargon and boning
up on technical terms at https:/ ​/​www. ​interaction- ​design. ​org/ ​literature/ ​book/ ​the-
glossary-​of-​human- ​computer- ​interaction and https:/ ​/​uiuxtrend. ​com/ ​ui- ​ux-
glossary-​jargon/ ​.

https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction
https://uiuxtrend.com/ui-ux-glossary-jargon/
https://uiuxtrend.com/ui-ux-glossary-jargon/
https://uiuxtrend.com/ui-ux-glossary-jargon/
https://uiuxtrend.com/ui-ux-glossary-jargon/
https://uiuxtrend.com/ui-ux-glossary-jargon/
https://uiuxtrend.com/ui-ux-glossary-jargon/
https://uiuxtrend.com/ui-ux-glossary-jargon/
https://uiuxtrend.com/ui-ux-glossary-jargon/
https://uiuxtrend.com/ui-ux-glossary-jargon/
https://uiuxtrend.com/ui-ux-glossary-jargon/
https://uiuxtrend.com/ui-ux-glossary-jargon/
https://uiuxtrend.com/ui-ux-glossary-jargon/
https://uiuxtrend.com/ui-ux-glossary-jargon/
https://uiuxtrend.com/ui-ux-glossary-jargon/
https://uiuxtrend.com/ui-ux-glossary-jargon/

Introducing HCI and UX Design Chapter 1

[15]

Challenge 2 – Highlighting and collecting all HCI
jargon
Setup:

Get out materials and a highlighter or marker.1.

Part 1: Highlight the text:

Use a highlighter and mark up words, terms, and technical content that you don't1.
understand.

Part 2: Create a jargon collection:

Use Google to search for these terms if you need more help and create a Word doc or1.
spreadsheet and start adding the highlighted jargon.
Collect the HCI jargon terms you encounter in a Google doc/Word doc that you can go2.
back and review.

Being an expert will not happen overnight. You need to get practice with
the technical jargon and HCI terminology. Help your memory out by
making a list and highlighting terms throughout this book.

Part of learning HCI is "talking the talk," as well as "walking the walk," but for now, being
able to understand that jargon will be essential to growing your skills. I encourage you to
start using some HCI jargon in everyday descriptions of computers.

Exploring HCI jargon and their acronyms
This book contains technical jargon by nature. I will do my best to add resources and a
glossary of terms, but some will be on you to figure out. I promise this book will not be a
multithreaded annotation like David Foster Wallace's "Infinite Jest," but we will help you
grow your HCI language.

Introducing HCI and UX Design Chapter 1

[16]

The goals of HCI jargon are to do the following:

Establish a shared language for building human-centered solutions.1.
Build a shorthand for skills and industry terms.2.
Identify and navigate the growing job market utilizing HCI skills.3.

This can also be seen in the following diagram:

Millions of people around the planet build computer hardware and software. As a group,
we can create software with computers faster due to our shared vocabulary for describing,
discussing, and ultimately building solutions. It is nerdy. HCI jargon is a way to introduce
you to the community to give you a shared language and allow you to talk the talk as you
walk the walk. The language we share is relatively new and revolves around technology
and computer systems. Lean into your nerd self and know that as a group, it is us nerds
that change the world through technology.

If you are new to technical jargon, we recommend using a highlighter to
identify and recognize terms, make a personal list to help your memory,
and try using them in your everyday discussions as you share what you
are learning in this book with your friends, loved ones, or colleagues.

With this in mind, we'll take a quick look at the history of computers to establish where a
majority of this jargon comes from. This will help us proceed toward growing our curiosity
about computing and is essential for building your knowledge as well as your HCI
credibility.

Introducing HCI and UX Design Chapter 1

[17]

Exploring the history of computers
Without computers, HCI would not be a profession. Software that HCI designers work on
is steeped in history and knowing the foundations will allow you to take steps into the
future more confidently, therefore, let's rewind a bit and understand how we got here.

Very early history – the 17th century
Since the beginning of civilization, there is proof of human beings' ability to quantify and
record their interactions. The computer is the outcome of millennia of knowledge,
all now combined into handheld devices that allow us to quantify our existence. The long
tail of human accomplishment and innovation that have brought us to today are too
numerous to count, but we have been able to advance faster than any other time due to our
ability to harness the accomplishments of our forefathers in computing history.

In the Enlightenment era, we had logician Gottfried Wilhelm Leibniz (a 17th/18th century
German philosopher and mathematician) who invented and refined the binary number
system, which is the foundation of all computers. Computers have a long history and are
rooted in machines that can do mathematics.

For more history on Gottfried Wilhelm Leibniz, check out https:/ ​/​www.
iep.​utm. ​edu/ ​leib- ​met/ ​.

Early history – the 17th to 19th centuries
During the industrial revolution, we find an explosion of shared ideas
accompanying banking, the stock market, and the industrialization of the workforce that
led to the invention of many machines that helped increase productivity while decreasing
the reliance on human capital to execute the work. Take mathematics; for example, it is
tough to count large numbers and is a tedious process for any human being to do
manually. Thus the invention of the mechanical calculator started with Wilhelm Schickard
and Blaise Pascal during the 17th century.

https://www.iep.utm.edu/leib-met/
https://www.iep.utm.edu/leib-met/
https://www.iep.utm.edu/leib-met/
https://www.iep.utm.edu/leib-met/
https://www.iep.utm.edu/leib-met/
https://www.iep.utm.edu/leib-met/
https://www.iep.utm.edu/leib-met/
https://www.iep.utm.edu/leib-met/
https://www.iep.utm.edu/leib-met/
https://www.iep.utm.edu/leib-met/
https://www.iep.utm.edu/leib-met/
https://www.iep.utm.edu/leib-met/
https://www.iep.utm.edu/leib-met/
https://www.iep.utm.edu/leib-met/
https://www.iep.utm.edu/leib-met/

Introducing HCI and UX Design Chapter 1

[18]

During the 18th century, these adding machines were mechanical devices to help speed up
bookkeepers' work. Adding machines and cash registers were the precursors to computers:

The preceding photo shows William S. Burroughs' (1855-1898) adding machine. The
invention of the adding machines was aimed to accommodate human inability to memorize
numbers and to take manually laborious tasks off our hands. In 1886, William S Burroughs
founded the American Arithmometer Company. His first U.S. patent was a nine-digit
keyboard and a printing mechanism that would print out the total of the computation, with
the original model selling for $475. All machines were crank-operated until the first electric
models were introduced in 1928. By 1935, the company produced 350 different models of
adding machines, both electronic and non-electric. Adding machines and typewriters
answered specific human tasks at the time that our computers have now fully taken off our
hands through software programs and computation.

Moving through the 19th century, we arrive in the post-Depression era (the 1930s-40s).
Machines continued to build on human limitations, but in 1934 the first programmable
machine (a computer) was created by German Konrad Zuse - the Z1. The programmable
computer is the foundation on which all computers today are rooted. A computer is
transformed by the programs installed on each computer that execute a variety of different
tasks. Programmable computers are connected to how we start thinking about what a
computer can and cannot do. Today, there are millions of programs that do everything
from help us write emails to managing computer networks. The software that is ubiquitous
in our world is both generally used by all users such as word processing or internet
browsers, to specialized software for specific users, such as 3D modeling or film editing
software.

Introducing HCI and UX Design Chapter 1

[19]

All computer programs are processed as bits. A bit is the smallest unit of data in a
computer, a 0 or 1 of a transistor. See the following representation of 8 bits = 1 byte:

1 0 1 0 0 1 1 0

| ― | ― ― | | ―

☒ ☐ ☒ ☐ ☐ ☒ ☒ ☐

y n y n n y y n

Transistors are organized in groups of 8, so each group can store a byte. All computer
processing power and computer memory is a multiplication of 8. A kilobyte (KB) is 1,024
bytes, 1 MB is 1,024 kilobytes, and 1 GB is 1,024 MB, and so on. Computer storage, speed,
and size have led to the proliferation of devices from personal computers to smartphones to
smart TVs to internet-connected light bulbs. Now, why are binary logic and basic computer
history important to this, you might be asking?

Since the 1930s, a lot of innovation has been directed into the production of computers, and
we have become very reliant on them for some time. During World War II, computers were
used by the Allies (USA, Britain, France, the Soviet Union, and Poland) to break German
communication encryption codes. Alan Turing and his team helped break the Enigma code
and helped the Allies win World War II. Computers allowed organizations to speed up
human data processing skills.

Recent history – the 20th century
The post-World War II economies created many opportunities and the 1950s-1980s saw an
explosion in computing technology and computer software creation. The movement of the
computer out of specialized clubs and enthusiasts' groups and into the hands of the masses
is not arbitrary. Computers are useful, and humans will spend money on valuable
products. Just like the adding machine helped people execute math faster, the personal
computer is that same idea times a thousand.

Introducing HCI and UX Design Chapter 1

[20]

The computer was once used only by a small set of researchers, scientists, and academics.
Luckily for us, computer enthusiasts broke down those ivory towers and democratized
computer programs, which are useful for everyday people. For example, I am part of the
generation that had computers in my classroom for the first time. I learned to type on a
typewriter first before using word-processing software on a Macintosh IIci. My generation
was one of the first to be taught 21st-century computing skills as part of my base education,
including access to computers to learn to type, play games, learn math, and do art. The
computer in my elementary classroom is the foundation of why I continue to work with
computers to this day.

The addition of digital literacy in K-12 education is inseparable from computer software
and its ability to permeate the systems we use and learn from impacts our own innovative
skills. As computers came down in price and in size, their usability increased to the point
where even school children could learn and execute a program interface without learning
computer programming languages like MS-DOS. The use of the computer was made
essential to operate in the modern world. The power of the computer in our society is
nothing but remarkable. Still, you already know this because you are here attempting to
grasp and manipulate how humans engage with technology.

When computers started being used, they were the size of entire rooms. Over time, they got
smaller and faster. The Xerox Palo Alto Research Center (PARC) became a catalyst for
many of the ideas that propelled computers into the homes of billions of users. The Xerox
Alto systems pioneered the power of a GUI and were used for a variety of research
purposes into the fields of human-computer interaction and computer usage:

Introducing HCI and UX Design Chapter 1

[21]

Research computers at Xerox PARC inspired Steve Jobs and Steve Wozniak and others to
design a GUI for Apple computers. Some HCI pioneers that came out of Xerox PARC are
the following:

Butler Lampton (1943-present): A computer scientist and founding member of
Xerox PARC who was instrumental in developing the Xerox Alto in 1973 with a
three-button mouse and GUI.
Charles "Chuck" Patrick Thacker (1943-2017): A computer scientist who
helped create an OS that allowed users to interface with a computer and a
computer mouse through a GUI. The GUI was implemented by Steve Jobs and
Steve Wozniak and their colleagues at Apple into the 1984 Macintosh.
Alan Kay (1940-present) is a pioneering computer scientist well known for his
work on object-oriented programming and Windows-based user interfaces.
Mark Weiser (1952-1999) was the CTO at Xerox PARC and is considered the
father of ubiquitous computing (ubicomp).

In September of 1991, Mark Weiser wrote The Computer and the 21st Century. At the
precipice of the creation of the World Wide Web, these thinkers, engineers, and designers
started to understand something profound about the computer. They began to see the
potential of computers not just as useful tools but as drivers of culture. They would become
the new drivers of the modern world.

As computers came down in size and started to use software that was more friendly and
accessible, they quickly became instruments for education, business, and government. In
the 1980s and 1990s, the personal computer took off and companies such as Microsoft, HP,
Xerox, IBM, Apple, and so on started creating consumer-friendly hardware
and software that could be portable in the form of laptops. Portability allowed users and
workers to be unchained from their desks and move freely throughout the office or the
world. This freedom was then augmented by being able to be connected at all times
through the internet.

There is a robust history of all the factors and technologies that came together to produce
the internet that we will quickly discuss to get us all on the same page.

Introducing HCI and UX Design Chapter 1

[22]

The 21st century – the internet, smartphones,
cloud computing, and IoT
The origins of the internet has its roots in Cold War government research going as far back
as the 1960s and programs like DARPA but in 1991, Tim Berners Lee invented the World
Wide Web and thus the consumer internet, allowing computers to communicate over a
network through HyperText Transfer Protocol (HTTP). The world was then fundamentally
altered. Using HTML (Hypertext Mark-Up Language), websites could publish their
content for all the world to see through a web address. HTML was limited as a coding
language and was then augmented by Cascading Style Sheets (CSS), which impacted the
look and feel of a web page, and then JavaScript (JS), which impacted their behavior. This
built the foundation for modern web pages that both function well and look good. The
internet is loved by many because of a combination of standardized computer code
(HTML/CSS/JS) plus a way to quickly deliver content around the globe through content
delivery networks (CDNs):

The internet fundamentally altered our existence. You could write a library of books on the
impact the internet has made on the world, so I won't go into it too much; however, the
expansion of computer networks and the ability to communicate with anyone around the
globe has modified our ability to consume knowledge. The ability to serve content via a
CDN around the planet has a profound impact on the number of people we can reach, but
also on the content they can consume.

Introducing HCI and UX Design Chapter 1

[23]

Computers thus moved from devices of business to points of access and entertainment.
Connecting users around the world through computer networks have altered how we
communicate, exchange ideas, and think. The acceleration toward smaller and smaller
computers exploded alongside the expansion of the internet, and the communication
technologies of Wi-Fi and cellular technology. This has resulted in the acceleration of
smartphone technology, cloud-based application infrastructure, and the proliferation of the
Internet of Things (IoT). IoT is the ability of everything to be networked and connected to
the internet, which allows all things to communicate and collect data. All this change has
occurred in half a century. The potential of what the next half-century has to offer is where
we will pick up the torch. As the personal computer and the software designed to operate it
have permeated our jobs, our education, and our media lives, we start to understand that
computers are like Pandora's box – once opened, you can't put anything back in. There is no
undoing computer technology; we can only ride the wave and learn how to approach our
technology systems so that they reflect our human values.

This is not a history book, but some context-setting with the history of HCI and the
language that has sprung out of the computer domain is necessary. Let's discuss the role
you will play.

Evolving from T-person into a π person
By picking up this book, you are committing to becoming a T-based person. A T-person is
based on two factors, the horizontal and the vertical, as shown here:

Introducing HCI and UX Design Chapter 1

[24]

The horizontal factor represents the breadth of knowledge. This is the knowledge that can
be obtained through life experience, curiosity about people, and cultural education, and is
the knowledge that can produce insight. Insight can then travel down the vertical stem of
the T, which represents the depth of knowledge, and becomes connected to speciality
knowledge. Depth of knowledge is a concept that applies to any specific domain, for
example, a General Practioner (GP) represents the horizontal bar, whereas a cardiologist
(the specialist medical skill of understanding the heart) would represent the stem of the T.
Being skilled at your profession requires considering what your breadth and depth of
knowledge concern.

For HCI, this means having and understanding an extensive knowledge about humans and
computers, which allows you to then funnel those experiences down into specific skills
relevant to your software development roles, and hopefully wider society. As an HCI
designer if you have a breadth of knowledge without any depth in the skill you will carry a
limited ability to be as sought after in our world. The saying, A jack of all trades is a master of
none calls out the folly of focusing only on the breadth of your knowledge. Luckily HCI has
many stems to focus on and create a depth of knowledge. This makes HCI practitioners
more like π people. The number π (pi) is a mathematical constant and appears in many
formulae in all areas of mathematics, physics, and computer science. It is approximately
equal to 3.14159.

The shape of π is more sturdy than a T anyway, as it has multiple stems, and just like the
number π the knowledge you can gain in HCI goes on and on just like π (pi). A π person
has a stable two-legged base:

Introducing HCI and UX Design Chapter 1

[25]

This book is committed to helping you grow your stems with specific skills in HCI.
However, the nature of HCI is not just about in-depth specific knowledge only. To be
human-centered, it will require growing your breadth of knowledge and improving your
ability to approach the problem that the computer can solve with your user at the center.
The goal of this book is to stretch your knowledge in all directions and help you develop
your curiosity about just how we use computers.

Gaining depth in the stems of the topics of computers and interaction is no easy task, and
knowledge of humans takes a lifetime to build. The reality is that gaining knowledge takes
time. However, that time has to be dedicated and allocated so that the experience can be
consumed, practiced, and ultimately redesigned. You will not become an expert instantly,
and reading this book alone will not guarantee that expertise, though it will hopefully help
to move the needle a little. As you learn HCI throughout this book, you will find we use
a hermeneutic loop.

Hermeneutic loops
Hermeneutics is a thinking framework that loops through synthesis and analysis, based on
the idea that multiple parts build a whole. For example, the book you are reading now is
made up of chapters. The whole of Learn Human-Computer Interaction cannot be understood
by reading just one chapter. Each chapter is sequentially designed for the book as a system
and becomes additive in its analysis. Over time, you will synthesize each chapter with
those that came before it as you learn HCI, thus revealing the whole. You will practice this
hermeneutic learning loop through activities and practice with reading and engagement:

Introducing HCI and UX Design Chapter 1

[26]

As a framework, hermeneutics has its roots in the beginnings of western philosophy and is
a process that you can use to think and talk about knowledge and understanding. The word
has its origins in the ancient Greek word for interpretation.

The loops we are on are continuous and will last far beyond the completion of this book.
However, using a hermeneutic loop will be a useful framework as you progress and
increase your HCI skills.

At the end of each chapter, you will find a summary that you can use to synthesize the
conversations, activities, and practice into the whole of your HCI experience and
knowledge. As part of growing your HCI knowledge, you will be expected to do a few
things along the way to expand your skills. HCI requires a lot of practice:

The hermeneutics loop is all about practice, and we will use this practice to grow our skills
and learn more about HCI. As a designer who also has made HCI their practice, I will be
giving some of my own perspectives as well as sharing systems and tools used by the HCI
community.

The author's perspective
I am a designer. My education is in human-centred design, and my professional experience
is in design education. These things, along with my work experience as a UX designer as
well as a UX/UI curriculum architect, have given me some knowledge worth sharing. HCI
is a lot to wrap your arms around. One book will not make you an expert; however, the
professions that are the by-product of HCI skills are also growing and are more of a
vocation than merely an occupation, and I hope you will continue on this path.

Introducing HCI and UX Design Chapter 1

[27]

HCI is a vocation
A vocation is a job that is particularly worthy and rewarding to a person and typically
requires great dedication and passion. I suppose my great dedication to the UX/UI practise
has a part in me writing this book, but it also is why I come back to the HCI watering hole.
Great dedication requires time, effort, and enthusiasm. Hopefully, you possess these factors.
The time it will take you to consume this book will not make you a designer, but the
information given can be executed with effort and enthusiasm over time. This practice will
allow you to improve, and with improvement comes mastery. We will put you on the path
to mastering some HCI skills. Still, there is always something new to learn, a new
technology to consider, a new coding language to adopt, a new way to communicate
complexity, a new way to think, and a new way to solve a problem with and for other
people.

Challenge 3 – What do you know about a
lawnmower?
Setup:

Get out a sheet of paper or open a Google doc.1.
Set a timer for 15 min.2.

Part 1: What is your lawnmower knowledge?

Write down everything you know about a lawnmower.1.
Include brands, use, value, cost, mechanics, and so on.2.

Part 2: Review your knowledge:

Review your lawnmower knowledge and recall.1.

HCI will work on a wide range of content. Your ability to become an
expert quickly in the software problems you are solving will help you
throughout your career. The value an HCI designer brings is their
thinking and skills.

Introducing HCI and UX Design Chapter 1

[28]

Often, students have never put a second thought into a lawnmower. I then follow up with:
"What if your client is John Deere?" How much do you have to know about lawnmowers
now? A heck of a lot. The modern John Deere corporation is a global manufacturer with
thousands of employees and thousands of products or stock-keeping units (SKUs). The
role of HCI skills, software, and user interfaces in the success of John Deere or any other
company is not to be understated. I do not work for John Deere. However, as an HCI
designer, I know that I can use my human-centred research skills, software prototyping
abilities, and user-testing processes to get excited about improving the human-computer
interaction between a lawnmower and a user. I also know that interacting with a computer
to buy, operate, or to fix a lawnmower will ultimately have an impact on the business of
John Deere. John Deere, or any other company, solve very human problems with their
products, and computers play an essential part in making them successful.

HCI is not only relevant to, but crucial to any business and the ability to use user research to
identify problems, understanding their users' experiences, diagnosing what needs
improvement, and helping communicate the values of human-centred thinking to their
business and their users are the reasons why you should want to learn HCI. Throughout
this book, I will extend my love for HCI, the human-centred design process, and continue
to show you how you will be able to apply this ethos to your current and future jobs.

The HCI professions
Thousands of new job titles have been created to accommodate the skills that have been
created associated with computers and the essential roles they play in modern business.
Rapid technological change is modifying the skill requirements for most jobs. HCI is
responsible for some of this technological change. As the computer has come to dominate
modern business, the role of the products and services that support humans' use of
computers has also skyrocketed, which has to lead to the shift in roles and job titles that are
filling modern businesses.

According to the US News Report (2018) on "100 Best Jobs", a software developer is the #1
job role, with a median salary of $101,000 and a projected 255,000 openings in the US alone.
The best software developers are well-versed in HCI skills and use them to work with
teams that focus on users as they build great software. Whether you are coming to HCI
from the computer science space or the human design space, there are a plethora of job
roles that have not even been invented yet that will be ripe for humans with HCI skills to
fill.

Introducing HCI and UX Design Chapter 1

[29]

HCI is birthed from the academic landscape where computer science departments had to
rapidly grow to meet the demand for the jobs and skills required as computers multiplied
their influence on our world. A large number of people who worked with HCI and
computers or built software were not formally trained in HCI. Take Steve Jobs, for example;
he was an enthusiast who saw the potential of a personal computer and knew he could put
smart people around him who also believed in the human-centred opportunity to allow the
computer to blossom. HCI has a formal place in academia, but also if you were to study all
the fields that make up the discipline over the four years of school (or six years with a
Master's degree), you would still probably not touch on all these fields.

For example, I have an HCI-adjacent degree with a Master's in Fine Arts (MFA) in Media
Design from the Art Center College of Design. The overlap here is between design thinking,
human-centred research, and interaction design. The reality is the fields of HCI are broad
and deep for a reason. HCI practitioners in the "real world" work in teams. No one team
member can be an expert in all the HCI fields. This is a good thing, as great technology and
software are a by-product of the diverse thinking possessed by a team.

Another reason HCI covers such a wide field of disciplines is that they have all been
impacted by the computer themselves. The computer is a fantastic feedback loop operating
on the ideas we are considering. The ability to combine knowledge from computer science
into psychology and then carry that over to user experience is how we allow the computer
to reinforce our understanding. The knowledge shared between a team that all have
sufficient understanding of their fellow team members' skills can create a catalyst for better
human-centred solutions. The field of HCI is made up of many growing professions:

Introducing HCI and UX Design Chapter 1

[30]

These professions include the following:

Computer science professions
Information architecture professions
Computer engineering professions=
Ergonomics professions
Design/branding professions
Ethnography professions
User interface professions
Sociology professions
Language/semiotic professions
Human factor professions
Psychology professions
User experience professions

In the business landscape, this results in job titles that span a super wide range of job
opportunities. From user experience designer to systems architect, to frontend/backend
engineer, the reality is that HCI skills have never been in higher demand than they are
today. Every company from Ford to Fage Greek Yogurt has software systems, web pages,
business practices, and customers who interface with their products or services through a
computer.

The concepts, skills, discussions, and activities explored in this book will grow your skills
in HCI. It is an electric field, and we will cover what we can. However, it will not cover
every topic in great depth (otherwise the book would be thousands of pages and frankly
unusable), therefore we are going to take a journey through HCI that gives you an in-depth
overview with some critical skills to dive into and identify areas where you can continue to
grow.

As you continue reading, it will be essential to maintain some questions in mind. Let's look
at those now.

Introducing HCI and UX Design Chapter 1

[31]

Challenge 4 – Self-guided questions
Setup:

Create a Google doc/Word doc.1.

Part 1: Write down your answers:

Write down short answers to the following questions:1.

Why do you love computers?
Where have you already started digging into your HCI sandbox?
Where do you want to start digging next?
Why do you want to grow your HCI skills?
What do you want to get out of joining the HCI community?
Where are you in your HCI journey? (initial growth, expanding growth, or
maintaining sustained growth?)

Part 2: Review your HCI questions:

Keep these questions handy and return to and review the answers as the book covers1.
them.

Being able to ask great questions is essential for your career, and being
able to answer some of these throughout this book is our goal.

Summary
Throughout this chapter, we discussed how our lives have been fundamentally reorganized
around the computer and how this book, Learn Human-Computer Interaction, provides a way
to approach, address, and capitalize on this change. We looked into a brief history of
computing and how HCI will change you into a π person. We also looked into the relevant
opportunities present in the job market.

Introducing HCI and UX Design Chapter 1

[32]

HCI is a lot to wrap your head around, and this chapter allowed us to get excited about the
potential of leaning into our knowledge and putting it to practice in our own lives and jobs.
We covered an introduction to HCI, which included why we care about this profession
along with some HCI topics that came from our quick history of computing. All this
information is hopefully growing your π person qualities as you develop your HCI
interests and direction towards an HCI profession.

In the next chapter, we will focus on the explosion of software made possible through the
introduction of the internet in the 1990s. We will also explore some HCI design principles
to sample how these principles are applied to software.

2
Human-Centered Design

Principles
Human-computer interaction (HCI) is more significant than just a set of skills or
professions. There is a shared set of human values that bind all of us who participate in the
execution of software. HCI skills apply to our roles as we produce software products,
websites, or any other computer-related solutions. The collection of skills we are learning
and practicing is also part of a bigger picture that joins together with the long line of
designers, developers, technologists, and creators who have made humanity better with
their ideas and contributions.

Throughout this chapter, we will be covering human-centered design principles that
support the HCI profession. Human-centered design (HCD), sometimes called user-
centered design (UCD), is a design process that focuses on the user throughout iterative
design cycles. The design process allows design teams to create useable, useful, accessible,
and potentially delightful user experiences over time. At its core, HCI attempts to solve the
underlying issues experienced by their users and not just the symptoms. The goal of this
chapter is to give you the skills to identify symptoms and seek out the deeper issues that
exist with your users.

The topics you will be learning in this chapter are as follows:

Understanding the HCI ethos
How HCI is standing on the shoulders of giants
Designing continually better software

Human-Centered Design Principles Chapter 2

[34]

Understanding the HCI ethos
Before we dive deep into the HCI ethos, you must dive into your interests in the
interactions between humans and computers, which starts with some self-reflection. HCI
requires a lot of personal interest and fortitude to keep learning. I recommend you dig deep
as we grow our HCI skills.

Challenge 5 – Questions refresher
Setup:

Get out a sheet of paper or create a Google doc/Word doc.

Part 1: Write down these questions:

Add each question to your page:

Why do you love computers?
Where have you already started digging into your HCI sandbox?
Where do you want to start digging?
Why do you want to grow your HCI skills?
What do you want to get out of joining the HCI community?
Where are you in your HCI journey (beginning growth, middle expansion growth, or end
maintaining growth)?

Part 2: Answer each question:

Write a short answer to each question.

Try asking these questions to your friends and colleagues to see whether
their answers are similar to yours.

Now that you have some questions to ask yourself throughout your HCI journey, let's
discuss why HCI matters. HCI is the practice of designing computer technology, focusing
on the interaction between humans and computers.

Human-Centered Design Principles Chapter 2

[35]

Between 2019 to 2020, US adults spent an average of 3+ hours on their devices or small
computers a day (https:/ ​/ ​www. ​emarketer. ​com/ ​content/ ​us-​time- ​spent- ​with- ​mobile-
2019). This is close to 10 percent of a 24-hour day. Given that humans need to sleep, we can
assume that they were only using their computer during waking hours, which is on
average 16 hours, taking into account a normal 8 hours a night of sleep, and so the amount
of time spent on their phones alone came close to 20 percent of their waking hours using a
phone interface. Smartphone computer usage has a staggering average: 3 hrs 35 mins/day,
which is equal to 1,291 hrs 22 mins a year:

Over a lifetime, the amount of time a user spends on their computers working, playing
games, or scrolling through Instagram might make your stomach turn. The prevalence of
computers plus the massive scale of devices has driven down the cost of computer
hardware, as well as exploded the market for software. As the price has gotten cheaper, the
access has gone up. According to Worldometer (https:/ ​/​www. ​worldometers. ​info/
computers/​), in 2015, we reached 2 billion personal computers. The ability for 2 billion
people to use computers is a product of HCI designers making software worthy of users'
attention and helps them solve problems, communicate, and operate in the modern world,
as well as is representative of the intrinsic human value that technology creates.

The heart of HCI technology
As computers have rapidly moved into existence, so has the care we should be taking in
building software for our users, which is at the heart of HCI. There are three major factors
that an HCI designer should consider when designing software, websites, or products.

https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.emarketer.com/content/us-time-spent-with-mobile-2019
https://www.worldometers.info/computers/
https://www.worldometers.info/computers/
https://www.worldometers.info/computers/
https://www.worldometers.info/computers/
https://www.worldometers.info/computers/
https://www.worldometers.info/computers/
https://www.worldometers.info/computers/
https://www.worldometers.info/computers/
https://www.worldometers.info/computers/
https://www.worldometers.info/computers/
https://www.worldometers.info/computers/

Human-Centered Design Principles Chapter 2

[36]

Let's cover the three primary considerations:

Usability factors
Accessibility factors
Time-on-task factors

Usability factor
Usability is related to the ease of use of a product or website. Designing products,
interfaces, or software that are usable or unusable is a spectrum. Usability is typically
scored and based on a set of software design features based on a set of human-centered
tasks. The useability of a software product can only be defined together with the context of
the user. Usability has to determine what a user wants to do in their environment. Testing
users is the only way to determine the level of usability for a design solution.

For an official definition of usability, refer to the official ISO 9241-11 definition (https:/ ​/
www.​iso.​org/​obp/ ​ui/ ​#iso:std:iso:9241:- ​11:en).

Accessibility factor
Accessibility as a factor defines how a software product can be used by the widest audience
possible in the widest set of environments possible. HCI designers should design software
solutions that accommodate the needs of all potential users in all scenarios. Accessibility
(https:/​/​www.​interaction- ​design. ​org/ ​literature/ ​topics/ ​accessibility) is not only
closely aligned with people who have a disability, such as color-blindness (affecting 1 in 12
men and 1 in 200 women, ~4.5% of the entire population) or physical disabilities (1 in
4 adults in the United States, or ~26% of the entire population) but also encompasses
anyone facing physical barriers, such as being forced to multitask or using a
screen outdoors. The UX/UI Möbius strip is a continuum of usability and accessibility
considerations as we design solutions for people:

https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:en
https://www.interaction-design.org/literature/topics/accessibility
https://www.interaction-design.org/literature/topics/accessibility
https://www.interaction-design.org/literature/topics/accessibility
https://www.interaction-design.org/literature/topics/accessibility
https://www.interaction-design.org/literature/topics/accessibility
https://www.interaction-design.org/literature/topics/accessibility
https://www.interaction-design.org/literature/topics/accessibility
https://www.interaction-design.org/literature/topics/accessibility
https://www.interaction-design.org/literature/topics/accessibility
https://www.interaction-design.org/literature/topics/accessibility
https://www.interaction-design.org/literature/topics/accessibility
https://www.interaction-design.org/literature/topics/accessibility
https://www.interaction-design.org/literature/topics/accessibility
https://www.interaction-design.org/literature/topics/accessibility
https://www.interaction-design.org/literature/topics/accessibility
https://www.interaction-design.org/literature/topics/accessibility
https://www.interaction-design.org/literature/topics/accessibility

Human-Centered Design Principles Chapter 2

[37]

The Möbius strip (https:/ ​/ ​www. ​math. ​hmc. ​edu/ ​~gu/ ​curves_ ​and_ ​surfaces/ ​surfaces/
moebius.​html) is a unique shape—it can be constructed by cutting a long strip of paper,
putting a half twist in it, and gluing the ends of the strip together. The resulting object has
one continuous shape; if you were to take your finger and draw along the flat space of the
strip, your finger would touch both sides of the paper and loop around. It is quite a simple
shape that is continuous, just like usability and accessibility. A product that is usable but
not accessible ignores the totality of the humans that can be affected by not considering
their accessibility needs. Throughout this book, in order to avoid having to always write
usable and accessible together, we need to understand that these terms are connected, and
if we say something is usable, we include the accessibility factor.

For example, if we test a software solution for its usability, then, of course, accessibility to
part of that test. A product, service, or interface that is not accessible is not usable.

Usability and accessibility are cornerstones in Universal Design (http:/ ​/​universaldesign.
ie/​What-​is-​Universal- ​Design/ ​), a goal of HCI solutions. There are many books and
articles on Universal Design, but the main idea is that a designer should consider the
diverse needs and abilities of their users throughout the design process. Universal Design
creates products, services, and environments that meet users' needs.

https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
https://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/moebius.html
http://universaldesign.ie/What-is-Universal-Design/
http://universaldesign.ie/What-is-Universal-Design/
http://universaldesign.ie/What-is-Universal-Design/
http://universaldesign.ie/What-is-Universal-Design/
http://universaldesign.ie/What-is-Universal-Design/
http://universaldesign.ie/What-is-Universal-Design/
http://universaldesign.ie/What-is-Universal-Design/
http://universaldesign.ie/What-is-Universal-Design/
http://universaldesign.ie/What-is-Universal-Design/
http://universaldesign.ie/What-is-Universal-Design/
http://universaldesign.ie/What-is-Universal-Design/
http://universaldesign.ie/What-is-Universal-Design/
http://universaldesign.ie/What-is-Universal-Design/
http://universaldesign.ie/What-is-Universal-Design/
http://universaldesign.ie/What-is-Universal-Design/

Human-Centered Design Principles Chapter 2

[38]

Time-on-task factor
A unique factor for any computer is time. Time is a function of the required user task plus
the context/interface plus the environment. For example, if the job is to fill out a form to
receive information about a product, then time is defined by how long it takes your user to
complete the form successfully. The form completion then needs to be understood on
which modality—smartwatch, mobile phone, tablet, computer, smart TV, smart speaker,
and so on—along with the time of day and under which environment. Concentrating on
time requires HCI to deeply understand our users and respect their time when designing
solutions.

Because not all tasks require the same time, it is essential for HCI designers to understand
the job that is being done by the user before evaluating the time required to accomplish the
desired task. Time is an important factor in determining the usability of a software solution.
If an HCI designer values their users' time, they will design solutions that use up the
appropriate amount of time to solve a problem.

The user has time expectations and the software system has time requirements. For
example, search in a web browser for the Google search engine. The time it takes a user to
type/speak the search item and hit Google search is relatively small. This request activates
the system time requirements by the Google search engine, which has to receive the
"query," parse the content, cross-reference it between keywords, and then return a list of
content related to the search query back to your web browser. Hopefully, this is also fast,
but system time requirements are reliant on communication speeds and internet
connectivity. The time required by the system is interconnected to other systems that
supply the software data and thus impacts the time expectations of a user. When an HCI
designer considers time-on-task, they should consider the entire software and technology
system in order to deliver the best user experience.

The holy trinity (mirepoix) of HCI
HCI skills are linked to these three factors, and we will be using them throughout our
process in growing our HCI skills. If you like to cook, you can think of
usability/accessibility/time-on-task like the mirepoix of HCI. Mirepoix (https:/ ​/​www.
marthastewart.​com/ ​268585/ ​mirepoix), the holy trinity of cooking, is the combination of
carrots, onions, and celery, for those you that don't know your French cuisine. The mirepoix
of cooking is translatable to the mirepoix of HCI:

https://www.marthastewart.com/268585/mirepoix
https://www.marthastewart.com/268585/mirepoix
https://www.marthastewart.com/268585/mirepoix
https://www.marthastewart.com/268585/mirepoix
https://www.marthastewart.com/268585/mirepoix
https://www.marthastewart.com/268585/mirepoix
https://www.marthastewart.com/268585/mirepoix
https://www.marthastewart.com/268585/mirepoix
https://www.marthastewart.com/268585/mirepoix
https://www.marthastewart.com/268585/mirepoix
https://www.marthastewart.com/268585/mirepoix
https://www.marthastewart.com/268585/mirepoix

Human-Centered Design Principles Chapter 2

[39]

A wide variety of dishes, stocks, soups, stews, and sauces use the combination of these
three ingredients for their flavor base. Usability/accessibility/time-on-task is also at the core
of all HCI solutions and, like mirepoix, make all sorts of user interfaces, products, services,
websites, and software better.

Note: HCI and cooking conceptually have a lot in common —they both
combine a lot of different skills to create experiences and treat users with
dignity. I will be using the chef analogy throughout this book, so if you
are reading this before eating, be warned!

The ability to use and improve your root HCI skills is essential as all the professions that
stem from HCI hold these skills necessary. The occupations that utilize HCI skills when
designing and building computer technology are multidisciplinary. The explosion of
technology systems, the internet, and application services has resulted in tons of demand
for people who can execute software and web solutions.

Human-Centered Design Principles Chapter 2

[40]

Some HCI professions
It is required that those working in professions that use HCI skills are experts in
usability/accessibility/time-on-task; otherwise, they would be producing solutions that are
not used by their users. The HCI profession opportunities that stem from HCI skills include
the following:

This can be further explained with the following list:

User experience designer (my background): Research and design products and
services using a design process that places user satisfaction with a product at the
center. A UX designer improves the end-to-end experience of a product by
considering the usability, accessibility, and desirability of a solution. Includes
other user experience professions, such as service design, learning experience,
user-centered research, user strategy, UX writing, and so on.
User interface designer (designer/frontend engineering): Design and invent
user interfaces for software, machines, and digital products. The goal of user
interface design is to make the user's interaction as efficient and straightforward
as possible, in terms of accomplishing user goals within an HCD. Includes other
user interface professions, such as visual design, graphic design, content strategy,
UI copywriting, branding, and so on.

Human-Centered Design Principles Chapter 2

[41]

Information architect: Design and research structural information solutions.
Utilizing the art and science of organizing and labeling information
content. Information architecture applies architecture design principles to the
structure, logic, and content of our digital landscape to support usability and
findability. Includes other information architecture professions, such as system
architecture, information strategy, information security analyst, and so on.
Interaction designer: Design and invent interactive digital products,
environments, and services through the consideration of human behavior,
environments, and technology. Interaction design applies a broader
consideration, exploring how a user might interact, including human-to-human
interaction as well as HCI. Includes other interaction designer professions, such
as prototyper, interaction strategy, sociology, psychology, and so on.
Human factors/usability engineering: Research and design software using
psychological and physiological principles of engineering. The goal of human
factors is to reduce human error, increase productivity, and enhance safety and
comfort, with a specific focus on the interaction between the human and the
thing of interest. Includes other human factors/usability professions, such as
ethnography, anthropology, material science, architecture, and so on.
Computer science engineering: Design and code as they apply the principles
of software engineering to computer software. Includes other computer science
professions, such as network administer, SEO specialist, information
technologist, computer network architect, and so on.
Artificial intelligence engineering: Use the advances in artificial intelligence
programming systems to design human-inspired artificial intelligence software
from cognitive and emotional intelligence and understanding human emotions
into software systems. Includes other artificial intelligence engineering
professions, such as machine learning specialists, language/semiotic, data
scientists, business intelligence developers, and so on.
Web designers/developers
(frontend/backend/applications): A programmer who specializes in the
development of internet software solutions using a client-server model. The
applications typically use HTML/CSS and JavaScript. Includes other developer
professions, such as webmaster, frontend (FE) development, backend (BE)
development, full-stack developer, solutions architect, and so on.

Of course, these are many more roles, and some that have not yet been invented that will
continue to rely on the HCI skillset to address the needs of a rapidly changing technological
world.

Human-Centered Design Principles Chapter 2

[42]

Any UX designer/HCI designer/or product designer must read The Design
of Everyday Things by Don Norman:

https://www.amazon.com/Design-Everyday-Things-Donald-Norman/dp/1
452654123

At this point, you may not know where in the HCI sandbox you fall, and that is okay. I
know many professionals that are uncomfortable with labeling themselves as well. They
possess the HCI ethos but at the same time, don't want to get pigeonholed. If you are brand
new to HCI, this is an excellent opportunity for you to consume all the HCI skills equally
and start to identify what fits you best. If you already have some HCI experience, reviewing
and adding to your skills is equally important and might help you deeper identify which
profession in HCI you should be focusing on. During the process of this book, if you have a
unique aptitude for a specific skill or activity of the HCI design process, make a personal
note, as that helps drive your future learning, and gives you an idea of which HCI topics
you would like to pursue deeper. Before we move on, let's do some self-reflection.

Challenge 6 – Profession of interest
Setup:

Get a sheet of paper or create a Google doc.

Part 1: Professional interest:

Write down the profession(s) you are most interested in.1.
Write down the profession(s) you are least interested in.2.

Part 2: Answer why:

Write down why you are interested or not interested in these HCI professions.

Questions can be revisited and should be repeated over time.

Because of the large number of professions in HCI, there is a lot of ground to cover, and
even more to consume to be knowledgeable in HCI, and knowing what resonates with you
is vital for future decisions.

https://www.amazon.com/Design-Everyday-Things-Donald-Norman/dp/1452654123
https://www.amazon.com/Design-Everyday-Things-Donald-Norman/dp/1452654123

Human-Centered Design Principles Chapter 2

[43]

HCI is the study of how humans interface with computers. Computers have gotten more
sophisticated, smaller, faster, and much more powerful over time, which is part of the
reason why HCI and professionals (such as yourself) are trying to grasp, understand, and
hopefully design better. In the past, HCI focused on the desktop computer and the
interaction paradigm of the mouse and keyboard. Other paradigms exist and will be
discussed throughout this book.

The reality is that we have all used software that is frustrating, encountered a web page
where we couldn't complete a task, or used an application that made you say out loud
"Why does it work like this?! No?! Is that just me?". As the author, I am relying on the fact
that a big part of why you have picked up this book is because you too have found yourself
in this position, and now you want to do something about it.

Challenge 7 – Software naming and shaming
Setup:

Create a new Google Doc.

Part 1: Bad software experiences:

Write down any software experience that was memorably bad. 1.
What was the last interface that annoyed you?2.
Why was it so bad, and how did it make you feel?3.

Part 2: Share the bad software experience:

Share your bad memories with friends, colleagues, or on social media.

I believe we cannot fix terrible interfaces until we name and shame as
many of them as we can. If you want to share yours with me, add yours to
Twitter and tag me @cbecker.

Recognizing that the world is not perfect and the computer is not complete, is precisely
where you should be. You have identified a problem like a teenager with a pimple on their
nose, and it is less important to point out the problem and more important to go about
cleaning up the factors that led to the problem in the first place.

Human-Centered Design Principles Chapter 2

[44]

At its core, we use our understanding of computers, design, and interaction to solve human
problems first. The H comes first for a reason. Designing solutions for human beings is at
the center of all HCI thinking, and we want to design for everyone the best we can.
Humans want usable solutions (usability), and we want as many people as possible to use
our solutions (accessibility) so that they can accomplish their tasks (time-on-task) and
hopefully repeat the process and share its value with more and more users. We are
repeating the cycle and value for HCI designers to solve software solutions.

The process starts with understanding humans, and a big question to ask is "What do users
(humans) need?".

Human needs come first. This is an essential ethos in HCI and HCD. Our ability to relate
why a computer can help a user with their needs is connected deeply with understanding
their needs first. Users are our primary responsibility, and we want to make sure we know
them deeply before relying on the computer to solve their problems. To give us a starting
place for thinking about users' needs, let's document some needs to start.

Challenge 8 – Human needs identification table
Setup:

Create a Google doc with a table for listing human needs.

Part 1: Human needs:

Set a timer for 10 mins.1.
Write down as many human needs you can think of.2.

Part 2: Human needs from the computer:

Set a timer for 5 mins.1.
Write down as many human needs from a computer. 2.

Human-Centered Design Principles Chapter 2

[45]

An example of what your human needs table might look like is as follows:

Part 1:
Make a list of
human (user)
needs
(write down a
many needs as
you can).

• (list needs) • (list needs)

Part 2:
List human
needs from a
computer.

• (list (user) needs) > • (list (user) needs)

Use Google Sheets to make a quick list.

Some human needs are enormous—for example, the need to be loved. Technology cannot
necessarily solve this user's need. I'm sorry to let you know, but your smartphone does not
love you back; however, it does assist in users communicating and transmitting messages
that convey love. Love is a human quality, and when software developers consider the
user's needs and understand that software is about connecting one person to another, then
the ability to convey emotion is an essential feature. The connection that phones make with
others using the software it controls places more emphasis on the software to be usable,
useful, delightful, and beloved because it is being relied on by its users to communicate
their emotions. Because the use of these devices helps users express emotions, its result in
users personifying glass and aluminum to say things such as "I love my phone" is nothing
short of remarkable. Making it highly usable and accessible, and tasks for sending emotions
quickly and easily plays an essential role in this emotional transfer. Done? Great!
Congratulations, you are on your way to focusing your human needs barometer.

Throughout this book, we are going to grow your ability to sniff out users' needs and
ultimately find ways to meet them with a software interface. I hope that you captured
many more user needs than the 20 slots provided, and if you made a Google sheet, you
could continue to add to them. There are thousands of user needs. As you can imagine, not
all needs are immediately solvable through computer technology; for example, the human
need to transport from point A to point B through teleportation. Teleportation is not yet a
viable technology, although it would be cool.

Human-Centered Design Principles Chapter 2

[46]

Users still need to get from point A to point B, and there is a technology that exists that is
designed to assist in solving that need—for example, Google Maps. Many users are
unaware of when they are interacting with a usable and accessible software solution but
will say things such as "I can't leave the house without my phone" or "I love my phone."
Relying on a software solution over time creates computer love:

We will discuss user needs in greater depth; however, the vast landscape of user needs is
inherently dynamic. The needs of today are not necessarily the needs of tomorrow, which is
the opportunity we have as HCI designers. HCI is uniquely adept at solving problems
within these changing user needs. Our growing knowledge of computers and their impact
on users is made possible because we can ask:

How can a computer help solve this user (human) need?

We start by understanding that humans design computers. It is not an alien technology
gifted from a far-off world. We made it, and we can remake it when and if we want.
Computers and the internet, a network of interconnected computers, operate in the service
of human needs. The creation of software interfaces is the expression of how technology
can help solve users' needs.

For example, email. Mail has existed as a communication standard for millennia. In Greece,
Pheidippides, a Greek soldier, ran between Marathon and Athens (40 kilometers) to deliver
a message (which very well could have been the first letter delivery) of the defeat of Persian
foe at the Battle of Marathon. Tragically, he died from exhaustion. This is the modern-day
story and justification for marathon races, but at its core, humans need to communicate.

Human-Centered Design Principles Chapter 2

[47]

Whether it be Pheidippides with an announcement of "νικῶμεν!" ("Hail, we are the
winner!"), to papyrus scrolls, to parchment decrees, to letters from the wild, wild west, to
modern-day Instagram Stories, the through-line is that human beings have always invented
ways to communicate more effectively. Email became a dominant driver for introducing
consumers to a new way to communicate: the internet. Email used the efficiency of
computer networks to advance how we communicate. It fundamentally changed how
businesses and computer users operate.

Email did not replace the role of handwritten letters, although it may have diminished its
prominence in users' needs to communicate. Email and its many iterations are the
extensions of humans' need to talk. Email as a solution for communication through the
internet is also a compelling case as its ability to be widely adopted by users and
corporations. Its mass appeal has also spawned a whole new set of problems. An email is
not a perfected communication modality, and it is just another version propped up through
technology and advanced through software. The ease of use and convenience of email has
lead to its overuse.

Users are regularly over-communicated with through email. We had to invent terms for
unwanted email: spam. Spam is often a legal term used to describe an electronic
promotional message sent to a consumer without the consumer's prior request or
consent. Spam makes up a large percentage of all emails and is frankly annoying (https:/ ​/
www.​spamlaws.​com/ ​spam- ​stats. ​html). This is a function of how the system is designed.
Spam email is made possible because computers can automate email messages and
propagate them across billions of email addresses. HCI has had deep hooks into
understanding the power of technical communication solutions and how it impacts the
speed and efficiency of how we keep in touch. As spam increases, so does the inability of
our email software to handle the sheer volume of communications. The nuisance of
unwanted email has resulted in many different iterations and software solutions, from
Gmail, to Apple Mail, to Microsoft Outlook, and others. The reality is that the problems
emails solved created a whole set of new issues that were hard to anticipate.

These new problems are linked with and multiplied by the volume they make a user
capable of. Office work is not necessarily about email, but the pure dominance of the
communication software has resulted in workers being conditioned to consider email
"work." Email is one of the many technologies that require HCI professionals; with them, it
wouldn't exist, and it could potentially be an even worse experience. I am not suggesting
email is a perfect experience by any means, but it has gotten better over time because of the
diligent work of others.

https://www.spamlaws.com/spam-stats.html
https://www.spamlaws.com/spam-stats.html
https://www.spamlaws.com/spam-stats.html
https://www.spamlaws.com/spam-stats.html
https://www.spamlaws.com/spam-stats.html
https://www.spamlaws.com/spam-stats.html
https://www.spamlaws.com/spam-stats.html
https://www.spamlaws.com/spam-stats.html
https://www.spamlaws.com/spam-stats.html
https://www.spamlaws.com/spam-stats.html
https://www.spamlaws.com/spam-stats.html
https://www.spamlaws.com/spam-stats.html
https://www.spamlaws.com/spam-stats.html
https://www.spamlaws.com/spam-stats.html

Human-Centered Design Principles Chapter 2

[48]

The success of email is the outcome of software designers thinking deeply about what users
wanted from their email communications. In 2020, it has never been easier to write a
sufficient email. Software such as Gmail will actively help you write an email as you type,
applying AI learning algorithms and language processing to complete common email
sentences. I am sure that at this very moment, talented designers and technologists are
dreaming up ways to eliminate writing an email at all. You will just have to think about
writing an email and "poof," an email will be sent. We will invent new technologies to
address the old, and the implications of these ideas will be discussed through an HCI lens.
Will a mind-reading email tool replace email? NO! Just as email didn't eliminate writing
letters; however, there will be many other considerations, and the skills we will build in
HCI will prepare you for inventing, designing, and implementing these new technologies.

The reason HCI can address any new technology is fundamentally linked to the idea that it
is a tool, or, more accurately, a tool aggregator. Computers may have been created as a tool
for counting, and now you can run hundreds of programs for executing countless tools. The
computer as a tool has shaped our world profoundly, and not just through email. Let's
discuss a case where software has shaped us.

Case 1 – the crosswalk
One of the best skills an HCI designer should continue to grow is their ability to observe
humans not only in their environments and how they behave but also how they use
technology. Humans operate strangely and are not always predictable. We know this
because we observe uncommon behavior and unique patterns. As an HCI designer, your
ability to recognize and observe patterns in humans requires a lot of practice; therefore, let's
practice observing with the next challenge.

Challenge 9 – Observing humans and technology
Setup:

Create a Google doc or get a sheet of paper to document your observations.1.
Create a table with the following headings:2.

Total number observed/Total number observed on a computer/smartphone.
What were they doing?
What did you learn about your users?

Human-Centered Design Principles Chapter 2

[49]

Part 1: Intersection observation:

Go to an intersection in your town or city, preferably where a lot of people are walking1.
across the street.
Get out a notepad and set a timer for 10 mins.2.
Count how many people you see using a computer/smartphone as they cross the street:3.
Tally the total number of people you observe in 10 mins.
Tally the number of people on their phones.
Take notes on those that were using their phones.
What did you observe them do?

Part 2: Observation documentation:

I recommend taking photographs, video recordings, and notes on your observations to
review later.

Try and blend in so that people using the crosswalk don't see you
documenting them.

Is it safe to cross the street while using your smartphone? NO! Was everyone using their
phones for critical tasks? NO! Have humans quickly been shaped by their technology that
they increase their own risk? YES, absolutely! Our tools are continually developing us. This
is both a scary concept as well as an excellent opportunity. How a smartphone is shaping its
users is entirely unknown and being studied by researchers far more qualified than myself.
However, the skill of observing humans is essential not only to identify user needs but also
as a feedback loop into how our computer technology impacts our users' behaviors. The
truth about computers is that they are learned and socially mediated, and therefore, they
can be unlearned or retrained.

I have a young child who is currently younger than 1 year old, and he is learning to control
his body by practicing standing up, moving his arms, and grabbing things. He is learning.
He watches me and my wife for cues and starts to mimic our behavior. Everything a human
being learns is done through experience. Everything is learned. Humans and their use of
computers are also in the constant learning feedback loop. We are using a smartphone on a
crosswalk, although not advisable, because we observe others do it successfully and then
modify our social behavior based on those observed rules. Will my child use a smartphone
on a crosswalk? Hopefully not, but unless there is training or more learning built into
smartphones, it will be a hard behavior to retrain.

Human-Centered Design Principles Chapter 2

[50]

How software shapes its users
The challenge in how a tool shapes humans continues to return to a user-centered
approach: does the tool meet user needs first? Identifying how a tool is useful will help
articulate why it was created in the first place. However, knowing that our users are
malleable and shapable needs to be considered with great care. HCI skills will allow you to
gain insight into how computer tools shape us and how we can ultimately shape computer
software so that it hopefully doesn't damage us. It is a constant dance, and the reason we
want skilled HCI practitioners building these technologies is that we need to trust the
people who design our software. We need to know that technology has our best intentions
in mind and at their core, they are human-centered.

Software tools are dominant in our culture and need to be taken seriously, which is the goal
of HCI. We do know that human beings are highly habitual creatures. Habits drive
behavior, and behavior is reinforced through a software interface. We will discuss software
habits more deeply as we get into understanding our users. As technology changes, so do
the habits. Take your observation challenge of observing users cross the street. Before the
smartphone, I am sure you could observe humans do other things while crossing the street.
Back in the day, I am sure people were reading the newspaper, using their Sony Walkman,
or playing with a yo-yo as they crossed the road. The fact is that the smartphone is just a
catalyst in occupying existing human behaviors. Our ability to tap into these behaviors as
well as train our users to learn our interfaces can impact their lives for the better.

A valuable part of the HCI skills associated with this thinking is that we can be both
reactive and proactive when it comes to technology. Technology moves fast, and we have
to react to new interfaces, modalities, services, and so on. As practitioners, we also have
agency over the creation process and the ability to invent new technology, new software
interfaces, and new services. The HCI designer's balancing act occurs between the past and
the future:

Human-Centered Design Principles Chapter 2

[51]

The balancing act we play is learning enough about how humans use existing technology to
anticipate the future. At the core of this space between what is happening now with
technology and what is happening in the future are some truths:

Humans (users) need interfaces to be usable.
Humans (users) want to have access at all times.
Humans (users) learn everything through experience.

For example, the on and off button is an interface that allows a user to control a device. The
interface is a byproduct of users' need to control technology. A computer, for example, has
an on and off button because it is operated through electricity. The power runs the
hardware and produces a visual representation of the data that is stored within the
mechanical memory of the computer as binary code, as we discussed earlier. On early
computers, on and off were represented by 0 and 1—the binary relationship where a 0 is off
and 1 is on:

Human-Centered Design Principles Chapter 2

[52]

These graphic shapes were also designed in our products and became interface buttons.
Over time, the 0 and 1 individual symbols were combined to create the power icon
interface. The combined shapes got more sophisticated. They then used LED lights to help
the user understand when the computer was on or off, represented by the power icon
displaying visual feedback:

Without electricity or battery power, the on and off button is an unnecessary interface. As
computers become omnipresent in our world (ubiquitous computing), the prevalence of a
usable on and off button interface has diminished. Many of our modern computers and
phones make it downright complicated to turn them off. This is not arbitrary as the users'
need to turn off their technology is not required. We can argue the human value of this, but
that will come later.

The dominance of computer technology in our modern lives is because we have increased
our need for it to operate. We have intertwined our human needs with technology. We use
technology to get around, find food, communicate, earn money, engage in trade, have fun,
be entertained, read, and even lose or gain weight, and more. If we are going to continue,
we might as well work hard to make sure our solutions are usable at a minimum. However,
the goal is not to solve the minimum of human needs with technology, but rather to delight
our users in how we have deeply considered their needs.

How HCI is standing on the shoulders of
giants
I will be quoting many HCI designers and other technology thought leaders, as well as
making reading suggestions. There is no way for me to be comprehensive about HCI; the
field is too big. Many before me have done an exceptional job, and it would be arrogant of
me to attempt to relate or even regurgitate their ideas. I recommend making a list of
thinkers along the way and following these thought leaders on Twitter. Many of them
contribute to the community, and reading what they have to say will not only inform your
work but also help you relate to others around you.

Human-Centered Design Principles Chapter 2

[53]

I highly recommend reading the following books:

The Design of Everyday Things by Donald Norman: Every HCI designer should have
read this book as it lays out the origins of UX and discusses thinking about
design as a system (https:/ ​/​www.​amazon. ​com/ ​Design- ​Everyday- ​Things-
Revised- ​Expanded/ ​dp/ ​0465050654).
Don't Make Me Think by Steve Krug: If you plan to work on digital interfaces, this
is essential for not making mistakes (https:/ ​/​www. ​amazon. ​com/ ​Dont- ​Make-
Think-​Revisited- ​Usability/ ​dp/​0321965515/ ​ref= ​sr_ ​1_​1?​dchild= ​1​keywords=
don%27t+make+me+think ​qid= ​1589496009 ​s= ​books ​sr=​1- ​1).
About Face: The Essentials of Interaction Design by Alan Cooper: This book sets the
gold standard for learning interaction design concepts (https:/ ​/​www. ​amazon.
com/​About- ​Face- ​Essentials- ​Interaction- ​Design/ ​dp/ ​1118766571/ ​ref= ​sr_​1_ ​1?
dchild=​1 ​keywords= ​About+Face%3A+The+essential+of+Interaction+Design ​qid=
1589496046 ​s= ​books ​sr= ​1- ​1).
Designing for the Digital Age by Kim Goodwin: A fantastic reference book for just
about every digital deliverable throughout the software design process (https:/ ​/
www.​amazon. ​com/ ​Designing- ​Digital- ​Age- ​Human- ​Centered- ​Products/ ​dp/
0470229101/ ​ref= ​sr_ ​1_​2? ​dchild= ​1​keywords= ​Designing+for+the+Digital+Age
qid=​1589496074 ​s= ​books ​sr= ​1- ​2).
Ruined by Design by Mike Monteiro: A more philosophical conversation with
designers about the role we play, the decisions we make, and the world we want
to exist in (https:/ ​/​www. ​amazon. ​com/ ​Ruined- ​Design- ​Designers- ​Destroyed-
World/​dp/ ​1090532083/ ​ref= ​sr_ ​1_​1?​dchild= ​1​keywords= ​Ruined+by+Design ​qid=
1589496103 ​s= ​books ​sr= ​1- ​1).

Computers and technology are intimately intertwined with our lives. Because of this,
paying attention to pop culture, movies, documentaries, and TV can make you a better HCI
student and a better designer:

The Lo and Behold documentary by Werner Herzog:
An excellent documentary about the internet, software, and the way the
world has changed. Werner Herzog is both fun to listen to and has
some great insights.

Objectified by Gary Hustwit (Twitter: @gary_hustwit):
An insightful documentary about product design and the things that
we use in our world.

Design + Thinking by Mu-Ming Tsai:
Design Thinking has been popularized by IDEO and distributed across
the design industry to be used as a process at IBM down to design.

https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Design-Everyday-Things-Revised-Expanded/dp/0465050654
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/ref=sr_1_1?dchild=1&keywords=don%27t+make+me+think&qid=1589496009&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/About-Face-Essentials-Interaction-Design/dp/1118766571/ref=sr_1_1?dchild=1&keywords=About+Face%3A+The+essential+of+Interaction+Design&qid=1589496046&s=books&sr=1-1
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Designing-Digital-Age-Human-Centered-Products/dp/0470229101/ref=sr_1_2?dchild=1&keywords=Designing+for+the+Digital+Age&qid=1589496074&s=books&sr=1-2
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1
https://www.amazon.com/Ruined-Design-Designers-Destroyed-World/dp/1090532083/ref=sr_1_1?dchild=1&keywords=Ruined+by+Design&qid=1589496103&s=books&sr=1-1

Human-Centered Design Principles Chapter 2

[54]

Her by Spike Jonze:
An authentic look at humanity and a not-too-distant future where
computers and artificial intelligence are intertwined.

Steve Jobs by Danny Boyle:
A unique look at the founder of Apple post mortem.

HCI is a broad field with lots of movers and shakers in each specialty. As we continue to
grow our HCI skills, there are several thought leaders that, as an HCI practitioner, you
should be aware of. This list is by no means exhaustive but should give you the right
starting place to continue to explore. I highly recommend you highlight any names you
don't recognize and do some research along the way. This book is an amalgamation of all of
these thinkers' thoughts, and I am sure that some have been left out. The reality is that HCI
covers a lot of different professions, which is both a good thing and a hard thing to review:

Computer science is the study of computers and computational systems:

Alan Turing: The founder of the artificial intelligence field
Steve Wozniak: The Apple co-founder (Twitter: @stevewoz)
Mark Weiser, XeroxPARC: The inventor of ubiquitous computing (ubi-comp)
Alan Kay: Pioneer in object-oriented programming
Bill Gates: Microsoft founder and pioneer in BASIC programming (Twitter:
@BillGates)

Computer engineering involves the design and development of computer systems and
sophisticated digital logic devices:

Guido van Rossum: Python inventor (Twitter: @gvanrossum)
Ryan Dahl: Node.js inventor (Twitter: @ry)
Jordan Walke: React inventor (Twitter: @jordwalke)
Tim Berners Lee: The inventor of the internet (HTTP and HMTL)
(Twitter: @timberners_lee)
Larry Page: The founder of Google and search indexing (Twitter: @Iarrypage)

Design/branding is all about creating a brand identity and all the visual communication
elements that allow a brand to exist in the world. Branding is the larger ethos that allows all
of a company's services, products, interfaces, and marking materials to be cohesive:

Jonathan Ive: Industrial designer/product lead at Apple
Dieter Rams: Product designer at BRAUN
Tim Brown: Former IDEO CEO and author (Twitter: @tceb62)

Human-Centered Design Principles Chapter 2

[55]

Debbie Millman: President of Sterling Brands (Twitter: @debbiemillman)
Stefan Sagmeister: Graphic designer (Twitter: @sagmeisterwalsh)

The user interface is the point of HCI and communication in a device. It is the study and
design of how humans and machines interact:

Jef Raskin: Macintosh project founder; provided a vision of a computer whose
legacy would be low-cost and high-utility, and have groundbreaking friendliness
Bill Moggridge: Industrial designer and inventor of the first laptop. IDEO
founder, father of interaction design
Luke Wroblewski: Currently a product director at Google and author on UX/UI
(Twitter: @lukeW)
Wilson Miner: Product designer, currently at Strip, helped create the
Django web framework (Twitter: @wilsonminer)
Rachel Been: Currently a designer, creative director, and art director at Google on
the material design team (Twitter: @rachelbeen)

Language/semiotics is an investigation into how meaning is created and how meaning is
communicated. Semiotics is a crucial tool to ensure the intended meaning of iconography
and other interactive concepts:

Charles W. Morris: Wrote Foundations of the Theory of Signs and defined semiotics
as grouped into three branches:

Semantics
Syntactics/syntax
Pragmatics

The Belgian Mu group: A collective of semioticians who wrote a series of books
and developed a theoretical approach toward visual rhetoric and visual
semiotics that involved classifying images according to their differences from
plastic and iconic norms.

Psychology is the scientific study of the mind and its control of behavior:

Lillian Evelyn Moller Gilbreth: American psychologist, industrial engineer,
consultant, and educator
Paul Fitts: Came up with Fitts' law, a predictive model of human movement
Fredric Bartlett: Pioneer in cognitive psychology
Donald Broadbent: Developed cognitive psychology

Human-Centered Design Principles Chapter 2

[56]

Information architecture is the design of information systems and environments, applying
lessons and architectural practices to the field of data:

 Richard Saul Wurman: Inventor of TED talks and advocate for LATCH (Twitter:
@rswurman)
Ted Nelsen: Information technology pioneer, inventor of the terms hypertext and
hypermedia (Twitter: @TheTedNelson)
Peter Pirolli, Xerox PARC: Inventor of the informavore concept
Peter Morville: Author of Information Architecture and The World Wide
Web (Twitter: @morville)
Christina Wodtke: Information architecture specialist and Stanford lecturer
(Twitter: @cwodtke)

Ethnography and sociology are the systematic studies of people and cultures:

Sudhir Venkatesh: Urban ethnographer at Facebook (Twitter: @avsudhir)
Barrie Thorne: Professor of Gender and women studies at UC Berkeley
Paul Willis: Princeton University – Sociology and Cultural Studies
Phil Francis Carspecken: Indiana University – Critical Theory
Marshal McLuhan: Author of The Medium is the Message, media theorist, and
philosopher

Human factors and ergonomics is the scientific discipline of researching and exploring the
understanding of interactions among humans and other elements of a system:

Stuart Card, Xerox PARC: Looks at human factors into HCI, author of The
Psychology of HCI (https:/ ​/ ​g.​co/ ​kgs/ ​QYPRi4)
Frederick Winslow Taylor: American mechanical engineer who sought to
improve industrial efficiency
Neville A Stanton: Fellow at the Institute of Ergonomics and Human Factors
W. E. Hick: Looks at experimental psychology and ergonomics
Dr. M. M. Ayoub: Pioneer in ergonomics and material handling

User experience is the design of products or services, considering a person's emotions and
attitudes about using a particular product, system, or service:

Donald Norman: The UX godfather and author of The Design of Everyday
Things (Twitter: @jnd1er)
Steve Krug: UX author of many books, including Don't Make Me Think (Twitter:
@skrug)

https://g.co/kgs/QYPRi4
https://g.co/kgs/QYPRi4
https://g.co/kgs/QYPRi4
https://g.co/kgs/QYPRi4
https://g.co/kgs/QYPRi4
https://g.co/kgs/QYPRi4
https://g.co/kgs/QYPRi4
https://g.co/kgs/QYPRi4
https://g.co/kgs/QYPRi4
https://g.co/kgs/QYPRi4
https://g.co/kgs/QYPRi4

Human-Centered Design Principles Chapter 2

[57]

Alan Cooper: UX author and founder of Cooper Design (Twitter:
@MrAlanCooper)
Kim Goodwin: UX consultant and author of Designing for the Digital Age (Twitter:
@kimgoodwin)
Jesse James Garrett: UX author and founder of the Adaptive Path strategy and
design consulting firm (Twitter: @jjg)

Design strategy/systems design is the overlap of the design process and business interest
between corporate strategy and design thinking. Corporate strategy is a method that
businesses use to identify, plan, and achieve objectives and goals, typically long-term goals:

Bill Buxton: Principal researcher at Microsoft Research. A pioneer in the HCI
field (Twitter: @wasbuxton)
Jarod Spool: The co-founder of Center Centre, one of the most knowledgeable
communicators on the subject of user experience (Twitter: @jmspool)
Aarron Walter: VP of Education at InVision (Twitter: @aarron)
Whitney Hess: UX strategist (Twitter: @WhitneyHess)
Nick Finck: UX educator (Twitter: @nickf)

There are many many more that I could recommend, but start here and expand outward.
Designing beloved software is very, very, very hard, so listening to those that have done it
successfully is essential. I am just one designer, and I have learned a lot from these people.
The reality is that the HCI field is too vast to be covered in one book or by one author. This
is an excellent thing as you have the opportunity to consume a lot more content than
just what this book has to offer. The role of any HCI practitioner is to continually learn, and
who better to learn from than seasoned designers and software engineers?

HCI principles are rooted in humans, technology,
culture, and data
Marshall McLuhan, a well-known Canadian philosopher and media theorist, is famous for
saying "The medium is the message," a phrase coined in his book Understanding Media: The
Extensions of Man, published in 1964. McLuhan discusses how the role of television
impacted culture. How we communicate, how we organize our homes, and how to tell
stories have all fundamentally been altered by television technology. It is not a stretch to
say that the computer and the internet have had an equally large impact on humankind.

Human-Centered Design Principles Chapter 2

[58]

The medium is the computer, and our role as an HCI designer is to distinguish and define
the message it produces, as well as identify how users fundamentally reorganize their lives
around its participation. The HCI designer role is sophisticated stuff and should not be
taken lightly. We have the potential to make software that can impact the world, and if we
care about humans, the technology they use, the culture they impact, and the hype it
ultimately creates, we can infuse HCI into every nook and cranny of the world.

User research – gathering data on humans
As we discussed at the beginning of this book, computers traffic in data with a 0 or a 1. The
origins of the computer are rooted in counting, and what makes working with computer
technology unique is that we can use that data record to feed back to our work. As HCI
designers, we will use lots of data to help in our decision making for our users. Data is a
constant cycle in the pursuit of gathering information through qualitative and quantitative
methods. We will dig much deeper into some of these methods, but the essence of
collecting data is so that we can understand humans and the systems they use. Before we
create any solution, HCI looks for opportunities and user needs from data. We then create a
solution and use our computer systems to feedback data on how the solution is working.
The data cycle created by computers and HCI designers improves our computer software
solutions:

Data helps us learn about humans. Humans are complex. We do not think or use logic in
the same way that a computer is programmed, and because of this discrepancy, HCI
designers have a lot of work on their plates to figure out what we know, what we think we
know, what we don't know, and what we want to know.

Human-Centered Design Principles Chapter 2

[59]

There has been a lot of data about humans collected over time, and HCI's goal is using data
to make decisions. Allowing data to feed back into our software solutions is about
distinguishing the signal from the noise. Like a radio tuner trying to find the most definite
signal, HCI tunes our skills to apply the most apparent solutions. Data helps us, and we
cultivate our data-gathering skills to build better, more useful software.

Software, like data, is accomplished over time. With time comes change, and our
technology documents this change. As technology changes us, we also need to change our
software, and this is a constant cycle that we will keep discussing at length.

Iterative solutions and agile development
As technology becomes embedded in our lives, humans come to expect it to be there and to
help solve their problems. The only way computers can adapt and disappear into our world
is through thinking of them as changeable. A computer is fundamentally an idea, and ideas
can be manifested into multiple implementations. As HCI designers, we can implement
technology through creating various iterations. Modern software design follows an
iterative design cycle:

Iterative design is a methodology based on a cyclic process of prototyping (design and
build), testing, analyzing, and refining a product, software, or technology over time. As we
discussed, our users are always changing, and this makes solving their problems hard to
pin down. Luckily, computer software is programmable code, and code can be updated
dynamically. In the past, software was only iterated on physical hard drives, floppy disks,
or compact disks. However, with the internet and modern software platforms such as
GitHub and application platforms such as Apply (https:/ ​/​www. ​applyds. ​com/ ​the-
platform), or Google Android, we can update software quickly.

https://www.applyds.com/the-platform
https://www.applyds.com/the-platform
https://www.applyds.com/the-platform
https://www.applyds.com/the-platform
https://www.applyds.com/the-platform
https://www.applyds.com/the-platform
https://www.applyds.com/the-platform
https://www.applyds.com/the-platform
https://www.applyds.com/the-platform
https://www.applyds.com/the-platform
https://www.applyds.com/the-platform
https://www.applyds.com/the-platform

Human-Centered Design Principles Chapter 2

[60]

If you have ever had an application on your phone update overnight or required a new
version to be downloaded, you have participated in iterative software design. The HCI
professionals that brought you those applications are continually refining, improving, and
hopefully making your software better for you. The iterative process is essential to
understanding HCI, and gathering data on how our software solutions are working for our
intended audience will help us as we iterate. We will be going into iterative methods much
deeper in this book, but understand that we don't have all the answers; we are making our
best guess and using all the available tools and data to create software that solves our users'
problems, but as we discussed earlier, users change. We learn to adapt and change our
software along with them through iterations, both big and small.

The core of this book is not about project management; however, the iterative design cycle
is built into software design through an agile methodology. The agile design cycle is a
product management process for producing quality software products:

Agile development is an approach to software design and development where
requirements and solutions evolve through a collaborative effort within a cross-functional
team. Agile development applies iterative design to its software solutions with the
customers (users) at the center of feedback and changes. The essence of agile development
is that it continuously improves a software product. There is no done! Software can and
should always be tested and iterated based on user feedback. There are many books on
how agile works in software development, but know that HCI is particularly aligned with
this process.

Human-Centered Design Principles Chapter 2

[61]

HCI wants to build and continue to improve human experiences with computers through
software that develops over time through iteration, which is why agile is a better process
for us. Iterative solutions with our users at the center allow us to understand we solved a
problem and will enable us to not rest on our laurels but continue to polish and refine our
solutions.

Summary
Throughout this chapter, we discussed how HCI applies to our lives and the bigger picture.
We looked at HCI as a field of study and the history of building systems by highly
accomplished professionals. We focused on the explosion of software made possible
through the introduction of the internet in 1990 and discussed that HCI is a by-product of a
lot of knowledge. The HCI foundations covered this chapter will have set you up to build
your own HCI ethos through learning not just from me but also from all the other HCI
giants that have come before us. The knowledge they have passed along has given HCI a
broad set of principles that continue to grow through user research and the endless amount
of software that can and will be created and improved through agile and iterative solutions.

HCI is a big field of study, and this chapter allowed us to start applying some new
knowledge and follow some other thinkers that make up HCI's deep past as well as its rich
and fertile future.

In the next chapter, we will focus on the origins of HCI and how software and software
development is an evolving process, along with some tools and methods for approaching
software solutions.

3
Interface Design Values

As a growing human-computer interaction (HCI) practitioner, you now get to share a set
of human values that bind all practitioners together in the execution of great software.
Hopefully, you are learning HCI to join this community of practitioners that care about the
community and want to improve the world through software. We only want you to join us
if you care about the things you might create.

Interacting with a computer requires lots of trust from your user. If you stand back from
software technology, software design can fundamentally impact our day-to-day lives in
both positive and negative ways. As you continue to grow your HCI skills, wrapping your
head around the bigger picture of how technology impacts society (your users) will
improve your ability to design solutions that address their needs. You will learn why HCI
designers are valuable for their human-centered perspectives within software
development.

In this chapter, you will be learning about the following topics:

Solving a problem with computer software
Using computer software to build software
Human-centered software origins
Design and development tools
Coding – markup syntax versus object-oriented syntax
Continually better software

Interface Design Values Chapter 3

[63]

Solving a problem with computer software
Software is connected along a large spectrum of possible solutions, from those that are not
so helpful to those that are very helpful to its users. The problem-solving spectrum has
given software design a lot of value in the world:

Software is a process, and at the heart of why we design and develop software is that it is
based on the opportunity to solve a problem. Problems, fortunately, are an endless stream.
Unfortunately, there are no finite solutions, as some problems have multiple answers.
Software design and development is one of the many ways to solve a human problem, and
as we use software to solve problems, we need to be aware of the role software and
computers can play in helping address and ultimately become a strong candidate for
helping to design solutions to those human problems.

Positive software example – the alarm
Software technology has been designed and created to carry out everyday tasks. Take
waking us up with an alarm. An alarm is a fairly simple application that has great benefits
for helping its users both get up on time and generate good waking habits. Waking up on
time allows users to get to work on time, get up early enough to bathe, or eat a nutritious
breakfast. The alarm can be scheduled and adjusted automatically for timezones or changes
in daylight saving time. The alarm is made habitual and with consistency in helping its user
wake up, it is trusted to do its job and thus creates trust from its user in the technology
itself.

Interface Design Values Chapter 3

[64]

Because a user can trust an alarm software to wake them up over and over again on time,
that trust translates into users trusting software to manage their bank account, keep their
house locked, or share legal documents overseas. As users allow software to infiltrate a
wider and wider set of experiences in their day-to-day lives, the ability of HCI designers to
maintain this valuable trust is essential and can be impacted by all the other software that
exists in the ecosystem. If all alarm applications malfunctioned tomorrow, the world would
be adversely impacted. I don't believe it would be catastrophic, but you bet there would be
some missed flights, traffic jams, or possibly some users that might lose their jobs due to
being late. The reality is that humans have come to trust, and thus become reliant on,
software to wake us up.

Negative software example – text messaging
Software technology that has been designed and created to do everyday tasks can also
create unintended consequences. Take text messaging as an example. This is a fairly simple
communication application that can have great benefits for helping users communicate
through short, typed messages, rather than using their voice or other forms. Text messaging
applications are not bad in all use cases, but when done in tandem with operating a vehicle,
it can have terrible consequences.

1 out of every 4 car accidents in the United States is caused by texting and
driving (https:/ ​/​www. ​edgarsnyder. ​com/ ​car- ​accident/ ​cause- ​of-
accident/ ​cell- ​phone/ ​cell-​phone- ​statistics. ​html).

The trust that we discussed in the positive example of the alarm clock application has an
effect on why users have their smartphones on them while driving. The relatively easy use
of text messaging apps, plus their size and the ability to be connected at all times, has lulled
users into trusting in their ability to text while they drive. The negative outcomes of that
software's trust can be deadly. Users trust their software technology more than their vehicle
technology, and in 2020, we are not limiting texting applications from working in cars but
rather adding more technology to cars that allow users to do more of this kind of behavior.
I imagine Elon Musk is a notorious text-and-driver, which is why he is adding so much
autonomous vehicle technology to his vehicles. If and when automobiles can drive
themselves, it is even more of a reinforcement in the trust we as users have bestowed on the
creators of the software.

https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html
https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html

Interface Design Values Chapter 3

[65]

The responsibility of software is vast, which is what makes it an exciting field to design for.
It is fundamentally a creative endeavor. Solving problems is exciting, and learning how the
software we design can be used in the service of solving problems is why millions of people
get up and diligently go about their work. A large piece that binds us all together is that we
are solving human problems, and to do that well, we need to value who we are designing
for. Let's discuss how we use tools to be more creative in our methods of solving human
problems.

Using computer software to build software
As we move deeper into creating software, one thing you will start to see is the multitude
of software and programming domains that exist in the services of building software. At its
core, software is computer programming code. There are thousands of programming
languages that have been created since the first programmable computer.

For the purposes of this discussion, we will focus on coding languages for the web, those
rooted in HyperText Mark-Up Language (HTML), Cascading Style Sheets (CSS), and
JavaScript (JS), which are the three foundational coding languages for producing billions of
web pages and web applications that populate the internet. The role and popularity of these
languages are quite remarkable; we all use the same code to produce web pages.

If you have tinkered around with programming or have some skill with designing for the
web, you will know that all computer code is a series of rules (syntax) written on computer
software that allows us to compile and execute the commands defined in our code. For the
web, HTML/CSS/JS is stored on a server (web address) delivered via an internet connection
(CDN) and visualized by an internet browser software (for example, Chrome) that compiles
the code and visualizes the web user interfaces based on how the pages are coded:

Interface Design Values Chapter 3

[66]

To design these web pages, we use text editor software to write and compile our code.
The origins of HTML was a markup language intended for writing research content at the
CERN research laboratory where Tim Berners-Lee and his colleagues worked. As the
internet exploded, so did the use of coding languages and the standardization that allows
us to create software via the web.

Text editors
Text editor computer programs edit plain text. Text editor software ranges from simple
programs such as Microsoft's Notepad to more complex versions, such as Macintosh's
Atom. Each software is designed to manipulate plain text as you write a coding language
syntax (HMTL, CSS, JS, or others). The text editor can then save coding files, such as .html,
.css, .js, and so on. The text editor software gets more complicated, which allows users
to write a multitude of coding languages as well as include extensions, spell checking,
debugging, and terminals control to speed up the process for the user who is writing
computer code. Writing computer code is a very specialized skill, and we use software
designed to help us code faster or make fewer mistakes. Trust me, it is easy to make
mistakes while coding. Computer software to help you write computer code is only as good
as the person wielding it. Like a novice sushi chef using a Japanese Ginsu knife, if you don't
have good knife skills, it is not recommended to pick up the sharpest knife as you will
probably cut yourself. If you are brand new to coding, stepping into software dedicated to
those that live and breathe code can be frustrating. I recommend starting with text editor
software tools that do not overwhelm you. Sublime or Visual Studio Code is the right
starting place. You can learn a lot about how code works from others, as well as with
practice.

Interface Design Values Chapter 3

[67]

Challenge 10 – Technology coding challenge
Setup:

Sign up for Codepen.io.1.
Go to https:/ ​/ ​codepen. ​io/ ​.2.
Create an account.3.
Explore web code syntax examples.4.

Part 1: Code with a text editor:

Download a text editor.
Recommended text editors are Sublime (https:/ ​/​www. ​sublimetext. ​com/ ​3) or Visual
Studio Code (https:/ ​/ ​code. ​visualstudio. ​com/ ​).

Use the software tutorials to get familiarized with unique coding features.

The reality is that HCI will traffic in code. You do not need to have a Ph.D. in computer
science; however, if you reject learning any code, you will be limited in your abilities to
solve problems. You had better be willing to get your hands dirty in computer software
such as text editors and learn about the possibilities and limations of code if you want to
build anything for your users. We will discuss software used for thinking about and
creating software interfaces much more, and over time, we will dig deeper into coding, so
find your favorite text editor. I challenge you to write some code or at least practice using
software to build software. Since we will be using software to build software, let's create a
foundation on how to use any software effectively in HCI.

Human-centered software origins
As we discussed, the computer's origins are rooted in solving human problems—for
example, doing mathematics. Much of software is linked with and obsessed with counting,
and whether it be social media likes, views of web pages, or how many photos you take a
day, we create software that helps users manage the things we create from our software.

The origins of designing computer software are intimately tied to caring about the people
who will use our solution in the first place. The role of HCI is birthed out of these human-
centered ideals. We hold that we can solve users' problems with technology, but first come
to understand what they need.

https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://www.sublimetext.com/3
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/

Interface Design Values Chapter 3

[68]

As Silicon Valley grew and software scaled into our world, the role of designing software
well also changed. The education of computer scientists, engineers, and designers came
into play as their skills are being used to execute software design. HCI is a reaction, a way
of improving the way we think about, evaluate, design, and deploy software.

HCI reflects the needs of users, and to do this well, it also has to reflect these skills in how it
is taught. For example—IDEO, the international design consulting firm responsible for
early innovations such as the Apple computer mouse—has helped educate the world about
human-centered design and design thinking. It developed a methodology for
communicating with their clients how they go about their design process. The design
thinking methodology was ultimately a process of education. IDEO recognized this, and its
founder, David Kelley, helped create The D-School in 2004 at Stanford (The Hasso Plattner
Institute of Design: https:/ ​/ ​dschool. ​stanford. ​edu/ ​).

Double Diamond design thinking is a design process that follows a human-centered
ethos—research > empathize > define > ideate > prototype > test > deploy—as shown here:

https://dschool.stanford.edu/
https://dschool.stanford.edu/
https://dschool.stanford.edu/
https://dschool.stanford.edu/
https://dschool.stanford.edu/
https://dschool.stanford.edu/
https://dschool.stanford.edu/
https://dschool.stanford.edu/
https://dschool.stanford.edu/
https://dschool.stanford.edu/

Interface Design Values Chapter 3

[69]

Caring about your users as you design software can be done in many ways, but applying
design thinking during the education of design has then influenced the way countless
software design firms go about their work. Arguably the grandfather of UX, Bill
Moggridge, a co-founder of IDEO and the industrial designer of the first laptop computer
(the Grid Compass), understood early on that a laptop computer would only be as good as
the software that ran the screen. Bill Moggridge helped pioneer the field of interaction
design and applied integrated human factors into the design of computer software and
hardware.

I recommend reading many of the books, articles, and points of view of
IDEO and its founders: Tom and David Kelley, Bill Moggridge, and Tim
Brown.

Without designers that showed caring about your user is essential in the software and
hardware design process, the computer could be a very different technology. Human-
centered design is like a bonfire that should never to go out. Without the older generation
of software designers, new generations of designers, and education, all keeping the human-
centered ideal alive, our technology could quickly stop serving our users first. Software
solutions have been contributed to by older generations, new generations, and education,
which all help keep HCI a burning-hot profession:

Solving problems is very hard, and if HCI doesn't hold our users as having paramount
importance, we will not be able to solve their problems with simple, elegant solutions. Now
that you understand some ideals that underpin HCI, let's discuss the variety of tools that
exist for design and development.

Interface Design Values Chapter 3

[70]

Design and development tools
There are thousands of computer programs all dedicated to solving unique user problems
through the computer. The role of tools in our world is connected to executing a specific
task. In the past, we defined a profession based on its tool usage. A miller milled grains
with stone tools, a baker made bread with the milled grain using ovens, and so on.
Technology also has specialized tools for the roles in the process.

There are two significant specializations in software design:

DESIGN: All the roles and tools that go into visualizing a software solution
CODE DEVELOPMENT: The functions and tools that go into coding the
software design

This is better represented using the following diagram:

Let's start with design. The design piece of software design has many roles and tools (tools
are always changing; as well as outlining some roles, this review will be a reflection of
some of the roles and some of the primary tools used in 2019). The roles have a more
extended standing than the software tools; however, specialized roles call for specialized
tools.

Interface Design Values Chapter 3

[71]

HCI design roles
Roles are unique as they also morph and change, so these are a reflection of the UX/UI/HCI
roles in the early 2020s. The following table covers a number of HCI roles and tools used in
the field (note: technology tools are always changing):

Role Title Tools
Mark
Interest
w/ (X)

Role Title Tools Mark Interest
w/ (X)

User
Researcher

Surveys, web/product
analytics, Excel, Tableau,
Adobe Design software,
and so on

Usability Analyst

Heuristics evaluation,
user testing (HotJar, Click
Testing, A/B Testing, and
so on), surveys,
web/product analytics,
and so on

Information
Architect

OmniGraffle, Microsoft
Visio, SmartDraw,
Mural.io,
PowerMapper, FlowMapp,
Mindmapping,
Adobe Design software,
and so on

Accessibility
Expert

Design
software, Excel, user
testing Software (HotJar,
Click Testing, A/B Testing,
and so on), web/product
analytics, and so on

Information
Designer

Framer.js, D3.js, Adobe
Design software, Excel, R-
coding, web/product
analytics, and so on

Search Engine
Optimization/Web
Analytics
Specialist

Web/product analytics,
Excel, and so on

Interaction
Designer

Sketch, Adobe Design
software (XD, Ae, Ps, and
Ai) InVision, Figma,
Axure, Principle, Framer,
and so on

Content Strategist

Sketch, Adobe Design
software (XD, Ai, and Ps),
InVision, Figma,
Axure, Principle for
Mac, Framer.js, and so on

User
Interface
Designer

Sketch, InVision, Adobe
Design software (XD, Ai,
and Ps) Figma, Axure,
Balsamic, and so on

Visual Designer

Sketch, Adobe Design
software (XD, Ai, and Ps),
InVision, Figma,
Axure, Principle for Mac,
Framer.js, and so on

Prototyper

Sketch, InVision, Framer,
Swift, React, Principle for
Mac, Adobe Design
software, web code,
Zeplin.io, Webflow,
Proto.io, Origami, and so
on

Technical
Copywriter

Design
software, Excel, user
testing software (HotJar,
Click Testing, A/B Testing,
and so on), web/product
analytics, InVision,
Zeplin.io., and so on

Interface Design Values Chapter 3

[72]

User
Experience
Designer

Web/product analytics,
Excel, OmniGraffle,
Sketch, Adobe Design
software, InVision, Figma,
Axure, Principle for
Mac, Framer, Mural.io,
and so on

Project Manager

Trello, Jira, Adobe Project
Manager, Excel, Gantt
Sheet,
Mural.io, web/product
analytics, and so on

Of course, there are a lot of tools used on the design side.

Review UX design tools at https:/ ​/​uxtools. ​co/​ and https:/ ​/ ​www.
prototypr. ​io/ ​tools.

Code, roles, and tools
The code part of software design has equally as many roles and tools/coding languages.
(Tools are always changing; as well as outlining some roles, this review will be a reflection
of some of the roles and some of the primary tools used in 2019.) The roles have a more
extended standing than the software tools; however, specialized roles call for specialized
tools:

Role Title Tools
Mark
Interest
with (x)

Role Title Tools
Mark
Interest
with (x)

Requirements
Analysis

Surveys, web/product
analytics, Excel,
GitHub, Jira, Google
Docs, and so on

System
Architect
Engineering

Text editor, web/product
analytics, Excel, GitHub,
Jira, Google Docs, and so on

Program
Developer

Text editor,
web/product
analytics, Excel,
Google Docs, GitHub,
Jira, Excel, AirTable,
NPM, Codepen.io,
TypeScript, Chrome
Dev Tool, and so on

Frontend
Software
Engineer

Text editor, web/product analytics,
Excel, Google Docs, GitHub,
Jira, Excel, AirTable, NPM,
Codepen.io, TypeScript, Chrome Dev
Tool, and so on

https://uxtools.co/
https://uxtools.co/
https://uxtools.co/
https://uxtools.co/
https://uxtools.co/
https://uxtools.co/
https://uxtools.co/
https://uxtools.co/
https://www.prototypr.io/tools
https://www.prototypr.io/tools
https://www.prototypr.io/tools
https://www.prototypr.io/tools
https://www.prototypr.io/tools
https://www.prototypr.io/tools
https://www.prototypr.io/tools
https://www.prototypr.io/tools
https://www.prototypr.io/tools
https://www.prototypr.io/tools

Interface Design Values Chapter 3

[73]

Software
Process
Engineer

Text editor,
web/product
analytics, Excel,
Google Docs, GitHub,
Jira, Excel, AirTable,
NPM, Codepen.io,
TypeScript, Chrome
Dev Tool, and so on

Test
Engineering

Text editor, web/product analytics,
Excel, Google Docs, GitHub, Jira, and
so on

Backend
Software
Engineer

Text editor (MySQL,
Ruby, PHP, Java, Python,
and so on), web/product
analytics, Excel, AirTable,
GitHub, Jira, NPM,
Codepen.io, TypeScript,
Chrome Dev Tool, and so
on

Quality
Assurance
Testing

Text editor, web/product analytics,
Excel, Google Docs, GitHub, Jira, and
so on

Project
Manager

Text editor, web/product
analytics, Excel, GitHub,
Jira, NPM, Codepen.io,
TypeScript, Chrome Dev
Tool, and so on

Software
Delivery

Text editor, web/product analytics,
Excel, GitHub, Jira, NPM, VanillaJS,
Plain JS, Angular JS, jQuery,
Bootstrap, and so on

Software
Prototyper

Text editor, Framer.js,
Swift, Flinto, Webflow,
React, web/product
analytics, Excel, AirTable,
GitHub, Jira, NPM,
Codepen.io, TypeScript,
Chrome Dev Tool, and so
on

Unit Testing Text editor, web/product analytics,
Excel, GitHub, Jira, and so on

A challenge in discussing all these roles and all these tools in one book is that it could end
up being tens of thousands pages long, which this book is not. Therefore, we will not be
covering every role in the software design process. However, we will be discussing the
skills and ideas that underpin all the roles and tools that are used to design great software.
Furthermore, each of these roles could call for their own book and be focused on over time.
If you already have a leaning toward one role or another, now is an excellent time to start
marking them with your level of interest. Teams build great software, and no one is good at
the whole process. Look through the tools and roles list and highlight/check off the roles
you are considering pursuing deeper. Comprehensively covering all of these roles would
be a fool's task as these roles and tools are a reflection of what is available in 2019, but as we
have been discussing, technology moves fast, and so do the tools and roles it takes to
produce software. The design and development parts of software systems are unique,
making HCI a vast sandbox, but understanding the pieces of the process you want to dig
deeper into will keep you honest and focused.

Now that you have a loose idea of what roles make up HCI, we will dive deeper into it, so
let's discuss the role of code.

Interface Design Values Chapter 3

[74]

Coding – markup syntax and object-oriented
syntax
As we discussed earlier, we are going to use web coding languages as our proxy for talking
about the thousands of coding languages. Let's start by discussing markup languages.
HTML is a markup coding language. The coding language is designed as a way
to annotate a document in its syntax to be called out from the content text. Markup coding
languages come from the concept of writing on a paper draft, which is traditionally written
on with a red marker by an editor. In digital media, this "markup text" was coded into
HTML tags, thanks to Tim Berners Lee and his colleagues. Markup languages such as
HTML are the basis for structuring web software. HTML is considered a semantic coding
language.

Semantics is the study of language meaning and the interpretation of words, signs, and
sentence structure. Reading comprehension is largely determined by semantics as it defines
how we understand others, and even what decisions we make as a result of our
interpretations. A semantic example of a brick can be used to build a wall, just as a pixel
can build an interface. The HTML bricks are defined through tags in the markup, which we
use to define content that becomes a graphic user interface on a semantic web page:

Interface Design Values Chapter 3

[75]

For example, a brick is an object that has meaning in the world; it has a size, a material, and
a shape. The standard brick dimension (in the USA) is H: 2 1/4 in., W: 3 3/8 in., and L: 7
5/8. A brick and its size are semantic because of their standardization and consistency of use
as a building material.

The reason I am using a brick to explain the use of semantics is that the internet and all
software using a screen is assembled with the bricks of the internet—pixels. Pixels are the
visual building blocks we use to solve our software problems though screen interfaces. The
HTML bricks are then defined into markup <tags> that we use to define a document.

Hypertext markup language
In HTML, a <p> tag indicates a paragraph; because people know what paragraphs are from
writing, this tag is semantic. The <p> tag is also presentational as all browsers will display
any content tagged with <p> content </p> with that value from HTML. The more time
you spend time with HTML tags, the more semantic they become to the developer. The
following example is of HTML paragraph markup:

Interface Design Values Chapter 3

[76]

Markup languages are defined by syntax with defined rules for spelling and grammar of
the programming language. Computers are programmed and are therefore inflexible
machines. The code is written in a way that must be in the exact form that the computer
code expects. HTML utilizes a tagging syntax and must have an <open tag> and a </closing
tag> in most scenarios. Learning any coding language starts with understanding the rules.
With HTML, for example, you learn the tags that build a web page interface. Learning all
these tags, as a developer, can help you build a web page interface faster. There are
thousands of HTML tags.

Cascading style sheets
One thing that we find with computer science and computer coding is that languages tend
to rely on each other. HTML is limited and can only define a predetermined set of tags that
help establish the structure and content of a web interface. HTML is inherently limited and
can be enhanced by CSS, allowing the styling code syntax to select HTML tags and give
classes with properties such as color. HTML and CSS work together to stylize content:

HTML and CSS can go a long way in visualizing a user interface via web browser software;
however, the experience is limited in its behavior. This is where JavaScript comes into play
and allows the software design to react to the user's actions and execute user commands for
solving their problems. Sounds easy, right? Just like 1 > 2 > 3. However, building software,
even with markup coding languages, gets complicated quickly, depending on what the
user is trying to accomplish.

Interface Design Values Chapter 3

[77]

Object-oriented programming
One thing that makes coding hard is the idea of object-oriented programming (OOP).
OOP is a unique type of programming that defines both data (types and structure) and
behavior (operations and functions). Object-oriented coding syntaxes are modeled on a
series of collaborating objects. An object is an entity that possesses both a state (or
properties or attributes) and behavior. An example of a class could be a car and an object of
that class are the manufactures of cars—Audi, Nissan, Volvo, and so on:

Significant object-oriented languages
include Java, C++, C#, Python, PHP, JavaScript, Objective-C, Swift, and so on. The reality is
that our software is accomplishing more and more for our users, and this requires HCI
professionals to understand what it takes to solve problems. Solving software problems is
connected to the process of producing a coded solution.

Continually better software
Regardless of the computer code used to write a computer program, there are some ideas
that make up every human-centered solution. Like we discussed before, humans change
and, therefore, a software solution is not fixed but is rather highly dynamic. A software
solution requires iteration. Iteration is the repetition of a process. The HCI design process
produces a software solution and can be accomplished faster through designing, testing,
and iterating that solution.

Interface Design Values Chapter 3

[78]

The design of any software has proven to be better with iteration. The very nature of
software code being written by people speaks to why iteration is essential. Humans make
mistakes, and with every mistake, we learn, but without the ability to iterate or correct
these mistakes, they would persist in our software solutions. Luckily, code is not written in
stone and is not impossible to change or iterate. Software is an idea, and we design coded
solutions to prove that these ideas are working. If the coded solutions don't work, HCI
professionals don't just wash their hands, they go and make improvements, fixing their
solution and iterating them until they solve a user's problem.

Continually better software is accomplished through iterative passes, and software teams
can also improve those iterations by participating in continuous integration (CI). CI is a
development practice where developers add to a shared repository frequently that
integrates their code. Each integration can then be verified by an automated build and
automated tests, allowing code to be shared across teams and improve the quality of each
software build. CI is related to the CI/CD pipeline, which implements continuous delivery.
Continuous delivery makes sure that the software checked in on the mainline is always in a
state that can be deployed to users, and continuous deployment makes the deployment
process fully automated. Iterating on software in a continuous delivery environment allows
iteration to be baked into the design-development process as your user is continually
receiving the benefits of iterative design.

Software iteration is a form of refinement. As a trained designer, one thing we always hold
true is that learning is done by doing. You have to design something to see whether it
works. The human-centered role in that is if you consider your user needs as you create a
solution, it allows you to validate whether your solution is working. There is NO such
thing as a perfect piece of software. This statement should be freeing. The goal of solving
software problems isn't perfection, but rather responding to and iterating each solution
over time. When you first create software, it sucks! It just does—you don't know enough,
and you are making too many assumptions, but this is why iteration is so essential to the
HCI design process. With iteration, you can quickly secure your solution. Iterative design
cycles of design > build > test are continuous and essential to doing HCI effectively. One
way to encourage iteration in software development is to bake it into the design process.
This is where agile development comes into play. There are many, many books on agile and
software project management; therefore, I will be brief.

Interface Design Values Chapter 3

[79]

Agile software development is a collection of frameworks including Scrum, sprints,
extreme programming, and feature-driven development, as well as practices based on a set
of shared software values. The focus of agile development is on how people do the work
and how they work together. Agile separates itself from other approaches of software
development by evolving solutions through collaboration. Software teams create self-
organizing cross-functional teams that appropriate practices for their context. The agile
design cycle puts iterative design into a plan over time:

Agile software development fosters a community built on collaboration and the self-
organizing team that produces software in sprint-based timelines. There is of course much
more written and discussed on agile, including the 12 principles of agile, but I will leave
that for you to explore on your own. The agile processes are widely practiced by software
teams and have lots of nuances when it comes to clients/customers, design/user, and
client/user relationships, and agile teams are not a monolithic group that you will
experience over time.

Interface Design Values Chapter 3

[80]

Summary
Throughout this chapter, we discussed how HCI applies to software development and
building programs from computers over time. The professions, skills, and tools used by
small and large software teams are why HCI is a vibrant space to dive into.

We will continue to grow our HCI skills, and this chapter has covered how software is
designed and coded to solve a problem. We solve these problems with tools and human-
centered concepts that allow our solutions to not only be useful but also be relevant to our
users. The reality is that there is a lot of software pulling our users' attention and because of
this, we have covered how design and development tools are at the intersection of humans
(users), technology, culture, and data. These vast considerations are approachable through
executing solutions that are ultimately code and a majority of it is internet-based because
our users spend so much time on the internet that the software expectations are really high.
As HCI designers, our goal is to continually provide and improve software solutions
through iteration and agile development methodologies, which we started to familiarize
ourselves with.

In the next chapter, we will focus on part 2 of the execution of software design through HCI
design and development: human-centered thinking through cycles.

2
Section 2 - How to Build

Human-Centered Software
These chapters are a practical guide to how HCI implements the ideas, principles, and
coding concepts reviewed in Section 1. How to build human-centered software will frame
the tangible steps taken while developing software, and we'll also outline some of the
methodologies for building human-centered software solutions. You will learn why
human-centered methodologies are winning in software development, along with how to
develop unique insights into your users through effective research processes that you can
try at home.

We will dig into more of the pillars of Learn HCI by covering the following chapters:

Chapter 4, Human-Centered Thinking
Chapter 5, Human-Centered Methods for User Research
Chapter 6, User Insights for Software Solutions
Chapter 7, Storytelling and Rapid Prototyping
Chapter 8, Validating Software Solutions

4
Human-Centered Thinking

Any great piece of software is built by a team, and the upcoming chapters will outline the
roles and responsibilities for identifying and developing software solutions as a team.
Design and development work with the users' best intentions in mind, which is a great
concept but is only as good as how a team can execute those human-centered solutions. As
we familiarize ourselves with the skills and concepts that allow us to execute HCI software
design effectively, the ability of an HCI designer to understand the whole software design
process, and all the team members who come together to make it happen, is a great starting
place.

Throughout this chapter, you will familiarize yourself with the day-to-day practices of
what a software team will be expected to execute when producing software. The HCI skills
will also contextualize how a software team works through a human-centered design
process to produce the best solutions for their users. The goal is to practice the design >
build > test process, allowing you to get your hands dirty as we build our understanding of
the design and the designer's role in software. Growing your HCI knowledge will be a
process that you have to work at every day. Please use this book alongside the work of
many other designers and thinkers and industry publications.

The topics you will be learning in this chapter are as follows:

Understanding the HCI designer's role
Considering the developer's role in software design
Using agile development cycles – design > build > test
Executing prototypes first as a design ethos
Validating solutions with your users

Human-Centered Thinking Chapter 4

[83]

Understanding the HCI designer's role
At this point, hopefully the value of software is clear to you and you understand that
because computer software has the potential to solve human problems, it also has the
potential to make companies money. Just look at Apple, Microsoft, Amazon, and IBM, all
global Fortune 500 companies that at their core create software that solves users' problems
and earns them and their investors a return on investment (ROI). Now, money is not the
only benefit that software can provide, but as professionals who want make software better,
we have to be armed with the knowledge that our skills and software considerations can
impact the bottom line of any company for which we solve problems. The role of an HCI
designer in any business should be considered essential, and your ability to understand
your own value should translate as you grow your skills. An HCI designer has the ability to
impact the ROI of any company.

Let's embark on how to translate our human understanding into software solutions before
we can start. Let's explore what we know about humans in the first place. HCI starts by
growing our user research skills. User research allows the HCI designer to improve their
ability to understand, reveal, and ultimately solve human needs through software. An HCI
designer's ability to apply user research skills can be the difference between building
software that resonates with their users, which in turn drives business value, and software
that falls flat and does not have an ROI. Regardless of an HCI designer's value to a
business, we have even more opportunities to help our users when solving software design
problems. Design can be defined as the ability to create, fashion, execute, and construct
according to a plan. To start our plan, we will engage in some research and gain an
understanding of design, and then apply it to HCI. Research is essential to HCI; therefore,
let's explore what design means to you and how it is rationalized in the world of HCI.

Challenge 11 – User research – a design
mindmap
Setup:

Get out the required materials (Post-its, paper, and a pencil or a (web) mind-mapping1.
software, such as https:/ ​/​mural. ​co/​ (recommended), https:/ ​/​coggle. ​it/ ​,
or http:/ ​/​www. ​mindlyapp. ​com).
Take a Post-it note, or open a new mindmap canvas from the suggested software.2.
Set a timer for 10 mins.3.

https://mural.co/
https://mural.co/
https://mural.co/
https://mural.co/
https://mural.co/
https://mural.co/
https://mural.co/
https://mural.co/
https://coggle.it/
https://coggle.it/
https://coggle.it/
https://coggle.it/
https://coggle.it/
https://coggle.it/
https://coggle.it/
https://coggle.it/
http://www.mindlyapp.com
http://www.mindlyapp.com
http://www.mindlyapp.com
http://www.mindlyapp.com
http://www.mindlyapp.com
http://www.mindlyapp.com
http://www.mindlyapp.com
http://www.mindlyapp.com
http://www.mindlyapp.com

Human-Centered Thinking Chapter 4

[84]

Part 1: Generate thoughts on the design:

Spend a few minutes contemplating your day-to-day activities. Consider your habits:1.
when you get up, when you eat, when you go to sleep, what products do you use, what
technology you interact with, and so on.
Using Post-its (physical or digital), write down everything you use in a day that you2.
think represents "design." Use one idea/thought on design per Post-it/digital note.

For example, "Turn off my alarm clock" represents design because I can
set it to go off according to plan. Here are some things to note:
- Do not edit yourself. Write as many thoughts that come to mind about
what "design" is. If you think using a lamp is a design, great! Write it
down and move on to the next thought/idea.
- The goal is to generate as many thoughts about design as you can.
- When the alarm goes off, take a picture/screenshot of all your ideas on
design.

Part 2: Organize/mindmap your thoughts on design:

Get out a sheet of paper/create a new mindmap canvas of your ideas on design.1.
Set another timer for 10 mins.2.
Write "Design" on your paper/digital canvas in the middle and draw a circle around it.3.
Organize your ideas about design into categories around the central word.4.
Start grouping ideas on design together based on similarity (for example, Products: used5.
a razor, used a toilet, used a coffee mug, and so on. Technology: used an iPhone, used a
computer, used an ATM, and so on).
Add labels to your categories.6.
If a category is getting too large, see whether there is a sub-category or a sub-sub-category7.
you can add (for example, Sub-category: Technology > iPhone apps. Sub-sub-category:
Software > Design software > used Adobe Illustrator, Photoshop, and so on).
Create any connection points between Design in the middle and the categories and sub-8.
categories on the outside.

Part 3: Capture your mindmap process:

When the alarm goes off, take a picture/screenshot of your mindmap on design.

The goal is to connect all your ideas on design visually with categories,
sub-categories, and connecting lines. When you making thinking visual, it
is important to capture the process in order to share it with your HCI team
or potentially in your personal portfolio.

Human-Centered Thinking Chapter 4

[85]

Congratulations, you have now participated in design yourself: with a mindmap—a design
tool for the brain that visually captures thinking. Mindmaps collect knowledge, help
you remember connections, and create ideas through visual patterns. As a tool for HCI
designers, they can also represent systems and visualize connections for seeing how things
are interconnected. By imagining what you are thinking, you are also establishing an
information hierarchy, creating parent-child relationships with your categories, and
revealing information patterns that without visualization are harder to reveal. Practicing
using mindmaps will help you as we dig into software systems and start to articulate the
issues we are trying to solve. With practice, mindmaps can become a valuable tool,
especially when done with a team or group or with your clients, as using mindmaps can be
useful for more than just flushing out what design means to you throughout your day. But
let's get back to your design results.

The reality is that everything is designed. However, not everything is designed well. That is
to say, not all software is created by an HCI designer, but nevertheless, all things are
designed. I hope your mindmap reflects the extensive use cases for design. When it comes
to HCI, design is associated with software design. The technology systems establish the
design of any software they operate inside, as well as the user interfaces that allow a user to
interact with that software, and thus completes the value the design has for the user. The
nature of software solving human needs is why it is designed and frankly why it should be
designed well.

Take my alarm clock, for example—a Braun BNC005WHWH classic motion analog quartz
alarm clock, designed by Dieter Rams:

Human-Centered Thinking Chapter 4

[86]

As a product, it is designed because it exists. Remember, everything that is planned is
designed. However, the Braun clock is designed well because it utilizes the form follows
function principle. The travel clock also uses as little design as possible to communicate the
clock's function. Form follows function is a concept within architecture and design. The
premise is that the shape of a product, building, or object should primarily relate to its
intended function or purpose. Products such as my alarm clock are designed with a refined
simplicity in their application of form follows function, mastered by designers such as
Dieter Rams and others.

The clock allows me (the user) to tell the time (analog) through a mechanical battery-
powered motor. It also has limited software that will enable me to program an alarm noise
through an on/off button and a volume control interface based on the time of the clock. The
clock is designed to help the user keep time and to alert them to time, which is a feature of
this particular clock. The product is also small and portable, which adds to its design
qualities, and is reliable and easy to use. The role design plays in this product is baked into
its entire DNA, and even for a product as seemingly ignorable as an alarm clock, it becomes
relied upon not only for its simple design but also for the role the product plays in my life.
There are thousands of alarm clocks to choose from, but as a designer, I use this product
daily and nightly, and although small, it has come to represent a much bigger idea of
design and its role in our lives to me. Now, you may not find my alarm clock that
profound, and I wouldn't blame you; however, if everything is designed, being open to
basking in the glow of something that has been designed exceptionally well will only help
in your pursuit to design great human-centered solutions over time.

Challenge 12 – Product and software inspiration
Setup:

Get out a sheet of paper and/or create a Google doc.

Part 1: Document product inspiration:

Write down five products that you think have an excellent design and why.
Great product: ____________________ why: _____________________________

Part 2: Document software inspiration:

Write down five software applications that you think have a great design and why.
Great software design: ______________________ why:_______________________

Human-Centered Thinking Chapter 4

[87]

I hope these products and software inspirations are represented on your
design mindmap from Challenge 11. If not, go back and add them and
refresh your mindmap.

The reason design has played a significant role throughout history is ultimate—design
creates tools, and humans use tools. If we design better tools, then users will seek out tools
that work better. When tools work better, we evaluate these tools to have a "better design."
The exact same logic applies to software design except on a global scale. Great software
exists, and it is trained in our users over time. How many of you learned to use a computer
during grade school or before? I bet the vast majority of you reading this book have a hard
time distinguishing education before and after computers. I am the product of a Macintosh
computer strategy, where they placed their computers into our elementary school
classrooms and beyond to teach computer skills. I technically learned how to type on an
electric typewriter but quickly upgraded to the Apple IIci computers, which is my first
computer memory.

Challenge 13 – First computer experience
Setup:

Get out a sheet of paper/create a Google Doc.

Part 1: First computer memory:

Write down your first computer memory:

Computer hardware: ______________
Computer model: _______________________
OS: __________________

The computer is deeply connected to our lives and our experiences from
education through to daily tasks. Recognizing your personal history with
software can help influence how you think and use the software.

Back in the day, when I was an early designer, I ultimately gravitated toward Apple
products not because I was a designer but because I had learned on a Macintosh, and
therefore, it became my go-to. Technology has both a long and a short tail.

Human-Centered Thinking Chapter 4

[88]

The long tail of software design
Software technology, when designed with users in mind and helps solve users' problems,
creates value for its users and has the ability to be long-lasting. The software can be
connected to its user through the long tail of technology, which is supported by education
and computer use over a lifetime:

Consider how a baby born today will never know a world without a smartphone. Software
companies such as Microsoft, Apple, Adobe, and others know that there is longevity in
their software platforms if you can educate your users to use your software. That doesn't
mean that software stays static or never changes, but it does equal a set of users who have
potentially used their software for long periods. For example, I learned to use Adobe
Illustrator when it was at version 6 in 1996. I will never forget this because of the rhyme in
the previous sentence.

Human-Centered Thinking Chapter 4

[89]

The following screenshot shows the user interface for Adobe Illustrator from V10:

The following screenshot shows the user interface for Adobe Illustrator CC version 24.1.3:

Human-Centered Thinking Chapter 4

[90]

The software is very different from version 6. However, fundamentally, there are still some
similar concepts in the computer drawing software, including shapes, bezier curves, the
select arrow, the direct select arrow, cut, copy, paste, and artboards, which are all in the
canon of features that I learned, and I would have a tough time unlearning them if they
were suddenly changed due to software iteration. In the industry, we call people like me
with long exposure to software "legacy users."

My father, Dr. Curtis M. Becker DDS, for example, is a retired dentist, and he purposefully
keeps an older laptop computer running iOS 9 so that he doesn't have to upgrade his
accounting software:

"The new software doesn't do what this old one can, and I'm too old to learn a new
system. It works, so I don't change it."

- Dr. Curtis M. Becker DDS

Regardless of updates, the utility of the old software, to my father, holds more importance
than the new features or improved workflow of the latest software updates. This sentiment
from my father is not what the account team wants to hear, but the truth in software design
is once you train your users to use your software, it is, after that, much harder to change
that software because behaviors have been set. Users learn and then have to relearn a
system if it is changed. Some users will be associated with the long tail of software and will
speak up and not want updates or changes in features that they use all the time. The reality
is that most users don't use all the features of your software.

The Pareto principle (https:/ ​/​www. ​forbes. ​com/ ​sites/ ​kevinkruse/ ​2016/ ​03/ ​07/ ​80-​20-
rule/​#90b3943814ba), also known as the 80/20 rule, states that 80% of results in a system
come from 20% of the causes. In software design, this means your user will spend 80% of
their time using 20% of the software features. The long tail suggests designing features that
will maintain that 20%. The role of the HCI designer is then intimately linked with knowing
which 20% of a product to focus on. Easy right? The reality is the short tail of software
design can pull focus.

https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba
https://www.forbes.com/sites/kevinkruse/2016/03/07/80-20-rule/#90b3943814ba

Human-Centered Thinking Chapter 4

[91]

Products such as my alarm clock are very, very hard to change once they have been
designed, produced, and shipped to their final destination—in my case, my night side
table. The same is not always true for software. What makes software unique is that it can
be updated and modified over time, especially with the advent of the internet and modern
internet-connected devices. This software can be updated remotely at will. In the past, you
had to buy new versions of software, such as Adobe Illustrator 6 to 7, which we discussed.
Today, software is always connected back to the mothership and can be patched, iterated,
or changed overnight. We will talk more about iterative software strategies at much deeper
length, but software is designed to be updated, which allows those that design it to
improve it.

The short tail of software design
Software technology, when designed with users in mind, is not a static solution. The reality
is that software requires updating to stay relevant with its users, whether it be to address
new modalities (mobile, tablet, or watch technology) or new interaction models (touch
screen, voice, or AR/VR). Software updates are part of the short tail of software design; the
tail is short and moves in circles, and it creates cycles of design > build > test. The software
design short tail is the iterative, quick-changing, and nimble solutions supported by the
design > build > test methodology:

Human-Centered Thinking Chapter 4

[92]

As we have discussed, HCI cares deeply about software design because that is where the
need for our skills is applied. As far as design is concerned, there are a few designer roles
that are specific to the software process.

HCI can help create the following roles:

User experience designers (UX and UXD)
User interface designers (UI, visual design, and frontend developer)
Interaction designers (IxD, prototyper, and JavaScript developer)
Information architect/information design (IA and InfoD)

These roles are not mutually exclusive; however, they each have unique specifics that
maintain their independence as well as their unique position in the software design
process. HCI skills underpin each of these software design roles, and many designers will
wear many hats throughout the software design process because they possess these skills.
At its core, each position is a designer, and when they are right, they are human-centered
designers. The design values that run through our DNA apply to more than just software
design but are particularly needed in these roles as the software is arduous, and it needs to
be designed well.

However, UX/UI/IxD/IA is just one part of the total package, albeit a large piece, but the
software is run by more than just design; there is also the hardware as well as the software
code. An excellent user interface with a bad system is never going to create a great user
experience. Software design requires balance. This is where development roles come into
play.

Considering the developer's role in software
design
Computer software is, fundamentally, code. Because software is executed as code, the role
of a software developer is essential to the execution of any piece of software. Many HCI
designers are the bi-product of computer science departments through university systems
around the globe. Some developers have been trained through HCI departments or courses,
but there is a significant number of developers who are just versed in the code side of the
equation but lack the understanding of the human or design components of the software
process. The reality is that there are lots of different types of developers, just as there are
different types of people. My goal is to introduce you to a variety of developers and how
they can make up aspects of the software design team. As HCI designers, we will be
navigating and creating software solutions that will require getting our hands into code,
and some of you may even consider yourself a developer looking to grow your HCI skills.

Human-Centered Thinking Chapter 4

[93]

There are thousands of coding languages and the expectation is not to have memorized
them but understanding the role code plays, and learning how to use code to solve
software problems is something an HCI designer will do for their whole career.

As an HCI designer, your experience with code may range on a spectrum from no code
knowledge to lots of coding knowledge. Over time, you will grow your coding knowledge
range:

The goal is to allow you as an HCI designer to not be intimidated by the design or code or
software. Fundamentally, coding is a skill used to solve problems, and when you can apply
more knowledge to a solution, the better, faster, and more reliable your answers will be. It
is impossible to be an expert on all the variations of code; however, you can be an expert at
using design systems and code languages to execute human-centered software solutions,
which is at the heart of being an HCI designer.

Because of the wide range of coding knowledge there is, let's start by analyzing our
interests in code as we build our understanding of the developer's role in software design.

Human-Centered Thinking Chapter 4

[94]

Software developers can be split into two camps:

Frontend developers: Known as the client-side, a frontend developer is in the
practice of producing HTML, CSS, and JavaScript for a website or web
application.
Backend developers: Known as server-side, a backend developer is where the
software engineer or developer focuses on databases, scripting, and the
architecture of websites. Backend server-side programming languages include
Java, Python, Ruby, MySQL, shell script, and so on.

In reality, these camps are not neatly defined, and many HCI designers and software
engineers span knowledge between these two camps.

Challenge 14 – A 2x2 matrix – your code
experience
Setup:

Get out a sheet of paper, or a digital canvas in Illustrator, Sketch, Miro, and so on if1.
you're more comfortable.

Part 1: Generate a 2x2 matrix:

Get out a sheet of paper or a new digital canvas.1.
Create a 2x2 matrix (see illustration) and label the X axis Software Development2.
and the Y axis Code Complexity.
Label the left side of the horizontal scale Front End and right side Back End.3.
Label the top side of the vertical scale High and the bottom side Low:4.

Human-Centered Thinking Chapter 4

[95]

Part 2: Plot coding languages on the 2x2 matrix:

With your 2x2 matrix, do some research using Google of frontend coding languages.1.
Plot the languages based on the matrix scales in blue:2.
- For example, HTML will be in the lower-left corner (frontend and low complexity).
Do some research using Google of backend coding languages.3.
Plot the languages based on the matrix scales in red:4.
- For example, Python will be in the upper-right corner (backend and high complexity).

Part 3: Capture your process:

Take a picture/screenshot of your matrix.1.
Place your initials next to the coding languages you know or are interested to learn2.
about.

Your 2x2 matrix should try and cover the landscape of software
development code opportunities. Add what you know off the top of your
head first before doing research and adding coding languages you are not
as familiar with.

Congratulations, you have now participated in more design and research yourself—a 2x2
matrix is used to reveal insights and findings on any two topics. Plotting ideas and data
points on the matrix will help determine your own knowledge or lead to new insights
about your level of interest in the development side of the equation.

After plotting your understanding of the world of software development, what have you
learned? The reality is that code is complex and requires lots of studying to become good at
it. HCI skills can also apply to may development roles. Use Google to look up each of the
following job roles:

Systems architect (IA and InfoD)
UX engineer (web dev)
User interface developer (frontend dev)
Interaction developer (JS dev, prototyper, and object-oriented-programming
(OOP))
Backend engineer (web dev)

Human-Centered Thinking Chapter 4

[96]

These roles are not mutually exclusive as well; however, they each have unique specifics
that maintain their independence as well as their unique position in the software design
process. HCI skills underpin each of these software development roles, and many
developers will wear many hats throughout the software design process because they
possess these skills. At its core, each position is a developer, and when they are right, they
are human-centered developers. The development values that run through our DNA apply
to more than just software but are particularly needed in these roles as the software is
arduous, and it needs to be developed well.

However, system arch/web dev/FE dev/interaction dev/BE dev is just one part of the total
package that might write the code, but should also be code that is solving the right
problem. Design and development are connected. A wonderfully coded button or software
feature that is not needed by your user is a waste. Just like the design side, software
requires balance. This is where design roles come into play. The better each team member
understands their role and value, the better the team effort is at creating great software
because software design and development is a team effort:

We are a team, and teams that run the race together get further. HCI skills such as design
methods of mindmaps and 2x2 matrices are the tools that we hand off to each other.
Software design requires a team with the ability to be able to sprint and hand off skills that
keep each other running the race. The better each side understands and trusts their team
members to handle that portion of the competition, the better the software will be. We will
discuss more about this race next, but remember to keep practicing your design tools.

Human-Centered Thinking Chapter 4

[97]

Using agile development cycles
How does HCI build great software? This is a tough question to crack. If it were easy, every
piece of software would be great. Instead, it is tough and made even harder as humans
adapt to technology, demanding more from our software interfaces, and embed software
into their daily lives. There is some luck that goes into getting software right, and it is
found at the bottom of caring about your user first. Any piece of software can be made even
harder through the choices a team makes about the process of how they design and
develop. The challenge is in how much risk versus reward a software team is willing to
carry throughout the design and development process. Some software gets built with high
risk, where all the assumptions and requirements are gathered up front. Then, all the
features are designed at once, and all the elements are developed before everything is
tested and launched into the world as a fully baked software solution.

The waterfall design and development process
The waterfall design process is a high-risk, high-reward method, and some businesses like
a waterfall process. Although, be warned: the waterfall is a slippery slope:

Human-Centered Thinking Chapter 4

[98]

The waterfall methodology is used by businesses for the following reasons:

Defines a clear structure:

The waterfall approach focuses mostly on a clear, defined, linear set of steps.
Its structure is simple; each project goes through these steps. Teams must
complete an entire step before moving on to the next one.

Transfers information well through thorough documentation:

The waterfall approach emphasizes the comprehensive sharing of data as
you move between each step. When applied to software design, each new
step potentially involves a new group of workers. The emphasis is then
placed on detailed documentation throughout a project’s life cycle.

Waterfall carries more risk throughout the process as any changes to
requirements, updates in user needs, or issues during user testing can have
the effect of returning to a previous step of the process. The risk of having to
go back in the process can be highly expensive to a business, especially if
teams who initially worked on that problem are no longer available—the risk
of waterfall significantly outweighs the reward. However, there is a better
way—agile software design and development.

Determines the end goal at the beginning:

The waterfall approach commits to an end product, goal, or deliverable at
the beginning, and teams should avoid deviating from that commitment. For
small projects where goals are clear, this step makes your team aware of the
overall goal from the beginning, with less potential for getting lost in the
details as the project moves forward.

The high-risk, high-reward method has chewed up and spit out many HCI designers and
software teams, and for the experience, I would not recommend committing too heavily to
the process.

Human-Centered Thinking Chapter 4

[99]

Design thinking, agile design, and the
development process
As we discussed earlier with the human-centered design and the design thinking process,
iterative cycles are also essential to creating great software solutions. There are many ways
to solve problems, but as a community, HCI and software design have utilized a few that
we will review: design thinking, lean UX, and agile:

Learn more about this here: https:/ ​/​humanfactors. ​jmir. ​org/​2018/ ​4/ ​e11048/ ​.

Having an understanding of the roles these processes play in software development will
improve your ability as an HCI designer, as well as look for proper teams. Design thinking
and agile development go together because they fundamentally rely on the same concepts
of design > built > test, as well as solutions, and are explored through building prototypes
at the center of phase 1 and 2—discovery (ideation)—and phase 3 and 4—development
(delivery). Let's quickly review the agile design cycle.

https://humanfactors.jmir.org/2018/4/e11048/
https://humanfactors.jmir.org/2018/4/e11048/
https://humanfactors.jmir.org/2018/4/e11048/
https://humanfactors.jmir.org/2018/4/e11048/
https://humanfactors.jmir.org/2018/4/e11048/
https://humanfactors.jmir.org/2018/4/e11048/
https://humanfactors.jmir.org/2018/4/e11048/
https://humanfactors.jmir.org/2018/4/e11048/
https://humanfactors.jmir.org/2018/4/e11048/
https://humanfactors.jmir.org/2018/4/e11048/
https://humanfactors.jmir.org/2018/4/e11048/
https://humanfactors.jmir.org/2018/4/e11048/
https://humanfactors.jmir.org/2018/4/e11048/
https://humanfactors.jmir.org/2018/4/e11048/
https://humanfactors.jmir.org/2018/4/e11048/
https://humanfactors.jmir.org/2018/4/e11048/

Human-Centered Thinking Chapter 4

[100]

Agile design cycle
A process that can make software design less risky and that has been highly successful for
software design teams is agile design and development. Agile is a series of software design
and development methodologies that are rooted in iterative cycles. Agile
values collaboration between self-organizing, cross-functional teams who evolve software
over time. Agile looks to break software up into smaller, less risky parts through a
collaborative team that then designs, builds (develops), and tests the software solutions
over shorter timeframes known as sprints. Many software design teams prefer an agile
cycle:

Agile development has become a popular software methodology because all the teams
using agile stick to a number of values that help their teams produce software effectively:

Early and predictable delivery through prototyping:

Agile is executed with sprints lasting 1–4 weeks. A sprint is a time-boxed,
fixed-schedule timeline where new features are delivered through
prototypes, hopefully with a high level of predictability. Producing
prototypes allows software solutions to be tested and supply data to ensure
business value.

Human-Centered Thinking Chapter 4

[101]

Schedule drive with predictable costs:

A sprint is a time-boxed assessment allowing the price of a software team to
be predictable. The amount of work that can be accomplished during a sprint
is determined through planning and team velocity.

Nimble to address change:

An agile software team through sprints stays focused on delivering a subset
of the product’s features. However, agile allows a team to refine and
reprioritize the overall product backlog based on user feedback or changing
business requirements.

Focuses on users:

Agile teams apply user stories to capture key performance indicators
(KPIs) to define human-centered product features. Each feature
incrementally delivers value through each sprint to both to the real users and
to the business. User testing is baked into each sprint, allowing teams to gain
valuable feedback throughout the iterative process. Testing not only commits
to the agile methodology but testing early and often during any project can
provide the ability to make changes as needed.

Focuses on user needs and business value:

Agile allows the client to help determine the priority of features, and the
team understands what’s most important to their users. This collaboration
enables the most significant value between a user's needs and the client’s
business value.

It encourages transparency:

Agile methodology creates an opportunity for clients to be involved
throughout the project, which requires clients to understand that they see a
"work in progress" in exchange for this added benefit of transparency.

Incrementally improves quality:

Agile breaks down a project into manageable units; the project team can
focus on high-quality design, development, and testing through
collaboration. By producing frequent iterations and conducting testing,
quality is improved by finding and fixing defects quickly and identifying
expectation mismatches early on.

Human-Centered Thinking Chapter 4

[102]

Agile is also made up of individual techniques that each agile team can use to their team's
needs. Look up the following terms on Google and as an HCI designer, you should be able
to speak to how each of these is used in software development:

Scrum1.
Kanban2.
Lean UX3.
Extreme Programming (XP)4.

There is much more to agile and many books have been written about it; however, this is
not our goal. Therefore, I will leave it to you to pick up where I left off.

Design thinking and the agile development
process
Design thinking and agile contain similar principles and define similar sets of roles and
activities. The goal is to deliver solutions that drive growth and bring new value to
users. Design thinking deploys techniques from user research and social sciences, such as
ethnography and psychology, to help reveal human behavior, user needs, and task
motivations. Design thinking relies heavily on a prototyping process that encourages teams
to execute ideas quickly that can then be tested and validated:

Human-Centered Thinking Chapter 4

[103]

Agile development is also predicated on a quick turnaround process. The development
team utilizes customer collaboration to respond and update a software product to changes
in a market. Agile holds a goal to the market quickly. When agile development is executed
correctly, a primary objective is satisfying users. However, if agile teams are only focused
on incremental improvements, they can lose sight of the impact that their iterations will
have on user experiences. When design and development teams work together, they can
open up long-term revenue opportunities from repeat users.

The reality is that design thinking and agile are both processes and operate more like a
Venn diagram than walled-off processes. A design and development practice is only as
good as the team's willingness to learn and repeat the process. Design thinking and agile
are highly practicable together, and software teams that practice them together will get
better at building highly valuable software solutions for their users and clients.

The reason the design and development process becomes essential in HCI is that an HCI
designer is destined to become part of the cross-functional teams that build software and
who fit nicely into the design thinking and agile ethos.

This book is not about project management, and there are many, many,
many books on project management, which I encourage you to seek out.
However, gaining a high-level understanding of the values in software
design and development processes and when they are used will help you
dig deeper and become a better HCI designer.

Executing prototypes first as a design ethos
It is evident in HCI that there are lots of people who come together to build software when
the entire team is aligned under a design and development process; it offers fewer
communication challenges but also allows organizations to share collective knowledge.
When teams all speak the same language (design thinking and agile), they understand the
same skills and share in the load for solving problems, which helps the team to move faster.
This is where prototyping first comes into play.

Human-Centered Thinking Chapter 4

[104]

A prototype is a usable sketch, a model of a product, service, or software built to test a
concept or process. It is used to evaluate a new design by its users through rapid testing
and iteration. Sometimes called rapid prototyping, it is a methodology used in a variety of
design contexts, including product (physical), architecture, graphic design, electronics, and
software programming, as well as others.

Prototyping is a vital part of web and application development. It consists of various
phases of development with their respective set of functionalities. The prototyping-
first approach lets the users experience aspects of the product with limited features during
the development process.

Mainly, there are three types of prototypes, which are the following:

Paper prototypes
Interactive/clickable prototypes
Native/coded prototypes

Paper prototypes
Although we have abundant software and technology at our fingertips, sometimes the best
method is still paper and pencil. Paper prototyping is the drawing of software screens on
paper as substitutes for digital solutions. Paper prototypes are viable because they can
quickly represent different levels of complexity and fidelity. They continue to be widely
used due to their speed and ability to help designers and developers think as well as
validate solutions quickly with users. Whether a paper prototype is used as a
demonstration of a potential feature or used for a usability test, the paper sketches can be
quickly assembled to address a user's need and mimic a user's actions with a screen. Paper
becomes a proxy for screen interaction and assumptions can be vetted quickly.

When trying to identify whether a solution is meeting a user's needs, there is a large set of
assumptions a designer has to make. Through paper prototyping, they can quickly validate
whether ideas are worth persuing into a more robust prototype.

Human-Centered Thinking Chapter 4

[105]

For example, the content view is a standard feature for any software that has a record over
time. A designer can build a paper prototype to validate quickly how the content might be
viewed (in a grid or list view) and then promptly test which view has value with its users:

All prototypes should start as paper prototypes in some way. The more designers and
developers use paper to validate their ideas, the faster they learn about what is working or
not with their software. Every beginner should build paper prototypes first as there is so
much to learn from making mistakes fast.

A huge value of paper prototypes is found if your idea doesn't actually work. Rather, the
execution is cheap, and you can throw them away if they don't get used by your user. I can
tell you, it feels really good to eliminate a lousy solution early. If you consider the value of
reducing a lousy idea early in the process rather than allowing it to move into
development—or worse, making it into the hands of all your users—then killing bad ideas
at the paper stage saves thousands of dollars for your business.

Many will skip over pen and paper because it requires drawing. Sketching, unfortunately,
is not a universal skill shared by all. As an HCI designer, you will benefit greatly from
picking up a pen and paper more often. I know many designers and developers who say
they can't draw. This is a failure of perception. Nearly everyone can draw; they choose not
to practice or they equate drawing to realistic rendering. The goal of sketching paper
prototypes is not about rendering but rather about speed. The reality of drawing is
thinking, and if we want to think through the HCIs, it will take a lot of sketching. Let's
practice.

Human-Centered Thinking Chapter 4

[106]

Challenge 15 – Sketching and prototyping
challenge
Setup:

 Get out a sheet of paper (letter or A4 size) and a pen (sharpie preferred).1.
With a ruler, draw three mobile screens: 3 in. x ~6 in. boxes (the iPhone 11 screen is2.
exactly 2.98 in. x 5.94 in.)
Label each screen as follows: 1. Dropdown, 2. Dropdown open, and 3. Dropdown3.
selected.
Bonus: Create a screen grid (2, 4, or 6 columns).

Part 1: Sketch three screens for a category dropdown:

With your pen/pencil, start on screen 1: Dropdown.1.
Sketch a button that has a dropdown (use rectangles or curved rectangles).2.
Add a category label (choose any category for your dropdown that you would like).3.
Move to screen 2: Dropdown open.4.
Sketch the drop-down button in the open position.5.
Include the categories of your choice.6.
Move to screen 3: Dropdown selected.7.
Sketch the drop-down button in the open position again.8.
Include the categories of your choice.9.

Part 2: Assemble paper prototype:

Get out some scissors.1.
Cut the screens into individual screen steps.2.
Stack your mobile paper screens on top of each other.3.
Flip through the screens to simulate the dropdown interaction.4.

Part 3: Document and share your paper prototype:

Take photographs of your completed paper version.1.
Document a video of you flipping through the paper interaction. 2.
Bonus: Share your paper prototype walkthrough with a friend/significant other for
feedback.

Human-Centered Thinking Chapter 4

[107]

Do not worry about your paper prototype being bad or appearing quickly
put together. The faster the better. DO NOT agonize over a paper sketch
prototype; it is an early idea worth quickly testing and should not carry
the weight of a final solution. It is an object used to learn from and if it
fails, it has not used up too much of your time.

Congratulations, you have now completed a paper prototype with three simple screens, a
few drawn lines, and a pair of scissors. Your dropdown idea is ready to be tested by a user,
and you can receive feedback on your drop-down button design, categories, and selection
decisions. Paper prototypes, when used correctly, provide maximum learning for minimum
effort. Do not assume that since you have created a paper prototype you have correctly
solved a problem. Paper prototypes should be used to validate an idea or possible solution
and if they are not used for testing, you are missing a fundamental learning opportunity.

Interactive and clickable prototypes
As you can imagine, paper prototypes can become harder to maintain as you add more and
more features and screens. This is where interactive prototypes come into play. Known as
clickable prototypes, they are the basic initial impressions of the product with a limited
interface to perform certain operations. They may include some clickable buttons, links, or
some dropdowns. Clickable prototypes can be produced through multiple iterations from
low fidelity to high fidelity.

Low-fidelity clickable prototypes can use your paper prototype sketches and use a clickable
prototype software to add some basic interactivity. Clickable prototypes can be made
through Keynote, PowerPoint, Adobe XD, Sketch, the InVision app, Proto.io, Balsamic, and
many others. The role this software plays is it allows a user to interact with a screen to
move between screens of the designer software solution. Clickable prototypes mimic how
the end product might work when coded, along with how the interface might behave. An
HCI designer will want to build clickable prototypes early on, often to test our ideas
throughout the process without having to develop those sequences before users have
validated them. We can learn a lot by putting our software solutions in the hands of our
users.

Low-fidelity prototypes can also use sketches that become digitized through wireframing.
We will discuss wireframing much deeper. The early sketches we practiced in paper
prototyping are a stepping stone into wireframing. Many digital software tools can be used
to develop wireframes, and the role of wireframing is rooted in creating with speed so that
we can create prototypes that can be put into the hands of our users.

Human-Centered Thinking Chapter 4

[108]

A high-fidelity (high-fi or hi-fi) clickable prototype is a prototype that looks like and may
work just like the finished product. It simulates the aesthetics of a proposed design and
approximates the development behaviors and user interactions. They can include
animations, transitions, and other advanced interactions. As they get closer and closer to a
finished product, a high-fidelity prototype can also be coded where the product is closest to
the final design in terms of content and functionality.

Over time, we will work toward building a high-fidelity software solution. There are many
software tools in the UX/UI software design marketplace for building clickable prototypes.
Go to https:/​/​www. ​prototypr. ​io/ ​ to explore more tools.

Challenge 16 – Clickable paper prototype with the
InVision app
Part 1: Create an account with InVisionApp.com
(There are many clickable prototyping tools, but use InVision to start):

Go to https:/ ​/ ​www. ​invisionapp. ​com/ ​.1.
Create a new account.2.
Sign in to the InVision app.3.
Create a new prototype for a mobile phone (iPhone X, iPhone, or Android phone).4.
Label your prototype Mobile Dropdown Prototype.5.
Take pictures of your mobile sketches from Challenge 1.6.
Crop each screen photo to be 3 in. x 6 in. in size.7.
Label each photo to match the labels of your sketches (1. Dropdown, 2. Dropdown8.
open, and 3. Dropdown selected).
Drag and drop or upload your screen photos to your InVision prototype.9.

Part 2: Connect your screens with hotspots and create a clickable paper prototype:

Using the InVision app, select an uploaded filter.1.
The viewing screen brings up prototyping features.2.
Select Build mode (B).3.
Build mode allows you to add hotspots to areas on the screen and then mark where to4.
target the interaction.
Connect your three paper-prototyped screens for your dropdown experience.5.
Include a hotspot to return your user from screen three to screen one, making sure our6.
prototype does not have a dead end.

https://www.prototypr.io/
https://www.prototypr.io/
https://www.prototypr.io/
https://www.prototypr.io/
https://www.prototypr.io/
https://www.prototypr.io/
https://www.prototypr.io/
https://www.prototypr.io/
https://www.prototypr.io/
https://www.prototypr.io/
https://www.invisionapp.com/
https://www.invisionapp.com/
https://www.invisionapp.com/
https://www.invisionapp.com/
https://www.invisionapp.com/
https://www.invisionapp.com/
https://www.invisionapp.com/
https://www.invisionapp.com/
https://www.invisionapp.com/
https://www.invisionapp.com/

Human-Centered Thinking Chapter 4

[109]

Part 3: Share your paper prototype:

Using the share button in the lower-right corner, share your prototype.1.
Share your prototype link on social media to get some feedback—on Twitter, tweet2.
@cbecker #LearnHCIPackt and I will do my best to respond.

InVision is just one of many prototyping tools exploring prototyping. The
InVision app has a shallow learning curve and it is quick to get your
paper sketches into a clickable format. Practice will speed you up, so don't
just use it once. Keep practicing.

Congratulations, you are now quickly advancing your abilities to quickly put ideas out in
the world and start getting feedback on potential software solutions. You might be thinking
this dropdown is so simple and not worth a prototype. However, the idea of prototyping is that it
should become second nature and be folded into your design process and applied to how
you think and make software. As I have said before, software solutions are very hard but
can be made even harder if you make assumptions along the way without validating or
testing them with your users. By prototyping and building solutions that can be
manipulated by your users early on and often and are as cheap as possible, you will learn a
lot and also fail a lot, but every cheap failure is an opportunity to get the solution correct
over time.

Native and coded prototypes
Native prototypes are actual product-looking prototypes that resemble the idea of the
product from a closer view. Users can perform more operations on native prototypes, just
like fully fledged websites or applications. These are also the final prototypes from which
the final product is built. Native prototyping is attempting to understand how a product
works in the real world.

A software team should have solid development skills before attempting to design native
prototypes. You should be able to prepare a useful prototype in just a few hours, rather
than days or weeks, and without excellent development skills, coding the native prototype
might take too long.

Human-Centered Thinking Chapter 4

[110]

The type of prototype a software team builds should be determined by the skillset of the
collective team, the timeline, the scope of the given project, and the questions that are trying
to answer through creating solutions. If you are attempting to validate whether an idea will
work with your users, then prototypes should occur toward the beginning of a project and
be on the lower side of fidelity. If you are trying to see whether a product is ready for the
market and should be released to all your users, this requires a higher fidelity:

Regardless of the software process and the team that is designing and developing the
software, if you are not prototyping, you are bound to make a mistake. Prototyping is a
way of approaching a problem, rather than just a step in the process. By aligning a team
into the value prototypes, they can become a type of language with your team.

For example, I worked on a prototype for an Apple campaign for Macintosh 30 in 2014
(1984-2014 = 30 years). The project was an interactive timeline project that was designed to
commemorate the 30 years of Apple Macintosh computers. We were a small team of five
designers—one UX (my role), two visual designers, one prototyper developer, and one
motion designer. We worked through many ideas and concept prototypes. Each
concept prototype took on a different name so that we as a team could keep track of our
thinking as well as what we were pitching to Apple.

Human-Centered Thinking Chapter 4

[111]

There were the following prototypes in order:

The tray: A prototype with an interactive tray at the bottom:1.

The numbers: A prototype with a minimal timeline by year number:2.

Human-Centered Thinking Chapter 4

[112]

The social dot: A prototype that visualized the world and what people were3.
watching by year:

The web: A prototype that highlighted all the Mac user by year as a web of 4.
interconnected dots:

Human-Centered Thinking Chapter 4

[113]

Why build all these different prototypes, you might be asking? Our team was tasked with
exploring several options, and with each prototype we made, we moved the project closer
to solving their problem. In the end, the timeline project used some of the concepts we
prototyped, and during project pitching, we had a nice shorthand with the team for which
prototype we were going to discuss. The reason why building prototypes also has
enormous value for a software team is that through making an idea tangible, you can then
test it with your users and validate one solution over another.

Validating with users
The reality is that an idea isn't worth anything, it is just a thought, but once that idea is
executed and made tangible, that is where the rubber hits the road. Software is no different,
just a set of ideas executed for a computer and a user. The key is knowing which ideas are
worth executing. Since software has a massive range of possibilities and is the culmination
of hundreds of ideas, the best way to understand whether those ideas are working is to
validate them through user testing. Start by validating ideas quick and fast through
prototypes, as we discussed previously.

Hopefully, your hundreds of ideas are not hundreds of features but rather a bunch ideas
that go into executing a few features meaningfully for your user. Prototyping, as we just
discussed, is about making ideas tangible, but without testing the execution of a prototype,
it is pointless. To build a prototype is to create a model to test your software idea. Testing is
immensely helpful to HCI designers and the software design process as a whole because
the team can quickly identify what might work or what will fail all through testing.

Validating your ideas with users is a constant process, and the human-centered component
of any good HCI practitioner allows them to want to test their solutions. Validating ideas
can be a little nerve-racking as no one want to fail. Although you hear Silicon Valley talk
about "fail fast," it doesn't make it any easier. We think about our users profoundly, and it
can lull us into believing that because we have their best interest in mind as designers, then
we don't have to validate our solutions with our users. This is false!

On the other hand, the role of user validation should occur early and often, as user
feedback takes on different levels of severity to a software design team. No team wants to
fail, but if you fail at the level of a cheap, quick paper prototype rather than a product
launched on the market, you have much more to learn and much less at risk. Because user
validation is essential across the entire software design process, let's discuss the three stages
of user validation:

Human-Centered Thinking Chapter 4

[114]

A software product team might create more than three validation stages;
it would be up to the team, their project planning, and the business scope
to determine the testing cycles. The goal is to test early and often, rather
than later in the process.

Validation is critical at every stage of a software idea—from the early fledgling seed stage
to the "our team thinks this will work" stage to the "this software is ready for market" stage.
Software is not birthed perfectly formed; it requires iteration, and the best way to iterate is
to test it on your users.

Stage 1 – idea validation
Validating ideas early during stage 1 allows software product teams to validate concepts
under low pressure with low-fidelity paper prototypes. Concepts are part of the ideas that
are cheap space. If you produce 100 quick paper ideas of what your software might do and
test those quick and dirty paper sketches with a few users and only five come back that
meet your users' needs, then the HCI designer's time has been greatly saved. 95 of these
quick ideas are easily discarded for the 5 your users have validated through feedback. If
you are new to software design, you might need to come up with 100 ideas to get the 5 that
matter.

Human-Centered Thinking Chapter 4

[115]

The pros of validating ideas are as follows:

Ideas validated early on can keep a software design team on track and motivated
that they are solving the right problems.
Software design teams that generate a lot of concepts are more adept at creating
innovative solutions.
Validating concepts funnels solutions faster toward an end product as
unvalidated concepts do not linger around the solution options.
Teams are more motivated to solve the right problem.

The cons of validating ideas are as follows:

 No one wants to work hard for a product that fails. There are, of course, lots and
lots of reasons why software can fail, but if a team is committed to identifying
those failures early and often, then perhaps they can avoid failure in the end.
Software design teams can spend too much time on concepts rather than
choosing to move on.
Ideas are precious and can move on regardless of being invalidated by users.

The reason paper prototyping becomes so valuable to a software team's process is
intimately linked with its success. Validating that an idea is worth it leads to more software
team members caring, and when you care, you make better products. Rest assured, with
practice and building more software, your prototyping output-to-success rate with users
will go up, and so will your ability to validate faster. When an idea is validated, that is not
enough. Validation is like gasoline in a car. It runs out if you don't fill it up. We need to
continue to validate our solutions continuously.

Stage 2 – usability validation
Now that an idea has been validated through stage 1 of testing, your validation process is
just beginning. The paper prototype will need to be iterated through a usability perspective.
This is where feedback from the user test for validation will help the software design team
make iterations to the concept. An HCI designer will typically improve a paper prototype
through digital means by creating the prototype in a wireframe and turning those
wireframes into a clickable prototype. The reason this occurs is two-fold: one, to continue to
think through the idea and two, to make it testable through another lens of creating great
software—usability.

Human-Centered Thinking Chapter 4

[116]

When validating a software prototype for usability, the are many ways to gather feedback,
but what becomes paramount is asking a few questions:

During the usability test, can your user quickly learn how to use the interface?
Did you observe your user getting confused or selecting the wrong UI during a
task?
After your usability test, was your user able to articulate the perceived user-
friendliness of the solution?

Of course, that is a deep, deep vein worth mining, which we will get to deeper in this book,
but when it comes to usability testing, in the end, validating whether your software is
useable is crucial. The reason usability validation is vital is as follows.

The pros of usability validation are as follows:

Iterations can quickly be addressed through user testing on a clickable
prototype.
Usable software is a successful software, but not necessarily a loved software.
Users can double-validate the idea and the execution of it being "easy to use."
HCI practitioners spend lots of time considering what makes software useable,
and when it works, it validates our skills and decisions throughout the software
design process.

The cons of usability validation are as follows:

Usability is not universal; every user will come to a computer with different
understanding and experience.
Software design teams can spend too much time noodling usability, rather than
relying on the user to trust that it will get better.
Usability is thought of as binary—it is either usable or it is not—but the reality is
that it is much more nuanced.

The reason usability and clickable prototyping become so valuable is that software teams
pride themselves on making usable software. By validating that a solution is usable, it helps
build trust with your user. Usable software is excellent, but the reality is that usable is the
baseline goal.

Human-Centered Thinking Chapter 4

[117]

Stage 3 – market validation
Now that an idea has been validated through stage 2 usability testing, your validation
process is starting to create some confidence in your software solution. The clickable
prototype will need to be iterated through a market perspective. This is where feedback
from the usability testing will help the software design team refine the concept. An HCI
designer will typically improve a clickable prototype through visual design and code and
make the prototype into a native prototype or a software version that can be released in
beta. The reason this occurs is two-fold: one, to continue to build out the software and make
it testable through multiple users and two, to allow the software prototype to grow up and
become more like the final software product that you are trying to release to a broader
audience.

Releasing a software product to the market is hard and can be very scary, but if a software
team has validated with a market, as well as throughout the process, they should be more
confident.

The pros of market validation are as follows:

Successful beta launches lead to revenue and more users.
Improving software early on leads to users loving the software.
Users can triple-validate the idea and the execution of it being the right solution.
HCI practitioners spend lots of time making a software solution worthy of their
users. When tens, then hundreds, and then millions use the software, it proves
the worthiness of validating along the way.

The cons of market validation are as follows:

Users are aware of what a beta test equals and can be extra needy or critical.
Software design teams can spend too much time looking for big numbers rather
than growing their users slowly.
Beta software is limited in its functionality and has more potential to crash or
have user experience errors.

The reason market-tested prototypes become so valuable is that software teams pride
themselves on making software that their users want. By validating a solution that is viable
across the board, it helps build confidence in the team that solved the problem, as well as
with the users to trust that the software has their best intentions in mind.

Human-Centered Thinking Chapter 4

[118]

Challenge 17 – Prototype validation
Part 1: Complete your InVision dropdown prototype:

Go to https:/ ​/ ​www. ​invisionapp. ​com/ ​.1.
Open your dropdown mobile prototype.2.
Make sure your prototype is looping and does not have dead ends.3.
Add hotspots to every screen, allowing screen 3 to return to screen 1.4.

Part 2: Validate your dropdown prototype with five users. (~15 mins):

Using the Share tools for InVision, share your prototype with five friends.1.
Have them test your InVision prototyping in person.2.
Observe them using your dropdown prototype.3.
Ask questions from each stage of validation:4.
Idea validation
Usability validation
Market validation.
Take notes on the success or failure of your dropdown prototype.5.

Part 3: Evaluate your validation testing:

Establish whether your prototype has been validated or not based on your five users.1.

Use your friends and family as much as you can as prototype testers, but
be wary that as an HCI designer, you can overtax those around you.
Furthermore, they are probably not your target users. However, the ease
of testing your early ideas on those around you is much better than not
testing at all.

Congratulations, you are now quickly advancing your abilities to produce and validate a
prototype. Applying this validation ethos to your process is super intertangled with
prototyping in the first place. Testing your prototypes should not be too hard, but you
should not try and validate an entire suite of functionality either. Being able to validate and
test quick ideas will help you learn faster and improve your prototyping skills over time.
The goal is thinking through ideas quickly and having feedback that pushes the solutions
forward. HCI designers should always be advocating for getting their users using their
prototypes and constantly iterating during the prototyping process.

https://www.invisionapp.com/
https://www.invisionapp.com/
https://www.invisionapp.com/
https://www.invisionapp.com/
https://www.invisionapp.com/
https://www.invisionapp.com/
https://www.invisionapp.com/
https://www.invisionapp.com/
https://www.invisionapp.com/
https://www.invisionapp.com/

Human-Centered Thinking Chapter 4

[119]

Summary
Throughout this chapter, we started to get our hands into some skills and activities that an
HCI designer can use to start designing software development. The skills and tools used by
most HCI designers and are why HCI skills are such a vibrant and sought-after talent. The
role of this chapter was to allow you to get some practice with them, and hopefully they
will stick with you long after you have completed this book.

Because the skills and activities of an HCI designer are so vast, this chapter covered the
potential roles that designers with HCI skills can occupy. The reality is that software is a
team endeavor, and we covered why the HCI design process is related to interaction, and
frontend and backend responsibilities that utilize an agile development ethos and cycles to
create software solutions. Throughout this chapter, many challenges were thrown at you
and hopefully, they got you to start practicing the HCI way with prototyping first and
validating your ideas with users.

In the next chapter, we will focus on more skills in part 2 of the execution of software
design through human-centered methods for user research.

5
Human-Centered Methods for

User Research
Human-centered methods of user research consist of a combination of many user research
methods, and we will focus on qualitative and quantitative methods that you will apply in
your human-computer interaction (HCI) design process. We will frame the tangible steps
taken while developing software and outline some of the methodologies for building
human-centered software solutions.

As HCI designers, we should strive to make great software, which starts with focusing on
what our users need and refusing to compromise the user's experience because other
options are easier, cheaper, or faster to produce. Understanding your users at a deep level
is essential to HCI, and this chapter is a practical guide to implement the human-centered
design process. Design, development work, and research bring users together to build great
software solutions, but they are only great if the software team is willing to put in the effort
and work together to produce high-quality products rooted in user research.

Now that you are getting further along in your HCI journey, let's discuss why HCI gathers
data. HCI focuses on the interaction between humans and computers, and we can
understand the systems more completely through data.

The topics you will be learning about in this chapter are as follows:

Gathering research data on our users
The human side of data collection
Exploring qualitative user research methods
The numbers side of data collection
Examining quantitative user research methods
Using quantitative and qualitative data

Human-Centered Methods for User Research Chapter 5

[121]

Gathering research data on our users
Whether you like it or not, data is king. In the early 2000s, there was a saying that content is
king because users were rapidly consuming content from the internet and to attract users
that had shifted from other media: TV, magazines, newspapers, and so on. The only way to
accomplish this was to offer better content. Content is still relevant – do not get me wrong –
but as all that content moved online, along with it came the ability to gather data. Data
gathering is everywhere. As the internet has woven its way into every aspect of our lives,
what has come along with it is the collection of data. If you use Google, watch Netflix, find
a restaurant to eat using Maps, or spend any time on Instagram, you are participating in
data being collected on you, your experience, and your interactions. Though this might
seem a bit creepy in the abstract, in reality, data is the mechanism that allows a user to
receive any level of customization with an interface. Information data is the feedback loop
of an interface.

Let's take Instagram, for example.

I am not responsible for the Instagram algorithm; therefore, this example
is based on interactions with the service along with knowledge of user-
generated feeds.

Your feed as of 2020, is comprised of the following:

Images from people you follow
What you post yourself
Sponsored advertisements
Instagram Stories

Your feed is then tuned based on the photos from your followers that you double-tap to
like. The content that you want then affects the types of advertisements you see in your
feed and the type of content that you see from the people you follow. The ability for your
feed to be individualized to you is only attainable through data. If you like a swimsuit from
a sponsored advertisement, you will then receive more swimming-related content on your
feed. The data gathered on you from Instagram allows brands, products, and services to
tailor and customize content to user types based on their feed history.

Human-Centered Methods for User Research Chapter 5

[122]

Instagram is not the only company that is using data to impact users' content. Every major
industry, from airlines to Amazon, is collecting, storing, and analyzing data to understand
its users and change their business. Data is a way to gather the pulse of your users. Over
time, a business, software product, or government can mine insights from the data or
discover patterns in human behavior. Data boils down to the origins of the computer itself,
and our ability to count more efficiently because a computer has allowed countless
software solutions and services to be birthed from the need to evaluate data effectively. In
the end, the information data we gather is a by-product of a system we are trying to
understand.

For software development, the human part of the profession requires us to gather lots of
data about people. The truth is people are hard to predict. Even with all the data that is
collected on us, we still don't behave just as the data says we will. When we gather data on
our users, we are doing so to try to help us understand their behavior even if we can't
always predict it. Data analytics offers a broad field of value and adds clarity to complexity:

Human-Centered Methods for User Research Chapter 5

[123]

The data we collect can be used throughout the design and development cycles. Data
gathering is essential to the human-centered approach as our user research helps a software
team define who the users are, identify any existing problems, propose user insights, and
influence a user feedback loop. The data intake process all supports the design and
development of concrete solutions. Data analysis can then be categorized into four factors,
and we will be moving from inside to out to evaluate how data analytics can be used in the
software design process from descriptive to diagnostic to predictive to prescriptive:

Descriptive: Data that helps us understand – what is happening?1.
Of all the forms of data, descriptive data is most abundant. For an HCI designer,
this might look more like starting with understanding your user through their
demographic and socio-economic and behavioral factors. Demographic data
might be, for example, that 30% of your users are women between 25 and 30
years old. Socio-economic data might be that 80% of woman users between 25
and 30 earn and have a college degree. An example of behavioral data is that out
of the 100 female users between the ages 25 and 30 who were surveyed, 65% are
renters versus 35% who are homeowners. Descriptive analytics is made
more effective through visualization tools that enhance the message of
underlying data. For business, descriptive data provides an analyst with the
ability to establish or track key metrics or key performance indicators (KPIs) and
measures within the industry that could be a profit and loss (P&L) statement.
Diagnostic: Data that helps us understand – why is it happening?2.
Diagnostic data is an interpretation of descriptive data, typically an assessment
or analysis of descriptive data. Diagnostic analytical tools are used to explicitly
expose the requirements of a software system and help identify what the users
need or where the users are in trouble. Diagnostic data is about users' skills in
both the application domain and in computer use. Diagnostic data analysis can
also legitimize an HCI/user experience (UX) designer or user researcher's
findings, as well as empower them to drill down deeper into the data. The goal is
to use descriptive data in a diagnostic way to isolate the root cause of a
problem. Diagnostic data for an HCI designer might look like software tools such
as Google Analytics or user data from an application platform such as Apple iOS.
The software can even be built on top of diagnostic data to create
business intelligence (BI) dashboards. Data visualized into dashboards will
incorporate data over time and features that help filter and drill down into the
data capture.

Human-Centered Methods for User Research Chapter 5

[124]

Predictive: Data that helps us understand – what will likely happen?3.
Predictive analytics is focused on forecasting. Predictive data models typically
coalesce multiple data sources to make any prediction. Predictive data is about
potential users' solutions where user requirements are anticipated and
innovative recommendations can be proposed, such as new tasks or untapped
audiences, or other unknown connections made available through predictive
data. Predictive data attempts to forecast a quantifiable amount, through
estimating the likelihood that something will happen or estimating a point in
time at which something might happen. For example, a user over 65 who smokes
is more susceptible to a heart attack. The predictive model would place the user's
age and behavior in a linear correlation with heart-attack risk based on other
users. The user data is then compiled together to establish a score or prediction.
The ability to predict outcomes allows you to make better decisions. A user who
is 20 and smokes can be shown a data drive prediction and the potential risks
that smoking and heart-attacks create, allowing that user to modify their
behavior to mitigate the risk. Predictive models are used across many fields, from
health to finance to consumer confidence. Understanding your user is essential to
UX and HCI and applying predictive data can help you address their needs.
Prescriptive: Data that helps us understand – what do I need to do?4.
 The prescriptive data model starts by understanding what has happened along
with why it has happened and what is likely to happen in order to establish an
analysis of what will happen. By combining these factors, prescriptive data
informs its users and helps determine the best course of action. Prescriptive data
is about what to do to create users' solutions. Take, for example, the Google Maps
application. This is a location-based phone app that helps assist a user in
establishing the best route to take to a destination. The predictive data takes into
account the distance between the start and finish location, the average speed of
travel by travel modality (that is, by foot, bike, car, train, boat, plane, and so on),
the time of day, and the current traffic constraints, along with the travel history
to prescribe optimal routes. This prescriptive data is useful both at the user level
(micro) – getting one user from point A to point B faster – as well as at the parent
level (macro), where all users in a city using Google Maps are moved around the
location more efficiently.

As we get deeper into designing and developing software, the ability to track your user and
test whether your software is working to solve your users' problem is essential to HCI. As
HCI designers, we look to research and then evaluate that data. Data on its own is useless;
it is just zeros and ones, but if we gather the data as a feedback loop to an existing
hypothesis, then that data can help us understand whether a software solution is solving
our user's problem. Let's start by discussing qualitative data.

Human-Centered Methods for User Research Chapter 5

[125]

The human side of data collection
Qualitative data is collected through methods of observations and gathers data that can be
observed and recorded. Qualitative information data is non-numerical. HCI and UX tend to
focus on qualitative research methods at first, especially if the software design team is
designing something new. Qualitative data can help a group gather deep understandings of
the motivations, problems, and past experiences of our users through observations and
interviews.

Take the following example.

We are creating a high school band members' app:

User data = 45 students in the user research group
Version 1: Qualitative data set by band role:

6 flutes
7 trumpets
12 drumlines
3 tubas
8 saxophones
9 flag guards

Version 2: Qualitative data set by student grade:
12 seniors
20 juniors
7 sophomores
6 freshman

The condition creates a quantity but can also associate a set of unique needs from that
cross-section of the data. As an HCI designer or user researcher, a team could then dive into
each cross-section with other qualitative methods to understand if, say, a flute user needs
overlap with the flag guard user needs.

Human-Centered Methods for User Research Chapter 5

[126]

Qualitative research can get a bad rap as being time-consuming or all "warm and fuzzy"
because the methods typically require interfacing directly with users. You can use
qualitative data-gathering to validate startup ideas before you write a line of code, or you
could use it to test significant company decisions. A qualitative user research study is
typically trying to understand why and how a user performs a specific task. Qualitative
research generates data around our users as we understand what their problem is and why
it occurs for our users associated with any point of research interest. When understanding
how a user interacts with a computer, qualitative research uses our human observation and
user interviews and is a highly useful skill for HCI designers.

There's a bunch of qualitative research tools you can use to learn about a problem, user
motivations, user feedback, and others. Let discuss a few methods, along with some
challenges for you to do yourself as practice.

Exploring qualitative user research methods
As an HCI designer, you will spend a significant amount of time trying to understand your
users, which is extremely hard. As we will discuss, your users are not a monolithic group;
rather, they are a collection of individuals who are always in flux. Users are people, and
people can be unpredictable. We are lucky that people are complex; otherwise, we would
be able to program everyone to be the same and our software opportunities would be
greatly diminished because all people would be like robots. Users are not robots; they are
people who have human emotions, needs, and consciousness. The human considerations
are what make designing software for humans so difficult. The reality is that people are like
snowflakes: no two are alike, and because of this, an HCI designer needs to build a robust
set of skills to try and understand people. We need to improve our abilities to gather data
on our users. The role of qualitative user research is essential to understanding the human
side of the equation in the HCI profession. Understanding humans and their relationship to
technology and software is highly dynamic. As an HCI designer, we must be diligent with
our curiosity as well and regularly pay attention to humans. In order to improve your
qualitative user research skills, let's discuss four qualitative methods:

Observation: Fly-on-the wall method
Moderated observation method
User interviews method
User recording: A tracking analysis and interview method

Human-Centered Methods for User Research Chapter 5

[127]

Qualitative method 1 – observation – fly-on-the-
wall method
The role of an HCI designer is to pay attention to be a "watcher." There is a ton to learn
about how users experience the world, engage in a procedure, or use software just by
watching them use it. One way to do this is through standard observation methods using
your eyes, ears, and location to observe a scenario effectively. To observe effectively
requires the observer to have anonymity. When observing, you don't want your users to
know you are watching them. If human beings are aware they are being watched, they will
modify their behavior, and your goal is to observe your users in their "natural"
environment. Observing "natural" behavior might require long-form observation over time
as the goal is to make users feel confident so that they can go about their daily life as
usual. The concept of being a fly on the wall is that the observer occupies space without
impacting the observed subjects. A software designer is always looking to understand their
users and using the fly-on-the-wall observation tactic will help:

The art of being a fly on the wall has many strategies, including spying and sleuthing
techniques. A popular spying technique is to blend into an environment through disguise
to watch users who are unaware that you are observing them. It is not necessary to hide in
a bush while observing your users, but if you think that helps you focus your observations
and not impact users, then plan to use that strategy. If users are in an office or on an
assembly line, it can be more difficult to be a fly on the wall as there are probably fewer
places to hide, which will require scoping out and planning your observation
strategy. Another strategy with observation is started by observing in public to semi-public
places. Semi-public places, such as cafes or coffee shops, can be a great place to practice
observing users without being too snoopy. Users in a cafe typically will spend a significant
amount of time in the space and, if busy enough, will not be aware that they are being
observed.

Human-Centered Methods for User Research Chapter 5

[128]

When practising observing in semi-public places, it is recommended to occupy the scenario
and experience the space the same way that your observation subjects are as well. If in a
coffee shop, this means following the procedure of ordering a coffee. If there is a line, you
can look around and choose a subject to observe without being too obvious. Once you have
selected a user to observe, attempt to sit near that user, somewhere you are in close enough
proximity to observe but not where you will get called out on watching your subject.

Challenge 18 – Observation – fly on the wall
Part 1: Observation setup:

Go to a coffee shop or other public place where you can easily observe users.

Part 2: Observation:

Observe one user throughout their experience at the coffee shop.1.
Watch and take notes every time they interact with technology (personal and coffee shop2.
systems).
Take notes on your user's experience and your observations. Attempt to see what3.
software they are using and whether they are successful or not based on their observed
task.

Part 3: Observation analysis and pattern recognition:

Combine all your observations into a user observation summary document, capturing the1.
following:
- Use your experience notes
- Technology usage
- Success and failures
- Any images of your user throughout the process.

Attempt to blend in and not be too obvious in your observations. Find a
place to sit that is against a wall and gives you a good view of the people
you are observing.

Human-Centered Methods for User Research Chapter 5

[129]

Qualitative method 1.1 – micro-observations
Observing users effectively without impacting their experience is a challenging skill and
requires lots of practice. I recommend applying your observation skills throughout your
day and engaging in a process I call "micro-observations":

At the bank, micro-observe the line and how people occupy their time.
When riding on public transport, observe how users interface with the ticketing
kiosk.
When out at a restaurant, observe how the table next to you uses their
smartphones.
At a park, observe social groups and how they interact with technology.

The list goes on and on.

Your ability to watch users throughout your day will collectively improve your observation
skills and, over time, will develop your understanding of how users and technology are
used "in the real world."

Qualitative method 2 – moderated observation
An extension of the "watcher" method is the moderated observation method. In this case,
the HCI designer makes the user being observed aware of their presence. Typically, in this
observation method, the observing researcher/HCI designer creates a scenario or some
catalyst meant for observing. A user might be asked to go about a task to be observed for
research, and then you evaluate the process. An HCI designer should get good at doing
moderated interview sessions:

Human-Centered Methods for User Research Chapter 5

[130]

A moderated session, for the coffee shop example, might look like this.

Observer/researcher: "I am going to observe you, but don't mind me. Go about the process
as "naturally" as you can as if I was not observing you at all. What I want you to do is order
a coffee using your phone application and get your coffee. I am just going to follow along
and watch you as you go about accomplishing this task."
User: Goes through the procedure of using their phone to order, submit, pick up the
coffee, then complete the interaction.
Observer/researcher: Observes the user throughout the process, making notes, and
capturing the process.

Challenge 19 – Moderated observation script
Setup:

Get out a sheet of paper/Google Doc/Word Doc.

Part 1: Observation script:

Write a script for approaching a user for a moderated observation.1.
Choose a task that you would like to observe a user do.2.
Write an opening statement for gathering an observation participant.3.
- for example, "Good afternoon, my name is __, I am an HCI user researcher looking for a
few participants for my observations. It should take any more than X minutes. You seem
like a really smart person and I was wondering whether you would be willing to help me
out with a quick task? (Yes?...oh, great!)"
Write out the established task for the user.4.
Define what a successful task completion looks like.5.

Part 3: Participant thank-you script:

Write a thank-you script for any participants that agree to be observed.
Bonus: Go execute your moderated observation and practice your script on potential users.

Practice your script on a friend or colleague. The goal is to make it feel
natural and clear.

Human-Centered Methods for User Research Chapter 5

[131]

Moderated observation of users requires even more practice as creating your script and
getting users to participate in your observations is no easy task. Be prepared to hear "NO" a
lot. Moderated observation requires much more calculated experience as finding users who
are able and willing is hard. I recommend applying an incentive structure to lure potential
observation participants, such as a sign that says "let me observe you for one free coffee," or
add the incentive into your script – for example, "Hi, I noticed you haven't ordered coffee
yet? Can I buy you a coffee in exchange for letting me observe you?" (and then the
remainder of the script).

Our ability to gather participants in our observations is just as important as observing users
in the first place. If you can't get users to observe, you can't collect data. If you are using a
moderated observation method, I recommend testing your script on your team and
modifying it to be more successful at gaining participants. This process is very hard,
especially if you are not comfortable speaking with strangers. This is where a great script
can be handy for the user research team, along with substantial incentives, and you will see
a dramatic improvement in the number of observation partners. With practice, your team
will collectively improve your observation skills and your ability to attract users in the "in
the real world" to participate.

Along the same lines as moderated observation is a user interview.

Qualitative method 3 – user interviews
User interviewing is an art, whether you are the person being interviewed or the
interviewer. Great conversations do not happen just like that. They require lots of planning,
lots of practice, and a touch of luck. An excellent interview feels more like a great
conversation, rather than a series of questions that get asked. In culture, there are plenty of
examples of those that make their living from interviewing, whether it be podcasts such as
Without Fail with Alex Blumberg or WTF with Marc Maron, or on TV, Charlie Rose on PBS
or Conan O'Brien on his late-night talk show, where at some point, they interview their
guests. An HCI designer will need to practice interview sessions throughout their career:

Human-Centered Methods for User Research Chapter 5

[132]

Paying attention to those that are great at interviewing is worth your time, as there is a lot
to learn from them. One thing they do out of the gate is make their interviewees feel
comfortable and relaxed to set the interview tone and not pressure their interviewer with
an agenda. Of course, they have some questions they want to get through, but as the
interview goes on, the questions fit naturally into the conversation. Witnessing this is
known as the "art of conversation" or the "gift of the gab." What makes interviewing very
hard is that not everyone has this "gift of conversation." Furthermore, no two interviews are
the same, even if you ask the same questions.

The most important part of interviewing is to ask a great opening question and then sit
back and listen. If the interviewer is filling the conversation, they are damaging the
interview results. During interviewing, listening is essential. Good interviewing is
predicated on the types of questions the interviewee asks. To create a good conversation
with your user, you need to start with questions that prompt your user to elaborate and tell
a story.

Let's review some question types that elicit stories from your users during interviews.

Open question types
Open (-ended) question types are those that can be answered in-depth by your subject and
allow original, unique responses that are hopefully filled with context, causation, and
emotional qualities. Open questions help an interviewer see from the interviewee's
perspective because you get feedback in their own words and experiences. The goal of open
questions is to get your user to tell you a story about their experience that includes some
emotional quality to describe the process. Great open questions prompt a user to respond
with a meaningful story as a response.

Human-Centered Methods for User Research Chapter 5

[133]

Some open question examples are as follows:

Can you share a time when you were amazed by technology?
Walk me through your typical day.
Why do you use your [product/service/software application]?
When was that time you used [product/service/software application]? Can you
tell me about your experience?

Probing questions types
Probing questions work together with other open questions and look to dig into detail on a
particular matter. Good probing questions are typically used in response to something a
user has shared while answering an open question. Considered follow-up questions are
typically interjections by the interviewer with statements such as "Could you tell me more
about that?" or "Please explain what you mean." The goal of probing questions is to clarify a
point or help the interviewer understand the root of a problem. The challenge with probing
questions is that they are contextually based on the conversation happening during an
interview and are hard to write or plan. Good probing questions allow an interview to
"flow" and move seamlessly along while digging deeper into a subject or drilling down into
why a user has a problem. Improving probing questions requires lots of practice. Probing
questions shouldn't interrupt your interviewee but can be brought back around to help dive
deeper – for example, saying "You mentioned during your day you did X and Y didn't
work; can you tell me why it didn't work?".

The ability to probe into aspects of a user's story during an interview to uncover any more
profound emotional quality or get to the root of the problem is essential during
interviewing. Using probing questions serves in understanding something deeper. If used
ineffectively, they can quickly put an end to a great conversation, which is why listening
during an interview is so critical.

Human-Centered Methods for User Research Chapter 5

[134]

Speaking of things we should not do during an interview, don't ask unhelpful questions. A
couple of examples of unhelpful questions are multiple-choice questions – an in-person
interview is not a survey, and asking multiple-choice questions can be somewhat awkward
for the interviewer. Also, avoid closed questions or questions that can be answered with a
"yes" or "no" answer. Third, steer clear of leading questions, which are questions that
prompt or encourage the desired answer. An example of a leading question to avoid is "Do
you like our software?". This is a leading question because it assumes the user has a
positive relationship with the software solution when, in fact, they may not have a
favorable response at all. A leading question encourages users to answer a certain way, and
as an interviewer, you want replies to be as authentic as possible. Authenticity in an
interview is the by-product of great interview questions. Closed and leading questions
should be screened for during the interview planning process and removed from the set of
potential questions that an interviewer can ask a subject.

Regardless of the challenge presented by interviewing, the ability to talk with your users
and to hear directly from them is indispensable and the essence of qualitative research.
Interviewing requires a lot of preparation. First, you have to prepare for the interview
through planning. A good interview plan has three components:

A user interview goal:1.
For example, the HCI research team will talk with N users for ~n minutes to
determine whether our product is aligning with their needs.
Great interview questions:2.
Questions that align with the interview goal and are useful for understanding
your interviewee. All interview questions should be open or probing and be
screened for closed or leading question types.
Qualified interviewer:3.
A user researcher who is practiced in interviewing can capture the results
through recording, notes, insights, and personal revelations from interview
sessions.

Second, you have to acquire interview subjects. Soliciting users for interviews requires their
skills. Finding interviewees requires gathering subjects either through email, social media,
cold calling, or going out in the world and gaining subjects in public places. Getting
interview subjects to agree to talk with a research team or to spend their time talking with
you for an interview is hard. The interview "sales pitch" needs to be compelling.

Human-Centered Methods for User Research Chapter 5

[135]

A strategy for getting interview subjects is to put together a script first. An interview script
should have three things:

A great introduction (who you are and why you are requestioning a person's1.
time).
An interview time expectation (keep this under 20 minutes).2.
An incentive (butter up your interviewees with compliments and offer some3.
compensation).

An interview script might look as follows:

Interviewer: (Start with an icebreaker) "Hello, sorry for the interruption, I want to tell you
that I love your X (bag, shoes, shirt, and so on)."

Interview candidate: "Why thank you..."

Interviewer: "How rude of me, my name is X. I am doing user research on N, and you seem
like you might be willing to help me out? My questions will only take a couple of minutes
(insert an incentive – free coffee, ice cream, and so on). Do you have time?

Interview candidate: "Yeah, sure."

Interviewer: "Awesome. I appreciate this. I only have a couple of questions. Do you mind if
I record this conversation? It will only be used by me later when I am done with my
interviews."

Interview candidate: "I don't see a problem with that; let's do it."

Challenge 20 – Interview candidate script
Setup:

Get out a sheet of paper/Google Doc/Word Doc.

Part 1: Interview script:

Prepare to write out a script for approaching a user for interviews.1.
Add an icebreaker.2.
Write an opening statement for gathering an interview candidate.3.
Establish a valid incentive.4.

Human-Centered Methods for User Research Chapter 5

[136]

Part 2: Interview subject:

Define who your interview subject should be.

Part 3: Interview thank-you script:

Write a thank-you script for any participants that agree to be interviewed.1.
Bonus: Go execute your moderated observation and practice your script on potential
users.

Practice your script and consider a few options for incentives. Your
interviews should not be too costly but will be time-consuming.

Your interview sessions are a by-product of planning and gaining great interview subjects.
Be prepared to have a lot of people tell you "NO!" when asking them to be interviewed. It's
OK, people are busy; however, don't give up! With practice and your script, you will find it
easier to pitch, and you will also get better at choosing interview candidates that are willing
to say yes.

Let's discuss two interviewing methods that will help you gather tons of qualitative data
from your users.

One-to-one interview sessions
One-to-one interviews are where an HCI researcher recruits one interviewee and
establishes a time, location, and sets of questions to ask during the interview. Any
interview should be planned out with predetermined interview questions, and the
interview subject should align with the interview goal. An HCI designer should not shy
away from engaging in interview sessions starting with one-to-one interviews:

Human-Centered Methods for User Research Chapter 5

[137]

If you are new to interviewing, I recommend starting with one-to-one interviews
because they are easier to record. When talking, make sure your interviewee is comfortable,
is not distracted by recording technology, and is open to participating. By making your
interviewee comfortable and paying attention to the interviewee's body language, you can
assess how forthcoming or open they are to the interview. During an interview, make sure
to remind the interviewee of the time expectation and start with a great open question. If
your conversation starts to approach the time limit, make sure to respect your interviewee's
time and say, "We are almost at the end of our time unless you would like to continue?...If
not, perhaps we can continue our conversation in another session?". When the interview
comes to a reasonable end, thank your interviewee and exchange contact info for any
follow-up questions.

Individual interviews can be challenging to coordinate; however, they do not require hours
and hours to carry out, and with video conferencing technology, they can be set up and
recorded relatively quickly. I recommend practicing in-person interviewing before jumping
into conversations that are mediated through software technology because in-person
interviews are typically longer, have more room for probing questions, and are easier to
pick up on non-verbal communications. Non-verbal communication is the sending and
receiving of messages without using words, which includes body language, facial
expressions, kinetic movements, eye contact, touch, and physical space or presence. During
interviews, these non-verbal communications cues are ways to help an interviewer
understand the success or failure of an interview. A goal of one-on-one meetings is to gain
authentic responses from your users. Non-verbal cues can help the interviewer understand
how reliable an interviewee is, as well as where to interject with probing questions or even
finish and wrap up the interview.

Challenge 21 – One-on-one interview
Setup:

Get out a sheet of paper/Google Doc/Word Doc.

Part 1: Interview questions:

Write out five open questions.1.
Use your interview script to obtain an interview subject.2.
Interview a user (~15 mins.) and record the interview.3.

Human-Centered Methods for User Research Chapter 5

[138]

Part 3: Recording transcript:

Send the recording to a transcript service.1.
Analyze the interview for user pain points, emotionally charged experiences, or2.
interesting opportunities.

Evaluate your interview after and refine your questions. Which questions
worked best and which questions didn't lead to good answers? Practice
will make your interviewing skills better.

One-to-many interview sessions
One-to-many interviews are where an HCI researcher recruits many interviewees and
establishes a time and a location – typically round-table conference rooms. Sets of questions
are asked during the group interview. An HCI designer should practice before executing a
one-to-many interview session:

Like a one-on-one interview, the interview questions should be tailored to the group and
start with a great open question that the group can answer together. As an interview
moderator, you will need to direct traffic more meaningfully with your subjects. This might
look like keeping group members from talking over each other or selecting members in the
group to answer first. Group interviews are much harder to pull off effectively and should
be executed by a team member with previous experience. They are also harder to record
and to create transcripts. If you are new to interviewing, I recommend starting with one-on-
one interviews because they are easier to record. When group interviewing, make sure your
interviewees are comfortable, are not distracted by recording technology, and are on the
same level within a company or social group. Don't mix groups that have a different
organizational hierarchy.

Human-Centered Methods for User Research Chapter 5

[139]

For example, if you are working with a company that is looking to improve its internal
software, you might do group interviews with the C-suite together, then the managers, but
not together; the managers shouldn't be interviewed with their employees. Group
dynamics can play a considerable part in group interviews. As an interviewer, you want
participants to be free to speak their minds without fear of punishment or holding in
comments because they fear for their job.

Group interviews are seen as a way to save money and simplify coordination during the
interview process; however, the team doing group interviews will ultimately have to do
more work to schedule effectively, process the interview data, and moderate the interview
successfully. Although group interviews can be extremely tough to pull off, they can also
result in conversations, data, and perspectives on a product that would be nearly
impossible to reveal in a one-on-one interview. The very nature of group interviews means
that the participants impact each other in their responses to questions. Group members can
agree or disagree with each other, which can lead to really fruitful insights for the
interviewer.

Regardless of the interview being individual or group in nature, it needs to be recorded so
that it can be analyzed later in the process.

Qualitative method 4 – user recording, tracking
analysis, and interview
The final qualitative method we will discuss is the user recording method. The previous
qualitative methods all have some level of capture built into their process, from the
observer/interviewer notes to interview audio recording and transcriptions. The user
recording method can also be done independently or alongside any of the other qualitative
methods. User recording is just increasing the level and amount of record. Like the fly-on-
the-wall observation method, the user recording method substitutes technology in the place
of an observer or, even better, enhances the observer's data collection abilities. An HCI
designer should improve their ability to watch users through observations and recording
users:

Human-Centered Methods for User Research Chapter 5

[140]

User recording can be misunderstood as surveillance and therefore needs to be
communicated to your subject and set up with care so that the recording technology can
capture what the observer is looking to capture. Like the fly-on-the-wall method,
technology recording can impact how a user responds; therefore, the goal is to make the
user recording method as least distracting as possible. A great thing about technology
today is that it has gotten more reliable as well as smaller. It is relatively easy to record
high-definition sound with a smartphone or set up a camera recording with a small tripod
and a smartphone. The ubiquitous nature of smartphones has also allowed them to
disappear and not be focused on during an observation session. Just go to a restaurant and
notice how many people leave their smartphones out on the table as they dine. I am not
saying that is a worthy habit; however, the nature of this phenomenon makes recording a
user much more straightforward.

When using the user recording method, there are a few considerations for capturing a user.
For obtaining a user, many films can deploy tricks, and if you have the resources, using the
concept of coverage will help you gather more than one point of view as you observe a
user. Coverage, often called camera coverage, is the amount and kinds of
footage shot to capture an observation or scene. In film making, there is the luxury of actors
repeating the same scene to gather coverage of a scene for editing purposes. For
observation, your user will probably not want to do the same things over and over or
answer the same questions after you move the camera position; therefore, if you want to
gain more than one perspective, you should use multiple cameras recording at once.

When recording users, the recording technology should not be given any attention. It is just
there to capture the process.

Human-Centered Methods for User Research Chapter 5

[141]

Challenge 22 – Observation recording
Setup:

Using your smartphone or another recording device, set up a way to capture both the video
and audio of a user you are observing.

Part 1: Observation recording:

Capture an observation of the user using a piece of software.1.
Record enough of the experience that the user has clearly accomplished a task.2.

Part 2: Observation analysis:

Wait 1 day and then watch and listen to the recording you captured. See whether1.
your video helps you see something you missed during the recording session.

Evaluating your interview too soon will not give you a fresh perspective.
Our memories are not that good, and using the recording of the interview
will allow you to pick up on things you missed during the actual
interview.

Qualitative data captured during user interviews can lead to deep user insights and
knowledge about your users but requires a lot of practice over your HCI career. The reality
is that no HCI designer is automatically good at gathering qualitative data. The user
research methods are challenging for a reason, and if you want to call yourself an HCI
designer, you should dedicate and commit yourself to practicing this over time.

The numbers side of data collection
Quantitative data is data that can be counted and is collected through methods of
observation, calculating overtime, and applying statistics. Quantitative data is numerical.
The collection of quantitative data provides the means for which observers can establish
baseline averages.

HCI and UX tend to focus on quantitative research methods throughout the design and
development process and become especially relevant during user testing. Quantitative data
can help a team gather proof of whether that solution is working or not based on an
established user need. For example, say you have a research group for an application for
band members in a high school and it has 45 students.

Human-Centered Methods for User Research Chapter 5

[142]

 Understand a way to apply quality to the following dataset:

6 flutes
7 trumpets
12 drumlines
3 tubas
8 saxophones
9 flag guards

Understanding that each member logs into the band application an average of 225 times a
day or an average of 5 times per user per day is a quantitative result.

Through qualitative research, you might have understood that the user doesn't prefer to log
in there, because it helps rationalize and justify the qualitative user issue through
quantitative data.

Examining four quantitative research
methods
Quantitative data methods are vast and used by many more professions than just HCI,
which has allowed our methods to have value across the spectrum of an HCI team, as well
as your clients, who should be familiar with consuming data.

In order to improve your quantitative user research skills, let's discuss four quantitative
methods:

Quantitative survey method
A/B testing method
Usability analytics method
Accessibility compliance method

Human-Centered Methods for User Research Chapter 5

[143]

Quantitative survey method
The role of an HCI designer is to gather information for a number of sources. There is so
much to learn from your users over time. Just as the HCI designer is the "watcher" for
qualitative data, they should double down on that and also be the "collector." The collection
of data is about using the tools available to understand more about a system. Qualitative
observations and interviews, though incredibly useful, have the issue that they are hard to
scale. If you have one UX/HCI designer doing interviews, they are constrained by time and
space. This is where surveys come into play. A user research designer can gather lots of
quantitative data through surveys:

Surveys are a widely used method for gathering data. There are many, many ways to
conduct a survey, and in 2020, the internet offers more opportunities than ever before to
scale surveys to multiple users. There are so many survey tools available, including the
following:

Google Forms: www.google.com/forms/about/
Typeform: www.typeform.com/
Survey Monkey: www.surveymonkey.com/ ‎

Survey Gizmo: www.surveygizmo.com/

http://www.google.com/forms/about/
http://www.typeform.com
http://www.surveymonkey.com/%E2%80%8E
http://www.surveymonkey.com/%E2%80%8E
http://www.surveygizmo.com/

Human-Centered Methods for User Research Chapter 5

[144]

Surveys tools are software suites for building interactive forms that can be distributed to
users. The data gathered by surveys is captured and can then be analyzed to determine
answers from the survey. Many survey software tools allow users to create surveys,
distribute the survey, and then automate data reports on the survey results. The ease of this
process has made using and deploying surveys more viable and meaningful for HCI design
teams.

In UX, surveys are a prominent tool to gather feedback and measure human responses or
software solutions. With the introduction of survey software tools, the cost to execute a
survey is very low. Surveys can be quick and dirty – where they are put together on the fly
to gather data – or more strategic, where the survey is given a proper business scope
(timeline and budget), is planned (audience targets, survey hypothesis, and survey
timeline), constructed (survey questions) and analyzed (review and assess survey data).
Software design is connected to surveys through establishing goals for the sampling
method, the use of survey design best practices, avoiding common survey biases, and
improving survey evaluation.

To design a survey effectively is by no means simple. There are entire
books on survey design, and I encourage you to read up on all the ways to
improve your surveys. The quality of your user surveys will improve
your ability to evaluate your users' satisfaction.

Challenge 23 – Quick-and-dirty survey
Setup:

Using Google Forms or Typeform, create a new survey (log in, create a new survey, and add a
survey title).

Part 1: Create a survey:

Create a 10-question survey for gathering quantitative data:1.

4 multiple-choice questions
4 linear scale (1 low–5 high) questions
2 short-answer questions

Human-Centered Methods for User Research Chapter 5

[145]

Part 2: Share your survey

Publish your survey.1.

Share with 10+ users via email.
Share on social media (Facebook, Twitter, Instagram)

Part 3: Analyze survey results:

Wait 1–2 days and then gather the survey responses.

Surveys require some time to get applicants to complete them; don't close
the survey too early as it can limit your data.

A/B testing (split testing)
In marketing and research, A/B testing is a method that implements comparing two
versions of a product, marketing, web page, or software application to evaluate which
version will perform better. The A and B versions are presented to a selected set of users
at random. An A/B test should have equal testers of both A and B versions to create a
discernable differentiation statistically between each version. A software designer should
gather quantitative data through A/B testing:

Human-Centered Methods for User Research Chapter 5

[146]

In an A/B test, a portion of your users will be shown version A, and the rest version B.
Through A/B testing, an HCI research team can verify which version is getting more users
and therefore should be applied to the software system. Similarly, A/B testing can be done
on the same user, showing both A/B to them and evaluating which performs better. For
web pages, A/B testing is used to optimize a page for conversions, and an A/B test can be
used to understand the effectiveness of a solution in order from small to large:

Small:
Titles and headers
Content: Creating A/B titles of articles or content sections to evaluate
what draws users in.
Visual design: A/B versions of color or typography fonts can also make
a testable difference.
Call to action
Content: A/B for buttons. The types of UX language used (such as
"purchase" versus "add to cart") can have a decisive impact on your
conversion rate.
Visual design: The design of the call to action (CTA) can quickly be
A/B tested regarding color, the position, and the CTA shape.
Images
Content: A/B testing the use of images can be equally as important as
text. It is recommended to try different images.
Visual design: An A/B test can evaluate the effectiveness of size (big
versus small) or the aesthetic quality/image treatment of your photos
(filter A versus filter B) as well as location (right versus left, up versus
down).

Medium:
Forms
Content: An A/B test can evaluate how clear and concise a form is
(labels on the top versus labels to the side) or how effective the form is
for user completion (form A with an optional field versus form B,
which removes the optional fields).
Visual design: You can try modifying a form field title, changing the
form placement, formatting the size, and so on.
Navigation
Content: A/B test different page connections by offering multiple
conversion funnels in one or several parts of navigation.
Visual design: Navigation can have different colors, iconography
usage, typography, and so on.

Human-Centered Methods for User Research Chapter 5

[147]

Page structure
Content: A/B test two unique page structures to evaluate which layout
or page content is the most effective. You can A/B test the addition of a
carousel or not, or whether to include a banner or include a featured
product on the home page.
Visual design: The page design can be light or dark, a layout can be
inverted, and so on.
Pricing/sale conversion
Content: A/B testing on product pricing can be difficult because in
many businesses, you cannot sell the same product or service for a
different price. However, you can A/B test a Sale percentage or deals on
the product or service.
Visual design: If you sell products, offer different colors, shapes, or
material, and so on.

Large:
Landing pages
Content: A/B testing lead generation landing pages is important to
optimize your user experiences and test whether your user will take
specific actions.
Visual design: Landing pages can be designed differently with unique
visual design treatment to test whether the visual elements impact user
decisions.
Algorithms
Content: A/B test an algorithm to transform your visitors into
customers. This could be modifying the recommendation algorithm to
compare similar articles versus the most-searched products.
Visual design: Checking the way the algorithm displays content and
where on the page can be tested.
Business model
Content: Generate revenue models for business A and business B and
create an action plan test and generate additional profits.

A/B testing is one method that can be used to evaluate the effectiveness of the software.
How an HCI team chooses to deploy A/B tests is dependant upon their ability to design
and evaluate the results of the test. A/B testing is widely used in the web world for
marketing purposes and can be a valuable tool for considering both small and large aspects
of a software solution.

Let's practice exploring how to use A/B testing for a small component of your UI prototype
for ourselves.

Human-Centered Methods for User Research Chapter 5

[148]

Challenge 24 – A/B survey results
Setup:

Using Google Forms or Typeform, create a new survey (log in, create a new survey, and add a
survey title).

Part 1: On a separate sheet of paper, write an A/B survey hypothesis for your A/B survey:

Use the "If (variable), then (result) due to (rationale)" method.1.
For example, if we give 50 users $5 to test the UI form, then 90% will complete the steps
due to incentivizing the completion of the task.

Part 2: Create a 10-question survey:

Create a 10-question survey for gathering quantitative data:1.

Add a required question at the top of the survey to identify whether your user
came from an email or from social media.
Add four multiple-choice questions.
Add four linear scale (1 low–5 high) questions.
Add two short-answer questions.

Part 2: A/B survey results:

Publish your survey:1.

A: Share with 10+ users via email.
B: Share on social media (Linkedin, Facebook, Twitter, Instagram, Snapchat,
and so on).

Part 3: Analyze the survey completion results:

Wait 1 day and then gather the survey responses.1.
See which survey distribution had better results with the completion of your survey.2.
Bonus: Work out the success rate for the method. For example, if 5 out of the 10 people
you emailed completed the survey, you would have a 50% completion rate.

Multiple surveys using different questions can help you evaluate a similar
question through multiple lenses.

Human-Centered Methods for User Research Chapter 5

[149]

It is exciting to start to gather data around your design decisions. As you grow your A/B
testing skills, you will find that your software solutions will improve over time and your
ability to produce A/B tests will also improve. If an A/B test is taking your team too long to
complete, you could be wasting time and energy. I recommend using A/B testing early on
in your idea process to validate big ideas, such as the use of a feature, and then again later
in the process to validate specific design decisions, such as color usage, typography, or
software writing.

Along with gathering data on your software solution, your software itself should be
gathering data on how it is being used. This system monitoring is known as analytics.

Usability analytics
Real-world websites and software generate data that we can then analyze through usability
analytics. A software system can track where people arrive from and what they do once
they are on a website if you build your software to communicate those actions. On the
internet, this is managed by web analytics tools, which offer usability experts, business
analysts, and designers the ability to identify and diagnose issues and track user
interactions with a website or software. An HCI designer should gather quantitative data
through usability analytics:

Web analytics is possible through the addition of adding an analytics tag to the source code
of each web page, which allows the data to be monitored for incoming and outgoing traffic.
The most popular analytics platform is Google Analytics, which has a robust set of tools
and dashboards for understanding vast amounts of data.

Human-Centered Methods for User Research Chapter 5

[150]

As data gathering has become a big business, it has also created more scrutiny from users
and government regulations. This has created policies such as the General Data Protection
Regulation (GDPR) in the EU (and similar laws around the world). The analytics data
gathered from users may be more complicated but becomes more transparent to your users.

The professions that makeup web analytics are continually evolving, but we should be
aware of a few key aspects of a system that can be tracked:

Conversions
Pages per visit
Time per visit
Bounce rate
Exit pages

Critical to developing a relevant and effective analysis of your software design is creating
objectives and CTAs for your users based on their goals. It is possible to track everything,
but as an HCI designer, you are trying to use analytics data to help you with what you are
trying to solve. Along with tracking whether user goals are successful, you should work
with your clients or businesses to identify KPIs to measure the success or failures for those
objectives.

For example, a user's goal might be to find a product and add it to their cart. A business
KPI might be to increase web sales by 5%. Understanding whether web software is
encouraging a user to purchase can be tracked through counting how many users add
items to their cart.

Challenge 25 – Analytics data gathering
Setup:

Log in to Google Analytics using a demo account: https:/ ​/​support. ​google. ​com/ ​analytics/
answer/​6367342?​hl= ​en.

Part 1: Explore Google Analytics:

Explore the left-side column navigation to explore the analytics data:1.

Realtime
Audience
Acquisition

https://support.google.com/analytics/answer/6367342?hl=en
https://support.google.com/analytics/answer/6367342?hl=en
https://support.google.com/analytics/answer/6367342?hl=en
https://support.google.com/analytics/answer/6367342?hl=en
https://support.google.com/analytics/answer/6367342?hl=en
https://support.google.com/analytics/answer/6367342?hl=en
https://support.google.com/analytics/answer/6367342?hl=en
https://support.google.com/analytics/answer/6367342?hl=en
https://support.google.com/analytics/answer/6367342?hl=en
https://support.google.com/analytics/answer/6367342?hl=en
https://support.google.com/analytics/answer/6367342?hl=en
https://support.google.com/analytics/answer/6367342?hl=en
https://support.google.com/analytics/answer/6367342?hl=en
https://support.google.com/analytics/answer/6367342?hl=en
https://support.google.com/analytics/answer/6367342?hl=en
https://support.google.com/analytics/answer/6367342?hl=en
https://support.google.com/analytics/answer/6367342?hl=en
https://support.google.com/analytics/answer/6367342?hl=en

Human-Centered Methods for User Research Chapter 5

[151]

Behavior
Conversions

Review how data and insights change as you review by hour/day/week/month.2.

Part 2: What did you learn from the data?

Make notes on the quantitative data that stands out.

Google Analytics has a number of great tutorials on how to use its
platform. Explore them on your own.

Let's discuss how gathering analytics can help your websites be used by all your users. We
design software systems to be used by all, which requires considering all aspects of
accessibility.

Quantitative method 4 – accessibility compliance
For software, equal access is a way to ensure you are addressing the widest audience
possible and not discriminating, but access is about complying with regional and global
laws. An HCI designer should gather quantitative data on accessibility compliance:

Human-Centered Methods for User Research Chapter 5

[152]

The most universally accepted technical requirements for web accessibility is the Web
Content Accessibility Guidelines (WCAG) 2.0, Level AA. If you are applying these best
practices and testing your website and software systems against their guidelines, you can
be confident that your solution will be in compliance.

As an HCI designer, the goal is design software that is not only useful to your user but also
accessible and compliant with all government standards. You should be knowledgeable in
the following standards:

WCAG 2.0 (https:/ ​/ ​www. ​w3. ​org/ ​TR/​WCAG20/ ​)
Section 504
Section 508

To ensure that your websites meet the technical requirements of WCAG 2.0 or 2.1, let's
practice testing our prototypes.

Challenge 26 – Accessibility for all via
ANDI testing using WCAG 2.0
Setup:

Install and run ANDI: https:/ ​/​www. ​ssa. ​gov/​accessibility/ ​andi/ ​help/ ​install. ​html.

Part 1: Check accessibility:

Go to 10 web pages and evaluate their web page accessibility.

Part 2: Analyze the results:

Review which website had the highest scores and look into why.

Experiment with other accessibility tools as well and consider why or why
not accessibility is lacking on a web page.

Now that you have gathered some qualitative and quantitative data, let's find an
opportunity to use it.

https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.ssa.gov/accessibility/andi/help/install.html

Human-Centered Methods for User Research Chapter 5

[153]

Using qualitative and quantitative data
It is worth repeating: software design is hard! There is no quick and easy way to jump into
the end state where everything just works and your users are blissfully happy. To do it
well, you have to get your hands dirty. The reality is that HCI designers get their hands
dirty by gathering data from beginning to end. We establish user research and data as
essential to the process. The research we do is fed back. Along the process, different
qualitative and quantitative research methods are deployed to help us learn and address
whether our user's needs are being met.

Not to over-complicate the process, but qualitative methods are more valuable toward the
beginning of solving software problems and quantitive methods are more useful as
solutions get created. HCI designers should understand where in the software process life
cycle they are creating value through user research and data collection – for example, using
qualitative methods of user interviews to establish whether a user insight has great value
over time for a software team. The validation of that user insight will come down the road
through quantitive methods of user testing. Without the user research that establishes a
user insight, can you create a way to test whether that insight has been met?

Qualitative and quantitive methods are also not just used inside software design teams.
Many times, the research data that is gathered is used to communicate outside a software
team. Whether it be sharing progress with business stakeholders or adding content for
marketing materials, the research an HCI software team gathers over time has value. The
research we maintain as essential to building great software is also at the heart of building
great businesses. If you can use data effectively to create software that solves your user's
problems, then you can also use that data to communicate to your business, your
competition, and even your users. Software is a highly dynamic process and the feedback
loops and research methods we use can make the software design process explicit to your
users and the teams who design them.

Summary
Throughout this chapter, we discussed how HCI applies to software development and
building programs from computers over time. As we continue to get deeper and deeper
into the HCI design process and the knowledge that makes HCI a vibrant community, the
depth of your understanding should also grow, which is why we reviewed and practiced
data gathering methods for both qualitative and quantitative measurements.

Human-Centered Methods for User Research Chapter 5

[154]

As we have discussed, software design is very hard, and without learning from your user,
it is even harder – some would even say impossible. The value of data gathering for an HCI
designer reaches far into your future and continues to be a set of skills that every software
team is reliant upon. Mastering these skills through practice is essential to you growing as
an HCI designer.

In the next chapter, we will focus on part 2 of the execution of software design through HCI
design and development: human-centered thinking through cycles.

6
User Insights for Software

Solutions
As you may be starting to pick up, human-computer interaction (HCI) is intimately
connected to people through the research data we gather on them. A computer is good at
gathering data, and we design computer software in order to capitalize not only on this
collection of data but also on how this data feeds back into the software solution. Data on
its own will not help an HCI designer create great software. A computer cannot create a
software interface solution on its own, at least not yet; it is only an outcome of the work we
as HCI designers create. User research becomes critical in the software design process, and
we as HCI designers need to learn how to capitalize on our research data gathering skills,
which includes observations, interviews, surveys, focus groups, and so on. Gathering user
research data is only part of the challenge; next comes combining our user research data
(data gathering, analysis, and interpretation), aligning software to users (data gathering,
analysis, and interpretation), identifying user insights (data analysis and interpretation),
and designing human-centered solutions (GUI, user interfaces, and data visualization).

The topics you will be learning about in this chapter are as follows:

Synthesizing data into action
Rooting action to a deeper user purpose
Identifying and writing user insights
Aligning solution to users

User Insights for Software Solutions Chapter 6

[156]

Synthesizing data into action
In the previous chapter, we covered eight methods for gathering both qualitative and
quantitative data:

Qualitative methods:

Observation: The fly-on-the-wall method
The moderated observation method
The user interviews method
User recording: Tracking analysis and the interview method

Quantitative methods:

The quantitative survey method
The A/B testing method
The usability analytics method
The accessibility compliance method

Qualitative and quantitative research methods produce data on your user that an HCI
designer can work with to synthesize and analyze. The role of synthesizing is essential in
evaluating not just the data itself but also the lasting value any dataset can have on a
product or the HCI designer's decision making. Synthesis is the opportunity for the HCI
designer to be a detective with the data to find patterns, make correlations between ideas,
reveal connections between different users and organized themes and trends, uncover holes
or gaps, and ultimately highlight user insights.

The synthesis of data into actions is made up of two parts:

Analysis of facts
User insights

Part 1 – analysis of user research data
When working with qualitative and quantitative user research data, an HCI designer
should start with an analysis of the facts. Data analysis comprises reviewing the user
research data, and the synthesis of your data and facts into forms that can be analyzed.

User Insights for Software Solutions Chapter 6

[157]

For example, an HCI designer might have five interviews with their users, resulting in 8
hours or transcripts. Interview analysis is made up of reviewing the transcripts, while
synthesis is comprised of combining all the interviews together and pulling out all similar
comments, quotes, or issues shared between each interview session. Analysis of users'
research data involves evaluating and formating data findings from both qualitative and
quantitative datasets into a highly useable format. User insights are the highest value
output of an HCI designer's research analysis, which we will practice creating in a
challenge in this chapter.

Before we get to practicing analyzing our user research data, let's discuss three strategies
for analyzing data:

Collection and organization of user research data
Mining user research data
Sorting, clustering, and categorize the user research data

Collection and organization of user research data
The goal of this analysis is to make your user research data manageable. Data collected
includes written notes, digital notes, sketches, photos, audio recordings, video recordings,
and so on, and establishing a system for organizing this data will allow this raw
information to be efficiently shared between team members. If you are working with
remote teams, it is highly recommended to share source files through cloud storage
through Dropbox or Google Drive. The data you collect during any user research should
not be hidden, and the initial organization of data will help others who might happen to
also want to access the information.

For example, if you have 10 interviews, they are not all going to be equal. Organize them by
qualitative factors, such as how fruitful the interview was. The HCI researchers can
quantify their opinion on how useful the interview was and rank the interview either
through a folder structure of number or a color system or by including top-level note/cliff
notes, such as a README in a GitHub development repository.

User Insights for Software Solutions Chapter 6

[158]

Mining the user research data
Identifying what you see in user research data involves lots of analysis. Mining user
research data has a process that looks as follows:

Define the goals and the desired output for your user research: Identify1.
whether the user research data gathered is relevant.
Process the user research data: Review each participant to identify findings and2.
establish the quality of the user research data worth analyzing deeper.
Gather useful findings: Pull out user quotations, rephrased points, or unique3.
facts that support your goals.
Pay attention to key points: Review user research data for behaviors and4.
attitudes, as well as user needs and goals that can be pulled out of the data.
Color-code, tag, or classify your participant user research data: The types of5.
findings, or whatever system supports your desired goals as a research team,
should be categorized.
Look for any patterns or correlations: When reviewing your user research data6.
classification, see whether there are any larger insights to be understood for the
highlighted findings.

Visually organizing user research data is a common method for mining the
data. Depending on your team, it is recommended to use a physical office space that will let
you more clearly see what's there. Making your research visual can look a bit crazy, like
your research team are conspiracy theorists with newspaper clippings and a string
connecting patterns, but don't worry about the perception. Synthesizing data is a bit messy.
As an HCI designer, one thing you should know is that human beings are much better than
computers at finding patterns, especially when looking at multiple forms of user research
data. The HCI research team should evaluate qualitative and quantitative data together,
which makes making the data visual in an office even more essential.

Sorting, clustering, and categorizing the user research
data
The ability to manipulate and repackage your user research data is a required step when
trying to extract insights during analysis and synthesis. The HCI designer can apply their
own experience and curiosity to the qualitative and quantitative data during this process.
As you sort through the research data, you might find criteria to see whether any unique
patterns exist.

User Insights for Software Solutions Chapter 6

[159]

For example, does age have any correlation to how positive or negative a response was that
was given during a survey? (Is a 20-year-old 9 rating equal to a 50-year-old 7 rating?).

You might be able to reveal this pattern by analyzing the quantitive responses by age and
cross-referencing against their qualitative interviews to see whether survey reporting is
reflected in interview responses. There are countless correlations an HCI researcher can
make with a dataset, but it is essential to look at both qualitative and quantitative user
research data. Sorting and clustering techniques are used to reframe your data. If your data
is in a physical office, you can use the walls, Post-it notes, and color tags to associate data
and patterns that naturally occur during the process.

It is highly recommended to make your user research data as accessible and physical as
possible during this analysis. Sorting and clustering user research data can be achieved
quickly in an office workspace and should be done with a few team members. Combining
multiple HCI designers will lead to sorting and clustering and data patterns that could
never be achieved by one person alone. Executing user research as a team also has the
potential of creating meaningful user insights from reviewing other team members' user
research data, but also allows synthesis to occur as a group. User research should be shared
and evangelized among a team and organization as there is so much to learn by working
together and implementing a research feedback loop with your users.

Part 2 – user insights
User research comes in many forms, as we have discussed. As an HCI researcher analyzes
and synthesizes their user research into knowledge about their users, the goal of both
gathering all this data and analyzing it is to learn something deeper about your user,
software, or society. The goal is to get past what is obvious and be able to see into the
underlying motivations, underserved ideas, or new opportunities that can come from
deeply understanding your users through research. Our user research is a feedback loop,
and user insight becomes the center of that loop.

Identifying user insights
Once you have collected and organized your user research data, mined the resulting data,
sorted and clustered it using physical space, and revealed patterns and correlations in the
data, now you can deduce some bigger understandings about your users. User insights are
about your users, gathered from your data, and can start with a small hunch and then be
broken open through the synthesis of user patterns.

User Insights for Software Solutions Chapter 6

[160]

We can follow our small hunch and execute steps to identify and refine user insights:

Use conversation and synthesis patterns as a team: Discuss why you think each1.
small hunch is important. Speak with the user research team and figure
out what it means, and how you see that pattern in the user research. Recall
qualitative data through referencing exact quotations or experiences (facial
expressions, body language, feelings, and attitudes) from user interviews that
reveal the pattern. Apply quantitative data to see whether there is a match in the
user's sentiment. Patterns can be established as apples to apples – the qualitative
and quantitative data correlates – or apples to bananas – there is a disconnect
between qualitative reports and quantitative data. If a user says "I love using the
feature" during an interview but then rates the user experience of the software a
5 out of 10, why does the discrepancy exist? This might be a hunch to track down
or relate to a user insight if the pattern exists among multiple users.
Write one simple user insight statement: Draft each user insight on paper or2.
large Post-it notes as a team. Each user insight can emerge out of patterns or
points of synthesis; however, be sure to be flexible when you come back to them
later and change them.
Ruminate user insights: Like allowing bread to rise, a user insight also needs3.
some time to ruminate. Set your user insight aside for 24 to 48 hours. As a user
research team, do some other work and remove yourself from the user insights.
Return to the user insight statement after some time and see whether it is still as
surprising as it was when you first created it. If the user insight is good, it will
have grown your attraction to it just like bread. Now it is ready to bake and share
with the rest of your team, stakeholders, or clients.
Iterate the user insights with the team: Your original user insight might be in4.
the right direction but still needs some refinement during the baking period.
With user research, the HCI team thinks of different ways to express or articulate
the same user insight.
Share, test, and socialize your refined user insights: Show your user insight to5.
other teams who were not involved in the user research. During user insight
testing, give your tester some context, have them read the user insights, and
capture their reactions. If a user insight resonates with your tester and beyond
your research team, then you have confirmed a valid user insight. Ideally, you
would also test your user insight on your users to see whether they get it. If all of
these answers are yes, then you can solidify the user insight and share the result
with your broader team, stakeholders, clients, and users. User insights should
not be held secret once they are created; they are "truths" and can help drive
value and meaning to those solving software problems.

User Insights for Software Solutions Chapter 6

[161]

The fruit of user research is user insights. As an HCI designer, if you gather compelling
qualitative and quantitative research, it is like watering and feeding a fruit tree. A challenge
with any research is that user insights are not quickly created: they take time, like allowing
the fruit to ripen. The role of an HCI team is not only to advocate for the time to create
meaningful user insights but also to be practiced enough with the qualitative and
quantitative methods that they can quickly get the raw research materials to create juicy
fruit in the first place.

User insights are really hard to come by, and design teams who focus on making sure their
software design teams cultivate, generate, and socialize user insights will ultimately build
better software that is rooted in solving deep user needs and responds to "key truths" from
their research. User insights are about purpose, and it is purpose that can drive the mission
of a software team.

The data we gather over time is ultimately linked to understanding our users at a deeper
level. Let's discuss how our user research and analysis can help drive purpose into our HCI
team and broader organizations.

Rooting action to deeper user purpose
Let's take a birds-eye view of why HCI should care about a user insight in the first place.
We discussed how our user research, both qualitative and quantitative, gets analyzed and
synthesized, but a broader question remains: does researching our user really create better
software solutions?

User research for HCI designers is not an easy task. Not only are the skills we discussed
nuanced and somewhat time-consuming, but the real challenge comes when trying to
justify the need for user research in the first place. The skills of executing qualitative and
quantitive research together have the opportunity to paint an accurate picture of your user
and, if done thoroughly, they can have a lasting impact on software decisions and,
ultimately, the success or failure of software solutions. For HCI designers, we need the
research to understand our process, and some of you may focus solely on the research path.
If you are so lucky, great for you. The rest of us have to fight and scrap to include user
research into our projects.

User Insights for Software Solutions Chapter 6

[162]

As we discussed earlier, computers and software have changed rapidly over the past 40
years since the introduction of the internet. This rapid change has justified (incorrectly so)
the squeezing of user research budgets in some scenarios. Software moves quickly and
some software teams have taken to the shoot first, then aim mentality. Take Facebook, for
example. Mark Zuckerberg once said, "Move fast and break things." This idea is rampant in
entrepreneurs and start-up culture, where getting ideas to market first is valued over
making sure the product is what a user actually needs. Move fast can be perceived as
"ignore users" or "engineers know best." The lack of user research in these areas is only
starting to unravel in our current culture.

User research is constantly on the chopping block of client budgets, software projects, and
clients' expectations. There is the idea that deeply researching a subject or user is
prohibitive to executing a solution quickly. This is where the skills we discussed earlier and
the HCI designer's need to dispel that notion are essential. User research is not negotiable!
Our user researching is not just done during a specific phase of a project is but rather an
essential layer of the output. If you want a great HCI software solution, it comes with user
research along the way. The better the research, the better the solution.

The purpose of designing HCI solutions in the first place is linked to understanding how
humans and computers interact, which can only be understood through user research. They
are symbiotic. It is one giant feedback loop. What is truly awesome about being an HCI
designer is that during our research, we can uncover and validate the purpose of our users
and thus the purpose of your software solution.

What can be helpful is to think big about the purpose of our users. Let's start and get a
cosmic perspective and consider the deepest motivations that drive users with a challenge.

Challenge 27 – The deep purpose of people
challenge
Setup:
Get out a sheet of paper.

Part 1: Users' purpose:
Write down the purpose of people/users:

A. What is the purpose of human beings? Start generally and consider motivations.
B. Get user-specific: What is a teenager's purpose? Consider both external motivations
(school, culture, and social status) and internal motivation (self-worth, curiosity, and
knowledge).
C. What is the role technology plays in the defined motivations?

User Insights for Software Solutions Chapter 6

[163]

Part 2: Micro and macro motivations:
Write down both the micro (short-term) and macro (long-term) motivations.

Part 3: Analyze the motivations:
Review your motivations for correlations – for example, if a short-term motivation is to save money,
a long-term motivation might be to retire.

Don't just consider your needs. Go back to your data and consider what
you observed, heard, and experienced from your users during qualitative
and quantitative research.

Aligning to deeper motivations within our users that were only discovered during user
research and the creation of user insights is nothing short of profound. This is not just in us
believing that computers can help our users but rather that we have changed our users'
existence and helped them evolve. Through linking our computer to a deeper purpose, we
can validate our role and reasons for solving our users' problems. The back and forth
between understanding user research and relating that research to the purpose our users
create is why we analyze and synthesize our findings. Relating the deeper role and value
user research plays in the role of HCI design is executed through the creation of user
insights. A great user insight is the embodiment of the rationale and effort put into caring
about our user and doing a human-centered design research process from the get-go.

Identifying and writing user insights
As HCI gains popularity, one thing seems to separate the quality of designers: the foresight
and knowhow to articulate deep user insights. User insights are a catalyst for executing
human-centered software solutions. A great user insight is the by-product of the analysis
and synthesis of your qualitative and quantitative research data. To gain a deep perspective
on your users is no walk in the park. Conceptually grasping the idea of understanding your
user deeply is like recognizing water is wet. Insights hold value when they can help a
research team understand a "deep truth" about their users. User insights are necessary
when solving problems, but the challenge comes in understanding why.

User insights are hard! As an HCI designer, you will be called upon to assemble a solid
user insight, but it takes practice to get deep meaningful outcomes. People are generally
able to articulate something obvious, but the role of an HCI designer is to drive beyond
what is right in front of your face and dig deep below the surface, which becomes a
challenge.

User Insights for Software Solutions Chapter 6

[164]

Let's use IDEO's mad lib challenge to break down the user insight problem. Try to write
one for yourself.

Challenge 28 – IDEO's POV mad lib
Setup:
Get out a sheet of paper.

Part 1: Write a POV mad lib:
Write a sentence using the following POV mad lib:

{User/persona} needs to {user needs} because of {surprising insight}.

Part 2: Read your POV out loud:
Read your sentence out loud. If it sounds obvious, iterate your surprising insight.

You will not write a good POV mad lib on your first try. This will require
multiple rounds of iteration.

The exercise is a great starting place for growing your ability to start creating a user insight
from your research findings. Like I said, writing great user insights is very hard. The true
challenge comes when trying to generate something genuinely "surprising" when it comes
to your users. There is no cheat code for getting user insights: you just have to put in the
work and research and keep pushing at them and iterating them until they resonate with
you, your team, and your clients. Let's explore an example.

To help our user insight writing, we will use an IDEO POV statement, which might be
something like this:

POV version 1:

A teenage boy needs to eat more fruits and vegetables because vitamins are good for your
health.

Iteration is essential to improving a surprising user insight as the initial user insight
typically lacks this value. The goal is to dive deeply into the user insight to find that elusive
surprising factor.

User Insights for Software Solutions Chapter 6

[165]

The original idea is still kept in the insight but the outcome is improving three key
components:

Increase the emotional quality of your user needs.
Establish a broader context for your user.
Push the insight past an obvious insight into a surprising insight.

As a way to iterate your user insight, try to write a more surprising insight.

Challenge 29 – IDEO's POV mad lib iteration
Setup:
You will be using your POV insight from Challenge 28.

Part 1: Iterate insight:

Iterate your insight, improving the following:1.

The emotion of the needs of your user. 1.
Add context to your user/persona.2.
Push the insight to not be obvious but rather surprising.3.

Rewrite using the same POV mad lib from Challenge 28:2.

{User/persona} needs to {user needs} because of {suprising insight}.

Part 2: Share your insight with another person:

Test/read your POV insight to a friend, colleague, or significant other, and see whether1.
the insight is surprising.
If not, keep iterating. Some user insights need to be rewritten multiple times until they2.
resonate as surprising and meaningful user insights.

Part 3: Save your POV insight:
You should be able to speak about why your POV insight is "surprising" and record how many
iterations your insight went through.

User Insights for Software Solutions Chapter 6

[166]

Feedback here is essential. You might think you have a deep insight but
once someone else reads it, they might not see it or worse, they might
disagree. Share early and often.

POV version 2:

A growing teenage boy with many factors pulling at his attention needs to be more socially
supported by his peers when eating healthy food because, in his environment, his social
circle has more impact on his health habits than his doctor or parents.

An iteration of the IDEO POV might look something as follows:

Increases the emotional quality of the user needs so that it is noting not just a1.
teenager but a teenager with a bleak outlook.
Establishes a broader context for the user by adding that the teenager is growing.2.
Pushes insight past an obvious insight into a surprising insight by saying that3.
food decisions for a teenager are socially impacted, which is more surprising
than the obvious fact that vitamins are good for your health.

As you can see, generating a unique user insight is no simple task and requires
synthesizing research, observations, interviews, and life experience into every aspect of the
user insight. The mad lib will not magically produce a surprising truth, but with hard work
and practice, you can write a number of them until you get it right.

The role of an HCI designer/researcher is to go below the surface and find deep insightful
meaning from their research. With deep user insights, an HCI designer can drive a number
of solutions. User insights should not have a solution tied to them but rather influence the
team that uses the user insights to create a variety of solutions. When user insights are
deep, they can be used by an HCI design team for long periods of time as they reveal a key
"truth" that remains relevant, regardless of whether an HCI team creates a solution based
on the insight or not. Aligning user insights as the engines of potential solutions is the
greatest value they offer to your team.

Aligning a solution to users
An HCI designer must work very hard to refine their user insights into sharable
deliverables that can be used by their team, clients, and stakeholders. A great user insight is
like catching a big fish: you want to be able to mount and display it for all to see.

User Insights for Software Solutions Chapter 6

[167]

User insights have a paradox as they are essential in helping design teams create solutions
but should not contain a solution on their own. Rather, user insights should align an HCI
design team toward multiple solutions. The user insight can be valued by the number of
possible solutions it helps create. A great user insight will not have just one solution but
rather will allow an HCI team to devise multiple solutions. User insights drive an
innovation cycle for software teams:

Our user insight:

A growing teenage boy with many factors pulling at his attention needs to be more socially
supported by his peers when eating healthy food because, in his environment, his social
circle has more impact on his health habits than his doctor or parents.

Take the user insight I provided as an example. The user insight does not have a solution
attached to it. There are many, many ways to impact the social acceptance and education of
teenagers, as well as many, many ways to identify and impact social and environmental
risks associated with health.

One way to orient a user insight to help an HCI design team align with potential solutions
is to reframe the user insight as a how might we question.

User Insights for Software Solutions Chapter 6

[168]

A "how might we" user insight statement:

How might we help a growing teenage boy with many factors pulling at his attention that
needs to be more socially supported by his peers when eating healthy food because, in his
environment, his social circle has more impact on his health habits than his doctor or
parents?

The user insight is framed as a question that might spark a number of ideas and potential
concepts to be generated. A good user insight will produce lots and lots of ideas
(hopefully). One thing you might notice about our user insight is that is doesn't indicate
how a solution will be created and includes no technology references or problem causes.
The relative openness of the how might we statement from our user insight allows an HCI
designer to consider how software, applications, or technology might help solve the issues
targeted in the user insight.

If your user insight does not create a useful how might we question, then it might point at
two things. One, your user insight is not deep enough and you need to iterate or rewrite it,
or two, your user insight is too complicated and needs to be reframed so that ideas have
more opportunity to be produced from the user insight. An HCI designer wants their user
insights to be readily available and easily communicated to their clients.

Summary
Congratulations, you are officially halfway through the book and there is still a bunch to
learn and explore! Throughout this chapter, we started to get our hands on some skills and
activities that an HCI designer can use to start designing software. A unique factor for any
HCI designer is that a majority of the skills that we learn and the activities that we use are
addictive. How we think and learn impacts future versions and iterations, and this is why
we covered how to start learning and understanding from qualitative and quantitative
research data. Great software solutions are rooted in solving a deep user insight, which is
why we focused on and practiced formulating user insights of our own throughout this
chapter. As discussed in this chapter, user insights are not surface-level; they require lots of
digging and, hopefully, your insight is also a launching-off point that can be improved over
time with practice. I will continue to bolster the point that practice is what makes an HCI
designer better and, hopefully, the skills and challenges up to this point are methodologies
that you will repeat in your journey toward mastery.

In the next chapter, we will focus on more skills in part 2 of the execution of software
design through human-centered methods for user research.

7
Storytelling and Rapid

Prototyping
As you continue to grow your human-computer interaction (HCI) skills, it is essential to
practice these skills over time. Up to this point, we have learned how to combine our
research data from our new qualitative and quantitative methods, as well as to align our
software analysis to our users through data gathering, analysis, and interpretation. All of
the HCI user research has allowed us to understand something true and hopefully produce
a deep and meaningful user insight. The user insight is the kernel of a solution or multiple
solutions, and our role now is to unpack how we move from user insight to a software
solution. An HCI designer's job gets very tactical as we move from user research to creating
human-centered solutions. Based on the user insight, the HCI designer can start employing
human-centered storytelling methods that help to align software solutions to their users.

Now that you have a solid grasp of HCI user research, both qualitative and quantitative,
and how that research helps an HCI designer generate user insights, let's discuss what to
do with this valuable user research data. An HCI designer's success is ultimately measured
by the software they create and because HCI methods have produced more useable,
accessible, and useful software products for users, this chapter will cover how we take user
research and start to generate a software solution. This chapter will converge and focus
your research data into making a software solution via software prototyping. Software
solutions are at the heart of HCI design and the skills of prototyping will show you how to
go about taking your user research and building software solutions.

In this chapter, we will be capitalizing on data through the following topics:

Prototyping first
Systems diagramming
HCI interface best practices
Software prototyping tools

Storytelling and Rapid Prototyping Chapter 7

[170]

Prototyping first
As a growing HCI designer, you will start to see a lot of conversation in the community
about prototyping. The role prototyping plays in the creation of great software is hard to
overstate.

Prototyping, as we have discussed, is the creation of an early model of a software solution
that is built to test the success or failure of the solution with our users. In the HCI design
workflow, creating a prototype is essential to flushing out software ideas. The origins of the
word come from the Greek word prototypon (πρωτότυπον). When you first start to create
software solutions, they are never fully baked; they are early ideas and are supposed to be
primitive. Ideas should be plentiful and the research you do as an HCI designer should
uncover a lot of opportunity from a few useful insights.

Out of your user insights come ideas, concepts, or potential solutions. Many software
opportunities can be generated from a user insight by using an ideation method known as
a How Might We (HMW) statement.

For example, I created 15 ideas quickly from the HMW user insight statement presented in
the previous chapter:

HMW statement:

How might we help a growing teenage boy with many factors pulling at his attention
that needs to be more socially supported by his peers when eating healthy food
because, in his environment, his social circle has more impact on his health habits
than his doctor or parents?

The HWM statement is a jumping-off point from our user insight and a catalyst for creating
ideas.

I hope the HMW statement sparks ideas of your own. Before moving on to
reading my ideas, I recommend you write down some possible solutions
you thought of to the provided statement as practice.

Here are some ideas that I generated from the HMW statement:

Design and integrate health tips into the teenager's social media.
Create a social group for teenagers with a bleak outlook.
Incentivize healthy eating through a partnership with a celebrity.

Storytelling and Rapid Prototyping Chapter 7

[171]

Create a teenager-based social networking site centered around improving
behaviors including health.
Design a health education platform that is socially accepted by his peers.
Create a peer-to-peer network for sharing social taboos that are supported by
health tips.
Create a teenage persona that allows the teen to identify where his social
decisions impact his health factors.
Design a cookbook app for teenagers.
Create a messaging bot that shares health tips for teens.
Design an ad campaign targeted at the biggest health risk caused by a social risk.
Help teenagers track their health decisions with their friends.
Design a social app that rewards teenagers in groups for accomplishing healthy-
eating goals.
Create a teenager-based education platform that decreases the social risk of
healthy decisions.
Create a teenage robot companion that shares healthy tips among teenage gossip.
Design an email and text message communication platform that shares teenager-
relevant health tips.

None of these ideas are worth anything in the form of written concepts, although having a
lot of potential ideas from one user insight is incredibly helpful for the HCI team. Not only
can an HCI design evaluate many ideas against each other but it can also start to reveal
patterns and themes in the ideas created before moving onto the execution of the idea
through a prototype. Among my 15 quick ideas, there are some similar concepts:

Ideas 1, 2, 4, 6, 11, and 12: A social networking theme as part of the solution,
which is logical based on our audience as well as the subject. Plus, many social
application software solutions are available and suited to create something new.

Ideas 5, 8, 13, and 15: An education theme for improving and solving user
insight. The education theme is included because teenagers' brains are still
growing and improving behaviors is a goal achieved over time through practice
and education.

These themes are important and may directly influence the direction of a chosen
solution. Along with idea themes, you can also combine ideas into one stronger idea. For
example, there are six ideas on social networking, and three of those ideas –ideas 2, 4, and
11 – all deal with a social app of some kind.

Storytelling and Rapid Prototyping Chapter 7

[172]

What would it be like to combine the ideas? Let's take ideas 2, 4, and 11 – to make a social
health application.

For example, say we want to make a social health application targeted at teenagers that
focuses on health behavior-based content that includes incentives and rewards for
completing health challenges with their friends.

When generating ideas, make sure you don't jump into the combining stage too quickly.
Ideally, you are also combining your ideas with others on your team. The value offered by
many potential solutions and then reviewing them as a group will reveal more themes and
potentially more ideas that can be combined between group members. If many team
members generate ideas with a similar theme, it might point to a particularly deep idea that
is worth pursuing. Identifying the potential of ideas is the reason HCI designers generate
lots of ideas in the first place. If you generate a lot of ideas on a similar theme as a team, it
shows that those ideas may be more appropriate for addressing the user insight with a
solution.

Now it is your turn to try and create some ideas.

Challenge 30 – Idea/concept generation
Setup:

Get out Post-it notes, paper, and pens/pencils. This challenge will be based on your HMW
statement from Chapter 6, User Insights for Software Solutions.

Part 1: Post-it ideation:

Take 20 minutes to write down as many possible ideas, concepts, or solutions for your user
insight. (Do not self-edit during this process; any idea is worth writing down.)

Part 2: Capture your process:

Take a picture of your raw ideas.

Part 3: Idea patterns and categorization:

Categorize your ideas into themes.1.
Take another picture.2.

Part 4: Analyze your ideas category themes:

Reflect on the themes and combine any ideas/concepts/solutions that are similar.1.

Storytelling and Rapid Prototyping Chapter 7

[173]

Do not edit yourself during ideation. Any ideas should be written down,
even if it has already been created or seems outlandish. DO NOT EDIT
DURING IDEATION!

Of course, there are many other potential ideas for solving our user insight, but if the HCI
team continues to generate ideas that revolve around these themes, then you will know that
you have some potential. Every user insight will generate unique ideas and therefore have
unique idea themes. The goal is to generate a lot of ideas to give the HCI team options, as
well as to make sure the user is being the most served by the chosen idea. Hopefully, you
have created a bunch of ideas and continued to grow your ability to generate ideas from
your HMW user insight statement.

The number of ideas generated during the ideation of your user insight can be evaluated
through Laseau's funnel.

Laseau's funnel
In Laseau's funnel, Funnel one is the exploration of ideas – a funnel that is widening over
time and starts with user research and is fueled by user insights. Laseau's funnel is the
combination of the divergent elaboration of ideas and the convergent reduction of ideas
through prototyping:

Over time, the ideas produced increases as the HCI designer learns more about their users,
creates deeper user insights, and generally improves with creating ideas through practice.
The second funnel is an inverted funnel that focuses on ideas. This funnel can be
characterized through prototyping.

Storytelling and Rapid Prototyping Chapter 7

[174]

Ideas can only be understood if they solve the problem, not through testing. A prototype
makes an idea tangible and, in terms of software, it allows users to interact with the
solution and reduces the idea down to something that can be validated.

Once you have a number of idea themes going as a team from your user insight, the next
stage is to select a few ideas to move forward with and establish a hierarchy. If you have
lots of ideas to choose from, this is a better position as an HCI team. Ideas and their
potential are only evaluated against another idea. If you only generate one idea, then that is
the solution you have to pursue. This is a risky position. If your user insight is only
generating one solution as well, it is either a weak user insight or your ideas are also
lacking quality. Having only a few ideas are a clear warning sign that a deep user insight
has not been discovered yet. On the other hand, if you have lots of ideas, this allows the
HCI team to quickly pit ideas against each other and allow the best idea to win out.
Choosing ideas is not purely about the survival of the fittest, however; it is about
establishing a hierarchy of ideas. Let's discuss a few methods for determining how a team
can choose the best ideas.

Dot voting
During dot voting, participants choose from a set of options – in our case, ideas – and apply
their vote. Dot voting allows team members or stakeholders to voice and visualize their
opinion:

The dot votes should have enough votes per member to create a way for voting ties to not
occur – for example, if you have a team of 5 and you have 2 ideas that are being voted for,
each member should be given one vote. In the case where 2 ideas are voted for, the voting
tally can never result in a deadlock with an uneven set of votes. Avoiding voting deadlock
is a good thing. For the same reason, the supreme court in the USA has 9 justices; dot
voting should attempt to allow ideas to clearly be established via a vote.

Storytelling and Rapid Prototyping Chapter 7

[175]

2x2 opportunity matrix
Furthermore, the matrix can be made with any two factors that might help plot your idea,
but typically, it will include looking at value (idea originality/innovation) versus financial
stake (cost/implementation). When evaluating ideas that are worth pursuing first, look for
ideas that live in the highly innovative, low-cost space first. Plotting ideas on a 2x2 matrix
can also be helpful when done alongside the first dot voting method as the team may vote
for a highly innovative idea without considering the high cost associated with
implementation:

The goal in choosing an idea is not to create just one solution to rule them all, but rather
having lots of ideas, which is challenging, and evaluating the ideas before your team
commits more energy and cost to the solutions is essential. Many times, the best outcomes
of dot voting and plotting ideas on a 2x2 matrix are it allows you to move forward with a
few ideas in an established hierarchy. This idea hierarchy is where we lean on the need for
prototyping. Starting off with a number of opportunities also allows an HCI team to
practice the art of "prototyping first." Prototyping is making an idea tangible and ideas can
quickly be validated by your user through making a solution. Prototyping allows the HCI
designer to funnel the chosen ideas into possible solutions. Prototyping is an essential
process for any HCI designer. Let's discuss the types of prototyping options.

Storytelling and Rapid Prototyping Chapter 7

[176]

Paper prototyping (low fidelity)
For instance, paper prototyping is a process by which cheap paper models are used to
simulate a computer or web applications for building software quickly and cheaply. The
goal of paper prototyping is to act as the quickest method for simulating software and
getting your ideas into the hands of your users. Paper prototyping relies on tangible objects
(paper) for usability and functions under the assumption that the user will interact with the
paper object as they would with a real software application or technology. Paper
prototypes are a form of idea sketching that allows an HCI designer to think through a
software experience. Typically, paper prototypes are early models and are rendered
through low-fidelity visuals known as (sketched) wireframes. Sketched wireframes are a
representation of a user interface of a software product or website that is drawn by hand
rather than rendered via a software application.

A wireframe is higher fidelity than a paper prototype, which is typically sketched or hand-
drawn. A paper prototype is far from the final product and won't look like or feel like the
final product. If you put multiple wireframes together as a way to test an interaction or
software feature, where each paper screen mimics the possible design, the
wireframes/sketches are no longer static, elevating the sequence to a paper prototype.

In usability testing, a test participant is shown the paper prototype. The prototype
moderator has to get the tester to use their imagination as the paper version of the software
is not actually interactive but rather controlled by the tester. Paper prototype user testing
attempts to validate the initial interface ideas and can quickly uncover whether a software
feature or user interface design is working or not with the user testers. The prototyping
stage is when HCI teams should be looking to catch software design flaws, and the
flexibility and ephemeral quality of paper encourage experimentation and speedy iteration,
or even allows a radical change in direction if ideas are not validated with users through
prototype tests.

Paper is cheap and you can write notes right on the paper prototype or on the back of each
paper sheet or index card. The value of creating a solution though cheap materials is
essential when thinking through a software solution. Paper allows the ideas captured to not
be treated with too much reverence. This is really key when coming up with lots of ideas.
Your paper prototype is not precious; it is a sketch and should be batted around, poked at
for holes, and generally be run through the wringer. Among a software design team, paper
prototypes can represent lots and lots of options that are being explored. Through making
and having tangible outcomes as paper prototypes, a team can quickly move solutions
forward. Many paper prototypes operate as failures as a way to eliminate options, rather
than making only the "right" decision.

Storytelling and Rapid Prototyping Chapter 7

[177]

Making decisions about what not to do is just as important as what will work. If you create
a paper prototype in 30 minutes and test it with your users to discover your potential
solution is too hard to use, this method has now saved the software team countless hours of
work that would include polishing the design, developing code, and testing with users.
That idea just dies at the paper prototyping stage right then and there, but it only took up a
short amount of time to eliminate that option. A design team should be able to eliminate
lots of paper prototypes. It can be hard at times to kill ideas, but if you build prototypes
using cheap materials and are not laboring too long over the early solutions, then what you
end up moving forward with is ultimately stronger because it is the by-product of all the
failures that came before.

Paper prototyping is a great place to experiment and take a risk. During paper prototyping,
solutions are not yet truly invested in and have not been developed and scaled to all your
users. The experimentation with a paper prototype is contained and allows the HCI
designer to quickly validate their ideas. An HCI designer might ask, "Will X work with our
users?". A paper prototype can determine whether it will work or not. Trust me, there are a
lot of ideas where X just won't work, but you will never know until you test it. Paper
prototyping can also help improve the final product through making decisions, and this
includes what not to do.

I was once working for a large university client on redesigning their website. One big
problem they were trying to fix was helping undergraduate and graduate students choose a
major and a minor. They had 88+ majors and 60+ minors to choose from. This resulted in
quite a challenge for how students would be able to search and filter these many options.
During the process, the client wanted to shorthand the major/minor distinction as
MAJ/MIN. Luckily, we had done a quick paper prototype with this major/minor labeling
system and found students did not know what those labels meant, especially
undergraduate students. The ability for our team to anticipate our client and have a paper
prototype ready for them to experiment with, as well as some initial testing results with
students, allowed us to quickly move past this small but important usability issue that our
client was pushing for. Paper prototypes build accountability into the design process and
allow client and user tests to constantly tune a software experience.

Storytelling and Rapid Prototyping Chapter 7

[178]

There are three dominant accountability opportunities with paper prototypes:

Presenting a solution to your HCI team: Your team has a vested interest in a1.
software product being built correctly and wants to see how a solution might
work before committing time, money, resources, and marketing to a solution.
Paper prototypes allow an HCI designer to show thinking through a solution and
make the idea tangible for other team members to play with themselves. Many
times, it can be evaluated by other team members who will be involved in
implementing the solution through code. If the paper prototype is approved by
design and developers, then moving the solution forward will be more coherent
among team members who are all on the same page.
Validating the solution with users: Paper prototypes can be shared with users2.
that run through a set of existing paper mock-ups and give feedback based on
their experience with a given software solution. Similar to getting your team
members on board, validating a solution with users will also double the value
that a paper prototype holds. Team members and stakeholders can be reassured
that the solution is moving in the right direction through user testing.
Acquiring buy-in from your stakeholders (clients): Paper prototypes can be3.
equally shared with stakeholders who can also play with tangible solutions.
Similar to getting your team members on board, acquiring buy-in from your
stakeholders will also go a long way in delivering the value of design.
Stakeholders can be reassured that the solution is moving in the right direction
through data on paper prototype user testing as well as experiencing the
solutions for themselves.

Your stakeholders are most likely not your users, however, building a
rapport as well as a design rationale with your stakeholders and clients
will go a long way in communicating the value of human-centered design
throughout the process.

Paper prototyping is also a clever way to get stakeholders involved in the design process
early on. Not everyone needs to be able to build the final product, and many people,
including stakeholders, can have good ideas but not know how to execute them. Paper
prototyping can help democratize design, development, and rapid interaction design and
allow innovation to not be the responsibility of a small group of people in any organization.
As simple as it sounds, paper prototyping can bring more people into the design and
development process early on, which can lead to better products. Let's practice ourselves.

Storytelling and Rapid Prototyping Chapter 7

[179]

Challenge 31 – Paper prototype sketching
Setup:

Get out three sheets of paper (Letter or A4 paper).1.
Start by tracing your smartphone on your paper.2.
Trace 2^two screens per sheet – trace the screen size to scale.3.

Part 1: Idea selection:

Choose an idea from the ideation session challenge. Choose an idea that can be put into a1.
mobile app. This does not have to be your most innovative idea.
Start by determining the task your user will accomplish.2.

For example, a social health application targeted at teenagers that focuses on health
behavior-based content and includes incentives and rewards for users completing health
challenges with their friends (such as sharing a health incentive with five friends).

Part 2: Paper sketching:

Start sketching the software interface wireframe onto the screens.1.
Include as many paper prototype screens as needed to accomplish the task.2.
Take a picture of your sketched wireframes.3.

Part 3: Paper prototyping:

Cut out each screen and place it in the order of the task.1.
Flip through the screen to make sure your sketch wireframes have enough information,2.
context, and visual design so that a user, if asked, could accomplish the task you just built
as a paper prototype.
Record you moving through the paper prototype interacting with the model just like it3.
was a computer screen.

Storytelling and Rapid Prototyping Chapter 7

[180]

It is highly recommended that you explore a number of software tools for
quickly creating software prototypes.

An overview of tools can be found here:
https://www.prototypr.io/tools.

I recommend signing up for accounts with the following sites:

- www.InVisionapp.com
- https:/ ​/​proto. ​io/ ​

Also, it is recommended to get access to the following creative software:

- Figma
- Sketch App (Apple only)
- Abobe XD

Now that you have an early paper prototype, a very important aspect is to document your
process. A paper prototype operates like a tree in the forest: "If no one is around to hear a
tree fall, did it make a sound?". Similarly, if a paper prototype has no record, did it help a
design team make a decision? Documentation of the design process for an HCI designer is
really important not only for the HCI designer's own education but also as a way to involve
your clients and stakeholders without requiring them to make the sausage with you.

With the preceding example I described of the university, I was grateful to have
documented the paper prototype and when the major/minor suggestion was made, I had
the paper prototype images and user tests locked and loaded not just as justification for our
solution but also as a way to bring our client into the way we work. HCI design is not a
mystery and using methods such as paper prototyping allows us to make the process visual
and fold others that are not HCI designers into our way of working.

Paper prototypes can and should be fun to make and test. If your team is spending large
amounts of time building "perfect" paper prototypes, then the process is working against
you. Remember, paper prototypes are meant to be as follows:

Fast and cheap (low-fidelity)
Built for quick user testing and idea validation
Made with materials that can be manipulated (drawn on, folded, cut or torn, or
crumpled up and thrown away)
The first step in prototyping (a form of sketching)
Shared and made tangible for your team and users

https://www.prototypr.io/tools.
https://www.prototypr.io/tools.
https://www.invisionapp.com/
https://proto.io/
https://proto.io/
https://proto.io/
https://proto.io/
https://proto.io/
https://proto.io/
https://proto.io/
https://proto.io/

Storytelling and Rapid Prototyping Chapter 7

[181]

Once you have completed a few paper prototypes, the process will speed up and become
second nature to thinking through a software solution. Paper prototypes are really useful
for an HCI designer but can be more challenging to use for testing with users or even your
clients and stakeholders. This is where paper prototypes can quickly be turned into
clickable prototypes.

Clickable prototyping (mid-fidelity)
Similarly, clickable prototypes are just as they sound. They are a software simulation that
adds interactive mock-ups that can take users through product features and software user
flows. Clickable prototypes are built in order to test a user flow more efficiently than a
paper prototype. Clickable prototypes can be built through many different types of
software; I have seen clickable prototypes executed with PowerPoint through to more
complex clickable prototypes executed through user interface software such as Adobe XD,
Sketch, and Figma.

The goal of a clickable prototype is to allow a user to journey through a product and be able
to test how smooth, consistent, and easy to navigate the steps of interaction are. Like paper
prototyping, clickable prototypes should be quick to produce and be used to evaluate and
validate the design process. Clickable prototypes do a better job of mimicking the software
context and are typically facilitated by software themselves.

A possibility is also to make "empty shell" UI clickable prototypes using pure HTML / CSS
or XML. Empty means without functionality, just the UI. With some UI editors / interface
builders (https:/ ​/​bootstrapstudio. ​io/ ​), making a clickable mock-up can be quick even if
the generated code may not be reusable at scale. Such clickable mock-ups are also usable
for motion prototyping (see below). It is not in contradiction with "Front-End Prototyping",
because there is no functionality, just an idea of the UI. It allows us to see whether the
prototype mock-up is ultimately "codable".

Designing and developing a software product is complex and requires a lot of iteration, and
none of it would be possible without prototyping and user testing. Clickable prototypes are
built so that software design teams can test their solutions. If you are building clickable
prototypes only for yourself, your team, or your stakeholders, you are doing it wrong.
Although these team members are important, they are not your users. Therefore, your
clickable prototypes should be tested with your users first. Clickable prototypes are
invaluable from an HCI perspective for their ability to generate user feedback and they
often lead to discoveries that influence product development. At their best, clickable
prototypes allow features to emerge as a result of early-stage prototype testing.

Let's practice creating a clickable prototype out of our paper prototype.

https://bootstrapstudio.io/
https://bootstrapstudio.io/
https://bootstrapstudio.io/
https://bootstrapstudio.io/
https://bootstrapstudio.io/
https://bootstrapstudio.io/
https://bootstrapstudio.io/
https://bootstrapstudio.io/

Storytelling and Rapid Prototyping Chapter 7

[182]

Challenge 32 – Clickable paper prototype
Setup:

Get out your materials: paper prototype screens, camera/smartphone, and the InVision1.
app (or another prototyping application).
Start by iterating any paper screens from paper prototyping challenge 29. Redraw any2.
screens based on feedback. All screen sketches should have enough content and context to
be understood by your user.
Take photos of each screen in your paper prototype sequence. Lay the screens flat and do3.
not take photos at an angle.

Part 1: Prepare paper sketched images:

Crop each photo to just the screen size and relabel each photo with #-app-screen-1.
title-type-version, for example, 01-SocialHeathApp-SignIn-pp-v1.
Download images to your computer in a folder called App-paper-prototype.2.

Part 2: Use InVision to create a clickable paper prototype:

Log in to invisionapp.com.1.
If you don't have an account, register for a free account (allows you to create one2.
prototype for free).
Create a mobile prototype and add a label.3.
Upload/drag and drop your paper prototype screen photos.4.
Using the build tool, add hotspots to your paper prototype and connect the screens5.
together.

Part 3: Test your clickable paper prototype:

Select the preview mode (eye icon); you can click through your paper screens.1.
From the upper-right corner, select the SMS-to-mobile button and share your clickable2.
app to your phone for mobile testing.

Part 4: Share your clickable paper prototype with users:

Share your clickable paper prototype with a friend for some feedback.

Use social media (Twitter, Facebook, or LinkedIn) to get people to use
your prototype. You would be surprised at who will interact and give
feedback.

https://www.invisionapp.com/

Storytelling and Rapid Prototyping Chapter 7

[183]

Now that you have made your paper prototype into a clickable prototype. you have a faster
way to validate your idea. If you test it with users, you can quickly make iterations to your
idea by moving your paper sketches into user interface software for building digital
wireframes and eventually user interface design compositions. There are many tools for
creating digital wireframes, but software solutions should iterate quickly based on user
tests. I recommend exploring a number of digital wireframing and UI tools but personally, I
use the combo of the Sketch app and InVision App with the Craft plugins to speed up my
prototyping process. Sketch and InVision together can manage prototypes through the
Sketch application and keep your prototypes synced online for quick updating and user
testing. Use user interface software that speeds up your team's ability to produce clickable
prototypes as a team over time. Getting everyone working with similar tools will speed up
the ability to share the prototyping load and produce solutions and software systems that
can iterate and scale.

Challenge 33 – Clickable wireframe prototype
Setup:

Log in to the InVision App. 1.
Open digital user interface software (I recommend using Sketch, Adobe XD, or Figma).2.
Recreate your paper prototype sketches with digital software.3.

Part 1: Import paper sketches into a digital tool:

Create artboard screens and label artboards for your screens.1.
Import images of your screens to your digital artboards.2.

Part 2: Digital wireframing:

Recreate your paper sketches digitally as wireframes.1.
Export your digital screens.2.

Part 3: Wireframe clickable prototyping:

Log in to invisionapp.com and select your paper prototype.1.
Upload/drag and drop your digital screens.2.
Using the build tool, add hotspots to your digital screens and connect the screens3.
together.
Select the preview mode (eye icon) to click through your digital clickable screens.4.

Storytelling and Rapid Prototyping Chapter 7

[184]

Part 4: Share your clickable wireframe prototype with users:

From the upper-right corner, select the SMS-to-mobile button and share your clickable1.
app to your phone for mobile testing.
Share your digital clickable prototype with a friend for some feedback.2.

Make sure your images are cropped to the aspect ratio of the device. Do
not import a screen at 900 px x 900 px that is designed for an iPhone X,
which has a screen size of 1,125 px x 2,436 px.

Practicing with user interface software is essential to growing your software design skills.
Using tools such as Sketch, Adobe XD, or Figma should be done in the service of building
prototypes that can be tested by users. If you are new to software design, your prototypes
may not be very good, so build a lot of them and practice executing a lot of different
solutions through sketching testing iterating digitizing wireframes testing iterating
digitizing high-fidelity comps testing iterating, and so on. As with any craft, software
design requires time to get better and faster. If you and your team practice with the tools
that build prototypes together, then, in turn, your prototypes will improve and your
software solutions will get better as well.

Clickable prototype tools such as Sketch and InVision are great for creating and sharing
mostly static prototypes, and they work well for the majority of day-to-day design tasks.
But there are limitations, and clickable prototypes can only address certain aspects of an
interactive system. Clickable prototypes often look, behave, and feel a bit different than the
intention of the final coded product. The gap between the prototype and the product exists
throughout the prototyping process. The goal is to close the gap from paper to high-fidelity
prototype versions and work with your team to faithfully represent what you can build in
your prototyping process. At each prototyping stage and iteration, the gap gets smaller.
This is where motion prototypes come into play.

Motion prototyping (high fidelity)
Likewise, motion prototyping uses software to add motion and interaction to user interface
elements in an interface prototype. Typically, motion prototypes are applied to the
prototyping process when clickable prototypes become limited. Motion can be achieved
through code but requires more time and therefore should be figured out via a prototype
first before committing to the effort during the production of the software.

Storytelling and Rapid Prototyping Chapter 7

[185]

For example, suppose I want a drag and drop feature for a list. A static prototype would
have a hard time approximating this behavior for a user. A motion prototype, on the other
hand, would allow users to seeing the object animate during a drag and drop behavior, as
well as see how the element might move and animate from position to position.

Motion is essential to prototype for user interface elements as the addition of dynamic
movement within a user interface can help train your users and improve not only their
usability but also their overall software experience. Through building motion prototypes,
an HCI team can add nuance and polish to a software solution.

Motion prototypes attempt to figure out three main questions about an interface's behavior:

The behavior of a user interface motion: How does a user interface element1.
respond during an interaction? For example, if you hold down an item to drag
and drop it, does it shake, pop, or glow? Animation can help define this
behavior.
The behavior of a user interface feature: How does a user interface feature2.
respond during the execution of a feature? For example, when swiping to the left
to delete, as you drag a card to delete it, does it slide off the screen, fold, detach,
or crumple up?
The behavior of a transition: As a user moves between screens, features, or3.
content, how does the software transition present itself based on the feature? For
example, when you load a new page on a website, does the content transition
from top to bottom to mimic a scroll? Do images slide in from the left to indicate
a sliding motion?

Motion prototypes are typically more sophisticated and can require more specialized
software to help execute animations, such as that of Adobe After Effects. Because of the
added sophistication and nuance of motion design, motion prototypes are typically not
where an HCI designer will start with prototyping. Motion prototypes will inherit a high-
fidelity quality as testing motions or transitions is not helpful in design decisions that might
be invalidated through an easier and faster clickable prototype.

One value that motion prototyping has is that your prototypes start to get really close to the
desired end product. Adding motion allows your user to participate in this experience and
can be very helpful, especially as you get closer to finalizing the software design.

Storytelling and Rapid Prototyping Chapter 7

[186]

A point of caution!

Make sure your motion prototyping team and your development team are
aligned on their capabilities during motion prototyping. Some motion
prototyping tools are very robust and can make a screen experience do
lots of things that, during the coding of the final product, might take your
development team weeks to produce. This could be problematic as your
client or user has been shown a prototype that does more than what your
team can faithfully execute. Prototypes are meant to design what your
team can develop within the software design budget and should be used
to help set expectations with clients.

Frontend prototyping (low to high fidelity)
As a result, frontend prototyping uses code to quickly produce interactive software
solutions and typically focus on the visuals of the screen interfaces. Frontend refers to
frontend technologies used in coding web interfaces, typically HTML/CSS and JavaScript.
Many frontend prototypes will utilize a code framework to speed up the development
process and allow the frontend team to focus on producing a working prototype, rather
than writing all the code from scratch. Popular frameworks are Bootstrap, Angular, React,
and Vue.js.

Many HCI designers and developers think coding prototypes first is the most powerful
way to test them. The end product is code anyway, so why not prototype in code along the
way? There are many ways to harness HTML/CSS and JavaScript and make good use of it
for building web prototypes.

Depending on your software design team's skillset, the role that frontend prototyping plays
is a by-product of how familiar the team is with coding. Frontend prototypes typically
break down into two categories:

Low-fidelity, high-functionality frontend prototypes: A version of frontend1.
prototypes that are used by developers. Typically, the visual elements are not to
spec or are missing altogether, but the functionality of the code is high.
For example, a carousel prototype, where the coded prototype allows the user to
actually swipe through boxes, move left to right, and zoom in/make a selection
but does not offer the design elements for text areas, call-to-action-buttons, and
so on. Such prototypes are generally lacking in robust CSS or customized
JavaScript.

Storytelling and Rapid Prototyping Chapter 7

[187]

High-fidelity, high-functionality frontend prototypes: A type of frontend2.
prototype that offers a high level of visual detail along with a robust set of
functionality. Typically, these frontend prototypes are nearly final versions of the
actual project.

The role frontend prototypes play in the production of software can have huge implications
when it comes to producing production-ready scalable software solutions. A frontend
prototype has code that can be refactored or used directly in a software solution.

Challenge 34 – Frontend clickable prototype
Setup:

Log in to GitHub.1.
Create a GitHub repository.2.
Open your text editor (I recommend VS Code).3.
Recreate/code your digital wireframes using HTML/CSS/JavaScript with Bootstrap.4.

Part 1: Code HTML and CSS:

Create an index.html page.1.
Link Bootstrap (CSS and JavaScript) through the CDN (Content Delivery Network).2.
Code and recreate your sketched wireframes digitally as wireframes in code.3.
Add interactivity via Bootstrap and custom CSS.4.

Part 2: Test in the web browser:

Display your screen in a browser.

Part 3: GitHub repository:

Log in to GitHub and create a frontend prototype repository.1.
Clone your repo to your computer.2.
Push your frontend prototype screen to GitHub.3.

Part 4: Host your web page using GitHub Pages:

Using GitHub Pages, host the web page.

Storytelling and Rapid Prototyping Chapter 7

[188]

Part 5: Share your web page coded prototype:

Share your frontend prototype URL with a friend for some feedback.

GitHub is highly shareable and has a large community of developers and
open source users who are interested in providing feedback.

The prototyper (developer)
Being able to develop a design-oriented frontend prototype brings huge value as an HCI
designer. The reality is that our world is built out of code and creating products from this
code is what we do for a living. As HCI designers, our role is to know more about code, not
only so that we can determine the possibilities and limitations of current technologies but
also so that we can code more demanding prototypes much faster for our users.

However, jumping directly into code is not a quick fix. There is no substitute for following
the prototyping process and validating solutions through the quickest means possible.
Frontend prototypes should not be where an HCI team starts. However, if a paper
prototype is enough to validate an idea and the frontend prototyping team is clear about
the software intentions from the sketches, then there is no reason why a frontend prototype
can't get started directly from a sketch. With practice, frontend developers can quickly
approximate solutions and use open source code frameworks such as Bootstrap 4 or
Foundation to improve their prototyping speed.

In reality, a robust prototype should be executed by a skilled frontend developer. Along
with skill in writing code comes the ability to apply shortcuts, all while executing coding
best practices, the proper code architecture, and efficient data models. Once you have skills
in the frontend, you can then apply that knowledge to frontend frameworks that use
component-based, view-layer-oriented concepts, such as Bootstrap, Vue.js, or React. The
frontend framework will speed up your prototyping process. Designing and coding
frontend prototypes have become faster than ever before but must be executed and tested
with users, rather than skipping those steps because it is easier or faster to market.

Now that we have an understanding of the prototyping process, let's relate how we start
building out complex systems that need multiple aspects or features to be prototyped over
time.

Storytelling and Rapid Prototyping Chapter 7

[189]

System diagramming
Another point to consider is system diagrams – a visual model of a system, its components,
and their interactions. With supporting documentation, it can capture all the essential
information of a system's design. There are many variations of diagramming styles, but all
attempt to articulate the interaction between humans and computer systems. System
diagrams can be used as thinking tools. By studying a system diagram, you can discover
problems and shortcomings of the design it represents, and at the same time, construct a
final document that will capture the entire design. Thus, system diagrams should be
constructed during the design process, and used as the basis for refining and specifying
various aspects of the system:

There are many methods for developing a system diagram, but I recommend starting with
a pencil and paper or a whiteboard before jumping into the software to build a system
diagram. The reason is that thinking about systems at first can be messy. There are a lot of
moving parts to identify, which requires a looser method at first to capture all the parts.
Pencil and paper can be quickly manipulated and part of the system can be quickly erased,
moved, or relabeled on paper easier than in software. Recommend starting with the more
simple oval, rectangle, diamond method before utilizing more complex systems like
Unified Modeling Language (UML: https:/ ​/​www. ​uml- ​diagrams. ​org/ ​).

https://www.uml-diagrams.org/
https://www.uml-diagrams.org/
https://www.uml-diagrams.org/
https://www.uml-diagrams.org/
https://www.uml-diagrams.org/
https://www.uml-diagrams.org/
https://www.uml-diagrams.org/
https://www.uml-diagrams.org/
https://www.uml-diagrams.org/
https://www.uml-diagrams.org/
https://www.uml-diagrams.org/
https://www.uml-diagrams.org/

Storytelling and Rapid Prototyping Chapter 7

[190]

Software-based diagrams are easier to maintain and to produce in a neat and concise form.
The final decision is, however, up to each design team.

Challenge 35 – System diagram
Setup:

Get out the required materials: paper and pencil/pen and a system diagram key. 1.
Think of your prototype as a system of parts. Make a list of all the parts that make up2.
your application (the system can include app features, technology requirements, business
functions, user platforms, data systems, and so on).

Part 1: System diagram:

Identify the primary system or your prototype.1.
Add your primary system to the middle of your diagram.2.
Organize relationships with your other systems, drawing lines and adding labels.3.
Apply the system diagram key.4.
Add flow or direction to show how your system works.5.

Part 2: Share your diagram:

Share your diagram with a friend for feedback.

Part 3: Iterate your diagram:

Iterate your system diagram based on feedback.

Diagrams are hard and get complex very quickly. Start on paper and
make sure your logic and sequence are sound before moving on to a
digital tool.

Now that we can consider a larger software product through system diagramming and the
prototyping of individual features or interactive parts, let's cover how we maintain and
dictate quality throughout our process.

Storytelling and Rapid Prototyping Chapter 7

[191]

HCI interface best practices
HCI can be used in all disciplines wherever there is a possibility of using a computer, and
because of the widespread use of computers, HCI practitioners should strive to apply their
craft meaningfully together as a collective group. Best practices are a set of guidelines,
ethics, or ideas that represent the most efficient or prudent course of action. Best
practices are often set forth by an authority, such as a governing body or management;
from an HCI perspective, they have been set out by thought leaders and pioneers in this
field. Best practices come into play as a process for improving quality and creating
standards that are used across products. Best practices are always evolving and adapt to
new technologies, modalities, and audiences over time.

The prototyping methods we just discussed should do their best to apply some or all of
these best practices. There are a number of best practices and we will cover them here.

Challenge 36 – Researching HCI user interface
best practices
Setup:

Create a new Google Doc to document research and user interface best practice notes.

Part 1: Shneiderman's 8 golden rules:

Research Ben Shneiderman.1.
Write down each guideline and why it is useful to a user interface.2.

Part 2: Don Norman's 7 principles:

Research Donald Norman's book The Design of Everyday Things.1.
Document the 7 stages that can be used to transform a difficult task.2.

Part 3: Jakob Nielsen's 10 usability heuristics:

Research Jakob Nielsen.1.
Research his 10 usability heuristics.2.
Document each heuristic.3.
Research and find a sample of heuristic evaluation.4.

Storytelling and Rapid Prototyping Chapter 7

[192]

Part 4: General interaction best practice guidelines:

Research interaction best practices.1.
Document the list.2.

There are many resources, and I recommend using some heuristics
Chrome extensions.

Now that you have familiarized yourself with some user interface best practices for HCI,
you might see that there are a few overlaps. The reality is that each of the HCI
designers/user experience (UX) designers/computer scientists who have contributed to
these lists has been influenced by each other and they all concentrate on the same problem:
humans using computers.

Challenge 37 – Researching software tips and
tricks
Setup:

Create a new Google Doc to document research and software tips and tricks.

Part 1: Information display tips and tricks:

Research information display for HCI and software.1.
Write down each recommendation and why it is useful to a user interface.2.

Part 2: Data entry tips and tricks:

Research data entry for HCI and software.1.
Write down each recommendation and why it might help your user.2.

There are lots of recommendations, so make sure to bookmark useful
websites or resources.

All of these best practices are internalized by an HCI team and executed into software over
time. Software design teams will also go through the effort of producing documentation
about their software known as interface design guidelines.

Storytelling and Rapid Prototyping Chapter 7

[193]

Interface design guidelines
From your research, you will start to see three categories of HCI design guidelines: general
interaction, information display, and data entry, which hopefully you found to be great best
practices during your challenge. Interface design guidelines are designed and maintained
to build an understanding of the user interface best practices and components, along with
user interface behavior, through supplying real examples for a design and software
development community.

Interface design guidelines are software documentation that is helpful in outlining a user
interface system. The values of user interface guidelines are as follows:

A collaboration between multiple team members.
Define user interface component specifications (UI specs).
Help a team keep a consistent experience throughout a software product.
Describe best practices.
An educational document.
Developers can refer to guidelines and prebuilt code components to quickly
assemble user interfaces.
Relatively easy to update guidelines based on new technology, new standards,
and changing trends.
Versionable and iterated on overtime.

The guidelines typically include the following (if you are not familiar with these terms, use
Google to look them up):

Style guidelines
Layout guidelines
User interface component guidelines
Typography guidelines
Interaction and behavior guidelines
Platform guidelines
Accessibility guidelines/WCAG 2.1 (https:/ ​/​www. ​w3. ​org/ ​TR/​WCAG21/ ​)
Reusable design pattern guidelines

Interestingly enough, design guidelines are no longer internal documentation and have
been opened up to the broader software design community in order to increase the
education of those products. They are also being used as a marketing component for
expressing the rigor and value design holds for a software team. We will cover some
prominent design guidelines in the following challenge.

https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/

Storytelling and Rapid Prototyping Chapter 7

[194]

Challenge 38 – Researching popular user
interface guidelines
Setup:

Create a new Google Doc to document research and popular user interface guidelines.

Part 1: Information display tips and tricks:

Research information display for HCI and software:1.

Apple user interface guidelines: https://developer.apple.com/
Microsoft Design guidelines: https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/
windows/ ​uwp/ ​design/ ​

Google's Material Design guidelines: https:/ ​/​material. ​io/​design/ ​

Airbnb design methodology: https:/ ​/​airbnb. ​design/ ​the- ​way-​we-
build/ ​

Dropbox design guidelines: https:/ ​/ ​www.​dropbox. ​com/ ​branding

IBM user interface guidelines: https:/ ​/​www. ​carbondesignsystem. ​com

Oracle Alta guidelines: https:/ ​/​www. ​oracle. ​com/ ​webfolder/ ​ux/
middleware/ ​alta/ ​index. ​html

US government websites guidelines: https:/ ​/​designsystem.
digital. ​gov/ ​

Part 2: Data entry tips and tricks:

Document what is similar and what is different about each guideline documentation.

You will be an expert at reviewing software documentation. Start with the
system you are already familiar with.

Now, you might think these best practices feel like a lot to consider, and you would be
right! The role of an HCI designer is not to be taken lightly; we need to care deeply about
our products and our users, which not only includes how we execute best practices but also
how we maintain a quality software product over time.

https://developer.apple.com/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://material.io/design/
https://material.io/design/
https://material.io/design/
https://material.io/design/
https://material.io/design/
https://material.io/design/
https://material.io/design/
https://material.io/design/
https://material.io/design/
https://material.io/design/
https://airbnb.design/the-way-we-build/
https://airbnb.design/the-way-we-build/
https://airbnb.design/the-way-we-build/
https://airbnb.design/the-way-we-build/
https://airbnb.design/the-way-we-build/
https://airbnb.design/the-way-we-build/
https://airbnb.design/the-way-we-build/
https://airbnb.design/the-way-we-build/
https://airbnb.design/the-way-we-build/
https://airbnb.design/the-way-we-build/
https://airbnb.design/the-way-we-build/
https://airbnb.design/the-way-we-build/
https://airbnb.design/the-way-we-build/
https://airbnb.design/the-way-we-build/
https://airbnb.design/the-way-we-build/
https://www.dropbox.com/branding
https://www.dropbox.com/branding
https://www.dropbox.com/branding
https://www.dropbox.com/branding
https://www.dropbox.com/branding
https://www.dropbox.com/branding
https://www.dropbox.com/branding
https://www.dropbox.com/branding
https://www.dropbox.com/branding
https://www.dropbox.com/branding
https://www.dropbox.com/branding
https://www.carbondesignsystem.com
https://www.carbondesignsystem.com
https://www.carbondesignsystem.com
https://www.carbondesignsystem.com
https://www.carbondesignsystem.com
https://www.carbondesignsystem.com
https://www.carbondesignsystem.com
https://www.carbondesignsystem.com
https://www.carbondesignsystem.com
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://www.oracle.com/webfolder/ux/middleware/alta/index.html
https://designsystem.digital.gov/
https://designsystem.digital.gov/
https://designsystem.digital.gov/
https://designsystem.digital.gov/
https://designsystem.digital.gov/
https://designsystem.digital.gov/
https://designsystem.digital.gov/
https://designsystem.digital.gov/
https://designsystem.digital.gov/

Storytelling and Rapid Prototyping Chapter 7

[195]

Software prototyping tools
More specifically, my personal choice for a clickable prototype application is the InVision
App as its speed, communication features, deep hooks into the Sketch app, and sharing
features make building clickable prototypes really fast and easy to iterate. Just like paper
prototyping, clickable prototypes should not be too time-consuming and should encourage
iterations and updates. The HCI/UX and frontend design communities have created many
prototyping software tools. I recommend checking out https:/ ​/​uxtools. ​io/ ​ and https:/ ​/
www.​prototypr.​io/ ​home/ ​ as a way to survey the tools used to create clickable prototypes as
well as experimenting with a number of tools.

Your ability to integrate clickable prototypes into your HCI software design process will
make your software solutions improve faster and your ability to use a diverse set of tools
will help you be more employable as an HCI team member.

Motion and interactive prototyping tools include Adobe XD, Figma, Flinto, Framer,
InVision Studio, Marvel, Origami, Principle, Proto.io, and Famous.co. Each of these is like a
crayon in a crayon box. Each software is designed to help in the creation of software but
they all go about it slightly different. It's great to explore multiple tools for quickly building
clickable/motion prototypes with complex logic-based interaction and buttery-smooth
animations, and each tool also comes with a learning curve. Start with prototyping tools
that don't have too steep of an entry.

Summary
In summary, to reflect on this chapter, we started to extend and dive deeper into the
software design ethos. The skills and tools used by small and large teams are rooted in
doing work overtime and start with software teams applying a prototype. The ability to
generate solutions from our previous research and user insights is not an arbitrary feat but
rather a by-product of a design team that recognizes that they don't know the answer and
need to understand their user to figure out a solution. We applied these practices
throughout this chapter to allow you to practice your own ability to prototype, design a
system diagram, and apply industry best practices through tools that produce prototypes
first.

In the next chapter, we will focus on more skills in part 2 of the execution of software
design through human-centered methods for user research.

https://uxtools.io/
https://uxtools.io/
https://uxtools.io/
https://uxtools.io/
https://uxtools.io/
https://uxtools.io/
https://uxtools.io/
https://uxtools.io/
https://www.prototypr.io/home/
https://www.prototypr.io/home/
https://www.prototypr.io/home/
https://www.prototypr.io/home/
https://www.prototypr.io/home/
https://www.prototypr.io/home/
https://www.prototypr.io/home/
https://www.prototypr.io/home/
https://www.prototypr.io/home/
https://www.prototypr.io/home/
https://www.prototypr.io/home/

8
Validating Software Solutions

As you may be starting to understand, HCI is intimately connected to people through the
data we gather on them. A computer is an awesome tool for gathering user research data,
and we design computer software in order to capitalize not only on this collection of data
but on how this data feeds back into the software itself. User research data on its own will
not help an HCI designer create great software as it is just ones and zeros, but when used
alongside an HCI designer's intuition, curiosity, and understanding of their users, data can
give us an in-focus picture. The computer cannot create on its own (at least, not yet); it is
only a reflection of the solutions we as HCI designers create and code. Software solutions
are fundamentally better when we can incorporate the data we have on our users, the data
we gather along the way about our users, and the feedback we receive from our prototyped
solutions over time. Because we are constantly tuning our experiences through data, it
becomes critical to bake data collection into the process.

We capitalize on our data from observations, interviews, surveys, focus groups, and all the
other user research methods available. Our ability to actualize solutions from our user
research makes the software more human-centered and thus more useful to its users.
However, there is no guarantee, which is why as HCI designers we need to work extra hard
to build the best software we can. In the real world, this means not taking too big a risk,
and not making huge assumptions about what will work for our users. As HCI designers,
we can only know so much, which is why we continue to learn and grow our skills. This
chapter is all about putting our user research knowledge into action and building software
solutions through prototyping, a process that allows us to fail quickly and learn as much as
we can along the way about our users and about what makes software successful.

All of our hard work is in service of solving our user's problems, and when new problems
arise, we know the HCI design process can quickly and effectively address any changes in
any system. The HCI design process is not perfect, but it is flexible enough to be able to
address feedback.

Validating Software Solutions Chapter 8

[197]

Let's keep adding to our skills by creating a software hypothesis.

In this chapter, we will align on how to capitalize on data throughout the software design
process:

Establishing a software hypothesis
Prototyping and iteration require feedback
Validating prototyping solutions
Executing usability tests
Iterating software solutions

Establishing a software hypothesis
Software is a risk because you are solving human problems and, as we have discussed,
humans are hard to understand. If you believe you are solving problems correctly, it
requires you establishing a question to ask to know whether you have solved the problem.
A software hypothesis works like any other hypothesis and becomes a starting place for
understanding whether your idea, built into computer software, works. Prototyping, as we
have been discussing, is a way to test your hypothesis. As an HCI designer, setting a good
hypothesis allows you and your team to focus on what they believe they can achieve.

A hypothesis states the HCI team's predictions about what your software will do for your
user, and is a preliminary answer to either a research question or a business problem that a
piece of software is hoping to solve but that has not yet been tested. Some software
teams will write multiple hypotheses that address different features or assumptions about
your user's needs.

A hypothesis should be based on existing software understanding and knowledge about
what your users can and cannot do with the technology. An important factor in any
hypothesis is that it must be testable. Any software can be tested through experiments,
observations, and analysis of data, but what you measure is rooted in what your team is
trying to solve.

Validating Software Solutions Chapter 8

[198]

How can we write a software hypothesis in four steps? The following list shows you:

Start with a question: Writing a software hypothesis starts by considering a1.
researchable, focused, specific software project, which begins through a question
that you want to answer via user research.
Engage in some preliminary user research: Consider a research framework to2.
identify which software variables your user research team will gather user data
on. As a user research team, it is recommended to gather other user studies,
published software papers, and inspiration from existing software in order
to produce some educated assumptions about what your software could be.
Generate a hypothesis: Write your initial answer to the question from step 1,3.
being as clear and concise as possible, and make sure to include measurable
criteria so that your hypothesis is specific and testable.
For example: Being able to save personal preferences in a grocery app will increase my
user's frequency of use.
Iterate and refine your hypothesis: A hypothesis can be phrased in many4.
different ways. Iterating your hypothesis will allow the predicted outcome of the
experiment or analysis to come through with clear and relevant results.
For example: Being able to save personal preferences for a woman in her 20s will increase
the number of saved items they log and how frequently they use the application to buy
groceries.

Here are some sample hypotheses:

Research Question: What are the health and behavioral benefits of tracking your1.
nutrition through a mobile app?
Hypothesis: Increasing calorie consumption tracking will result in a decrease in
the number of doctor's visits.
Research Question: Which travel modalities (airplane, train, boats) have the2.
most delays?
Hypothesis: Low-cost travel industries are more likely to have delays than
premium travel.
Research Question: Does a remote work arrangement improve job satisfaction?3.
Hypothesis: Employees who have remote working hours will report greater job
satisfaction than employees who work in an office with defined hours.

Any research question or hypothesis requires feedback and iteration from all those in a
team that will engage in solving a problem.

Validating Software Solutions Chapter 8

[199]

Challenge 39 – Software hypothesis
Setup

Get out a sheet of paper.1.

Part 1: Write a software hypothesis question

Using the first of the four steps listed previously, write three to five questions you want1.
to test with your software.
Review your questions with step 2: do some light research to see if any of your questions2.
have been answered already. Choose a question that is either under-researched or that you
think has research potential for your software.

Part 2: Write a software hypothesis

Follow step 3: Write an initial software hypothesis statement.1.

Part 3: Iterate your software hypothesis

Follow step 4: Iterate and refine your software hypothesis.1.

Part 4: Share your software hypothesis

Share your software hypothesis with a colleague or fellow HCI designer for feedback.1.

Research some hypothesis statements before writing your own.

In the previous chapter, we covered why prototyping first allows software to be better.
There are many ways to prototype, but at its core, prototyping is a process of thinking
through and making a software solution tangible. The prototyping process from low-
fidelity to high-fidelity allows the HCI designer and software team to solicit feedback. If
you are not getting feedback from your users with your prototypes you are doing it wrong!

Validating Software Solutions Chapter 8

[200]

Your users are the people who you are solving problems for; therefore, getting their
feedback on your prototypes allows you to validate and tune your software
experience. Plus, it is nice to know you solved a problem through the data. User feedback is
not just for validation, although that is super helpful, especially early in the design
process. Feedback from your users can take a number of forms. Each has its place in
enhancing and improving a piece of software, but can also vary based on the feedback
types.

Let's review some types of user feedback.

Informal user feedback
Informal user feedback is something that emerges automatically from being in the moment
and talking with your users about your software solutions or prototypes. Informal user
feedback can happen during an action by your user or during other qualitative feedback
sessions. For example, during a user interview, a user might be made comfortable enough
to tell you why they don't use your software feature even though you never asked them a
direct question about it.

Informal user feedback requires building a rapport with your users to effectively encourage
them to respond and articulate their decision-making process behind using or not using the
tested software. Feedback might occur during live interview sessions, over the phone, in an
online forum, or in a virtual space. Informal user feedback is a byproduct of wanting to
hear from your users and having them play with and use your software prototypes.

Typically, informal feedback sessions happen organically as part of the prototyping
process. The very nature of building prototypes is begging for them to be played with,
which is why we create them in the first place. When a prototype is completed and made
tangible, it is ready to be tested. Guerrilla usability testing is a popular informal user
feedback method that utilizes rapid, low-cost capturing and recording processes to gather
feedback. Typically, it involves an HCI consultant or a UX professional asking questions
about specific areas of a website or software application prototype. Guerrilla usability
testing sessions can be done at coffee shops, libraries, bars, or any other place a user tester
can quickly place their software prototype in the hands of potential users.

Validating Software Solutions Chapter 8

[201]

If you are not the most gregarious person on your HCI team, I
recommend adding a person to your team who loves doing this type of
work. The reality is you have to be open to getting a lot of feedback and
this requires putting yourself out there. The feedback is not about you as a
person, but it is essential to improving your software product.

Luckily, modern prototyping tools such as Adobe XD, Sketch + InVision, or Figma and
maze.design have made executing guerrilla user testing easier than ever. An HCI software
team no longer has an excuse that executing prototyping testing is too hard or too time-
consuming because the process of designing the software should be intimately linked with
creating a prototype. An HCI team needs to embrace all forms of feedback and make it part
of the prototyping process. A prototype is not complete until it has been tested with users,
otherwise, it is a fruitless endeavor.

Let's practice gathering some informal user feedback by engaging in a quick guerilla user
test.

Challenge 40 – Informal feedback guerilla user
testing
Setup

Use any of your prototypes (Challenges 29-31 from Chapter 7, Storytelling and Rapid1.
Prototyping).

Part 1: Share your prototype for guerrilla user testing

Share your work either in person (at a coffee shop, round a dinner table, or whatever) or1.
digitally (via a conference call, email, social media, and so on).
Get some informal feedback from your user.2.
Capture unsolicited feedback through notes, photos, and a recording of what your3.
participant had to share about your prototype.
Thank your participant (tip: offer to buy them a coffee/beer/snack for their time).4.

Part 2: Iterate your prototype based on feedback

Based on feedback, choose one or two issues to focus on and iterate your1.
prototype to address your user's feedback.

Validating Software Solutions Chapter 8

[202]

Testing and feedback are essential to making great software. Smile and be
friendly.

Formal user feedback
Formal user feedback has similar goals to our guerilla user testing, but rather than
happening spontaneously, it is planned and scheduled by a software design team into the
software design process. Typically, they are given a budget and dedicated resources for
gathering user feedback throughout the software design and prototyping process, which
includes prototype usability testing, marketing criteria, user achievement, and assessment
tasks. All formal user feedback is typically recorded for both the software team and for the
organization as evidence of the users' success or failure when using a prototype. Since
resources and a budget are dedicated to gathering formal feedback, the record is also
crucial for refining and evaluating the success of your user tests along with the investment,
and an HCI team has to be consistent to improve the software product.

Formal user feedback comes in many forms, from remote online task-based studies to
formal in-person lab testing. Typically, the feedback can also be assisted through user
testing software that tracks and records a user testing session and helps a software team
keep track of the feedback data.

Most formal feedback sessions are made up of these five phases:

Prepare your prototype to test: This requires building out all prototyped features1.
and making sure the prototype works in multiple locations.
Recruit your participants: This includes sourcing, scheduling, and preparing2.
users for a feedback session or usability test.
Write a feedback/user testing plan: This is made up of a participant script, a3.
prototype task flow, a user testing hypothesis, feature assumptions to gain
feedback, and feedback procedures.
Moderate the feedback session: This requires executing the feedback/testing4.
plan with the number of recruited users for feedback, recording the feedback
sessions, and taking notes on the users' feedback.
Present your findings and feedback highlights: This concludes with5.
transcribing recordings, combining notes, analyzing the user feedback,
identifying any similar patterns between users, and flagging feedback responses
that are really good and really bad.

Validating Software Solutions Chapter 8

[203]

A prototype feedback test can be basic, with participants in live sessions, or more involved,
such as an online study with participants responding through screen capture and
conferencing technology. The goal is to get users to use your prototype so you can see what
they do with your solution and hear what they have to say. Feedback from your users at
every phase of software design is so crucial. As HCI designers, we load our software
prototypes with assumptions because we have no other choice. However, this is where an
HCI team needs to iron out those leaps of faith in our product solutions as quickly as
possible. The feedback tools we deploy in our design process should assist us in making
better and more meaningful product iterations, iterations that are rooted in user testing,
and applied through the prototyping process.

Of course, every HCI designer would love to have an endless amount of time and a huge
user testing budget for their software problems. The reality is that this is hard to find. The
HCI design team must value user feedback and make sure the user-centered iterative
process is being applied regardless of the budget. It is our role to articulate the value of
talking with and spending time with our users throughout the process. Some software
design teams and some clients are less receptive to this kind of investment. The reality is
you may find this to be true, but I recommend trying to build feedback into your process
and joining teams that value it as well.

A note of caution

Joining a software design team that is hostile to feedback, user testing, or
even prototyping should be avoided.

Do not perpetuate poorly built software by burying your head in the
sand. However, bringing these skills to a team that is underserved with
user testing can make you a valuable asset to any software team quickly.

There are many user testing services and a wide variety of costs. Like any software-assisted
process, the features and opportunities should be defined by the software team, along with
the types of feedback they are hoping to achieve.

Here are some recommendations:

https:/​/ ​maze. ​design/ ​

https:/​/ ​www. ​hotjar. ​com/ ​

https:/​/ ​www. ​usertesting. ​com/ ​

https://maze.design/
https://maze.design/
https://maze.design/
https://maze.design/
https://maze.design/
https://maze.design/
https://maze.design/
https://maze.design/
https://www.hotjar.com/
https://www.hotjar.com/
https://www.hotjar.com/
https://www.hotjar.com/
https://www.hotjar.com/
https://www.hotjar.com/
https://www.hotjar.com/
https://www.hotjar.com/
https://www.hotjar.com/
https://www.hotjar.com/
https://www.usertesting.com/
https://www.usertesting.com/
https://www.usertesting.com/
https://www.usertesting.com/
https://www.usertesting.com/
https://www.usertesting.com/
https://www.usertesting.com/
https://www.usertesting.com/
https://www.usertesting.com/
https://www.usertesting.com/

Validating Software Solutions Chapter 8

[204]

Formal user feedback is a process that needs to be practiced with your team, and the more
you do it, the easier it gets. Formal feedback can also be improved through five categories
of feedback:

Formative assessment and user feedback1.
Expert feedback2.
Self-feedback and reflection3.
Critique/feedback4.
Summary of user feedback 5.

Formative assessment and user feedback
Importantly, the goal of formative feedback, sometimes called formative assessment, is
to monitor and evaluate a user during multiple ongoing feedback sessions that can be used
by an HCI team to improve their product or software over time. Formative user feedback is
best when the same user can give feedback on multiple versions of the same prototype.
Formative user feedback is best given early in the prototyping process, as it helps an HCI
team iterate a solution and hopefully prevent the team from making similar mistakes.

For example, say the same users who had feedback or issues during the testing of a paper
prototype are used when testing the clickable prototype. If the updated clickable prototype
does not receive the same issues or feedback as the paper prototype had, it can be assumed
the iterations have addressed the user's needs and improved through software iteration and
through testing and feedback. Prototype feedback is required before a solution can progress
to the next stage of the design process, which should then rinse and repeat the testing
process. All prototype feedback is formative because it helps inform the iterations a
software design team can and should make to their solutions over time. The formative
process should be documented to indicate the learning and build upon where other
prototypes failed.

Expert feedback
There is a need for experts within software development. Building great software is very
hard, and there is a lot to learn from doing it, but we can't know it all. Sometimes, HCI
software teams are also too close to their ideas. This can create bias and encourage a team to
overlook or even outright ignore user feedback. User testing feedback can be ignored for
many reasons, but typically it points back to the fact that the feedback is either inconvenient
or it challenges the position of the HCI designer or the software team's assumptions.

Validating Software Solutions Chapter 8

[205]

Prototypes should be put through the wringer. Using an outside usability expert can
highlight feedback and improve a software product quickly because an expert brings their
experience and previous software knowledge to the table. Experts should be able to apply
actionable feedback to prototype solutions and apply deep insight into the feedback loop
for the design and development teams. An expert should be able to "tell it how it is" and
should not shy away from poignant and salient feedback points about the failures or
shortcomings of a software solution. Experts should not just tear down a solution either,
and if they have nothing good to say, the expert may themselves be biased or hoping to
exaggerate the severity of a perceived issue to enhance their own position. The success of
an expert opinion is predicated on their ability to learn about the process a software team
went through to execute a solution. Many times, outside expertise can highlight the flaws in
software product decision making. When done effectively, outside experts are not just
pointing out usability issues but are getting to the root of "why" those decisions were
implemented in order to make recommendations, moving a software product forward.

In many cases, flawed software decisions or broken user experiences are the by-product of
too little time and too little understanding of the value a feature or process has to its user.
Many times, this can be attributed to the product owner, or to business stakeholders
demanding features outside the scope or realm of the actual users' needs. One of the
hardest things to do as a human-centered designer is communicating with business owners
or software product teams that they are not in fact the user. Experts operate in relatively
short turnaround times or provide ongoing support and can give valuable feedback, which
is useful to a software design team, but only if the team trusts the expert's advice. Besides
being a fresh pair of eyes, an expert can also enrich software teams' own internal learning
experiences and help develop their own feedback and user testing skill set.

Some experts in feedback are as follows:

https:/​/ ​www. ​nngroup. ​com/ ​Nielsen Norman Group (NN/G): Founded by Don
Norman and Jakob Nielsen
UIE.com: Founded by Jared Spool
http:/​/​sensible. ​com/ ​: Founded by Steve Krug
https:/​/ ​jaimelevy. ​com/ ​: Founded by Jamie Levy

There are many others.

https://www.nngroup.com/
https://www.nngroup.com/
https://www.nngroup.com/
https://www.nngroup.com/
https://www.nngroup.com/
https://www.nngroup.com/
https://www.nngroup.com/
https://www.nngroup.com/
https://www.nngroup.com/
https://www.nngroup.com/
http://uie.com
http://sensible.com/
http://sensible.com/
http://sensible.com/
http://sensible.com/
http://sensible.com/
http://sensible.com/
http://sensible.com/
http://sensible.com/
https://jaimelevy.com/
https://jaimelevy.com/
https://jaimelevy.com/
https://jaimelevy.com/
https://jaimelevy.com/
https://jaimelevy.com/
https://jaimelevy.com/
https://jaimelevy.com/

Validating Software Solutions Chapter 8

[206]

Self-feedback and reflection
The ultimate goal of feedback is to allow a software team to learn if their assumption and
user insights that drive solutions are correct. In education, feedback is an essential tool for
helping students learn. The software design process is one big educational process, and
helping software teams reach solutions and learning how to build great software requires
feedback. Feedback is a learning loop that is essential to identify, share, and clarify the
learning goals and success criteria of a software solution. Self-feedback and reflection are
ways for software teams to understand the success or failures of their design process and be
honest with themselves for how they solved or didn't solve a defined problem.

Critique feedback
The goal of a critique is to gather feedback on a solution. Because an HCI designer is always
trying to improve their software solutions for their users, they should get good at receiving
and giving constructive critique feedback. On the one hand, critique in design culture has a
dubious reputation because many confuse critique for complaints. On the other hand, an
HCI designer should seek out critique from your peers and fellow teammates. The role of
Critique should be a constructive process.

There are four types of critique:

Negative critique/feedback: Typically, a corrective comment that focuses on
design decisions or research behavior that wasn't successful and should not be
repeated, and it should be corrected during an iteration. For example, You clearly
designed this feature for yourself and not your user. This feature is flawed and should be
removed or redesigned.
Positive critique/feedback: Typically, an affirming comment that focuses on
design decisions or research behavior that was successful and should be
continued or highlighted as useful. For example, Your feature is clearly user-focused
as the needs are validated through user interviews and Google Analytics data.
Negative critique-forward/feedback-forward: Typically, a restorative comment
about future performance that centers on design decisions or research behavior
that should be avoided in the future. For example, Your user need was only
confirmed by one interview. How do you know that multiple users are experiencing the
same issue? The validation of product needs should be acquired through multiple users.

Validating Software Solutions Chapter 8

[207]

Positive critique-forward/feedback-forward: Typically, confident comments
about future design decisions and research behavior that should be maintained
and will improve performance in the future. For example, Your user needs were
validated through multiple interviews and correlated through your surveys and Google
Analytics data. Keep this up because your software team will have more confidence in
solving these user needs first.

Summary of user feedback
Summative feedback is the collection of multiple user reports and reviews that are related
to the specific aspects of the software solution. Summative feedback is the summary of all
the feedback plus a record of all the iterations accomplished for a prototype as it works its
way through the process. A prototype is a dynamic living outcome of an HCI designer's
work and is very likely the product of a number of team members. Creating a summative
record of what worked well through feedback and user testing is helpful both for your
team and also for your clients if you are building software for an external partner.

In UX and HCI circles, summative feedback might take the form of expert usability
assessments, heuristic evaluations, or best practice recommendations. Summative feedback
may include an assessment of other types of feedback from the informal guerrilla tests to
formal feedback sessions and take into account the software systems and user types used to
gather feedback.

Summative assessments almost always take place at the end of a prototype design phase. If
your HCI software team decides to break a software prototype into more manageable
chunks, you can use summative feedback reviews to be a record before moving on to the
next stage of prototyping. They are cumulative, and they're used to evaluate the success or
failure of how user feedback and product iterations have improved a software solution.

Feedback and iteration are essential to any prototype, and helping you and your HCI team
learn over time is how you will grow as not only a software designer, but also as a team.

Challenge 41 – Formal user feedback
Setup

Use any of your prototype challenges.1.

Validating Software Solutions Chapter 8

[208]

Part 1: Write a formal feedback testing plan

Create a formal feedback plan:1.
- Establish the user task.
- Write a user flow script and task request for your user to complete. For example, create
a new post and share it with 5 friends.
Establish 5 to 10 questions to ask your user after the user task is completed.2.

Part 2: Recruit users

Recruit a user for a formal feedback session (minimum 15 min).1.
Share your work either in person (at a coffee shop or diner, or wherever) or digitally (such2.
as in a conference call or a screen capture scenario).
Gather formal feedback from your user.3.
Computer solicited feedback through notes, photos, or recording of what your participant4.
had to share about your prototype.

Part 3: Analyze feedback

Look for patterns and similar usability issues between user feedback and testing sessions.1.

Use social media to recruit users.

If your prototyping is coming along, it may help you answer some questions and
assumptions you have about your user. To help the process along, it can be helpful to
establish if your prototype is completing your initial hypothesis that you and your team
believe will be achieved with your prototype.

Validating prototyping solutions
Accordingly, designing and testing software is connected to the idea that we are addressing
a human need.

Validating Software Solutions Chapter 8

[209]

If you are not testing with your users, you are not validating your solutions:

Screaming this is sometimes necessary because there are some involved in the software
design business that sees user testing as a nice thing to have rather than an essential
requirement for designing and creating great software. In life, validation is one of the
hardest things to come across. We look to external sources for validation, whether from
coaches telling us "good job" or teachers giving us grades, or friends accepting us into their
group.

Validation is not only important to individuals, but also to the products and services they
work on. The software can be improved over time through the validation of ideas, just as
humans are improved by validation through their peers and those that understand what
behaviors to validate. The question is, when do you validate a software solution?
Validation is really hard to qualify, but every idea has a point at which it either lives or
dies. Validation is the process of identifying whether an idea should continue to live. It
sounds brutal, but the role of an HCI designer is deciding if ideas live or die. At first, you
are going to kill a lot of ideas. You should if they are not worth it, even if they have made it
to prototype. The reality is that they are ideas that you think work, but only through testing
did you realize they should be killed. Though it's difficult to solve a problem and have your
users invalidate and kill your idea, this is not a bad thing. Learning what ideas work or
don't work only happens through validation with your users.

Prototyping as a process is essentially a process of validation. If you validate your idea with
your users, you can establish success over time. Success is not guaranteed, but I can
promise you if you don't validate your ideas with your users, you will definitely fail.
Validating early allows a failure to not be so costly, both in terms of time and in terms of
solving your user's problems.

Validating Software Solutions Chapter 8

[210]

Challenge 42 – Prototype validation
Setup

Use any of your prototype challenges (Challenges 29-31 from Chapter 7)1.

Part 1: Write a validation question

Establish a validation question. What do you assume will work on our user? What task is1.
your prototype accomplishing?

Part 2: Recruit validation users

Recruit a small group of users to validate your prototype solution (start with five user1.
tests).
Run a formal user testing with the five users to see if they successfully use your prototype2.
to accomplish the task it's designed for.
Compile solicited feedback through notes, photos, or recordings of what your participants3.
had to share about your prototype.

Part 3: Evaluate your prototype tests

If each user has agreed that your prototype has worked or is valuable for their needs,1.
record the validation data both in terms of qualitative interviews and quantitative
interaction data.

Don't be discouraged if your early ideas are not validated.

Now that you have validated your idea through a prototype, you are on the right track, but
it doesn't mean your software solution is perfect. Rather, it is just a starting point for
improving the prototype and making it usable. Many validated ideas are not great in terms
of user experience and require huge improvements to their usability.

Validating Software Solutions Chapter 8

[211]

Executing usability tests
If you are not user testing to improve the usability of your solutions, you are underserving
your users:

Designing and testing software is connected to the idea that we are designing software that
needs to be usable. I know I am doing a lot of screaming at you in this chapter. I don't mean
to be demonstrative, but I think it is important to get this across. Usability testing your
prototypes is part and parcel of user validation. If your idea works for your user, you want
to make sure it is also usable. Many before me have established software usability best
practices, and they have been established through rigorous user testing outcomes. We
discussed usability heuristics and other methods that help a software product be
useable. The only way to truly understand if your software is usable is to test it with your
users.

Like other forms of user feedback, usability testing is focused on the user's ability to use a
UI effectively throughout the execution of a software task. Sometimes, usability is glaringly
obvious in a prototype. If a user is trying to accomplish a software task using a prototype
and they get stuck or cannot complete the task, then there is a high probability there is a
usability issue. The software team hopefully has validated the idea with a user before
testing the prototype of usability issues. It is important as an HCI team to distinguish if a
user fails at a prototype because they don't think the idea is valuable or if the prototype
execution is unusable. User testing for usability issues is not validating an idea; rather, it is
attempting to improve the effectiveness and users' ability to execute a validated user task.

Usability can be thought of as black and white: it is either usable or it is not usable. In
reality, usability is a scale, and every software product has a range of usability factors. This
is why usability testing prototypes with your users is so important. Usability issues that
arise during usability testing that block users from completing their tasks are critical
usability issues. These are usability failures. An HCI team wants to identify any usability
failure during a prototype and not have that failure make its way into a software product.

Validating Software Solutions Chapter 8

[212]

For example, a software team may have validated the idea that creating a login is essential
to an application. A critical usability error might be not being able to recover a password
due to a missing link under the password UI input form.

After identifying any usability failures and iterating the software prototype to address
these blockers, an HCI team can repeat the usability testing process to help nuance and
improve the evolving usability of a prototype. Ultimately, the final software solution will
be the result of lots of user tests and the solution will be as usable as possible. Continuous
usability testing of prototypes will allow an HCI team to make refinements to their user's
experience. When applying HCI interface best practices, an HCI team can quickly learn
what to do and what not to do when solving a software problem, but this only comes from
learning through testing.

An HCI team should get good at taking notes during usability tests. Look for these
scenarios, which might signal there is a usability issue:

Any areas of user pause.
A look of confusion on the face of a user during task execution.
The user selects the wrong UI element.
The user goes back and forth in the UI.
The user asks the usability tester questions.
The user strains to read or moves the UI closer to their faces.
The user makes an error, and this gets caught by logs.
The user tries to jump ahead in the process.
The user opens and closes other UI elements looking for their options.
The user asks a question or looks surprised it worked.

There are many other things to look out for during usability testing, but it's important to
evaluate and understand if your user feels that the prototype is usable. Start by observing
them use the prototype and then ask them what they thought of the experience. Some of
your users will not be shy in letting you know a prototype isn't usable if it is not. Others
will not be as forthcoming, and you will need to rely on your observations of their behavior
during the usability test. Typically, a user's ability to accomplish a task in a convenient
fashion and how they talk about it later will match up. If your user's behavior and response
don't match, this should be taken into account and might be an indicator of a usability
issue.

Let's give a usability test on our validated prototype a spin to see if we can find any
usability issues.

Validating Software Solutions Chapter 8

[213]

Challenge 42 – Prototype usability testing
challenge
Setup

Use your validated prototype from the previous challenge.1.

Part 1: A usability task

Establish a usability task and question for your user to accomplish.1.

User: Can my user move from point A to B of a task?
Usability tester: Can a user execute the prototype task smoothly without any confusion
or pauses?

Part 2: Recruit testers

Recruit a small group of users to do a usability user test on your prototype solution (start1.
with five usability testers).

Part 3: Execute the usability test

Run a formal usability test with the five users and see whether they successfully1.
accomplish your prototype task.
Capture usability feedback through notes, photos, or recordings of what your participants2.
had to share about your prototype.

Part 4: Evaluate usability issues

Identify any critical usability issues.1.
If there are no usability blockers, take notes about any areas of pause, confusion, selecting2.
the wrong UI element, or going back and forth in the UI because these are indicators of a
problem area in a user's task.

Users will ultimately let you know if your solutions are usable or not.

Validating Software Solutions Chapter 8

[214]

Awesome! Now you have some usability data to evaluate and make some iterations to your
prototype! The role of usability testing is to help make iterations to your prototype over
time. Usability testing is a continuous process and should continue to happen even as the
software is put in front of all your users. At this point, if you have been keeping up with the
prototyping challenges, we have a prototype that has been validated and run through a
usability test. The next part of any amount of user testing is to fold that feedback into the
prototype through design iterations.

Iterating software solutions
As we discussed, HCI is an iterative practice and the prototypes we have built up to this
point are a reflection of the idea that design can be altered over time for the better.
Fundamentally, this is why we do user testing. If we thought our ideas and software
solutions were perfect and solved all our user's problems with no issues, we would skip all
this work. However, that is not how the real world works. Software is very risky, as we
have already discussed, and therefore we take all the precautions we can throughout the
process to decrease the risk. HCI software prototypes are not risk-averse, but rather they
are risk sponges. Every validation user test is sucking up a set of business risks. As a
prototype moves past validation, it needs to be usable and the prototype evolves through
iteration. It is then tested for usability and iterated again, and the process repeats itself until
the end of time. The HCI design process is then improved by the practice of iterative design
to a multitude of software problems that we solve.

At first, your software prototypes will require a lot more iteration as you are a new HCI
designer and you are not considering all the scenarios, but rest assured, with more practice
the amount of iteration and the number of usability issues will decrease as your software
knowledge and usability best practices increases. That improvement in skill should not
come at the expense of user testing. The acronym ABTI means Always Be Testing +
Iterating:

Validating Software Solutions Chapter 8

[215]

Regardless of your experience or the number of prototypes you have built, if you are not
putting your work in the hands of your user you are doing it wrong and you will fail.

Let's practice iterating our prototype challenge based on our user feedback.

Challenge 43 – Iterate your prototype challenge
Setup

Use your usability prototype from the previous challenge.1.

Part 1: Review usability issues

Review your usability feedback from your tests.1.
If you identified any critical usability issues, document and flag them for future2.
iterations.

Part 2: Iterate prototype to correct issues

Iterate your prototype to fix those errors.1.
If there are no usability blockers, identify any other improvements that could be made to2.
the prototype.
Iterate your prototype to anticipate usability problems down the road and stay ahead of3.
your user.

Iteration does not have to be a radical change. Start small if that is what is
necessary.

I hope your prototype is starting to show some massive improvements and that you are
starting along the path of an HCI designer who understands the value of incorporating
their users into the software design process.

Validating Software Solutions Chapter 8

[216]

As you have been practicing and testing your prototyping skills, I hope you are learning by
doing. There is so much we can learn by creating a solution and putting it in front of our
users. Through practice, you will continue to grow your prototyping knowledge and speed
as well as avoiding mistakes that were made in the past. At first, you will make lots of
mistakes, which is totally acceptable, especially if that mistake happens on a prototype.

As you grow your HCI skills, know that there are many others besides myself who are
engaging in, writing about, and thinking about the design of the software. I highly
recommend researching way beyond this text, and I hope your curiosity will continue to
grow.

Summary
In summary, the ground we are covering is getting larger. Throughout this chapter, we got
our hands dirty by taking the prototypes developed in the previous chapters and allowed
those ideas to be pressure tested with users. User testing is risky because failure is always
around the corner; however, as we discussed in this chapter, when failing their users an
HCI designer has actually learned something. Failure is part of the learning process but
nevertheless it is learning and improving a software solution. The sting of failure shouldn't
last long because the ability to practice the iteration of a prototype solution is the basis of
covering idea validation and usability refinement. The skills and practice of user testing
prototypes will last long after this book because every HCI team should ABTI —always be
testing and iterating.

In the next chapter, we will focus on more skills in part 3 of the execution of improving
software solutions through data.

HCI resources
Here are some of the HCI references that I highly recommend you read alongside this book:

Designing the user interface by Schneiderman, B. (1998). Third edition. Addison-
Wesley. (First edition published 1987).
Heuristic evaluation: Usability inspection methods by Jakob Nielsen (1994). Nielsen, J.,
and Mack, R.L. (Eds.). John Wiley & Sons.
Software for use, by Constantine, L. and Lockwood, L. (1999). Addison-Wesley.

Validating Software Solutions Chapter 8

[217]

About face 2.0: The essentials of interaction design by Alan Cooper. and Reimann, R.
(2003). John Wiley & Sons.
Cognitive engineering principles for enhancing human-computer
performance. International Journal of Human-Computer Interaction
by Gerhardt-Powals, J. (1996).
Universal principles of design by Lidwell, W., Holden, K., and Butler, J. (2003).
Rockport Publishers.
Ten usability heuristics by Jakob Nielsen
(1994). http://www.useit.com/papers/heuristic/heuristic_list.html
First Principles of Interaction Design by Tognazzini, B. (2003): http:/ ​/​www. ​asktog.
com/​basics/ ​firstPrinciples. ​html

Principles for usable design by Multiple Authors: https:/ ​/​www. ​usabilitybok. ​org/
principles- ​for- ​usable- ​design

http://www.useit.com/papers/heuristic/heuristic_list.html
http://www.asktog.com/basics/firstPrinciples.html
http://www.asktog.com/basics/firstPrinciples.html
http://www.asktog.com/basics/firstPrinciples.html
http://www.asktog.com/basics/firstPrinciples.html
http://www.asktog.com/basics/firstPrinciples.html
http://www.asktog.com/basics/firstPrinciples.html
http://www.asktog.com/basics/firstPrinciples.html
http://www.asktog.com/basics/firstPrinciples.html
http://www.asktog.com/basics/firstPrinciples.html
http://www.asktog.com/basics/firstPrinciples.html
http://www.asktog.com/basics/firstPrinciples.html
http://www.asktog.com/basics/firstPrinciples.html
http://www.asktog.com/basics/firstPrinciples.html
http://www.asktog.com/basics/firstPrinciples.html
https://www.usabilitybok.org/principles-for-usable-design
https://www.usabilitybok.org/principles-for-usable-design
https://www.usabilitybok.org/principles-for-usable-design
https://www.usabilitybok.org/principles-for-usable-design
https://www.usabilitybok.org/principles-for-usable-design
https://www.usabilitybok.org/principles-for-usable-design
https://www.usabilitybok.org/principles-for-usable-design
https://www.usabilitybok.org/principles-for-usable-design
https://www.usabilitybok.org/principles-for-usable-design
https://www.usabilitybok.org/principles-for-usable-design
https://www.usabilitybok.org/principles-for-usable-design
https://www.usabilitybok.org/principles-for-usable-design
https://www.usabilitybok.org/principles-for-usable-design
https://www.usabilitybok.org/principles-for-usable-design
https://www.usabilitybok.org/principles-for-usable-design
https://www.usabilitybok.org/principles-for-usable-design

3
Section 3 - When to Improve

Software Systems
These chapters are a view into how HCI implements the ideas, principles, and coding
concepts reviewed in Section 1 and Section 2. When to improve software systems will frame
the practical steps taken while improving software and outline some of the methodologies
used for evolving Human-centered software solutions.

We will dig deeper into the pillars of Learn HCI by covering the following chapters:

Chapter 9, Improving Software Systems with Data
Chapter 10, Human-Centered Solutions
Chapter 11, Extending HCI
Chapter 12, The Future of HCI

As you complete this book, you will learn why human-centered methodologies are
timeless, and how to consider the fast-approaching future.

9
Improving Software Systems

with Data
Design and development together can build great software solutions but the software is
only as good as the team's ability to continue to improve over time for its users.
Throughout this chapter, we will extend our skills with improving software over time. The
role HCI designers play has a huge range, from inventing new software ideas to
maintaining and iterating existing software. We participate in a highly dynamic field where
technology, coding languages, and software tools are constantly changing. These changes
are good as they are an example of the HCI community continually improving their
profession and, along with it, the software they create. The ability of HCI designers to add
value to their software teams is essential to helping our users and scaling software solutions
around the globe. Let's take the opportunity to understand how user data and user
feedback are the fuel with which we improve the software over time.

Just as user research data is essential to address a user's needs with a software solution, so
is the need to continually improve those solutions. Software is not etched in stone, but
rather is like painting the Golden Gate bridge. By the time you complete one coat of paint,
you have to start over again. Not all software requires starting from scratch, but any piece
of software can be improved through data. Now that you are growing your HCI skills, let's
discuss why HCI gathers data on software solutions, and why HCI targets the interactions
that happen between humans and computers. Throughout this chapter, we will understand
how software systems become more complete through data.

Improving Software Systems with Data Chapter 9

[220]

We will be covering the following topics in this chapter:

Designing software for all user with universal design principles
Applying usability for all users
Valuing accessibility
Designing useful interfaces, period!

Designing software for all users with
universal design principles
Software design is executed at a fast pace in our world due to the demand of our users;
however, this speed has outpaced our ability to make sure the best software is available for
all users. The importance of going beyond the Minimum Viable Product (MVP) and
evolving your software systems to adapt to the changes in culture and technology rather
than the other way around is a big reason why software teams and HCI/ UX designers exist
in the first place.

Software is indispensable in our society, and building solutions that address our users'
needs is a bigger responsibility when those users are more diverse and have different
abilities than the teams designing them and creating them. Full disclosure: I am a English-
speaking male who is able-bodied, writes with his right hand, has 20/20 vision, and an
average mental focus. Having self-awareness when thinking about a problem or devising
solutions is really important. As an HCI designer, I am not the user! The solutions I create
are not for me. Many users are in fact very different than me.

As we discussed earlier, this is where having empathy for your users is essential as an HCI
designer. The reality is all the empathy in the world will not be enough to make your
design for everyone. That takes real effort and moves beyond your own empathy for
designing solutions and requires digging deeper and getting your entire organization to
care about the widest range of users possible. Empathy matters, but an HCI team should
collectively combine all their approaches and all their individual empathy to consider the
broadest set of users. Empathy for your users helps focus on one user, while the universal
design is the inverse of that, allowing your empathy for one user to be distributed to all
users. The goal of HCI becomes a virtuous cycle that allows considering and focusing on
one user to scale outward to all users. The empathy cycle created by HCI designers allows
software solutions to be designed with universal appeal. Empathy is essential to universal
design:

Improving Software Systems with Data Chapter 9

[221]

HCI software solutions are designed for the widest set of users possible, which aligns its
creation inside the values of universal design. The concept of designing an object or
product to suit a person's needs is not new and dates back to when Cro-Magnon man used
materials such as rocks and bones to create tools. However, the articulation of universal
design was established in 1997 by a community of architects, engineers, environmental
design researchers, and product designers. The late Ronald Mace at North Carolina State
University led this group and created the Center for Universal Design. Ronald Mace was
himself wheelchair-bound and led a movement to grow the consideration of design for all
users. The universal design movement and universal design principles push all designers,
from architecture to graphic design to HCI design, to consider a much broader
responsibility.

Improving Software Systems with Data Chapter 9

[222]

Challenge 44 – Research universal design
principles
Setup:

Create a new Google Doc to document universal design.1.

Part 1: Research and document the seven universal design principles:

 Use Google to look up The Principles of Universal Design, Version1.
2.0. Raleigh, NC: North Carolina State University.
Copy each principle into your Google Doc (there are seven principles).2.
 Reflect on and write why each principle is universal.3.

Part 2: Review a website to see if it applies the seven principles:

Go to a web page of your choice.1.
Take a screenshot of the home page.2.
Place the screenshot into a tool to add annotations (such as Adobe XD, Sketch, Figma, or3.
Adobe Illustration).
Add notes where the web page is representing any universal design principles.4.

Part 3: Return to your Google doc and score each universal principle:

Based on your home page review, add a score next to the seven principles for how hard or1.
easy the principle is to recognize.
Reflect on and write why universal design is valuable to software design.2.

Universal design also applies to architecture and other forms of design, so
they can apply to the use of a computer.

Improving Software Systems with Data Chapter 9

[223]

More recently user-centered design has been applied to describe design solutions and
design process that focuses on the user first as it identifies and addresses the needs,
abilities, and limitations of its users in the process of creating solutions. Much of user-
centered design has adapted and applied universal design concepts throughout the process,
along with other disciplines, including human factors, ergonomics, and other functional
design approaches.

Universal design is not just a concept that HCI teams should pay lip service to. Decisions
throughout the HCI process that build thinking about the broadest range of users possible
in your software products are attained by collecting and utilizing data and testing your
software prototypes with a wide range of users. Feedback and user testing data, as we have
been discussing, are ways to validate and confirm your software is indeed being designed
toward universal acceptance. Universal design solutions are attained by checking that
software does the following:

Applies usability
Values accessibility

These factors are both data-driven and a result of HCI teams valuing these factors and
designing them into the software process.

Let's continue to discuss how usability is something an HCI team should value.

Applying usability for all users
Usability is a software design approach by which HCI designers determine how difficult
a user task is to learn and accomplish when accessing an application. HCI software
designers take into consideration many users when solving software problems and take
into account that some may already be familiar with some Graphical User Interface (GUI)
patterns. Usability is a goal for all your users, not just those that you focused on during the
empathy phase. Usability is only attained through user testing but is affected by many
factors. As we have discussed, humans are complicated creatures, and the ability of our
users to learn and be trained over time affects how we evaluate and judge how usable a
product is.

Improving Software Systems with Data Chapter 9

[224]

The essence of usability is that a user should not have to be forced to think like a computer
to accomplish a software task; it should be the other way around. A computer should be
designed to fulfill human potential by folding naturally into their everyday processes as
well as enhancing their existing problem-solving apparatuses. The goals of usability are
both general, such as "Make a piece of software as usable as possible," and specific to
discreet interactions, such as "A user should be able to access the software through a login."
Usability is a continuum of valuing your users and designing all the user interface features
to work together. All of this requires designing software with these factors in mind but also
relentlessly testing your software solutions throughout the prototyping process. Usability is
not just a one-factor consideration, but rather requires an HCI designer to consider many
usability goals when designing software:

Through usability testing, an HCI designer can explore the six main components of
usability:

Learnability
Efficiency
Memorability
Low error rate
User satisfaction
Utility

Improving Software Systems with Data Chapter 9

[225]

Learnability
Importantly, learnability is how easy is it to perform basic software tasks. Learnability is
particularly relevant to new users of a software interface because experiencing a solution
for the first time requires the largest amount of learning from your user. Learnability allows
users to quickly become familiar with a product or software interface. If users can easily
make good use of software features and capabilities, we can say the software is highly
learnable or the software has a shallow learning curve. Software with a shallow learning
curve tends to be called "intuitive," when in fact it is has a quality of highly "learnable
design." If a software product is quickly learned and has clear and obvious affordance
(thank you Donald Norman), this is how we determine how learnable it is. The extent of
learnable design represents how easy a software feature is remembered and repeated by
your users.

Usability testing a software solution for learnability requires testing your user as they
explore and navigate a software interface for the first time. It is recommended to record
your users' faces in these types of usability tests because facial expressions and monitoring
how quickly they recognize UI elements is key to if a user can navigate a task just through
the cues given by the software design.

Efficiency
Likewise, software efficiency is how much time it takes for users to find what they came
for. Efficiency in a software solution is a question of what the tasks are and what the user is
expected to accomplish. Some tasks take longer to accomplish but are very effective. Time-
on-task in software is connected to what a user is accomplishing with a software feature.

Take writing a three-paragraph email to your boss. The process of writing the email might
take anywhere from 15 minutes to multiple hours depending on the content of the email.
However, the process of using the QWERTY keyboard to type the words into the email is
very efficient and can be made more efficient by the user learning the location of the A-Z
letters in the QWERTY keyboard interface or using other type-assist features such as a
spellchecker or Grammarly.

Usability testing a software solution for efficiency requires testing your user as they explore
and navigate a software interface. It is recommended to record and time your users in these
types of usability tests because you need a baseline time expectation for completing the
software task. If multiple users successfully accomplished your task in 1.3 seconds and
then, during another test, a user takes 3.5 seconds, you can use the baseline time
expectation to identify the success or failure of an efficient UI.

Improving Software Systems with Data Chapter 9

[226]

Keep in mind the type of interface you are designing for your software solutions. Generally,
users will spend more time using computer desktop software than mobile phone software.
Smartphones are small and handheld and meant to be used quickly, so the task expectation
for a smartphone is therefore different than a laptop computer.

Memorability
Can a user repeatedly perform their tasks? Software solutions are not luck. We don't design
them hoping our users will just happen upon our feature like coins on the beach. Instead,
the HCI designer strives to make software memorable, which is accomplishable through a
combination of usability factors. Designing software to help your users remember the tasks
and recall your features is essential to making a usable software solution.

Take Venmo, which is a mobile application that allows users to quickly pay friends and
family via the application that links to your bank account or debit card:

Improving Software Systems with Data Chapter 9

[227]

Venmo has made its software memorable through a quickly learnable UI that allows users
to request payment or pay another user. It has made the exchange of money efficient and
quickly communicates the value that is being shared through emojis, which makes the task
of sending or receiving money more memorable.

Usability testing a software solution for memorability requires testing your user over time.
It is recommended to record and repeat these types of usability tests as you need to
understand if a user can retain the knowledge of how to use your interface over time rather
than having to relearn the software tasks each time. Keep in mind the memorability of
software is also affected by other factors of a software business, including advertising (such
as movies, TV, and radio), branding and visual design (such as logo, colors, iconography,
and typography), and other factors (such as whether it is on the PC or Mac platform).

Low error rate
Can a user perform their tasks without making an error? Software solutions are designed so
that (hopefully) your users don't make mistakes. However, when multiple steps are
involved in a task or a UI gets more complicated, the potential for your user to make a false
step or not complete all the required steps increases. An HCI designer should have
empathy for their users during the prototyping and design process and attempt to
anticipate or even prevent your user from making errors. Decreasing errors and
anticipating where your users will ask questions or get stuck will improve your usability.

Usability testing a software solution for errors requires testing your user over time. It is
recommended to record and repeat these types of usability tests as you need to understand
if a user can repeat a software task without making an error. I recommended recording
your user's face for these types of usability tests because facial expressions can help you
determine how severe the error is, as well as where it occurs in your user task.

User satisfaction
As a result of the preceding tests, you will be able to gauge the level of comfort users feel
when using software solutions. The HCI designer strives for user satisfaction, which is
again a combination of multiple usability factors. A piece of software could be easily
learnable and efficient, with memorable tasks and low numbers of errors, but still fails to
help your user accomplish a meaningful task – this would fail at user satisfaction. User
satisfaction is not only the ability for software to accomplish a task but also reinforces the
value the software provides to a user. Allowing users to feedback on how satisfied they are
with your software solutions is connected with user testing and usability.

Improving Software Systems with Data Chapter 9

[228]

Usability testing a software solution for user satisfaction requires executing all the usability
tests and then gathering qualitative data from your users. It is recommended to record and
repeat these types of usability tests because you need to understand if a user gains user
satisfaction over time. User satisfaction typically is not determined by one feature or one
software task but rather is the culmination of the entire software's usability combined with
the value added to a user. Typically, if a software solution is highly learnable, efficient, and
memorable, with a low error rate, a user will continue to use the solution, which in turn
will grow the user's satisfaction with the solution. Keep in mind the user satisfaction of
software is also impacted by other factors of a software business, as mentioned in the
Memorability section.

Utility
Does the user rely on the software? Do they repeat tasks over time? The HCI designer has
made an impact on a software solution when a user relies on a solution like a utility. When
software is designed and executed in a way that allows a user to repeat its use and make it
part of their daily, weekly, or monthly habits, that software solution has reached the value
of utility for users. Only through creating a software solution that creates value over time
can you get to the status of a software utility. Software utilities are leaned on by our users
to accomplish tasks through software.

For example, Google is a search engine. Their success at making software that is learnable,
efficient, and memorable, with a low error rate, and that is satisfying for its billions of users
has made "google" a verb. Nothing says software utility like allowing users to say "google
it" and without a computer or interface in front of them and they understand the task as
well as the value it provides.

Usability testing a software solution for utility requires executing all the usability tests and
gathering qualitative data plus building other usable software solutions so that your users
come to trust your brand. It is recommended to understand your users through research so
you can address their needs with software solutions that are worthy of attaining the status
of a utility to your users. It is highly recommended to study other software solutions that
have risen to that status, including the likes of Apple, Microsoft, Adobe, and Google.

None of these software companies made their software valuable as a utility to their users
overnight. It requires a long hard process, but if you continue to value usability at the core
of your software solutions and continually test your software prototypes for usability, then
you might make your users delighted over time as well.

Improving Software Systems with Data Chapter 9

[229]

 Usability is a lofty goal for software, and our users are demanding at a minimum that their
software is usable. If you fail to make your software usable, that leaves an opportunity for
other software to come along and supply that need to your users. In other words, usability
becomes a Unique Selling Proposition (USP) for your software. There is lots and lot of
competition in the software landscape, and a software design team cannot afford to just be
first to market. They must continually improve their software to keep their users and
maintain the values we have been discussing. As we have been discussing, usability
involves more than just one factor to consider; it is also linked with making your products
accessible.

Valuing accessibility
Accessibility makes your software products, including websites, as usable as possible by as
many people as possible. It is the practice of thinking about all your users, including those
with disabilities. Accessibility is thought of as treating all users equally, regardless of their
ability or circumstances. Many in the design world and the software design community
confuse accessibility for simply helping the disabled. Unfortunately, such a narrow
understanding of the role of accessibility diminishes the role designers can play when they
solve software problems by considering all their users. This is equivalent to adding a
wheelchair ramp for a building after it has been built: although it makes the building more
accessible, it is not accessibly designed from the beginning. Adding an accessibility ramp
on the surface is not altogether bad; however, including the consideration for all users,
including those with limited access, in the heart of solutions from the beginning when
making software is the right thing to do. Besides the benefit that accessibility alters the HCI
designers' perspective, it also prevents solutions that limit accessibility and allows ideas
such as ramps in buildings to be integrated as part of the solution rather than a barnacled
afterthought. Assessability is also a larger umbrella than purely considering user's
disabilities.

Disability impairments
As an HCI designer, you will be expected to care about all users. This responsibility will not
reside only on your shoulders, but being aware of primary disabilities is helpful as an HCI
professional when considering accessibility.

Improving Software Systems with Data Chapter 9

[230]

Cognitive impairment
Cognitive impairment is in reference to a large set of disabilities, from users that have
intellectual disabilities through to users of advanced age and those who have difficulty
with their memory:

Considering your users' mental capacity is not just relevant to the usability of your software
solutions (such as memorability), but is also relevant to the fact that users can only hold so
many pieces of information in their short-term memory.

Challenge 45 – Research Miller's law
Setup:

Create a new Google Doc to document Miller's law.1.

Part 1: Research Miller's law:

Use Google to look up George Miller and Miller's law in psychology.1.
Abstract the learning from cognitive science and write about how it can apply to software2.
design.

Part 2: Review a website to see if it applies to Miller's law:

Go to a web page of your choice.1.
Take a screenshot of the home page.2.
Place the screenshot into a tool to add annotations (such as Adobe XD, Sketch, Figma, or3.
Adobe Illustration)
Add notes where the web page is representing the use of Miller's law.4.

Improving Software Systems with Data Chapter 9

[231]

Annotations are essential to being an HCI designer. Practice with
screenshot tools such as the awesome screenshot Chrome
extension: https://chrome.google.com/webstore/detail/awesome-scre
enshot-screen.

Using your memory and making your solutions consumable is also about accessibility.
Beyond cognitive memory, cognitive impairment encompasses a wide range of mental
illnesses, as well as users with learning disabilities, which includes attention disabilities
such as attention deficit hyperactivity disorder (ADHD) and reading disabilities such as
dyslexia or aphasia. Cognitive impairment has a disputed medical definition but from a
software perspective, it refers to any issue your users might have, ranging from difficulties
with content (understanding or consuming it), recalling how to complete software tasks,
and general confusion caused by software solutions.

Your user's brain should not be taken for granted and, as we have been discussing, should
be constantly tested against during the software design prototyping process.

Mobility impairment
Mobility impairment includes any disabilities concerning movement and could be physical,
neurological, or caused by genetics. Mobility impairment has a wide range of use cases.
Users with slight mobility impairment might struggle with the precise hand movements
required to use a computer:

This could be a user in the early stages of Parkinson's disease or anyone with a broken
arm/wrist/hand in a cast. Those more severely affected may require the use of eye-tracking
software or a head pointing device to interact with computer software. This could be users
who are paralyzed or suffer from debilitating diseases such as Amyotrophic lateral sclerosis
(ALS or Lou Gehrig's disease). Addressing mobility impairment during web development
work typically requires software teams to build controls that are accessible via the
keyboard.

https://www.awesomescreenshot.com/
https://www.awesomescreenshot.com/

Improving Software Systems with Data Chapter 9

[232]

Hearing/auditory impairment
Hearing/auditory impairment is a user group that has low hearing levels or no hearing at
all, which is a wide range of users. Hearing-impaired people might use technology to assist
in their hearing. Known as Assistive Devices (ATs), these devices are great but often are
not designed specifically for computer use:

When it comes to supporting the hearing-impaired, there are software solutions and
alternatives that provide textual or audio content. These usability solutions include Closed
Captions (CC), which can be displayed along with a video or content article, as well as
screen readers, which use the textual coded information used to make a web page or
software solution. A screen reader is only as good as the team designing the software oorf
the web page, and those teams need to make sure the user experience for the hearing-
impaired is just as good.

Visual impairments
Visual impairments include any users with any range of eye issues, from low-level vision to
color blindness to complete blindness. Users with a wide range of visual impairments rely
on screen magnifiers that are either physical magnifiers or software zoom capabilities. In
2020, modern web browsers and computer operating systems have built-in zoom
capabilities:

Improving Software Systems with Data Chapter 9

[233]

Users with more severe visual challenges will utilize screen reader technology, software
that turns web page code into digital text that is read aloud. Just as a screen reader is useful
for visualizing a UI for the hearing impaired, it also is used for those with visual
impairment. A screen reader's output is only as good as the team designing the software of
the web page, and those teams need to make sure the user experience for the visually
impaired is just as viable through auditory cues. I recommend that you familiarize yourself
with a few screen reader tools as well as best practices for creating web pages that are
accessible.

Challenge 46 – Screen reader tool
Setup:

Install a screen reader extension to your web browser.1.

Part 1: Test a web page with your ears

Navigate to a website of your choice and launch the screen reader software.1.
Place a blindfold on over your eyes.2.
Using the tab or arrows on your keyboard, navigate around your web page.3.
Take notes on what is being communicated to you through the screen reader.4.

Part 2: Remove the blindfold and see if you can locate what you interacted with

See if you can recognize with your eyes the UI elements you explored through the screen1.
reader.
Take notes on what was easy and hard to experience through a screen reader.2.

Use the Chrome screen reader for
Google: https://chrome.google.com/webstore/detail/screen-reader-
for-google/.

Although disability greatly impacts accessibility, there are considerations with accessibility
that benefit both groups. Making websites accessible also benefits any user on a mobile
device, as well as any user with a lagging network connection. Accessibility is caring about
all your users, which is the right thing to do for your software. Designing and developing
accessible software products is also part of the law in some regions, including the USA and
the European Union.

https://chrome.google.com/webstore/detail/screen-reader-for-google/nddfhonnmhcldcbmhbdldfpkbfpgjoeh?hl=en
https://chrome.google.com/webstore/detail/screen-reader-for-google/nddfhonnmhcldcbmhbdldfpkbfpgjoeh?hl=en

Improving Software Systems with Data Chapter 9

[234]

Now that usability plus accessibility are at the front of your mind, what do you get out of it
from a software perspective? What you get is loyal customers and your software is treated
as a utility.

Designing useful interfaces
Many of the greatest inventions in the world are useful. Take the wheel, for example. It is
quite possibly the most useful invention for man. The value that the idea of a wheel has
spawned endless iterations, all on the back of the idea that a wheel is useful because it can
spin, carry things, and makes moving from point A to point B faster. In 2020, computer
software is as dominant as the wheel, and the idea of computer software has become as
useful to us as the wheel is remarkable.

Quick question: If you have to go to a party across town without your smartphone, how would you
do it?

For many, this might would be a daunting task because we as users have become so reliant
on software such as Google Maps, Waze, and Apple Maps. Your method of using a piece of
software is very useful, and not using it properly would then be useless. Navigating a city
is potentially complicated, and the usefulness of directional software has made it so widely
adopted.

The value this type of software brings to our user's world has risen to the level of being
useful, and some software even operates as a utility. Utilities are typically thought of as any
organization supplying a community with electricity, gas, water, and garbage and
sewerage disposal. Utilities are essential for living in a city or participating in a community.
When software is useful to the point where communities rely on the software to supply
them with life-saving information, or as essential as getting water to people, the software
had better be usable, accessible, and useful.

"Useful" is a human value because humans can be useful to each other. Useful software is
used over and over again, which makes it all the more important to make your software
usable and accessible by the broadest user base possible.

Improving Software Systems with Data Chapter 9

[235]

Summary
In summary, as we move into the last third of Learn Human-Computer Interaction, this
chapter started to cover considerations that every HCI designer should know and that
software should apply, but sadly does not. Our prototype practice from previous chapters
was preparation for executing the HCI design process but was missing specifications
regarding what makes great software, which is the role of reviewing universal design,
usability, accessibility, and useful products as a basic human need that all software should
satisfy. As an HCI designer, your role will be to build better software, which means
considering all your users, not just the ones who validate your solution. As we have
discussed, HCI is hard for a reason, and great software can and will impact the world, so
take it seriously and apply the ideas in this chapter to all your solutions.

In the next chapter, we will focus on more skills in part 3 of the execution of software design
through human-centered solutions.

10
Human-Centered Solutions

Now that we are getting deep into HCI in this book and you are starting to realize how
software is meant to be designed for the widest set of users possible through usability,
accessibility, and caring about your user's needs, let's consolidate our knowledge and
discuss what makes software successful.

As you continue to grow your HCI skills, it is essential to allow not only your skills to
radiate into all your solutions, but also to allow the value and importance of your decisions
to reflect the broader community of HCI and human-centered design practitioners.
Software design does not exist in a vacuum; it is part of the culture and an HCI designer's
ability to anchor their solutions deep in the communities they serve allows us to earn that
right and also the right to not accept or tolerate bad software. We now know how to fix it,
so let's do it.

In this chapter, we will discuss how to capitalize on success from the past:

Exploring open-source software culture
MVC, not MVP
Iterative loops for improving software, which improves culture

Exploring open source software culture
Open source refers to anything a group of people can modify and share because its design
is publicly accessible. HCI designers and software developers have championed the 'open
source' concept and it lies at the heart of the internet itself. Tim Berners-Lee, in all his
glorious wisdom, understood that to make the internet possible, you would need everyone
using the same tools and accessing the network through the same technology. The internet
is an open source idea in that sharing the code along with the delivery system makes others
want to use it. Because of this shared technology, it creates a network of a global scale that
drives the standardization of code (HTML/CSS/JS) itself.

Human-Centered Solutions Chapter 10

[237]

Open source software is a product of public and open systems, supported by a community,
and made up of shared and distributed materials and documentation:

In reality, the internet and all the software that is created around it is more complicated
than this simple idea, but without open source, we would have multiple internets all using
different standards, different code bases, and different interfaces. Frankly, it would be a
nightmare. Fortunately, we have a system that maintains itself, and an HCI designer in the
USA, in Japan, or anywhere else will be executing HTML/CSS/JS to make web-based
software. If you think about it, it is pretty remarkable and the world has been
fundamentally restructured because of the scale and wide use of these internet
technologies. Not only can we communicate around the world; we have a method for
delivering software that can solve problems around the globe as well. The communities
around the globe that access and utilize the internet to run their business, interact with
customers, or just create a place for information – they all commit to keeping the internet
open.

Offering software at scale is very hard and requires lots of work, which is why open source
ideas have been supported by the HCI and developer communities. We get to stand on the
shoulder of giants and can prototype software much faster because the HCI designers and
developers are not required to reinvent the wheel and code everything from scratch. Using
open source is like using a cheat code in a video game but in this case, you still have to
know how to use and/or code using the open source materials as a starting place.

Human-Centered Solutions Chapter 10

[238]

Besides the fact that open source code bases reduce the barriers to entry for a software
solution, they also allow code bases to be maintained and supported by a global
community of designers and developers. As we discussed, the web coding languages of
HTML/CSS/JS are open source code bases that anyone can use or modify using the inspect
features on their web browsers. There are many other 'open source' coding ideas but what
makes 'open source' so valuable is the notion that its authors make the source code
available to others who would like to view that code, copy it, learn from it, alter it, or share
it.

Open source software projects can require users to accept some terms of a license but many
open source licenses allow users to copy, modify, study, and distribute software built using
the source code. In general, open source licenses grant computer users permission to use
the code for any purpose they wish, which makes them entirely unique in our world. 'Open
source' is a concept that represents a broader set of values inside the development
community. These values are predicated on the idea that you get farther by working
together rather than walling off your garden. Open source projects, products, and
initiatives embrace and celebrate principles of open exchange, transparency, collaborative
participation, meritocracy, rapid prototyping, and community-oriented development.
There are many open source software projects. I recommend getting starting by creating an
account with GitHub.com. GitHub contains a version control software system and open
source community software creation hub that allows teams from all over the world to
collaborate on software.

In GitHub, you can create repositories and join code repository (repo) projects to make
contributions. Although some repos have selected access to make sure those designers and
developers adding to the open source code are qualified and won't create problems with
the code base. Joining a community code project can be a rewarding process, a great way to
practice what you preach, and a way to learn how to create open source projects as part of a
community.

Now, let's examine some well-known open source initiatives.

Open source projects
It is also important to highlight there are thousands of open source projects with very
different levels of support. That being said, we will explore some of them here.

Human-Centered Solutions Chapter 10

[239]

Bootstrap (Twitter)
A free frontend web framework centered around responsive, mobile-first web
development. Bootstrap is a collection of CSS and JavaScript/jQuery-based UI design
elements for typography, forms, buttons, navigation, and other web UI components.
Bootstrap is a very popular frontend web design framework that is used to produce many
websites on the internet:

Web: https:/​/​getbootstrap. ​com/ ​
GitHub: https:/​/ ​github. ​com/ ​twbs/ ​bootstrap

Angular
An open source JavaScript framework that can be added to an HTML page that extends
HTML attributes with directives and binds data to HTML with expressions. Angular is a
toolset for building the framework most suited to your application's development:

Web: https:/​/​angular. ​io/ ​
GitHub: https:/​/ ​github. ​com/ ​angular/ ​angular

Node.JS
An open source server environment that runs on various platforms and uses JavaScript on
the server to allow developers to manipulate data from the backend to the frontend:
Web: https:/​/​nodejs. ​org/ ​en/ ​
GitHub: https:/​/ ​github. ​com/ ​nodejs/ ​node

NPM (Node Package Manager)
NPM is a package manager for Node.js that is used as an online repository for open source
Node.js projects, as well as being a command-line utility used to install Node.js packages.
So basically, it is used for managing various server-side dependencies. This tool is used by
over 11,000,000 JavaScript developers around the world:

Web: https:/​/​www. ​npmjs. ​com/ ​
GitHub: https:/​/ ​github. ​com/ ​npm/ ​npm

https://getbootstrap.com/
https://getbootstrap.com/
https://getbootstrap.com/
https://getbootstrap.com/
https://getbootstrap.com/
https://getbootstrap.com/
https://getbootstrap.com/
https://getbootstrap.com/
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://angular.io/
https://angular.io/
https://angular.io/
https://angular.io/
https://angular.io/
https://angular.io/
https://angular.io/
https://angular.io/
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://github.com/nodejs/node
https://github.com/nodejs/node
https://github.com/nodejs/node
https://github.com/nodejs/node
https://github.com/nodejs/node
https://github.com/nodejs/node
https://github.com/nodejs/node
https://github.com/nodejs/node
https://github.com/nodejs/node
https://github.com/nodejs/node
https://github.com/nodejs/node
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://github.com/npm/npm
https://github.com/npm/npm
https://github.com/npm/npm
https://github.com/npm/npm
https://github.com/npm/npm
https://github.com/npm/npm
https://github.com/npm/npm
https://github.com/npm/npm
https://github.com/npm/npm
https://github.com/npm/npm
https://github.com/npm/npm

Human-Centered Solutions Chapter 10

[240]

React Native (Facebook)
React Native is a declarative UI framework for iOS and Android, developed by Facebook.
Using React Native, you can apply native UI controls and have full access to the native
platform functionality. React Native is similar to React, but it uses native components
instead of web-specific components as building blocks:

Web: https:/​/​reactjs. ​org/ ​
GitHub: https://github.com/facebook/react-native

VS Code (Microsoft)
VS Code is a popular text editor tool that combines the simplicity of a code editor with
what developers need for their core edit-build-debug cycle:

Web: https:/​/​code. ​visualstudio. ​com/ ​
Github: https:/​/​github. ​com/ ​microsoft/ ​vscode

You might notice that many of these open source projects are associated with an established
software company, whether it be Twitter, Facebook, Google, or Microsoft. The reason this
occurs is that many such projects were launched at these companies initially as private
software, but got to a place where their scale and value were so great to the designer and
developer communities that it created a need to transition them to open source.

Take Bootstrap for example. It was started at Twitter in 2010 by the following developers:

Mark Otto (https:/ ​/​twitter. ​com/​mdo, https:/ ​/​github. ​com/​mdo)
Jacob Thornton (https:/ ​/​twitter. ​com/ ​fat, https:/ ​/​github. ​com/ ​fat)

The development of the framework was aimed to encourage consistency across internal
tools at Twitter, but as a code base, its usefulness for building responsive websites had far
more potential than just to be used internally at Twitter. After teams at Twitter started
contributing to the code base, it was released as an open source project on August 19, 2011,
and is still on of the most popular frontend frameworks for RWD web design, and is now
on its fourth version (v4.4.1).

https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://github.com/microsoft/vscode
https://github.com/microsoft/vscode
https://github.com/microsoft/vscode
https://github.com/microsoft/vscode
https://github.com/microsoft/vscode
https://github.com/microsoft/vscode
https://github.com/microsoft/vscode
https://github.com/microsoft/vscode
https://github.com/microsoft/vscode
https://github.com/microsoft/vscode
https://github.com/microsoft/vscode
https://twitter.com/mdo
https://twitter.com/mdo
https://twitter.com/mdo
https://twitter.com/mdo
https://twitter.com/mdo
https://twitter.com/mdo
https://twitter.com/mdo
https://twitter.com/mdo
https://twitter.com/mdo
https://github.com/mdo
https://github.com/mdo
https://github.com/mdo
https://github.com/mdo
https://github.com/mdo
https://github.com/mdo
https://github.com/mdo
https://github.com/mdo
https://github.com/mdo
https://twitter.com/fat
https://twitter.com/fat
https://twitter.com/fat
https://twitter.com/fat
https://twitter.com/fat
https://twitter.com/fat
https://twitter.com/fat
https://twitter.com/fat
https://twitter.com/fat
https://github.com/fat
https://github.com/fat
https://github.com/fat
https://github.com/fat
https://github.com/fat
https://github.com/fat
https://github.com/fat
https://github.com/fat
https://github.com/fat

Human-Centered Solutions Chapter 10

[241]

Challenge 47 – Research an open source project
and contribute
Setup:

Install Git.1.

Part 1: Research an open source coding project:

Navigate to a code base and read the contribution rules.1.
Make a request to join the open source community of your choice.2.
Add to the documentation and code to help solve problems in the open source way.3.

Part 2: Share your contributions to the community and recruit your friends to join.

Share how you are involved with an open source product. 1.
Working on projects is more fun with friends, so see if you can get your friends to help.2.

Do some basic research on version control systems along with the
language and features associated with Git terminology: branches, pull
requests, merging, merge conflicts, and so on.

For designers and developers who were looking to update their web platform, they
recognized the framework of code was being created to be scalable to the entire web,
especially as mobile devices started to dominate internet traffic around 2009-2010.
Bootstrap inside Twitter was only somewhat viable as a project but as an open source
frontend code framework, maintained and extended by a community of designers and
coders, it has become well supported and maintained. Currently, the frontend framework is
used in education, frontend prototyping, and to help developers speed up their web
software development process.

There are many more projects, and equally as many more that are build on top of these
open source code foundations. As an HCI designer, developing an understanding of how
you can contribute to a software development team will be easier if you're familiar with
how the software is being coded. As we have discussed previously, knowledge of what is
possible is a collaboration between design and development. If you know an application is
being coded with AngularJS, you should learn how to prototype with those open source
code tools that speed up the development process but also make sure that you, as an HCI
designer, won't suggest solutions or UI elements that are not in the AngularJS code
elements.

Human-Centered Solutions Chapter 10

[242]

Besides having lots of designers and developers knowledgeably working with a code base,
using open source methodology allows teams to share the same values. The code that is
being used is not a secret; it is out in the open, which changes how a team looks at solutions
and thinks about creativity. The best ideas can be explored more freely in open source
because it is all about solving a user's problem and not about creating proprietary
intellectual property that cannot be shared, copied, or modified by anyone else. Rather,
open source allows an HCI designer to focus on the most scalable and supportable solution
for a problem that hopefully then gets used but countless others without the risk of being
hounded by lawyers for stealing a software idea.

As an HCI designer, you may not always work on open source software, but I can
guarantee you will use open source code inside proprietary software because it will speed
up your work. Getting software off the work studio floor is hard and open source helps
in speeding up your software prototyping process, as not a designer or developer wants to
write every line of code from scratch. Being faster and working better together is why open
source has been so pervasive in software design communities. Join the conversation and
use the skills we have been discussing in this book in the service of sharing and
contributing to the greater good. If you have a say in the matter, attempt to push your
projects to be open source themselves and you will be astounded by the level of
community support and contributions.

MVC, not MVP
Furthermore, as an HCI designer, you will work on solving problems for your users. In
Silicon Valley and on the mouths of those involved in business start-ups is the
term Minimum Viable Product, or MVP:

Human-Centered Solutions Chapter 10

[243]

An MVP is the idea that a production team should produce the simplest version of a
software product that offers only the highest value to its users in order to be first to market.
An MVP focuses on the impact of learning in new product development. If you are not
familiar with Eric Ries, he wrote a book called The Lean Startup, which has impacted the
way many software companies, entrepreneurs, and start-ups have oriented their software
development teams and in turn, developed software solutions. The MVP helps in the
validation of ideas upfront and holds that learning comes in the form of whether your
customers will actually purchase your product.

As we have been discussing, human-centered software has the ability to address the
requirements of an MVP. A key premise behind the MVP concept is that an HCI team will
produce a product that you can offer to customers and observe their actual interactions
with that product or service. I hope this feels familiar with the idea of prototyping we have
been discussing up to this point. However, an MVP is the finished product, where a
prototype is used to be learned from before completing a final launchable solution. HCI can
use their skills to see what people actually do with respect to a product, which is why we
can get pulled into creating MVPs. The thinking behind an MVP is that testing products on
actual users is a more reliable approach than asking people what they might do.

The challenge with an MVP is that it rests on the assumption that a fast-moving HCI design
team can address their users' needs quickly – an approach that values speed and being first
to market over solving the user's problem the right way. An issue is that an MVP places an
undue burden on selling the MVP solution as the correct answer rather than validating
multiple solutions through prototyping. The MVP becomes a de facto foundation for a
solution and will only be abandoned if it doesn't prove to capture the desired users. Many
MVPs fall subject to "pivots" or changes in direction from the business if the developers
don't get the solution right first time.

The high-pressure MVP existence has helped some start-ups address their users faster.
However, it involves tons of risk. In order to minimize this risk, I think building prototypes
that are validated through a Minimum Viable Culture (MVC) is more successful:

Human-Centered Solutions Chapter 10

[244]

MVC refers to the set of shared values and purpose needed to deliver a company’s value
proposition to customers. In other words, users don't just use software because it solves
their problem, they rely on and trust the brands' ability to create solutions over time. If your
product or your company values do not resonate with your users, then you face a risk in
convincing them that using your software will solve their problems. Culture goes both
ways and software solutions are a response to your users' culture. The two-way street is
why I have been discussing user research and driving human-centered values throughout
this book.

In many ways, software solutions are wrapped in their own form of culture. For example,
look at the number of users who call themselves "a Mac person," suggesting that somehow
using Apple software has altered their personality and fundamentally changed their
approach to learning and using the software. The reality, however, is that this is true, and if
you look deeper at this sentiment, you might see how it is connected to the idea of MVC.
Learning and using Apple software and a computer OS is participating in the computer
culture of Apple, which then establishes a set of software values that then get applied to
other software solutions. The user than participates in software that is connected (or at
minimum, related) to the user experience expectations set by Apple. The software doesn't
exist in a vacuum; it is all related, which makes it important to pay attention to the
communities that use software and create the culture around it.

Human-Centered Solutions Chapter 10

[245]

The reason considering and building software through an MVC lens is that it allows the
HCI designer, along with their research in building rapid prototypes, to narrow in on what
makes their software prototype successful. An MVC is not just about validation but rather a
method to see if the software solutions are aligned with the cultures of the users they are
ultimately serving. An HCI designer can be much more confident in a software solution
when they know their solutions have not only been vetted by their users, but also valued
by them as well. A software solution has many possibilities but if an HCI designer can
establish a strong culture that will support their solution, then it is less likely to be changed,
pivoted, or abandoned as a viable solution.

The idea of MVC has been deeply understood by software brands, and if you end up
working on a software product that is designed for a particular operating system, such as
iOS, you too will be required not only to use the software patterns of their platform, but
also, iOS has some criterias for allowing your software to exist on their platforms. As an
HCI designer, your ability to be well versed in multiple software communities will allow
you not only to research them more effectively, but also makes you more valuable as a team
member as you can switch between platforms, all while folding human-centered ideas and
values into all of your software solutions.

Iterative loops for improving software, which
improves culture
As we have been discussing, an HCI designer creates software solutions over time with the
goal of producing human-centered solutions to continually improve our users' experiences.
The iterative design process is fundamental to how we think about, design, prototype,
iterate, and ultimately launch software for our users. The idea is quite profound as an HCI
designer is not just solving problems for users through software; they are impacting
culture. Because an HCI software designer has the ability to impact culture, we should take
that responsibility very seriously and make sure our solutions are what that culture needs.
Iterative design is valuable for culture:

Human-Centered Solutions Chapter 10

[246]

Culture is malleable and we don't want to create software that can break the cultures we are
attempting to impact with our solutions. As HCI designers, we must look long and hard at
whether the software we design is doing what it was intended for, while also improving
the culture, or whether it is morphing that culture in ways that are unintended. For
example, Twitter is a form of software that has modified culture in ways I don't think they
intended. However, when politicians or other users can use it to spread misinformation
without any recourse, the culture it is fostering needs to be checked and the software needs
to be iterated in order to not destroy the culture it is trying to serve. The cycles of software
iteration, then, are not just for the HCI teams solving problems, but should be as far-
reaching as possible into the communities they serve. At the heart of HCI is the human, and
we need to iterate our software within the cultures that those users exist, and not the
culture we hope or wish would exist.

If you are addressing a culture with your software solutions, you are also considering
the widest set of users possible through usability and accessibility, while caring about your
user's needs. As we discussed, what makes software development hard is that users are
always changing and so is the culture. By building software that can be iterated on, an HCI
designer can keep up with the changes in culture. Some cultural changes occur very slowly,
while other aspects move very fast.

Human-Centered Solutions Chapter 10

[247]

The technology we as HCI designers are attempting to support is a part of the technology
culture that we need and have willingly joined. Don't get me wrong – I highly encourage
you to dive into your HCI community and culture, but I also highly recommend finding
opportunities to stand back from it. Being able to look into a culture from the outside has
value and you do not want to participate in too much confirmation bias. If you are too close
to your HCI software technology culture, you might miss something that is not net positive
for that given culture. Culture is a big picture, and if your view of that culture is too narrow,
you can quickly start only considering an increasingly narrow set of solutions that are
acceptable to that culture. This type of cultural iteration is dangerous. As an HCI designer, I
highly recommend you find opportunities to validate your solutions with cultures that are
not your own. The reality of software solution development is that we have to make
assumptions, and these assumptions need to be validated not only with our users but
potentially with those that are not our users, especially if the goal of the software is to serve
everyone, everywhere.

I hope you have gotten the gist. All I am just trying to get across is that, as an HCI designer,
you need to care about the users If we don't hold our solutions to a higher cultural
standard, we will continue to prop up and produce software that is not only bad for our
own community but can have negative implications for the wider culture as well. Take the
skills we have been talking about up to this point and deliver them meaningfully in your
interaction with your culture(s), making sure to continually validate and iterate them over
time.

Summary
To summarize, we started with discussing how software design thrives within the vast
community of designers and developers. We covered software as a culture and discussed
how collaboration on open source problems creates opportunities for HCI designers to
scale their contributions around the globe. We also considered how software design is
difficult and time-consuming, and therefore, sharing has become essential to speeding up
solution times. The community and team environment in which software solutions are
produced also lends itself to maintaining and building for culture of that environment and
community. The open source ethos has birthed ideas like the internet, and therefore, we
reviewed why iteration and software development aimed at the betterment of mankind is
not just a pie-in-the-sky idea but rather something that we as HCI designers can continue to
hang our hats on at the end of the day.

In the next chapter, we will focus on more skills in Part 3 as we discuss methods for
extending HCI throughout your careers.

11
Extending HCI

Now that we have reviewed some ways to produce human-centered solutions at scale, let's
discuss how the ideas and skills covered up to this point can be extended and maintained
over your careers. As a budding HCI designer, you are well on your way to impacting your
users in a positive way. The roles we play in culture are linked to our ability to design, test,
and iterate software solutions for our users, but we also have the opportunity to improve
ourselves. Extending our own skills will ultimately improve the speed, attention, and value
that our solutions bring to our businesses and our users.

Now that you are progressing in your HCI journey, let's discuss how HCI skills can create
value over time. Software design and development careers are in high demand. The US
News and World Report lists the top jobs each year. In 2020, the #1 best job in the US was
that of software developer, at 241,500 projected jobs with a median salary of $103,620.
(https:/​/​money.​usnews. ​com/ ​careers/ ​best- ​jobs/ ​rankings/ ​the-​100- ​best- ​jobs). The
reality is that with demand comes high levels of skill requirements as well as high levels of
competition. The skills we have been reviewing are just a starting place for getting you up
to speed and into a new HCI role. One thing that should be a comfort is that software
design is not a one-person show and HCI is best executed and scaled across a team.

The purpose of focusing on software development as a team endeavor is because, to be a
good HCI designer, you should be curious about humans. Being surrounded by other
equally curious team members will amplify your skills. We have discussed how designing
great software is difficult, but working with team members who do not see the true value in
caring about their users can make it downright painful. If you wish to extend the HCI skills
we have been practicing throughout this book, look for software teams that emulate the
skills and values associated with HCI. Let's discuss how we scale HCI skills and evangelize
the value of human-centered design to every team member.

The upcoming chapters are meant to highlight the long-term value that an HCI designer
can bring to solutions when they use their skills consistently over time.

https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs
https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs

Extending HCI Chapter 11

[249]

In this chapter, we will be learning how to extend our HCI skills through the following:

Contributing to software development as a collective team
Exploring how great solutions are shared and scaled
Evangelizing to your team and sharing common goals
Demonstrating how you care

Contributing to software development as a
collective community
As we have already discussed, HCI and designing software are a team endeavor. The
reality is it is more like a league of teams all competing but working toward similar goals.
All the companies and individual HCI designers, software developers, project managers,
and so on are all part of a collective community. One big family. We might occupy our own
little specific space of expertise or software knowledge but when it comes down to it, we all
make software and we all work on the same teams.

In the past, and in some instances today, our communities created walls between the design
(art) and the code (technical) aspects of solving software problems. Unfortunately in some
cases, it has gone so far inside the industry that designers and developers don't actually
work together on solving problems, but rather lob solutions back and forth from
department to department. We as an industry created management ideas, such as the
Waterfall development methodology, that kept the artistic, creative thinking and the
technical thinking quarantined from each other, as if somehow these communities were
incapable of communication and didn't share similar goals. Hopefully, it's not surprising to
you that this was and is false, and is where HCI and the UX/UI professions have found a
unique shared footing. As these community walls get demolished, the ideas and
considerations flowing in from each side allow us to collectively focus on common ideas.

We learn from each other and rely on the community to prototype together, support
standards, share code, and apply solutions that can scale across the globe. We are all
stronger and better at solving software solutions because we don't keep it to ourselves or
hide behind proprietary closed systems or ways of thinking. Software design is not magic;
it is hard work, but it is knowable for and achievable by all parties. We extend our
knowledge and share how we go about solving difficult problems so that others can follow
in our footsteps, and all users are better for it.

As an HCI designer, you should look out for the bridges between the design, development,
and business communities. Software communities should be rhizomatic with connections
built between community nodes. If they don't exist, then find ways to create them.

Extending HCI Chapter 11

[250]

Throughout this book, you have learned HCI skills that span a wide spectrum of the
software design process and this is why we are particularly focused on seeking out and
codifying our community connections. As you continue to build your network and engage
in different aspects of the software design and development community, look to align with
others on common goals.

Here are ten goals that you as an individual can hopefully look for in your software teams
as well as in the software league (community):

Software design is human-centered and designed for people, by people.
Software design is iterative and can be improved over time.
Software design is usable and accessible to all users.
Software design creates a net positive impact on its users.
Software design gives humans more time.
Software design is not biased and should not push an agenda outside its own
value.
Software design is better as open source.
Software design is agile.
Software design is accomplishable only as a team.
Software design is interconnected.

Over your career as an HCI designer, you will probably not work on one piece of software
or for one company. According to Indeed.com, the average tenure of a software developer
is around 3 years (http:/ ​/​blog. ​indeed. ​com/​2017/ ​04/ ​03/ ​silicon- ​valley- ​tech- ​job-
migration/​). Regardless of where you work or what software you help build, the products
you design will still be used by people. Because there is a lot of switching teams, your
ability to be a good teammate and quickly help your organization build and maintain
software is essential to you being able to move around in the first place.

Although there is a lot of competition in the software world, another interesting thing we
have is coexistence. For example, Apple and Microsoft coexist and are both widely
successful. If you know some of Apple's history, you would know that in 1997, upon Steve
Job's return, they took significant investment (150 million USD) from Bill Gates and
Microsoft. Until that point, the software industry was fighting like cats and dogs, but they
realized that with the competition, you also get a larger global reach for technology, even if
it isn't your brand.

http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/
http://blog.indeed.com/2017/04/03/silicon-valley-tech-job-migration/

Extending HCI Chapter 11

[251]

UX, UI, frontend dev, backend dev, PM, business,
and ops
Furthermore, there are a lot of roles in the software design community. We have covered a
number of them by this point but applying your HCI knowledge of the software design
process is applicable inside any role. By gaining skills in HCI you will be able to span
between many of these roles and hopefully move up throughout your career. Moving up in
the software design process typically equals moving into management and overseeing the
production of a software team rather than the individual execution of design or code.
Moving up in the ranks will require an overall view of the process and if you experience
each role directly, rather than just jumping to managing all of the roles, you will have a
better idea of how all the parts work together. A good way to consider the whole system as
a manager is to use the project management V model:

Extending HCI Chapter 11

[252]

A process that applies validation that can use the design thinking process to solve the
problem and then employs verification to find if the solution is useful, usable, deployable,
and scalable to your users through system testing. Managing software over time will
require the whole team. Many roles in this software design process start out as junior roles,
as there is a lot to learn about how a software team functions. As you start to look for work
or join a software team, applying HCI skills is more effective when others on your team are
also either familiar with your expertise or share in your knowledge and passion for
building human-centered software. The opportunity to work with software teams that
understand what an HCI designer can bring to the table makes executing your role that
much smoother and allows you to step in and help the team right away. By gaining an
overview of how HCI applies to each of these roles you can also be a better teammate and
hopefully then take these skills up the chain as you work with more designers. Ideally, you
will learn along the way, both from this book and other sources, and that education will be
transferred to those that you work with or that you yourself help to train.

Not every software team has all the aforementioned roles. If you are new to HCI and need
some practice, I recommend not joining a team that is too small too early in your career.
The reason is there will be lots of overlap between the UX, UI, and frontend dev roles, and
maybe even backend responsibilities that might be too much to handle without the
additional experience that comes from working on a bigger team. Besides the fact that you
don't want to do the roles of four separate people, smaller teams typically run into
capability issues as software either grows in size (that is, features and functionality) or scale
(the number of users of the software) and small teams can struggle to keep up with the
complexity, especially if they have never experienced it before. Big companies such as
Google employ thousands of software developers with HCI skills in teams that include all
these roles and more with multiple team members per role, which is why they can support
globally scaled software solutions. Google is not the only company that has this type of
organization. There are lots of different companies all solving very different problems
through software. This is both a blessing and a curse, as where to go apply your HCI skills
is hard to discover.

Extending HCI Chapter 11

[253]

The challenge is to uncover the heart of a software team, which should be displayed in their
human-centered actions:

The goal is to build great software for as many users as possible and everyone on the team
has to believe that it is doable as well as having the experience that will make it happen.
When interviewing with a team or talking with management, attempt to get at the heart of
their software design philosophy and process. I would recommend getting to the heart of
whether they really care about their users as they make software decisions. It also wouldn't
hurt to understand whether the HCI designers and developers work as a team in an agile
environment. Ask a ton of questions to the team as there are many teams who are
buzzword compliant, but in execution, do not actually follow through with the HCI and
human-centered process aspect of the work.

If you find a team that lives up to the quality bar I have been trying to set, congratulations!
Now you can grow that team's abilities with your own HCI skills. Let's discuss how you
can hit the ground running with the HCI skills.

Extending HCI Chapter 11

[254]

Team handoff and responsibility
As a result, the nature of software design and development work is both collaborative and
individually executed. The HCI process is attempting to infuse human needs into all
aspects of the software design process, which includes respecting the time and challenge
each team member is working on. The agile design cycle requires all team members to be
aligned with the same software goals:

A plan to execute a feature, for example, requires validating whether the feature is actually
needed by the users through user research. Next, a UX design solution as a prototype is
created and iterated on as a UI/visual design composition which is then coded by a
frontend dev/backend dev (if required) and tested at each stage of the process. When done
best, this process happens in tight cycles that allow all team members to be involved in the
agile feedback loop. The feedback loop is both from team members communicating their
processes as well as implementing the feedback from users acquired through the testing of
prototypes. Throughout the software design process, each team member is required to
communicate and share with their colleagues. The better the team communicates and
upholds the process, the faster the software solution can solve its users' problems.

Extending HCI Chapter 11

[255]

Know as a team handoff, software solutions can be more accurately developed if, for
example, the UI/visual designer shares development-ready assets with the frontend
developer. Hopefully, those UI assets are a byproduct of a tested UX prototype that has
been validated by your users. All of this requires using tools that help speed up moving
from nothing to a full software solution. How teams communicate and share these designs
and iterations is essential to growing your team's confidence, as well as to creating tighter
feedback loops. The software design world moves quickly and the tools teams use to
execute software prototypes need to be equally nimble. If a software tool is slowing your
team down or hindering essential communication about how a prototype performed, then
replace it in your team's process. There is no room for prioritizing a tool over the team's
progress.

In the past, I worked with a visual designer who loved using Adobe Photoshop to create
web design compositions. He was relatively fast and kind of stubborn about adapting to a
different UI design tool. Other team members had experienced some bottlenecking with the
work that was created but never equated it to the lack of using similar tools. As we grow
the team and the UX team members continued to use Sketch to execute the vast amount of
system wireframes, it became quickly apparent that the visual designer's unwillingness to
use the similar software systems was creating friction and limiting the quality of our
prototypes and our speed in producing them. The designer was having to duplicate a lot of
work and was creating too many problems. In our case, we had to replace the designer due
to his unwillingness to play as part of a team and share in the visual design
responsibilities. It can be very hard to replace team members in the middle of the execution
of a design system, however, getting teams using similar design processes and similar tools
can help the team distribute the work and maintain quality over time. The software design
process takes practice and getting everyone using similar tools allows everyone to
collectively combine their skills together rather than leaning on one member or another to
do one part of the process. Creating redundancy in tool usage, as well as familiarity with
how to manipulate what is being shared between team members, both work to keep the
process moving forward and can help a team avoid bottlenecking and conflicts in quality
control.

The software design tools your team uses should be fundamentally built around
prototyping and collaboration. The entire team should have access to the system they are
designing. Sharing feedback on user issues uncovered during user testing or about bugs
that need to be fixed should be captured and shared via a central hub that helps visualize
and improve a software solution over time. Many tools exist for this purpose, including
Atlassian Jira, GitHub, and Trello, among others. However, the feedback captured and the
changes that need to be created should be realized and visualized in a shared prototype.

Extending HCI Chapter 11

[256]

Tools such as Figma, Sketch + InVision, GitHub, and others help keep teams
communicating and iterating their software solutions. Managing all this feedback and agile
cycles should be a project manager's role but can also be supported through the tools we
use as a team.

Communication tools – Zeplin, Figma/XD/Sketch,
InVision
Software teams have built sophisticated systems across large teams. The ability to share
documentation and details of how a system should be built is essential. Luckily, software
communication tools have gotten better and gone are the days where a designer has to
painstakingly document every last detail of their visual solution so that a developer will not
miss aspects of their solution. Now, we have tools that speed up this documentation
process and UI software tools that even generate basic pieces of code. Creating the ability to
seamlessly share a working prototype or deliver an asset that is developer-ready is built
into tools such as Adobe XD, Sketch, and Figma by using complementary development
hand-off tools such as Zeplin.io.

Challenge 48 – Add a Zeplin.io project
Setup:

Go to https:/ ​/ ​zeplin. ​io/ ​.1.
Create an account and sign in. 2.

Zeplin.io project sharing:

Create a new project.
Upload your Adobe XD/Sketch/Figma screens to your project.
Explore how Zeplin.io converts the design file into dev CSS styles and sizing rules.
Explore how Zeplin.io can connect to Jira and Slack.

Zeplin allows one free project so use it wisely while experimenting.
Hopefully, the software team you will work with will be open to spending
money on tools that speed up communication and development
efficiency. Trust me, it is worth the ROI.

https://zeplin.io/
https://zeplin.io/
https://zeplin.io/
https://zeplin.io/
https://zeplin.io/
https://zeplin.io/
https://zeplin.io/
https://zeplin.io/

Extending HCI Chapter 11

[257]

If you are continuing to use tools that make you work harder to hand off assets or code
details, you will continue to create friction between the design and development sides of
the software equation. The reality is neither side wants to repeat tedious, mindnumbing
details, or sit through a meeting that could be made unnecessary with clear documentation.
By using tools that bridge this gap you can free up both sides to do more designing, coding,
prototyping, and testing rather than executing the documentation part of the software
process.

Although tools like Zeplin.io exist, they are not foolproof and need to be overseen by the
design and development teams, but they are a heck of a lot easier than the redlining and
annotating solutions that we had to do in the past.

If you find a job or are working for a software team who values working hard over working
smart with their tools or their treatment of people, go and find another opportunity. The
software company that is unwilling to modify their design and development processes to
remove the hassle of tedious work from the team is a company that will eventually fail, or
at minimum, be taken over by other teams that do work and communicate effectively.
Tools change a lot over time and software is created through a limited set of tools. Having
many tools is both a good and bad thing – it's good because tools adapt to and are designed
for the software systems we build, allowing the new tools to be more efficient, tailored, and
responsive to the needs of a given software team.

For example, consider Sketch as an alternative to Adobe Photoshop, Illustrator, or Figma as
an alternative to Adobe XD. The sheer amount of software tools with which to design and
build software solutions is predicated on the fact that the software development process is
constantly changing. How teams collaborate on a software solution is also different than it
was in the past. Newer tools are fundamentally built around collaboration and the need to
iterate as a team on a prototype helps.

The bad news is tools require new training and learning from the entire team. It can be hard
to convert designers and developers to new tools, even if those new tools are better and
align more closely to the design-build-test workflow within the prototype.

 As we have discussed, software design is very hard but can be made even harder by using
ineffective tools and communication processes. I recommend championing the idea that a
team that communicates and works together tightly on a shared prototype is far better off
than a team that prefers detailed documentation and tool rigidity over teamwork.

Extending HCI Chapter 11

[258]

It is easy to champion teamwork, but in reality, actually building a great team is a much
harder part of the equation. However, if you keep your eye out for the signs that a software
team is following a design process, uses similar tools, and encourages a sound work/life
balance, you will find software teams that hopefully are building great software. Trust me,
they exist, and if they don't, you can bring your HCI skills into teams and help make them
great.

Exploring how great solutions should be
shared and scaled
Importantly, even software teams that are built around prototyping first and working with
tight collaboration doesn't mean without a doubt that they will be successful. The reality is
there is a ton of competition and making software solutions scalable is risky. For example,
Microsoft Word is not going away anytime soon – even if a new software team invented a
better word processor, the hold and longevity of Microsoft Word means it is staying
around. There are many reasons why, but Microsoft Word is still the default. A 5-year-old
in kindergarten is now learning to use a computer alongside their ABCs and I can bet you
they use Microsoft Word software to write their first letters. The deep hooks in culture that
software such as Microsoft Word has is profound, as that tool has achieved adoption on a
massive scale. Its scale is achieved not just due to its use on computers; it has also reached
such a scale culturally within education, business, and government usage. Microsoft Word
is like Kleenex tissues, that is, it is ubiquitous for all the types of text-based software using
word processing.

Challenge 49 – Software scale research
Setup

Create a Google doc/Google Sheets file to capture your data. 1.

Software tools questions

Ask ten friends or coworkers:1.
 - How would you write a long paper or letter?
 - If they say they'd use a computer, ask them, "What software would you use? Why?"
Document the answers.2.
 - Record each answer and mark what software was referred to.

Extending HCI Chapter 11

[259]

Gathering data manually will help you respect the time and effort a
computer can save you.

Because of the reach of the internet, software has the ability to impact billions of people.
Will every piece of software be used by 100 percent of the planet? No! However, if you are
building software to solve human needs and designing it to address the widest audience
possible, you can impact the lives of tens of millions or maybe more. It is a daunting thing
that hundreds of millions of users could use your software solution; however, if we follow
the goals of HCI and apply our skills, that is the goal. Whether your number of users is one
or one billion, they are your users all the same and are worthy of our consideration when
solving software problems. Failing one user doesn't contain the same risk as failing one
billion users, but the concept is the same. Our software solutions should not fail anyone and
that requires knowledge of where a system can fail.

The HCI design process is about determining and validating whether a solution will work
with our users. Once we can prove it works, we can then scale those solutions with some
level of confidence. Some solutions fail at scale; however, if you are testing along the way,
hopefully your software team doesn't get to the point where they have one billion users
they are failing.

Software solutions that are built for scale require a bit of nuance and should be carefully
tested across a wide spectrum of users before deploying the solution for all. If you are
working for a software company that is willing to modify its software for all its users on a
whim, or because a CEO wants it to done, then be worried – that is not an effective way to
scale your solutions. HCI skills and a human-centered ethos should not be so easily cast
aside. If you are working to build scalable solutions, then everyone on the team, from the
CEO to the unit tester, should care about solving user needs first.

As mentioned earlier, you are not the user! Your CEO is not the user, and your lead
developer is not the user. Your user is your user – try not to confuse this. Use your HCI
skills to solve your users' problems and then take the best solutions and push them to the
masses. The best way to continue to improve and scale your software solutions is to keep
learning and growing your team.

Extending HCI Chapter 11

[260]

Evangelizing to your team and sharing
common goals
As we discussed, software is not going anywhere; it literally runs the world. Because of
this, we should be educating ourselves and our teams to be better. The very fact you have
made it this far through the book speaks to the fact that you are willing to educate yourself.
However, if you are the only one who gains from this knowledge, then it is limited. I am
grateful you are learning but it is so much more powerful when the things you learn are
shared and maintained by others. Because of the power of building software as a team that
shares in the same canon of knowledge, the goal is to keep learning. Have you come across
ideas in this book that you think will help your teammates? Share it. Great software teams
are constantly consuming new knowledge and learning not only from their team process
but from the processes of others.

We share a common passion, but there are many ways to solve problems, and scaling
solutions to as many uses as possible is not easy. It gets a little easier when the software
team you work with has common goals. As the HCI designer on a team, you can help
forward the human-centered goals and champion knowledge-sharing about why it matters
to other members of your team who might not know as much or care as much as you do
about that goal. It is impossible to get a team to share in every goal equally, but you can
communicate and educate everyone on a team that the goals have value and your role on
the team is to maintain the quality bar for your users. By helping your team learn more
from you, it also makes your role of maintaining quality for the users easier because others
on the team are cued in, or at a minimum, understand and try to not make software that
doesn't work for your users.

Challenge 50 – Educate yourself
Setup:

Create a Google Doc.

Part 1: Practice learning from a team:

Ask the biggest community of designers for advice (https:/ ​/​dribbble. ​com/ ​).1.
Ask, "What is the key thing to learn when on a software team?" on a social media2.
platform, such as Twitter/Quora/Facebook/Slack/Reddit/Snap, or any other.
See if anyone answers. Follow that person and thank them for their advice.3.
Ask any other questions about how a team educates itself. 4.

https://dribbble.com/
https://dribbble.com/
https://dribbble.com/
https://dribbble.com/
https://dribbble.com/
https://dribbble.com/
https://dribbble.com/
https://dribbble.com/

Extending HCI Chapter 11

[261]

The technique of interviewing occurs again and again in HCI, simply
because by asking questions, you can learn from your community of users
and other HCI designers.

If you get a software team learning and sharing together, then they also back each other up
and support each individual goal, which, when done right, adds together to help achieve
bigger software goals such as scale or a return on investment for a business. Teams that
learn together grow together and can continue to learn as new problems, new users, and
new team members join in the quest to design great software.

Diversify your team's skills
As a result, while you continue to educate yourself and your teams, it is also essential to
learn from others on your team. This is where the team should be as diverse as possible. If
your software team is made up of all white males, all with the exact same educational
background, all with the same skillsets and interests, you can create software solutions, but
they are guaranteed to be inconsiderate of a large set of users. Software teams are better
when they are heterogeneous:

Extending HCI Chapter 11

[262]

Unfortunately, the software world has an abundance of nerdy males who can write code,
and I am in that category. However, that does not mean I want a software team that
consists of a bunch of me. I want my software team to reflect in some way the users we are
trying to serve by creating the software in the first place. This means building
heterogeneous teams and collecting team members that have unique backgrounds, a
variety of life experiences, different sexes, and hopefully diverse skills.

If you are a woman reading this, know that in 2020 you are still outnumbered in the
software design world, but that number is changing. The more women, and the more of all
types of people from all walks of life, that we get into software design, the better. Only a
truly diverse set of practitioners designing and developing software as a team will be able
to put their varied life experiences to good use in software design. Until then, we will have
to encourage teams to diversify as much as they can. It makes for better software. Period! If
you want to create great software, you will want to have a diverse set of ideas and opinions
on the team and you will want to make sure that every team member truly cares.

Demonstrating how you care
Lastly, I can assume by this point that you already care, otherwise you wouldn't be reading
this, nor would you be taking your knowledge of HCI out into the world. The reality is that,
as a good team member, you also need to make sure the ethos of caring about building
great software is contagious. Software design is a job and because of this, it is prone to the
ailments of clock in, clock out thinking. Software development at some companies is treated
very much this way, with a good example in Peter Gibbons at Initech in the movie Office
Space.

Check out the movie Office Space, written and directed by Mike Judge
(https:/ ​/​www. ​imdb. ​com/ ​title/ ​tt0151804/ ​).

Look out for software management, team members, or project managers that discourage
you from caring about your user. They might say things like, "That's not important; why
should we listen to every user?", "I did the minimum and then went home," or "It's fine, I did most
of what you asked for." Team members who just don't care will drag down the team and will
start to suck the potential life out of other team members who do care.

https://www.imdb.com/title/tt0151804/
https://www.imdb.com/title/tt0151804/
https://www.imdb.com/title/tt0151804/
https://www.imdb.com/title/tt0151804/
https://www.imdb.com/title/tt0151804/
https://www.imdb.com/title/tt0151804/
https://www.imdb.com/title/tt0151804/
https://www.imdb.com/title/tt0151804/
https://www.imdb.com/title/tt0151804/
https://www.imdb.com/title/tt0151804/
https://www.imdb.com/title/tt0151804/
https://www.imdb.com/title/tt0151804/
https://www.imdb.com/title/tt0151804/
https://www.imdb.com/title/tt0151804/

Extending HCI Chapter 11

[263]

If you are looking to join a software team, ask questions that will help you gauge whether
they do care. These questions could include "What if you have a bunch of users complain about
a feature, what does your team do?", "How often do members of the team learn from each other?",
"Who prioritizes features?", or "How does the team advocate for the user?" When being
interviewed for a software position, you are equally interviewing the team and company. If
you leave an interview thinking, "It doesn't seem like they really care about their users", then do
not join that team! Doing HCI is hard enough, but being the team member who has to pull
everyone else along and make them care is not fun.

Typically, teams who care build great software that is scalable, and if you can join a great
team that does care, then software design can be endlessly fulfilling and fun.

Summary
To summarize, we discussed how HCI skills are valuable to a team and why we evangelize
the value of human-centered design to every team member. The opportunities that teams
small and large get is why HCI is a vibrant space and your practice of caring about the
users and sharing that goal with your current team or a team you are looking to join is key
to growing your HCI skills, but equally to demonstrating your value to users.

As we get approach the end of the book, and you prepare yourself to take these
conversations and skills into the world, it is important to remember that you are part of a
community and will join a team of designers. If you think about it, it is kind of remarkable
that great solutions are designed by hundreds of people. The ability to share ideas and
solutions and scale them around the globe is an opportunity, but also a challenge for you to
continue to educate yourself and your team over time. As you grow your skills and extend
them to your fellow team members, remember when it gets hard that you care! When your
team members care as well, even hard days won't be so bad and you will know you have a
process that you share with your team for making improvements.

In the next chapter, we will focus on the final chapter of Learn HCI by discussing the future
of HCI.

12
The Future of HCI

By now, you should have picked up that HCI is intimately connected to people. Whether
that be through the data we gather on users during research or throughout the software
design process, the skills and experience we have been reviewing up to this point will allow
you to extend your care for users. However, nothing is foolproof. You should not think that
there is nothing more to learn even after completing a book; rather, you should see HCI as
an opportunity for you to continuously gain new knowledge and skills. Because a
computer is a great tool for gathering data, we design our software to capture data that
allows a software team to capitalize on this feedback in order to understand our users and
ultimately create better software solutions. The process is iterative and your role is
continuous. The role that HCI designers play in this cycle is to improve the relationship
between users and software solutions. The better the software team understands their
users' needs, the better the software solution will be. The HCI design process never ends
and it is our responsibility to extend this knowledge to those entering the HCI world and
work at broadening the knowledge of HCI so that everyone has an understanding of why
software matters and how they too can be involved in improving our collective user
experience with computers.

In this final chapter, we will look at how to capitalize on the knowledge we have explored
and use our own data to catapult us into the future. We've covered a lot of ground in terms
of HCI, and to wrap it up, we'll discuss how we can extend HCI skills into a world that is
primed to be more human-centered than it has been in the past:

Designing software is an awesome responsibility
Creating solutions that are net positive for culture
Evaluating what is off-limits
Empowering computers
Designing software for the future

The Future of HCI Chapter 12

[265]

Designing software is an awesome
responsibility
Technology and software's value and ability to scale has impacted every echelon of society,
from the Pope down to the potter. Between the 1960s and 1980s, computers were devices
for supplementing work and therefore took on work responsibilities with their software.
This was dubbed "desktop computing" as the computer was a device used in an office on a
desk to do "office" work. Desktop computer hardware continues to exist; however, the
majority of users interacting with computers are now doing so through handheld devices.
As we have discussed, these handheld computers have become powerful enough and have
software designed for them that has altered the very nature of doing work. Consider the
idea that doing "work" is fundamentally different in every industry because of technology,
particularly the smartphone, which has untethered workers from their desks. On the one
hand, this is great as a worker can more effectively address "work" on their own time using
their technology effectively. On the other hand, it has radically blurred the lines between
work life and personal life. The ability of technology (hardware and software) to change
entire industries is just one of the big reasons why the people designing software should
take this responsibility very seriously. I am talking about you!

Try to avoid the trappings of technological determinism, which is a theory that our social
structure and cultural values are defined by technology. Technological determinism
assumes a reductive path, resulting in the consolidation of software tools that ultimately
constrain a user's abilities rather than expand them. Software can be fundamentally a
positive force, but if we assume its use is inevitable, it can lead down a dangerous path. An
HCI designer's role is not inevitable. We need to continue to fight for and advocate for our
users; otherwise, software paths such as government-mandated facial recognition or
always-on recording devices can and will produce unwanted and potentially destructive
reactions.

I imagine right now that you have a supercomputer in your pocket, a device that can
connect you to all of the world's knowledge at the push of a few buttons or, in most cases, a
few glass screen strokes. It is remarkable and also kind of scary, the sheer scale of use that
mobile technology has had in our world. The role that technology plays is fantastic and part
of that is due to the ability of these devices to be transformed by the software that is
executed on them. A smartphone is such a versatile device and has raised the expectation of
what software can be and how it can impact our lives. As computer technology has become
smaller, faster, and mobile, it has embedded itself into every nook and cranny of our lives.
If you are traveling, it is your boarding pass. If you want to buy something, it is your
wallet. If you want to get from point A to point B, it is your map. Need to be entertained on
the train? Guess what: it can become your movie, TV, podcast, or videogame as well.

The Future of HCI Chapter 12

[266]

The ability of software and hardware to become whatever the user needs it to be can bring
huge value to the user. The smartphone is addressing so many different aspects of the
user's world. However, this also has a risk as more and more users are becoming 100%
reliant on their technology to control and navigate their world. The reliance on mobile
technology makes those devices keys both figuratively (access) and literally (keyless cars
and homes). The issue with keys is that they can be lost or stolen, or worse, hacked and
ransomed off. Smartphone technology requires power through battery life; however, if the
value a phone provides when it is charged is greater than the inconvenience of being locked
out of all your connected vehicles, homes, offices, and so on, we will see our software
continue to embed itself into our lives.

An individual piece of software that exists on a smartphone is not solely responsible for this
technology reliance; however, it does contribute. If one piece of software is designed with
flaws that allow hackers to control your technology, all other software becomes hijacked by
that lowest common denominator. The reality of the world is that as an HCI designer, there
is a lot of competition, and the software you work on does not want to be the reason a user
gets locked out of their phone. Therefore, work in teams that care and prioritize your users'
needs for privacy and security.

In software design, every positive implementation has a negative catch. Let's take the
example of a single sign-on feature, where the user signs in once and their login credentials
are used to access multiple applications. The positive: from a user perspective, this has
value as it diminishes the repetitive tasks of signing into multiple applications. The
negative: if the feature is not designed securely and is hacked, the centralized sign-on
service will have jeopardized every service that the user has connected the single sign-on to
work with. We see this occur in our world far too often as service after service reports that
their databases have been compromised and credential information has been leaked or
stolen.

When we design any software feature, we should evaluate and consider such risks. A way
to evaluate these risks is through a SWOT (strength, weakness, opportunity, threats)
analysis. SWOT is a method of evaluating a software solution. Let's practice SWOTing our
prototype challenges.

The Future of HCI Chapter 12

[267]

Challenge 51 – SWOT analysis of a software
feature
Setup

Get out a sheet of paper or create a digital sketching space (miro.com or mural.com).

Part 1: SWOT a software feature for its opportunities

Create a SWOT matrix and evaluate one of your prototype features:

Part 2: Evaluate your prototype feature

The feature you SWOTed should have more positives than negatives, or the positives1.
should far outweigh the negatives.
If your feature has more weaknesses and threats than strengths and opportunities,2.
identify it early and eliminate that feature.

SWOT on a whiteboard with a few other team members, talking through
your decision and debating each section for the best results.

http://miro.com
http://mural.com

The Future of HCI Chapter 12

[268]

If you have SWOTed your prototype, it can help reduce your team's chances of failure by
showing you what you're lacking and pointing out hazards that would otherwise create
more risk when left untended to. A software team needs to share in the responsibility for
what they create and what impact it has on the world. Looking at weaknesses and the
threats your solution may cause to your user or your business through an honest lens will
hopefully help your team to avoid choosing ideas or solutions that foster more risk.

The global scale of technology also comes with a lot of responsibility as the needs of the
world are always changing. Whether it be global supply chain logistics, mass
communications, remote work, or automation, internet-connected software is at the heart of
allowing users to understand and navigate these issues. The reality is that all these future
job roles also come with a brand new set of complexities and user experience issues, which
is why we are having this discussion in the first place. At the heart of why software
technology has been so scalable is the fact that it fundamentally allows users to contribute
to each other. Contribution is a human need and as a species, we have evolved to be
socially connected. As social beings, our technology has allowed us to interact, collaborate,
and solve problems together. Software is a key driver for human collaboration and
iteration, which has an endless number of opportunities:

The Future of HCI Chapter 12

[269]

As we have discussed, humans are complicated and their needs are not static; as software
burrows deeper and deeper into our lives, it also changes our opinions and our
understanding of the opportunities that software can present. Although computer software
is solving more and more problems each day, it is also creating new problems and new
opportunities as new technologies and software capabilities become available, get invented,
or are dreamed up by HCI designers like you and me. Because HCI designers have the
skills to think about solutions for now, for the near future, and the far future, the skills we
possess should be taken with great care. The idea that just because you can, you should, is
false.

The role you play in the creation of software has deep roots and is not done alone. Since
collaboration is essential to any software solution, the fact that it is messy and hard and can
be used for good or evil should be discussed regularly as a team. If you work for a software
team that is not deeply considering their impact on the world, here is your opportunity to
change that conversation and reaffirm the value that an HCI designer can bring to the table.
If you are looking to break into the HCI role and use the skills discussed in this book,
awesome: make sure your efforts are put to good use. Ask the hard questions, make sure
your team members care about and look for software opportunities that do not compromise
the role of an HCI designer on their team.

I recommend avoiding any job description that uses "ninja," "rockstar," "fast-paced," "wear
multiple hats," or has tons of slashes: "UX/UI/IxD/IA designer" (or worse, "UX/FE Dev"), as
these businesses are trying to lure talent and combine roles rather than building out
software teams that can care about users. Fundamentally, they don't really know what they
are looking for, or worse, they are looking to overload a designer with too much
responsibility in the hopes of capitalizing on the HCI designer's enthusiasm and human-
centered skills. HCI has value but we need to hold businesses accountable for
understanding and investing in humans to build human-centered software.

Creating solutions that are net positive for
culture
Software design has informed the way we think about the world and, in turn, how we
contribute to the world as well. For hundreds of millions (perhaps billions) of people,
platforms such as Facebook, Instagram, YouTube, Reddit, WhatsApp, Twitter, Quora,
TikTok, and others are a means of access and contribution to society. Of course, some users
contribute to their communities more than others, but fundamentally, they are utilizing the
same technology channels.

The Future of HCI Chapter 12

[270]

Both Pope Francis and Alex Jones use Facebook to communicate with their communities,
albeit for very different ends, but the utilization of the software features is equal. How
software and platforms are used as a vehicle for communication is then transferred to its
users with little to no oversight or moderation. As software designers, we typically don't
want to restrict our users from using our solutions; however, if a software team is finding
that users are abusing our platforms, or worse, abusing each other, the role of a software
team is to limit this behavior. Conceptually, there is a belief that communities using a piece
of software will self regulate and if user A is stealing content or being belligerent, then the
community will correct that bad behavior. As an HCI designer, I think software design
teams should do a better job of educating their users about the software process, content
rules, and what is acceptable community behavior. Alongside our education, another
component is also enforcement. An HCI design should incentivize positive behavior before
it gets to a point where a community of users has to be impacted by a bad actor. It is, of
course, an imperfect process, but if a software team correctly considering all their users,
they will attempt to anticipate and design for users who break the rules.

Unfortunately, up to this point in 2020, there has been a laissez-faire approach to users and
how they are educated in, say, writing a tweet, or posting a TikTok, or rating a restaurant
on Yelp. We hope that users will behave in a civil fashion. However, software platforms
have amplified and in some cases encouraged poor behavior and misuse of platforms by
mostly anonymous users. As HCI designers who care about their users, we don't have have
to lean into this trend; we can recognize that software has been designed and executed with
flaws and therefore try and fix it for the betterment of society.

Software teams have to walk a tricky path when it comes to moderating their users'
interactions. If you are too restrictive – say, users only get to post three times a week or only
upload 500 MB of video – your users will regard this restriction as a usability error or a
reason to not use your software. But if your software is too hands-off, your users could
upload thousands of inappropriate images or share copyrighted material without
permission.

The Future of HCI Chapter 12

[271]

I highly recommend not setting arbitrary rules based on technical access but rather using
the user research skills we have covered in this book to really understand what software
rules and content restrictions make sense for your users. As I have been telling you,
software can make an impact on your users:

Now, a risk in creating any piece of software is that once it is in the hands of the users, how
they use it or abuse it is up to them. The reality is that this is true, but as software designers,
we set the rules; if a user doesn't use a feature we created, it is not the user's fault. If the
user abuses a feature we allowed them to use, that is also due to a lack of educating our
users. The software designer is more culpable than we would like to think. In many cases
where software features are abused by their users, it is due to an inherent faith that our
users will use what we design positively. Unfortunately, that is not a reality and the role of
an HCI designer is to funnel users into positive use of our systems.

For example, a few software companies used to have a motto that went like this: "move fast
and break things." This was fine and good for a software company that used Agile design
methods to iterate their platform for their users, but if you dig deeper, it was not all that
responsible. Ideas have power, and building a software platform that touches billions of
users while having what I believe is a cavalier motto allows bad decision making, especially
when it comes to user data access. The amount of data they have on their users is
fundamentally how they make money. However, this, in my opinion, creates a conflict of
interest with its users. The business is incentivized to allow corporate and political
spending to drive features that tap into user behavior rather than considering what users
want first, which in most cases is not more advertising or targeted political content. At this
point, social media platforms such as Facebook, Twitter, Snapchat, TikTok, and so on have
had more impact on society than any other content maker.

The Future of HCI Chapter 12

[272]

If you are interested in working for social media software companies as an HCI designer, I
would highly recommend that you evaluate the potential risks that your software decisions
are causing. There is nothing wrong with making money, but if you are degrading the
software experience for your users in order to make more money, then that power
relationship should be evaluated, and hopefully, as a human-centered designer, you can
advocate for making decisions that have a net positive outcome for your user. When your
user wins, typically, your business will also be successful.

Evaluating what is off-limits
Here is a moment to be real with yourself. What do you want to work on?

As an HCI designer, you should think deeply about what is off-limits for you:

Software is involved in every aspect of society and therefore can be used by every industry.
For instance, I do not smoke, I do not want to smoke, and because of the well-documented
health issues, dubious marketing tactics, and other negative effects caused by the tobacco
industry, I don't want to create software or websites that help their businesses. Because of
my stance against smoking, promotion, websites, and software, it makes it easy for me to
place them on the off-limits list. Having an off-limits list, or, at a minimum, knowing what
is off-limits, will help you identify what is fair game or, even better, what you are
passionate about from a software perspective. With your experience in HCI, let's practice
defining some of your software interests.

The Future of HCI Chapter 12

[273]

Challenge 52 – Zones of interest and worthwhile
pursuits
Setup

 Get out a sheet of paper or create a digital sketching space (miro.com or mural.com).1.
Draw four concentric circles representing you and three zones of interest.2.

Part 1: You – Add some personal interests, cares, hobbies, and passions.

In the middle, put yourself and a few things that you care about personally.
 - For me, it is "Chris Becker – Education, Arts, Creativity, User Experience, Writing,
Nerds."

Part 2: Zone 1 – Add companies, brands, and software concepts that align with the things
that you care about the most.

In the next circle, write down the companies, brands, and software concepts that align
with the things you care about the most.

Part 3: Zone 2 – Add companies, brands, and software concepts that are somewhat
interesting to you.

In the next circle, write down the companies, brands, and software concepts that are
somewhat interesting to you but not as compelling as the ones you just wrote about.

Part 4: Zone 3 – Add companies, brands, and software concepts that you are opposed to.

In the next circle, write down the companies, brands, and software concepts that you are
opposed to.

Part 5: Reflect – Review what your priorities and interests are.

Analyze your software interests zone by zone.

Part 6: Identify a software industry you want to pursue.

Use three stars to identify possible career paths.

Designing your zones digitally will make it easer to make connections.

The Future of HCI Chapter 12

[274]

As we have been discussing, software design is really hard, and if you have the
opportunity to work on a project or for a company where you are working on something
that you are already passionate about, it can go along way in helping you to produce better
software. Typically, software teams that care about their users, have a passion for their
problems, and are supported by their businesses will, in turn, create great software
solutions. Where software solutions are not very good, we typically see software teams that
are either too small or time-poor, or the business prioritized their needs over the needs of
their users. Work exists out there, and aligning your software interests with the interests of
a business will help you be a better candidate for a role and hopefully design software
solutions that you are proud of and willing to use yourself.

Not everyone will have the luxury of working in their dream role or with a dream team.
Actually, it is far more likely that you will not. Not to be a contrarian, but the opportunities
to work for dream teams and dream companies are highly competitive and some just don't
become available that often. Because of this, you have the opportunity to help software
teams that want to be great but haven't figured it out yet. Software design requires a lot of
hustle, and if you find teams that are also willing to put in the hard work, you will be better
off.

Empowering computers
It is important to highlight that our digital lives have become more complicated, but at the
same time, they have never been so convenient. When you are considering software
projects or companies that you want to work with, commit to working on solutions that
embody the value that computers can bring to humans. Computers are really great at
repetitive tasks, and more and more of our lives is being augmented by software. Your
efforts to build software that speeds up tasks or frees its users from clicking through an
interface represent time that you have given back to your user by allowing computers to do
what they do best. Software should not be valued by the time a user spends using it, but
rather by the time it gives back to them in their day or work schedule.

For example, take documenting meetings and sending a recap of a discussion via email.
This is a valuable record but one that currently requires human intervention. However, a
piece of software has a unique opportunity to speed up this process rather than requiring a
worker to take notes, type out detailed notes, and send them to all those invited to the
meeting. What if software could be used to record the meeting, automatically generate a
transcript, and attach the assets to the email of the meeting invite?

The Future of HCI Chapter 12

[275]

This could be a highly useful feature for any video-conferencing application.As an HCI
designer, you can recognize the advantages that technology supplies and implement
solutions for users that maximize the capabilities of a computer. Computers are great at
repetitive tasks that can be automated through software, ultimately making users more
efficient.

An HCI designer can apply efficiency concepts to how software is designed and allow a
computer to maximize a user's interactions, which will not only enable your software to do
what computers do best but improve your users' understanding of the value software can
bring to their lives. For example, do not force your user to save; a computer can be
programmed to automatically save, and you can include a UI element to confirm that the
saving process is being completed periodically by the computer. If the computer is auto-
saving, create some form of message that shows the time and date of the last save. If a user
wants to save manually, so be it, but a user should never be in a scenario where they lose a
lot of work because a file is not saved. Furthermore, never allow a file to not be saved upon
quitting. It is ridiculous that work doesn't save when you quit and that there's a modal alert
– do you want to save before you quit? Yes, of course, I do! Stop making users select UI buttons
unnecessarily. There are countless opportunities for the programmer to anticipate what the
user wants to do and program computer software to address those needs. The important
factor to remember is that computers are able to be programmed, and therefore we should
program according to our users' needs. Don't force your user to think like a computer; on
the contrary, the computer should anticipate how a user thinks and attempt to be as helpful
and efficient as possible.

As an HCI designer, you have the opportunity to look at your digital world, evaluate where
computers are highly useful and where they continue to cause repetitive, time-consuming,
and busy work, and fix it. Caring about how your users interact with the entire system of a
computer and all its software will help you focus on what your users need as well as how
to improve what computers can do for them. By focusing on software that is designed for
users, an HCI designer can continue to grow their skills and spread their influence across
all software. Eventually, it could lead to no more bad software. Wouldn't that be amazing?
In reality, there will always be bad software designed by people who don't care as much as
HCI designers do. All we can do is take our skills and apply them across as many projects
as we can over our careers, which is one of the takeaways from this book. By applying the
skills you have gathered from this text and the many others you will read on your HCI
journey, you have to opportunity to improve the future of software.

We started Learn HCI with a brief history that led us to this place in time and space. Let's
wrap up this book with a review of how our HCI history can take us into the future.

The Future of HCI Chapter 12

[276]

Designing software for the future
Technology is not going anywhere; on the contrary, it is ushering in the future faster than
we ever imagined. Like the management expert Peter Drucker said, "The best way to predict
the future is to create it" (https:/ ​/ ​www. ​drucker. ​institute/ ​thedx/ ​joes- ​journal- ​on-
creating-​the-​future/ ​). Any new software is in the future. Now that we have the skills to
create it, we should consider what our users really need from the future. We are always
hurtling toward an undefined future destination; therefore, we might as well use the skills
we have been discussing in this book to direct our trajectory and usher in a world of
software that is designed by HCI designers and is more human-centered, with the ability to
adapt to the new needs our users will have in the future.

Let's conclude our discussion by covering the future of software systems in six trajectories:

The six trajectories are as follows:

Education software systems1.
Collaboration software systems for work and creativity2.
Communication/media software systems3.
Automation software systems4.
Logistics/analytics software systems5.
Democratic software systems6.

https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/
https://www.drucker.institute/thedx/joes-journal-on-creating-the-future/

The Future of HCI Chapter 12

[277]

Education software (embedded systems)
Computer software has impacted every aspect of education, from kindergarten through to
adult learning. This is literally a human life span, and software is already touching each
phase of the user's learning. Educational software has a unique opportunity to improve
students' experience and therefore their education:

The role software can play in the future of education is profound. The question is not,
"Should software be used for education?" but rather, "What is the best way software can be
used for education?" There are thousands of educational software solutions all trying to
capitalize on helping users to learn. One of the opportunities for education is that it allows
us to design experiences that are embedded in our users' lives. A child does not distinguish
whether they are using a tablet or a piece of paper when they are learning how to solve a
math problem. The learning process is transcendent and math can be learned with or
without computer software. However, software can be adaptive and customizable to the
student exploring math problems. Software can then act as a support and intervention to
encourage a student to extend their math learning through gamification or other tactics.
Besides the ability of software to make learning math more engaging for a student, it also
gathers learning data that can be automatically graded, communicated with parents or
teachers, and used to improve a student's skills. Education software now allows an
instructor or parent to access insights as to a student's progress rather than relying on the
student to self-report or fail during exams for an instructor or teacher to intervene in
learning. Educational software allows computers to do what they do best but also creates
an opportunity to build students' confidence with math or literally any other subject.

The Future of HCI Chapter 12

[278]

Another huge opportunity that software creates in education is meeting students where
they are at in terms of their learning style. In education circles, we have learned so much
about how humans learn. Take the seven learning styles: visual (spatial), aural (auditory-
musical), verbal (linguistic), physical (kinesthetic), logical (mathematical), social
(interpersonal), and solitary (intrapersonal). Consider your users' learning styles:

Educational software has the opportunity to be customizable and adapt to an individual's
specific learning style. Although this customization represents more work for a software
team as individual lessons need to be adapted to each learning style, software can learn
how a student learns to help a student be more successful.

There is a meta-learning that goes along with using software to learn any topic. The process
of using software is also a process of learning about software; as a student learns math
through software, they also learn how to use a computer interface. Since computer software
is so ubiquitous in our world, we take this experience for granted. A point of caution,
though: a poorly designed learning experience is doubly damaging for a student trying to
learn a skill. A student should not struggle with any UI usability issues when trying to
learn a subject through software. In education, the opportunity for software to be the
vehicle for learning new skills seamlessly is why the HCI skills we have been discussing are
so relevant.

The Future of HCI Chapter 12

[279]

A student doesn't want to learn an interface on its own; they want to use an interface to
execute a skill they are learning. Computer software should be so useful that it disappears
into the task your user is attempting to accomplish. If you care about your users' needs, the
software interface you design will match these needs and hopefully facilitate that task
seamlessly. As we have been discussing, the goal in software design and education is that
your solutions become indispensable in your users' lives.

Collaboration software systems for work and
creativity (ubicomp and seamless interactions)
The future is collaborative. Hopefully, you have picked up that computer software is
designed by teams and contributes to a broader community who also collaborate with their
software. Software that increases human potential and efficiency will continue to show
value and be useful for society:

The Future of HCI Chapter 12

[280]

There is collaboration both in the creation of software (HCI/UX/UI/development teams
creating software together, for example) and at the user's end (the users using the software
tools as a community). Take tools such as Google Drive. Such software tools are not that
much different from the Microsoft Office suite except for one key difference: the ability of
users to collaborate simultaneously using tools in the cloud. The fundamental shift of
software from an individual computer to the cloud and the enabling of interaction to
happen collaboratively has produced a suite of software tools that allow users to co-create,
share seamlessly, and distribute ownership not only of software files but also the content
and ideas used to create software. The ability of computer systems to be connected to the
internet, and, in turn, cloud infrastructure, does away with the idea of storing a computer
file on your person and locking it away on an individual computer's hard drive. The
concept of collaborative software has unique potential in creating software solutions that
lean into how communities work, how they are created together, and the computer's
potential to enhance creativity within a team.

Creativity is a core concern of humans, and software has the potential to help enhance a
user's, team's, or community's creative capacity. Software and computers on their own are
not that creative, but as tools, they allow a user to be almost infinitely creative. In the 20th
century, cultures liked to highlight the maverick genius, the lone creative thinker that shone
brighter than the rest: the Picassos, Einsteins, Plancks, and Bucky Fullers of the world. Now
these individuals are highly credited for their unique contribution and creativity, and I
believe that the world will still have a few; but because of systems such as the internet and
collaborative software, we will see that focus now distributed among teams that are
extraordinary in their creativity. The expectation that a human has to go alone to make his
or her mark is no longer valid, and the future of collaborative software will empower
humans to solve bigger and bigger problems as a community. The role that collaborative
software plays is then in making sure that as many users as possible can interact and
communicate together regardless of language, location, age, sex, creed, religion, and so on.
Collaborative software has the potential to bridge gaps between cultures and should foster
interaction rather than creating barriers.

The Future of HCI Chapter 12

[281]

Communication/media software systems (digital
affordance and seamless interactions)
As we move into the future and software becomes an enabler for our users, the
responsibility that we as HCI designers have is to amplify human potential. In order to
improve problem-solving, you need to improve communication. Software that impacts
user's communication will continue to drive demand:

Computer software has radically impacted our ability to communicate, and much of the
software innovation that has happened over the past decade has been dedicated to
modifying, inventing, and adding modalities to our communication options. As HCI
designers, we have a unique opportunity to identify the needs that our users have
regarding communication and address the numerous problems that come with
communicating across multiple channels, multiple devices, and multiple people. There is
no perfect communication solution or software that fixes all of our problems (although
some will try). There is, however, huge future potential in reconciling and generating
software solutions that recognize the value of various communication styles, from
synchronous communication (one-on-one phone calls, for example) to asynchronous styles
(such as email), and everything in between.

The Future of HCI Chapter 12

[282]

 Automation software systems (ubicomp and
embedded systems)
As we have discussed, computers are great at repetitive tasks (such as doing math). As
more and more jobs require a computer to get the job done, we will start to see more
opportunities for where human interaction can be offset by computer automation. Software
solves repetitive tasks and automates job processes, freeing up more time for users:

Consider the rise of the automatic teller machine (ATM); consider the amount of software
that has been created in order to eliminate a human job, the bank teller. The ATM was first
introduced in 1969 and in the subsequent 50 years, the technology has not eliminated every
bank teller job; however, it has fundamentally changed the role of a bank branch and what
a bank teller's role is to customers. ATMs are now ubiquitous, but bank branches still utilize
the high-touch customer-facing interaction of a bank teller. The automation of the ATM is
valuable to users but can't solve every user's problem. Software is at the heart of the ATM,
and it has been part of our culture for longer than I have been alive. It has been made
highly efficient for users, which has in turn created value over time and trust from anyone
who uses an ATM. For multinational banks, this ATM infrastructure and automation
capability has enabled customers to trust banks from New York to Nigeria. The amount of
computer software that has been created to support banking around the globe is
astounding and represents tons of opportunities to innovate.

The Future of HCI Chapter 12

[283]

Automation has a wide range of applications, from the bad (the elimination of jobs at the
expense of human capital) to the good (the automation of repetitive tasks to free users'
time). As HCI designers, we should focus on caring about our users and the execution of
automation features in software design. Our focus on the good part of automation will
utilize the skills we have worked hard to gain. If our users are engaging in manual
repetitive tasks and procedures, then we can identify them through research and design
features, new processes, or computer assistance to help our users in their tasks.

Logistics/analytics software systems (knowledge
data)
As we move into the future and software becomes an enabler for our users, the role of HCI
designers is to amplify human potential and understanding. Software and the internet have
ushered in the ability of companies to scale their operations and track their products
around the globe. Software for logistics and analytics will continue to be in demand:

The Future of HCI Chapter 12

[284]

The opportunities that software can continue to provide in shaping the future are
fundamentally linked to how it can make sense of massive amounts of data and produce
meaning for its users through analytics.

Take Amazon, for example. When Jeff Bezos started Amazon as an online bookstore in
1994, many thought it would just be a bookseller website. However, as we have come to
see, the dominance of Amazon's business in its early years, as well as today, is about
establishing logistics in selling millions of products. The reality is that Amazon understood
the power of the internet early on, not just as a global communication tool but as a global
supply chain mechanism. Since no other business had created product connection software
to this level of sophistication on a global scale, Amazon took off and sellers and buyers
flocked to their service.

The opportunity for HCI designers to consider the future through design logistics software
and analytics solutions is vast. Amazon is not alone in its ability to consider and quantify a
global reach. As we discussed earlier, software can be scaled around the globe via the
internet and because of this, software teams should be well versed in the implications of
their solutions. As we move into the future, there will be more humans using more
software, which will lead to more complexity. Without HCI designers and sophisticated
software teams that can create solutions for globally scaling solutions, the value software
can have will be diminished. Globalization is not a genie you can put back in the bottle; on
the contrary, future software solutions should adapt to the wishes of the future and allow
HCI designers and users to understand their global context more clearly.

The Future of HCI Chapter 12

[285]

Democratic power software systems (ubicomp
and security)
Similarly, computer software has become so ubiquitous and relied upon that it is hard to
see why it is not being used to greater societal ends by governments. Yes, every
government relies on some aspect of software, whether it be websites to communicate
policy, software to submit requests, or software to communicate with constituents. But
software that enables democracy to thrive will also be in demand:

Computer software is essential for operating any country and is even more important for
democratic institutions. Full disclosure: I do not live under a totalitarian state and therefore
cannot speak with any authority about how such a government uses computer software.
On the other hand, I am an American and can discuss how software can and should reflect
the values of a democratic society. The reality is that the human-centered ideal that
underpins HCI is linked with the values of democracy. Consider the fact that as an HCI
designer, you are representing users (people) just as an elected official is responsible for the
voters (people) in their district. Although an HCI designer does not need to be elected by
their users, they are in fact reliant on the HCI designer to have their best interests in mind.
The act of designing through an HCI lens is a reflection of that.

The Future of HCI Chapter 12

[286]

The opportunities to create tools that empower a government to address constituents'
issues more effectively are abundant. There are countless such opportunities, where the
government is either behind the times or has created software that is so difficult to use that
it defeats the purpose of having it at all. As we have been discussing, HCI designers can
then identify these issues and work to solve them. Software has the ability to hold a
representative government to account through participation that goes much deeper than
just voting. Voting is a truly democratic act, and software in the future should find a way to
make voting as convenient and trusted as Google Search. Although complicated, voting
through software should allow users to vote effectively and not just wait on election day to
determine who is "winning." When our representatives are more closely connected with the
people they represent through technology, their roles and responsibilities can be defined
more effectively. Helping constituents understand what is being worked on by
representatives as well as allowing representatives to hear from and reflect the needs of
their constituents is an opportunity to allow software tools to scale and distribute the vital
task of decision making.

The reality is that hundreds of millions of users trust Facebook to document their lives with
photos, events, cat pictures, and more, but very few trust a government to make voting
digital. The irony is that Facebook has become a more powerful political tool than it was
originally designed for, with it being designed at first to allow college students to connect,
share, and possibly "hook up." As software grows in the number of users it reaches, it
increases the power that the software can have over culture. Facebook quickly moved
beyond college students and is now, for better or worse, a cultural driver and connection
tool for a large number of users around the globe. The political power of Facebook's
platform has resulted in both regulatory opportunities for the government but also stronger
and more effective communication from our politicians. The ability of software tools to
scale around the globe and be used by both democratic societies and dictators has to keep
the designers at Facebook up at night, hopefully!

Regardless of the success or failures of our current software tools and their impact on
government, the reality is that software is fundamentally looking to address users'
problems, which will continue to be a valuable mission long into the future and will
address more issues than those in education,
collaboration, communication/media, automation, logistics/analytics, and government. Let's
take this chance to mindmap the future opportunities of HCI and software.

The Future of HCI Chapter 12

[287]

Challenge 53 – Which software future?
Setup

Get out a sheet of paper or create a digital sketching space (miro.com or mural.com).1.
Draw a circle in the middle.2.

Part 1: Mindmap center – Choose a software future that you are interested in.

In the middle, write your software concept (education, collaboration,
communication/media, automation, logistics/analytics, democratic software).
 - For example, for me, it is (Chris Becker - Education).

Part 2: Add future user needs around that software future.

Document all the future needs you can think of.1.
Draw lines connecting the needs to the center of the mindmap.2.
If some user needs are related, cluster them together.3.

Part 3: Add details about software or companies that are considering these needs today.

Review all the needs and connect the needs to the names of software or companies that are
considering them today.

Part 4: Circle any unmet or highly underserved user needs.

Use a red marker to draw circles around user needs that are either not being considered or
only have one connection.

Part 5: Review what is circled.

Reflect upon the mindmap and analyze your potential future opportunity space.

Be as realistic as you can. We all want to have our dream jobs or work at
amazing companies, which is possible, but don't raise your expectations
too high.

The Future of HCI Chapter 12

[288]

Summary
Throughout this final chapter, we dug deep into the responsibilities that HCI designers
now take on and looked at the skills you have gained in HCI. The skills and tools used by
small and large teams are the reason why HCI is such a vibrant space, but you also need to
pay diligent attention to solutions and the impact your software can have on a community,
society, and the globe. Software creation is an awesome responsibility that you should not
just stop studying now that you have completed this final chapter. Since you will be taking
the skills and ideas exposed in this book into the world and into the undefined future, I
hope you will be able to faithfully apply your HCI skills, not just in your job but in the
wider world.

In this book, we started by getting into some skills and activities that are foundational to
HCI thinking. The book covered three key pillars:

HCI skills, theory, and historical context1.
HCI activities and practical challenges2.
HCI community resources and source materials3.

A refresher of the three HCI pillars we covered is shown here:

The interplay of these pillars is designed to hold you up and elevate your software
solutions over time. As you continue to grow in your HCI experience, remember that there
are many other ideas, activities, and communities that have impacted HCI, and I encourage
you to keep learning. Congratulations on completing the book, you have now taken the
initial steps towards becoming an HCI designer. The skills, activities, and community you
have gained and been introduced to require diligent practice and teamwork, which
hopefully you can bring to your companies and teams in order to create human-centered
software that impacts our world as a positive force. Good luck!

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

101 UX Principles
Will Grant

ISBN: 978-1-78883-736-1

Use typography well to ensure that text is readable
Design controls to streamline interaction
Create navigation which makes content make sense
Convey information with consistent iconography
Manage user input effectively
Represent progress to the user
Provide interfaces that work for users with visual or motion
impairments
Understand and respond to user expectations

https://www.packtpub.com/product/exploring-experience-design/9781787122444

Other Books You May Enjoy

[290]

Exploring Experience Design
Ezra Schwartz

ISBN: Ezra Schwartz

Understand why Experience Design (XD) is at the forefront of
business priorities, as organizations race to innovate products and
services in order to compete for customers in a global economy
driven by technology and change
Get motivated by the numerous professional opportunities that XD
opens up for practitioners in wide-ranging domains, and by the
stories of real XD practitioners
Understand what experience is, how experiences are designed, and
why they are effective
Gain knowledge of user-centered design principles,
methodologies, and best practices that will improve your product
(digital or physical)
Get to know your X's and D's—understand the differences
between XD and UX, CX, IxD, IA, SD, VD, PD, and other design
practices

https://www.packtpub.com/product/101-ux-principles/9781788837361

Other Books You May Enjoy

[291]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

2
2x2 matrix challenge 94, 95, 96
2x2 opportunity matrix 175

A
A/B testing (split testing)
 A/B survey results challenge 147, 149
 about 145, 146
accessibility compliance 151, 152
accessibility
 about 229
 disability impairments 229
agile design
 about 99
 cycle 60, 100, 101
agile development 60, 102, 103
agile development cycles
 using 97
agile software development 79
Always Be Testing + Iterating (ABTI) 214
AngularJS (Google)
 URL 239
Apply
 URL 59
attention deficit hyperactivity disorder (ADHD) 231
auditory impairment 232
automatic teller machine (ATM) 282
automation software systems (ubicomp and

embedded systems) 282, 283

B
Bootstrap (Twitter)
 about 239
 URL 239

C
call to action (CTA) 146
Cascading Style Sheets (CSS) 22, 76
clickable paper prototype
 building, with InVision app 108, 109
 challenges 183
clickable prototypes 107, 108, 181
clickable wireframe prototype
 challenges 184
coded prototypes 109, 110, 112, 113
cognitive impairment 230
collaboration software systems (ubicomp and

seamless interactions) 279, 280
common goals
 sharing 260
communication/media software system (digital

affordance and seamless interactions) 281
computer engineering 54
computer science 54
computer software
 used, for building software 65, 66
 used, for solving problem 63
computers
 history 17, 19, 20, 21
content delivery networks (CDNs) 22
continually better software
 designing 77, 79
continuous integration (CI) 78

D
data analytics
 using, in software design 123, 124
data collection
 qualitative data 125
 quantitative data 141
data, synthesizing into action

[293]

 about 156
 user insights 159
 user research data analysis 156
democratic power software systems (ubicomp and

security) 285, 286
design and development tools 70
design mindmap challenge 83, 85, 86
design strategy/systems design 57
design thinking 99, 102, 103
design/branding 54
development process 99
dot voting 174

E
education software (embedded systems) 277, 278
efficiency 225
ethnography and sociology 56
Extreme Programming (XP) 102

F
first computer experience challenge 87
fly-on-the-wall method
 about 127, 128
 micro-observations 129
formal user feedback, software hypothesis
 critique feedback 206, 207
 expert feedback 204, 205
 formative assessment and user feedback 204
 self-feedback and reflection 206
 summary 207
formative assessment 204
frontend prototyping
 about 186, 187
 categories 186
 challenges 187

G
General Data Protection Regulation (GDPR) 150
General Practioner (GP) 24
Google Forms
 URL 143
Google search 38
graphical user interface (GUI) 20

H
HCI designer
 balancing act 50
 role 83
 skills 48
HCI ethos
 about 34
 questions refresher challenge 34, 35
HCI interface, best practices
 about 191
 design guidelines 193
 HCI interface, best practices 192
 researching 191, 192
 user interface guidelines, researching 194
HCI jargon
 about 14, 15, 16
 collecting 15
 documenting 14
 goals 16
 highlighting 15
 reference link 14
HCI principles 57, 58
HCI professions 28, 30
HCI sandbox
 operating in 12, 13
HCI technology
 about 35
 accessibility factor 36, 37
 time-on-task factor 38
 usability factor 36
hearing impairment 232
hermeneutic loops 25, 26
How Might We (HMW) statement 170
human factors and ergonomics 56
human needs identification table challenge 46, 47,

48

human-centered software origins 67, 68, 69
Human-Computer Interaction (HCI)
 about 9, 52, 54, 56, 57
 areas of study 11
 computer, implementing 274, 275
 conceptual relationships capture challenge 9,

11, 12
 culture solutions, creating 269, 271
 design roles 71, 72

[294]

 holy trinity (mirepoix) 38, 39
 need for 14
 off-limits, evaluating 272
 pioneers 12, 21
 professions 40, 41, 42
 software future 286
 software interests 274
 software, designing 265, 266, 276
 SWOT analysis 268, 269
hypertext markup language (HTML) 74, 75, 76
HyperText Transfer Protocol (HTTP) 22

I
informal feedback guerilla user testing challenge

201

information architecture 56
interactive prototypes 107, 108
interfaces
 designing 234
internet 22, 23
Internet of Things (IoT) 23
intersection observation challenge 48, 49
interview candidate script challenge
 about 135
 one-to-one interview sessions 136
InVision app
 clickable paper prototype, building with 108, 109
iterative design cycle 59, 60
iterative loops
 used, for improving software 245, 247

K
key performance indicators (KPIs) 101

L
language/semiotics 55
Laseau's funnel 173, 174
lawnmower 28
learnability 225
logistics/analytics software systems (knowledge

data) 283, 284
long tail of software design 88, 90, 91
low error rate 227

M
memorability 226, 227
Miller's law 231
Minimum Viable Culture (MVC) 243
Minimum Viable Product (MVP) 242, 243, 245
mobility impairment 231
moderated observation script challenge 130, 131
motion prototyping
 about 184, 185
 interface's behavior 185

N
native prototypes 109, 110, 112, 113
negative software example
 text messaging 64, 65
Node Package Manager (NPM)
 about 239
 URL 239
Node.JS
 about 239
 URL 239

O
object-oriented programming (OOP) 77
observation recording challenge 141
one-on-one interview challenge
 about 138
 one-to-many interview sessions 138
open source projects
 about 238
 AngularJS (Google) 239
 Bootstrap (Twitter) 239
 Node Package Manager (NPM) 239
 Node.JS 239
 React Native (Facebook) 240
 research 241, 242
 VS Code (Microsoft) 240
open source software culture 236, 238

P
Palo Alto Research Center (PARC) 20
paper prototypes 104, 105
paper prototyping
 about 176, 177

[295]

 accountability opportunities 178
 sketching, challenges 180, 181
positive software example
 alarm 63, 64
POV mad lib challenge 164
POV mad lib iteration challenge 165, 166
product and software inspiration challenge 86, 87
professional interest challenge 42
prototype challenge
 about 106, 107
 iterating 215, 216
prototype usability testing challenge 214
prototype validation challenge 118, 210
prototyper (developer) 188
prototypes, types
 about 104
 clickable prototypes 107, 108
 coded prototypes 109, 110, 112, 113
 interactive prototypes 107, 108
 native prototypes 109, 110, 112, 113
 paper prototypes 104, 105
prototypes
 executing, as design ethos 103
prototyping solutions
 validating 208, 209
prototyping
 2x2 opportunity matrix 175
 about 170, 172
 dot voting 174
 idea/concept, generating 172, 173
 Laseau's funnel 173, 174
 paper prototyping 176, 177, 178
psychology 55

Q
qualitative data
 about 125, 126
 using 125, 126, 153
qualitative user research methods
 about 126
 fly-on-the-wall method 127, 128
 moderated observation 129, 130
 user interviews 131, 132
 user recording 139
quantitative data

 about 141, 142
 using 153
quantitative research methods
 A/B testing (split testing) 145, 147
 about 142
 accessibility compliance 151
 quantitative survey method 143
 usability analytics 149, 150
quantitative survey method
 about 143, 144
 quick-and-dirty survey challenge 144

R
React Native (Facebook)
 URL 240
research data
 on users, gathering 121, 122, 124
return on investment (ROI) 83

S
screen reader tool 233
semantics 74, 75
short tail of software design 91, 92
sketching challenge 106, 107
software design community, communication tools
 Figma/XD/Sketch 256
 InVision 256
 Zeplin 256
software design community, roles
 backend dev 251, 252, 253
 business 251, 252, 253
 frontend dev 251, 252, 253
 PM 251, 252, 253
 UI 251, 252, 253
 UX 251, 252, 253
software design community
 team handoff 254, 255
 team responsibility 254, 255
software design
 code 72, 73
 code development 70
 design 70
 developer's role, considering 92, 94
 for users, with universal design principles 220,

221

[296]

 roles 72, 73
 tools 72, 73
software developers
 backend developers 94
 frontend developers 94
software development
 contributing, as collective community 249, 250
software experiences challenge 43, 44
software hypothesis
 about 198
 challenge 199, 200
 establishing 197
 formal user feedback 202, 203, 204
 formal user feedback challenge 208
 informal feedback guerilla user testing challenge

201

 informal user feedback 200, 201
 steps 198
software prototyping
 tools 195
software scale research challenge 259
software solutions
 iterating 214, 215
 prototype challenge, iterating 215, 216
software system trajectories
 automation software systems (ubicomp and

embedded systems) 282, 283
 collaboration software systems (ubicomp and

seamless interactions) 279, 280
 communication/media software system (digital

affordance and seamless interactions) 281
 democratic power software systems (ubicomp

and security) 285, 286
 education software (embedded systems) 277,

278

 logistics/analytics software systems (knowledge
data) 283, 284

software team
 learning challenge 260
software
 caring ethos 262, 263
 improving, with iterative loops 245, 247
solutions
 aligning, to users 166, 168
 scaling 258

 sharing 258
sprints 100
Survey Gizmo
 URL 143
Survey Monkey
 URL 143
synthesis 156
systems diagramming
 about 189, 190
 challenges 190

T
T-based person
 about 23
 evolving, into π person 23, 24, 25
team
 evangelizing 260
 skills, diversifying 261, 262
technology coding challenge 67
text editors 66
Typeform
 URL 143

U
Unified Modeling Language
 URL 189
universal design principles
 used, for designing software for users 220, 223
Universal Design
 URL 37
usability analytics
 about 149, 150
 data gathering challenge 150
usability tests
 executing 211, 212
 prototype usability testing challenge 214
usability
 applying, for users 223, 224
user experience (UX) 56, 192
user insights
 about 159
 identifying 159, 161, 163
 writing 163
user interface 55
user interviews method

 about 131, 132
 open question types 132, 133
 probing question types 133
 probing questions types 134
user recording method 139
user research data
 analyzing 157
 categorizing 158
 clustering 158
 collecting 157
 mining 158
 organizing 157
 sorting 158
user research
 data, gathering on humans 58, 59
 examining 161, 162
user satisfaction 227
users purpose challenge 162, 163
users
 skills, enhancing 50, 52
 solutions, aligning to 166, 168
 validating with 113, 114
utility 228, 229
UX design
 about 9
 tools, URL 72

V

validating, with users
 about 113, 114
 idea validation 114, 115
 market validation 117
 usability validation 115, 116
visual impairments 232, 233
vocation 27
VS Code (Microsoft)
 about 240
 URL 240

W
waterfall design process 97, 98
waterfall development process 97, 98
Web Content Accessibility Guidelines (WCAG) 2.0
 URL 152
 used, for accessibility via ANDI testing 152
Worldometer
 URL 35

Z
Zeplin.io project, adding
 challenge 257, 258

Π
π person
 T-person, evolving to 23, 24, 25

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	About Packt
	Table of Contents
	Preface
	Section 1 - Learn Human-Computer Interaction
	Chapter 1: Introducing HCI and UX Design
	Prologue
	HCI challenges

	Introducing HCI and UX design
	Challenge 1 – Capturing conceptual relationships – binary and beyond
	Following the leader – HCI pioneers
	Operating in the HCI sandbox

	Why HCI?
	Documenting HCI jargon
	Challenge 2 – Highlighting and collecting all HCI jargon

	Exploring HCI jargon and their acronyms
	Exploring the history of computers
	Very early history – the 17th century
	Early history – the 17th to 19th centuries
	Recent history – the 20th century
	The 21st century – the internet, smartphones, cloud computing, and IoT

	Evolving from T-person into a π person
	Hermeneutic loops

	The author's perspective
	HCI is a vocation
	Challenge 3 – What do you know about a lawnmower?

	The HCI professions
	Challenge 4 – Self-guided questions

	Summary

	Chapter 2: Human-Centered Design Principles
	Understanding the HCI ethos
	Challenge 5 – Questions refresher
	The heart of HCI technology
	Usability factor
	Accessibility factor
	Time-on-task factor

	The holy trinity (mirepoix) of HCI
	Some HCI professions
	Challenge 6 – Profession of interest
	Challenge 7 – Software naming and shaming
	Challenge 8 – Human needs identification table
	Case 1 – the crosswalk
	Challenge 9 – Observing humans and technology
	How software shapes its users

	How HCI is standing on the shoulders of giants
	HCI principles are rooted in humans, technology, culture, and data
	User research – gathering data on humans

	Iterative solutions and agile development
	Summary

	Chapter 3: Interface Design Values
	Solving a problem with computer software
	Positive software example – the alarm
	Negative software example – text messaging

	Using computer software to build software
	Text editors
	Challenge 10 – Technology coding challenge

	Human-centered software origins
	Design and development tools
	HCI design roles
	Code, roles, and tools

	Coding – markup syntax and object-oriented syntax
	Hypertext markup language
	Cascading style sheets
	Object-oriented programming

	Continually better software
	Summary

	Section 2 - How to Build Human-Centered Software
	Chapter 4: Human-Centered Thinking
	Understanding the HCI designer's role
	Challenge 11 – User research – a design mindmap
	Challenge 12 – Product and software inspiration
	Challenge 13 – First computer experience
	The long tail of software design
	The short tail of software design

	Considering the developer's role in software design
	Challenge 14 – A 2x2 matrix – your code experience

	Using agile development cycles
	The waterfall design and development process
	Design thinking, agile design, and the development process
	Agile design cycle
	Design thinking and the agile development process

	Executing prototypes first as a design ethos
	Paper prototypes
	Challenge 15 – Sketching and prototyping challenge
	Interactive and clickable prototypes
	Challenge 16 – Clickable paper prototype with the InVision app
	Native and coded prototypes

	Validating with users
	Stage 1 – idea validation
	Stage 2 – usability validation
	Stage 3 – market validation
	Challenge 17 – Prototype validation

	Summary

	Chapter 5: Human-Centered Methods for User Research
	Gathering research data on our users
	The human side of data collection
	Exploring qualitative user research methods
	Qualitative method 1 – observation – fly-on-the-wall method
	Challenge 18 – Observation – fly on the wall
	Qualitative method 1.1 – micro-observations
	Qualitative method 2 – moderated observation
	Challenge 19 – Moderated observation script
	Qualitative method 3 – user interviews
	Open question types
	Probing questions types

	Challenge 20 – Interview candidate script
	One-to-one interview sessions

	Challenge 21 – One-on-one interview
	One-to-many interview sessions

	Qualitative method 4 – user recording, tracking analysis, and interview
	Challenge 22 – Observation recording

	The numbers side of data collection
	Examining four quantitative research methods
	Quantitative survey method
	Challenge 23 – Quick-and-dirty survey
	A/B testing (split testing)
	Challenge 24 – A/B survey results
	Usability analytics
	Challenge 25 – Analytics data gathering
	Quantitative method 4 – accessibility compliance
	Challenge 26 – Accessibility for all via ANDI testing using WCAG 2.0

	Using qualitative and quantitative data
	Summary

	Chapter 6: User Insights for Software Solutions
	Synthesizing data into action
	Part 1 – analysis of user research data
	Collection and organization of user research data
	Mining the user research data
	Sorting, clustering, and categorizing the user research data

	Part 2 – user insights
	Identifying user insights

	Rooting action to deeper user purpose
	Challenge 27 – The deep purpose of people challenge
	Identifying and writing user insights
	Challenge 28 – IDEO's POV mad lib
	Challenge 29 – IDEO's POV mad lib iteration

	Aligning a solution to users
	Summary

	Chapter 7: Storytelling and Rapid Prototyping
	Prototyping first
	Challenge 30 – Idea/concept generation
	Laseau's funnel
	Dot voting
	2x2 opportunity matrix
	Paper prototyping (low fidelity)
	Challenge 31 – Paper prototype sketching
	Clickable prototyping (mid-fidelity)
	Challenge 32 – Clickable paper prototype
	Challenge 33 – Clickable wireframe prototype
	Motion prototyping (high fidelity)
	Frontend prototyping (low to high fidelity)
	Challenge 34 – Frontend clickable prototype
	The prototyper (developer)

	System diagramming
	Challenge 35 – System diagram

	HCI interface best practices
	Challenge 36 – Researching HCI user interface best practices
	Challenge 37 – Researching software tips and tricks
	Interface design guidelines
	Challenge 38 – Researching popular user interface guidelines

	Software prototyping tools
	Summary

	Chapter 8: Validating Software Solutions
	Establishing a software hypothesis
	Challenge 39 – Software hypothesis
	Informal user feedback
	Challenge 40 – Informal feedback guerilla user testing
	Formal user feedback
	Formative assessment and user feedback
	Expert feedback
	Self-feedback and reflection
	Critique feedback
	Summary of user feedback

	Challenge 41 – Formal user feedback

	Validating prototyping solutions
	Challenge 42 – Prototype validation

	Executing usability tests
	Challenge 42 – Prototype usability testing challenge

	Iterating software solutions
	Challenge 43 – Iterate your prototype challenge

	Summary
	HCI resources

	Section 3 - When to Improve Software Systems
	Chapter 9: Improving Software Systems with Data
	Designing software for all users with universal design principles
	Challenge 44 – Research universal design principles

	Applying usability for all users
	Learnability
	Efficiency
	Memorability
	Low error rate
	User satisfaction
	Utility

	Valuing accessibility
	Disability impairments
	Cognitive impairment

	Challenge 45 – Research Miller's law
	Mobility impairment
	Hearing/auditory impairment
	Visual impairments

	Challenge 46 – Screen reader tool

	Designing useful interfaces
	Summary

	Chapter 10: Human-Centered Solutions
	Exploring open source software culture
	Open source projects
	Bootstrap (Twitter)
	Angular
	Node.JS
	NPM (Node Package Manager)
	React Native (Facebook)
	VS Code (Microsoft)

	Challenge 47 – Research an open source project and contribute

	MVC, not MVP
	Iterative loops for improving software, which improves culture
	Summary

	Chapter 11: Extending HCI
	Contributing to software development as a collective community
	UX, UI, frontend dev, backend dev, PM, business, and ops
	Team handoff and responsibility
	Communication tools – Zeplin, Figma/XD/Sketch, InVision
	Challenge 48 – Add a Zeplin.io project

	Exploring how great solutions should be shared and scaled
	Challenge 49 – Software scale research

	Evangelizing to your team and sharing common goals
	Challenge 50 – Educate yourself
	Diversify your team's skills

	Demonstrating how you care
	Summary

	Chapter 12: The Future of HCI
	Designing software is an awesome responsibility
	Challenge 51 – SWOT analysis of a software feature

	Creating solutions that are net positive for culture
	Evaluating what is off-limits
	Challenge 52 – Zones of interest and worthwhile pursuits

	Empowering computers
	Designing software for the future
	Education software (embedded systems)
	Collaboration software systems for work and creativity (ubicomp and seamless interactions)
	Communication/media software systems (digital affordance and seamless interactions)
	 Automation software systems (ubicomp and embedded systems)
	Logistics/analytics software systems (knowledge data)
	Democratic power software systems (ubicomp and security)
	Challenge 53 – Which software future?

	Summary

	Other Books You May Enjoy
	Index

