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Critical Thinking is a discipline that provides the means to distinguish good
from bad an

arguments. In doing so, it draws on the contributions of other disciplines
such as logic, al

psychology, argumentation, and probability theory. By exploiting and
developing our e · C



ability to reason, it makes us understand why certain reasoning patterns are
correct and others are not.
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This book is an introduction to Critical Thinking, to the role that reasoning
plays in coni · F

crete contexts and to the forms it assumes in different fields. The first part of
the book explains what an argument is and what types of argument exist; the
second deals with rig
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deductive arguments, with particular attention to arguments involving
conditionals and er

counterfactuals; the third takes into consideration some non-deductive
arguments, such io · T

as statistical reasoning, reasoning with probabilities, reasoning with
explanatory hy-An Introduction

potheses, inference to the best explanation, and reasoning by analogy.
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The volume also clarifies why it is important to think well. Recognizing and
providing et

good arguments helps us have a better understanding of the issues we face
when making Edited by

choices and interacting with others.
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Introduction

What you are holding in your hands is an introduction to Critical Thinking.
This discipline regards two related areas: first, the set of skills and
competences that help you recognize, evaluate and produce good arguments;
second, the set of activities and tools that we can call on and use to train
these skills, respectively. This being so, why is the subject called “Critical
Thinking”?

In ancient Greece, the term “kriticós” meant the ability to judge and discern
things, in order to make the best choices for ourselves and others. These
days, this ability appears to be struggling to survive. In the world of hyper-



communication, monopolized by social media, it happens that our ability to
judge the opinions of others, to tell truth and falsity apart, to distinguish
good reasons from bad reasons in support of a choice, has been weakened
almost to the point of disappearing. We all know why. The inflated amount
of information showering us every day makes it very hard to tell what is
reliable and relevant from what is not. This phenomenon is just made worse
by the proliferation of fake news, that is to say by the deliber-ate
dissemination of false information that leverages widespread prejudices plus
our fears, thus managing to attract the attention of the public. In addition,
today any exchange of views, both on the social media and in public
discussion, tends to turn into a relentless struggle, in which the insult, the
denigration of the opponent, or the ridiculing of the opinion of others, often
takes the place of critical discussion of the reasons supporting a given claim.
All this drastically reduces not only the quality of public debate and
collective choices, but also our ability to express a well-considered judgment
on issues that are often very relevant to our lives.

It is therefore no coincidence that today the graduation programs of many of
the most important universities in the world include a Critical Thinking
course: it aims at sharpening the students’ ability to adequately justify a
claim, to refute the claims of others, to identify mistakes in reasoning, and to
evaluate the reasons in support of a certain assertion. This applies both to
everyday discourse and scientific inquiry.

The goal in question can only be achieved, however, by adopting an
interdisci-plinary approach. There is a vast spectrum of disciplines from
which one can draw in this respect: logic, probability theory, statistics,
decision theory, and again the theory of argumentation and the theory of
rational discussion, as well as disciplines which study language, first of all
pragmatics. An important contribution to a full awareness of the problems
and skills that come into play in Critical Thinking is al-
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so provided by cognitive psychology, and in particular the psychology of
reasoning and the psychology of decision. The ability to produce and



evaluate arguments, in fact, depends not just on the rules that govern rational
discussion, but also on our ability to guard against cognitive biases that
systematically lead us into error in making a choice or in providing a
solution to a problem. More in general, the ability in question depends on
our ability to avoid fallacies, that is, patterns of reasoning that do not work,
and yet we tend to follow them for some reason. These mistakes are due to
how real cognitive agents are made – to our difficulties in using some
reasoning patterns; or to the fact that the cognitive fatigue that we would
experience in following correct reasoning procedures leads us to adopt
“shortcuts”

that can lead us to wrong conclusions.

One important point of Critical Thinking is that, in teaching us to evaluate an
argument, it does not take the way in which we actually tend to think as a
criterion. Instead, it assumes a set of normative standards by which we must
reason, if we want to be rational, as is desirable. Indeed, the Critical
Thinking approach considers reasoning from a normative point of view, not
from a descriptive one. It is worth noticing that we ourselves recognize the
normative prescriptions on reasoning as rational once we are told where our
mistakes are, as we will see in Chapter 1. We will see, in any case, that a
normative approach to reasoning can only really be illuminating if we are
aware of how we actually reason. Thanks to cognitive psychology, today we
can achieve this (at least, to a much greater degree than in the past).

Being aware of the various aspects that condition the reliability of the
judgments in each field of knowledge will help the student to acquire the
critical and anti-dogmatic spirit that distinguishes a good university
education. Moreover, learning to think critically is fundamental today for
anyone wishing to make thoughtful choices in the field of public life and to
avoid the temptation to believe that the opinion of those who shout the
loudest, or receive the most likes, is necessarily the best option. In this sense,
the path proposed in these pages is aimed not only at university students, but
at anyone who has the desire to learn to think better and discover the
weaknesses of other people’s reasoning.

Contents and structure of the volume



This book is an introduction to Critical Thinking, which first focuses on its
logical aspects, showing at the same time the intersection of logic with the
study of cognitive biases and also with the characteristics of the
argumentative processes that have a place in everyday life, without
neglecting an introduction to the basic tools for probabilistic and statistical
reasoning. The path proposed in the book is divided into three parts.

In the first part (Chapters 1-4) we will focus on what a good argument is,
and we will explore the function that the evaluation and exchange of good
arguments
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play in our rational activities. We will do this after having given a context in
which we can frame the activity of evaluating and producing good
arguments. More specifically, Chapter 1 will deal in detail with the
distinction between normative approaches and descriptive approaches to
reasoning, allowing us to understand that there are standards of rationality
that, for a variety of reasons, we do not always follow. Chapter 2 will focus
more specifically on what arguments and good arguments are, thereby
elucidating two concepts that we will use throughout the rest of the volume.
The second – that of a good argument – is the key concept of this work.

We will see, in the same chapter, that there are different forms of reasoning.
Chapter 3 will set arguments and their features in a precise context, that of
discussion, and in particular rational exchanges of views, and will address a
phenomenon that always occurs in the most interesting discussions, namely
disagreement. Indeed, it is the presence of disagreement which solicits the
elaboration of arguments. We will give an overview of the different reactions
to disagreement, concluding with the most rational one. Chapter 4 will
analyze the latter in detail, illustrating the different strategies we can use to
concretely realize that.

This first part offers a fundamental set of notions that constitute the common
thread of the volume, and provides a general framework that helps us
understand why we should take interest in reasoning, and that reasoning is



fundamental in many applicative disciplines and in many concrete areas of
our lives.

In the second part (Chapters 5-7) we will discuss deductive arguments,
which are one of the most solid and best regimented tools of our reasoning
activities.

Chapter 5 presents an overview of the reasoning tools provided by
propositional (or

“sentential”) logic and quantified (or “predicate”) logic. It also shows
concrete strategies for checking whether an argument is deductively valid or
not (these notions will be introduced in Chapter 2). Chapter 6 and Chapter 7
delve into two specific cases of deductive reasoning: reasoning with
indicative conditionals, and reasoning with counterfactuals. The reason for
dealing with them is that they are both central to our reasoning activities.
Chapter 6 focuses mainly on a particular type of indicative conditional that
logicians refer to as a “material conditional”, but it also discusses the
possibility of other indicative conditionals.

That is the most technical part of the volume, even if the material has been
conceived and written to be accessible to an audience with no background in
logic or mathematics. The technical aspects are explained step by step,
keeping notation and formal considerations to a minimum.

In the third part (Chapters 8-11) we will discuss non-deductive arguments.

However solid deductive reasoning is, it does not, in fact, prove particularly
useful or illuminating in some contexts, especially those in which we try to
explain facts by formulating hypotheses, or where we have to reason about
statistical projections or probabilities, or in contexts in which our reasoning
must be conducted on the basis of analogies. Chapter 8 deals with reasoning
using explanatory hypotheses, and discusses a specific case: reasoning with
causal hypotheses. Chapter 9 deals with sta-
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tistical reasoning – both with statistical generalization and with the
application of statistics to specific cases. Chapter 10 deals with probabilistic
reasoning. It is the most technical chapter of the third part, but the formal
and mathematical considerations are still kept to a minimum. Finally,
Chapter 11 deals with reasoning by analogy, which plays a considerable role
in legal and moral reasoning.

This last part is more discursive than the second, as we have favored
conceptual understanding over technical discussion (keep in mind, however,
what we have just said about Chapter 10). This is because there are a great
many formal approaches to the various types of non-deductive reasoning,
while there is much more uniformity as regards deductive reasoning. Since
this is an introduction to Critical Thinking, we have favored the presentation
and understanding of the basic aspects over a technical study that could
branch out in many directions, with the risk of going far beyond the didactic
purposes that the book sets out to achieve.

Although the discussion follows a unitary line of development, the various
chapters lend themselves to being read and used separately, according to the
needs of the readers and their desire for further study.

It is not entirely possible to fully understand, evaluate and produce good
arguments if we do not familiarize ourselves with the “other side of the
coin”, that is, with those reasoning patterns that seem to work but in reality
systematically lead us to erroneous conclusions. This is one of the reasons
why we discuss cognitive biases in Chapter 1. Furthermore, we discuss some
fallacies where these seemed most relevant. Chapter 4, Chapters 6-7 and
Chapter 10 discuss specific fallacies and errors of reasoning in the
corresponding areas of reasoning covered by the chapter.

The volume tries to follow a precise methodology of presentation: we start
out from examples as far as possible and use these to illustrate the general
and conceptual points we face. We believe that a bottom-up treatment is
more suitable for addressing specific problems than a top-down one, which
favors the systematic presentation of theory and general considerations over
case studies. However, we have tried to ensure that the exemplifications do
not diminish the attention paid to those general and abstract aspects that are



necessary for the conceptual understanding of reasoning and of the problems
connected to it.

A terminological note

Some of the terminological choices we made in writing this volume might
sound misleading to the reader who is already familiar with philosophy or
the theory of argumentation, or with the theory of reasoning in general. We
therefore believe that it is appropriate to discuss them briefly.

Throughout the volume we will talk about sentences rather than
propositions. We will say that sentences appear in reasoning and that
sentences have truth-values. An important philosophical tradition, however,
has it that propositions do this. What is the
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difference? From a technical point of view, a sentence is a syntactic entity
that (i) satisfies some rules of grammar (or is “well formed”, as logicians
say), and that (i ) if uttered in the indicative mood asserts something. “La
neve è bianca” is a sentence in the Italian language. “Snow is white” is a
sentence in the English language. “Umberto Eco” is not a sentence, but a
name – if I utter this string of sounds I am not asserting something, just
pronouncing a couple of words. Since the identity criterion for sentences is
their syntactic make-up, “La neve è bianca” and “Snow is white” are
different sentences. Instead, a proposition is the content of a sentence. But
there is some disagreement as to what a proposition is, in turn. For some
philosophers, a proposition is the thought expressed by a sentence; for
others, it is (ideal y) the set of scenarios that make a given sentence true. Be
that as it may, both views agree in saying one crucial thing about
propositions, as the example shows: “La neve è bianca” and “Snow is white”
are different sentences that express the same proposition. More general y, we
could say that propositions are “interpreted sentences”, that is, the result of
the association of a content (be it a thought or a set of scenarios) to a string
of signs having certain characteristics. From this point of view, it is perfectly
justified to say that it is the propositions that are true or false. In fact, it is by



virtue of “interpretation”, in the sense just il ustrated, that they are true or
false. And it is perfectly justified to say that reasoning is made up of
propositions. Reasonings are mental acts (acts that involve certain entities:
the arguments), and therefore involve sentences that we always think of or, in
a broader sense, that we “interpret”, in the sense il ustrated.

However, we believe that relaxing the terminology and saying that a
sentence has a truth-value will do no harm. In fact, given one particular
interpretation of it, a sentence can be associated with truth-values by
transfer, on the basis of the truth or falsity of the proposition which that
given interpretation associates with it. If so, we can also, for the sake of
convenience, take the sentences to be constituent parts of arguments and
reasonings, when, as in this volume, the main interest is in the truth of the
premises and the conclusion, and of their logical relationships. Indeed, these
relationships can be faithfully transferred from propositions to sentences.

Let us therefore take this terminological liberty, in the awareness there are
certainly grounds for suggesting that the other choice would be more
rigorous. One reason we were prompted to proceed in this way is that, given
the disagreement on what a proposition is, it is easier and more intuitive to
explain and understand what a sentence is. In any case, our choice is applied
consistently throughout the book.

Another clarification: in this volume we talk about arguments, reasoning,
and inferences. We will see in Chapter 2 what an argument is. Technically,
reasoning is the act – carried out by any cognitive agent – of thinking about
a topic, that is, of carrying it out in thought; in this sense, reasoning is a
mental act. However, in history and even in current usage, the term
“reasoning” is almost always used in a looser sense, and in such a way that it
is in fact interchangeable with the term “argument”. We will do the same
throughout this volume. This choice will do no harm: as you will notice
when reading the text, nothing we say when talking about “reasoning” will
depend on its specific nature as a mental act – everything will instead

XVI
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depend on the “structural” characteristics that reasoning “inherits” from the
relative argument. We will therefore speak, for example, of the validity or
invalidity of an instance of reasoning (or an argument), and of the structure
of an instance of reasoning (or an argument). Finally, inference is the act of
concluding a sentence (or proposition) from a series of other sentences (or
propositions) in a reasoning. From a technical point of view, therefore, it is
another mental act. However, in this case too, the use of the term is usually
looser. In this volume, we will talk about inference whenever we are in the
presence of the particular application of an argumentation scheme that leads
us from some premises to a conclusion, regardless of whether the premises
and conclusion are thought of or not, and whether the act of passing from the
premises to the conclusion is actually accomplished. Consistently with this
choice, we will use “inference scheme”, “reasoning scheme”, and
“argumentation scheme” as synonyms.

Origin and attribution of the chapters

It is important to point out that this book is the result of a collective work.
We started thinking about it in 2018, when the first Critical Thinking course
was given at Bocconi, at the initiative of Rector Gianmario Verona. The
course is still taught to a considerable number of classes, which required the
collaboration of several teachers and authors. In the first phase, each chapter
was assigned to a specific author; subsequently, the chapters were
substantially reworked by Roberto Ciuni and Aldo Frigerio, and then revised
by Damiano Canale and Giovanni Tuzet.

The initial versions of the chapters are attributable as follows: Chap. 1,
Giovanni Tuzet; Chap. 2, Damiano Canale; Chaps. 3-4, Ciro De Florio and
Aldo Frigerio; Chap. 5, Roberto Ciuni and Aldo Frigerio; Chap. 6,
Massimiliano Carrara; Chap.

7, Vittorio Morato; Chap. 8, Roberto Ciuni and Giovanni Tuzet; Chap. 9,
Aldo Frigerio; Chap. 10, Daniele Chiffi; Chap. 11, Aldo Frigerio and
Giovanni Tuzet.

The final versions published in this book can be attributed as follows:

• Chapter 1, Roberto Ciuni, Aldo Frigerio, Giovanni Tuzet;



• Chapter 2, Damiano Canale, Roberto Ciuni, Aldo Frigerio;

• Chapters 3-4, Roberto Ciuni, Ciro De Florio, Aldo Frigerio;

• Chapter 5, Roberto Ciuni, Aldo Frigerio;

• Chapter 6, Massimiliano Carrara, Roberto Ciuni, Aldo Frigerio;

• Chapter 7, Roberto Ciuni, Aldo Frigerio, Vittorio Morato;

• Chapter 8, Roberto Ciuni, Aldo Frigerio, Giovanni Tuzet;

• Chapter 9, Roberto Ciuni, Aldo Frigerio;

• Chapter 10, Daniele Chiffi, Roberto Ciuni, Aldo Frigerio;

• Chapter 11, Roberto Ciuni, Aldo Frigerio, Giovanni Tuzet.
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Part I

Arguments and rationality

1 · Rationality and cognitive biases

In this chapter we distinguish between normative approaches and descriptive
approaches to reasoning (§ 1.1), and discuss concerns regarding the method
and empirical adequacy of normative approaches. We will explore three
cognitive biases (§ 1.2) to see how we often fail to comply with the
normative standards of reasoning. We will see that these examples help us
understand why, despite the difficulties of the normative approaches, the
standards of rationality they set are indispensable (§ 1.3).

1.1 Normative and descriptive approaches to reasoning

A fundamental component of Critical Thinking involves the analysis of our
reasoning patterns – those we perform, those we hear in a public debate of
any kind, those that are proposed to us by someone else, etc. When it comes
to analyzing our reasoning, there are two major dimensions we may be
interested in. One is the normative dimension, which allows us to identify
some standards of correctness and rationality for the reasoning we carry out
(for example) in proposing an argument to someone, in solving a
mathematical problem, or in making a decision. The other is the descriptive
dimension, which concerns how actual cognitive agents propose arguments,
tackle a mathematical problem and make decisions. There are disciplines
which mainly address our rational cognitive activities with normative
purposes, and disciplines which study reasoning with descriptive purposes.
We will give some examples of them shortly. Meanwhile, we can say, in a
few words, that the normative disciplines tell us how we should reason in
order to reason correctly, while the descriptive ones tell us how we actual y
reason.

The central part of this chapter will show how the two do not necessarily go
hand in hand: we do not always think correctly. In particular, we will see that



we tend to fall victim to some patterns of reasoning that we ourselves come
to consider incorrect, once they are pointed out to us. The examples we will
consider in this chapter involve so-called cognitive biases. We will see
shortly what these are.

1.1.1 Critical Thinking, normative and descriptive

From what we said in the Introduction, it is clear that Critical Thinking deals
with the normative correctness of our reasonings. In a nutshell, we can say
that Criti-
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cal Thinking is about how to think, not how we think. In fact, how we think
is a matter of psychological facts, while how to think is a matter of
normative correctness. As such, Critical Thinking intertwines to some extent
with other normative disciplines involving our cognitive and reasoning
activities. The most important of them are indicated in this list:

• logic;

• theory of probability;

• neoclassical economics;

• theory of rational choice;

• theory of decision;

• game theory.

Logic concerns the relation of logical consequence between (sequences of)
sentences (in the case of deductive logic) and of the evidential support that
some sentences provide to others (inductive and abductive logic).1 More
generally, we can say that logic deals with the rational connections between
sentences. Probability theory deals with how to strictly define and
mathematically measure the probability of an event. Neoclassical economics



(and in particular the microeconomic theories that refer to it) defines
economic agents as maximizers of their own utility, where the latter is
constrained by factors and assumptions that in fact idealize the behavior of
economic agents. The classical theory of rational choice sets standards so
that the choices of agents are rational – we will see what this means, exactly.
Classical decision theory provides standards of rationality for the decisions
of agents, and classical game theory offers a package of analytical tools with
which to investigate our strategic interactions, that is, those in which we
have to consider not only our goals, but also the fact that others pursue their
goals, and that what we get depends on the choices all agents involved make.

None of these disciplines deals directly with reasoning, except logic (but we
will soon see that the relationships between logic and reasoning are more
subtle than we usually think), although each of them has something to do
with it indirectly. It is easy to understand why: to solve a problem of logic, I
have to think; to solve a problem related to the probability of an event, I
have to think based on the quantitative data I have (assuming I have the
necessary data); to make a rational choice between two products, I have to
think about my preferences; to make a decision, I have to somehow reason
with regard to what the result of my decision will be if one of the many
possible situations independent of my decision occurs (consider the decision
as to whether to take an umbrella when it is raining or not raining outside).
To make a choice in a strategic interaction, I have to think about what
choices others would make based on their interests and the fact that they
themselves are, 1. On the notions of deduction, induction and abduction see
Chapter 2.
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in all likelihood, reasoning about the choices I would make (a very simple
way to grasp this point is to consider the Prisoner Dilemma, one of the most
famous and debated examples in game theory).



As for the relationship between logic and reasoning, it is easy to see that
logic deals with the rational connections between the sentences that we
employ in our reasonings. Reasoning is an act of our mind, something we do.
The rational and logical connections between sentences, however, remain
ideally such even if we do not think of them, since they are not something
that depends on us. So, in a sense, even logic deals with reasoning only
indirectly. It is also true, however, that those connections between sentences
have a role mainly in our reasoning activity, and therefore the position of
those who consider logic as the normative theory of reasoning is also
defensible.

All six normative disciplines which we have mentioned set standards of
correctness against the background of which we can evaluate the goodness
of our reasoning in cases of choice, decision, strategic interaction, estimation
of a probability, solution of a logical problem. They do this by assuming
certain standards of rationality, and by implicitly creating idealizations that
may diverge from real cognitive agents, from our real cognitive and
computational abilities, and more generally from the way in which we
actually make decisions, choose between alternatives, and face calculations.

For example, logic sets consistency as a standard of rationality (absence of
contradictory assumptions in a theory or set of sentences), and, in the case of
deductive logic, distinguishes between valid and invalid inferences. A
logically perfect agent, or a perfectly rational one from the logical point of
view, is an agent which never falls into contradictory assumptions and is
able to distinguish valid inferences from invalid ones without error. We can
call homo logicus this “ideal” agent. It is clear that none of us complies with
the homo logicus idealization in the sense just defined. Sometimes we find
ourselves making contradictory assumptions, because their contradictory
nature is not obvious – it requires complex reasoning to be identified, and
the complexity of such arguments can give us problems. Furthermore, there
are errors of logical reasoning to which we seem particularly exposed, so
much so that they have been systematized in the history of thought and are
usually called fallacies (we will look at some of them starting from Chapter
3).

Neoclassical economic theory and classical rational choice theory set a
package of properties – mostly formal properties – that the agent’s



preferences must satisfy as the standard of economic rationality. For
example, an agent’s preferences are assumed to be complete and transitive.
Completeness implies that any good is comparable with other goods, so that
for any pair of goods x and y, either I prefer x to y, or y to x, or I think they
are equally good. Transitivity dictates internal consistency of preferences – if
an agent prefers x to y and prefers y to z, then they prefer x to z.

Furthermore, some stability of preferences over time is assumed.
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A perfectly rational agent has preferences that satisfy these properties
(among others). We call this ideal agent homo œconomicus. Again, the
misalignment with real agents is clear. For example, our preferences often
change, yet this does not seem to imply that we are irrational (contrary to the
standard of economic rationality above). Moreover, our preferences do not
seem to be complete. Take an agent who has no interest in comics and ice
cream. On what basis could these two goods be ranked in terms of “better”,
“worse”, or “equal”? Even transitivity is not to be taken for granted.2

If we sometimes reason on the basis of contradictory assumptions, how can
we justify the consistency assumption that we have seen above? If our
preferences do not work as neoclassical economic theory or classical rational
choice theory tells us, how do these disciplines justify the formal properties
they impose in providing a model of choice-making? More generally, how
can we justify the elaboration of reasoning models that seem to represent
ideal agents (perfectly rational from a logical or practical point of view) but
not actual agents, like ourselves?

One possible answer is that any theory that studies complex phenomena
starts with idealizations. We cannot consider every aspect of our choices or
strategic interactions. We cannot consider all the cognitive and
computational limits that condition our reasoning or our calculations. We
have to start from the essential aspects of these activities (those that make
them work, in a sense) and abstract from the rest. In other words,
neoclassical rationality is a useful assumption and, consequently, so are the



properties that neoclassical economics and classical rational choice theory
impose on preferences. Likewise, logical rationality – the assumption of
consistency and infallibility in reasoning – is a useful assumption. That is,
these assumptions are a useful construct for developing a series of simple
idealizations and theories, with the implicit assumption that real agents are
something else.

This answer is not immune to objections. Here is one of the many: an
idealization is useful if it does not differ too much from the way things are;
if it deviates too much, it no longer tells us anything illuminating. More
specifically, if theoretical constructs are used to formulate explanations or
predictions of real phenomena

– for instance, to explain and predict how economic agents behave – we
might as well start out from sufficiently realistic premises regarding the
cognitive agents involved in choices, strategies, decisions, and reasoning.

Another possible answer is this: if we limit ourselves to describing how we
actually reason, make decisions, interact with other decision-makers, choose
goods, then we will not be able to say what is correct, or rational, and what
is not. When we make choices, we make decisions, we adopt strategies, we
pursue our goals. At the same time, we are aware of the fact that some
decisions, choices, strategies that 2. An elementary illustration of this is the
example of the polite dinner party guest in Amartya K.

Sen, Internal consistency of choice, “Econometrica”, 61, 1993, 495-521.

1

Rationality and cognitive biases

7

we happen to adopt are adequate to achieve these objectives (or more
adequate than others), while others are not. However, if all that mattered
were to describe how we make choices, we would not be able to distinguish
proper choices from inadequate ones. If we did not distinguish between good
and bad arguments (as we will do starting from Chapter 2), we would have



no basis for objecting to an argument that does not seem to work. All we
could do would be to report the fact that someone argues in a certain way.

The moral of what has just been observed is the following: We need
normative approaches because we need normative standards for our
reasoning. Compared to the previous answer, this one seems open to the idea
that we need both approaches (normative and descriptive). Their
combination allows us, at least ideally, to elaborate theories that do not lose
sight of the role of normative standards, but at the same time start out from
realistic assumptions about the agents who choose, decide, adopt strategies,
and reason.

We will return to this point at the end of this chapter, in § 1.3, after having
looked at some cases in which we do not reason as we should, and why. In
particular, § 1.2 will focus on three cognitive biases concerning our
reasoning in the context of decision-making, probability assessment, and
estimates on a given question.

Starting from Chapter 3, then, we will learn how to identify some important
logical fallacies, or patterns of reasoning which may not be good but which,
for some reason, we tend to follow. These do not have to do specifically with
decisions or calculations, but with our reasoning in a great variety of
different domains.

1.2 Heuristics and biases

We are well aware that we often do not think perfectly. Sometimes we get it
wrong when we do mathematical calculations, or when we calculate
probabilities. We contradict ourselves, we fall into logical fallacies, and so
on. These errors are due to our cognitive and computational limitations and,
as such, we are used to considering them as a simple “deviation” from
correct calculation or reasoning procedures.

Some violations of the normative standards of reasoning, however, are not
due entirely to our cognitive limitations, and, above all, they happen
systematical y in some contexts in which we make decisions, estimate
probabilities, do calculations, or answer questions. Since the 1970s,
cognitive psychology and decision psychology have focused on these



phenomena. Researchers working in these disciplines have conducted
experiments that have helped us not only see how concretely (and
systematically) we deviate from standards, but have also proposed an
explanation of why these deviations occur – what exactly makes them
happen.

Among the most significant figures in these research areas we must
undoubtedly include Daniel Kahneman and Amos Tversky, who conducted
experiments on how we actually reason when we face decision-making
problems, and when we an-
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swer questions that have to do with probabilities.3 Their results gave a
strong impe-tus to the emergence of disciplines such as behavioral
economics and behavioral decision theory. The former focuses on the
processes of economic choice of real agents (like “us”) in the real world; the
latter focuses more generally on the decision-making criteria that we actually
put into practice. Both are based in part on the awareness that a series of
errors and distortions systematically characterize these processes, and this
awareness was made possible precisely by the experimental results and
theories developed in decision psychology and cognitive psychology.

One general conclusion which emerged from experiments conducted over
time is that, for a variety of reasons, when we have to solve a decision or
calculation problem, we do not follow the logical-rational steps of the
procedures that allow us to solve the problem (or at least, we do not follow
them all), but we rely on heuristics, that is a series of “mental shortcuts” that
allow us to tackle the problem without following the rational procedure to do
so but, at the same time, in a way that is efficient in the majority of the cases
we face every day. However, it has also been seen that this heuristic
approach produces systematic biases, whose negative consequences are
evident in specific contexts.

Many experiments by Kahneman and Tversky have contributed to the
elaboration of the theory of heuristics and biases. In particular, they have



shown the main types of bias that characterize our decisions, and proposed
an explanation of their impact, thus opening the way also for methods to
correct them. The theory of heuristics and biases has had great weight in
behavioral economics, which in general uses many tools of empirical
psychology, studying the processes that lead individuals to make certain
decisions under given experimental conditions.

In a celebrated volume entitled Thinking, Fast and Slow, 4 Kahneman
summarized many years of empirical and theoretical research in a general
vision, and more precisely in the idea that our mind is made up of two
cognitive systems, present to a greater or lesser extent in concrete
individuals: System 1 and System 2. The first works in a fast, automatic,
intuitive way, and is conditioned by our emotional states. The second, on the
other hand, works in a slow, thoughtful way, allowing us to carry out
complex calculations, to compare alternative choices, to follow plans.

If System 1 proves effective in many situations, making our responses and
decisions faster, in other situations, however, it deceives us, leading us to
systematically make mistakes.

Like behavioral economics, the cognitive psychology of reasoning has tried
to understand the reasons for some systematic reasoning errors, some typical
difficulties and limitations of our inferential capacities. Models have been
built that repre-3. One of their most famous contributions in this perspective
is Daniel Kahneman, Amos Tversky, Prospect theory: An analysis of
decision under risk, “Econometrica”, 47(2), 1979, 263-291.

4. Daniel Kahneman, Thinking, Fast and Slow, Farrar, Straus and Giroux,
New York 2011.
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sent and explain these aspects, indicating, when possible, some strategies to
overcome the difficulties typically encountered by real reasoners.



In what follows, we will present three of the most famous cognitive biases.
The framing effect and the anchoring effect emerged in the experiments of
Kahneman and Tversky. The hindsight bias emerged in the experiments of
two other psychologists of reasoning, Baruch Fischhoff and Ruth Beyth.

1.2.1 Framing effect

The expression “framing effect” refers to the phenomenon whereby if one
and the same decision problem is presented in different ways, this will lead
us to make different choices, even if the different ways of presenting it do
not change the substance of the problem. To get a concrete idea, let us take a
look at the experiment conducted by Kahneman and Tversky and known as
the “Asian disease problem”, named after the fictitious disease mentioned in
the experiment.

In the experiment, two distinct groups of people are subjected to the same
fic-tional story. At the end of the story, the first group is presented with a
decision problem whose alternatives are A1 and B1, while the second group
is presented with a decision problem whose alternatives are A2 and B2.

Group 1. [ Story] A community of 600 people is affected by an Asian
disease. If no sanitary measures are taken, the terrible pathology will wipe
out the entire community. If instead we take health care measures, then [
Decision Problem] we can choose one of two alternative programs:

(A1) A program that saves 200 lives;

(B1) A program that has a 1/3 probability of saving all 600 lives and 2/3

of not saving anyone.

Which program do you choose, A1 or B1?

In the experiment conducted by Kahneman and Tversky, 72% of the first
group of respondents chose A1, and 28% chose B1. This trend was
confirmed in further repetitions of the experiment.

Group 2. [ Story: the same] [ Decision problem] We can choose one of two
alternative programs:



(A2) A program that results in the death of 400 people;

(B2) A program that has the probability of 1/3 that no one will die and 2/3

that everyone will die.

In the experiment conducted by Kahneman and Tversky, 22% of the second
group
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of respondents chose A2, and 78% chose B2. This trend was confirmed in
further repetitions of the experiment.

The crucial point of the experiment is that the A1 and A2 options are
actually the same option, except that A1 is presented in terms of gains, while
A2 is presented in terms of losses. The same goes for options B1 and B2. So,
in reality, the two groups have been subjected to the same decision problem,
but the problem is presented ( framed) to the two groups in two different
ways.

This diversity of wording is accompanied by a fact: where a choice is
presented in terms of gains, as to group 1, agents are (in overwhelming
percentages) risk averse, while where the same choice is presented in terms
of losses, as to group 2, agents are (in overwhelming percentages) risk
taking.

The facts emerging from the Asian disease experiment show us that we are
not perfectly rational agents. Let us start with the fact, revealed by the
experiment, that people make their decisions based on two different decision
criteria: some follow a risk-averse criterion, and others a risk-prone criterion.
The sample of the experiment is chosen in an adequately randomized
manner by Kahneman and Tversky, and then by those who repeated the
experiment. This means that, in terms of percentages, we should expect
similar distributions of risk-averse people and risk-prone people. If we were
perfectly rational, we would have to react to A1 the same way we would
react to A2, and vice versa, because they are actually the same option. The



same goes for B1 and B2. Consequently, in the two groups we should have
very similar distributions for A1 and A2, which encounter risk aversion, and
for B1 and B2, which encounter risk taking. Instead we have a real reversal
of trends.

This is because, in cases like the one we are discussing, we are inclined to be
sidetracked by the way the alternatives of a decision problem are presented,
rather than rationally considering their actual consequences. Ultimately,
Kahneman and Tversky’s experiment contradicts the idea that we are
perfectly rational decision-makers.

Kahneman and Tversky’s experiment has even more drastic effects for a
particular decision theory, which has long been dominant in decision theory
and rational choice theory, namely the Expected Utility Theory (EUT),
whose basic command-ment is: Choose the action with the highest EU
(expected utility).

Let us illustrate that with a decision problem. I have a sum of 5,000 euros
available, which I can choose to commit to a given investment. Market
signals say there is a very high probability that the investment will be
successful. If this is the case, I will earn 15,000 euros by investing, but if it
goes badly, I will lose half of the initial 5,000. If I don’t invest, instead, I will
simply keep my 5,000. I therefore have two possible actions (investing and
not investing), two relevant states of affairs (good and bad market
performance), and four possible outcomes, each of which gives me a specific
utility (in this case, monetary utility):

1
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Table 1.1 Investment example

Good market trend

Bad market trend



Invest

15,000

2,500

Do not invest

5,000

5,000

Let us also assume that we attribute a probability of 70% that the market will
perform well, and 30% that it will perform badly. Which of the two actions
should we choose? EUT says to proceed like this: take an outcome of the
first action (invest) and multiply its utility (15,000) by its probability – so we
will have, in our example, 15,000 x 7/10 = 10,500; then do the same with the
other outcome – we will then have 2,500 x 3/10 = 750. Add the two results –
so we have 11,250. Proceed in the same way with the other choice (do not
invest). The result of the sum is: (5,000

x 7/10) + (5,000 x 3/10) = 5,000. Choose the action that guarantees you the
great-est expected utility: in this case, the action of investing.

EUT has been criticized for various reasons, although it still has a significant
standing in several disciplines, including economics and some of its
applications (e.g. public policy and health policy). Its adequacy as a
normative theory of decision has also been questioned, but here we will
consider only its descriptive or empirical inadequacy – that is, its inability to
describe how, in fact, we real decision-makers choose between various
alternative actions. Kahneman and Tversky’s experiment was conducted
precisely to show this inability on our part.

Let us now try applying EUT and see what choice it would prescribe in the
Asian disease problem. For the sake of simplicity, we will give a value of 1
to a saved life, and 0 to a death from illness. Consider A1 and B1. The
possible outcomes are: the salvation of 200 people and the death of the
others (with probability 1) for A1, and the salvation of all 600 (with
probability 1/3) or the death of all (with probability 2/3) for B1. The EU of



A1 is therefore 200 (i.e. 200 × 1 + 400 × 0). What is the EU of B1? Exactly
the same: 600 × 1/3 + 0 × 2/3, i.e. 200. The same calculation applies to A2
and B2, respectively, since they are different ways of presenting A1 and B1.
Thus, for EUT, all four alternatives presented in the experiment are
equivalent.

Yet the experiment reveals a notable disproportion between the preferences
for A1

and those for B1 (or those for B2 and those for A2). EUT is descriptively
inadequate.

The framing effect plays a very important role in many concrete contexts of
our everyday life. The following example shows its relevance to consumer
behavior.

Participants in an experiment5 were presented with meat and asked to rate its
quality. The participants were divided into two groups. The product was
presented to the two groups with different labels.

5. The description of the experiment and its results are in Irwin Levin, Gary
Gaeth, How consumers are affected by the framing of attribute information
before and after consuming the product,

“Journal of Consumer Research”, 15(3), 1988, 374-378.
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Group A: The label indicates that the product has 75% lean mass.

Group B: The label indicates that the product has 25% fat mass.

The meat was however of the same quality for the two groups. In turn, the
two groups were divided into two subgroups.

Group A1 and B1: had to evaluate the meat only from the label, which in
addition to the percentage of lean/fat mass summarizes other characteristics,



which are identical for both groups.

Group A2 and B2: tasted the meat, and did not just read the label.

The meat had to be evaluated by the two groups according to four different
scales: 1. good taste vs bad taste;

2. oily vs non-oily;

3. high quality vs low quality;

4. fat vs lean.

For each of these dimensions a score from 0 to 6 could be assigned. Figure
1.1 shows the results of the experiment.

As you can see from the graph, meat whose label read “75% lean mass”
received significantly better scores than that whose label reported “25% fat
mass”, both from the respondents in groups 1 (label only) and from those in
groups 2 (label and Figure 1.1 Meat evaluation

75% lean

6

25% fat

5.15

5.15

5.15

5.15

5.15

5.15

4.71



5.15

4

4.43

3.95

5.15

3.66

3.57

3.43

2.83

2.96

2

0

y

e

y

e

oily

oily

Fat / lean

w qualit



Fat / lean

w qualit

Oily / non-

e / bad tast

Oily / non-

e / bad tast

High / lo

High / lo

Good tast

Good tast

Condition 1: tag only

Condition 2: tag + tasting
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taste) – even if in groups 2 the disproportion in scores is less accentuated. In
short, group A and group B evaluated exactly the same product in a different
way, and this (i) regardless of the possibility of tasting or not, and (ii) in
relation to the indication of lean and fat mass.

Point (ii) is crucial here: the two labels indicated the same percentages of
lean and fat mass, but presented them in different ways. In short, not only
did groups A and B evaluate the same product: they also found the same
information on the label.



However, they reacted not according to the meaning of this information, but
rather to the way in which it was presented.

The experiments we have exemplified show that the way in which problems
are framed influences the responses of the subjects in a decisive way, even if
it does not tell us anything substantive about what is at stake in the problems
themselves.

The cases in which the framing effect seems to have more marked effects on
decisions are those in which the presentation of the problem triggers strong
emotions in decision-makers, such as fear, panic or, conversely, trust. These
emotions play a role in our decisions, not least because they block our
rational considerations.

In a situation where I have to make a decision about the lives of 600 people,
being told that with the chosen program I will save 200 has a very different
emotional impact from being told that I will have 400 die.

Emotions can also be called into question indirectly, leveraging on
prejudices or on our cognitive or computational limitations. If I am given
very strict time limits in choosing the health programs in the example, then
my emotional involvement will have an even greater weight, because I will
not have time to analyze the problem well, and to realize that (at least in
terms of EU) the programs are equivalent. In other words, in situations like
these we tend to opt for what Kahneman calls

“System 1” rather than what he calls “System 2”.

Experiments such as the ones we have exemplified have a clear
consequence: if we want to predict how an agent will make a decision, given
some definite alternatives, we cannot reason about how the agent should
make a decision, because normative theories – at least the classic, simpler
ones – often prove inadequate in describing how agents choose. If our goal is
to build economic models that explain and predict the choices of agents in
given situations, we must take into account the fact that agents like ourselves
are systematically influenced by biases, cognitive con-straints and emotions.



The intertwining of economics and psychology is fundamental for this goal,
because it allows us to consider the psychological processes and actual
decisions of real economic agents, rather than the “rational” decisions
postulated by neoclassical economic theory. Behavioral economic analysis
was created precisely to meet this challenge and account for our decision-
making activity as it really occurs, thus bringing economic theory closer to
the real world. Furthermore, awareness of how we actually reason helps us
notice our systematic biases, putting us in a better posi-
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tion to think critically, identifying errors and distortions, and avoiding them
in our judgments and decisions.

Understanding how and to what extent biases affect our reasoning can also
be important to improve some aspects of our practical interactions with other
agents.

For example, knowing about the results of the “lean/fat” experiment, a food
business can take the opportunity to report that a given product has, say,
75% lean mass, rather than 25% fat mass.

1.2.2 Hindsight bias

The hindsight bias consists in overestimating the initial probability that an
event would happen after that specific event has happened. To understand
how it works, let us consider an experiment on the psychology of reasoning
carried out by Baruch Fischhoff and Ruth Beyth6 (here we modify it by
reducing the possible answers from four to two). A randomly selected group
of people is told the following story:

Nepalese War. Between 1814 and 1816 a war was fought in Nepal between
the British and the Nepalese Gurkhas. The former enjoyed a better war
organization and better armaments, the latter had a better knowledge of the
territory and a stronger motivation.



How the war ended is not revealed, and people in the group are asked: Based
on what you have been told, what was the likelihood of an English victory?
And what was the likelihood of a victory for the Gurkhas?

Taking the average of the likelihoods given by each individual in the group,
Fischhoff and Beyth noted that the group attributed a likelihood of 67% to
the British victory, and 33% to the victory of the Gurkhas. Then Fischhoff
and Beyth divided the group into two subgroups. Subgroup 1 was told that
the war had been won by the British, Subgroup 2 that the war had been won
by the Gurkhas. Fischhoff and Beyth then repeated the initial question to
each of the two subgroups.

It turned out that in Subgroup 1, the average likelihood attributed to a British
victory had risen to nearly 90%, and that of a Gurkha victory dropped to
around 10%. In contrast, in Subgroup 2, the average probability attributed to
the victory of the Gurkhas rose to around 65%, and that of the British fell to
around 35%.

What is wrong with the last two answers? The experiment asks to evaluate
the initial or a priori probability of the British victory and the
complementary one of the 6. Baruch Fischhoff, Ruth Beyth, I knew it would
happen: Remembered probabilities of once-future things, “Organizational
Behavior and Human Performance”, 13, 1975, 1-16.
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victory of the Gurkhas. Just to have a clear idea of what this is, the a priori
probability that a 2 comes up from the roll of a (non-loaded) die is 1/6. More
generally, the a priori probability of an event E (e.g. “A 2 comes up”, “The
Gurkhas win the war”, etc.) is the probability we attribute to E before the
event occurs (before we roll the given die, before the war begins) – or, more
precisely, before we are given additional information about the event. The a
posteriori probability of E, on the other hand, is the probability that we
attribute to E after (we come to know that) it occurred



– or, more precisely, after we are given additional information about it. What
is the a posteriori probability of the “A 2 comes up” event? Simple: if the
roll gave 2 as a result, the a posteriori probability of “A 2 comes up” is 1;
otherwise, it is 0.

This however cannot modify the a priori probability of “A 2 comes up”,
which always remains 1/6 (if the die is not loaded).7

Now let us understand what is wrong with the subgroups’ answers: the fact
that the average attributed probabilities are different from those of the initial
group means that at least some individuals have changed their estimate of
the a priori probability of the British (or Nepalese) victory. But this is just as
incorrect as thinking that “A 2 comes up” had an a priori probability greater
than 1/6, once we know that a 2 actually came up. The information on who
actually won the war is irrelevant for evaluating the a priori probabilities of
“The British win” and “The Gurkhas win”, just as the information on which
number came out is irrelevant to assess the a priori probability of “A 2
comes up”.

The occurrence of the hindsight bias demonstrates that we are not perfect
probabilistic reasoners. In particular, we tend to reason incorrectly about a
priori probabilities when we are given information about how things really
went. The effect is explained by the psychological difficulty of ignoring the
information received, which remains difficult to disregard even when we are
explicitly asked not to consider it.

The study of the hindsight bias has also revealed a phenomenon that
accompanies the overestimation of the probability of events actually
occurring in the past: agents tend to rationalize their responses by giving, a
posteriori, greater importance to the aspects of the problem that suggest an
answer in line with the outcome they have been informed of, and giving less
importance to those that suggest answers that are not in line with it. In the
case of the Nepalese war, people in Subgroup 1

(who were told the British won) tend to rationalize their overestimation of
the a priori probability of “The British win” by insisting on the superior
military organization of the British, the discipline of troops, the greater
availability of weapons, etc. People in Subgroup 2, on the other hand,



rationalize their response by insisting on the best knowledge of the territory,
the stronger motivation, the effectiveness of guerrilla tactics, etc.

7. Probabilistic reasoning will be the topic of Chapter 10.
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Essentially, hindsight operates by leading us to rationalize the overestimation
of the probability, as if the event that actually occurred would necessarily be
more predictable than the alternative events that did not occur. In fact, in this
rationalization we end up believing that the event that happened was more
predictable than it really was. (If you are curious to know how it really
ended, the war was essentially won by the British, even if the victory
involved a peace treaty and mutual concessions.)

The hindsight bias plays a role in many contexts, including some that are
very familiar to us. Take, for example, the evaluations of sports competitions
–

like a football match. When we evaluate the outcome of a match
retrospectively, we are all ready to say that the outcome was predictable and
to explain it: those who lost should not have played one way but another,
some player substitutions should not have been made, or other players
should have entered the field from the bench, etc. In short: we try to explain
not only why the match ended in a given way, but also why the factors for
that outcome weighed more than the opposing ones. Obviously this approach
is not always justified: in almost all sports (especially team sports) it can
happen that some matches are decided by more or less random episodes,
which have little to do with the overall performance of the teams on the
pitch.

Similarly for electoral competitions: before the elections we attribute a
degree of uncertainty to events (“Who will win?”) which we then reduce in
our a posteriori judgments. An exemplary case is provided by the 2016 US
presidential election: many observers, American and international, had
considered Donald Trump’s victory as highly unlikely, especially due to the



assumption (whether well founded or not) that what Trump offered matched
no substantial need of the electorate. After the tycoon’s victory, some
observers reviewed their assessment, coming to the conclusion that Trump
had managed to leverage (perhaps only for propaganda purposes) the needs
of a specific socio-economic segment of the electorate. Belief revision can
be the right thing to do when new information is given, but, as the die
example above shows, it is wrong to revise the a priori probabilities given
the a posteriori ones.

The hindsight bias also has important practical consequences, and awareness
of it has led to the need to stem it in some areas. For example, some legal
systems require that information of a certain type should not be provided in
court when certain types of disputes have to be decided. This is because, by
receiving that information, whoever has to decide the dispute would
overestimate the a priori probabilities that the event in question would
happen. Let us consider the following example.

A shopper is walking around a supermarket looking for some products.
However, he does not notice a banana peel on the floor, he slips on it, and
breaks his leg.

After the accident, he learns that the management of the supermarket has
decided to improve cleaning by increasing the number of shifts. Before the
accident the at-
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tendants cleaned the floors every four hours, now they clean them every two
hours.

The customer sues the supermarket claiming that the accident was due to
negligence in ensuring the cleanliness and safety of the place, and argues
that the new, more frequent shifts have been implemented precisely to
remedy this negligence –



that is, because the previous shifts were not sufficient to guarantee an
adequately low risk of falling.

What happens in the example is clear: the customer (even unwittingly)
leverages the hindsight bias of the decision-makers. Given the accident and
knowing that cleaning shifts have been increased, he argues as if the
accident was more predictable and avoidable than perhaps it was. What the
customer argument “sells” to the decision-makers is this: “The fact that
cleaning shifts have been increased shows that more could and should have
been done”.

Some legal systems, for instance US federal law, establish that such
information cannot be admitted as evidence in a trial (Federal Rule of
Evidence 407). In our case, the plaintiff (the customer) cannot tell the jury
that the cleanliness and safety of the supermarket was improved after the
accident. This information cannot therefore be assessed by the jury in
making a decision on negligence and on the right to compensation. The
reason is that the jurors’ task is to assess the negligence on the basis of the a
priori predictability of the accident. The hindsight bias shows that
information on what then happened would compromise that assessment.

An interesting point is that other legal systems, for example the Italian one,
allow this kind of information as evidence that can be used in a civil case in
which compensation after an accident is claimed. This is despite the effects
of the hindsight bias. Why are the systems different in this respect? Consider
that, in a system like the Italian one, it is judges with specific legal skills
who decide cases like that, not a jury made up of ordinary people and
without specific competences. There is an assumption implicit in the idea
that a judge can evaluate information regarding what happened better than a
jury; the assumption seems to be that the professional education and
experience of judges shield them more from possible prejudices, errors,
fallacies and biases. Is this assumption justified?

Can it be empirically and experimentally shown that professional decision-
makers are less affected by biases?

We happen to apply this assumption to other professional skills as well. For
example, we tend to believe that professional investors who make economic



or financial decisions are more capable of resisting biases than others.

However, some studies show that the economic signals as to the prospects of
a certain company are valued differently by professionals who are told that
the company then went bankrupt compared to those who are told that the
company did well. So, in fact, having relevant professional skills is not
enough to insure us against hindsight bias: even competent people can fall
victim to it.
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1.2.3 Anchoring effect

In many situations, we find ourselves having to make quantitative estimates
or calculations based on an initially given value, which we adjust in order to
provide our estimate or the result of the calculation. It is not uncommon,
however, that, in making our estimates or calculating the result, we allow
ourselves to be influenced by the initial value in an incorrect way, even when
it is actually irrelevant, and we are thus led to provide estimates or results
that are not correct or really justified.

The anchoring effect consists in the disposition of cognitive agents to
“anchor themselves” to data or values initially provided in tackling a
problem, in a way that does not actually guarantee a correct calculation of
the final value, or a rational consideration of the problem.

Let us look at some examples of how the anchoring effect works in practice.
In one of the first experiments that revealed the incidence of this effect,
Kahneman and Tversky divided the participants into two groups, who were
asked, respectively: Group 1: estimate in 5 seconds the result of 1 × 2 × 3 ×
4 × 5 × 6 × 7 × 8.

Group 2: estimate in 5 seconds the result of 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1.

The figures given in the two products are exactly the same, and since
multiplication is commutative, the result is the same (i.e., 40,320). Of
course, five seconds is not enough for the vast majority of us to calculate the



two products correctly, and Kahneman and Tversky did not expect to receive
(many) correct answers. Almost all the answers were indeed wrong, but it is
remarkable how the errors were distributed in the two groups: in Group 1
(with the ascending series) the median estimate for the result of the operation
was 512, in Group 2 (with the descending series) it was 2,250.

This means that most of Group 1 gave much lower estimates not only of the
correct answer, but also lower than the results given by most of the members
of Group 2.

If the operation was the same, what explains this stark divergence between
the two groups? The explanation of the difference lies in the psychological
anchoring occasioned by the first numbers of the series. Let us see why, and
how.

The only difference in the questions for the two groups is in the order of the
factors, which is not relevant in the multiplication. However, the order of the
factors led Group 1 to calculate starting from the lowest figures (1 x 2 x 3 x
…), and Group 2 starting from the highest (8 x 7 x 6 x …). Given the time
limitation, the members of the two groups did not perform the entire
calculation: at some point they stopped and “adjusted” the result they had
actually calculated, increasing it a bit. For example, someone in Group 2
calculated 8 x 7 x 6 x 5 = 1,680, and then intuitively adjusted the result. In
other words, that individual anchored herself to the calculated result, and
adjusted it. But adjusting when starting from 8 x 7 x 6 x 5 =

1,680 is very different from adjusting when starting from 1 x 2 x 3 x 4 = 24,
because the “anchors” in the two cases are very different.
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In short, in the few seconds available, the participants perform part of the
multiplications and then make an intuitive adjustment, which is on average
insufficient.



When the data considered are reliable indicators of the overall data,
anchoring can work as a good heuristic. Ideally, if I was able to calculate 8 x
7 x 6 x 5 x 4 x 3 =

20,160, then I may well adjust by making an estimate close enough to
40,320, since I am starting from an “anchor” value (20,160) which is not
very far from the result of the 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 operation. If the
data considered are too far from the overall data (or more generally, if they
are not reliable indicators), then anchoring leads to significant error.

There are, however, partially different explanations for the hold that
anchoring has on us. For some it is a form of mental laziness; for others it
arises from the reasonable inclination to use available data; for still others it
connects to further psychological mechanisms including suggestion.

The occurrence of the anchoring effect can also be seen in situations where
calculations are not required but simple estimates are. For example, in one
study, two groups of students were asked what the average price of a
textbook in the campus bookstore was. Members of one of the two groups
were also asked whether, in their opinion, the average price was higher or
lower than $ 7,163.50. Those who were initially exposed to this absurd
figure gave on average higher responses than those of the other group. Once
an initial figure was presented, it acted as an “anchor”, even if it was absurd
and, in fact, irrelevant to the estimation that the participants had to make.

The anchoring effect also has a very important impact on our activities. Let
us go back to the example proposed above: a customer breaks his leg by
slipping on a banana peel in a supermarket and takes legal action against the
supermarket management, claiming that the latter had been negligent in
ensuring proper cleaning of the premises. Suppose the customer is able to
convince the decision-makers of the supermarket’s negligence, even without
using the information regarding the increase in the frequency of cleaning
shifts. Now the customer must quantify the harm suffered, hoping that he
will be granted this sum or a little less. Let us suppose that he asks for the
considerable sum of 655,000 euros, claiming that in addition to the medical
expenses incurred (quantified as 25,000 euros paid to a spe-cialized clinic),
he suffered from a loss of earnings, as he could not participate in an



important work activity that presumably would have earned him an
estimated sum of 630,000 euros.

Suppose in addition that the judge is not entirely convinced, as he suspects
that the plaintiff’s assessment is exaggerated. Let us also assume, however,
that the judge awards to the plaintiff a not much lower sum, for instance
610,000 euros. It cannot be ruled out that the judge was a victim of the
anchoring effect. The request of the plaintiff was the quantitative estimate
discussed in the case, and this may suggest that it acted as an “anchor” (i.e.
an implicit reference point) in the judicial decision, without the judge being
aware of it.
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The experiments on the anchoring effect show that adjustments of this kind
are made because the starting request acts as a psychological anchor, as a
reference point, however exaggerated it may be in some cases. If it could be
shown that in the case of the supermarket the judge would have decided not
on 610,000 (as supposedly decided) but on 120,000 if the victim of the
accident had made a claim for 150,000, then the effect in question could be
confirmed.

An area in which the anchoring effect plays a decisive role is that of
negotiations, or bargaining, especially when participants need to establish a
price or a quantity. Experienced participants, in these cases, open the
negotiation with a request higher than what they themselves find
appropriate. This will lead the counterparty to make an offer not much lower
than the initial request. This al-so happens because an overly marked
divergence with respect to the previous proposal would lead to the end of the
negotiation. It must also be considered that in many such negotiation or
bargaining contexts, not all parties have a sufficiently defined idea of the
value of the asset they are bargaining about. The ideas we have regarding
how much an asset is worth can be quite vague, and in these cases the
anchoring effect becomes even more pronounced. Once the initial proposal
for an asset has been received, the counterparty will adjust its rather
indeterminate estimate by taking the proposed value as a reference point,



without deviating too much from it. For example, suppose someone proposes
a price of 100,000 euros for an apartment that, in the estimation of the
proposer, is worth 75,000. The proposer believes that the possible buyer
particularly wants that good and is willing to pay up to 90,000 euros. If the
buyer does not have a definite idea of the value of the asset and is subject to
the anchoring effect, she will make her first counter-offer not deviating too
much from the value of 100,000 euros.

These strategic interactions also require a certain psychological sensitivity,
because the negotiator must be able to guess the potential availability of the
counterparty and must not start from an excessive overestimation, given the
risk of losing credibility and compromising the negotiation.

1.3 The value of normative standards

The three biases we have seen give us concrete examples of how in certain
cases we do not respect the normative standards of rationality required from
our reasoning.

Hence, what to do with the normative dimension of reasoning, given that we
happen to systematically deviate from it? In § 1.1 we saw, somewhat
abstractly, that we still need normative standards – otherwise we would not
be able to say that a choice, or a decision, or a strategy is adequate (or
inadequate), and we would not have a starting point to contest an argument
(or agree with it): these aspects are for-eign to the pure description of how
we actually reason.
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In addition to this, there is one thing (somewhat less abstract) that we can
learn from the three biases we have considered. Once we are told where the
reasoning error is, we recognize it as such. Suppose we are subjected to the
Nepalese war experiment, and we adjust the a priori probabilities based on
the information we are later given about how the war actually went. Then
suppose we are told what we did, and how a priori and a posteriori



probabilities work. At that point we understand that we were wrong, in the
same way as we understand that it is wrong to think that the probability of
“A 2 comes up” was 1, and not 1/6, just because after the roll, 2 is the
number that actually came up. Suppose we choose program A1 in the Asian
disease problem and then we are told that we should have chosen according
to the Theory of Expected Utility. We would recognize that the two
alternatives were actually equivalent. In other words, normative standards
are not simply rules that for some reason some discipline seeks to impose:
we ourselves recognize the value of normative standards (the rules of
probability calculus, for example) and admit that in some cases we make
mistakes.

This, obviously, is not just our impression: if the purpose of our decisions
and strategic choices is to pursue our interests, then we need criteria that
separate the decisions and choices suitable for that purpose from those that
are not.

But that means we need normative standards. If the ideal end of reasoning is
the attainment of truth, we need something that tells us what inferences and
logical operations must or can be performed for this purpose – that is, what
forms of reasoning ensure that we infer true conclusions from true premises,
or (highly) plausible conclusions from true premises. In other words, we
need the normativity of logic.

In any case, the fact remains that a normative theory of reasoning can give
us an illuminating perspective only if the standards it imposes do not
presuppose cognitive agents who are too idealized, as we observed in §1.1.
Following the experiments in decision and reasoning psychology, many
researchers in the normative disciplines we have listed have insisted on the
importance of incorporating empirical findings into decision, strategic
choice, and rational choice theories. In short, they stressed the need to
incorporate those results into idealized models of decisions and choices, and
to combine the need to provide normative standards with the need to take as
realistic a starting point as possible as regards the agents who make
decisions and adopt strategies. This has led to the birth of some disciplines
that have acquired more and more importance over time, for example:

• behavioral economics;



• behavioral decision theory;

• behavioral game theory.

Arguably, there are reasons why this trend has not extended to logic and
probability theory – we do not have “hybrid” disciplines between logic and
the psychology of reasoning, for example. Let us take a brief look at these
disciplines.
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Logic is concerned with patterns of reasoning that can lead us to true or at
least probably true conclusions. Contrary to the disciplines that deal with
choices, decisions, and strategies, logic is not meant to predict how an agent
will try to arrive at true conclusions – in other words, its task appears to be
purely normative. Consequently, even if the standards set by some logical
theories can be changed to define an ideal logical agent that is more
plausible, there has not been the same need to define a discipline that
integrates the normative dimension of logic with the results of the
psychology of reasoning. However, consider that disciplines such as Critical
Thinking and Argumentation Theory try to place logic at an intermediate
level, which preserves the normative perspective while at the same time
making sure that it is truly usable by real cognitive agents – or, in other
words, making standards closer to reality.

1.4 Conclusion

In this chapter we have introduced the distinction between the normative and
descriptive dimensions in the study of reasoning. As a consequence, there is
a distinction between the disciplines that focus on the first dimension
(normative disciplines) and those that focus on the second (descriptive
disciplines). We have seen how Critical Thinking fits into this distinction.
We have discussed the fact that we real cognitive agents do not always
comply with the normative standards of reasoning, and we asked what
justifies the normative approaches (§ 1.1). By exploring some cognitive
biases, we have seen that, in some contexts, we are systematically exposed



to reasoning errors, and why. We have discussed the relevance of descriptive
disciplines in this area, and referred to the theory of heuristics and biases, as
well as the theory of “thinking fast and slow” (§ 1.2). Finally, we have seen
why, although they do not describe how we reason, normative approaches
remain indispensable (§ 1.3).

2 · What is an argument?

In this chapter we define what an argument is and introduce the important
notion of argumentative structure (§ 2.2). We then distinguish between
simple and complex arguments (§ 2.2.1). This body of knowledge will allow
us to identify arguments – that is, to recognize which sequences of sentences
are arguments, and which are not. However, these notions do not tell us how
to evaluate an argument.

To do this, we will introduce the notion of a good argument (§ 2.3), and
exemplify some types of arguments and reasoning: deductively valid
arguments and deductive reasoning (§ 2.3.1), and their relationship to good
arguments (§ 2.3.2). Next, we will illustrate some forms of non-deductive
reasoning (§ 2.3.3) such as inductive reasoning, abductive reasoning, and
reasoning by analogy, and discuss an example involving inductive reasoning
proposed by the British logician and philosopher Bertrand Russell. We will
close the chapter by discussing the notion of the strength of an argument,
which applies to non-deductive reasoning, as distinguished from the
persuasive effectiveness of an argument (§ 2.3.4).

2.1 Introduction

If we think about it for a moment, we formulate arguments on countless
occasions in everyday life: when we have a chat at the bar, participate in a
discussion on social media, take a university exam, write a dissertation, and
so on. In fact, in daily life it happens to each of us to make assertions, that
is, to say how things are. If we are sincere in making an assertion, then we
believe that things are such as we say they are.

Precisely for this reason, we usually assume that others must agree with us in
this respect. If things are such as we say they are, others must also believe
that they are like this. However, especially in certain contexts, disagreement



can arise, that is, it may happen that one person believes that things are in a
certain way and another person believes that things are different. In these
cases, it is not enough to make an assertion to obtain consensus. It is also
necessary to say something in support of what is asserted.

If we want others to think as we do, that is, to believe that things are the way
we think they are, we can try to convince them that things are just like that.
Imagine, for example, that you want to convince someone that dolphins are
mammals, that the truth must always be told, that global warming is caused
by air pollution, that the Covid-19 epidemic will have disastrous
consequences for the world econ-
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omy, that if the U.K. had introduced the lockdown two weeks earlier the
number of deaths caused by the virus would have been much lower. There
are many ways to obtain the consent of others. It can be done by deception
or by force. However, the most rational way to do this is to formulate an
argument, i.e. to give people reasons why they should believe that what we
say is true, or that one should take a certain action, that something has
caused something else, that a certain event is likely to happen, that things
would have gone thus-and-so if a certain thing had happened, and so on.
Providing an argument for a certain sentence therefore means providing a
series of considerations that support that sentence. It could be claimed that
the ability to argue is a characteristic that sets us apart as human beings, a
capacity by which we try to persuade others to agree with what we think.

Although all of this is ultimately obvious, it is less obvious what an
argument is.

2.2 Arguments and argumentative structure

An argument is a sequence of sentences, called premises, which provide
reasons in support of another sentence, called conclusion. 1 The role of the
conclusion is to express something that we intend to support and on which
we believe others should agree. The role of the premises is to express



considerations intended to ensure that this agreement takes place, or to
induce others to accept that the conclusion is true on the basis of the
(supposed) truth of the premises and their rational connection with the
conclusion. In other words, arguing in support of a conclusion is equivalent
to providing a justification for the latter, that is, to set out the reasons we
have (or at least think we have) for believing that it is true, with the
expectation that that these reasons will be accepted by others.

However, it is not always easy to identify the premises and conclusions of an
argument. If we are lucky, we find words in verbal or written communication
that indicate that a certain sentence serves as a premise or as a conclusion,
and we can use these words to “signal” to other people what the premises
and conclusions of our argument are (or we think they are). Some of these
indicators are listed in Table 2.1.

However, we cannot rely only on these indicators to identify the premises
and conclusion of an argument, because often these words do not appear in
the argumentation. To identify premises and conclusion we must learn to
play a more abstract game: that of understanding which sentences in an
argument provide reasons for some other part of the argument, and which
sentence is supported, in the argument, by other sentences.

1. In some cases, an argument may include only one premise. In Chapter 4,
we will exemplify a circular argument that includes only one premise. In
general, however, an argument needs more than one premise to fulfil its
function – that is, to provide reasons for the conclusion.
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Table 2.1 Conclusion and premise indicators

Conclusion indicators

Premise indicators



So

Because

Hence

Since

Therefore

Assuming that

As a consequence

Given that

Thus

In fact

Consequently

As

For this reason

Why

It follows that

In that

etc.

etc.

The fact that a sentence actually provides reasons in support of another
sentence depends on the structure of the argument. Taking up a metaphor
proposed by Andrea Iacona,2 the argumentative structure can be conceived
as the skeleton that supports the sentences of which an argument is



composed, so that the premises provide reasons for the conclusion. Just as
the skeleton of the human body is not visible to the naked eye but can be
described by looking at the movements of the other parts of the body, in the
same way the argumentative structure can be described by observing how
the discourse is articulated. Using another metaphor, we could say that the
argumentative structure is the glue that connects the premises of an argument
to its conclusion.

It may not be trivial to identify the argumentative structure of an argument.

For example, the ideal way of presenting an argument follows a precise
order (in which the premises precede the conclusion) and includes all the
premises necessary to adequately support the conclusion, but in fact we do
not always argue like this.

It may happen that the conclusion is formulated before the premises, or that
some premises are not made explicit and remain hidden, or that the
conclusion is missing. Let us imagine that in the course of a discussion
someone says: Those banks that embrace the Amazon model remain
competitive in the market. Indeed, the Amazon model offers new purchase
and management online capabilities, and the banks offering those
capabilities remain competitive.

The discourse here opens with the conclusion of an argument, while the
following sentences provide the reasons that support the conclusion. The
argument can therefore be reformulated as follows:

2. In Andrea Iacona, L’argomentazione, Einaudi, Torino 20061, p. 31.
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Only banks that offer new online purchasing and management capabilities
will remain competitive on the market; the Amazon model offers new
purchase and management online capabilities; therefore, banks that embrace
the Amazon model will remain competitive.



This reformulation follows the ideal order in which the premises come
before the conclusion. Note that this makes it easier to see that the
conclusion follows from the premises.

Now consider the next argument:

The Amazon model provides new purchase and management online
capabilities and only banks offering this kind of service remain competitive.

In this case, the argument appears incomplete: the conclusion is missing.
Nonethe-less, the conclusion – namely that only banks adopting the Amazon
model will remain competitive on the market – is easily identifiable in the
light of the premises that provide reasons to support it. Let us examine
another example: Only those banks that offer new purchase and management
online services remain competitive in the market. Therefore, a bank which
embraces the Amazon model will be competitive.

Here a premise is missing, i.e. the premise according to which the Amazon
model provides new online purchase and management capabilities.

In this volume, we will usually present or discuss arguments in their
complete form. Each argument will include the conclusion, all the premises
necessary to support it, and premises will come before the conclusion. In
general, an argument in its complete form can be schematized as follows:

Premise 1

Premise 2

…

Premise n

Conclusion

From now on we will use this scheme throughout the volume, and we will
use “P1”

for “Premise 1” (and so for other premises) and “C” for “conclusion”.



Now, one might wonder why arguments are not always presented following
the ideal scheme outlined above, which makes them easier to understand.
There are several pragmatic reasons for this. For example, if we do not
explicitly state the conclusion of an easy argument, our interlocutors will be
induced to take the last step by themselves, and this will prompt their
attention and involvement in the discussion. However, if the argument
proves to be more complex for the interlocutor than we thought, this
advantage will be lost, because the interlocutor could be confused
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or unsure about the conclusion to be drawn. As for the inversion of the ideal
order between premises and conclusion, sometimes we want our interlocutor
to focus immediately on the conclusion, i.e. we want the “message” we
intend to support to get through immediately, and, to that purpose, we put
forward the conclusion before presenting the reasons that support it. This
inversion diverges from the rational argumentative order of our claims, but
this is a low price to pay if those we are addressing are well capable of
understanding the structure of the argument we are proposing. Finally,
sometimes we omit one or more premises not because they are not important
or even necessary, but because we believe that our interlocutors are already
assuming them as a part of their background beliefs or knowledge. The
clarification of such premises is therefore not necessary for the purpose of
communication, because our interlocutors will integrate the argument
themselves. However, we can be wrong and attribute to our interlocutors’
assumptions, knowledge or beliefs that they do not actually have. In this
case, the omission of one or more premises will make the argument weaker,
because the interlocutor may believe that the premise that needs to be added
is not true, and therefore should not be assumed.

Distinguishing the premises from the conclusion, and identifying the
argumentative structure that articulates their relationship, is very important
in order to recognize the point under discussion, what type of argument we
are confront-ed with, and to evaluate the validity of the argument. In fact, we



cannot evaluate whether an argument is a good one (we will see in § 2.3
what this means exactly) if we have not first correctly identified the premises
and the conclusion of the argument in question. In Chapter 4 we will also see
that identifying the structure of the argument is important from a dialectical
point of view too: it is a fundamental step in formulating good counter-
arguments and in carrying out a refutation.

2.2.1 Simple and complex arguments

In the examples considered so far, we have presented and discussed simple
arguments, i.e. arguments consisting of one or more premises which provide
reasons to support a conclusion. Arguments, however, can take on a more
complex structure, in which several simple arguments are linked together.
The most common types of complex arguments are (1) those in which the
conclusion of one argument (called

“subordinate”) is the premise of another argument (called “main argument”),
and (2) those in which two or more independent arguments provide reasons
for the same conclusion. In the latter case, different arguments are linked
together in order to make the conclusion more solid and convincing. Here it
is an example: All the service companies that have become one-stop shops
capable of responding to the specific needs of the customer are successful
today. In-
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deed, these companies aggregate their products alongside innovations made
available by third parties. Today, US bank services work as one-stop shops
and are therefore successful.

Here we are faced with a complex argument of the first kind, consisting of a
main argument and a subordinate one. The main argument can be
schematized as follows:

(P1) Service companies that have become one-stop shops are successful
today.



(P2) US bank services operate as one-stop shops.

(C) US bank services are successful today.

The subordinate argument provides reasons in support of premise P1 of the
main argument, and can be outlined as follows:

(P1) Service companies that have become one-stop shops, which aggregate
their products to the innovations made available by third parties, are able to
respond to specific customer needs.

(P2) Companies that respond to customer needs are successful.

(C) Service companies that have become one-stop shops are successful.

Here the subordinate argument serves to give reasons in support of a premise
of the main argument, which appears to be of particular importance to
uphold the conclusion. On closer inspection, in turn, the P1 of the
subordinate argument is itself a complex argument, which can be
reconstructed as follows:

(P1) Companies operating as one-stop shops aggregate their products with
innovations made available by third parties.

(P2) Companies that aggregate their products with innovations made
available by third parties meet the specific needs of the customer.

(C) Companies operating as one-stop shops meet the specific needs of the
customer.

Thus, in this example we actually have three linked arguments where the
premises of each of the first two provide support for one of the premises of
the next argument.

A complex argument of the second type is the following:

Online platforms make financial services more competitive by allowing
them to better respond to the clients and also offer a higher level of
transparency and comparability of financial products.



In this case, two independent arguments are used to support the same
conclusion.

The first one can be schematized as follows:
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(P1) Anything that makes it possible to meet the client’s specific needs
makes financial services more competitive.

(P2) The new online platforms make it possible to respond to the client’s
specific needs.

(C) The new online platforms make financial services more competitive.

The second argument is structured as follows:

(P1) A higher level of transparency and comparability between financial
products makes financial services more competitive.

(P2) The new online platforms guarantee a greater level of transparency and
comparability of financial products.

(C) The new online platforms make financial services more competitive.

In this case, the two arguments actually support the same conclusion, giving
different reasons in its favor. In general, complex arguments either
strengthen a premise that may be controversial, or strengthen the conclusion,
so as to more easily persuade the audience to accept it.

Note that complex arguments do not contradict our definition of an argument
as a sequence of sentences that provide reasons for another sentence. In
complex arguments of the second type, it is the case that some subsets of the
premises taken individually are already sufficient to provide reasons for the
conclusion. For example, saying that “Anything that makes it possible to



meet the client’s specific needs makes financial services more competitive”
and that “The new online platforms make it possible to respond to client’s
specific needs” is sufficient to give reasons to believe that “The new online
platforms make financial services more competitive”.

The same can be said of “A higher level of transparency and comparability
between financial products makes financial services more competitive” and
“The new online platforms guarantee a greater level of transparency and
comparability of financial products”.

In complex arguments of the first type, one or more sentences play a double
role: they are the conclusion of the subordinate argument, and a premise of
the main argument. But we still have sequences of sentences that provide
reasons for something else, and sentences that are supported by others. This
also makes it apparent that the game we are supposed to play when we are
called upon to identify the parts of a complex argument is, fundamentally,
the same as that we play for simple arguments. In both cases, we are to
establish what provides reasons to support what. In the case of complex
arguments, the game is just a little bit more complicated.
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2.3 Good arguments vs. bad arguments

So far, we have defined what an argument is, we have then examined its
constituent elements, and distinguished simple arguments from complex
arguments. All this provides us with a method for identifying an argument,
its parts, and how those parts fit together. However, it is not yet clear what
distinguishes a good argument from a bad one. In other words, under what
conditions do the premises of an argument provide good reasons to support
its conclusion? To understand this, we need to consider some additional
characteristics of arguments.

Let us go back to our daily experience for a moment. When we formulate an
argument, or somebody else proposes an argument to us, two distinct claims



are made: (1) that the premises are true, and that (2) they provide reasons to
support the truth of the conclusion.

This observation, however elementary, allows us to give an adequate
definition of “good argument”.

Definition of a good argument

An argument is a good one if and only if:

(1) All its premises are true.

(2) The premises provide reasons to support the conclusion.

In the event that at least one of the conditions (1) and (2) is not satisfied, we
are instead faced with a bad argument. To clarify this, we can consider a
famous example.

In 1926 the Romanian sculptor Constantin Brâncuși was invited to exhibit
some of his works at the Brummer Gallery in New York. Among the pieces
sent from Paris to New York was a sculpture titled Bird in space (Figure
2.1), now valued at over $ 26 million.

Upon arrival in New York, the crate containing the sculpture was inspected
by the customs officer, who found a smooth, tapered bronze object inside, an
object that looked to the officer like a kitchen utensil rather than a bird. In
accordance with the law of the state of New York, the officer therefore
applied the customs duty for bronze artifacts intended for sale, refusing to
qualify Bird in space as a work of art, which was instead free from taxation
according to the law. This enraged Brâncuși, whose recognized reputation as
an artist was questioned by an obscure customs officer. Brâncuși then
decided to resort to a lawyer and bring the matter before a court, which was
asked to determine whether Bird in space was actually a sculpture, and
therefore whether the customs duty was due or not. After a long and
interesting trial, the judges agreed with Brâncuși and stated that Bird in
space was indeed a sculpture. As a consequence, the court ordered the tax
paid to be reimbursed.



Regardless of the outcome of the trial, we are interested in two points here.
First, the lawyers of both sides proposed arguments in order to persuade the
judges to rec-
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ognize their claims. So, the success

Figure 2.1 Constantin Brâncuși,

of an argument was a key element

Bird in space, 1926

in an extremely practical issue: the

payment of a sum of money, or the

exemption from payment. Argu-

ments, therefore, can prove to be

crucial in very concrete aspects of

our life. Second, the arguments

presented by those lawyers have

characteristics that make them

very interesting – even if only one

of them was considered a good ar-

gument. Let us examine the ex-

change of reasons that took place

in courtroom more closely.



According to the customs of-

fice, Bird in space was not a sculp-

ture. In United States v. Olivotti,

a previous case decided in 1916,

the court had established that

an artifact is a sculpture only if

it is “the imitation of natural ob-

jects”. Bird in space, however, did

not faithfully mimic the shapes

of a bird. The figure was devoid

Source: Art Poskanzer

of feathers and wings, the body

appeared elongated and rounded, the

head and beak were reduced to an inclined oval surface. Nobody would have
said it was a bird. We were therefore not dealing with a sculpture but with an
artifact of common use, whose importation was not duty-free.

The main argument of the customs lawyer (CL) can be schematized as
follows: (P1) All sculptures imitate natural objects.

(P2)

Bird in space does not imitate a natural object.

(C)

Bird in space is not a sculpture.



Brâncuși’s lawyer argued instead that Bird in space was in fact a sculpture.
The Olivotti case had been decided ten years earlier and, thus, did not
constitute a relevant precedent. In that period of time, new artistic currents
had developed which aimed to represent abstract ideas and not to imitate
nature. In Bird in space the sculptor did not pay attention to the physical
characteristics of a bird but rather to the movement of the animal, its
dynamism in space. The definition adopted by
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the court in 1916 therefore had to be adapted to the evolution of
contemporary art, which certainly allowed one to qualify Bird in space as a
sculpture.

The main argument of Brâncuși’s lawyer (BL) can be schematized as
follows: (P1) All objects that imitate natural objects or represent abstract
ideas are sculptures.

(P2)

Bird in space represents an abstract idea.

(C)

Bird in space is a sculpture.

How should we evaluate these arguments? As we shall see in a moment,
both the premises of CL and the premises of BL provide reasons to support
their respective conclusions. So, both arguments satisfy condition (2) of the
definition of a good argument. But what about condition (1), which states
that the premises of a good argument are true? Which of the two arguments
meets this condition? We will give an indirect answer shortly. Before
moving on to this problem, let us focus our attention on condition (2).

If we look at the argument provided by CL, a relevant feature of P1 and P2
is that if these premises are true, then the conclusion must also be true. To
see this, thinking in terms of sets may be useful. If the set of sculptures is a



subset of things that imitate natural objects, then something that is outside
the second set must also be outside the first one. If we assume P1, and
assume that Bird in space does not imitate a natural object (P2), then we
must conclude that Bird in space is not a sculpture (C).

Premises P1 and P2 of the argument presented by BL have the same feature.
In set terms, if the set of what imitates natural objects or represents abstract
ideas is a subset of the sculptures, and Bird in space is in the first set, then it
must also be in the second. These features will help us understand the kind
of reasoning that goes under the name of deductive reasoning.

2.3.1 Deductive reasoning

The reasons that CL and BL provide to support their respective conclusions
are conclusive reasons. In other words, if the premises expressing these
reasons are true, then the conclusion must also be true. Arguments of this
sort are said deductively valid. On the contrary, an argument whose
conclusion may be false, even though its premises are true, is said invalid or
not deductively valid. For the sake of brevity, in this volume we will use the
expressions “deductive reasoning” and “deductive argument” to refer,
respectively, to deductively valid reasoning and arguments. Here it is a
definition of a deductively valid argument:

An argument is deductively valid if and only if: if all its premises are true,
then the conclusion cannot be false.
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Two alternative definitions, equivalent to the previous one, are: (1) An
argument is deductively valid if and only if: the conclusion necessarily
follows from the premises.

(2) An argument is deductively valid if and only if: there is no logically
possible scenario in which the premises are true and the conclusion is false.



These definitions give us an intuitive method to check whether an argument
is deductively valid or not. Let us consider CL once again. Is there a possible
scenario where P1 and P2 are true, but C is false? No, there is not, and the
reasoning in terms of sets proposed above helps us understand why. Instead,
if we can construct (think, imagine) a logically possible scenario in which
the premises of an argument are true but the conclusion is false, then the
argument is not deductively valid.

Two typical schemes of valid deductive arguments are as follows:3

Scheme 1

Scheme 2

All P are Q

All P are Q

c is not Q

c is P

c is not P

c is Q

These schemes include so-called “schematic letters”. “P” and “Q” stand for
predicates, “c” for a name – the name of an individual. In logic, the term
“individual” denotes what in most cases we would simply call “an object” or
“an entity”. Schematic letters are used because the validity of the two
schemes outlined above does not depend on which particular predicates and
names appear in the premises and in the conclusion.

The validity of the two arguments depends on the logical, formal relations
between the sentences serving as premises, on the one hand, and the
sentence serving as conclusion, on the other. An example is in order here.

Suppose I say, “All dolphins are mammals”. If something (e.g., a given
object c) does not have the property of being a mammal, it cannot have the



property of being a dolphin. That is, it cannot be the case that dolphins are
not mammals (scheme 1). Furthermore, if something has the property of
being a dolphin, it will necessarily also have the property of being a mammal
(scheme 2). Note that the possibility we are talking about does not depend on
the laws of nature, as when I say that it is not possible to reach the moon in
one leap. Instead, it is a logical possibility, which depends on the concepts
we use in speech and reasoning. That is, it is conceptually impossible for an
object to be a dolphin but not a mammal, if we assume that all 3. These
schemes will be examined in more detail in the fifth chapter of this volume.
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dolphins are mammals. This explains why valid deductive arguments
provide conclusive, indubitable, incontrovertible reasons to support the
conclusion. It is said in this sense that, in the case of valid deductive
arguments, the premises imply the conclusion, and that it would be
inconsistent, given those premises, to deny that conclusion. In general terms,
if C necessarily follows from P1, .. , P n, then we assert a contradiction if we
jointly assert P1, .. , P n and the negation of C.

Let us now return to the Brâncuși case. Which of the arguments provided,
respectively, by the customs lawyer (CL) and Brâncuși’s lawyer (BL)
satisfies condition (1) in the definition of a good argument? That is, which of
the two arguments includes true premises only? Neither? Both? CL? BL? We
will answer this question indirectly, i.e. without committing ourselves to
either CL or BL, but in doing so we will begin to train our reasoning skills.

Both CL and BL are deductively valid: for both, if all their premises are true,
then the conclusion must also be true. Let us assume that both arguments
satisfy condition (1). This means that the conclusions of CL and BL must be
true. But the conclusion of CL is the negation of the conclusion of BL, and a
sentence and its negation cannot both be true. So, it is not possible for both
CL and BL to satisfy condition (1). Thus, they cannot both be good
arguments, even though they are deductively valid.



So what? Of course, it might be the case that both premises of CL are true, in
the sense that there are logically possible scenarios in which they are so. In
those scenarios, the conclusion of CL is also true. The same can be said for
BL (remember, however, that no scenario that makes premises of CL true
makes premises of BL true, and vice versa). So, there are logically possible
scenarios in which CL is a good argument (and BL is not), and scenarios in
which BL is a good argument (and CL is not). There are also scenarios in
which neither is a good argument – for example, scenarios in which P1 of
both arguments is false.

All that being said, which one of the two is a good argument? According to
the judges who decided the Brâncuși case, BL was a good argument and CL
was not.

Indeed, on the basis of the evidence gathered during the trial, the judges
came to the conclusion that all the premises of BL were true, whereas one of
premises of CL

was false. This allows us to anticipate a point that we will discuss in more
detail in Chapter 4. If we look at the definition of a good argument, there is
an important difference between the first condition (truth of the premises)
and the second condition (the premises provide reasons for the conclusion).
In order to see whether condition (1) is fulfilled we have to see how things
actually are. This can be a rather complicated matter, and perhaps, in some
cases, a matter that we cannot ascertain at all. Even in those cases in which
the truth-value of the premises can be found, the individual cognitive agent
may not be in a position to ascertain how things actually are. That is, they
may not have sufficient elements to believe that all the premises of an
argument they are presented with are true, or to believe that at least some of
them are false. Between us and the way things are, in short, there is a filter:
that of our reasonable and justified beliefs about the reality around us.
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The filter we are talking about is epistemic in nature.4 It depends on what
we believe, at least after adequate exploration of the world, and on how
much we know. In short, truth is not transparent to us. We need to think and
ascertain the truth, and in doing so we may get it wrong, and end up
believing something false, or not believing something true. This explains
why, in certain situations, we may not be able to tell, at least without proper
investigation, whether the premises of an argument are true or false.

To determine whether condition (2) is satisfied, on the contrary, we do not
need to look at how the world is. Giving reasons does not depend on how
things are; it depends on the relations between the sentences that serve as
premises and the sentence that serves as a conclusion. That is why we could
say that CL and BL

are deductively valid. What is required here is to understand that if the
premises are true, then the conclusion must be true. To see this, we do not
need to know or believe that the premises are true.

However, the truth of the premises is important in our reasoning, to such an
extent that we are often busy trying to ascertain or disprove it. The following
definition gives us a technical notion, that of a sound argument:

Definition of a sound argument

An argument is sound if and only if:

(1) all its premises are true;

(2) it is deductively valid.

If (2) is satisfied, but (1) is not, then we have an argument that is deductively
valid but not sound. From the definition of a deductively valid argument, and
from the definition just given, we have that the conclusion of a sound
argument is true.

In the rest of this volume, we will use the expression “sound argument” in
this technical sense, thus departing from common usage. When we speak of
“sound argument”, therefore, we shall be speaking of deductively valid
arguments having true premises. What we are now going to look at will



make it clear that, in this technical sense, “sound argument” is not
synonymous with “good argument”.

2.3.2 Good arguments and deductively valid arguments

It is now worth focusing on the relationship between deductively valid
arguments and good arguments. Can there be deductively valid arguments
that are bad arguments? The answer is affirmative. We saw earlier that at
least one of AD and BL is not a good argument, although both are
deductively valid. More generally, it is easy 4. The term “espistemic” comes
from the ancient Greek word episteme (knowledge) and indicates all that has
to do with knowledge. Therefore, Epistemology is that branch of philosophy
whose aim is to define and clarify our concept of knowledge.
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to find cases of arguments that are deductively valid and yet have at least
one false premise – and are therefore not good. Consider the following
example: (P1) All men live forever.

(P2) Socrates is a man.

(C) Socrates will live forever.

There is no logically possible scenario in which P1 and P2 are both true and
C is not.

Thus, the argument above is deductively valid. But P1 is false, and so the
argument is not a good argument. This can happen because validity is a
characteristic that concerns the form of deductive arguments, i.e. the relation
between premises and conclusion, regardless of whether they are true (or
false). In other words, an argument is valid if it preserves the truth. If the
premises are true, then the conclusion cannot but be true. But validity in
itself does not tell us whether the premises are true or false.

What if an argument is deductively valid and has only true premises? Is it
necessarily a good argument? To put it differently, can there be sound



arguments that are not good arguments?

This time the answer is more subtle. In general, sound arguments are good
arguments. There is, however, one type of deductively valid argument that
cannot be good, even when it has true premises. These are circular
arguments, which we will consider in Chapter 4, where we will see why they
cannot be good arguments.

Circular arguments, implicitly or explicitly, contain the conclusion among
their premises. So, although they are deductively valid (if their premises are
true, then the conclusion is also true), and although their premises may be
true (and so they are sound), circular arguments do not provide reasons for
their conclusion because they presuppose what they are supposed to prove.
Apart from circular arguments, however, sound arguments are good
arguments.

We have seen an example of a deductively valid argument with at least one
false premise. In the light of the definition of a good argument, this is a bad
argument.

There are also cases in which an argument is bad even if it has true premises.
This is what happens to arguments in which the premises do not provide
reasons for the conclusion. Here it is an example.

In the course of the Brâncuși trial, the court called experts in the field of art
to testify, including the sculptor Robert Aitken. Aitken acknowledged that
during the last two decades the way of conceiving art had changed. Evidence
of that was given by the fact that many sculptures, contrary to the 19th
century tradition, did not imitate natural objects but rather represented
abstract ideas. However, Aitken continued, Bird in space did not please him
and was therefore not a sculpture. Let us try to schematize Aitken’s
argument:

(P1) All sculptures imitate a natural object or represent abstract ideas.

(P2)

I don’t like Bird in space.



(C)

Bird in space is not a sculpture.
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Now, the premises of this argument are true, but the conclusion does not
follow from the premises, since the premises do not give any support to the
conclusion. As Aitken himself implied, there is no relationship between the
fact that I like something and the fact that that something is a sculpture.

2.3.3 Kinds of non-deductive reasoning

At this point, we can answer a question that should come quite naturally: can
we have good arguments that are not deductively valid? The answer is
affirmative.

There are many kinds of reasoning that we use in various important contexts
– including, for example, legal disputes and scientific research – in which we
use arguments that start out from true premises, provide reasons to support
the conclusion, and yet are not deductively valid.

During the Brâncuși trial, the sculptor Jacob Epstein was called to testify, as
an expert in the field, as to whether Bird in space was a sculpture. After
reviewing his credentials as an artist, the judges asked Epstein whether he
knew Brâncuși and considered him to be a sculptor in his own right. Epstein
said that he had known the Romanian artist and his works for many years,
works that were appreciated ev-erywhere for their originality and aesthetic
quality. The judges then asked Epstein if he considered Bird in space a work
of art on a par with the previous sculptures made by Brâncuși. Epstein
answered in the affirmative: that work had clear artistic qualities; moreover,
if Brâncuși claimed that Bird in space was a sculpture, there was no reason
to believe otherwise, given the artist’s reputation. We can reconstruct the last
passage of Epstein’s argument as follows:



(P1) Brâncuși is a famous sculptor because he created many highly regarded
sculptures in the past.

(P2) Brâncuși claims that Bird in space is a sculpture.

(C)

Bird in space is a sculpture.

Is this argument good or bad? Its premises are certainly true, but they do not
provide conclusive reasons in favor of the conclusion being true. Verifying
the latter point – namely, that the argument in question is deductively invalid
– is easy. Consider the following logically possible scenario: Brâncuși, a
well-known sculptor, wants to create a designer juicer to sell on the market;
dissatisfied with the result, he then claims that it is a sculpture, called Bird in
Space, exploiting his fame to deceive a possible buyer. In this scenario, P1
and P2 are true, but C is not.

Based on this, should we conclude that Epstein’s argument is not a good
one? It depends. The argument seems to assume that normally (or by
default) a well-known artist does not deceive about the status of what he
creates. Therefore, we can assume he is telling the truth about it, unless we
have specific reasons to think otherwise.
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The principle is quite reasonable. A famous artist would not risk his or her
reputation by passing off, say, a poorly made juicer as a sculpture. What if
the rest of the art community refused to bite and did not discern anything
artistic about the object?

If we consider the principle in question compelling enough, then Epstein’s
argument is a good one. To say that we consider the principle “compelling
enough”

is to say that we do not need a principle that makes the falsity of C even
more improbable or implausible in the presence of the truth of P1 and P2. If



the default principle presupposed by Epstein’s argument is compelling
enough for us, then P1

and P2 provide reasons to support C.

There are several types of non-deductive reasoning that can produce good
arguments. The most common are induction (inductive reasoning), abduction
(abductive reasoning), and analogy (reasoning by analogy). They perform
different functions in human argumentation and reasoning, as we will see in
the next chapters. What they have in common is the following feature: all
good arguments that are non-deductive in form provide non-conclusive
reasons for believing that the conclusion is true. The truth of their premises
somehow makes it more plausible, or more likely, that the conclusion is true
rather than false, but nothing more, because in this kind of reasoning the
conclusion does not necessarily follow from the premises. In short, inductive
reasoning, abductive reasoning, and reasoning by analogy amount to
argumentation schemes that are non-deductively valid, but this does not
imply that they are not good arguments.

There are criteria other than validity for evaluating how well a non-
deductive argument works (how good it is). In general, a non-deductive
argument is strong if its premises provide a high degree of confidence in its
conclusion. Otherwise, an argument is weak. In other words, a strong
argument will, under the assumption that all its premises are true, make it
very likely, or plausible, or reliable that the conclusion is true. A weak
argument will fail, even under that assumption, to increase the probability of
the conclusion being true. Even in the face of a strong argument, however,
we cannot rule out the possibility that the conclusion is false.

An example of this is provided by the story of the inductivist turkey
proposed by the British logician and philosopher Bertrand Russell (1872-
1970). This famous story clarifies why inductive reasoning, no matter how
well supported it is by its premises, can always lead us to a false conclusion.
A turkey living on a farm decided one day to elaborate a scientific view of
the world based only on observable facts.

The turkey observed that every day, at 9 am, food was brought to him, and
this happened whether it rained or it was nice weather, in summer and in



winter, on weekdays and on holidays. On the basis of the observations
accumulated over time, the turkey came to the conclusion that at 9 o’clock
every morning he will be given food. A conclusion that proved to be
indisputably false on Christmas Eve, when, instead of being fed, the turkey
was slaughtered. The turkey had used a strong non-deductive argument
concluding that he would be given food every morning at 9 am, but,
nevertheless, his conclusion was false. It goes without saying, however,
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that non-deductive arguments are very important in everyday life as well as
in the development of knowledge. Yet, they should be handled with caution,
without expecting from them the certainties they cannot give us.

One might wonder why we do not always make use of deductively valid
arguments, given that they warrant that the conclusion is true, and not simply
that it is probably true. As we shall see, it is not always possible to support a
given conclusion by means of deductive reasoning. As a consequence, we
must often make do with non-deductive reasoning. Moreover, deductive
reasoning, as opposed to non-deductive reasoning, generally does not
expand our knowledge, in the sense that its conclusions do not increase the
information contained in the premises, except in a trivial or irrelevant way.
In other words, deductively valid inferences are not ampliative. This is
because, in a deductively valid inference, the information provided by the
conclusion is, at least implicitly, already included in the premises. Let us try
to illustrate this with an example. Consider the following inference: (P1) All
men are mortal.

(P2) Socrates is a man.

(C) Socrates is mortal.

The inference from (P1) and (P2), taken together, to (C) is deductively valid.
The information provided by the conclusion, however, adds nothing to what
is already said by the premises.



The fact that deductively valid inferences are not ampliative makes us
understand why we routinely need other kinds of reasoning when we have to
explain surprising phenomena. For in this case, we want to get an
information that is not already provided by the evidence available to us,
which serves as a premise for our explanations. For this reason, when we
need to provide explanations of phenomena for which we do not know the
reasons or causes, we resort to forms of reasoning that are not deductively
valid.

For example, inductive inferences, although fallible, expand our knowledge:
(P1) All ravens that have been seen so far are black.

(C) The next raven we see will be black.

This is an example of induction by enumeration. Two considerations
immediately jump out from this example. An inference of this type is
ampliative: the information provided by the conclusion is not contained in
the premises. For example, suppose that r100,000 is the next raven we see,
and that r1-r99,999 are the ones we have observed so far. The information
that r100,000 is black is, of course, not contained in the information that r1-
r99,999 are black.

Second, this inference is fallible. We might discover in the next observation
that r100,000 is white, despite the fact that the inductive argument above is
good.
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Another feature of inductive inferences is that they are non-monotonic, i.e.,
adding new premises to an argument can lead us to reject the conclusion of
the argument. For example, consider the following inference:

(P1) r –r

are black.

1



9,999,999

(C) All ravens are black.

Suppose now, for the sake of the argument, that raven r10,000,000 is not
black. By adding to (P1) the premise (P2) “r10,000,000 is not black” we are
no longer in the position to conclude that “All ravens are black”, despite the
fact that, prior to the addition, the inductive argument was good. Conversely,
deductive reasoning is not ampliative, and therefore cannot replace induction
or abduction in cases where we want our conclusions to give us information
that is not already present or implicit in the premises. The point is precisely
this: on the one hand, the inability to expand our information is the price we
must pay for being sure that the conclusion is true (if the premises are also
true), and on the other hand, fallibility is the price we must pay for
expanding our knowledge.

Since we want our explanations of facts to be ampliative, it follows that
fallibility is the rule in each of our attempts to explain facts. Is it worth
rejecting induction and abduction because they may lead us to false
conclusions, or because they may force us to abandon the conclusions we
had previously drawn? If that is the case, we should also reject our activity
of explaining facts and, with it, a huge portion of scientific inquiry. In other
words, we cannot give up using inductions and abductions. They are
extremely useful from the epistemic point of view.

2.3.4 Strength and weakness of non-deductive reasoning

We have seen that non-deductive arguments, i.e. those arguments that do not
express deductive reasoning, can be qualified as “strong” or “weak”: they
are strong when providing a high degree of confidence in their conclusion,
week when this is not the case. This informal characterization is in need of
closer scrutiny.

First, the informal characterization in question speaks of “degrees of
confidence”.

The greater the confidence provided, the stronger the argument. So, on this
account the strength or weakness of an argument is a matter of degrees on a



continuous scale.

This makes this distinction very different from that between deductively
valid and invalid arguments. According to the latter distinction, an argument
is either valid or it is not: it cannot be more or less valid. On the other hand,
cases of non-deductive reasoning can be stronger or weaker. There is no
sharp cut-off point here: some arguments are extremely strong, some are
extremely weak, and some are in a borderline situation.

Second, the characterization in question makes reference to a “high degree
of confidence”. If we want to somehow measure the degrees of confidence,
which
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values make a degree “high”, and which do not? The answer here is rather
complex. To cut a long story short, we can say that it is not possible to
establish a priori and in the abstract which degrees of confidence are high
enough to generate arguments that are sufficiently strong. The threshold we
choose depends on a number of pragmatic and contextual elements, which
include the type of activity in which our arguments are involved. For
example, a default principle such as the one presupposed by Epstein’s
argument may be quite stringent in the context of a legal dispute, where we
consider relationships between facts that rarely have precise measurements
(there are no statistics about how many artists lie about their creations).

In a scientific context, we may need more stringent criteria, at least
quantitatively

– that is, we may need arguments that assume precise and statistically very
incisive quantitative relationships between two phenomena or properties.

That said, we should not confuse the strength of an argument with its
effectiveness. As just noted, an argument is strong when its premises warrant
the conclusion to a high degree. On the other hand, an argument is effective



when it is able to convince other people to believe in the conclusion. On
many occasions it happens that bad arguments prove rhetorically effective,
and good arguments prove rhetorically ineffective. Put differently, providing
a good argument is not always enough to convince other people to believe in
a certain conclusion. This is because people’s opinions are often affected by
prejudices, false beliefs, errors in reasoning, and emotional states. All this
leads human beings to accept a claim even though it turns out to be
unacceptable or implausible when subjected to the scrutiny of a good
argument.

2.4 Conclusion

Let us recapitulate. We have seen that a good argument is endowed with two
characteristics: the premises are true, and they provide reasons to support the
truth of the conclusion. An argument is bad in the case that it is not endowed
with one or both of these characteristics.

With respect to their argumentative structure – that is, the relationship
between premises and conclusion – arguments can be distinguished into two
families: those that express deductive reasoning and those that express non-
deductive reasoning. Deductive arguments are used to provide conclusive
reasons because they warrant that if the premises are true, then the
conclusion cannot be false. If this condition is not met, an argument is said
to be deductively invalid. Nevertheless, nothing precludes the premises of a
valid argument from being false, as well as the premises of an invalid
argument from being true. The validity of an argument is a purely formal
characteristic of it, which is completely independent of the truth of the
premises. The non-deductive reasoning instead does not give conclusive
reasons for the conclusion, but reasons to consider it probable, plausible,
likely, reli-
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able. For them it holds that if the premises are true, we have reasons to
believe that the conclusion is not false, although this possibility can never be
completely excluded. In this sense we say that a non-deductive argument is



(more or less) strong or (more or less) weak depending on the degree with
which it warrants the conclusion.

Thus, a non-deductive argument will be good if its premises are true and if it
provides strong reasons to support the conclusion.

Finally, the strength of an argument should not be confused with its
effectiveness, that is, its ability to convince other people to believe in the
conclusion. It frequently occurs that bad arguments prove to be very
effective in everyday life and in public debate because of the prejudices,
false beliefs, or cognitive biases of their recipients.

These observations allow us to highlight once again the normative function
of the study of argumentation. This study makes it possible to identify
criteria for distinguishing good from bad argumentation. This is very useful
when we are called upon to evaluate other people’s arguments and to detect
errors in reasoning, particularly in contexts where bad arguments are more
effective than good ones.

3 · Rational discussion

and the pyramid of disagreement



In the previous chapter we learned to identify an argument. In this chapter,
we will deal with the ways in which disagreement can be expressed with
respect to an issue.

There are rational and non-rational ways of expressing disagreement. A
disagreement based on reasons, and therefore guided by a rational attitude,
allows a better understanding and refutation of others’ view. Knowing the
rules governing a disagreement based on reasons is therefore very important.
We will discuss some properties that an exchange of reasons must have in
order for a discussion to be rational (§ 3.2), examining the so-called “rules of
rational discussion” proposed by the scholars of argumentation theory Frans
H. van Eemeren and Rob Grootendorst.

We will then move on to consider different ways of expressing a
disagreement within a discussion, beginning from the least rational (harmful
or useless for the understanding of the point at issue) to the most rational (§
3.3). The ability to evaluate an argument – that is, to understand if it is good
or not – is fundamental. Without it, we would accept (or refuse to accept) an
argument in a completely arbitrary way.

Furthermore, without such a skill we could not rationally reply to an
argument.

3.1 Introduction

Usually, in a rational discussion, the evaluation of an argument is aimed at
the elaboration of a reply. In other words: we try to judge an argument
because we want to see if some of its features make it bad, and therefore
susceptible to criticism. Obviously, the situations in which a subject
elaborates a reply to an argument are those in which she disagrees with the
proposed argument. Precisely for this reason, in the second part of this
chapter we will focus on the possible ways in which disagreement is
expressed. There are two major types of ways by which disagreement can be
expressed: rational – which help us to better understand whether the
premises of the argument really give reasons to support the conclusion, and
whether the premises are true – and irrational, which do not help us to
understand the other’s claim or the reasons for it. In talking about irrational



ways of replying to an argument, most texts introduce fallacies – i.e.
erroneous schemes of reasoning – and systematically discuss different types
of them. In this volume, we will proceed differently. We will look at some
fallacies in § 3.3, and others in the next chapters of the volume. We have
chosen not to write a chapter devoted to fallacies, detached from the rest of
the volume, but to discuss spe-
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cific fallacies relating to the types of reasoning we will address throughout
the chapters of this book. Furthermore, we will not present the taxonomy of
fallacies that was established by Aristotle and, later, by medieval and
modern logicians.

Instead, in this chapter, we will discuss the so-called pyramid of
disagreement proposed by Paul Graham, who divides ways of reacting to
disagreement into six types: four clearly irrational, and two more rational, of
which only one, however, is a fully rational reply to an argument.

3.2 Rational discussion

A discussion is a verbal or written interaction between two or more subjects.
More precisely, when a discussion arises, someone puts forward a claim and
someone else reacts by expressing agreement or disagreement with her. If
the disagreement is supported by an argument, we have some form of reply
to the original argument.

We will focus on the latter aspect especially in § 3.4, but it also plays a role
in what we will say in the next few paragraphs.

There are various reasons why we advance an argument or reply to it. For
example, we can do this because we want to persuade an audience or
interlocutor. In this case, it is not the goodness of the argument that matters,
but its effectiveness –

its success in persuading our interlocutors. Or, we can propose an argument
or reply to it because we want to obtain an adequate understanding of the



claim that is a source of disagreement, and we want to inquire into the
rational link between the premises and the conclusion that expresses the
claim. In this case, what matters is not persuasion, but the goodness of the
argument, as we will see shortly. Obviously, the two aims are compatible: we
can discuss an argument aiming to adequately understand the point at issue,
and at the same time persuade our audience, including those who initially
oppose our position. In that case, we aim at something that is not mere
persuasion but rational agreement. However, it is also possible that
persuasion and goodness of an argument do not go together. As we saw in
Chapter 2, an argument can be persuasive even if it is not good, and
conversely, a good argument can be very unconvincing.

In this chapter, and more generally in this volume, we focus on what
distinguishes good (counter-)arguments, while we do not discuss the
persuasive aspects of communication. This is for two reasons. First, only an
adequate understanding of what the discussion is about can help us take a
well-founded position on what is being discussed. This is particularly
important in public debates, where the discussion is about important
individual or collective choices, but it is also relevant in other cases. In
general, each of us has a pragmatic interest in understanding certain topics,
because a good understanding is a prerequisite for making rational decisions.
Second, we are interested in knowing truth, and in distinguishing it from
falsehood. This interest can be purely theoretical, or once again it can be for
prag-
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matic reasons: knowing whether something is true or not can be relevant to
our decisions.

In short, we are interested in those discussions that can give us a better
understanding of the point at issue and of the reasons in favor of its truth.
This is important given that most of our cognitive and intellectual activities



are (or presuppose) truth-seeking activities (think about scientific research,
for example).

For simplicity we will assume that subjects, whether rational or not, are
sincere in the course of a discussion – that is: a subject only asserts
something if she believes what she is asserting.

3.2.1 The rules of rational discussion

To be rational, a discussion must respect a certain number of features – in
general, it must satisfy some requirements to ensure that it improves our
understanding of the point at issue. These features are commonly referred to
as “rules of rational discussion”. Different argumentation theorists propose
different sets of rules. Here we will focus our attention on some of the rules
proposed by van Eemeren and Grootendorst,1 because they are particularly
relevant to our purposes.

1. The participants in a discussion must not prevent others from putting
forward a claim or raising objections. According to this rule, therefore, all
people who participate in a discussion have the right both to put forward a
standpoint and to object to the standpoint of the other participants.

2. If someone attacks someone else’s claim then their attack must be directed
against that claim. In a rational discussion, one should attack the views
proposed by another participant, not the person proposing them.
Furthermore, it is necessary to specifically attack the position of the other
participant and not a different position that the other participant has never
advanced and that is falsely attributed to her.

3. Whoever puts forward a claim should defend it if others request this.
According to this rule, if the other participants express doubts about our
position, we are required to provide some reasons in support of it. There are,
however, restric-tions on this rule. For example, I need not answer an
objection if I have already successfully answered that objection. A second
case in which this rule does not apply is when the objector does not respect
the rules of rational discussion, for example violating the first two rules.



1. Frans H. van Eemeren, Rob Grootendorst, A Systematic Theory of
Argumentation. The Pragma-dialectical Approach, Cambridge University
Press, Cambridge 2004. See also Frans H. van Eemeren, Rob Grootendorst,
Argumentation, Communication, and Fal acies, Routledge, London and New
York 2016 (first ed. 1992). Van Eemeren and Grootendorst propose 10 rules
in their work.

We will discuss only 7, following an order different from that followed by
these scholars.
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4. You can defend your own claim only by putting forward an argument in
favor of it. As we said in § 2.1, in rational discussions, the only way to
defend one’s opinion and to convince others is to put forward an argument in
favor of that opinion. No other forms of defense are permitted.

5. The premise of an argument should not be presented as a position already
accepted by all, nor should one deny a premise that has already been
accepted during the discussion. This rule prescribes two things: a) not only
does everyone have the right to object to a claim, but everyone also has the
right to call into question one or more premises of the argument that other
participants put forward in defense of their claim; b) if, however, someone
has already defended her claim with an argument, and that defense has been
accepted by the other participants, then the other participants can no longer
question that claim when it is used as a premise for another argument.

6. A claim can be considered successfully defended only if valid or
sufficiently strong arguments have been used in its favor. Therefore, if an
opinion has been defended by invalid or weak arguments, the other
participants always have the right not to accept it.

7. If a claim has been successfully defended, then others must withdraw their
doubts regarding that claim. If the defense of a claim has not been
successful, then whoever has advanced it must withdraw it. Therefore: a) if a
claim has been advanced by means of sufficiently good arguments, and if the



attacks aimed at the premises of those arguments have not been successful,
then the other participants must accept that claim; b) conversely, if the
objections to a claim have been successful, then whoever advanced that
claim should drop it.

These rules are normative and not descriptive: they tell us how to conduct a
discussion or exchange of views, not how we actually take part in the activity
of discussing a claim.

Our daily experience certainly gives us frequent examples of these rules
being violated. In particular, people tend to be very attached to their opinions
and to identify with them. This has two consequences: on the one hand,
people often find it difficult to drop their position even in the face of a
considerable number of reasons to the contrary – therefore they find it
difficult to follow rule 7. Even when they do not successfully defend their
position, they do not withdraw it because they consider it part of their
identity.2 Second, people often understand an attack on their opinion as an
attack on their person, even when it is not (that is, even when rule 2 is not
violated). However, if the criticism is directed at the defended claim, and
therefore respects rule 2, it is incorrect to react as if it were a personal
offense. This favors subsequent violations of some of the seven rules
(perhaps in particular of rule 2) by those who fail to see the objection as a
reply to their argument. To avoid this, it is import-2. This phenomenon has
recently been highlighted by Michael P. Lynch, Know-It-All Society: Truth
and Arrogance in Political Culture, Liveright Pub Corp, New York and
London 2019.
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ant to be able to overcome the seemingly natural or at least frequent
tendency to identify with one’s own opinions, be they political, religious,
football or other. The same error is often committed by those who attack the
opinions of others: they often do not distinguish the position that the other
participants are defending from the persons who defend them and tend to



identify the two. This often results in the violation of the first two rules:
instead of showing that the interlocutor’s opinion is wrong by means of
rational arguments, we end up questioning his person. This causes us to stray
beyond the perimeter of rational discussion. As we will see in the next
section, this exit leads to a stalemate, in which everyone stands on their own
position and no progress is made towards resolving the dispute. Furthermore,
this fuels the conflict and thus banishes the search for shared views.

3.3 Ways of reacting to disagreement

In the context of a rational discussion, one replies to an argument (as well as
to a claim) when one disagrees with it. There are many ways of expressing
disagreement, and as will be clear from the examples we will discuss here,
not all of them are rational – that is, not all of them abide by the rules we
have listed above. This topic and its implications are discussed in a famous
article by the computer scien-tist Paul Graham. Shortly after the mid-
noughties, Graham was the first to observe how blog and forum users
actually conduct an online discussion, and especially how they react to a
claim or argument proposed by one of the participants in the discussion. In
How to Disagree, 3 Paul Graham distinguishes seven forms or levels of
disagreement within a conversation, which can be ordered in a pyramid that
goes from the least rational ways of reacting, in the lower levels, to the most
rational ones, in the highest. For the sake of simplicity, we will consider only
six levels here. According to our characterization of the rationality of a reply,
this means that the reactions listed in the lower levels do not make any
contribution to the understanding of the claim initially proposed or of the
reasons in its favor. However, this contribution increases as one gets to the
next levels, until one reaches the top level, i.e. the best possible contribution
to the discussion, and therefore the most rational way of reacting. Let us
analyze the possible ways of expressing disagreement using an example.
Suppose a social contact of ours writes on her Facebook wall: Banning
same-sex marriage is unacceptable because it constitutes a form of
discrimination.

Before considering the possible reactions to this statement, it should be
noted that not only does our contact’s post support a claim (“Prohibiting
same-sex marriage is 3. http://www.paulgraham.com/disagree.html.



48

Part I Arguments and rationality

unacceptable”), but also advances a reason for this (“Prohibiting same-sex
marriage constitutes a form of discrimination”). For the argument to work, it
is necessary to add a premise that seems implicit in the context of the post:
“Any form of discrimination is unacceptable”. Note that our social contact
had a good reason for omitting this last premise: in any constitutional state
(as we believe ours is), it is a common belief that any discrimination is
unacceptable, and thus this premise can be presupposed.

Let us now turn to the possible ways of reacting to the argument – more
precisely, to those listed in the pyramid of disagreement. Suppose a
comment on the post reads: “You’re a pervert!”, And another: “You
homosexuals should be locked up”. This is the most irrational mode of
reaction, represented by level 0 (the lowest) in Figure 3.1, and consists of
insulting one’s interlocutors or threatening them in some cases. This
modality clearly contravenes some of the seven rules that we have seen in §
3.2. It is obvious that it violates rule 2, but on closer inspection it al-so
violates rule 1, because the insult has the effect of discouraging the other
interlocutors from expressing their opinion, if not intimidating them.
Furthermore, this highly irrational mode of reaction prevents the conditions
under which rules 3 to 7

can be satisfied, since it does not permit a rational discussion of the claim
the social contact has proposed. More generally, the insult is the most
irrational way of reacting because it contributes least to the understanding of
the claim initially advanced and of the reasons that support it.

Figure 3.1 The pyramid of disagreement by Paul Graham

Level 5 Refutation

Refuta-

tion

Arguing for



Level 4 Arguing for the opposite

RATIONALITY

the opposite claim

Level 3 Contradicting

Contradicting, false dicotomy

Level 2 On the tone

Attack on the tone, strawman

Level 1 Ad hominem

Personal attacks

Level 0 Insult

Insults, threats

Source: Elaboration from P. Graham, How to Disagree, 2008,
http://www.paulgraham.com/disagree.html.
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In the traditional classification of the errors of reasoning (fallacies), when a
standpoint is answered with threats, it is said that an argumentum ad
baculum (literally “argument of the stick”) is used: to convince others,
instead of proposing an argument, one threatens them.

Now suppose that another comment reads: “You are a member of the gay
lob-by”. This is an example of reaction of level 1: the personal attack, also
known as argumentum ad hominem (lit. “argument at the person”). This kind
of reaction targets the interlocutor by insinuating that they are supporting



their claim not for the sake of truth but because they only wish to defend
personal or group interests. Implicitly, this suggests that the proponent of the
claim does not have the credibility or the authority to do so – without saying
anything about the claim. It is clear why this reaction is also very low in the
pyramid: again, by reacting in this way, the contact’s claim is not even
considered, and therefore no contribution is made to the understanding of
this claim or of the reasons that support it. Note that many forms of personal
attacks (such as the one in our example) are offensive to those who put
forward the initial claim, just like the insults, albeit in a more subtle way.
They actually constitute a form of verbal violence, whose effect is to
dissuade others from participating in the discussion.

It should be noted that objections grounded on the inconsistency between the
argument and the behavior of those who support it also fall into this level.
Suppose a smoker claims that smoking is bad and that one of his
interlocutors says: “How can you claim that smoking is bad when you are a
smoker?”. Now, this reply is not offensive, and may have a minimal rational
basis: if the person proposing the argument behaves as if the conclusion
were false, this leads us to suspect that the argument is not good or that the
proposer is not sincere and, for some reason, is propagat-ing falsehoods.
However, what really matters in a rational discussion is the consideration of
the proposed argument: the robustness (and truth) of its premises, the truth
of the conclusion, and the presence of adequate rational links between them.

Moreover, in principle it is possible that whoever proposes an argument is
behaving as if the argument were not good even though this is not the case.
The attitude of the person proposing an argument towards the conclusion
reached is not always a reliable indicator of the goodness of the argument.
Note that a similar consideration is also valid in the case of a biased
interlocutor: an argument can be good even if it is proposed by a person who
has an interest in convincing us that the conclusion is true, and must
therefore be analyzed and discussed independently of this aspect.

In any case, personal attacks violate rule 2 of rational discussion, which
requires that one should attack the claim under discussion and not the
proponent.



This is also true in the example of the inconsistent smoker: the reply above
does not consider the argument that the smoker has proposed (whatever it
is), but only this person’s behavioral inconsistency. This calls into question
their credibility without at the same time improving our understanding of the
reasons put forward against smoking.
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The next way of reacting, indicated by level 2, is “to reply to the tone”.
Suppose that another Facebook user comments on our contact’s post by
writing: “I can’t believe such a thing is said so lightly”. This is an example
of the kind of reaction in question. By replying in this way, it is questioned
whether the claim was posed properly or with all due seriousness. In this
case too, rule 2 of rational discussion is violated, as the argument is not
attacked but only its tone is. More generally, just like the previous reactions,
this reaction does not take us a single step towards a better understanding of
the point at issue. Before considering the next level of the pyramid, let us
discuss a way of reacting that Graham does not consider. This is the straw
man fallacy, which consists in attributing to our interlocutor conclusions that
they have not defended or in attributing to them an argument that they have
never proposed. Suppose that another comment to our post reads: “By saying
this you want to destroy the very institution of the family, but this is wrong”.
The person who put forward the initial argument did not actually come to
this conclusion. In order to argue that the extension of the institution of
marriage to persons of the same sex implies the end of the family institution,
one should advance another argument. Obviously, if the discussion is
directed at something which has not been proposed, we are prevented from
enhancing our understanding of the point at issue – indeed, we risk losing
sight of it. It is therefore easy to understand why the straw man is not a
rational way of disagreeing. Why do we often react this way when we
disagree with others? Usually because the claim that we wrongly attribute to
our interlocutor is weaker and more attackable than the one that they actually
put forward. However, rule 2 prescribes that the target of our reply should be
the claim that our interlocutor has actually advanced and not something that
– often remotely – resembles it.



Level 3 is the way of reacting that Graham calls “contradiction”, and which
we prefer to call the “act of contradicting”, for a reason that we will clarify
shortly. This reaction to disagreement consists in affirming something that
implies the negation of the claim supported by the interlocutor. The extreme
case of this kind of reaction simply consists in denying the claim advanced
by the interlocutor. Suppose that one of the comments to our example post
is: “It is not unacceptable to prohibit same-sex marriage”, or “It is
unacceptable to allow same-sex marriage”, and suppose that the comment
adds nothing else – that is, it does not present reasons in support of the
denial of the claim in the post. Consequently, in this case too, the
disagreement is not substantial since it does not concern the reasons used to
support a claim but merely denies it. Therefore, the simple contradiction,
alone, violates rule 3 of rational discussion (which, we recall, prescribes that
a standpoint should not be simply asserted but should also be defended by
arguments). More generally, merely denying the initial claim, or something
that it implies, does not help us to reach a better understanding of what our
interlocutor is saying and of the underlying reasons.

Since it presents no reasons against the initial claim, simple contradiction is
an attempt to oppose a claim by presenting the contrary opinion as self-
evident,
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even when, in fact, it is not. An analogous attempt, similar to the act of
contradicting, consists in placing the burden of proof on the interlocutor.
Suppose, for example, that I claim that God exists and, when someone asks
me to prove it, I say:

“I’m not the one that must prove that God exists, you are the one that must
prove that God does not exist”. In this way, I avoid the burden of proving
what I claim by placing on the other the burden of proving the opposite
claim. Of course, this does not take us one step towards a more structured



understanding of the reasons for or against God’s existence. The important
thing here is to establish on which side the burden of proof lies.

Graham calls level 3 “contradiction”, but we prefer to call it the “act of
contradicting”. There is a precise reason for our choice. A contradiction is a
sentence, and more precisely a conjunction whose conjuncts are one the
negation of the other.4 For example, “Any form of discrimination is
unacceptable, and some form of discrimination is acceptable” is a
contradiction. Contradictions cannot be true: a conjunction is true if and only
if both conjuncts are true, and yet if a sentence is true, its negation must be
false, if the Aristotelian law of excluded middle is presupposed. By contrast,
the act of contradicting is an act: it is something we do when we assert the
negation of what has been affirmed by our interlocutor, or something that
such negation implies. It is not a sentence. Since Graham actually refers to
the act of denying a claim when characterizing level 3, we prefer to call this
way of reaction “act of contradicting”. The relationship between
contradiction and the act of contradicting is then clear: a sentence and its
negation cannot both be true, but one of the two must be. So either the claim
proposed in a discussion is true, or its denial is true. The assertion of a
sentence is an act by which one commits oneself to the truth of the sentence
(and to the falsity of everything that denies it). So, if I assert something that
denies a claim, I am implicitly arguing that that claim is false. Its
relationship with contradiction accounts for the dialectical role played by the
act of contradicting. It should be borne in mind, however, that the simple act
of contradicting is not strictly rational, because the simple act of
contradicting does not, in itself, make any substantial contribution to the
discussion.

One way of reacting that Graham does not consider is the false dichotomy,
which is however very common and therefore deserves attention. The false
dichotomy consists in proposing a false alternative between the acceptance
of one claim and that of another, usually clearly false or in any case having
unacceptable consequences. For example, if someone replies to the initial
claim of the post: “Either same-sex marriage is forbidden, or the destruction
of the institution of marriage is inevitable”, then a false dichotomy is being
proposed. The fallacy consists in presenting the two alternatives as if they
were the only possible ones, when this is not 4. In classical logic, which we
follow in this book, a contradiction is better defined as “a sentence that



implies any other sentence” or as “a sentence that cannot be true”. In any
case, such sentences are equivalent to the conjunctions we mention in the
main text.
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the case. In fact, there is no conceptual link between the extension of an
institution to a previously excluded category and the end of that institution.
Other examples of false dichotomy are: “Anna criticized socialism. She must
be a fascist”; “Giulio criticized the reducing of the tax burden. He is
certainly a communist”.

The ways of reacting to disagreement that we have seen so far are arranged
in the Graham scale on different levels, where level 3 is less irrational than
all the previous ones, level 2 less irrational than levels 1 and 0, and so on. At
the same time, these levels represent inadequate ways of reacting, because
they do not make any contribution to understanding the point at issue or the
reasons for or against it. In the higher levels of the pyramid we find more
and more rational ways of reacting (even if not all of them turn out to be
wholly adequate). Let us consider them more closely.

At level 4 of the pyramid we find the reaction called arguing for the
opposite.

Starting from the base of the pyramid, this is the first type of reaction in
which the disagreement becomes significantly rational: those who object do
not limit themselves to denying what the other says but provide reasons for
their position. In this case an argument in support of the opposite claim is
proposed . Let us consider this with the aid of an example . In one of the
comments on the wedding post we read:

“Same-sex marriage is unacceptable because the family is made up of a man
and a woman”.

What can we notice here? First of all, the comment contains an argument
which works only if we add further premises, namely “There is no
acceptable family model other than that consisting of a man and a woman”,



“Marriage automatically creates a family”, as well as “What has
unacceptable practical consequences is itself unacceptable”. Let us
reconstruct the argument “in complete form”: (P1) The family is made up of
a man and a woman.

(P2) There is no acceptable family model other than that made up of a man
and a woman.

(P3) Marriage automatically creates a family.

(P4) What has unacceptable practical consequences is itself unacceptable.

(C) Same-sex marriage is unacceptable.

The conclusion of this argument contradicts that of our contact’s post. Note
that the argument thus reconstructed is deductively valid, exactly like the
one proposed initially. Accepting its premises is therefore sufficient for
rationally accepting the conclusion, and thus for dropping, or simply not
accepting, the conclusion of the initial argument. In other words, if the
commenter’s (reconstructed) argument is sound, then the initial argument
cannot be sound.

We are therefore in a situation similar to that of the Brâncuși case we looked
at in Chapter 2, but with a crucial difference: the artist and customs lawyers
were then asked to argue in favor of their respective premises – that is, to
give reasons for

3

Rational discussion and the pyramid of disagreement

53

accepting them, and then for accepting their respective conclusion. In this
example, however, nothing similar happens.

This allows us to understand a crucial limitation of arguing for the opposite
in rational discussion: if we advance an argument whose conclusion is the
negation of the claim initially proposed, we (1) do not give reasons to



believe the premises of the counter-argument rather than those of the initial
argument, and (2) we do not necessarily get a better understanding of the
reasons supporting the initial claim.

Let us go back to our example to see this.

The counter-argument in question introduces the premises P1 – P4, and from
these the negation of the initial claim follows. If we accept P1 – P4, we
cannot therefore accept the conclusion of the argument initially proposed.
But why should we accept P1 – P4? We are not given any reason for this. We
might well already accept these premises, but some of the audience may not.
By advancing P1 – P4 we are just setting two arguments in opposition,
where only one of the two can be sound. However, we are not giving reasons
in favor of the premises of the counter-argument, and therefore the
discussion is reduced to an arbitrary choice between its premises and those
of the initial argument. If I choose the former, I will accept the conclusion of
the comment; if I choose the latter, I will accept the conclusion of the post.
However, I am not given any basis for choosing. Implicitly, the counter-
argument in question has in fact doubled our task of ascertaining the
acceptability of the reasons proposed, because the reasons expressed by P1 –
P4 have no direct relationship with those expressed by the initial argument,
and therefore proposing the latter does not offer us a means of evaluating the
former.

This allows us to move on to the second point: the premises of the initial
argument focused on forms of discrimination and their unacceptability. In
principle, we might ask: is it true that any form of discrimination is
unacceptable? Is it true that prohibiting same-sex marriage is
discriminatory? The answers to these questions suggest whether the posted
argument is sound (or not), and why. If, on the other hand, we limit
ourselves to expressing reasons disconnected from these, and in favor of the
denial of the initial claim, we will not have taken a single step towards
understanding the strength of the reasons supporting the initial claim.

In other words, the commentator is not considering whether prohibiting
same-sex marriage is actually a form of discrimination but focuses on the
alleged essential characteristics of the family. The two interlocutors hold
opposing claims but are not comparing their own reasons. This is a problem,



because the rational acceptability of a conclusion depends on the strength of
the reasons expressed by the premises.

Graham calls the top of the pyramid (level 5) “refuting the central point”;
here we call it “refutation”. Let us imagine a last comment on the post:
“Many, like you, think that banning same-sex marriage leads to
discrimination, because homosexuals are treated differently from
heterosexuals. However, this can be avoided by
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guaranteeing homosexual couples the same rights reserved for heterosexual
couples”. Let us extract the argument contained in this comment:

(P1) If we guarantee homosexual couples the same rights reserved for
heterosexual couples, then there is no discrimination.

(P2) It is possible to guarantee both types of couples the same treatment,
even without extending the institution of marriage to homosexual couples.

(C) It is possible not to extend marriage to same-sex couples without at the
same time discriminating against them.

In this case, the comment is focused on the standpoint raised by the initial
post, namely whether the prohibition of marriage between persons of the
same sex in itself has discriminatory effects, and the counter-argument
concludes that the prohibition of marriage between persons of the same sex
does not, in itself, amount to a form of discrimination – although it does not
exclude that discrimination will exist in the absence of some measures
guaranteeing same-sex couples the same rights as married couples. Let us
look briefly at the dialectical strategy of this argument, and at its logical
relationships with the argument of the initial post. The conclusion of the
argument, if true, implies that there is (at least) one logically possible
scenario in which same-sex couples cannot marry but in which there is no
discrimination (more precisely, the scenario in which the same legal rights
are guaranteed to heterosexual and homosexual couples).



The conclusion of the proposed argument denies that the exclusion from
marriage of same-sex couples is in itself discriminatory, and this implies that
whoever proposes the initial argument must try to defend that premise, or
qualify the premises and the conclusion (perhaps specifying the conditions
under which the exclusion from marriage is discriminatory).

Interestingly, for Graham, in climbing up the pyramid of disagreement the
discussions get better. The higher the levels of reaction to disagreement, the
more rationally the different positions are tested. In addition, opportunities to
consider aspects of the problem that have not yet been explored increase
and, more generally, one’s understanding of the problem is improved.
Finally, the rational ways of reacting to disagreement favor the recognition
and respect of others’ positions, improving the practical effect of the
discussion. This happens even though the discussion does not end with the
acceptance of one of the various positions at stake. It may happen, in fact,
that at the end of a discussion (even a perfectly rational one), everyone
remains entrenched in their own position. Even if this happens, however, a
genuine argument allows an intellectual exchange which enriches the
interlocutors.

This is impossible to achieve at the lower levels of the pyramid of
disagreement.

3
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3.4 Conclusion

Let us briefly summarize the content of this chapter. We have given a
definition of rational discussion and we have looked at some of its
“canonical properties” according to van Eemeren and Grootendorst. We have
related these properties to the purpose of rational discussion: to contribute to
an adequate and increasingly improved understanding of the claim expressed
by an argument and of the reasons presented in its support (§ 3.2). We then
discussed the possible ways of expressing disagreement, organizing them on



a scale that goes from the least to the most rational (the so-called pyramid of
disagreement devised by Graham), where the rationality of the kinds of
expression of disagreement is evaluated on the basis of their potential to
contribute to a rational discussion (§ 3.3).

In the next chapter, we will dwell in more detail on the last mode of
expressing disagreement identified by Graham, namely refutation. We will
look specifically at some possible strategies of attacking an argument in a
rational way in order to prove that it is not good.

4 · How to reply rationally to an argument As we saw in the previous
chapter, in a rational discussion we should not attack our interlocutors nor
claims that they did not make. One is supposed to attack the argument of
others. But what is the best way to rationally counter-argue against the claim
or some aspect of the reasoning of others? In this chapter, we will deal with
this issue.

Learning to rebut arguments we do not accept is an important aspect of
argumentation and a fundamental skill in Critical Thinking. After all, it is
not difficult to realize that real discussions, whether they are conducted at a
seminar for graduate students, in a brawling condominium meeting or in a
courtroom, usually involve a dialectical exchange of reasons – more
prosaically, a back-and-forth discussion.

A good argumentative contribution must produce refutations (or, at least,
attempts at refutation) of the arguments we do not accept. This requires us to
analyze the structure of the counterparty’s reasoning, an activity that often
leads us to grasp aspects of it that are not in full light and deserve to be
known.

In this chapter we discuss the two main strategies we can use to rationally
argue back (§ 4.1). The first one is to attack its argumentative structure (§
4.2), that is, to point out that the premises do not provide reasons for the
conclusion. The second strategy is to attack the truth of the premises, or their
justifiability or plausibility (§ 4.3), that is, to show that there are solid
reasons to doubt that the premises are true. We will discuss some epistemic
aspects related to this strategy separately (§



4.1.1). Both strategies presuppose the ability to correctly evaluate whether
the argument initially proposed is a good argument.

4.1 The two strategies for attacking an argument

In Chapter 2 we claimed that a good argument includes true premises, which
provide reasons to support the conclusion. This definition gives us a criterion
to recognize bad arguments. To this purpose, we need to ascertain (i)
whether at least one premise of the argument is not true, and (ii) whether the
premises, jointly, do not provide reasons that underpin the conclusion. If at
least one of the two conditions is met, then the argument under scrutiny is
bad. Otherwise, we will recognize it as good. In short, the definition of a
good argument provides general criteria for evaluating an argument. We can
basically use the same criteria to show – or rather, argue! – that a given
argument is bad. Once we have recognized it as such, we can articulate our
counter-argument adopting one of the following two strategies:
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I. show that the premises do not provide reasons to support the conclusion;
II. claim that at least one of the premises is false.

These strategies are strictly related to two evaluative dimensions of
argumentation.

The first one focuses exclusively on the logical or structural features of the
argument. In the case of deductive reasoning, in this dimension we evaluate
the validity (or invalidity) of the argument. In the case of non-deductive
reasoning, we assess the strength (or weakness) of the argument. More
generally, the logical or structural dimension is what we must look at when
we ask ourselves: “Do the premises of this argument give reasons to support
its conclusion?” When, in proposing coun-terarguments, we choose strategy
(I), we focus on this evaluative dimension.

The second evaluative dimension is instead of an alethic-epistemological
nature, that is, it focuses on the truth of the premises, or on their rational
justifiability or plausibility.1 We will see shortly why we are making



reference to the notions of justifiability and plausibility alongside that of
truth, which appears in our definition of a good argument. When, in replying
to an argument, we choose strategy (II), we focus on this evaluative
dimension and cast doubts on the truth of the premises, either directly, or by
questioning their rational justifiability or plausibility.

The process of evaluating an inference takes place quickly and is, in a sense,
instinctive. This is because some logical patterns are processed very easily
by our brain – our cognitive and computational abilities allow us to manage
them easily –

or because we find premises whose truth (or falsity) is a shared belief.

4.1.1 Truth, justifiability and plausibility

Let us now consider more closely why, when outlining strategy (II), we
mentioned not only the truth of the premises, but also their rational
justifiability and plausibility. A sentence can be true or false, and this is the
relevant fact with regard to condition (1) in the definition of a good
argument (see § 2.3). Evaluating the truth of an argument’s premise,
however, brings another dimension into play: the epistemological one. This
dimension is very important because in many cases we do not have access to
the facts that make a sentence true or false. Consider the statement: The
notebook is in the kitchen and not in the bedroom.

Suppose this is true, but that I went out in the morning without checking
where I left the notebook. If someone called me from home and claimed
“The notebook is 1. The term “alethic” means “related to truth” and derives
from the ancient Greek word “ale-theia”, which means “truth”. Recall that
“epistemological” (or “epistemic”) means instead “related to knowledge”.
The notion of “rational justifiability” is primarily epistemological: it
explains when a rational subject is justified in taking a sentence as true.
Similarly, the notion of “rational plausibility” prescribes what a rational
subject is justified in assuming to be true.

4

How to reply rationally to an argument



59

in the kitchen and not in the bedroom”, I would not know whether this is true
or false. But suppose that I always leave that notebook in the bedroom and
did not realize that I had distractedly left it somewhere else. I would react by
considering the above statement false, and would be ready to argue
accordingly. Although I do not know for sure that it is false, I am
nevertheless rationally justified in believing it to be false. Something similar
occurs when one replies to an argument using strategy (II). Let us go back to
the argument in the Facebook post:

(P1) Prohibiting same-sex marriage is a form of discrimination.

(P2) Any form of discrimination is unacceptable.

(C) Prohibiting same-sex marriage is unacceptable.

Suppose that P1 and P2 are true. Since the argument is deductively valid
(and non-circular), it is a good argument. But suppose that a friend of ours
believes that P1 is not true, and uses strategy (II) to respond to the argument.
What does it mean that P1 is true with regard to this purpose? It implies that
the respondent is attacking it incorrectly. However, if the respondent has
solid reasons to believe that P1 is false, then she has the right to question its
truth in the course of the discussion. The important thing is that her
standpoint is rationally justified or rationally plausible. These are the two
conditions under which the use of strategy (II) is legitimate, regardless of the
truth of the premises. Similarly, we may not be certain that a premise is
false, but if we have a rationally justified belief that it is so, or if we think it
is rationally plausible that it is false, then we are entitled to put forward a
counter-argument following strategy (II).

All this is of paramount importance because truth is not epistemically
transparent. There are true (or false) sentences that we do not know to be
such, or that we mistakenly believe to be false (or true), or about which we
are uncertain. We are not free from error even when we use our cognitive
and epistemic abilities as best as we can. Furthermore, there are many things
that escape our knowledge. If we could only use strategy (II) when we were
certain that one or more premises are false, then we would almost never be



in a position to resort to it. This would be especially the case in situations
where knowing the truth of the premises is more difficult –

situations that are actually more interesting from the dialectical point of
view, since they are more likely to generate disagreement between rational
subjects.

At the same time, counter-arguments focused on the premises cannot be
arbitrary and must be aligned with our main epistemic goal, namely that of
“tracking the truth”. This is precisely why we are entitled to criticize a
premise even when we are uncertain about its truth, as long as we are
justified in believing that that premise “does not track” the truth, or, more
simply, when it is clearly not true. In a nutshell, the crucial point is the
following: we are supposed to use strategy (II) when we have a rationally
justified belief that a certain premise is not true, or is implausible. This
explains why in discussing strategy (II) we have mentioned notions such as
rational justifiability and rational plausibility, together with that of truth.
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4.2 Attack on the argumentative structure

Imagine that a member of the Parmigiano Reggiano (PR) producers’
association wants to convince the public of the superiority of her product
over the Grana Pada-no (GP), a parmesan cheese produced in a different area
of Italy. Suppose then that for this purpose she proposes the following
argument:

(P1) GP is made with milk from cows fed with silage.2

(P2) It is proven that silages reduce the organoleptic properties of milk.

(C) GP is not a quality product.

Obviously, proving that GP is not a quality product is not the same as
proving that PR



is. It could well be that both GP and PR are poor quality products. However,
we can think that the argument proposed above is only the first step of a
complex argumentative strategy via which the member of the PR producers’
association wants to show that PR is superior to GP. According to this
strategy, she first makes it the case that GP is not a quality product, then she
will show that her product is of good quality.

How could one reply to this argument, or simply ascertain whether it is a
good argument? As we have seen, we can attack its argumentative structure,
or call into question the truth of the premises. Let us start with the first
strategy. This is the more properly

“logical” attack; in essence, it tries to show that the argument is either
deductively invalid (in the case of deductive reasoning) or that it is a weak
argument (in the case of non-deductive reasoning). Let us go back to the
argument of the PR producer: (P1) GP is made with milk from cows fed with
silage.

(P2) It is proven that silages reduce the organoleptic properties of milk.

(C) GP is not a quality product.

Do P1 and P2 provide reasons for the truth of C? The answer is simple: they
do not. P1 and P2 jointly provide reasons for concluding that GP has
organoleptic properties inferior to the cheese produced by means of milk of
animals fed with silage. Thus, it is not a dairy product of the best possible
quality. However, this does not imply that it is not a quality product. To
imply it, it is necessary to add one of these two premises:

(P3) Any dairy product that is not of the best possible quality is not a quality
product.

or:

(P3 ’) The inferior organoleptic properties of the milk by means of which GP
is produced are such that they make GP qualitatively poor.

2. Silage is a feed resulting from the storage and fermentation of green or
wet crops under anaero-bic conditions.
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Neither can be passed as an implicit premise. This is for two reasons. First,
these premises do not constitute common knowledge or a general belief, at
least if we assume that the discussion takes place in a public debate in which
the participants lack industry expertise. Furthermore, the truth of these
premises (assuming they are true) is not obvious and should not be taken for
granted – indeed, it should be properly argued in case the public lacked
specific skills.

More specifically, the argument of the member of the PR producers’
association is such that P1 and P2 can be true without C also being true.
Therefore, the argument, if we do not add further premises, is not
deductively valid. It is a weak argument because the truth of the premises
only modestly increases the probability that the conclusion is true.
Therefore, it is a bad argument.

In the following paragraphs we will consider two very basic forms of
fallacies. Remember that fallacies are bad reasoning patterns that real human
cognitive subjects are inclined to use. We will take advantage of the first
fallacy to see how we can respond to an attack against the logical structure
of an argument.

The game of replying rationally to an argument cannot consist of a single
step. It develops through a succession of acts of reasoning in which the one
who has received a reply adjusts the argument, or reacts to the reply of
others by applying either strategy (I) or strategy (II). Each rebuttal, in short,
can be followed by a rejoinder of some sort, and so on ad infinitum. After
discussing the two types of fallacy, we will consider the only type of
deductive argument that, even starting from true premises, cannot generate
good arguments: circular reasoning, or vicious circle.

4.2.1 Non-sequitur

Consider the following argument:



(P) The milk used to produce GP comes from animals fed with silage.

(C) The milk used to produce GP is of low quality.

This is a very basic example of a non-sequitur. A non-sequitur 3 is,
technically, any argument in which the conclusion does not necessarily
follow from the premises – that is, any argument presented as deductively
valid by the person who proposes it but whose conclusion does not
necessarily follow from its premises. In this sense, labeling an argument as a
non-sequitur is a canonical way of replying when the argument in question is
supposed to provide conclusive reasons for the conclusion, even though this
is not the case. Arguments based on a non-sequitur cannot be good
arguments.

3. In the interest of simplicity, we do not discuss the non-deductive forms of
non-sequitur.
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This example also shows how one might respond to a rebuttal. Suppose that
Eleanor proposes the argument mentioned above, and that Mary replies:
“Yours is not a good argument, because it is a non-sequitur”. Eleanor could
argue that she left a premise implicit because she thought it was common
knowledge. Eleanor could then reformulate her argument adding a further
premise:

(P1) The milk used to produce GP comes from animals fed with silage.

(P2) A silage-based diet makes the milk of low quality.

(C) The milk used to produce GP is of low quality.

This argument is deductively valid. In fact, P2 asserts that a silage-based diet
is sufficient for cows to produce low quality milk (notice that the argument
discussed in the previous paragraph had a weaker premise, namely that
silage simply reduces the quality of cheese). Coupled with the premise that



Eleanor has already proposed in her initial argument, this implies the
conclusion that the milk used to produce GP

is of low quality.

What happens next in the rational argument? Did Eleanor close the game
with the second version of her argument? Of course she did not. Mary can
no longer claim that the argument is a non-sequitur, but she has something
else to fall back on: she can focus on the additional premise P2 proposed by
Eleanor. Faced with this premise, Mary can resort to strategy (II) and
question its truth. How could that be done? If Mary has a rationally justified
and soundly motivated belief that P2 is false, then she can argue for it being
false. In doing so, she casts doubt on the fact that P2 is rationally justified or
plausible, thereby indirectly attacking its truth.

Finally, if Mary does not have specific expertise in dairy products (and does
not know whether P2 is true or false) she is still entitled to ask Eleanor to
justify P2.

This is an indirect way of attacking the premise. Of course, Eleanor could
have a very solid justification for P2, unbeknown to Mary, and this would
give Eleanor a chance to counter Mary’s further objection.

4.2.2 A fallacy of inductive reasoning: the unwarranted generalization
Fallacies plague not only deductive reasoning but also other types of
reasoning. Inductive reasoning, for example, is exposed to one of the most
basic and resilient fallacies in the context of our cognitive activities, namely
the unwarranted generalization. Consider the following argument:

(P1) Dioxin was found in the milk of the Borgoforte dairy.

(P2) The Borgoforte dairy produces GP.

(C) GP contains dioxin.
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As with many inductive arguments, the argument in question projects a
property (“containing dioxin”) from the totality of an observed sample (the
GP produced by a given company) to the totality of a set of objects (all GP).
What is wrong with this argument, then? The answer is simple: the fact that
the observed sample is not sufficient to operate the projection. In the
argument we are examining, this implies that P1 and P2 do jointly not
increase the probability that the conclusion is true.

Thus, the argument is not good because its premises give no reason to
believe that the conclusion is true, even if they are true.

The unwarranted generalization – which we will discuss more at length in
Chapter 9 – is, for inductive reasoning, what non-sequitur is for deductive
reasoning. Indeed, the canonical way of replying to an inductive argument is
to point out that the premises do not increase the probability of the truth of
the conclusion, just as replying to a piece of deductive reasoning is to point
out that the conclusion does not necessarily follow from the premises.

Another case of unwarranted generalization is the following:

(P1) Parmigiano Reggiano is a quality product.

(P2) Parmigiano Reggiano is an Italian product.

(C) All Italian products are of quality.

This is a case similar to the previous one. The only relevant difference is that
we could have further reasons to believe the conclusion to be true, in the
event that we do appreciate Italian products in general. It is important to
remember, however, that in the evaluation of an argument (and, therefore,
when one tries to reply to it) what matters is not simply the truth of the
conclusion, of which perhaps we can be certain on the basis of other
considerations, but rather the way in which the conclusion is obtained
starting from the premises. Consider another example: (P1) This raven lives
in the Tower of London.

(P2) This raven is black.



(C) All the ravens living in the Tower of London are black.

Although the conclusion and the premises are true, this is not a good
argument.

The fact that a single raven living in the London Tower is black does not per
se increase the probability of the conclusion that all the ravens living in the
London Tower are black. This argument, therefore, is not good.

4.2.3 Circular reasoning

To understand how circular reasoning works, let us start with a very simple
example. Take the following argument:
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(P) Parmigiano Reggiano is a product known all over the world.

(C) Parmigiano Reggiano is a product known all over the world.

This argument is deductively valid: it is easy to see that if the premise is true,
then the conclusion must be true. After all, they are the same sentence.
However, this argument cannot be a good argument, even if P – and
therefore C, since they are the same sentence – is true. In fact, repeating the
same sentence as a premise and then as a conclusion gives no reason to
support the sentence in question – at the end of the day, no reason is
provided to support it.

The type of deductive reasoning in which:

(i) the conclusion of the argument also serves as a premise

(ii) no other premise provides reasons to support the conclusion is called
circular reasoning or vicious circle. Any form of circular reasoning is a
deductive argument, because the conclusion also figures as one of the
premises, and this warrants that if all the premises are true, the conclusion
must also be.



With the simple example just proposed we have shown that there are
deductively valid arguments that cannot be good arguments even when their
premises are true. These are precisely the cases of circular reasoning. With
the exception of the latter, however, deductively valid arguments that have
true premises are good arguments. Consider the following example:

(P1)

Eleanor is eating Parmigiano Reggiano but doesn’t know what she is eating.

(P2)

Mary is eating Parmigiano Reggiano but doesn’t know what she is eating.

...

(P n- 1) Subject n-1 is eating Parmigiano Reggiano but doesn’t know what
she is eating.

(P n)

Parmigiano Reggiano is a product known all over the world.

(C)

Parmigiano Reggiano is a product known all over the world.

This too is a circular reasoning. Premises P1, …, P n-1 clearly do not
provide any reason in support of the conclusion C. The truth of the
conclusion is trivially warranted by the truth of P n ( if the latter is true, of
course), because P n and C are the same sentence. Instead, the argument

(P1) All human beings are mortal.

(P2) Socrates is mortal.

(P3) Socrates is a human being.

(C) Socrates is mortal.



is not circular, although the conclusion coincides with one of the premises.
In fact, if
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P1 and P3 are true, C must be true. To put it differently, P1 and P3, if true,
make the conclusion true, and also provide reasons to support it. The
repetition of the conclusion in the premises is redundant here: the argument
would do its job perfectly without that repetition. This allows us to present a
general method for recognizing whether an argument is a case of circular
reasoning. Given an argument of the form (P1)

(P2)

...

(P n)

(C)

if P i is equal to C, being P i a premise between P1 and P n, we can drop P i
and construct the following argument:

(P1)

(P2)

…

(P i-1)

(P i+1)

…

(P n)



(C).

If the premises of this new argument do not provide reasons to support C,
then the initial argument is an instance of a circular reasoning. If, on the
other hand, the premises provide reasons to support C, the initial argument is
not an instance of circular reasoning. And if its premises are true, then it will
also be a good argument. If more than one premise is equal to the
conclusion, we subtract all those premises, and construct a new argument in
which none of the remaining premises coincide with the conclusion. We then
proceed as before, checking whether the new argument provides reasons
supporting C.

We can extend the definition of a circular argument to other cases in which,
although the conclusion does not appear among the premises, it is
nevertheless presupposed by at least one of them. Suppose someone argues
like this: God exists because the Bible says so and the Bible says true things
because it was written by God and God is infallible.

In this argument the conclusion (“God exists”) does not appear explicitly in
any of its premises and yet these presuppose the conclusion. That God wrote
the Bible presupposes the existence of God, which is also presupposed, at
first sight, by the claim that God is infallible. In other words, the conclusion
must be true for the premises to be true. Of course, it is quite obvious in this
example that the premises
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presuppose the conclusion. In very complex arguments, however, this might
be not apparent at all. Although no one will be persuaded by an argument in
which the conclusion also serves as a premise, or is otherwise presupposed
by one or more of them, arguments in which the conclusion is subtly
presupposed by one of the premises can easily be misleading.

4.3 Attack on the premises

We have seen that a second strategy for replying to an argument is to attack
the truth or rational plausibility of its premises. If we are able to show that



one of the premises is false, then we prove that the argument is not good. In
this case we directly attack the truth of the premises. The number of
situations in which that can be done is rather limited and these are quite
simple scenarios. Let us go back to the notebook example, and suppose the
person who lives with me says: The notebook is in the kitchen and not in the
bedroom.

To show that this statement is false, all I have to do is open the door of my
bedroom and show that the notebook in question is there. This is sufficiently
conclusive proof of the fact; sufficiently conclusive because it is logically
possible that we might have hallucinations at the exact moment we open the
door, even if, unless specific conditions hold true, the chances of this
happening are very low. This is a case in which the empirical evidence is so
clear and elementary that it shows by itself, so to say, that a statement is
false. There are also cases in which a sentence can be proved to be false
because it is inconsistent – we will return to this shortly, when we will talk
about the reductio ad absurdum.

However, empirical evidence is not always that clear – and above all, it is
not always accessible to us and to our interlocutor. Furthermore, the
sentences that we believe to be false are not always inconsistent. When we
cannot directly show that a premise is false, however, we can act indirectly
by questioning its rational plausibility. In this case we give reasons to doubt
that the argument is good, because if its premises are not rationally
justifiable, then we are entitled not to believe that they are true, and to reject
them. This is also crucial in relation to the rules of rational discussion in §
3.2. At this point, rule 5 comes into play: whoever proposes an argument
cannot take the truth of the premises for granted, unless their truth has
already been proven or constitutes common knowledge.

There are numerous avenues that can be taken to refute a premise. In the
following we will consider three of them: counterexamples, request for
justification, and reductio ad absurdum.
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4.3.1 Counterexamples

The method of counterexample is used in those cases where one of the
premises of the argument we intend to criticize is a universal sentence. A
sentence is universal if it states that all objects in a certain group relevant to
the argument have a certain property. For example, “All swans are white” is
a universal sentence.4 The existence of at least one object (of the relevant
group) that does not have this property is sufficient to falsify a universal
sentence. For example, a single black swan falsifies “All swans are white”.
Any object that helps falsify a universal sentence in the way just outlined is
called a “counterexample”. When a premise we wish to question is a
universal sentence, we can show it to be false if we are able to exhibit a
counterexample, or if we can somehow prove or argue that it exists.

Let us return to the argument proposed by the member of the Parmigiano
Reggiano producers’ association. Its premises, even if they are not explicitly
formulated as universal sentences, turn out to be such upon closer scrutiny.
So we can reformulate that argument making its universal premises explicit:
(P1) All GP is made with milk from cows fed with silage.

(P2) There is evidence that silage feeding reduces the organoleptic properties
of milk.

(C) All GP is not a quality product.

The first premise could be falsified if one is able to show that not all GP is
made with milk coming from cows fed with silage; the second premise could
be falsified if one is able to show that there are cases in which silage feeding
does not reduce the organoleptic properties of milk. After all, silage feeding
could be not that bad as far as the quality of the milk is concerned.

4.3.2 Request for justification

A weaker way to attack a premise is to require a justification of its truth, a
move we have already discussed in § 4.2.1. Here we add other
considerations that help us understand the general role of this option in
responding to an argument. The burden of proof falls on the person



proposing an argument, as rules 3 and 5 of Rational Argumentation
prescribe. The reason is clear. The subject who advances an argument
should, if asked, provide a justification of the premises of the argument,
unless they make universally accepted claims (in which case, the burden of
proof is on the shoulder of the subject who does not accept the premises). If
the person proposing an argument is unable to justify the premises they have
used, then we have good 4. We will discuss this type of sentence at greater
length in the next chapter.
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reason not to accept those premises. Such premises may well be true but in
the absence of adequate justification by the proposer we have no rational
basis for accepting them, should we not already agree with them.
Consequently, we have good reason to think that the proposed argument is
not good. It is important, in fact, that those who propose an argument use not
only true premises but premises that are rationally acceptable to the other
participants in the discussion. Rationally justify-ing a premise is the best
way to ensure its acceptance.

We have seen that asking those proposing an argument to justify their
premises can be strategically useful. If the interlocutor fails to provide
adequate justification, then it leaves the way open for a critical reply.

4.3.3 Reductio ad absurdum

Reductio ad absurdum (RAA) involves refuting an argument by showing
that one of its premises results in a contradiction. This is a method of
demonstration that is mainly applied in mathematical reasoning. Suppose we
assume A, and that from A, along with other statements that are part of our
mathematical background knowledge, we derive a contradiction, namely a
sentence of the form “B and not B”, which cannot be true. We can validly
conclude “not A” from it – that is, we can conclude that A is not true,
because a sentence that implies something false cannot be true (we will
discuss this principle in Chapter 6).



Let us illustrate this with an elementary example. Suppose I say, (0) “There
exists a natural number i that is larger than all other natural numbers”. It is a
basic assumption of mathematics that (1) for every natural number n, there
exists the natural number n + 1; (2) for every natural number n, n + 1 is
larger than n. By (1)-(2) we show that, given the number i of premise (0),
there exists the number i + 1 and that such a number is larger than i. From
(0)-(2) together we derive the conjunction

“There exists a natural number i larger than all other natural numbers, and
there exists a natural number i + 1”. This is, of course, a contradiction. Since
this cannot be true, and (1)-(2) follow from some basic definitions about the
natural numbers, having derived a contradiction is sufficient for us to
conclude the negation of (0): there is no natural number i larger than all
other natural numbers.

In everyday life we often use a form of reasoning similar to the RAA but
less rigorous. Specifically, in some cases we express disagreement with an
argument because one of its premises seems absurd, implausible, or
unacceptable. Suppose someone presents an argument which includes the
following premise: “It is right to lib-eralize all drugs, even so-called hard
drugs”. One might reply that this premise is unacceptable because the
financial burden of addiction treatment and rehabilita-tion programs would
grow disproportionately and become unsustainable.

This improper form of reduction ad absurdum is rather tricky. In general, it
is difficult to prove that a conclusion is “unacceptable” unless it is logically
unaccept-
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able (i.e. a contradiction). Even in cases where a good counter-argument can
be presented, as in the example of drug liberalization, it is almost never
trivial to prove that the conclusion of the initial argument is unacceptable.
Are we sure that the economic issue of health care spending should be given



greater weight than individual freedom? Is it not true that the limitation of
individual freedom is actually unacceptable? Shouldn’t we rather modify
government spending by cutting elsewhere in order to provide health care
where that freedom is exercised? Couldn’t it be that the maintenance of a
certain distribution of spending is unacceptable? Who is right and who is
wrong here?

Even leaving aside the practical acceptability of some decisions, in general
the fact that something seems unacceptable to us is not a conclusive
indicator that it is false, even if we believe we have good arguments against
it. After all, mankind believed until five hundred years ago that it was the
Sun that revolved around the Earth, and as absurd as it seemed to the
contrary in light of pre-Galilean physical theories, this belief was false.

4.4 Conclusion

In this chapter, we have focused on the most rational way of expressing
disagreement, which allows us to respond to an argument in a fully rational
manner. This can be implemented through two distinct strategies, which can
be combined together. The first strategy (§4.2) consists of attacking the
argumentative structure. It relies on the fact that the premises of the
argument to which one is replying do not actually give reasons to support the
conclusion. The second strategy (§ 4.3) calls in-to question, directly or
indirectly, the truth of the premises. It is used when we have solid reasons to
believe that the premises of an argument are false. The argumentative
structure can be attacked in many cases; the ones we have discussed concern
the “canonical fallacies” of deductive reasoning (§ 4.2.1) and inductive
reasoning (§

4.2.2), and the circularity of an argument (§ 4.2.3). We have seen that
circular reasoning is the only form of deductively valid reasoning that cannot
yield a good argument. The truth of premises, too, can be attacked in many
ways. The ones we have considered in this chapter are the appeal to
counterexamples (§ 4.3.1), and the demand for a justification (§ 4.3.2). In
addition, there is a purely logical method of showing that one or more
premises are false: showing that they imply a contradiction ( reductio ad
absurdum, § 4.3.3).
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5 · Deductive arguments

In Chapter 2, we discussed the distinguishing feature of deductively valid
arguments: they secure the truth of the conclusion, given the truth of the
premises –

that is: it is logically impossible for the premises to be true and the
conclusion to be false. Or, in other words: asserting the premises but denying
the conclusion means running into a contradiction. In this chapter we will
analyze deductive arguments in greater detail and we will try and identify
rigorous criteria that help us distinguish deductively valid arguments from
arguments that are not deductively valid.

This is of crucial importance because deductive reasoning plays a role in all
human intellectual activities. We use it in any area of knowledge –
Economics, Law, Botany, Zoology, Philosophy, Astronomy, and so on.
Besides, we use it every day.

For example, from the fact that Anna is either at home or at the gym and the
fact that she is not at home, we can deduce that she is at the gym. These are
two of the many reasons why it is crucial to distinguish those cases of
deductive reasoning that are valid (and can thus actually perform their
function in our reasoning) from those that are not valid (and therefore fail to
play the role that a deductive argument carries out in our reasoning).
Deductively valid arguments come in a wide variety of forms. Here we will
exemplify some of the main ones, in order to provide the reader with a basic
view of some of the forms of deductively valid reasoning that we encounter
most frequently in our reasoning activity.

5.1 Introduction

Let us go back to one of the deductive arguments we mentioned in Chapter
2: (P1) All sculptures imitate natural objects.

(P2)



Bird in space does not imitate a natural object.

(C)

Bird in space is not a sculpture.

We have mentioned already that this argument is deductively valid, and it is
easy to see that, indeed, if its premises are true, then its conclusion is also
true. However, if this argument is valid, the following one will also be valid:
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(P1) All sculptures imitate natural objects.

(P2)

Unique forms of continuity in space 1 does not imitate a natural object.

(C)

Unique forms of continuity in space is not a sculpture.

Exactly as the next one:

(P1) All horses have four legs.

(P2) Furia does not have four legs.

(C) Furia is not a horse.

Obviously, we can realize that for these two arguments too, there is no
possible scenario in which the premises are true, and the conclusion is false.
There is a very important reason why this is the case for all three arguments
in question: they all share the same argumentation scheme. 2 It is precisely
due to this kind of scheme that, in each of the three arguments, the two
premises cannot be true without the conclusion also being true.



In other words: if we wish to understand whether an argument is deductively
valid or not, we build logically possible scenarios in which the premises are
true, as we said in Chapter 2. More specifically, if we can build at least one
scenario where the premises are true and yet the conclusion is false, then we
show that the argument is invalid; by contrast, if every scenario where the
premises are true is such that the conclusion is also true, then the argument
is valid. However, whether or not there are possible scenarios that invalidate
the argument is not due to chance or contingent facts: it is due to its
argumentation scheme. Thus, whether an argument is deductively valid or
not ultimately depends on its argumentation scheme.

What exactly is an argumentation scheme? Let us recall an important point
first: in Chapter 2 we also said that the validity of an argument does not
depend on its relations with the world but on the relations between the
concepts involved in the premises and in the conclusion. And it is easy to see
that, in fact, the three arguments above propose connections (or relations)
between the concepts they mention, and these connections (or relations)
share the same structure,3 namely: in all three cases the premise (P1) “puts”
all the elements of a set among the elements of another one (all the
sculptures among the imitations of natural objects, all the horses among the
animals that have four legs). The premise (P2) states that a particular
individual ( Bird in space, Unique forms of continuity in space, Furia) does
not belong to the wider set. The conclusion (C) says that therefore that
individual does not even be-1. It is a sculpture by Umberto Boccioni. There
are different versions of it by the artist, and they all have the same name.

2. We can express this in an equivalent way by saying that all these
arguments share the same logical form.

3. Indeed, that is why we say that they have the same logical form.

5

Deductive arguments

75



long to the smaller set because, if it is not in the wider one, then it is not in
the smaller one. We will return to the argumentative structure of the three
examples in

§ 5.3. For the time being, notice that the validity of an argument depends on
the relationships between the logical concepts involved in the premises and
in the conclusions. What does this mean? An example will make this easy to
understand. Take the following elementary case of reasoning:

(P1) Riccardo is driving and is not answering a call on his cell phone.

(C) Riccardo is driving.

This reasoning is valid: if P1 is true, so must C. This, however, is not due to
what P1 and C are about – that is, the facts expressed by “Riccardo is
driving” and “Riccardo is not answering a call on his cell phone”. Instead, it
is due to the conjunction

“and” which occurs in P1). A conjunction is what logicians call a connective
or a sentential operator: a syntactic element that applies to one or more
sentences (two, in the case of the conjunction in P1) and give us a further
sentence in return. For example, if I apply the conjunction to sentences A
and B in this order, I get the sentence “A and B”. With some ambiguity, we
also call “conjunction” any sentence of the form “A and B” – that is any
sentence that results from the application of the connective to two “smaller”
sentences. There is no risk of confusion here: the context will make it clear
whether we are talking about the connective or the sentence.

Otherwise, we will specify the point explicitly.

The conjunction (connective) works in such a way that from “A and B” we
can always validly infer any of A or B. We can give an explanation of this in
terms of truth-values: “A and B” is true if and only if both A and B are true.
There is therefore no scenario in which any conjunction (sentence) “A and
B” is true, and A is not true (or B is not true). Hence, there is no logically
possible scenario in which “A and B” is true, and A is false. If we replace A
with “Riccardo is driving” and B with



“Riccardo is not answering a call on his cell phone”, we have the
explanation of why the reasoning that led us from P1 to C is deductively
valid: it is the presence of the conjunction as a “main connective” of P1 to
make it so – we will see in § 5.2 what the “main connective of a sentence”
is.

As for the three initial arguments, we will see in § 5.3 that the logical
concepts involved there – and which secure the validity of the three
arguments – are that of the universal quantifier “All” (or “For every”), and
that of the conditional connective “If … then”. The presence of the latter
may sound unexpected, but we will see in § 5.3 why it is actually involved.

Let us use the example with the conjunction in order to understand what an
inference scheme is. In “going from” the premise “Riccardo is driving and is
not answering a call on his cell phone” to the conclusion “Riccardo is
driving”, we have made an inference that involves two specific sentences:
the conjunction “Riccardo is driving and is not answering a call on his cell
phone”, and the first of its con-
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juncts. But of course, we are ready to acknowledge that the inference from
“Roberto is writing and his little daughter wants to play with him” to
“Roberto is writing”

is the same kind of inference, because we do the same thing with other
sentences: indeed, we start with a conjunction and conclude one of its
conjuncts. This suffices to show that the nature (or identity) of an inference
scheme does not depend on the particular identity of the sentences involved
in a particular case of the scheme (say, on the fact that the premise tells us
that “Riccardo is driving and is not answering a call on his cell phone” rather
than “Roberto is writing and his little daughter wants to play with him”). The
identity of the scheme, indeed, depends on the logical concepts involved in
the sentences. The inference scheme of our example can in fact be



“read” in a very general, abstract way as: “Assuming any conjunction, you
can conclude any of its conjuncts”.

The example of the conjunction also helps us notice a very important thing:
the sentences “Riccardo is driving” and “Riccardo is not answering a call on
his cell phone” do not make a real contribution to the validity of the
argument. In other words: we could replace them with any pair
conjunction/conjunct and the argument would remain valid, as long as we
leave the (connective) conjunction in its place. Precisely for this reason, in
this volume we will use not just specific sentences, but also schematic
letters, or letters that, ideally, can stand for any sentence. In this volume we
will need schematic letters for sentences, predicates, individual constants
(ideally, names) and individual variables. In particular, we will use:

• p, q, r, s, … for a particular kind of sentences, which we will call atomic
sentences (see § 5.2 for this);

• A, B, C, D, … for another kind of sentences, which we will call arbitrary
formulas; they include both atomic sentences and the so-called complex
sentences (see again § 5.2);

• P, Q, R, … for predicates (we will tend to use R for relational predicates,
i.e.

those that have two or more places);

• a, b, c, … for the individual constants (names);

• x, y, z, … for individual variables whose possible values are individuals
(whether they have a name or not).

The chapter proceeds as follows. In the remainder of the Introduction (§
5.1.1) we will briefly present the notions of semantics and syntax, and we
will mention classical logic, which is the system of logic that we actually
follow in this volume when talking about deductive reasoning. In § 5.2 we
will endow ourselves with the tools for a rigorous understanding of
propositional reasoning, that is, that reasoning in which just those logical
operators that we call “connectives” are involved (in our case: negation,



conjunction, disjunction, conditional, biconditional4). To do this, 4. We will
postpone discussion of conditionals and biconditionals to Chapter 6.
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we will present the basics of “propositional logic”. We will see how its
language is built up, distinguishing between two different kinds of sentences
(simple and complex sentences); we will introduce the truth conditions for
complex sentences (which depend on which is the so-called “main
connective” within them) in

§ 5.2.1 and 5.2.2, and we will also see how they are crucial to establishing
whether an argument (inference, reasoning) is valid (relative to arguments of
propositional reasoning) in a concrete and rigorous way. Subsequently, in §
5.2.3, we will introduce a package of inference rules known as introduction
rules and elimination rules (which together form the basis of natural
deduction for propositional logic).

In § 5.2.4 we will introduce a reading of these rules that helps us adjust them
to contexts of reasoning in which the standards of our argumentative
procedures are somewhat looser than the standards of mathematical proof –
indeed, the rules in question were originally introduced in order to formalize
mathematical reasoning.5

In § 5.3 we will move on to more complex forms of reasoning, which
involve predicates and quantifiers. In order to do this, we need what is called
“quantified logic”, or “predicate logic”. We will build the relevant language
(§ 5.3.2) and introduce the truth conditions for the new kinds of sentences.
We will then use these conditions to check the validity or invalidity of some
inference schemes, including the syl ogistic inference schemes (§ 5.3.4). In §
5.3.3 we will then comment on some aspects of the formal regimentation
introduced in § 5.3.2.

5.1.1 Semantics and syntax. Classical logic



In logic we can approach our reasoning from two different angles. The first
“angle”

considers deductive arguments based on the notion of validity that we have
already introduced in Chapter 2, and it goes under the name of semantics.
The second “angle” considers the arguments on the ground of their
conformity to a set of rules of inference, which are all, ideally, derivable
from a smaller “primitive” set – that is, a set of rules chosen for precise
reasons as the economic basis for deriving the other rules. This second
“angle” goes under the name of syntax. Let us briefly give some general
insight on these.

Semantics is the branch of formal logic that (i) specifies the truth conditions
of the sentences, and especially of those sentences containing the so-called
“logical words” – for instance, connectives or quantifiers. Specifying their
truth conditions means telling under what circumstances a sentence is true,
or else what conditions must occur for the sentence to be true. Semantics
also aims at (ii) interpreting other logical symbols (such as names,
predicates, and individual variables). It is the 5. As we have said, we will
postpone discussion of introduction and elimination rules for the conditional
to Chapter 6.

78

Part II Deductive arguments

branch of logic that we implicitly call into question when we ask ourselves if
an argument is deductively valid, or when we ask ourselves if a sentence
such as “Roberto is driving and is not answering a call on his cell phone” is
true. When we specify the truth conditions in propositional logic and verify
some validity (§ 5.2.1), we are applying semantics.

Syntax is that branch of formal logic that aims at: (i) specifying the rules for
the formation of sentences, independently of their possible interpretations –
the goal is to specify which combinations of symbols can have an
interpretation or a truth-value, and which ones cannot. Syntax also (ii)
specifies the rules of inference that help to legitimately “go” from one set of
sentences to another in reasoning –



that is, to make valid inferences. When we specify the introduction and
elimination rules for the connectives in propositional logic (§ 5.2.3), for
instance, we apply syntax. Thanks to the development of a rigorous
mathematical approach to logic, we are now aware that we can define a
large number of different formal logical systems that have a range of
desirable properties (in terms of the rules of inference they propose, for
example). Many of them can be used as reasoning tools because they secure
families of inference rules that we deem intuitive, or that we deem rational to
apply. In short, we live in an era of logical pluralism. In this volume, we will
follow one of the many systems defined by logicians, the one that has been
considered, from the mid-nineteenth century to the end of the twentieth
century, the most suitable system for prescribing rules of inference. This is
called classical logic. 6 From a syntactic point of view, we could say that
classical logic is defined by the rules of introduction and elimination of
connectives and quantifiers that we will look at in this chapter and in
Chapter 6 (for the material conditional), plus a few axioms, that is,
statements considered logical principles. From the semantic point of view,
we could say that classical logic is fundamentally defined by the truth
conditions of the connectives that we will see in this chapter and in Chapter
6 (as regards the material conditional). In any case, it is worth saying
something more intuitive about classical logic. We will do this from a
semantic perspective, noting that: 1. Classical logic assumes that sentences
can be either true or false. It does not allow for “intermediate values” such as
“indefinite”, “indeterminate” or the like. More precisely: classical logic is,
semantically speaking, bivalent; in other words, it assigns to each sentence
either the value “true” (T) or the value “false”

(F). T and F are therefore called truth-values.

2. The semantical definition of negation in classical logic is such that either
a sentence A is true, or its negation ¬A is true. This is because the latter is
true if 6. Classical logic has actually had a remarkable competitor since the
1930s, namely: intuitionistic logic. The two systems were the main
competitors for the role of a reference normative system in the area of
human reasoning – with a particular attention to mathematical reasoning.
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and only if A is false, and it is false if and only if A is true. Consequently,
the disjunction A ∨ ¬A (“A or non-A”) is a logical truth (or rather, a
“classical logical truth”) – that is, it is true in every logically possible
scenario (according to classical logic). Furthermore, what we have said
above implies that, in classical logic, we can read A ∨ ¬A as “A is true or A
is false”. In other words, in classical logic that disjunction ends up
expressing the fact that the semantics is bivalent.

3. The semantical definition of negation in classical logic is such that a
sentence cannot be both true and false – or rather: it cannot be the case that
both A and

¬A are true. Hence, the conjunction A ∧ ¬A (“A and non-A”) is a logical
falsity (or rather, a “classical logical falsity”) – that is, it is false in every
logically possible scenario (according to classical logic). Classical logic is
said to be consistent because it excludes the possibility that contradictions
are true.

Not all formal systems follow points (1) – (3). Some are built in the belief
that we should account for some sentences being neither true nor false.
There are two large families of logics that do this. Philosophers call them,
respectively, paracomplete logics and logics with gaps. Paracomplete logics
do not follow point (2): A ∨ ¬A is not a logical truth in such systems. There
is also intuitionist logic, which rejects the logical truth of A ∨ ¬A on the
grounds that a disjunction should be accepted only if we have either a
procedure to prove the first disjunct, or a procedure to prove the second.
This is not always the case, not even when the two disjuncts are A and its
negation ¬A. Other logics reject point (3), and believe that our formal
systems must allow us to reason even in the presence of contradictions.
These logics are called paraconsistent. We therefore have many possible
logics, and they all offer an illuminating perspective on reasoning.



The reason why we will follow classical logic in this volume, is that it is the
simplest logic, both from a semantic and from a syntactic point of view.

5.2 Propositional reasoning

Let us start with those forms of reasoning in which connectives are the only
logical concepts involved – remember that these are operators that apply to
sentences to generate other sentences. The branch of logic that deals with
this kind of reasoning is that called “ propositional logic” or “sentential
logic”.

In propositional logic, sentences are the smallest syntactic units; in other
words, propositional logic is indifferent to those syntactic elements that are
“smaller” than a sentence, such as names (“individual constants”) and
predicates. Furthermore, for propositional logic, connectives are the only
logical elements determining reasoning connections between different
sentences. We will see shortly what this means exactly. For now, let us try to
gain a more concrete understanding of what is being said.
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Propositional logic traditionally distinguishes five connectives:

• Negation: not; symbol: ¬

• Conjunction: and; symbol: ∧

• Disjunction: or; symbol: ∨

• Conditional: if … then; symbol: →

• Biconditional: if and only if; symbol: ↔

Negation is the only “one-place” (monadic) connective among these
connectives, with the other ones being “two-place” (dyadic) connectives. In
propositional logic, the two basic building blocks in the construction of
sentences are the connectives and what are termed atomic sentences,



namely: those sentences that contain no connective (or expressions such as
“all”, “some”, and so on) and therefore cannot be broken down into other
“smaller” sentences. To get an idea of what these sentences would look like
in our natural language, take the sentences:

(1) Anna is turning the key.

(2) The car started.

(3) This summer we will go on holiday to the sea.

(4) Anna loves her neighbor.

(5) Paolo is sick.

(6) Paolo will come to the appointment.

As we can see, these sentences do not contain any of the five connectives we
have listed. In order to understand properly how propositional logic defines
atomic sentences, however, we must abstract from the syntactic structure
within the sentence.

In order to get the point, remember that, in a certain sense, propositional
logic does not “recognize” nouns, verbs and adjectives – or rather: it ignores
them because it deals with reasoning connections that are completely
independent from these elements. Keep in mind that propositional logic uses
the lowercase Latin letters p, q, r, s, … for atomic sentences, and that these
letters are, together with connectives, the minimal building blocks of all
propositional logic. That being said, natural language sentences such as the
ones we have exemplified provide a great intuitive way of understanding
atomic sentences, and we will often use similar natural language sentences in
order to exemplify atomic sentences. That is, we will assume that the atomic
sentences of propositional logic express precisely those sentences of natural
language that do not contain connectives, such as the ones above.

Once we have our stock of connectives and atomic sentences, we can define
all the possible sentences of propositional logic, based on what is called a
recursive definition of the sentences (or “formulas”, as we also say in logic):
1. Every atomic sentence is a sentence.



2. If A is a sentence, then so is ¬A.

3. If A, B are sentences, then so is A ∧ B.
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4. If A, B are sentences, then so is A ∨ B.

5. If A, B are sentences, then so is A → B.

6. If A, B are sentences, then so is A ↔ B.

7. Nothing else is a sentence.

All the sentences that contain connectives and can therefore be analyzed into

“smaller” sentences – or to be exact, “simpler” sentences – are called
“complex sentences”. Some examples:

(1)

I do not like sushi.

(2) Anna turned the key and the car started up.

(3) This summer we will go on vacation to the beach or we will go on a 15-
day trip.

(4)

If Paul is sick, then he will not join us.

Notice that 1 is considered a complex sentence since it contains a logical
connective, that is: negation. We speak of arbitrary formulas when it is
indeterminate whether we are dealing with an atomic sentence or a complex



one. In propositional logic, the Latin capital letters A, B, C, D, . . are used
for such formulas. It should therefore be kept in mind that A does not
necessarily have an internal logical complexity (that is: it may not contain
connectives). We cannot then in principle exclude that it stands for an atomic
sentence: the kind of symbol, in itself, does not tell us whether we are facing
an atomic or a complex sentence. This will not be a source of trouble,
however, because we will use letters for arbitrary formulas when what we
say is independent of whether we are talking about atomic sentences or
complex ones.

Please bear in mind that by “negation”, “disjunction”, “conjunction”,
“conditional”, “biconditional” we will denote not only the connectives, but
also the sentences whose main connectives are, respectively, negation,
disjunction, conjunction,

. . (we will see in a few lines what we exactly mean by “main connective”).
Hence, we will say that 1 is a negation, 2 a conjunction, 3 a disjunction, etc.
As we have already said, the context will clarify when “negation”
(“conjunction”, “disjunction”, etc.) refers to a sentence or rather to a
connective (when necessary, by contrast, we will specify it).

One last thing before we go further. Connectives can be “nested” in a
sentence, thus creating sentences of varying complexity. Take for example
“If Paul is sick, then he will not join us”. In symbols:

p → ¬ q

There are two connectives here. One (negation ¬) is used to construct one of
the sentences that make up the conditional p → ¬ q, that is ¬ q. The other
(the conditional →) serves to construct the conditional sentence in its
entirety. In general, complex sentences can have as large a complexity as
desired, but this complexity
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will always only include a finite number of connectives and sentences, down
to a finite number of atomic sentences that cannot be further analyzed. In the



next few pages, we will see many examples of complex sentences in which
many connectives are nested, and so we do not dwell on other examples
here. However, it is important to make a distinction between the main
connective of a sentence, and connectives that play, in a sense, a secondary
role in the sentence. In p → ¬ q, the main connective is →, because the
sentence in its entirety is the result of the application of that connective to
the two immediately simpler sentences, that is p and ¬ q. A secondary
connective in p → ¬ q is ¬, because it is present in the conditional, but it is
not that connective that “builds up” the conditional. On the other hand, ¬ is
the main connective of ¬ q, because ¬ q is the result of applying ¬ to q, and
the latter is immediately simpler than ¬ q, and, together with connective ¬, it
makes it up ¬ q. Other cases can be more complex but identifying the kind
of sentence that we are facing proves very helpful in general. Take, for
example:

¬A ∧ ¬B

The main connective here is ∧, since the sentence before us is obtained by
applying the operator ∧ to the sentences ¬A and ¬B. However, in

¬ (¬A ∧ ¬B)

the main connective is ¬, because the sentence in question derives from the
application of the operator ¬ to the sentence ¬A ∧ ¬B. In general, the key to
identifying the main connective in a sentence is to understand from which
“immediately simpler” sentences that sentence is built on, and by using
which connective. The rules of inference that we will see in this chapter
apply to sentences according to what their main connective is.

The last formula we have exemplified gives us the chance to notice that it is
difficult to read ¬ (¬A ∧ ¬B) as “Not (not A and not B)” and, above all, this
reading does not sound grammatically correct. This is because the recursive
definition of formulas helps us build sentences of a syntactic complexity that
is greater than that we experience in natural language. We will solve this
problem by reading ¬



(¬A ∧ ¬B) as “It is not the case that (it is not the case that A and it is not the
case that B)” in a sort of mixed reading between natural language and formal
language.

In general, we will read ¬A as “it is not the case that A”.

5.2.1 The truth conditions of complex sentences

The connectives that we have considered help make the analysis of the
sentences containing them particularly clear and simple. The main reason is
that these connectives are truth-functional, that is: the truth or falsity of the
sentences that con-
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tain them depends entirely on the truth or falsity of the simpler sentences that
make them up, according to a rule that varies from connective to connective.
To give an example: a conjunction such as

Anna turned the key and the car started up

is true if and only if both conjuncts (“Anna turned the key”, “The car started
up”) are true – and it is false if and only if at least one of the two conjuncts
is false. Using a mathematical terminology, we can say that the truth-value
of a conjunction, disjunction, negation, etc. is a function of the truth-values
of the sentences that compose them (the conjuncts, the disjuncts, the negated
sentence, etc.).

Each connective determines a different truth function – that is, a function
that applies to a truth-value, or to a pair of truth-values, to return a truth-
value as an output. All these different functions can be visually represented
through the so-called truth tables. Here we will look at the truth tables of
negation, conjunction and disjunction. For the truth table of conditionals and
biconditionals, we refer readers to Chapter 6, which deals in detail with
reasoning using indicative conditionals, and in particular with the material



conditional, which has a truth-functional semantic base. Let us start from the
simplest truth table: the table of negation (¬).

Let us take the two sentences:

I like sushi.

I do not like sushi.

The second is true if and only if the first is false. And since a sentence is
either true or false, we can also take it that the second sentence is false if and
only if the first is true. In short, negation flips the truth-value of the sentence
to which it applies. According to this, the truth table of ¬ is as follows:

A

¬A

T

F

F

T

In the table, T stands for “true” and F stands for “false”. The table reads like
this: the first column gives us the possible truth-values of A, the second the
truth-values of ¬A, in relation to the given values of A; the rows, then, tell
us how the given value of A determines the value of ¬A. The table that we
have just depicted expresses the following instruction:

• With A – True: ¬A – False

• With A – False: ¬A – True

It is easy to see from the truth table or from the instruction above that ¬ is a
truth-functional connective: all we need, in order to determine the truth-
value of
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¬A, is the truth-value of A, according to the rule imposed by the truth table
of ¬.

The tables also make it clear in which sense exactly a certain truth function
is associated with connective ¬: the connective determines a function that,
when taking T as an input, gives F as an output, and when it takes F, it gives
T.

Let us go to conjunction (∧). We have already said that a sentence like
Anna turned the key and the car started up

is true if and only if both conjuncts are true, and it is false if and only if at
least one of them is false. The following truth table summarizes this rule: A

B

A ∧ B

T

T

T

T

F

F

F

T

F



F

F

F

The table is to be read as follows: the first two columns provide possible
truth-values to A and to B. Four rows appear because we have four possible
combinations of the truth-values of the two sentences. The last column
provides the values of A ∧ B, in relation to the given values of A and B.
Thus, the rows tell us how any combination of values of A and B determines
a truth-value for A ∧ B. The table in question expresses the following
instruction:

• With A – True and B – True: A ∧ B – True

• With A – True and B – False: A ∧ B – False

• With A – False and B – True: A ∧ B – False

• With A – False and B – False: A ∧ B – False

Also in this case, it is easy to see that we are dealing with a truth-functional
connective: all we need in order to determine the truth-value of A ∧ B are
the truth-value of A and the truth-value of B, according to the rule set by the
truth table of ∧.

Once again, it is clear that conjunction determines a truth function, and more
precisely the two-place function which, if taking T and T as arguments,
gives T, and gives F in all the other cases.

As for disjunction (∨), take the following sentence:

Either Paul is eating an apple or Paul is watching TV.

In order for this sentence to be true, it suffices that one of the two disjuncts
is true.



In other words, if it is true that Paul is eating an apple, then the disjunction is
true, regardless of the truth-value of the other disjunct. Similarly, if Paul is
watching TV, the disjunction is true, regardless of the truth-value of “Paul is
eating an apple”. By
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contrast, if both disjuncts are false, then the disjunction is false. The truth
table of

∨ is the following:

A

B

A ∨ B

T

T

T

T

F

T

F

T

T



F

F

F

The above table expresses the following instruction:

• With A – True and B – True: A ∨ B – True

• With A – True and B – False: A ∨ B – True

• With A – False and B – True: A ∨ B – True

• With A – False and B – False: A ∨ B – False

Again, it is easy to see that ∨ is a truth-functional connective: in order to
determine the truth-value of A ∨ B, all we need to establish are the truth-
value of A and the truth-value of B, according to the rule set by the truth
table of ∨. It is also clear that disjunction determines a truth function and,
more precisely, the two-place function which gives T back as an output, if T
is one of the two arguments, and gives F

back only if no T appears as an argument.

As is clear from the first row in the table, ∨ expresses the so-called
“inclusive disjunction”: this means that this disjunction is true not only when
only one of the two disjuncts is true, but also when both disjuncts are true.
The disjunction in

“Paul is eating an apple or Paul is watching TV” sounds inclusive, if only
because the two disjuncts are compatible. But other disjunctions would
sound “exclusive”, that is, they would sound like they are false if both
disjuncts are false or if both disjuncts are true. In natural language, we have
no distinct syntactic elements for the two disjunctions, and it is often the
context, emphasis, or other factors that tell us which one we are facing. If the
two disjuncts are incompatible, then we are probably using the disjunction to



express exclusiveness – for example, if we say, “Either Peter is a good man,
or he isn’t”. In any case, we cannot say whether the disjunction is inclusive
or exclusive simply by looking at the syntax of the sentence: in natural
language “or” sometimes expresses an exclusive disjunction, and sometimes
it expresses an inclusive disjunction. In logic, on the other hand, a distinct
connective – xor – is used just for exclusive disjunction. The truth table of
xor is the following: A

B

A xor B

T

T

F

T

F

T

F

T

T

F

F

F
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Let us return for a moment to the syntactic indistinguishability of the two
disjunctions in our natural language. Take:

Paolo is either at home or at Anna’s.

The subsidy is reserved for families with an income of less than x euro or
with at least three children.

In the first sentence the disjunction sounds exclusive: it states that Paolo is at
home or at Anna’s but, obviously, he cannot possibly be in both places. In
the second case, the disjunction sounds inclusive: obviously, in order to have
the subsidy, one must be in one of two conditions – having a certain income
or having at least three children – but it is clear that the subsidy will also be
paid to those who fulfil both conditions. It has been argued that disjunction
in natural language is actually always inclusive, and that the meaning
component that excludes the truth of both disjuncts is actually implicitly
conveyed. For example, we exclude that Paul is both in his house and in
Anna’s house not because this is told us by the use of “or”, but because it is
impossible for a human being to be in two different places at the same time.
In this volume we will disregard these complications: we will follow the
standard choice in logic and “identify” disjunction with inclusive disjunction
∨.

5.2.2 Definability

In propositional logic, many of the five connectives are definable starting
from combinations of just some of them, and in classical logic (as in many
other logics, actually) we can define all connectives on the basis of only a
pair of connectives.7

For example, in classical logic negation and disjunction are sufficient to
generate all the other connectives. In particular:

A ∧ B =def ¬(¬A ∨ ¬B)

where we read =def as “is by definition equal to” or “is defined as”. How do
we determine that this definition is adequate? Again, truth tables come in
handy here.



A

B

¬A

¬B

¬A ∨ ¬B

¬(¬A ∨ ¬B)

A ∧ B

T

T

F

F

F

T

T

T

F

F

T

T

F



F

F

T

T

F

T

F

F

F

F

T

T

T

F

F

7. Actually, in classical logic we find something even stronger: any possible
connective (having a truth-functional semantics) can be defined in terms of
negation and disjunction.
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What did we show with this table? Before answering, let us see how the
table should be read. The last column and the first two ones together do
nothing but present the truth table of the conjunction. Columns from the
third to the sixth help to progressively construct the truth table of ¬(¬A ∨
¬B) starting from the truth-values of the sentences that constitute it – from
most complex to simplest, they are ¬A ∨ ¬B, ¬A, ¬B, A, B.

The crucial point here is indeed the sixth column: if you compare it with the
last one, you see that they are the same, or in other words: ¬(¬A ∨ ¬B) is
true in all and only scenarios where A ∧ B is true. Therefore, ¬(¬A ∨ ¬B)
is false in all and only the scenarios where A ∧ B is false. Therefore, the
two formulas ¬(¬A ∨ ¬B) and A ∧ B

are logically equivalent – that is, the one is true in all and only the logically
possible scenarios in which the second is, and false in all and only the
logically possible scenarios where the second is. This shows that the
definition we have proposed is adequate.

From here we can then go on to define other connectives. For example, xor
can be defined like this:

A xor B =def (A ∨ B) ∧ ¬(A ∧ B)

Again, we use truth tables to check this:

A

B

A ∨ B

A ∧ B

¬(A ∧ B)

(A ∨ B) ∧ ¬(A ∧ B)



A xor B

T

T

T

T

F

F

F

T

F

T

F

T

T

T

F

T

T

F

T



T

T

F

F

F

F

T

F

F

The last column, together with the first two, gives us xor’s truth table. For
the rest, what have we done? We built the truth table of (A ∨ B) ∧ ¬(A ∧
B) – second to last column – on the ground of the previous columns. The
second last column and the last one are exactly the same. Therefore, (A ∨
B) ∧ ¬(A ∧ B) and A xor B are logically equivalent. This shows the
adequacy of the above definition.

What the definition tells us, out of symbols, is exactly what the xor truth
table tells us, that is: A xor B is true if and only if at least one of the disjoint
is true, and it is not the case that both disjuncts are true. The difference is
that the definition that we have just discussed does this in a syntactic way,
i.e. by defining xor on the ground of other elements of the language (the
connectives ¬, ∨, ∧ ), while the truth table does it in a semantical way, i.e.
by exploiting extra-linguistic entities – namely: the truth-values.

Notice that the definability of A ∧ B in terms of negation (¬) and
disjunction (∨) secures that the same xor can be defined starting from those
two connectives.



In particular, we have:

A xor B =def ¬(¬(A ∨ B) ∨ ¬(¬A ∨ ¬B))
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which tells us that A xor B is true if and only if it is not the case that: A and
B are both false (that is, that their inclusive disjunction is false) or that they
are both true (that is that the disjunction of their negations is false).

We will then see in Chapter 6 that the material conditional → is definable in
terms of negation (¬) and disjunction (∨) – more precisely: A → B =def ¬A
∨ B. We will also see that the biconditional ↔ is definable in terms of
conditional and conjunction (∧) – more precisely: A → B ∧ B → A.
Consequently, even the biconditional is, in the end, definable in terms of
negation and disjunction. We will also notice that → is definable in terms of
negation (¬) and conjunction (∧) – more precisely: A → B = ¬

def (A ∧ ¬B). Since the conjunction is itself definable in terms of negation
and disjunction, this last definition becomes a more indirect way of defining
the conditional in terms of those two connectives.

Notice that it is possible to start from a different ground, assuming as
primitives the connectives of negation and conjunction. On this ground, we
can then define the disjunction in a rather elementary way:

A ∨ B =def ¬(¬A ∧ ¬B)

The following truth table shows us that the definition is adequate: A

B

¬A

¬B



¬A ∧ ¬B

¬(¬A ∧ ¬B)

A ∨ B

T

T

F

F

F

T

T

T

F

F

T

F

T

T

F

T

T



F

F

T

T

F

F

T

T

T

F

F

Once we have defined ∨ in terms of ¬ and ∧, we can go on and define →
via one of the two definitions we have presented already, and then define ↔
as above.8

We close this overview by noticing that the connectives that we have
presented are the operators called “Boolean operators”, or simply
“Booleans”, in computer science. This name is related to the British
mathematician and logician George Boole (1815-1864), who first studied
them. It is not by chance that these connectives play a role in computer
science. Just to get an idea, the modern processors that 8. Notice that the
logical equivalences that we have used to define conjunction and disjunction
resemble the “De Morgan laws” from set theory: A ∩ B = − (−A ∪ −B) and
A ∪ B = −(−A ∩ −B). This is not by chance: we can think of a sentence like
p as denoting all the situations in which p is true. Thus, p ∧ q denotes the
intersection of the set of situations in which p is true with the set of those
situations in which q is true, and this intersection is in turn the set in which



both sentences are true. Also, p ∨ q would then denote the union of the set
of situations in which p is true with the set of those situations in which q is
true, and this union is in turn the set in which at least one of the two
sentences is true. Finally, − p would denote the set of those situations in
which p is false, which is the complement of the set of situations in which p
is true. Indeed, it is also not by chance that symbols ∨ and ∧ resemble the
set-theoretical symbols ∪ and ∩ (which denote union and intersection,
respectively).
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make our computers and smartphones work are nothing more than a very
complex system of logic gates. A logic gate is a digital circuit which, given
the presence or absence of electric current in its inputs, allows electric
current to pass through or not.

For example, the AND logic gate has two inputs and one output. It passes
electrical current out if it receives electrical current from both of its inputs.
The similarity with ∧ is striking. And it is not the only one. We have the
logical gate NOT, corresponding to ¬, OR, corresponding to ∨, XOR,
corresponding to exclusive disjunction, NAND (i.e. NOT AND),
corresponding to ¬ (A ∧ B), etc.

Truth conditions and the validity of arguments

The notion of validity is a semantical notion, since it crucially relies on the
notion of truth. Recall that an argument is deductively valid if and only if its
conclusion is true in every logically possible scenario in which its premises
are true. The semantics of propositional logic specifies the truth conditions
of complex sentences that contain sentential operators. The truth tables give
us a very simple visual representation of these conditions.



These two points helps us check the validity of an argument in a systematic
and rigorous way. In order to understand why, consider that the rows of a
truth table represent in a certain sense all the logically possible scenarios in
which the constituent sentences have a given truth-value, and by scrolling
through the rows, we can check which truth-value the complex sentence that
we wish to evaluate must have, in those scenarios. For example, in the
disjunction truth table, the last row (down) ideally represents all possible
scenarios where A and B are false, and tells us that, in all of these scenarios,
A ∨ B is itself false. Due to this, truth tables – and more generally,
propositional semantics – give us everything we need to check the validity of
an argument whose sentences are simple or contain only truth-functional
sentential operators. Indeed, if we are dealing only with such sentences, the
connectives are the key to reasoning – or else: connectives are what
determines the rational connections between sentences. And semantics tells
us under what conditions the connectives

“generate” true sentences. Let us take an example. Take the following
argument: (P1)

A ∨ B

(P2)

¬B

(C)

A

This argument is valid, and the truth tables help us see why. Take the table:
A

B

A ∨ B

¬B



T

T

T

F

T

F

T

T

F

T

T

F

F

F

F

T
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The first three columns together form the truth table of disjunction. The
fourth column gives us the truth conditions of ¬B in relation to the four
possible scenarios defined by the combination of the truth-values of A and
B. The rows of the table represent precisely these possible scenarios. To see



if the above argument is valid, what should we do, after building the table
above? We should go and see the rows where both A ∨ B and ¬B are true.
If A is true in all of these scenarios, then the argument is valid. Otherwise, it
is not. There is only one group of scenarios in which both A ∨ B and ¬B are
true, and this group of scenarios is represented by the second row (with the
exclusion of the headline, which lists the sentences). In that row, B is true.
The argument is therefore valid.

The following table gives us an alternative visual representation of the same
control procedure. It starts directly from the four possible combinations of
truth-values of the two sentences that are indirectly involved in the two
premises (i.e., A and B).

Combination

P1: A ∨ B

P2: ¬B

C: A

TT

T

F

T

TF

T

T

T

FT



T

F

F

FF

F

T

F

Notice that since we have two sentences and two possible truth-values, we
have 22 = 4

possible combinations (ideally, four rows, as in the truth tables that we have
seen thus far). If we had three sentences and two truth-values, we would
have had 23 = 8 combinations. If we had two sentences and three truth-
values, we would have had 32 = 9

possible combinations. In general, in a truth table we have mn possible
combinations of truth-values, where m is the number of truth-values that can
be assigned, and n is the number of the simplest sentences occurring in the
sentences under consideration.

The inference scheme that we have just discussed is a scheme that we use
very often in everyday life. If we know that Anna is home or at the gym and
if we find out that she is not home, then we conclude that she is at the gym.
If I can choose between two options and discard one because it leads to a
false consequence, I will choose the other one.

We can give a general recipe to apply the control method that we have just
illustrated with the simple example above. It consists of the following three
steps: 1. Identify all the combinations of truth-values of the sentences that
appear in the premises and in the conclusion;



2. Build a table in which each row represents a combination and reports the
truth-values of the premises and conclusion for those combinations; 3. Verify
that there is no row in which for all the premises we have value T and for the
conclusion value F. If there is no such row, the argument is valid. However,
if such a row exists, the argument is invalid.
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We also exemplify the semantic proof of the invalidity of an argument. Take:
(P1)

A ∨ B

(P2)

A

(C)

B

This is not a valid argument, and we just need to consider the truth table of
disjunction in order to see this:

A

B

A ∨ B

T

T

T



T

F

T

F

T

T

F

F

F

The second row represents the family of possible scenarios in which A ∨ B
is true, A is true, and yet B is not. This gives us a possible scenario where P1
and P2 are true, but C is not: the inference scheme in question is invalid.

In Chapter 6 we will apply the same procedures and methods to prove the
validity or invalidity of inference schemes involving the material conditional
→.

Before closing this paragraph, let us show the validity of A ∨ ¬A. Take the
following table:

A

¬A

A ∨ ¬A

T

F



T

F

T

T

Naturally, A determines two (families of) possible scenarios: those in which
A is true (and ¬A is false), and those in which A is false (and ¬A is true).
Given the truth tables of ¬ and ∨, we have that A ∨ ¬A is true in both
families of scenarios. But since either A is true, or A is false, A ∨ ¬A is true
in every logically possible scenario. When a sentence A is true in any
logically possible scenario, it is said to be a valid sentence. This extension of
the term “valid” from inferences to sentences is due to the fact that, if A is
true in every possible scenario, then any inference that concludes A is valid,
no matter what premises it starts from.9 Another way to say the same thing
is that A is a logical truth (or, in the case of propositional logic, a tautology).

9. Indeed, if A is true in every possible scenario, then it will be true in every
possible scenario in which A , …, A

, …, A

1

n are true – with n finite and 1 ≤ n, and for arbitrarily chosen A1

n. This is due

to the fact that, if A is true in every logically possible scenario, then any
inference that concludes A from any premise B is valid.
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5.2.3 Proving by rules. Natural deduction



Semantics specifies the truth conditions of sentences and allows us to say
whether an argument is valid or not. This is a very intuitive way of
understanding how an argument works, and it is also the most natural way
for us, since the distinction between a good argument and a bad argument
(which is central to this volume) depends partly, albeit crucially, on whether
all the premises are true or not. However, there is also a way of
understanding the functioning of an argument that is independent of the
notion of truth, and is, as logicians say, purely syntactic – that is, it focuses
on the kind of logical symbols that appear in the sentence, and not on the
truth of the sentence. The central notion in this approach is that of a proof. A
proof can be seen as a process that takes a series of sentences (the premises)
as input, and outputs a sentence (the conclusion). In a proof, the “input”
sentences are assumed or derived from sentences already given as input
through inference rules. The rules of inference also help us go from the
inputs (the premises) to the output (the conclusion), and in this volume we
focus mainly on this role of the rules. Inference rules can be thought of in
terms of validity (which would bring us back to the semantic angle) or
simply as (non-arbitrary) instructions to manipulate sentences that contain
certain logical concepts, such as connectives (in the case of rules for
propositional logic we will see shortly what this means in concrete terms). In
other words, in a proof everything that appears as a premise is either an
assumption, or it has been previously proved based on other sentences.10

Although in this volume we rely on a semantic understanding of deductive
reasoning procedures (and of reasoning in general), it is also worth taking a
look at the syntactic approach, because it gives us the chance to see
reasoning in terms of rules rather than in terms of truth. In what follows, we
will briefly discuss the 10. Ideally, what is simply assumed should always be
“discharged”, through a process notifying that the assumption did not
necessarily came with a commitment to the truth of the assumed sentence, or
from the fact that a proof of that sentence has been given already or will ever
be given. We will consider an example of discharging in Chapter 6, when we
will discuss deductive hypothetical reasoning. Indeed, discharging is
essential in what are termed “hypothetical derivations” in which that kind of
reasoning consists. Discharging what has been assumed without first being
proved is crucial to ensure that what appears in a proof is always well-
grounded, in conformity with the need for rigor that comes with
mathematical reasoning – it is indeed in connection with this species of



reasoning activity that the notion of proof has been first defined in a rigorous
and systematic way.

Of course, we do not aim at the same degree of rigor as mathematical proofs
in our everyday reasoning, but in a similar way we can say that, if we do not
offer any reason for the truth of our premises, the best we can do is, actually,
prove the logical connections between such premises and the conclusion
(which is what we ultimately do when we discharge an assumption at the
end of a proof). In the best situations, we can take the premises for granted if
they have already been accepted by the other parties that are involved in the
argument exchange in which we are involved. From this point of view,
similar dynamics apply to mathematical reasoning and to everyday
reasoning, although the latter proceeds inevitably on looser criteria.
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idea of reasoning through rules concerning connectives, and we will present,
albeit briefly, what is termed “natural deduction”, which gives us an example
of reasoning through rules and exemplifies in a very simple way the
approach to reasoning that does not need to call into question the concept of
truth.

Proving by rules

The scheme of inference

A ∨ B

¬B

A

gives us a rule of reasoning that sounds like this: whenever at a given point
of your argument you have a disjunction (A ∨ B) and the negation of one of



its disjuncts (¬B), conclude the other disjunct (A). Notice that this
explication of the rule does not involve the concept of truth, but simply what
we can do if the sentences A ∨ B

and ¬B appear as “inputs” of our reasoning.

Rules such as the one we have just exemplified are called “rules of
inference”.

These rules are not arbitrary, and there are two ways to understand this point.
One way is to say that the “right” rules of inference are those that are
deductively valid.

This brings us back to semantics, and in particular gives us a semantic
criterion for distinguishing inference rules worth their salt from pseudo-
rules, that is, those deductive reasoning schemes that are fallacious. Another
is to say that an inference rule is worth its salt if it can be derived from a
basis of “primitive” or elementary rules that are for some reason secured –
most importantly because they detail the basic behavior of the individual
connectives we have introduced.

This implies the construction of a “structure” of inference rules in which
there are a few rules that “generate” all the others in some sense. There are
many different ways of implementing this idea formally, and thus of defining
a propositional calculus based on rules. We will briefly illustrate one of
them, known as natural deduction.

Before doing so, notice that the idea of starting with a sufficient number of
primitive rules alone to generate all the rules of reasoning is one of two
options in the syntactic approach to propositional logic (and logic in
general). The other option usually starts out from a large number of
principles (which are not rules, but sentences that are taken as axioms) and
few inference rules (which typically include modus ponens, which we will
look at in Chapter 6; sometimes this is the only rule); from these, it is
possible to generate all the theorems of the logic. However, proofs are
usually longer under the second approach. Both options fall into the branch
of mathematical logic that is called proof theory, whose starting point is the
possibility of conceiving of proofs as complex syntactic objects.
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Natural deduction

In principle, we could play with an infinite number of inference rules, but we
tend to use a very small pack of rules in our reasoning. The system called
“natural deduction calculus”, however, frames inference rules in a very
simple way, as it in-dividuates two inference rules for each logical operator
(or, more in general, two kinds of rules). These are termed introduction
rules, telling us under which conditions we can introduce a sentence having
a given main connective in a proof, and elimination rules, telling us under
which conditions we can go, in a proof, from a sentence having a given main
connective to a sentence that does not contain that connective.

Natural deduction for propositional logic provides a very simple approach to
rules, and we will briefly go through it. Before doing so, it is worth making a
short comment: we owe natural deduction calculus to the German logician
Ger-hard Gentzen, who presented a natural deduction calculus for classical
logic.

Gentzen called it “natural deduction” in the belief that its rules were the
rules that mathematicians actually used (“naturally”) in their reasoning. It
was later questioned whether mathematicians actually reasoned in the way
Gentzen described – and apparently for good reason – but the name of the
calculus has been left as it was.

Let us take conjunction (∧). This is the rule of conjunction introduction:

. .

. .

. .

A B



A ∧ B

The rule tells us that if we have got to a sentence A along a proof (or we
assumed A along the way), and we have got to a sentence B along a proof
(or we assumed B

along the way), then we can (legitimately) conclude A ∧ B. By doing this,
the rule specifies the exact conditions under which we can introduce a
conjunction along a proof, or, more generally, under what conditions we are
entitled to conclude a conjunction in an argument.

Note that A and B, above the line, are on two different lines because we do
not need them to be in the same proof or argument – although this is
possible. Summing this up: if A has been proved previously, and B has been
proved previously (even in different proofs), then it is also implicitly proved
that A ∧ B. More generally, if A follows from one of our arguments, and B
follows from one of our arguments, we are entitled to conclude A ∧ B. The
semantics introduced in § 5.2.1 helps us check the validity of the rule.
Indeed, if we take the truth table of the conjunction, we will see that the row
in which both A and B have value T is such that A ∧

B also has value T.
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The following rule is known as the rule of conjunction elimination: A ∧ B

A

The rule tells us that if I have a conjunction along my reasoning, I can
(legitimately) conclude one of the two conjuncts (arbitrarily chosen). The
semantics introduced in § 5.2.1 helps us check the validity of this rule.
Indeed, A ∧ B is true in on-ly one case, the one in which both A and B are



true. Note that the presence of A rather than B above is arbitrary. The rule
would remain valid even if we illustrated it with the other conjunct.11 As we
can see, the rule tells us in what circumstances, along a proof or an
argument, we can “eliminate” a conjunction – that is, use the conjunction to
move to a simpler sentence (any of the conjuncts).

The rule of disjunction introduction is:

A

A ∨ B

That is: where you have a sentence along a proof, you can (legitimately)
introduce any disjunction such that the sentence in question is one of the
disjuncts. That this is a valid rule is clear from the truth table of the
disjunction: A ∨ B is true in any row in which at least one of A and B is
true.

It has been questioned whether the disjunction of our ordinary language
actually works like this. After all, the rule tells us that we can introduce any
disjunction in which a sentence occurs that we have previously assumed or
proved.

Now suppose I correctly conclude from the basic laws of arithmetic that 2 +
2 =

4, and then go on to say, “So, 2 + 2 = 4 or Joe Biden is the President of the
USA”.

This would sound strange, and for two reasons. The first reason is that the
procedure leading to a proof that 2 + 2 = 4 does not contribute at all to a
possible procedure to “prove” that Biden is the President of the USA. The
second reason is that “2 + 2 = 4” is completely irrelevant to “Joe Biden is the
President of the USA”.12

In any case, as long as we accept the truth table for the disjunction
introduced in § 5.2.1, the rule of disjunction introduction is valid. The rule of
disjunction elimination is more complex:



11. It is possible, and in a sense more correct, to define two rules of
conjunction elimination: one allowing us to infer A from A ∧ B, and one
allowing us to infer B from A ∧ B. Since conjunction is commutative,
however, we can also specify just one rule, as we are doing here. A similar
remark holds for the rule of disjunction introduction.

12. We will touch upon the issue of relevance in Chapter 6, when we will
discuss the material conditional.
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[A] [B]

. .

. .

. .

A ∨ B C C

C

The rule tells us that, if we have proved or assumed A ∨ B, and C can be
derived both under the assumption of A and under the assumption of B, then
we can conclude C. “Derivable under the assumption of A and B” means
that A and B are assumed exclusively to see what follows (the use of square
brackets indicates this).13

The sense of the rule is this: if a sentence follows both from A and from B,
then the disjunction A ∨ B suffices to conclude that sentence. In terms of
truth-values: if C

follows as much from A as from B, then C is true in every possible scenario
where A is true, and in every possible scenario where B is true. These are,



taken together, the possible scenarios where A ∨ B is true. The rule is
therefore valid.

Let us look at the rule of negation introduction: A

...B ∧ ¬B

¬A

This is equivalent to saying that if we derive a contradiction from a sentence,
we can (legitimately) conclude the negation of the sentence itself. In
essence, this is the reductio ad absurdum that we discussed in Chapter 4. In
terms of truth-values, we can analyze the rule like this: if the truth of A
guarantees the truth of a contradiction, then A is false. Indeed, “the truth of
A guarantees the truth of a contradiction” equates with saying that a
contradiction is true in every logically possible scenario in which A is true.
But there is no possible scenario in which a contradiction is true, and
therefore there is also no possible scenario in which A is true. Hence, given
the truth table of negation, ¬A is true in every logically possible scenario.
The one indicated below is instead termed the rule of negation elimination:

¬¬A

A

13. In particular, the use of square brackets signals that discharging
assumptions is essential in order to fully understand the rule correctly.
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According to this rule, if we prove the negation of a negation, we
automatically prove the negated sentence. The truth table for negation makes
it clear that ¬¬A is true if and only if A is true:

A



¬A

¬¬A

T

F

T

F

T

F

We also have introduction and elimination rules for the conditional → ,
which we will look at in Chapter 6. The rules for the biconditional follow
from them, and from the rules for conjunction, in an elementary way. By
adding the rule: A ∨ ¬A

to the pack, we get the calculus of natural deduction for classical
propositional logic. The rule in question tells us that we can always
introduce, at any point in a proof, a logical truth such as A ∨ ¬A. The
reason why natural deduction is interesting is that the simple and compact
set of rules that we have introduced is able to generate all and only the
reasoning schemes that are valid in classical propositional logic. In other
words, it constitutes an economic and compact basis from which any form of
deductively valid inference in this logic can be constructed.

5.2.4 Assertion and rules of inference

What we have seen so far about natural deduction gives us a rather abstract
perspective on deductive reasoning – or rather, on that part of deductive
reasoning in which connectives are the only logical terms. Let us try to reach
a less abstract (and hopefully intuitive) perspective on the above rules of
inference. We can do this by considering some of our linguistic practices
concerning assertion. This will help us approach the rules via a very familiar



phenomenon that we experience every day: that of asserting sentences, that
is, less technically, making statements. Let us illustrate this with an example.

If someone asserts “It is sunny outside and it is twenty-five degrees”, we are
entitled to expect that, at least in principle, that person is also willing to
assert, or defend, both “It is sunny outside” and “There, it’s twenty-five
degrees”. Imagine this exchange of words between Benedict and Alice, with
Anna appearing just as a listener:

Alice: It’s sunny outside and it’s twenty-five degrees.

Benedict: Anna, did you hear? It’s sunny outside!

Alice: No, no, absolutely not! It’s not sunny outside.
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Alice’s verbal reaction seems strange to us, because she has first asserted a
conjunction A ∧ B and then she has denied one of its conjuncts – more
precisely: she has asserted the negation of one of them. The reason why this
sounds strange is simple: the assertion of a conjunction ideally commits the
speaker to separately asserting each of the conjuncts. What does “ideally
commit” mean? It means in the first place that whoever listens to that
assertion is entitled to expect that whoever asserts it also asserts, if requested
by the others, any of the conjuncts, or that the speaker supports the assertion
of one of the conjuncts, if such assertion is made by others. For example, if
Benedict had said: “It’s sunny outside. Do you confirm this, Alice?” it would
have been legitimate for him to expect Alice to say, “Yes, I do”

(while maybe also giving some kind of reason for her statement). By the
same to-ken, in the example above Benedict is entitled to be surprised: Alice
has asserted a conjunction but she is not defending one of the conjuncts –
indeed, she has even asserted its negation. All this means that we cannot (i)
assert a conjunction, (ii) deny one of its conjuncts, or assert its negation, or
refuse to support it or give it our approval, and (iii) be rational. In other
words: if a rational speaker asserts a conjunction, then they ideally commit



themselves to asserting (defending, accepting) each of the conjuncts. If a
listener assumes that the speaker is rational, then they are entitled to expect
the speaker to fulfil the commitment.

Clearly, this provides an intuitive understanding of the rule of conjunction
elimination: if in your argument you have asserted (as an assumption or
consequence of an assumption) A ∧ B, then ideally you commit yourself to
asserting A as well, and also B (and at the same time, you make the assertion
of each conjunct legitimate). If the listener accepts your premise A ∧ B,
then they also commit themselves to accepting A and accepting B.

Something similar holds for conjunction introduction: if I assert A, and I
assert B (in two different acts of assertion), I ideally commit myself to
asserting A ∧ B.

It would be irrational to assert (or accept) two sentences and refuse to accept
their conjunction.

Let us briefly consider how the commitments generated by assertions help us
understand the rules for disjunction and negation. If I have asserted A ∨ B,
and then in one argument I validly conclude C from A, and in another
argument I validly conclude C from B, then I ideally commit myself to
asserting C, and at the same time I legitimate myself in asserting C. It would
be irrational to assert a disjunction, to show that from any of the disjuncts C
follows, and yet reject C. This allows us to have an intuitive understanding
of disjunction elimination.

As for disjunction introduction, it is at odds with our intuitions, as we have
seen above. Let us try to understand it like this. The “classic” view we are
following suggests that, if I have asserted A, it makes no sense that I refuse
to accept A ∨ B, no matter what B is, because refusing to accept that
disjunction is tantamount to refusing to accept both disjuncts. But I have just
asserted one of them. This argument assumes that “refusing to accept a
disjunction” is equivalent to “refusing to
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accept both disjuncts”. If the disjunction works as in the truth table for ∨
that we have seen in § 5.2.1, this equivalence actually holds – and since the
truth of A suffices to secure the truth of A ∨ B, the acceptance of A
rationally justifies the acceptance of A ∨ B.

If I assert A and I derive a contradiction from this, it is rational that I assert
the negation of A. Otherwise, I should be ready to assert also what I have
derived from A, that is a contradiction. But then I would not be rational. If I
assert that it is not the case that A is not the case, it is rational for me to
assert A.

These comments enable us to read the rules of natural deduction in a way
that is more suited to our daily argumentation activity – in fact, reading them
in terms of “proof” makes more sense in mathematical reasoning. For
instance, if discussing mathematical reasoning, we would read conjunction
introduction in the “of-ficial” way in which logicians read it, namely: “If you
have proved (or assumed) A, and you have proved (or assumed) B, then you
have proved A ∧ B”. What we have said about assertion suggests that we
can read the rules in a more general way, namely: “If you have asserted (or
assumed, or concluded) A, and you have asserted (or assumed, or concluded)
B, then you are entitled to conclude A ∧ B”

(and at the same time, you are also ideally committing yourself to
concluding such a conjunction).

5.3 Reasoning with predicates and quantifiers

Let us go back to the three deductively valid arguments that we exemplified
at the beginning of the chapter.

(P1) All sculptures imitate natural objects.

(P2)



Bird in space does not imitate a natural object.

(C)

Bird in space is not a sculpture.

(P1) All sculptures imitate natural objects.

(P2)

Unique forms of continuity in space does not imitate a natural object.

(C)

Unique forms of continuity in space is not a sculpture.

(P1) All horses have four legs.

(P2) Furia does not have four legs.

(C) Furia is not a horse.

Let us try to understand what kind of inference scheme we are facing here –
or equivalently, to analyze the logical form of these three arguments.
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Figure 5.1

Premise P1 tells us that a set S of ob-

jects is included in another set of ob-

S’

jects S' . Premise P2 tells us that an

S



i

object i does not belong to set S' . Conclusion C says that i does not belong

to set S (Figure 5.1) . This conceptu-

al structure is common to all three ar-

guments. Moreover, the arguments are

valid precisely due to their conceptu-

al structure. The relations between the

sets S and S' and the object i make the conclusion true, given the truth of the
premises. In other words, it would be inconsistent to say that a set S is
included in a set S' , that i does not belong to S' and that, nevertheless, i
belongs to S.

In short, the validity of those three arguments does not depend on which
predicates appear in them (and which specific the sets of objects they refer
to), but on the type of relationship between the sets of objects that are
expressed by the premises and the conclusion. Therefore, not only these
three arguments, but all arguments presenting this logical form are valid: if
an argument presents this logical form, the truth of the conclusion is
guaranteed, given the truth of the premises.

Recall, before we go on, that a deductively valid argument does not
necessarily have a true conclusion, and that if (some of) its premises are
false, the conclusion may also be false. This in no way jeopardizes its
validity. Let us take for instance: (P1) All horses have four legs.

(P2) Furia does not have four legs.

(C) Furia is not a horse.

Not all horses have four legs, because there will be at least one that has lost a
leg in a bad accident. Hence, P1 is false, and knowing this keeps us from
concluding C, even if we take P2 as true. However, the argument is



deductively valid, because if P1 and P2 were both true, then C should also
be. We can schematize the three arguments discussed above as follows:

(P1) All Ps are Q.

(P2)

c is not Q.

(C)

c is not P.

When nouns and predicates are relevant to our reasoning (contrary to the
propositional case), it is even more clear that the schematic letters help
highlight the logical structure of the argument. In fact, while we have
replaced the particular nouns and predicates used in the arguments with
schematic letters, we have pre-
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served the words that tell us what the logical relationships between the sets
and the individuals denoted by these nouns and predicates are (in particular,
we have kept the word “All”). As we have seen, it is these relationships that
are crucial in the above three arguments.

Since the validity of the argument is guaranteed by its logical form, we can
use P, Q and c respectively in order to stand for any common nouns, any
predicate, any proper name and we will still obtain a valid argument, since
the specific identities of the sets to which the predicates somehow refer, and
the identities of the individuals to whom the nouns refer, are irrelevant to the
validity of the argument.

5.3.1 Sentences containing predicates and quantifiers, and their
relationships As we have seen in the previous section, usually our sentences



are composed of a subject and a predicate. An important class of sentences
in subject-predicate form relates the set of objects denoted by the subject
with the set of objects denoted by the predicate. For example, if I say that all
horses have four legs, I am relating the set of horses (or as we will say, the
set of those individuals who are horses) with the set of individuals who have
four legs. Sentences that relate two sets of individuals are called categorical,
precisely because they concern categories of individuals and their
relationships – at least in a loose and intuitive sense of “category”. For
example, the following are categorical sentences:

(1) All sculptures imitate natural objects

(2) All horses have four legs

(3) All elephants are equiangular

(4) No senators have been bribed

(5) Some TV stars care about their privacy

(6) Not all movies have a happy ending

(7) Some students will not pass the exam

The first three sentences say that one set is included in another, and their
schematic representation is: All Ps are Q. The fourth sentence says that the
intersection between the set of senators and that of corrupt people is empty,
and its schematic representation is: No P is Q – or, equivalently: All Ps are
not Q. The fifth sentence says that the intersection between the set of
television stars and that of the people who care about their privacy is not
empty, and its schematic representation is: There exists some P which is Q –
or, equivalently: Not all Ps are non- Q. The sixth sentence says that the
intersection of the set of movies and the complement of the set of happy
ending stories is not empty, and the seventh sentence says the same with
respect to the students and those who will pass the exam. Their form is:
There exists some P that is not Q.
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From a set-theoretical point of view, the relationships that these sentences
establish between the two classes are the following, where S is the set of
individuals to which the predicate P refers, and S' that of the individuals
referred to by the predicate Q:14

S ⊆ S'

S ∩ S' = ∅

S ∩ S' ≠ ∅

S – S' ≠ ∅

The words all, none, exists/ some are called quantifiers because they indicate
how much of class S is included in or excluded from class S' . Note that
sentences like these reduce all predicates to the form “copula + noun”, even
when this copula is not present in the original sentence. For example, the
predicate “having four legs” is rendered as “being an individual that has four
legs”. This paraphrase of all categorical sentences with the general form:

Quantifier P is (not) Q

dates back at least to Aristotle, and it has generated a huge number of
discussions among logicians and philosophers of language. Here, however,
we will disregard these problems and assume that the above is a correct
periphrasis, which does not distort the meaning of the sentence. We will say
something more about the periphrasis in § 5.3.3.

During the Middle Ages, the four forms of categorical sentences were
traditionally indicated using the four letters A, E, I, O, which we write here
in bold so as not to confuse them with the schematic letters for arbitrary
formulas15 . The quantifier “All” (or “For every”) is called the universal
quantifier, and the sentences of kind A and E (“All Ps are Q”, “No P is Q”)
are called universal, while the quantifier



“Some” (Or “There is at least one”) is called the existential quantifier and
the sentences of kind I and O (“Some Ps are Q”, “Some Ps are not Q”) are
called existential or particular. The relationships between these four kinds of
sentences are illustrated by what is traditionally called the square of
oppositions (Figure 5.2).

14. Notice that what we are calling, here, “the set of the individuals to which
predicate P refers” is the set of those objects to which we refer by what we
call “subject” (of a quantified sentence) in our natural language. What we
are calling “the set of the individuals to which predicate Q refers” is the set
of objects to which we refer by what we call “predicate” (of a quantified
sentence) in our natural language. For instance, in “Every horse is black”,
the subject is “horse”, the predicate is “is black”.

We will see that formal logic interprets sentences of this kind as sentences
that contain no subjects, but just predicates (“to be a horse”, “to be black”)
and individual variables.

15. It is thought that the labels derive from the Latin words AffIrmo e nEgO
because “All P s are Q” and “Some P s are Q” are sentences that assert
something while “No P is Q” and “Some P s are not Q” are sentences that
deny something.
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Figure 5.2 The square of oppositions

Sentences A and E are contraries. Two sentences are said to be contraries
when they can both be false but they cannot be both true. Thus “All students
passed the ex-am” and “No student passed the exam” can be both false (if
some students passed the exam and some students did not pass) but they can
never both be true: if one is true the other is necessarily false.

A and I on the one hand and E and O on the other are subalterns. Two
sentences are subalterns when they imply each other. In particular, A implies
I and E



implies O: if it is true that all the students have passed the exam, it will of
course al-so be true that some students have passed it. If it is true that no
student has passed the exam, it is of course also true that some students have
not passed it. If this may seem strange, think of set-theoretical relations: if
the set S is included in the set S' , this implies that the intersection between S
and S' it is not empty; if the intersection between S and S' is empty, then the
set S – S' will not be empty (if S is not).

Sentences of kinds I and O are subcontraries. Two sentences are
subcontraries when they can both be true but they cannot both be false. If
some students passed the exam and some students did not pass, then an I-
sentence and a O-sentence are both true, but it cannot be false that some
students passed the exam and false that some students did not. In other
words, it is not possible that there are neither elements of S which are S' nor
elements of S which are not S' . The subcontrariness of I and O can be
verified by means of the relations we have already described. For example,
we have said that A and E cannot both be true, and this excludes that their
contradictories are both false because when A and E are true, I and O are
false. To understand the relationships between sentences, a set-theoretical
representation may prove helpful. A sentence A states that the set of S is
included in that of S' (Figure 5.3).
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Figure 5.3

Figure 5.4

S’

S

S’

S

If this is true, then it will be false that the intersection between the sets S and
S’ is empty and therefore the relevant E-sentence will be false. It will also be
false that there are elements of S that are not elements of S' and therefore
also the relevant O-sentence will be false. Instead, it will be true that the
intersection between S



and S' is not empty and therefore the relevant I-sentence will be true.

An E-sentence states instead that the intersection between the sets S and S' is
empty (Figure 5.4). If this is true, then it will be false that the set S is a
subset of the set S' and therefore the relevant A-sentence will be false. It will
also be false that there are Ss that are S's – that is, that the intersection of the
two sets is non-empty –

and therefore the relevant I-sentence will be false. Instead, it will be true that
there are elements of S that are not elements of S' and therefore the relevant
O-sentence will be true.

A sentence of kind I tells us that the intersection between S and S' is not
empty (Figure 5.5). The asterisk in the figure indicates that the set in
question is non-empty. If this is true, then it will be false that the intersection
between the two sets is empty and therefore the relevant E-sentence is false.
However, in this case we can say nothing of A and O. Indeed, a sentence of
kind I just says that there are elements in S ∩ S' but it does not say whether
all the elements of S are in S' or not or if all the elements of S' are in S or not.
So we do not know if A and O are true or false.

Finally, O tells us that there are elements of S that are not in S' (Figure 5.6).

If this is true, then the set S is not totally included in S' and therefore the
rele-Figure 5.5

Figure 5.6
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Figure 5.4

vant A-sentence will be false. But we cannot say anything about the relevant
I- and E-sentences. Indeed, a sentence of kind O just says that there are
elements in S – S'



(if S is non-empty) but we do not know if all the elements of S are outside S'
or not.

So we do not know if I and E are true or false.

The relationships that we have illustrated here between the categorical
sentences have been challenged, since today it is believed that the sentences
A and E

do not imply that the sets S and S' are non-empty and therefore such
sentences can be true even when such sets do not contain any elements. For
example, suppose you read the following warning in public transport: “Do
not smoke. All transgressors will be punished according to the law”. The
sentence that all offenders will be punished according to the law is true even
if there is (and never will be) any offender. Hence an A-sentence can be true
even if the set of objects denoted by its subject is empty. Conversely, the
sentences of types I and O seem to have an existential implication, that their
truth implies the existence of objects in S. “Some Martians are green” does
not seem to have any chance of being true if there is no Martian.

Therefore, if an A-sentence can be true even if the corresponding I-sentence
is not (and the same applies to types E and O), we can no longer say that A-
sentences imply I-sentences I and that E-sentences imply O-sentences. Here
we will disregard these difficulties simply by assuming that the relevant sets
for a given quantified sentence are non-empty.16

5.3.2 A formal language for reasoning with predicates and quantifiers
Before moving on, let us briefly consider how we can provide a rigorous
artificial language that can express the sentences appearing in our reasoning
with predicates and quantifiers. This will build over the language that we
have provided in § 5.2

for that piece of language which is involved in propositional reasoning.
Then, we will explain how to attribute a truth-value to sentences containing
predicates or quantifiers, and we will briefly present the introduction and
elimination rules for the quantifiers. Before doing so, we need to understand
how logic “reads” sentences in subject-predicate form. Take a sentence like
“Peter runs”. In logic, the predicate “run” (like any predicate) is interpreted



as a function that applies to a name: if P stands for “to run”, and a stands for
“Peter”, then P( a) stands for “Peter runs”.

This also works for relational predicates like “Lorenzo loves Giovanna”, but
these predicates take two (or more) names as arguments. P( a, b) can
therefore stand for 16. Notice that the idea that A and E have no existential
implications gives rise to oddities. For example, “All Martians are green” is
true even though there is no Martian. We can of course discuss why “All
offenders will be punished” sounds true to us even if there is no offender and
“All Martians are green” sounds false to us if there is no Martian, but this
would take us too far from the aim of this volume.
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“Lorenzo loves Giovanna”. As for quantified sentences, words like “All”,
“Some”,

“There is at least one”, “For every”, are treated as operators, and a sentence
like “Everyone has red hair or hair that isn’t red” is rendered as ∀ x( P( x)
∨ ¬ P( x)). A sentence such as “There is at least one city” is rendered as ∃
xP( x). We will see shortly how sentences such as “All men are mortal” and
“Some men are tall” are rendered.

Let us now turn to our “new” language. In order to build it, we must just
adjust the recursive definition of § 5.2 so that it also includes sentences of
the form P( a),

∀x P( x), and so on. The recursive definition for formulas thus becomes: 1.
A string of symbols of the form P( a) is a sentence.

2. If A is a sentence, then so is ¬A.

3. If A, B are sentences, then so is A ∧ B.

4. If A, B are sentences, then so A ∨ B.



5. If A, B are sentences, then so is A → B.

6. If A, B are sentences, then so is A ↔ B.

7. If A is a sentence, ∀ x A( x) is a sentence.

8. If A is a sentence, ∃ x A( x) is a sentence.

9. Nothing else is a sentence.

Notice that sentences of the form P( a) are now the simplest, and thus they
play the role that atomic sentences p, q, r, s, … previously played. The great
difference is that the sentences of the form P( a) are able to reveal the basic
syntactic structure of our simplest sentences (that is, of the sentences that are
the simplest among those we use in our natural language). Steps 2) to 6) are
exactly the same as in the definition from § 5.2. Step 7) tells us that if A is a
sentence (be it atomic or complex), then if we replace the name – or one of
the names – that appears in A with a variable, and quantify it by ∀, then we
get a sentence. Step 8) says the same thing, relative to the existential
quantifier. It is very important that arbitrary formulas appear in these two
passages, because the non-quantified sentences on which we ideally work to
obtain quantified ones can have arbitrary complexity. In other words, we do
not just have universal sentences of the form ∀ xP( x), but also sentences of
the form ∀ x( P( x) ∧ Q( x)) or ∀ x( P( x) → Q( x)).

Let us now see how we can render sentences such as “All men are mortal”.

What does that sentence say? It says that everything that is a man is also
mortal.

That is, for everything, if that thing is a man, then that thing is mortal. In
other words, sentences of the form “All Ps are Q” are read in logic as ∀ x(
P( x) → Q( x)).

The logical symbols that will determine the behavior of this kind of sentence
in reasoning will therefore be those that express our “All” and “If ... then”.
What does a sentence like “Some cars are blue” (or “One or more cars are



blue”) tell us? It tells us that there is something that is a car and it is blue. In
other words, sentences of the form “Some P is Q” are read in logic as ∃ x(
P( x) ∧ Q( x)).
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Truth conditions of sentences containing predicates and quantifiers It is time
to move on to the truth conditions of sentences of the form P( a), ∀ x A( x)
or ∃ x A( x). We already have a solid intuition regarding these conditions,
but let us first see how formal logic defines them, and we will then realize
that logic does nothing but make our intuitions clear and rigorous. Once we
have names, predicates, and quantifiers, our semantics no longer has to tell
us just under what conditions a sentence is true or false. It must also tell us
to which individuals (objects) the names refer, and to which sets of things
the predicates refer, in some sense. To do this, we must use the concept that
logicians call “interpretation”.



An interpretation is a function that can take arguments of different types. A
crucial point is that, for it to work correctly, we must define a precise
“domain of discourse” ( D) that gives us the individuals to whom or which
the names refer and the sets of individuals to which the predicates refer. For
example, an interpretation applies to individual constants (names), and
associates with each of them the individual member of D to which the name
refer (the “reference” of the name). For example, given an interpretation Ι
and an individual constant a, we have Ι( a) = d, where d ∊ D (d belongs to
D), for some individual in D. An interpretation, however, also applies to
predicates, associating to each of them a subset S of D. For example, we will
have Ι( P) = S for some set S such that S ⊆ D. In other words, names denote
individuals (according to the association dictated by the interpretation), and
predicates denote the extension of a property (that is, the set of objects that
satisfies that property). For example, the predicate “to run” denotes, in this
logical framework, the set of those individuals that run. An interpretation
also applies to sentences and associates them with a truth-value (in our case,
T or F). Here are the truth conditions of a sentence of the form P( a): Ι( P(
a)) = T if and only if Ι( a) ∊ Ι( P) That is: P( a) is true if and only if the
individual to which a refers belongs to the set extending the property
expressed by P. For example, if P( a) is “Peter runs”, then P( a) is true if and
only if the name “Peter” refers to an individual who is in the set of those
individuals who run. Once we take it outside logical formalism, the idea is
very intuitive. As for the connectives of this formal language, they are
defined by the truth tables of § 5.2, and we will not dwell on them. As
concerns ∀ x A( x) or ∃ x A( x), things are a little more complex. The point
is that we are also dealing with variables here, and an interpretation tells us
nothing about them. In order to “interpret” the variables, in some sense, we
need to combine a given interpretation with a family of possible
assignments. These are functions that associate each variable to an
individual in D – in other words, an assignment acts as if variables were
names. They are usually denoted by r, r' , r″, … and so on. We say that two
assignments r and r' are x- alternative to one another when they assign the
same values to each variable, except possibly x. In other words, if two
assignments r and r' are x-alternative (to one an-
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other) then they can differ at most in the value they give to x, not in those
they give to the other variables. This pack of notions is crucial for defining
the truth conditions of ∀ x A( x) and ∃ x A( x). Moreover, truth conditions
here need to be relativized to the combination of an interpretation and an
assignment; we denote combinations of this kind by Ι r. We start from the
truth condition of ∀ xP( x), which is: Ι r(∀ xP( x)) = T if and only if r' ( x)
∊ Ι( P) for all the assignments r' which are x-alternative to r

Let us try to understand this. First, let us see where it is meant to take us,
indirectly: it means to tell us that ∀ xP( x) is true if and only if all the
individuals in D are in the subset S of D denoted by P – that is, if S = D for S
= Ι( P). How does it tell us this?

Simple: if we consider all the possible assignments r' which are x-
alternatives to r, by considering them together we will find that all the
individuals in D will be associated, from assignment to assignment, to x. The
fact that then the assignment of x is in the interpretation of P for all relevant
assignments implies that all the individuals in D are in the subset S of D
denoted by P according to the interpretation Ι

(which, contrary to the assignment r, remains “fixed” in evaluating the truth
of the quantified sentence).

Something similar happens with sentences of the form ∃ x A( x). The truth
condition of ∃ xP( x) is:

Ι r(∃ xP( x)) = T if and only if r' ( x) ∊ Ι( P) for some assignment r' which
is x-alternative to r

Once again, the condition is meant to tell us that ∃ xP( x) is true if and only
if at least one individual in D is in the subset S of D denoted by P – that is, if
S ∩ D ≠



∅ for S = Ι( P). How does it tell us this? Simple: if there is a possible
assignment r'

which is x-alternative to r and such that r' ( x) ∊ Ι (P), then we will find that
there is at least one individual in D which is in the interpretation of P.

The two conditions can be easily generalized to sentences of the form ∀ x
A( x) and ∃ x A( x), where A is a formula of arbitrary complexity: Ι r(∀ x
A( x)) = T if and only if Ι r' (A( x)) = T for all the assignments r' which are
x-alternative to r

Ι r(∃ x A( x)) = T if and only if Ι r' (A( x)) = T for some assignment r'
which is x-alternative to r

Let us now look at the truth conditions of sentences of the form ∀ x( P( x)
→ Q( x)) and ∃ x( P( x) ∧ Q( x)), which we have discussed mostly at the
beginning of § 5.3. The truth conditions of ∀ x( P( x) → Q( x)) are: Ι r(∀ x(
P( x) → Q( x))) = T if and only if, for all the assignments r' which are x-
alternative to r: if r' ( x) ∊ Ι( P), then r' ( x) ∊ Ι( Q)
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Due to the reasoning we have presented above, this ultimately means that ∀
x( P( x)

→ Q( x)) is true (in a given interpretation Ι) if and only if Ι( P) ⊆ Ι( Q) .
This justifies the “set-theoretical” reading that we have given to sentences of
the form “All Ps are Qs”. Similarly, the truth conditions of ∃ x( P( x) ∧ Q(
x)) are: Ι r(∃ x( P( x) ∧ Q( x)) = T if and only if, for some assignment r'
which is x-alternative to r: r' ( x) ∊ Ι( P) and r’( x) ∊ Ι( Q) Due to the
reasoning we have presented above, this ultimately means that ∃ x( P( x)



∧ Q( x)) is true (in a given interpretation Ι) if and only if Ι( P) ∩ Ι( Q) ≠ ∅ .
This justifies the “set-theoretical” reading we have given of the sentences of
the form “Some Ps are Q”.

We close this technical part with two short remarks. First, we cannot
represent the truth conditions of sentences of the form ∀ x A( x) and ∃ x A(
x) by truth tables.

This is because the quantified constructions are not truth-functional. Second,
the semantics for negation from § 5.2 and the semantics of ∃ make it clear
that we can define the universal quantifier ∀ in terms of ¬ and the
existential quantifier ∃. It is easy to see that ∀ x A( x) =def ¬∃ x¬A( x) is
an adequate definition. Alternatively, it is possible to define the existential
quantifier in terms of the universal one: it is also easy to see that ∃ x A( x)
=def ¬∀ x¬A( x) is an adequate definition.

Some logical equivalences

Interpretations are not like the rows of truth tables, but they play the same
role: that of constructing the logically possible scenarios that we must
consider in order to check the validity of a sentence or piece of reasoning.
Here we will use them very indirectly to check not the validity of a
reasoning or a sentence, but the logical equivalence between different
sentences. More specifically, we will use the set-theoretical reading that the
interpretations of the quantified sentences permit while checking the truth
conditions of these sentences. We will start with: (1)

∀ x( P( x) → ¬ Q( x)) is equivalent to ∀ x( Q( x) → ¬ P( x)) The first of the
two quantified sentences is true if and only if the set on which P is
interpreted is a subset of the complement of the set on which Q is interpreted
– that is, if the set on which P is interpreted is a subset of “everything that is
not Q” – and therefore if Ι( P) ⊆ ( D – Ι( Q)),17 which is equivalent to Ι( P)
∩ Ι( Q) = ∅.18 The second of 17. In set theory, this string of symbols reads
as “the set that interprets P is a subset of the complement of the set that
interprets Q”. The complementation operation – (with respect to a set S



which is a subset of a given domain D) is the one that returns all those
individuals in D which are “outside” S.

18. In set theory this string of symbols reads as “the set that interprets P and
the one that interprets Q have an empty intersection” – which means that
they share no members.

110

Part II Deductive arguments

the two quantified sentences is true if and only if the set on which Q is
interpreted is a subset of the complement of the set on which P is interpreted
– that is, if the set on which Q is interpreted is a subset “of everything that is
not P” – and therefore if Ι( Q)

⊆ ( D – Ι( P)), which is again equivalent to Ι( P) ∩ Ι( Q) = ∅. Thus, the two
sentences ultimately have the same truth conditions, and are therefore
logically equivalent.

That equivalence is also intuitive, and a brief consideration of a couple of
sentences in our natural language will help us understand it. Take “No man
is immortal”. If this statement is true, “No immortal is a man” is also true. If
any immortal were a man, in fact, it should be the case that “No man is
immortal” is false. In a completely analogous way, it can be understood that
if “No immortal is a man” is true, then “No man is immortal” is also true.

The following is a further equivalence:

(2)

∃ x( P( x) ∧ Q( x)) is equivalent to ∃ x( Q( x) ∧ P( x)) The first of the
two sentences in question is true if and only if Ι( P) ∩ Ι( Q) ≠ ∅ –

that is, if the sets that interpret P and Q, respectively, share at least one
member.

The second is true under exactly the same conditions.19



Once again, let us take an example from natural language: “Some people
who live in Milan are football players” cannot be true unless it is also “Some
football players (are people who) live in Milan”.

Notice instead that:

(3)

∀ x( P( x) → Q( x)) is not equivalent to ∀ x( Q( x) → P( x)) This is because
Ι( P) ⊆ Ι( Q) does not imply that Ι( Q) ⊆ Ι (P) – in general, S ⊆ T

does not imply T ⊆ S: S may be a subset of T without T being a subset of S.

For instance, “All men are mortal creatures” is true. But it is not true that
“All mortal creatures are men”. Furthermore:

(4)

∃ x( P( x) ∧ ¬ Q( x)) is not is equivalent to ∃ x( Q( x) ∧ ¬ P( x)) The first
sentence is true if and only if Ι( P) ∩ ( D – Ι( Q)) ≠ ∅ – that is: if and on-ly
if the set that interprets P and the complement of the set interpreting Q have
a non-empty intersection. However, this can also happen because, for
example, Ι( Q)

= ∅ – that is, the set that interprets Q is empty. Under this same condition,
however, the second sentence is false, because if it were true, then ∃x Q(x)
would also be true. However, this is true if and only if Ι( Q) ≠ ∅.

For instance, there is at least one man who is not tall and not short at the
same time, but this does not imply that there is something tall and short at
the same time and that it is not a man. This is because there is nothing that is
both tall and short 19. This holds because S ∩ T = T ∩ S for any pair of sets
S and T.
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at the same time. Such an object would indeed make a contradiction true, but
contradictions are logically false in the logic we assume in this volume. This
suffices to show that the two sentences are not equivalent.

Let us look at some other equivalences.

(5)

∀ x( P( x) → Q( x)) is equivalent to ∀ x(¬ Q( x) → ¬ P( x)) The first of the
two quantified sentences is true if and only if the set on which P is
interpreted is a subset of the one on which Q is interpreted and therefore if Ι(
P) ⊆ Ι( Q).

It is easy to see that this is equivalent to ( D – Ι( Q)) ⊆ ( D – Ι( P)). Indeed,
if ( D – Ι( Q))

⊈ ( D – Ι( P)), some member of ( D – Ι( Q)) is also a member of Ι( P), which
is incompatible with Ι( P) ⊆ Ι( Q) . This suffices to show the equivalence of
the two sentences.

Just to give a concrete example: “All

cats are mammals” is true. But this implies

Figure 5.7

that “Anything that is not a mammal is not

a cat”. It is easy to see that the implication

also goes in the other direction.

T

S



Figure 5.7 helps to understand the rea-

soning behind (5) via the visual representa-

tion of the relationships between two sets.

All that is in set S is also in T but, as a consequence of this, all that is outside
T will al-

so be outside S.

Finally, notice that:

(6)

∃ x( P( x) ∧ ¬ Q( x)) is equivalent to

∃ x(¬ Q( x) ∧ P( x))

This actually follows from the commutativity of conjunction.

Introduction and elimination rules for quantified sentences For the sake of
completeness, we will briefly present the introduction and elimination rules
for ∀ and ∃, along the lines of natural deduction for quantified classical
logic, i.e. that version of classical logic that can express the kind of
sentences that we are considering now.

This is the rule of universal quantifier introduction:

B

.

.

.

A



∀ x A( x)
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The rule tells us that if I prove a formula A, then the formula will express
something true for all individuals. This is because, in proofs, the choice of
one individual (rather than another) is arbitrary. In other words, the choice
of A, containing, say, names a 1,…, a n, is arbitrary. What if we choose a
sentence B that is the same as A, but for the fact that names b 1,…, b n occur
in it? Think of the mathematical reasoning where we start from the arbitrary
choice of an object (“Take a number n with these given properties”, “Take a
figure c with these given properties”). What this kind of reasoning does,
typically, is to show that n or c also has another property, and finally
conclude that, since n or c are arbitrarily chosen (out of numbers or figures
that have the given initial property), the result can be generalized to all
numbers or figures with the initial property. The scheme of this kind of
mathematical reasoning is:

[ P( a)]

...

Q( a)

P( a) → Q( a)

∀ x( P( x) → Q( x))

This is how we read the scheme: If you prove P( a) → Q( a), since from the
temporary assumption of P( a) it follows that Q( a), then, if a is an arbitrary
name, you can also conclude ∀ x( P( x) → Q( x)). The scheme applies the
introduction rule of the universal quantifier precisely in inferring the
conclusion, together with the rule for introducing the material conditional
that we will look at in Chapter 6 (and which is used in the second to last step
of the proof).



The rule of universal quantifier elimination is:

∀ x A( x)

A

That is: If you prove ∀ x A( x), you can conclude A (where A contains
names while

∀ x A( x) contains variables). For example, if I prove that each object is red
or not red, then I prove that the object denoted by a is either red or not red:

∀ x( P( x) ∨ ¬ P( x))

P( a) ∨ ¬ P( a)

The rule of existential quantifier introduction is: A

∃ x A( x)

that is, if you assume or prove A , then you can conclude that there is an
individual who satisfies A . For example, if I assume that a is red, then I can
conclude that there is at least one individual who is red.

5

Deductive arguments

113

The rule of existential quantifier elimination is:

∃ x A( x)

A[ x/ c]

where c is an individual constant that does not appear in the proof.



That is, if I prove or assume that ∃ x A( x), then I can arbitrarily take a
“new” individual constant c – that is, a constant that had not already
appeared in our reasoning – and I can infer A( c). We can write A[ x/ c]
equivalently, which indicates the result of replacing x with c in A( x).

5.3.3 Some remarks on the logical regimentation of predicates and
quantifiers The “functional” reading of the predicates that we have
introduced is insensitive to some differences that are present in the grammar
of our natural language. For example, the reading does not distinguish
between sentences such as “Some plumb-ers are chess players” (in which a
copula is present), and sentences such as “All horses have four legs” (in
which there is no copula). One could think that this “insensitivity”
obliterates an aspect of our language that likely plays a role in our reasoning.
The issue is actually hard to solve and we will not deal with it in this
volume. We will assume, instead, that such insensitivity does no harm to our
treatment of reasoning.

A similar point: our formal regimentation does not distinguish between
adjectives and generic nouns. It does not see the difference, so to say,
between “All hikers are tired” and “All horses are mammals”. This
insensitivity becomes less significant as soon as we read the two sentences
as our regimentation suggests, namely as “All individuals who are hikers are
tired” and “All individuals that are horses are mammals”.

One last remark before closing these considerations. Here we have
considered only some of the possible quantifiers of our language, as is usual
when dealing with quantified logic, and we have done this because “all” and
“some” are the easiest quantifiers to handle. In any case, the formal
regimentation of quantifiers that we have presented applies to other
quantifiers, and this has already been done.

For instance, we have a formal treatment of what are termed “arithmetic
quantifiers” (“There are two/three/four/ x’s that .. ”). Also take sentences like
“Only cheetahs can run that fast”. We can read it simply using the standard
quantified theory we have defined, considering that “Only cheetahs can run
that fast” is equivalent to



“All animals that can run that fast are cheetahs”. Similarly, a statement such
as “All but my friends have left” is logically equivalent to the conjunction
“No friend of mine has left and everyone who is not my friend has left”,
which suggests that these two kinds of sentences can be dealt with using the
formal means that we have introduced.
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5.3.4 Categorical syllogisms

We will now see how the formal regimentation we have introduced helps to
analyze a traditional and very famous piece of logic and theory of reasoning:
the categorical syl ogism. This form of reasoning was already studied by
Aristotle and then by medieval philosophers and logicians. Categorical
syllogisms consist of two premises and a conclusion, each of which is a
categorical sentence. In particular, we will see here how the tools we have
introduced so far allow us to check the validity or invalidity of a syllogistic
inference scheme (or syllogistic scheme). Let us start with an example: (P1)
All dolphins are mammals.

(P2) All mammals are animals.

(C) All dolphins are animals.

In the theory of the syllogism developed by Aristotle and systematized by
the logicians of the Middle Ages, the syllogisms are grouped into different
types according to the main quantifiers that appear in the premises and in the
conclusion. In the above argument, the premises and the conclusion are A-
sentences, and they can be expressed as follows:

(P1) All P are Q.

(P2) All Q are R.

(C)

All P are R.



Medieval logicians gave names with a purely mnemonic function (that is, for
the exclusive purpose of remembering what kind of sentences were included
in the premises) to the different kinds of syllogisms. The fact that in the
scheme indicated above all and only A-sentences appear has earned this kind
of syllogism the strange

“sobriquet” of Barbara (the three vowels indeed stand for the kind of
sentence appearing in the premises and in the conclusion).

The theory of syllogism of Aristotelian origins also distinguishes the
premises on the basis of the predicates that are involved. More precisely, of
the two premises, the one of the two premises in which R (the predicate of
the conclusion) also appears is called the major premise. The premise in
which P (which Aristotle would call the subject of the conclusion) appears is
called the minor premise. The subject of the conclusion is also called the
minor term and the predicate of the conclusion major term.

In general, the major term or the minor term can act both as a subject and as
a predicate in the premises in which they appear. In both premises there is a
third term Q, called the middle term, which refers to a third class of objects,
different from that to which the major and minor terms refer. The middle
term will be the predicate of the minor premise if the minor term appears as
subject; it will instead be the subject of this premise if the minor term
appears as a predicate. The same is true for the mid-
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dle term and the major premise: it will be the subject or predicate of this
premise depending on the function performed by the major term.20

Now let us see how the syntactic and semantic regimentation we have
introduced helps us to establish the validity of this syllogism:

(P1)



∀ x( P( x) → Q( x))

(P2) ∀ x( Q( x) → R( x))

(C)

∀ x( P( x) → R( x))

Note that P1 is true if and only if Ι( P) ⊆ Ι( Q) and P2 is true if and only if Ι(
Q) ⊆

Ι( R). Given the transitivity of ⊆,21 we conclude that Ι( P) ⊆ Ι( R). But if Ι(
P) ⊆ Ι( R), then C is true. Therefore, if P1 and P2 are true, C must also be
true. The scheme is therefore valid (Figure 5.8).

Another valid syllogistic scheme is the following:

(P1) All P are Q.

(P2) No R is Q.

(C)

No P is R.

That is, in formulas:

(P1)

∀ x( P( x) → Q( x))

(P2) ∀ x( R( x) → ¬ Q( x))

(C)

∀ x( P( x) → ¬ R( x))



Notice that P1 is true if and only if Ι( P) ⊆ Ι( Q) and P2 is true if and only if
Ι( R) ⊆

( D – Ι( Q)). This means that Ι( P) ∩ Ι( R) = ∅ and that, therefore, Ι( P) ⊆ (
D – Ι( R)).

But if Ι( P) ⊆ ( D – Ι( R)), then C is true. Therefore, if P1 and P2 are true, C
must also be true. The scheme is therefore valid. The Figure 5.9 illustrates
the relationships between the three sets involved. This scheme of syllogism
composed of the Figure 5.8 Barbara

Figure 5.9 Camestres

Q

R

P

Q

R

P

20. The minor term is dolphins, the major term is animals, while the middle
term is mammals. It is clear why this term is called “middle”: the two
premises tell us the relations that the two sets denoted by the terms of the
conclusion have with that denoted by the middle term.

21. That is: if S ⊆ T and T ⊆ U, then S ⊆ U.
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sequence of type sentences AEE – was also given a name in the Middle
Ages ( Camestres).

By contrast, the following scheme is not valid:

(P1) Some P are Q.

(P2) Some R are Q.

(C)

Some P are R.

That is, in formulas:

(P1)

∃ x( P( x) ∧ Q( x))

(P2)



∃ x( R( x) ∧ Q( x))

(C)

∃ x( P( x) ∧ R( x))

Indeed, P1 is true if and only if Ι( P) ∩ Ι( Q) ≠ ∅, and P2 is true if and only
if Ι( Q)

∩ Ι( R) ≠ ∅. However, these are compatible with Ι( P) ∩ Ι( R) = ∅. For
example, suppose that: Ι( P) = { d 1, d 2}, Ι( Q) = { d 1, d 3} e Ι (R) = { d 3,
d 4} for d 1, d 2 d 3, d 4 ∊ D. It is clear in this case that Ι( P) ∩ Ι( Q) ≠ ∅,
Ι( Q) ∩ Ι( R) ≠ ∅, and Ι( P) ∩ Ι( R) = ∅. See Figure 5.10 for a visual
representation of such a situation. Notice that if Ι( P) ∩ Ι( R)

= ∅, then C is false. The kind of situation just described gives rise to a
logically possible scenario in which P1 and P2 are true but C is false.

There are 256 possible forms of syllogism. Indeed, the premises and the
conclusion may take the forms A, E, I or O. The possible combinations are
therefore 4x4x4 = 64. Moreover, in each of the premises the middle term can
be in the position of subject or in the position of predicate. So we have 2x2 =
4 further possibilities. The number of possibilities therefore total 64x4 =
256. We can also list which of these 256 possible forms are deductively
valid.

Syllogisms are usually classified by figure and mode. There are 4 figures,
which depend on the arrangement of the middle term in the premises. In the
syllogisms of Figure 5.10
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the first figure, the middle appears in the position of subject in the major
premise and predicate in the minor one. The Barbara scheme, which we
considered above, is a scheme belonging to the first figure. In the syllogisms
of the second figure the middle term appears in the position of predicate in
both premises. The Camestres scheme is therefore a scheme of the second
figure. If the middle term appears in the position of subject in both premises,
the syllogism is said to be of the third figure; if the middle term appears in
the position of predicate in the major premise and of subject in the minor
one, it is said to be in the fourth figure. The modes, on the other hand,
depend on the types of categorical sentences that appear in the premises and
in the conclusion. Barbara has mode AAA, Camestres has mode AEE.
Together, the mode and the figure uniquely identify a syllogism. For
instance, we can identify Barbara as AAA-1 and Camestres as AEE-2. This
gives a general method for compiling a list of all valid forms.

5.4 Conclusion

To sum up, we have distinguished two kinds of reasoning: one in which the
sentences contain at most the so-called connectives (negation, conjunction,
disjunction, conditional, biconditional), and one in which the so-called
quantifiers are al-so present (among the many possible quantifiers, we have
focused on the universal quantifier all/ for every and the existential
quantifier exists/ some). Furthermore, we have distinguished two kinds of
sentences: atomic sentences, which do not contain logical operators, and
complex sentences, which contain them. A further distinction introduced in
this chapter concerns two angles we can see things from in reasoning and
deductive logic: the semantic one, which deals with the truth conditions of
sentences and the interpretation of names and predicates, and the syntactic
one, which deals with specifying rules of manipulation for sentences that
contain certain logical operators (in our case, connectives or quantifiers).
These rules are called inference rules. The connection between the two
dimensions lies in the fact that we want the rules to be valid (and we have
seen that the notion of validity is a semantic notion) – in happy cases, such
as that of classical logic, we are able to provide rules that allow us to
generate all and only valid inference schemes. We then discussed the truth-
functional semantics of the connectives for negation, conjunction, and
disjunction, postponing the discussion of the semantics of the conditional (if
...



then) to the next chapter. We have also discussed semantics through the
visual representation tool of truth tables. The semantics of connectives and
truth tables have provided us with a concrete tool to check the validity of a
reasoning in which the sentences contain, at most, the connectives we have
introduced. We subsequently presented the rules of introduction and
elimination of negation, conjunction, and disjunction (in this case too, we
have postponed the rules for the conditional to Chapter 6). We then
discussed a reading of these rules that takes us out of the nar-
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row and rigorous sphere of mathematical reasoning, for which such rules
were first systematized and proposed. We mentioned that these rules help us
to generate all valid patterns of propositional reasoning – that is, that
reasoning in which sentences are either simple or contain only connectives.
We then discussed those forms of reasoning in which predicates and
quantifiers are relevant, exemplifying quantified sentences and regimenting
them in a precise formal language. We proceeded by providing the semantics
of these sentences, using the latter to check the validity or invalidity of the
arguments involving them. We also mentioned the introduction and
elimination rules for quantifiers. Finally, we used the semantics of quantified
sentences to check the validity or invalidity of some inference schemes
called “syllogistic schemes”.

6 · Conditional reasoning, I:

The material conditional

In this chapter we will discuss one kind of reasoning with conditionals,
namely the one involving the indicative conditionals. After exemplifying a
concrete case of reasoning that leads to concluding a conditional sentence (§
6.2), we define conditional sentences and the conditional connective, then
we will discuss indicative conditionals and the problem of fixing adequate
truth conditions for these (§ 6.3).



We will see that one of the many possible answers to the problem is
provided by what is termed the material conditional. We will discuss the
semantics and syntax of this kind of conditional, as well as some fallacies of
reasoning involving it, and the “paradoxes of material implication” (§ 6.4).
Finally, we will specify the links between conditionals, on the one hand, and
necessary and sufficient conditions, on the other, and we will briefly discuss
other views on indicative conditionals (§ 6.5

and § 6.6). We close the chapter by discussing an experiment in the
psychology of reasoning that concerns the ability to perform reasoning with
a particular inference scheme for indicative conditionals.

6.1 Introduction

One of the most important forms of deductive reasoning involves
conditionals, that is, sentences of the form “If A, then B”. The class of
sentences that we call “conditionals” is quite mixed, with the effect that we
have many different kinds of deductive reasoning involving conditionals. In
our everyday discourse, the two most important families of conditional
sentences are those of indicative conditionals and counterfactual
conditionals, respectively.

Indicative conditionals convey the information that if it is the case that A,
then it is the case that B. Here is an example:

(1) If Dante never existed, then the Divine Comedy was not written.

Counterfactual conditionals, on the other hand, are used in order to assert
that if it were (or had been) the case that A, then it would be (or would have
been) the case that B. An example is:

(2) If Dante had not existed, then the Divine Comedy would not have been
written.
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These two types of conditionals play an important role in our reasoning. For
example, thanks to indicative conditionals, we infer what follows from a
hypothesis or an assumption. On the other hand, counterfactual conditionals
let us imagine a situation that differs from the one we are in and let us
determine what would follow if that situation actually occurred. These two
kinds of conditionals follow different principles of reasoning. In this chapter
we will focus on the kind of deductive reasoning which involves indicative
conditionals. We will postpone discussion of counterfactual conditionals to
Chapter 7.

The family of indicative conditionals itself is extremely varied. Some kinds
of indicative conditionals have been developed in order to construct
sentences that are (or would be, in their supporters’ opinion) capable of
capturing the dynamics of the reasoning that mathematicians deploy in
proving their theorems. Furthermore, a moment of reflection helps us see
that, in our daily lives, we use indicative conditionals in many different
ways. Even if not all these uses have been framed within some normative
theory of reasoning, linguistic practice shows that when we talk about
“indicative conditionals”, we are talking about a very diversi-fied family. For
the sake of simplicity, in this chapter we will deal with the “material
conditional”, a kind of conditional introduced in logic in order to capture the
dynamics of proofs as well as those forms of our deductive reasoning that
start out from hypotheses. The material conditional has some peculiarities, as
we will see from § 6.4 on. The reason why we picked this conditional for our
discussion is that the material conditional is the simplest of those which
satisfy the rules of inference that we deem desirable for indicative
conditionals. We will look at these rules in §§ 6.4.2 and 6.4.3.

The chapter is structured as follows. In § 6.2 we will introduce a reasoning
problem involving conditionals that will help us familiarize ourselves with
these sentences, introduce the notion of hypothetical deductive reasoning,
and look at the role that conditionals play in it. In § 6.3 we will provide
rigorous definitions of a conditional sentence and a conditional connective,
respectively – with the latter being the main logical operator occurring in a
conditional sentence. In addition, we will briefly return to the various kinds
of indicative conditionals (§



6.3.1) and to the problem of truth conditions for conditionals (§ 6.3.2). In §
6.4

we will deal with the material conditional, its semantics and its rules of
inference (§§ 6.4.2 and 6.4.3). We will also briefly discuss what are termed
paradoxes of material implication (§ 6.4.1) and some fallacies of deductive
reasoning that concern conditionals (§ 6.4.3). We will then deal with the
connection between conditionals and necessary and sufficient conditions (§
6.5) and discuss other conceptions of indicative conditionals (§ 6.6). Finally,
we will discuss an experiment developed by psychologist Peter C. Wason,
which shows that applying modus tollens proves harder than we might
expect for real cognitive agents – such as ourselves.
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6.2 A reasoning problem involving conditionals

Take the following problem.1 Assume there are two people and that: A. one
is a man, the other is a woman;

B. one (let us call him/her e) is English; the other (let us call him/her f ) is
French;

C. e asserts: “I am a man”;

D. f asserts: “I am a woman”;

E. at least one of them is lying.

Question: Given these assumptions, which of the following sentences must
be true?

F. Only the man is lying.

G. Only the woman is lying.



H. The woman is f and the man is e.

I. The woman is e and the man is f.

This is not a hard question, and a little informal reasoning suffices to get the
right answer. Here, however, we will identify the correct solution of the
problem by following a rigorous method: for each of the solutions F, G, H, I,
we will assume, for the sake of argument, that the solution is correct – that
is: that the corresponding sentence is true, exactly as we assume our starting
assumptions to be – and we will see the result of this from a logically
rigorous point of view.

Let us start by assuming that F is true – that is: only the man is lying. We
have two possible cases:

Case 1: e is a man. From F (Only the man is lying) and C ( e asserts: “I am a
man”), it follows that e is actually a woman. At the same time, from F and D
( f asserts: “I am a woman”) it follows that also f is a woman. But the
conclusion that both e and f are women, contradicts assumption A (one is a
man, the other is a woman).

Case 2: f is a man. From F (Only the man is lying) and D ( f asserts: “I am a
woman”), it follows that f is a man, which does not contradict what we are
temporari-ly supposing, and, from F and C ( e asserts: “I am a man”), it
follows that e is a man, too. Both are men, then, but this contradicts A (one
is a man, the other is a woman).

Therefore, if we assume that F is true, and that the assumptions A-E are also
true, the negation of A must be true. At this point we apply the reductio ad
absurdum (RAA) and conclude that F is false if A-E are true. Consequently,
F is not the correct answer to the initial question.

1. The problem is from Paolo Legrenzi, Armando Massarenti, La buona
logica. Imparare a pen-sare, Cortina, Milan 2016, pp. 70-72.
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The same thing is true for solution G: we apply a reasoning that goes along
the very same line as the one we have just applied to F and here too we come
to the conclusion that G cannot be the solution to our problem.

Let us then suppose that H is the solution. What follows from it? From H, C
and D taken together, the negation of E follows – remember that E is “at
least one of the two people are lying” – since both e and f are telling the
truth. In other words, all scenarios where H, C and D are true are scenarios
where E is false.

Indeed, these are scenarios in which both persons are telling the truth, thus
contradicting E. We apply RAA here again, and conclude that H is false if
A-E are assumed to be true. Hence, H is not the correct answer to our
problem.

Finally, let us suppose that the right answer is I. Obviously, I is compatible
with all our starting assumptions: there is at least one logically possible
scenario in which A, B, C, D, E and I are all true – that is, the initial
assumptions do not imply the negation of I. Let us look at this in some
informal way. On the one hand, A and E

together imply that one of the two persons is a man, the other is a woman,
and that at least one of them is lying. On the other hand, I along with C and
D additionally tells us that one of the two persons is a man, the other is a
woman, and that they are both lying. Clearly the two situations are
compatible with each other. This suffices to say that I is, among the four
options F-I presented, the only solution compatible with assumptions A-E.
But we want to understand something more, that is: if A-E

is true, so must I (this of course cannot be the case for F-H). To ascertain
this, we can proceed as follows: assume that the negation of I is true together
with A-E. It is easy to observe that in doing so we arrive at one of the four
incorrect answers F-H.

Since these are incompatible with A-E (as we have seen, A-E together with
each of F-H implies a contradiction), it follows that A-E is incompatible
with the negation of I. Let us try to understand why. Assumption E and the
negation of I together imply the disjunction of F and G – that is, if E and the



negation of I are both true, one of F and G is true. It follows, however, that E
and the negation of I together imply the negation of A (see discussion of
Case 1 and Case 2), thus contradicting assumption A. Similarly, A-D and the
negation of I together imply the negation of E, thus contradicting assumption
E.

Hence A-E are incompatible with the negation of I, that is: there is no
logically possible scenario in which A-E and the negation of I are true
together. Hence, we conclude that in any scenario where A-E are true, I is
true. Therefore, I must be true if A-E are too.

Thus, the reasoning we have just exemplified has helped us find the solution
to our problem in a rigorous way. But what exactly have we shown with this
reasoning? That I is true? No. We have proved that if A-E are true, then so is
I. In other words, we have proved the truth of the conditional sentence “If A
and B and C

and D and E, then I”. This is quite different from proving I. In particular, in
the previous example, to prove I we would also have to prove (or have
proved) that our starting assumptions A-E are true. But we did something
different: we just assumed
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those sentences. In other words, we got them on board for reasoning’s sake,
to see what logically follows from them. We have shown that I follows, but
since we have not actually committed ourselves to the truth of the sentences
A-E (we have on-ly assumed them), we cannot even commit ourselves to the
truth of I. However, we can conclude that it is true that “If A and B and C
and D and E, then I” – that is, we can commit ourselves to the truth of this
conditional sentence.

In other words, if we assume A and prove that B follows from it, then we
also prove that the sentence “If A, then B” is true. Whether A is true or B is
true are an entirely different business.



This is very important in order to understand one point: the truth of “If A,
then B” does not depend on the truth of A – that is: the conditional in
question can be true even if A is not – but on the connection between A and
B. This connection can be understood as the holding (or not holding) of the
fact that “If A is true, then B is true”.

Let us sum this up and define a couple of general notions. Hypothetical
deductive reasoning is that form of deductively valid reasoning that starts
from the assumption of one or more hypotheses (temporary assumptions,
made for the sake of argument) A1, ..., An and which allow us to conclude a
conditional sentence “If A1

and … and An, then B”, where B is a sentence which, we have shown,
necessarily follows from A1 and … An. Ideally, therefore, hypothetical
deductive reasoning consists of two steps: prove B on the basis of the
assumption of A1 and ... An, and then take a further step in your reasoning
and validly conclude the conditional “If A1

and ... An, then B”. The reasoning we have deployed in order to solve the
problem above is an instance of this form of reasoning.

The fact that A1 and … An are (temporary) assumptions means that we have
not previously proved them and we are not committing ourselves to their
truth.

The passage leading from the proof of B on the ground of A1 and … An to
the final conclusion that “If A1 and … An, then B” has a technical name:
“discharging the hypothesis” (or “discharging the assumption”). It is called
this precisely because the last passage, whose conclusion is a conditional
sentence, makes it clear that we are not committing ourselves to the truth of
the assumptions.

6.3 The conditional

A conditional sentence is a sentence of the form

“If A, then B”



From a logical point of view, the expression “If … then” is a connective. For
each pair of sentences A and B we can generate two conditional sentences,
obviously: “If A, then B”, and “If B, then A”.
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In logic, the connective “If ... then” is called a “conditional”. This term also
applies to conditional sentences – which are simply called “conditionals”,
usually.

Here we will do the same: context will always suffice to see whether we are
talking about the connective or the sentence.

Following standard logical terminology, given a conditional “If A, then B”,
we will say that A is the antecedent of the conditional, and B is the
consequent of the conditional. Take for instance the following conditional:

(1)

If Napoleon is French, then Napoleon is European.

The antecedent of (1) is “Napoleon is French”, while its consequent is
“Napoleon is European”.

A further example is provided by this conditional:

(2) If Gianni has passed the exam, then Maria is very happy.

In this case, the antecedent is “Gianni has passed the exam”, while the
consequent is “Maria is very happy”.

6.3.1 The many kinds of indicative conditional

We have already said in § 6.1 that the family of indicative conditionals is
rich and varied. Take for instance:

(3) If the temperature rises, then the ice melts



(4) If the stone hits the window, then the window will break

(5) If Dante never existed, then the Divine Comedy wasn’t written.

Sentence (3) expresses a nomological link between two facts, that is, a link
determined by a scientific law that relates a certain increase in temperature
to the melt-ing of the ice. Sentence (4) expresses a causal link between two
facts or events –

the impact of the stone against the window causes the window to break.
Sentence (5) simply expresses a relation between Dante’s existence and the
existence of the work called “Divina Commedia”. The three sentences
express very different ways in which, given a certain condition (the one
introduced by the “if”), something else can happen.

We have said already that the material conditional, which we will deal with
in

§ 6.4, has been elaborated in order to capture some crucial aspects of
mathematical proofs, completely abstracting from the other kinds of
connections that may exist between what acts as a condition and what is to
be conditioned. The three examples above, however, help us introduce a
crucial problem, to which the material conditional provides an answer (one
of many possible ones). This is the problem of the truth conditions of
indicative conditionals.
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Let us consider (3) and suppose that this sentence is asserted while standing
in front of a refrigerating room in which a huge block of ice has formed. Let
us also assume that we can increase or decrease the temperature from the
outside. What do we do in order to verify or falsify sentence (3)? I increase
the temperature, making it go from 0 degrees to 1 degree. If the block of ice
does not begin to melt, then the sentence is falsified (notice that the sentence
does not specify how much the temperature should rise, only that if it rises,



then the ice melts). If, on the other hand, the ice melts, we can say that the
sentence is verified. In the first case, we say that conditional (3) is false, in
the second we say that it is true. Something similar can be done with (4): we
wait for the impact of the stone in flight (suppose that the sentence was
asserted while the stone was thrown towards the window). If the window
breaks on impact, we will say that the sentence is true. If the window does
not break, we will say it is false.

Now take (5). The antecedent is false, since we know that Dante existed. We
cannot therefore falsify the conditional, since in order to do this we should
have a true antecedent and ascertain that the consequent is false. Notice that
in (5) both the antecedent and the consequent are false. How do we evaluate
(5), then? Is it true, or is it false? It cannot be falsified, for sure. Well, does
this suffice to deem it true, or not? And if we should not deem it true, on
what grounds shall we say that it is false?

This helps us introduce two problems. First problem: if the antecedent of a
conditional is true and the consequent false, then the conditional is false. But
under which other conditions is it false? The second: if a conditional has a
true antecedent and a true consequent, then it is true. Under which other
conditions is a conditional true? Let us try to answer these two questions.

6.3.2 Truth and falsity of indicative conditionals

In order to answer the questions above, we must first notice an apparently
counterintuitive situation: there are true conditionals that have false
antecedents and consequents. Our use of conditionals in ordinary language
proves the point. In fact, if I assert (1) or (2), I am not asserting that their
respective antecedents and consequents are true: by asserting (2) I am not
asserting that Gianni has passed the exam or that Maria is very happy; by
asserting (1), likewise, I do not commit myself with either Napoleon being
French or with Napoleon being European.

In this respect, asserting a conditional is very different from asserting a
conjunction or a disjunction. Indeed, if I assert a conjunction, I commit
myself to the truth of both conjuncts, while if I assert a disjunction, I commit
myself to defending the truth of at least one of the disjuncts. In the case of
conditionals, on the other hand, we do not commit ourselves to the truth of



the antecedent or that of the consequent. What we do is commit ourselves to
arguing that if the antecedent is true (or
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we discover it to be true), then the consequent is also true. In other words,
asserting C commits me to defending that B is true if (it turns out that) A is
true.

What I am doing is to exclude the case in which Gianni has passed the exam
but Maria is not very happy, and the case in which Napoleon is French but
not European. In other words, I exclude the case ( A and not B). Having a
false antecedent, therefore, does not suffice to make the conditional false. In
order to falsify a conditional, it is necessary to show that under the
hypothesis in which the antecedent is true, the consequent is false.

Now, with (1) we know that the antecedent is true, while when we assert (2)
we do not know if the antecedent is true or false. But what exactly happens
in situations where the antecedent is false? From what we have seen, this is
neither necessary nor sufficient to falsify the conditional. For example, let us
look at the following conditionals:

(6) If Napoleon is German, then Napoleon is European.

(7) If Napoleon is German, then Napoleon is Australian.

Are they true, or are they false? Before going further, let us sum up some
important points: true antecedent and false consequent are sufficient to
falsify a conditional, and therefore to evaluate it as false. True antecedent
and true consequent are sufficient to verify a conditional, and therefore to
evaluate it as true. What happens in cases where the antecedent is false? This
is neither sufficient nor necessary to falsify the conditional. But does it
suffice to verify it?2

In general, the examples above show that answering the two following
questions is not trivial:



• Question 1: Under what conditions is a conditional false?

• Question 2: Under what conditions is a conditional true?

However, any proper treatment of conditionals must answer them.
Otherwise, it would not be able to determine a good theory of deductive
reasoning with conditionals. Cases such as those set out in (6) and (7) make
the business of answering the two questions hard, because the conditionals
they exemplify are somewhat weird. This impression comes from the fact
that the exercise of assuming that Napoleon is German seems futile, since
we all know that he is French.3

2. Consider that a false antecedent and a false consequent are not jointly
sufficient to falsity a conditional– to see this, just take example (5) from §
6.3.1: intuitively, we would say that that conditional is true, and it has both a
false antecedent and a false consequent.

3. As we shall see in the next chapter, the truth of the conditional in question
would not be vacuous if it were a counterfactual conditional – this
presupposes an attempt at understanding what is the case in situations which
differ from the actual one. In this case, however, we would not use indicative
conditionals, but counterfactual conditionals such as: “If Napoleon had been
German, he would never have waged war on Russia”.
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There are several logical approaches to indicative conditionals, and all of
them provide tools to uniquely determine the truth-value of indicative
conditionals, including the “weird” ones such as those in (6) and (7). A very
influential logical tradition considers sentences such as (6) and (7) to be
vacuously true. The reasoning behind this treatment of conditionals is the
following: whoever asserts a conditional is saying that, under the hypothesis
in which the antecedent is true, the consequent is also true. But he (she) says
nothing about what must happen to the consequent if the antecedent is false.
Or in other words: the only way to falsify a conditional is to show that the



antecedent is true and the consequent is false. If the antecedent is false, we
have no way of proving that the conditional is false, even if the consequent
is false. The impossibility of falsifying it makes the conditional true, albeit in
a vacuous way.

The logical tradition we are talking about is that of classical logic, which in
fact

“chooses” the material conditional as a model of the indicative conditional.
Indeed, the semantics of the material conditional presupposes the acceptance
of the reasoning illustrated above, as we will see below.

6.4 The material conditional

The material conditional is a connective that provides one of the many
possible ways to “read” an indicative conditional sentence. We will use the
symbol → to denote this kind of conditional connective. Thus, A → B
informally reads “If A, then B”, and it is a conditional sentence whose
(main) connective is a material conditional.

The material conditional is presented as a way of answering the two
questions that we have raised in § 6.3.2: “Under what conditions is a
conditional false?” and, most importantly, “Under what conditions is a
conditional true?”

In particular, the material conditional proposes the following “recipe” to
answer both questions, a recipe that establishes the

Truth conditions of the conditional. The conditional A → B is false only if
the antecedent A is true and the consequent B is false; it is true otherwise.

What does “true otherwise” mean here? To understand this we must think
about the possible combinations of the truth-values that the antecedent and
consequent of the conditional can get. Let us look at them in detail.

1. With A – True and B – True: A → B True

2. With A – True and B – False: A → B False



3. With A – False and B – True: A → B True

4. With A – False and B – False: A → B True

The truth conditions of the conditional tell us that only in the second case is
the conditional false. In all other cases, it is true. If we accept, as we do in
this volume,
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that a sentence can only be true or false, it follows that the following
formulation is equivalent to the one we have just provided:

The conditional A → B is false if and only if the antecedent A is true, and
the consequent B is false.

In all other cases, therefore, A → B is true. These other cases include all
those in which the antecedent A is false. This leads us to define the
following truth table for the material conditional:

Table 6.1 Truth table of the conditional

A

B

A → B

T

T

T

F

T



T

T

F

F

F

F

T

The truth table we have just depicted also shows that the material conditional
is a truth-functional connective; that is, the truth-value of A → B entirely
depends on the truth-values of A and B (and on their possible combinations).
Furthermore, the table also tells us that A → B is logically equivalent to ¬
(A ∧ ¬B) and to ¬A ∨ B.

The intuition that seems to back the material conditional (and its truth
conditions) can be reconstructed as the conjunction of the two following
assumptions: 1. A conditional is false in all and only those cases in which
the conditions under which its assertion is falsified hold good.

2. The only conditions under which the assertion of a conditional is falsified
are those in which the antecedent is true but the consequent is false.

This helps us understand why conditional sentences in which the material
conditional is the main connective turn out to be true whenever the
antecedent is false.

A totally different question is whether the material conditional is actually
adequate, as it stands, in capturing some plausible form of conditional
reasoning. The question is not trivial. Some logicians think the material
conditional fails to be adequate – notice that, above, we have rationally
reconstructed the intuition that seems to back the material conditional, but
this does not mean that we have proved the plausibility of 1. and 2.



However, there are two reasons why we are focusing on the material
conditional here, rather than other ways of formalizing indicative
conditionals. First, the material conditional is the one with the simplest
semantics. Second, it provides intuitive inference rules for reasoning with
conditionals. We will examine these aspects further in the following
subsections.

In any case, when our reasoning involves conditional sentences, and we
assume
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the only conditional (connective) in question is the material one, we simply
need to remember that the material conditional is a “game” that has its own
rules. In order to answer questions on the material conditional, we just have
to learn these rules and apply them, even if they do not seem particularly
intuitive. This is exactly the same as playing football: you have to remember
(among other things and rules) and apply the rule that the goalkeeper cannot
grab the ball with their hands if it comes from a back pass from one of their
teammates, even if this rule does not seem particularly intuitive to us.

6.4.1 The paradoxes of material implication

The truth table of the material conditional points out that conditionals with
false antecedents are all true. This implies that some conditionals will be true
even though they do not intuitively “sound” true to us – take, for instance,
“If Napoleon was German, then Napoleon was European” and “If Napoleon
was Australian, then Napoleon was European”: if we play the game of the
material conditional, it clearly follows that these two sentences are true. The
equivalence between A → B and ¬ (A ∧ ¬B) helps us understand why we
have a mismatch between our intuitions on indicative conditionals and what
the material conditional does. Indeed, it helps us rephrase the two
conditionals just mentioned as “It is not the case that (Napoleon was German
and Napoleon was not European)” and



“It is not the case that (Napoleon was Australian and Napoleon was not
European)”. Indeed, it is easy to see that the two last sentences are true.
Whether a conditional definable in terms of negation and conjunction can
really be conceptually sound is a different issue, which we will not discuss in
this volume. Consider this example

(A) 2 + 2 = 5

(B) The Earth rotates on itself while tap dancing.

2 + 2 = 5 is false – it is a logical falsity or, more precisely, a falsity from the
field of arithmetic: it cannot be true. Given the truth table of the material
conditional, this suffices to make us conclude that

(C)

A → B

is true. That is, it is true that “If 2 + 2 = 5, then the Earth rotates on itself
while tap dancing”. More generally, if the conditional in question is the
material conditional, then whenever A is a logically false sentence, A → B
cannot but be logically true.

Indeed, if A is logically false, then A is false in any logically possible
scenario. Given the truth table of the material conditional, this implies that A
→ B is true in every logically possible scenario, regardless of the truth-value
of B.
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There are even more general considerations to make. For example, if the
conditional connective in question is the material conditional, then these two
strange inferences are valid:

(8) World War II did not end in 1941. So, if World War II ended in 1941,
then gold is an acid.



(9) 2 + 2 = 4. So, if World War II ended in 1941, then 2 + 2 = 4.

These are just two instances of the two following valid inference rules,
whose form is: (*) ¬A

A

→ B

(**) B

A → B

The validity of (*) derives from the fact that conditionals with false
antecedents are always true. Now if ¬A is true, then A is false. So a
conditional like A → B must be true, if so is ¬A. The validity of (**) derives
instead from the fact that if a conditional has a true consequent, then it itself
is true, no matter whether the antecedent is true or not (as we can check by
rows 1 and 2 of our truth table). Hence, any conditional with form A → B is
true, if so is B. This explains the validity of (8), whose form is (*), and the
validity of (9), whose form is (**).

(9) also helps us understand another intuitively “weird” case: if we are
dealing with the material conditional, a conditional sentence whose
consequent is logically true is itself logically true.

Conditionals with false antecedents are not the only ones resulting in weird
cases. Consider these further examples:

(10) If gold is valuable, then 2 + 2 = 4.

(11) If Napoleon is French, then Christopher Columbus landed in America in
1492.

These conditionals are composed of sentences which are all true. If we
interpret the

“If… then…” as a material conditional, then the two conditionals are true –
see the row of the truth table having T for both the antecedent and the



consequent. This notwithstanding, we still feel that considering (10) and (11)
true sounds odd. Or rather: it does not seem intuitively correct to consider
them true.

We must be careful and distinguish two things, however. We fully
understand, based on the truth table above, that if we read (10) and (11)
according to the rules of the material conditional, then these two conditionals
must be true. However, this does not necessarily mean we should give up our
puzzlement. We could indeed insist that considering (10) and (11) true is
counterintuitive, and we could then sug-
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gest that the material conditional is not adequate to capture our intuitions
about conditional sentences, and that it does not account for the way in
which we react to a conditional when we are asked to say whether it is true
or false.

However, it is important to understand why deeming (10) and (11) true
sounds odd to us. The reason is actually very simple: there is no connection
between the antecedent and the consequent, in terms of the relevance of the
former for the latter. In other words, the consequent is true but the
antecedent does not seem to make any contribution to its truth. The fact that
gold is valuable is completely irrelevant to the truth of 2 + 2 = 4, and the fact
that Napoleon is French is completely irrelevant to the facts concerning
Columbus’ travels toward America. In short, when we use conditionals in
ordinary language, we seem to assume that the truth of the antecedent must
be relevant to that of the consequent. In logic, conditionals have been
proposed that satisfy this requirement: these are termed “relevant
conditionals”. Their logical and semantic behavior is quite complex and we
will not discuss them in this book. Suffice it to say that, in addition to
considering the truth (or falsity) of antecedent and consequent, these
conditionals impose a requirement of relevance by virtue of which part of
the information provided by the antecedent must also be provided by the



consequent. As it is easy to see, sentences (10) and (11) do not satisfy this
requirement for any reasonable meaning of the term “information”. In fact,
they turn out to be false if we read their conditionals as relevant conditionals.

Thus, the material conditional takes a false antecedent and a true consequent
to be (each) a sufficient condition for a true conditional. From this, the so-
called

“paradoxes of material implication” derive. These are a family of sentences
which are valid, given the semantics of the material conditional, although
saying that they are true sounds completely counterintuitive to us. One of
them is: A → (B → A)

It is easy to see that the formula is valid. If A is false, the entire conditional
is true because it has a false antecedent; at the same time, if A is true, then B
→ A is true, because it is a conditional with a true consequent. And of
course, this makes the whole A → (B → A) a conditional with a true
consequent, and hence a true conditional. In order to see that this is
counterintuitive, take the following example: If “R” is the initial of my first
name, then (if the moon is made of cheese, then “R” is the initial of my first
name).

Why does this sound counterintuitive to us? Because B can be chosen
arbitrarily in the above formula: the formula is valid even if B has no logical
connection with A, or more generally no relevance for it (as in our example).
Now take a second example:

¬A → (A → B)
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Once again: if A is false, (A → B) is true. ¬A → (A → B) is therefore a true
conditional, because it has a true consequent. By contrast, if A is true, then
¬A is false, and therefore ¬A → (A → B) is true, since it has a false
antecedent. Notice that the formula is closely connected to one of the rules
of inference that we have discussed, the one according to which from ¬A we
can validly conclude A → B.



An example:

If I didn’t go on vacation for Christmas break, then (if I went on vacation for
Christmas break, then Santa has moved to a tax haven).

Again, B can be chosen arbitrarily, and the choice makes no difference to
the validity of the formula. The latter remains valid even when it does not
express any logical connection between A and B, or when B is not relevant
to A. A closely connected formula is:

(A ∧ ¬A) → B

which is called Ex contradictione quodlibet, a Latin expression meaning
“anything follows from a contradiction”. In classical logic, which is the logic
we follow in this volume, and in many other logical formalisms,
contradictions are logically false,

that is, false in every logically possible scenario. But obviously any
conditional with a false antecedent is true. If the antecedent is false in every
logically possible scenario, the conditional is true in every logically possible
scenario, and it is then valid.

Here is another example:

(14) If I invest in bitcoin and I don’t invest in bitcoin, then the general theory
of relativity is true.

Here, too, there is no connection between “I invest in bitcoin” and “the
theory of general relativity is true”, which helps us see why the validity of
the formula is counterintuitive. Indeed, the formula remains valid regardless
of the presence of any logical or relevant connection between its antecedent
and its consequent. Similarly, A → (B ∨ ¬B)

is valid because so is B ∨ ¬B (B is either true or false, and in each logically
possible scenario either B is true, or ¬B is true). A conditional with a valid
consequent is itself valid, regardless of the logical connection between
antecedent and consequent, or of the relevance of the former to the latter.



We close with one last paradox of the material implication:

(A → B) ∨ (B → A)

The formula is valid; indeed, if B is false, then B → A is a true conditional
(since it has a false antecedent) and the whole disjunction is true.
Furthermore, if B is true, then A → B is a true conditional (because it has a
true consequent) and the whole

6

Conditional reasoning, I: The material conditional

133

disjunction is true. Once again, however, the validity of this formula does
not require any logical or relevant connection between A and B.

Summing this up, the material conditional proves puzzling. Why did we
choose it to discuss our reasoning with indicative conditionals, then? We
have answered the question already, and now we have the tools to come back
to one of the two answers we have offered, namely: the material conditional
is semantically simple. When it comes to the semantics of conditionals,
nothing is simpler than the truth table that we have introduced for this
connective. What we will see shortly will help us to equip ourselves with the
necessary tools to understand the second answer, namely: the material
conditional is the simplest of the conditionals that satisfy some basic
inference rules that we deem desirable for conditional sentences.

Under other methods used to formalize indicative conditionals, just some of
the paradoxes of material implication are valid. The relevant conditional we
mentioned above, on the other hand, avoids all the paradoxes of material
implication.

Indeed, the logics of relevance, in which this conditional is defined, have
been designed in order to avoid such paradoxes. The price to pay for this,
however, is a complicated semantics that does not seem to hold much
intuitive appeal.



6.4.2 Inference rules with material conditionals

In Chapter 5 we did not present the rules of natural deduction which involve
the material conditional. It is now time to remedy this.

The rule of conditional introduction, also known as conditional proof, is the
following:

[A]

.

.

.

B

A → B

That is, if by starting from the assumption that A we prove B, then we can
validly conclude that A → B. In other words, the introduction rule of the
conditional is the one we use in hypothetical deductive reasoning. In the
example discussed in

§ 6.1, we just applied the rule in question: once we had shown that sentence
I followed from assumptions A-E, we validly concluded that “If A and B and
C and D

and E, then I”. Do not forget that inferring B from A is not the same as
asserting A → B. The first is an act that we perform by applying rules of
inference or correct proof procedures that lead us from A to conclude B. The
second is a speech act that consists in asserting a sentence. Just to have a less
abstract understanding of this: in
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the course of the reasoning that leads from A to B, these two sentences
appear, respectively, as the starting premise and the conclusion of a
reasoning, while A → B is just one sentence.4

The rule of conditional elimination, also called modus ponens, is one of the
crucial rules in deductive reasoning: more specifically, it is one paramount
form of deductive reasoning. Modus ponens has the following form: A → B

...

A

B

The following is an example (an instance) of the rule:

(P1) If Italy imposes medical tests on immigrants, then Italy wishes to
ascertain the state of their health.

(P2) Italy imposes medical tests on immigrants.

(C) Italy wishes to ascertain the state of immigrants’ health.

It is easy to observe that the rule of modus ponens follows from the semantic
rule for the conditional: if a conditional is true and the antecedent is also
true, then its consequent must also be true. Indeed, by means of (P1) we
assert that in the case in which the antecedent is true, the consequent is also
true. By means of (P2), however, we assert that the antecedent is indeed true.
From this, it follows that if the premises are true, the conclusion must also be
true.

6.4.3 Two fallacies and other rules of inference

The inference that we exemplified a few lines above should not be confused
with another reasoning scheme which is not valid, and which we now
exemplify – a scheme known as the fallacy of asserting the consequent:

4. At the same time, however, there is a crucial fact connecting the relation
of logical consequence (the fact that a sentence necessarily follows from



another given sentence) and the conditional. In particular, if A → B is a
logical truth (that is, if that conditional is true in every logically possible
scenario), then B necessarily follows from A. In many logics (such as, for
instance, classical logic, the one we are following in this book), the other
direction holds as well: if B necessarily follows from A, then A → B is a
logical truth. This allows us to use logically true conditionals in order to
understand the logical connection between the antecedent and the
consequent of the sentence (or, as logicians put it, a logically true
conditional internalizes in the language the logical connections between its
antecedent and its consequent).
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(P1) If Italy imposes medical tests on immigrants, then Italy wishes to check
the state of their health.

(P2) Italy wishes to check the state of immigrants’ health.

(C) Italy imposes medical tests on immigrants.

How can we understand that the reasoning in question is fallacious? Let us
consider the second row of the truth table of → (we count by excluding the
highest row of all, the one with the sentences). According to it, we see that a
conditional with a false antecedent and a true consequent is itself true. Then,
coming to our reasoning above, there is a logically possible scenario where
(P1) is true, (P2) is true, but (C) is false.

Hence, the reasoning scheme that we have just exemplified is not
deductively valid.

However, we would not accept this scheme even if we were considering
some other indicative conditional instead of the material conditional. Let us
see why by using an example that brings us a simpler and more illuminating
situation: (P1) If it is raining, then Gina takes the umbrella.



(P2) Gina takes the umbrella.

(C) It is raining.

Of course, we cannot deductively infer the conclusion that it is raining from
the two premises “If it is raining, then Gina takes the umbrella” and “Gina
takes the umbrella”. For instance, Gina could have, say, taken the umbrella
even if it is not raining because she wants to return it to the rightful owner
from whom she borrowed it, or because she needs to have it repaired, or for
any other reason. So the conclusion does not necessarily follow from the
premises: even if the premises are true, it might not be raining at all.

To sum up (generalizing what we have just said), the fallacy of asserting the
consequent is the following reasoning pattern:

(P1) A → B

(P2) B

(C)

A

This pattern of deductive reasoning is fallacious, that is (i) it is not
deductively valid, even if (ii) we tend to follow it for some reason.

There is a further fallacy involving conditionals. It is known as the fallacy of
denying the antecedent, and it is exemplified by the following reasoning:
(P1) If we carry out school tests in Italy, then we want to check the work of
the teachers in Italy.

(P2) In Italy we do not carry out school tests.

(C) We do not want to check the work of the teachers in Italy.
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Again, it is easy to understand why the scheme of denying the antecedent is
fallacious. Again, consider the second row in the truth table of → (excluding
the one containing the sentences). From it, we see that the logically possible
scenario where A is false and B is true is a scenario where A → B is true.
There is therefore at least one logically possible scenario in which A → B is
true, ¬A is true, and yet ¬B is false. If we replace ¬B by (C), ¬A by (P2) and
A → B by (P1), we see that it might be the case that (P1) is true, (P2) is true,
and yet (C) is false. As with the fallacy of asserting the consequent, denying
the antecedent cannot reasonably be considered as a valid reasoning scheme
for any indicative conditional. To understand why, let us apply this pattern of
reasoning to the case of Gina and the umbrella: (P1) If it is raining, then
Gina takes the umbrella.

(P2) It is not raining.

(C) Gina does not take the umbrella.

Here too, Gina may have taken the umbrella even if it is not raining, in order
to return it to someone from whom she borrowed it. In general, the
conditional in question tells us that if it is raining, then Gina takes the
umbrella, but it does not exclude that Gina might take the umbrella on other
occasions as well – at the same time, it also does not imply that she takes the
umbrella on other occasions. It just does not tell us anything about the other
occasions Gina might take the umbrella.

Thus, we cannot validly conclude, starting from the conditional in (P1) and
from the additional information in (P2), that Gina does not take the umbrella.
Summarizing (and generalizing), we can say that the scheme of denying the
antecedent is as follows:

(P1) A → B

(P2)

¬A

(C)

¬B



and that this reasoning scheme is fallacious.

We close with a deductively valid reasoning scheme regarding the
conditional: (P1) A → B

(P2)

¬B

(C)

¬A

This scheme is known as modus tollens. In the version of Gina and the
umbrella, the correct argument would have this form:

(P1) If it is raining, then Gina takes the umbrella.

(P2) Gina does not take the umbrella.

(C) It is not raining.
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It is easy to see that the scheme is valid if the conditional involved is → (the
material conditional). Indeed, the fourth row of its truth table (excluding
from the count the row containing the sentences) tells us that a true
conditional with a false consequent must have a false antecedent. This
pattern of reasoning sounds like something that should hold good for any
indicative conditional. To understand this point, just keep in mind that the
information provided by the conditional is that in the hypothesis that the
antecedent is true, the consequent must be true. Now, if the consequent is
false, the antecedent must be false if the conditional is to be true, since a true
conditional just excludes the fact that the antecedent is true and the
consequent false.



Now we have all the tools to appreciate our second answer to the question

“why are we considering the material conditional here?” The answer was:
because it is the simplest of the conditionals that satisfy the basic inference
rules that we require for a conditional. It is the simplest because, of all those
conditionals, it is the one that has the simplest semantics. Furthermore, it
satisfies all the rules of inference we wish indicative conditionals to satisfy –
that is: the ones we saw in §§ 6.4.2

and 6.4.3.

There are specific reasons why these rules are important. Conditional
introduction is important because, without it, we could not apply
hypothetical deductive reasoning; modus ponens is important because
without it we could not get the information that the consequent is true from
those that the conditional and the antecedent are true; modus tollens is
important because it codifies the procedure for falsifying a conditional.
Indeed, this procedure implies that if a consequent is false and the
conditional is true, then the antecedent must be false.

6.5 Conditionals and necessary and sufficient conditions

Reasoning with the material conditional helps us explicitly analyze one of
the fundamental elements of informal reasoning, that is: the distinction
between necessary conditions or properties and sufficient conditions or
properties. To understand this, let us start with an informal consideration.
Consider the following situation:

A sufficient condition to pass the exam is that the final grade is equal to or
greater than 18/30.

The condition informs us that only those who achieve a grade equal to or
higher than 18 out of 30 pass the exam. Therefore, it is equivalent to stating
that: If you get a grade equal to or higher than 18/30, then you pass the
exam.

By contrast, consider the sentence that
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A necessary condition to take the exam is to register for it.

The sentence tells you that you cannot take the exam unless you have
registered for it, that is:

If you want to take the exam, then you must register for it.

Compare this with the previous case. Registering for the exam is a necessary
condition to take it, but not sufficient to pass it, of course, because not all of
those who have registered will pass it: to this purpose, it is also necessary to
complete the test satisfactorily. On the other hand, getting a mark of 18 or
higher in the exam is a sufficient condition to pass it, but it is not a necessary
one to take it – you can take the exam and get a lower mark. We will now
give a definition of these notions in more rigorous terms. More precisely, we
will use a definition that involves properties. First, we will define the notion
of a sufficient condition: A property P is a sufficient condition for a property
Q if and only if: if something has the property P, then it has the property Q.

For instance, the property

being a dolphin

is a sufficient condition for the property

being a mammal

since the sentence “For all x, if x is a dolphin, then x is a mammal” is true.

We will now define the notion of a necessary condition.

A property P is a necessary condition for a property Q if and only if:
everything that fails to have the first property also fails to have the second
one.

In our example, therefore, the property

being a mammal



is a necessary condition for the property to

being a dolphin

since the conditional “For any x, if x is not a mammal, then x is not a
dolphin” is true. In other words: something is a dolphin only if it is a
mammal.

Finally, let us come back to the point that something can be a sufficient
condition for something else without being a necessary condition and vice
versa. A clear example of this:
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“Being a father” is a necessary but not sufficient condition for “being a
grandfather” because if someone is not a father then he will not be a
grandfather either, but someone may well be a father and fail to also be a
grandfather (not all fathers are grandfathers, while all grandfathers are
fathers).

“Being a father” is a sufficient but not necessary condition for “being a
parent” since anyone who is a father is also a parent, but one may fail to be a
father and yet be a parent – this is someone who is a mother (all fathers are
parents, but not all parents are fathers).

We can easily generalize the notions of sufficient condition and necessary
condition to sentences:

A sentence A is a sufficient condition for a sentence B if and only if the truth
of A is sufficient to secure the truth of B, that is: if A is true, then so is B.

This definition tells us that A → B indicates that A is a sufficient condition
for B. However, the same conditional does not indicate whether A is
necessary for B



or not. On the other hand, if A → B is true, then B is a necessary condition
for A.

Again, however, the conditional in question does not indicate whether B is
sufficient for A, or not.

These properties immediately relate to the validity of modus ponens and
modus tol ens. Since given the truth of A → B, A is a sufficient condition for
B, the truth of A is sufficient for the truth of B. This “conceptually” validates
modus ponens as an inference scheme. On the other hand, if A → B is true,
then B is a necessary condition for A. Consequently, if B is false, A must
also be. This “conceptually” validates modus tollens as an inference scheme.

Now suppose that both A → B and B → A are the case. In that case, A will
be a necessary and sufficient condition for B, and B a necessary and
sufficient condition for A. If A is true, B must be too, and if B is true, A
must also be true; on the other hand, if A is false, B must also be false and if
B is false, A must also be false.

In logical notation, we shorten the conjunction of A → B and B → A as: A
↔ B.

The symbol “↔” denotes what logicians call a biconditional. It expresses
what, in natural language, we express by the phrase “if and only if”: “A if
and only if B” expresses the fact that A and B imply each other. For instance:

Gina takes an umbrella if and only if it is raining

expresses that Gina takes the umbrella if it is raining, and only if it is
raining.

The truth table of the biconditional is as follows:
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Table 6.2 Truth table of the biconditional



A

B

A ↔ B

T

T

T

F

T

F

T

F

F

F

F

T

If A ↔ B is true, then it cannot be the case that A is true and B false, and it
cannot be the case that B is true and A false. In case A ↔ B is true, it must
be that either A and B are both true, or A and B are both false.

6.6 Other views of indicative conditionals

As we saw in § 6.4, there are two aspects that make the material conditional
hard to accept from an intuitive point of view. First, a false antecedent is
sufficient for A



→ B to be true. Second, A → B is true even if A is completely irrelevant to
the truth of B. Consequently, it is understandable that attempts were made to
provide alternative views of indicative conditionals, that would prove
capable of accounting for the meaning that the connective “if .. , then .. ” has
in natural language. In § 6.4 we mentioned the “relevant conditional”, and
many other conditionals have been designed in logic, in order to arrive at a
treatment of the “if…, then…” that keeps the connective closer to natural
language.

In addition to this, however, something more general can also be done, that
is to try to understand what procedure, ideally, leads us to evaluate a
conditional as true. In this regard, a viable procedure is the following. When
we have to evaluate a conditional, our “evaluation processes” change
according to what we think about the antecedent and according to what we
already believe, think, hold true in general – that is, according to what our
given “stock of beliefs” is. We call this stock of beliefs K. K includes all the
sentences we deem true – more intuitively, all the sentences that we believe.

In general, when we face a conditional of the form “If A, then B”, what we
tend to do can be described as the following procedure, known as the
Ramsey Test (named after the British logician, mathematician, economist
and philosopher who invented it: Frank Ramsey, 1903-1930):

(RT) Add A to K and see if, this addition being given, B is true.If this is the
case, then “mark” “If A, then B” as true.

The output of a run of RT depends on what we already believe about the
antecedent.
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• If we do not already have an opinion on the truth of the antecedent, what
we do is a small “thought experiment” – i.e., we add the antecedent of the
conditional to our stock of beliefs as a hypothesis. If given this addition, B
“follows”, then we will also add the consequent B to our stock of beliefs K.



This is because rational agents also tend to believe all the consequences of
what they already believe, even of what they just believe without being sure
of its truth. In this case the “degree of belief” in the conditional, the degree
to which we believe in the conditional, will be the same as our “hypothetical
belief” in the antecedent of the conditional.

• If we believe that the antecedent is true, then the antecedent is already part
of our stock of beliefs. In this case, the degree of belief in the conditional
will be the same as the degree of belief we have in the consequent.

Consider an indicative conditional like the following:

If North Korea ramps up its nuclear program, the United States will
intervene militarily.

Imagine that you are a strategic analyst.

• If you want to understand whether this conditional is true, but you do not
know whether North Korea will in fact ramp its nuclear program up, then, by
applying RT you add the antecedent of the conditional to your stock of
beliefs as a hypothesis – which implies that you give it a certain degree of
probability (greater than 0, of course). If adding this information to your
stock has the

“effect” of making you conclude that the US will intervene militarily, then
the conditional will be true. This “effect” will depend on the interaction
between the hypothesis and some other information in your stock.

• If, on the other hand, you are already certain of the truth of the antecedent,
you do not have to make any assumptions: the information is already in your
stock. You must therefore “only” assess whether the consequence is true,
that is, only whether the US will intervene militarily.

This view of indicative conditionals solves the two problems we have seen
above.

On the one hand, if A is in contradiction with our stock of beliefs K, that is,
if we know that A is false, then it will be impossible to add A to K without
running in-to a contradiction. In this case, we might think that the evaluation



process of “If A, then B” stops and it remains indeterminate whether the
conditional is true or false. Thus, we will not deem true all the conditionals
that have a false antecedent.

On the other hand, it is precisely the addition of A to K that makes B true.
Hence, A is relevant to the truth of B. Thus, we avoid the counterintuitive
phenomenon of deeming true all the conditionals in which A and B are true
but in which A is completely irrelevant to the truth of B.
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6.7 An experiment involving modus tollens

The Psychology of reasoning has pointed out that we, as real cognitive
agents, have a hard time carrying out those forms of reasoning in which we
have to start out from the falsity of something. This has been clear at least
since psychologist Peter C. Wason’s famous experiment back in 1966. The
experiment presents a problem in which the application of modus tollens is
crucial to provide the right solution.

The experiment is also called the Selection task or The four-card problem,
and it can be described as follows.

Participants in the experiment are presented with four cards. Each of these
has a letter on one side and a number on the other. Two cards are turned onto
the letter side (A and B), the other two onto the number side (2, 5), as the
figure shows: Figure 6.1 The four-card problem

B

A

2

5

The following rule is also presented to test subjects:



If there is the letter A on one side of a card, then there is the number 2 on the
other side.

Test subjects are then asked:

Tell which cards must be turned in order to determine if the rule is true, or if
it is false.

This is the “selection task” that inspires one of the names of the experiment.
In a nutshell, the task is to identify which cards one needs to turn in order to
verify whether this rule is true or false. Well, the rule is expressed by a
conditional. The correct solution is to flip the card with the A and the card
with the 5. Why? Because if the conditional expressed by the rule is true and
on a visible side of a card there is A, then on the other side there must be a 2.
If on the other side of that card there is another number, then the conditional
expressed by the rule is false. Thus, we need to turn the card with the A on
the visible side in order to check if the rule is false. Or rather: turning the
card with the A on the side may suffice to show that the rule is false. In fact,
if there is not a 2 on the other side, we know the rule is
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false. Notice that the idea of turning the card with the A on the visible side
presupposes the ability to reason according to the modus ponens. In fact, we
pick that move on the ground of the following inference:

(P1) If there is the letter A on one side of the card, then there is the number 2
on the other.

(P2) There is the letter A on one side of the card.

(C) There is the number 2 on the other side.

Since the scheme is deductively valid, if the conclusion is false, then at least
one of the two premises must be false. (P2) however is true, because we are



considering precisely that card which has the letter A on the visible side.
Therefore, if (C) is false, so must be (P1), that is the conditional expressed
by the rule.

However, if there is a 2 on the back of that card, this is not sufficient to
conclude that the conditional expressed by the rule is true. In fact, there may
be another card that has an A on the hidden side and a number other than 2
on the visible side. Precisely for this reason, out of the four cards in the
example, we must also turn the one showing a 5. In fact, if the letter A is
behind it, it follows that the rule is false. Again, this presupposes the ability
to reason by applying some inference rule for the conditional. In this case,
the rule is modus tollens. Indeed, consider the following inference:

(P1) If there is the letter A on one side of the card, then there is the number 2
on the other.

(P2) There is the number 5 on one side of the card.

(C) There is no letter A on the other side.

Once again, since the scheme is deductively valid, if the conclusion is false,
at least one of the premises must also be false. Since (P2) is true – we are
considering the card with the number 5 – it is (P1) which is wrong. But (P1)
is indeed the rule.

Summing this up, what we have to do in the Wason test is to look for all and
only the cards that can falsify the rule, and the cards that can falsify the rule
are:

• The one with the letter A on the visible side;

• The one with the number 5.

Instead, we do not need to turn the card with the number 2 on the visible
side: the rule is perfectly compatible with the fact that some cards with the 2
have a different letter from the A on the other side. In fact, the rule says that
having the letter A on one side is a sufficient condition for having the
number 2 on the other, but not that it is a necessary condition. Thus, turning



the card with the number 2 on the visible side does not help us falsify the
rule, and is therefore not relevant. There is no need
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to flip the card with the letter B either, because the presence of any number
behind it is irrelevant to whether the rule is true or not.

The results of Wason’s experiment revealed that a very high percentage of
subjects correctly state that the card with the letter A on the visible side must
be turned, but of these, very few add that it is also necessary to turn the card
with the number 5 on the visible side. What makes the experiment hard to
get right? Not the part relating to the application of modus ponens, given the
high percentage of people who identify the card with the A on the visible
side as a card to be turned.

What we struggle with is thinking about the other possibility that falsifies
our rule, that is, the one that involves reasoning by modus tollens. Advocates
of so-called natural mental logic 5 read the results of this experiment as a
confirmation of this thesis: the majority of people fail to have modus tollens
in their “natural” repertoire of inference rules. This is why the problem
strikes so hard.

In any case, even if one does not share this dramatic view on the issue, we
cannot deny that the experiment suggests that we, as real cognitive agents,
have trouble reasoning by modus tollens or, perhaps more appropriately, that
modus tollens is for us a cognitively complex and unnatural pattern of
reasoning.

Here are the statistics of the replies to the selection task – we have only
included the two replies with higher average percentages:

• choice of A and 2: 60 – 75%

• choice of A and 5: 5 – 15%



Wason’s experiment is very interesting when it comes to the relation
between the normative dimension (and normative approaches) and the
descriptive dimension (and descriptive approaches) in reasoning. The results
of the experiment tell us that, on average, we cannot easily reason according
to modus tollens. In short, modus tollens does not describe a scheme that we
can observe in our reasoning as real cognitive agents. Should we then stop
taking it into consideration and proposing it as an inference scheme for our
reasoning with conditionals? Not at all. Even if it is a pattern that we have a
hard time applying, it is a form of reasoning that we need.

Indeed, only by applying it can we correctly solve Wason’s selection task: if
we do not turn the card with the number 5 onto its visible side, we will not
really be able to tell whether the rule is true or false, since we may have left
a case which could falsify it unexplored. Taking an example from real life,
we should consider that the alibi asserted in a criminal case works on the
basis of modus tollens: by showing that the accused was elsewhere, the
accusation against him is falsified. More generally, we need modus tollens,
because it expresses a recipe for the falsification of the con-5. For instance,
cf. Barbara Rumain, Jeffrey Connell, Martin D. Braine, “Conversational
com-prehension processes are responsible for reasoning fallacies in children
as well as adults: If is not the biconditional”, Developmental Psychology,
19(4), 1983, 471-481.
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ditional. The fact that we do not master it naturally, therefore, does not mean
that we could do without it. In short, the normative dimension proves to be
important for our reasoning.

6.8 Conclusion

In this chapter, we have discussed the form of deductive reasoning that
involves the indicative conditional. We have exemplified hypothetical
deductive reasoning, and we have examined the role the indicative



conditional plays in it. We have briefly discussed the variety of indicative
conditionals that we encounter in our use of language and in the
formalization of mathematical reasoning, while giving some examples. We
have discussed the problem of defining truth conditions for the conditional,
and introduced the material conditional, which provides one answer (among
many other possible ones) to the problem. We have discussed its semantics
and the valid inference rules connected with it, as well as some fallacies and
the “paradoxes of material implication”. We have looked at the connections
between indicative conditionals and necessary and sufficient conditions, and
some other views of the indicative conditionals. Finally, we have discussed
an experiment in the Psychology of reasoning which highlights some of our
problems when applying one of the inference rules that are valid for the
material conditional, namely: modus tollens.

7 · Conditional reasoning, II:

The counterfactual conditional

In this chapter we will discuss another kind of reasoning with conditionals,
namely the one involving the counterfactual conditionals. We will see that
the semantics of these conditionals is different from that of material
conditionals and that, more generally, they must be kept distinct from
indicative conditionals. In addition to dealing with the logic of
counterfactuals and some fallacies, we will discuss some experiments in the
psychology of reasoning designed to understand how we reason with
counterfactuals. At the end of the chapter we will briefly touch on the links
between counterfactual reasoning and causal reasoning.

7.1 Introduction

On 12 May 2013, an article entitled “Sennheiser is leading a campaign
against fake electronic goods” appeared in the pages of the Financial Times.
Sennheiser Electronic GmbH & Co. KG is a major manufacturer of
headphones and earphones, and the article announced its campaign to
combat the spread of counterfeit products. According to the company, the
market for fake Sennheiser products, in addition to defrauding consumers,
would lead to a substantial increase in unemployment. According to the
CEO’s statement, it would cost the company $ 2 million in lost income. To



judge the extent of the loss, you need to evaluate how much you would earn
if there were no counterfeits market. Only by imagining this situation, and
the consequences deriving from it, can it be argued that this market
generates an economic loss, and how huge this loss is. In short, the reasoning
of the CEO of Sennheiser involves the ability to imagine scenarios contrary
to the facts (such as the one in which the counterfeit headphones market
does not exist). From now on, we will call the latter “counterfactual
scenarios”. These arguments contain pitfalls: in order to think about how
much one would have earned if the counterfeit products market did not exist,
it is necessary to apply an evaluation criterion. The problem is that there are
many alternative criteria. Let us see why.

The CEO has declared $ 2 million as the value of the loss for Sennheiser
because this is the multiplication of the sales volumes of fake Sennheiser
products by the average price of real Sennheiser headphones (which
amounts to $ 300 per headphone). More precisely, the CEO’s reasoning can
be captured by the following sentence:
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(1)

If there were no fake Sennheiser products, everyone who bought the fakes
would have bought real Sennheiser products.

The criterion presupposed by this kind of reasoning can be summarized as
follows: To know whether B would have happened if A were not (or had not
been) true, imagine a counterfactual scenario where A is false and almost
everything else is the same as it is in the real world. Then ask yourself:
Would B be true or false in that scenario? If B is true, sentence

(2) If A were the case, then B would be the case

is true. Otherwise, it is false. Let us see how this actually applies to the
CEO’s reasoning. We want to figure out whether in the event that A (“There
are fake Sennheiser products”) were false, B (“Everyone who bought
Sennheiser fakes buys real Sennheiser products”) would be true. To do this,



let us imagine a scenario where A is false, but almost everything else is the
same as in the real world. By

“almost everything else”, we mean that we do not take any decision on the
truth (or falsehood) of B in the counterfactual scenario. What happens in this
scenario? The persons who in the real world have bought a counterfeit
product want to buy a product that looks completely like Sennheiser real
products – the same desire they have in the real world. In the counterfactual
scenario, however, the on-ly products that appear to be Sennheiser in all
respects are the real Sennheiser products, because in such a scenario there
are no counterfeit products. Nobody forbids people from buying Sennheiser
products in the counterfactual scenario

– just like in the real world. Hence, it is natural to conclude that B is true in
the counterfactual scenario. If we follow the criterion in question, then, we
conclude that sentence (1) is true, and we ideally reason as we have
imagined the CEO of Sennheiser reasons.

Reasonings based on this criterion are very frequent in estimating losses
such as those we have discussed. The cost to the music and film industry of
illegally downloading music and films is estimated to be in the billions of
dollars, the university book copying market costs the publishing industry
millions of euros, etc.

In other words: the amount that goes into the counterfeit market, or
photocopies, is “added” to the income of producers, and this procedure is
ideally captured by the reasoning we have set out. There is, however,
something deeply wrong with this reasoning criterion.

In particular, it is not correct (or at least not always correct) to reason by

“changing” the truth-value of sentence A and leaving almost everything else
the same. Changing the truth-value of A can, in fact, lead us to review other
aspects of reality, and we cannot establish a priori which aspects need to be
changed. In the case we have just considered, we cannot simply “cancel” the
counterfeit market. The absence of this market may lead some of those who
bought the counterfeit goods to buy no product. We cannot therefore think
that everyone who really
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wanted Sennheiser products and bought counterfeit products would have
bought Sennheiser products if there were no counterfeits. Again, the
counterfactual scenario by which we modeled the CEO’s reasoning is less
close (less “similar”) to reality than another, i.e. the scenario in which (i) the
counterfeit market no longer exists, and yet (ii) some of those who bought
fake Sennheiser headphones judge that real Sennheiser products are too
expensive for them (two real facts are kept fixed: the price of real Sennheiser
products and that the price of a good is often negative-ly correlated with
demand).

Since this second counterfactual scenario is closer to or more similar to the
re-al world than the first counterfactual scenario we have described, we
should use the second scenario, and not the first one, to evaluate the truth-
value of (1). This is because, in evaluating a counterfactual, we consider
scenarios in which the antecedent is true, but which differ as little as
possible from the real world. Obviously, if we do that, (1) becomes false, not
true as in the reasoning we imagine the CEO of Sennheiser did.

Let us consider in more detail what the distinctive features of counterfactuals
are. Sentence (1) is a counterfactual conditional, that is, a conditional that
states what would be the case if something else were the case. The form of
such sentences is: If A were the case, then B would be the case.

Or:

If A had been the case, then B would have been the case.

As in indicative conditionals, A is the antecedent and B the consequent.
Such conditionals are usually asserted when the speaker knows, or believes,
or in any case assumes, that the antecedent is false in the real world. In
contrast to indicative conditionals, counterfactuals are not used to talk about
the real world, but about scenarios alternative to the real world – what we
have defined as “counterfactual scenarios”. This is enough to see that



counterfactual conditionals cannot be considered false under the same
conditions as indicative conditionals. Since we usually assume that the
antecedent of a counterfactual is false, if we adopted the truth table of
material conditionals seen in the previous chapter, each counterfactual would
be true.1 Yet, we consider some of them to be false. It would not make sense
to consider them true under the same conditions as indicative conditionals,
because counterfactuals are designed to have an antecedent that is not true.
In this chapter, among other things, we will be concerned with understanding
under what conditions counterfactuals are true or false. To be more precise:
we will give a semantics for 1. To avoid misunderstanding and to distinguish
the kind of conditionals we are dealing with in this chapter from indicative
conditionals, we will call them counterfactual conditionals or simply
counterfactuals.
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counterfactuals, and thus we will look at the general criterion on the basis of
which we judge that a counterfactual is true or false.

The chapter proceeds as follows. In § 7.2 we will consider some elements of
the psychology of counterfactual reasoning. In particular, we will discuss
how real cognitive agents tend to reason with counterfactuals. This implies
that we will briefly go through a descriptive approach to counterfactual
reasoning. In § 7.3 we will discuss the logic of counterfactuals, with
particular attention to their semantics and to some fallacies we tend to
commit, projecting valid reasoning schemes for indicative conditionals onto
counterfactuals. Finally, in § 7.4 we will discuss the role played by
counterfactual reasoning in the assessment of causal links.

A brief observation before we start: there are two important reasons why it is
appropriate to discuss the psychology of counterfactual reasoning, even in a
book whose perspective is mostly normative. First, reasoning with
counterfactuals has received a rigorous logical and normative approach only
in the last forty or so years.



This is also due to the fact that this kind of reasoning is one of the most
difficult to understand: contrary to other kinds of reasoning, our actual
linguistic practice with counterfactuals is so complex and varied that it is
difficult to deal with them systematically. Even if we have such an approach
today, and even if it is very rigorous and clear, it is appropriate to start out
from how we actually reason with counterfactuals to understand the
difficulty to deal with them. Second, counterfactual reasoning is important in
several relevant practical contexts such as decision-making and strategic
interaction – and therefore, indirectly, for disciplines such as Decision
Theory, Game Theory, and Economics (see Chapter 1 for these disciplines).

As we have seen, if we want these disciplines to provide us with realistic
models for predicting the behavior of agents, then we need to understand
how agents actually reason. This leads us to consider the psychology of
counterfactual reasoning.

7.2 The psychology of counterfactual reasoning

The example we discussed at § 7.1 shows that counterfactual reasoning is
involved in practical situations of some importance. Here, among many
other things, we will briefly list a few important activities in which we are
often engaged and in which counterfactual reasoning is fundamental. We
will then see in § 7.3 that there are precise ways to discriminate between
correct and incorrect counterfactual reasoning.

7.2.1 The importance of counterfactual reasoning

We are very often engaged in cognitive activities that presuppose the ability
to evaluate possibilities alternative to the current situation. For some
psychologists, such
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as Philip Johnson-Laird, the ability to represent possibilities (which he calls
“mental models”) is one of the characterizing traits of our rationality.2



In the last thirty years of research in cognitive psychology, two theses have
emerged on which the attention of scholars has focused:

• In many cognitive activities, we tend to represent alternatives to reality by
modifying some aspects rather than others. These alternatives are what we
have called “counterfactual scenarios”, and this ability is called
“counterfactual imagination”.

• Counterfactual imagination is “rational” in the sense that it is guided by the
same principles that guide rational thinking.

The tendency to construct counterfactual scenarios seems to be presupposed
by several common cognitive activities:

• Learning from mistakes: if I have made a mistake in a real situation s, I
learn from the mistake only if I imagine a situation s' alternative to s that
differs from s only in the fact that I do not perform the action that led me to
make the mistake and the consequences of that mistake do not occur.

• Making decisions: If in a situation s I must decide whether to take action a
or not , I imagine a situation s' that differs from s only in the fact that in s' I
do a and I compare it with a situation s" that differs from s only in the fact
that in s"

I do not do a. My decision will be guided by my assessment of which
alternative produces the best consequences.

The tendency to construct counterfactual alternatives (another name for
counterfactual scenarios) is also presupposed by some emotional reactions:

• Having remorse: usually one feels remorse for having performed an action
in a situation s; this emotional reaction can be considered as the response to
the representation of a situation s' alternative to s in which one has not
carried out the offending action and in which one assesses that things would
have been better.

• Having regrets: usually one regrets not having performed an action in a
situation s; this emotional reaction can be considered as the response to the



representation of a situation s' alternative to s in which one has performed a
certain action and in which one assesses that things would have been better.

7.2.2 The fault lines: which aspects of reality do we modify?

The phenomenon of fault lines is one of the aspects that most interested
scholars of counterfactual phycology. When we mentally represent a certain
real scenario, we tend to consider some aspects rather than others
counterfactually modifiable.

2. Philip N. Johnson-Laird, Mental Models, Cambridge University Press,
Cambridge 1983.
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Psychologists call these aspects fault lines of reality and several studies in
cognitive psychology have inquired which fault lines we change most
frequently when we picture counterfactual alternatives.

Here are some examples:

• Exceptional events: we imagine counterfactual alternatives to events that
we consider “exceptional” or “unusual” rather than to events that we
consider

“normal”.

• Actions: we more frequently imagine counterfactual alternatives to actions
we have taken rather than to actions we have not taken (that is, we tend to
feel remorse more frequently than we have regrets).

• Control able events: we envision counterfactual alternatives in which we
modify an event that we believe is under our control rather than an event that
we do not consider under our control.

• Obligations: we imagine counterfactual alternatives in which we do what
we should have done but we have not done.



• Time: we tend to imagine counterfactual alternatives to events that occur
later in a certain temporal series rather than to events that occur before.

• Causes: we envision counterfactual alternatives when we are looking for
causal links.

We present a famous experiment carried out by Daniel Kahneman and Amos
Tversky, the two scholars already mentioned in Chapter 1. The experiment
exemplifies the points we have just considered. It is described in a work
entitled The simula-tion heuristic, published in 1982.3 In this experiment, a
group of 62 college students from the University of Pennsylvania were
offered the following story (defined by Kahneman and Tversky as an
“emotional script”):

The Story of Mr. Jones. Mr. Jones is 47 years old, has a wife and three
children and is a successful bank executive. His wife has been home sick for
several months. On the day of the accident, Mr. Jones left his office at the
usual time. Sometimes he gets off work earlier to do housework at his wife’s
request, but not on that occasion. Mr. Jones did not go home by the usual
route. It was a beautiful day and Mr. Jones told his friends that he wanted to
go home by the coastal road to enjoy the view. The accident occurred at a
large intersection. The light turned yellow just as Mr.

Jones was approaching the intersection. Witnesses stated that he abrupt-ly
braked to stop, although he had plenty of time to pass. His family stated that
this was Mr. Jones’ usual driving behavior. When the light turned green
again and Mr. Jones began to cross the intersection, a truck crossed 3. In
Daniel Kahneman, Paul Slovic, Amos Tversky (eds), Judgment under
Uncertainty. Heuristics and Biases, Cambridge University Press, Cambridge
1982, pp. 201-208.
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with the red light at great speed hitting Mr. Jones’s car on the left side. Mr.



Jones died instantly. Investigations revealed that a very young boy was
driving the truck under the influence of drugs.

The wealth of detail in the story is intended to generate a feeling of
“empathy” towards Mr. Jones’s family. The students were then asked the
following question: Question: As is commonly the case in these situations,
in the days following the accident Mr. Jones’s family and friends often
thought and said, “If only ...”. How did their thoughts or sentences continue?
Write one or more likely continuations.

Obviously, what relatives and friends thought was “If only X had / hadn’t
happened, now Jones would be alive”. Kahneman and Tversky wanted to
know what real cognitive agents substitute for X.

To answer this question, subjects must imagine a counterfactual scenario (a)
to the fragment of the world described in the story, in which (b) Mr. Jones
does not die. This can be done only by changing at least one aspect of the
story. The answers were organized, roughly, around four counterfactual
alternatives. The results of the experiment were the following:

• alternative situations in which Mr. Jones goes the usual way: 53%;

• alternative situations in which Mr. Jones crosses the intersection with the
yellow light: 22%;

• alternative situations in which there is no young drug-addicted driver:
20%;

• alternative situations where Mr. Jones leaves the office at a different time:
3%;

• other: 2%.

To another group of students, Kahneman and Tversky proposed a small
variation on Mr. Jones’s story that contained this difference:

Mr. Jones: time variant. On the day of the accident, Mr. Jones left the office
earlier than expected to do some household chores at his wife’s request. He
went home by his usual route. Occasionally, Mr. Jones chose to drive along



the coast to enjoy the view on particularly clear days, but that day was just
average.

The distribution of the results for this version of the story was as follows:

• alternative situations in which Mr. Jones crosses the intersection with the
yellow light: 31%;

• alternative situations in which there is no young drugged driver: 29%;

• alternative situations in which Mr. Jones returns home at the usual time:
26%;

• alternative situations in which Mr. Jones returns home by another route:
13%;

• other: 1%.
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These distributions of results led Kahneman and Tversky to propose the
following theses:

• Most of the subjects tends to modify an event considered exceptional or

“anomalous” (the fact that Mr. Jones decides to take the coastal road on the
day of the accident). According to Kahneman and Tversky, this demonstrates
that subjects prefer the situations they call “downhill”, i.e. those in which
exceptional events are modified.

• None of the subjects involved in the experiment eliminated any “normal”
aspect of the real situation, even those aspects which are very improbable.
For example, no subject involved in the experiment has imagined
counterfactual alternatives in which Mr. Jones arrives at the intersection 2 or
3 seconds earlier and crosses it with the green light. The incredible
coincidence that causes the crash in the story is a very unlikely event. For



Kahneman and Tversky, this shows that often we do not tend to imagine
alternatives to the least probable events.

• None of the subjects involved in the experiment imagined a counterfactual
alternative in which an unlikely event occurred (a type of alternative that
Kahneman and Tversky refer to as “uphill”). For example, no one imagined
a counterfactual alternative in which the coastal road is blocked by a
landslide before Mr. Jones passes by.

We have seen how in fact we tend to reason when we construct
counterfactual scenarios. This is also interesting in connection with what we
will say shortly, because the ideas on which the semantics of counterfactuals
is based seem to conform precisely to some aspects of our counterfactual
reasoning highlighted by Kahneman and Tversky’s experiments.

7.3 The logic of counterfactuals

In §§ 7.1 and 7.2 we have looked at various examples of counterfactuals.
The following further examples will help us distinguish two broad types of
counterfactuals: (3) If employment hit a certain percentage, inflation would
rise; (4) If kangaroos did not have tails, they would fall;

(5) If I hadn’t come to Critical Thinking class today, I would have had more
free time;

(6) If Stauffenberg had placed a bomb on the right side of the table on 20
July 1944, Hitler would have died.

It is easy to observe that counterfactuals (3) and (4) have the following form:
If it were the case that A, then it would be the case that B.
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These counterfactuals say that the (non-)occurrence of a certain state of
affairs or fact (expressed by the antecedent) has a consequence (expressed in



the consequent).

Sentences (5) and (6) have instead this form:

If it had been the case that A, then it would have been the case that B.

These counterfactuals say that the (non-)occurrence of a certain past state of
affairs or fact (expressed by the antecedent) has a consequence (expressed in
the consequent). In what follows, however, we will abstract from the
distinction between these two types of conditionals.

We will introduce a symbolic notation to be able to discuss the formal
treatment of counterfactuals. First, let us note that in natural language it is
the mood of verbs that indicates that we are dealing with a counterfactual
and not with an indicative conditional. For example, in

If Dante had died at the age of five, we would not have the Divine Comedy

“had died” and “we would not have” tell us that we are talking, respectively,
of something that did not happen, and of its supposed consequence. In “If
Dante died at the age of five, then we don’t have the Divine Comedy”, the
indicative mood indicates instead that we are talking about the real world. In
other words, it is the mood of the verb that takes charge of expressing the
“counterfactuality” (or “indicativity”). The formal treatments of
counterfactuals, however, do something different: it is the kind of
conditional connective involved in the sentence that indicates the kind of
conditional. This implies that in such treatments the “If… then” of a
counterfactual conditional is rendered by a connective different from those
for indicative conditionals (for example, the material conditional). Let us see
what exactly this distinction between natural and formal language
counterfactuals amounts to. In this book, we will use the connective ∁→ to
express the counterfactual connective: A ∁→ B is to be read: “If it were the
case that A, it would be the case that B”.

Recall that A and B are schematic letters and stand for the same kind of
sentences expressed in the indicative conditionals we have seen so far. So, A
could stand for



“Dante died at five” and B for “We don’t have the Divine Comedy”.
Consequently, A ∁→ B is read as “If it were the case that ‘Dante died at
five’, then it would be the case that ‘We don’t have the Divine Comedy’”.
Or, more naturally: “If Dante had died at five, we would not have the Divine
Comedy”.

Therefore, in formal treatments, the connective ∁→, and not the sentences A
and B, signals the fact that we are dealing with a counterfactual – that is,
with a sentence that speaks of what would have happened if something else
had happened.

These considerations give us a clear idea of how the syntax of
counterfactuals works in formal approaches – that is, of how such
approaches construct counterfactual sentences.
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7.3.1 Indicative and counterfactual conditionals

Counterfactuals are different from the indicative conditionals discussed in
Chapter 6. To illustrate this, let us take the following pair of conditionals: (7)
If L.H. Oswald didn’t kill Kennedy, someone else did;

(8) If L.H. Oswald hadn’t killed Kennedy, someone else would have.

The former is an indicative conditional, while the latter is a counterfactual
conditional. To understand the context in which we will discuss these two
sentences, recall that Lee Harvey Oswald was identified in the so-called
Warren report as the assassin of US President John F. Kennedy in 1963, and
that, according to this report, he acted alone and not as part of an organized
plan or conspiracy. All the hypotheses that contradict these conclusions of
the Warren report were based on evidence which was later disproved, and
therefore we will here assume that the conclusions of the Warren report are
true.

If we abstract from the mood of the verbs in (7) and (8), both of these
conditionals have the same antecedent (“L.H. Oswald didn’t kill Kennedy”)



and the same consequent (“Someone else does it”). Suppose that someone
makes the hypothesis that counterfactuals and indicative conditionals are the
same type of conditionals. How can we prove that this is not the case? The
following two facts prove that this hypothesis is wrong:

• (7) is true: since John F. Kennedy was really murdered, either L.H. Oswald
or someone else murdered him;

• Instead (8) is false: Oswald acted alone and there was no collective plan to
as-sassinate Kennedy, if we assume the correctness of the Warren report. So,
if Oswald hadn’t killed Kennedy, no one would have.

Since (7) and (8) contain the same sentences, however, if they expressed the
same kind of conditional, they should be either both true or both false. But
this is not the case.

Another way to arrive at the same conclusion is the following. Suppose
someone shared the conclusions of the Warren report. They would give two
different answers to the questions:

1. What happened if it wasn’t Oswald who killed Kennedy?

2. What would have happened if Oswald hadn’t killed Kennedy?

They would answer the first question with: “Someone else killed him”, and
the second with: “No one else would have killed him”. These two questions
require you to give variable X a value that makes the following sentences
true: “If Oswald did not kill Kennedy, then X” and “If it were the case that
Oswald did not kill Kennedy, then it would have been the case that X”. Since
the two conditional sentenc-
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es are formed by the same elementary sentences, the fact that the speaker
gives two incompatible values to the Xs (“Someone else killed him”, “No



one else would have killed him”) indicates that (7) and (8) express two
different kinds of conditional.

7.3.2 The truth conditions of counterfactuals

We saw in § 7.1 that we cannot give counterfactuals the same truth
conditions we give to material conditionals (and, more generally, to
indicative conditionals). In fact, only if an indicative conditional has a true
antecedent and a false consequent, is it false. Counterfactuals, however,
generally have false antecedents, and therefore it makes no sense to keep
these truth conditions. Having generally no true antecedent, they could never
be falsified. Yet, there are false counterfactuals, of course: a glance at
sentence (10) below is enough to remove any doubts in this regard.

Another important point is that the truth conditions of material conditionals
cannot be applied to counterfactuals. For a material conditional to be true it
is sufficient that the antecedent is false. But since we almost only assert
counterfactuals with false antecedents, we should conclude that we almost
only assert true counterfactuals, if the rules of indicative conditionals are
extended to counterfactuals. But there are false counterfactuals, such as
sentence (10) below.

These two considerations make it clear that counterfactuals need their own
semantics. This semantics should allow us to answer the following
questions:

• Question 1: Under what conditions is a counterfactual true?

• Question 2: Under what conditions is a counterfactual false?

We will answer these questions in § 7.3.4. Before doing so, we will
introduce a test that provides a criterion for accepting (as true) or rejecting
(as false) a counterfactual. It is derived from the Ramsey Test for indicative
conditionals and to distinguish it from the latter we will call it the
Counterfactual Ramsey Test. Obviously, “accepted as true” and “true” are
not the same thing – and the same goes for “rejected as false” and “false” –
but the Test is useful to understand some aspects of the semantics that we



will provide for counterfactuals (in particular, some semantic moves are
similar to those of the Ramsey Test).

In any case, the semantics of counterfactuals cannot be truth-functional, that
is: the truth conditions of sentences of the form A ∁→ B cannot be
determined entirely by the truth-values of A and B. To realize this, it is
sufficient to consider the following two sentences:

(9) If Dante had died at the age of five, then we would not have the Divine
Comedy;

(10) If Dante had died at the age of five, then bodies would not obey the first
law of dynamics.
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It is natural to say that (9) is true, and that (10) is false. Suppose A is “Dante
died at five”, that B is “We don’t have the Divine Comedy”, and C is
“Bodies don’t obey the first law of dynamics”. Using symbolic notation, we
would then say that while A ∁→ B is true, A ∁→ C is false. Now, A, B, C
are all false sentences. If the counterfactual conditionals were truth-
functional, (9) and (10) should have the same truth-value. This is so because
in evaluating a sentence D whose main connective is true-functional, (a) only
the truth-values of the sentences that constitute D count –

plus, obviously, the truth table of the connective – and (b) the truth-values of
these sentences uniquely determine the truth-value of D.

Since two counterfactuals can have different truth-values even if their
antecedents and consequents have the same truth-values, it follows that the
semantics of counterfactuals is not truth-functional.

7.3.3 The Ramsey Test for counterfactuals

In § 6.6 we have seen that it is possible to evaluate indicative conditionals on
the basis of the so-called “Ramsey Test”. The latter provides an alternative
conception of indicative conditionals to that of the material conditional. With



appropriate adjustments, such a test can be used to evaluate the truth-value
of a counterfactual conditional. In this section, we present an example, then
give a general definition, and discuss the differences with respect to the
version for indicative conditionals introduced in § 6.6.

The basic idea of the Ramsey Test is that we accept a conditional as true on
the basis of a “background” set of sentences. For convenience, we have
conceived of this set as a “stock of information” or a “stock of beliefs”. To
determine whether we accept “If A, then B” as true, we must first add A to
our information stock. In the version for counterfactuals we start with the
same move, but in this case our information stock typically includes the
negation of antecedent A, because counterfactuals are about scenarios
contrary to the facts. Consequently, the simple addition of A would give us
the contradiction A ∧ ¬A, and our information stock would become
inconsistent. To avoid this, we need to add A, and make the necessary
changes to the stock to keep it consistent. Then, we must determine whether
B follows from the new consistent stock of information. If so, we accept
counterfactual A ∁→ B as true. Otherwise, it is false. An example will help
us to understand more concretely how this works.

We wish to establish whether we have to accept as true that “L.H. Oswald
did not kill John F. Kennedy ∁→ No one else killed him”, that is: “If L.H.
Oswald had not killed John F. Kennedy, then no one else would have killed
him”. To do this, we must first identify the stock of information that
correctly describes the piece of real world that interests us. Suppose that in
the Kennedy case, things went as the Warren report relates. As a result, our
information stock K will include:

7
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(A) L.H. Oswald killed John F. Kennedy.

(B) L.H. Oswald was the only one to put John F. Kennedy’s life at risk.



(C) There were no other plans to kill John F. Kennedy.

For convenience, suppose that K includes only these sentences, that is, in set
notation: K = {A, B, C}. What happens now if we add ¬A (“L.H. Oswald
didn’t kill John F. Kennedy”)? We get an inconsistent set of information, that
is, a set that contains contradictory sentences. We must therefore remove A.
We thus satisfy the consistency requirement we introduced above. We are
now left with the set {¬A, B, C}. From these three sentences, it follows:

(D) Nobody killed John F. Kennedy.

We therefore accept that “If L.H. Oswald didn’t kill John F. Kennedy ∁→
No one else killed John F. Kennedy” is true.

We can define the Ramsey Test for counterfactuals, which we denote by
RT*, as follows:

(RT*) To determine whether we must accept A ∁→ B as true, add A to the
information stock K, and (i) make the minimum adjustments necessary to
maintain consistency; (ii) consider whether the new stock makes B true. If B
is true, then we must accept A ∁→ B as true. Otherwise, we must reject it as
false.

We have already discussed the need for the new (counterfactual) stock to be
consistent, but this definition adds something more: changes aimed at
maintaining consistency must be, in some sense, minimal. Let us see why.
Suppose that K = {A ∧

B, A, B}. Further, suppose we want to evaluate counterfactual ¬(A ∧ B)
∁→ C. We add its antecedent to K. We need to remove the conjunction A ∧
B. Consequently, we have to remove at least one of A and B, because by
keeping both of them we would obtain an inconsistent set: {¬(A ∧ B), A,
B}. We therefore have three options: either we remove the set {A ∧ B, A},
or the set {A ∧ B, B}, or the set {A ∧ B, A, B}.



In all these cases, the subsequent addition of ¬(A ∧ B) does not create
inconsistencies. However, we tend to avoid the removal of {A ∧ B, A, B}.
This is because the key to counterfactual reasoning is to change just enough
with respect to the initial situation to maintain consistency and obtain the
right set of sentences on the basis of which to establish whether the
counterfactual is true or not.4

This characteristic of counterfactual reasoning seems to be due to an attitude
of “cognitive economy”, according to which we tend to minimally modify
what is (or what we believe to be) true. To see that we actually have this
attitude, let us re-4. Whether we should remove A or B is another question.
Suffice it to say here that there are no strictly logical criteria for this choice –
unless, of course, either A or B is logically inconsistent with

¬(A ∧ B). In any case, the analysis of the criteria for this choice goes
beyond the scope of this book.
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turn to the Mr. Jones experiment for a moment. In constructing the
counterfactual scenario, each of the participants modified, with respect to the
story, only enough to obtain a scenario in which Mr. Jones did not die in the
accident. No one, for example, proposed a scenario in which Mr. Jones took
the usual route and the truck driver was not under the influence of drugs.

Note here the difference from the Ramsey Test for indicative conditionals. In
the latter we also add antecedent A to K, but ideally we do so if neither A
nor its negation are already included in our stock of information. In the case
of RT*, instead, we add the antecedent A despite the initial stock containing
¬A. The Ramsey Test for counterfactual conditionals thus provides an
intuitive idea of the criteria by which we accept (or do not accept) a
counterfactual as true.

7.3.4 The semantics of counterfactuals



The semantics of counterfactuals is based on a rather intuitive idea, which
we have actually already encountered in § 7.1: among the counterfactual
scenarios, some are more similar than others to the real world. Consider, for
example, the following scenarios s 1 and s 2:

s : (i) there are no counterfeit products; (ii) only certain real-world buyers 1

who purchase counterfeit Sennheiser headphones buy genuine Sennheiser
products;

s : (i) there are no counterfeit products; (iii) all buyers who purchase 2

counterfeit Sennheiser headphones in the real world buy genuine Sennheiser
products.

As we already said in § 7.1, scenario s 1 is more similar to the real world (let
us call it s 0) than s 2. Since s 1 is more similar to the real world, in
evaluating “There are no counterfeit products ∁→ All those who have
actually bought fake Sennheiser buy Sennheiser products” we must
prioritize what is true in s 1 over what is true in s 2.

Therefore, the conditional in question will turn out to be false, because in s
1, although the antecedent is true, the consequent is false.

These intuitive ideas receive rigorous treatment in the semantics of
counterfactuals. In particular, to interpret counterfactual sentences, we take
(i) a set S that includes the real world s 0 and an (even infinite) number of
counterfactual scenarios s 1, s 2, s 3, …; (ii) a comparative similarity relation
with respect to each scenario si, which is interpreted as “x is at least as
similar to si than y is”;5 (iii) a “relation of sat-5. We need to impose some
formal properties on the similar relation in order for the semantics to work
properly. The relation must be reflexive and transitive. Other properties can
be imposed but we will not discuss them here. Notice that these properties
are not essential for what we will say here on the counterfactual semantics.
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isfaction” between sentences and scenario, which can be read as “A is true in
si”, or equivalently “in si it is true that A”.6 Then we define the following
truth conditions for counterfactuals:

A ∁→ B is true in s if and only if:

i

(1) there exists at least one scenario s in S where A is true and, for any j

scenario that is at least as similar to s as s , B is true if A is.7

i

j

Or if:

(2) there is no scenario s in S where A is true.

j

An equivalent formulation is:8

A ∁→ B is true in s if and only if:

i

(1') given the set of scenarios S' in which A is true, B is true in all scenarios
in S' which are more similar to s than any other scenario in S' , or i

(2') there is no scenario s in S where A is true.

j

Let us comment on these definitions before giving some examples. In both
formulations, the second condition serves to handle counterfactuals with an
antecedent whose truth is excluded from any scenario in the model.



Consider, for example, counterfactual “2 + 2 = 4 and 2 + 2 = 5 ∁→
Humanity has very few certainties”.

The second condition of both truth conditions makes this counterfactual
vacuously true. While this sounds counterintuitive, consider that it is, in any
case, different from what happens with material conditionals. In the case of
the latter, a false antecedent is sufficient to make the conditional true; in the
case of counterfactuals, this is not so, as we will see shortly. The insistence
of logicians on this second condition is due to technical questions that do not
interest us here.9 However, since this condition is part of the classical
semantics of counterfactuals, we have included it.

Regarding the first condition, it provides the results we had already
intuitively illustrated by analyzing the example of Sennheiser products:

6. This relation is defined in such a way that any sentence containing
negations, conjunctions, disjunctions, and material conditionals is truth-
conditionally dependent on the truth-value of the sentences that compose it
according to the truth table we saw in Chapter 5. Thus, the relation defines
the property of “being true” in the possible scenarios.

7. By “at least as similar to si as sj” we mean (i) “as similar as” or (ii) “more
similar than”. It is easy to see that if (i) is satisfied, B is also true in sj.

8. Notice that both formulations of truth conditions presuppose that for every
s i in S, there is a subset S' of scenarios that are more similar to si than any
other scenario external to S' . If this presupposition is false, truth conditions
must be modified. In the following, we will take this presupposition for
granted because it is intuitive and makes the semantics simpler. It goes
beyond the educa-tional purposes of this book to give a semantics that does
not assume this presupposition.

9. In short, if we remove condition (2), both “A ∁→ B” and “A ∁→ ¬B”
might be true in a scenario s i. If this does not cause perplexity in the case of
indicative conditionals (or at least in the case of material conditionals), it is
counterintuitive in the case of counterfactuals.
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There are no counterfeit products ∁→ Only some of those who bought
counterfeits in the real world buy genuine Sennheiser products.

Since there is at least one scenario where the antecedent is true and the
scenarios where the antecedent and consequent are true are more similar to
the real world than those where the antecedent is true and the consequent is
false (in our case, we have defined a single scenario with these features),
condition (1) is satisfied and therefore the counterfactual is true. Condition
(1') basically says the same thing as condition (1).

Suppose that p is “There are no counterfeit products”, and that q is “Only
some of those who bought counterfeits in the real world buy Sennheiser
products”. Let us try to establish the truth of p ∁→ q in the real world s 0.
Suppose that S = { s 0, s 1, s 2} is the set of possible scenarios, that s 1 is
more similar to s 0 than s 2, and that:10

• in s 0 it is true that: ¬ p, ¬ q;

• in s 1 it is true that: p, q;

• in s 2 it is true that: p, ¬ q.

This model formally captures the considerations we made when discussing
the Sennheiser case. According to this model, p ∁→ q is true in s 0. Suppose
now that r is

“Everyone who bought counterfeit Sennheiser products buys real Sennheiser
products”. We want to establish whether p ∁→ r in s 0 (the real world). For
convenience, we will do so by building a model different from the previous
one, but which – like the previous one – has S = { s 0, s 1, s 2}. However, s 2
happens to be more similar to s 0

than s 1, and:

• in s 0 it is true that: ¬ p, ¬ r;

• in s 1 it is true that: p, r;



• in s 2 it is true that: p, ¬ r.

It follows that p ∁→ r is false in s 0, because for every scenario where p is
true and r is true (i.e. s 1) there is a scenario more similar to s 0 where p is
true and r is false (this scenario, of course, is s 2) .

This last example also helps us to discuss a further issue. In the model we
have just presented, the similarity ordering we have imposed ( s 2 is closer to
s 0 than s 1) has an obvious intuitive grip: a scenario where p and ¬ r are
true is more similar to the real one than a scenario in which p and r are true,
as we said in § 7.1. However, not every model necessarily presents similarity
relations that have this intuitive grip. Let us see why.

Given a set S of scenarios, it is possible to define on it a large number of
different relations of comparative similarity. In the last model we discussed,
s 2 is closer to 10. We can refrain from specifying whether s or is more
similar to , and whether or is 0

s 1

s 2

s 0 s 2

more similar to s , because this is not relevant for establishing the truth of the
counterfactual in .

1

s 0
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s 0 than s 1. But we could define a different model in which we have the
same scenarios and the same true sentences, but a different order. In this



alternative model, s 1

is more similar to s 0 than to s 2. This is because the similarity relations are,
in principle, independent of which sentences are true in the scenarios
considered. Consequently, we can have models in which the similarity
ordering with respect to a given scenario has an intuitive grip – because the
set of the true sentences in the various scenarios makes that ordering
intuitive, as in the last example we discussed – and, conversely, we can have
models in which the similarity ordering is not natural – because the set of
true sentences in the various scenarios makes it counterintuitive.

This feature is actually an advantage for the semantics of counterfactuals
because it provides an explanation for our disagreement with the same
counterfactuals. This disagreement is usually sharper than that regarding
indicative conditionals. Consider this example:

If the New York Times had discovered the relationship between Trump and
Putin before the 2016 presidential election, then Trump would not have won
the 2016 presidential election.

We look for a model where this counterfactual is true. In particular, suppose
that p stands for the antecedent of this counterfactual, and q for the
consequent. We find that:

• in s 0 it is true that: ¬ p, ¬ q.

Since we have only two sentences, we have four possible combinations of
their truth-values. Each needs a scenario to be represented. For example, s 0
represents the real world, where p and q are both false. Note, however, that
we are only interested in scenarios where p is true. In short, we only need
two scenarios beyond s 0:

• in s 1 it is true that: p, ¬ q;

• in s 2 it is true that: p, q.

We have three possible options regarding the similarities of these two
scenarios with respect to s 0. Either “s 2 is more similar to s 0 than s 1”, or
“s 1 is more similar to s 0



than s 2”, or “s 1 and s 2 are equally similar to s 0”.

In the model where s 2 is more similar to s 0 than s 1, p ∁→ q is true in s 0.
In this situation, a scenario in which there is a huge scandal about a political
candidate and that candidate loses the election is more similar to the real
world than one in which there is a scandal and the candidate wins the
election.

In the model where s 1 is more similar to s 0 than s 2, p ∁→ q is false in s 0,
while p

∁→ ¬ q is true in s 0. In this situation, the result of the presidential election
does not change even if a scandal breaks out. Or, more precisely: a scenario
in which a scandal breaks out and Trump is elected anyway is more similar
to reality than the scenario in which the scandal breaks out and Trump loses
the election. This is a “pessimistic” point of view, but it is something logical
y possible.
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In the model in which the two scenarios are equally similar to s 0, both p
∁→ q and p ∁→ ¬ q are false in s 0. This model is neutral on which is most
similar to the re-al world.

A point to emphasize is the following: all these arrangements are possible,
and each of them seems to incorporate a vision of “what is most similar to
reality”. The first ordering is, so to speak, “optimistic”, the second
“pessimistic”, and the third “neutral”. It is easy to see that these three
orderings reflect three different approaches that we could intuitively adopt to
evaluate the counterfactual p ∁→

q. In other words, an agent might hold the counterfactual to be true because
he believes that Trump’s defeat in the event of a scandal would be more in
line with what usually happens in these cases; another might believe it to be
false because the civ-ic spirit of US voters has now vanished; still another
might be neutral about whether Trump would win or lose if a scandal broke



up. Obviously, the disagreement between these three points of view is not a
disagreement on the facts – everyone knows that p and q are false in reality.

Counterfactual semantics helps us understand on what the disagreement is
about: not about the real world but about what is most similar to the real
world. 11

Since there are many views on it, there is also a deep disagreement on
several counterfactuals. Since we can define many similarity relations on the
same scenarios, this is a strong point in favor of the semantics of
counterfactuals. The latter reflects the plurality of conceptions of “what is
most similar to the real world” and explains our disagreements about
counterfactuals.

Let us now see the connection between this way of dealing with
counterfactual semantics and the “intuitive” method of accepting or rejecting
a counterfactual through the Ramsey Test (RT*). Take A ∁→ B. The
counterfactual scenarios in which A is true have a function similar to the
stocks of information to which we

“add” A. These scenarios are consistent, and therefore in them neither ¬A
nor anything that implies ¬A is true. This reflects the consistency condition
we want our information stocks to fulfil. Moreover, the semantics of
counterfactuals incorporates a sort of “economy” condition. The condition of
“maximum possible similarity” to the real world corresponds to the
condition of “minimum adjustments necessary to maintain consistency”: it
suggests that we change only what is minimally necessary to evaluate the
counterfactual.

There is, however, a crucial difference between the two conditions. Let us
see why. We shall start from the Ramsey Test (RT*) and the condition that
we must remove exclusively what would contradict the information A just
added.

This means leaving everything that was included in the initial stock and that
is compatible with A. Now, let us take “NYT discovers relations between
Putin 11. Thus, indirectly, the disagreement concerns the model by means of
which counterfactuals are evaluated.
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and Trump before the 2016 US presidential election ∁→ Trump does not
win the 2016 US presidential election”, and apply the Ramsey Test. Suppose
that our initial stock of information is {¬ p, ¬ q}. We add p (the antecedent
of the counterfactual) to this stock and remove ¬ p. We have made the
minimum changes necessary to ensure consistency, so we do not have to do
anything else. We remain with ¬ q: Trump wins the 2016 US presidential
election. The Ramsey Test returns { p, ¬ q} as the only possible result. This
means that, according to the test, p

∁→ q is not acceptable as true.

However, the semantics of counterfactuals permits the building of at least
one model in which p ∁→ q is true (with respect to s 0), and that this model
seems to us something possible, not something to be ruled out as
meaningless, abnormal or un-reasonable.

What explains this divergence? The semantics of counterfactuals tolerates
changes of other kinds than those to maintain consistency, as long as they
are in some sense minimal. To appreciate this, let us take the model on the
basis of which we established that p ∁→ q is true in s 0 (where this
counterfactual is: “If the NYT

had discovered relationships .. , then Trump would not have won the 2016
presidential election”). In that model, s 2 is the scenario where the NYT
discovers the relationships and Trump does not win. This scenario is more
similar to s 0 than s 1.

Note, however, that it is s 1 that makes the minimum changes necessary to
maintain consistency: indeed, the fact that Trump wins is compatible with
the fact that the NYT discovers his relations with Putin. Conversely, s 2
makes more changes than s 1, since in s 2 q (instead of ¬ q) is true. Most
importantly, the latter change is not necessary to maintain consistency.



At the same time, however, only relevant changes are permitted. A scenario
in which the NYT discovers the relations between Putin and Trump, Putin
exercis-es telepathic powers to persuade the entire American electorate and
Trump wins, is a scenario that is too dissimilar to the real one to take it into
account. In other words, similarity relations help us to ensure that some
scenarios cannot really matter in the evaluation of counterfactuals, because
they are too dissimilar to the re-al scenario. When we build models for a
given example, these scenarios will typically be ones where a lot of things
are different from the real facts. In short, being less precise than the Ramsey
Test (RT*), the semantics of counterfactuals follows the intuition that, in
order to be truly relevant to the evaluation of a counterfactual, a scenario
must make as many changes as necessary to address the problem. The point
is that, contrary to the Ramsey Test (RT*), in the semantics of
counterfactuals there is no method to establish a priori what “enough”
means: it must be examined case by case.12

12. Notice that the semantics of counterfactuals seem to reflect the changes
we tend to make: we change exceptional events, our actions, the events we
can control, etc. (see § 7.2).
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7.3.5 Fallacies of counterfactual reasoning

Let us now consider some fallacies of counterfactual reasoning. These
fallacies are particularly interesting because they follow inference schemes
that are valid for material conditionals. Such schemes are known as the truth
of the consequent, the strengthening of the antecedent, contraposition,
transitivity. The fact that they are valid for material conditionals but not for
counterfactuals helps us to perceive the differences between the two kinds of
conditionals more clearly. This also partly explains why we tend to follow
these schemes when we reason with counterfactuals, even if they are not
valid. To see that such schemes do not hold for counterfactuals, we need to
construct counterexamples. In doing so, we will put into practice what we
have observed so far regarding the semantics of counterfactuals. Remember
that in the notation used here, A → B indicates the material conditional.



The truth of the counterfactual does not follow from the truth of the
consequent. As we saw in Chapter 6, the truth of the consequent of a
material conditional is sufficient to establish the truth of the conditional
itself. In other words, the following inference rule is valid:

B

A → B

This principle does not seem plausible for counterfactual conditionals. After
all, the fact that a sentence is true does not guarantee that it would have been
true if things had turned out differently. Consider, for example, the following
sentence: Trump won the US presidential election in 2016.

This sentence is true. But it does not follow from this that:

If the New York Times had discovered relations between Putin and Trump
before the election, Trump would have won the presidential election in 2016.

According to the semantics of counterfactuals, inferences of the following
form are not deductively valid:

B

A ∁→ B

Let us give a counterexample. To do this, we must show that there is a true
sentence B for which A ∁→ B is not true. Suppose that p is “Trump dies
before the 2016 elections” and q is “Trump wins the US presidential election
in 2016”. In the real world (scenario s 0), q is true and p is false. That is:
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• in s 0, it is true that: ¬ p, q.



To evaluate the counterfactual, we must consider only scenarios in which p
is true.

This leaves us with two possible scenarios: s 1, where p and q are both true,
and s 2, where p is true and q is false. In short, in s 1, Trump dies before the
elections and Trump wins anyway; in s 2, on the other hand, Trump dies
before the elections and Trump does not win.

Is s 1 or s 2 more similar to the real world? Given the ways in which
candidates are chosen, it is reasonable to consider s 2 more similar to s 0
than s 1. In fact, it seems very reasonable to think that, following the death
of Trump, the Republican Party would have nominated another politician for
the US presidency rather than insisting on nominating a deceased person.
Consequently, p ∁→ ¬ q is true, and, therefore, p ∁→ q is false. Since q is
true, this is enough to construct a case in which the above inference is not
valid (since q is true, but p ∁→ q is not).

The strengthening of the antecedent is not valid. For indicative conditionals,
a principle known as “strengthening of the antecedent” applies. According to
this principle, if “A → B” is true, we can strengthen the antecedent with any
sentence C, obtaining another true conditional:

A → B

(A ∧ C) → B

A glance at the truth table of the conditional is enough to see that this rule of
inference is deductively valid. Consider, for instance, this indicative
conditional: (11) If a triangle is isosceles, then it has at least two congruent
angles.

We know that (11) is true. However, if (11) is true, also is:

(12) If a triangle is isosceles and is blue, then it has at least two congruent
angles.

The same rule of inference, however, is not valid in the semantics of the
counterfactuals we have introduced. Let us assume that (13) is true.



(13) If the NYT had discovered some relationships between Trump and Putin
before the 2016 US presidential election, then Trump would not have won
the 2016 US presidential election.

And now consider the following counterfactual, obtained by “strengthening”
the antecedent of (13):

(14) If the NYT had discovered the relationships between Trump and Putin
before the 2016 US presidential election and kept them secret, then Trump
would not have won the 2016 US presidential election.

168

Part II Deductive arguments

It is reasonable to consider this conditional false. I

.

f the relationships between

Trump and Putin had been kept secret, the electorate would not have
changed its opinion, and therefore we have no reason to think that the 2016
presidential election would have had a different outcome. These intuitive
considerations help us to see that the following inference is not valid:

A ∁→ B

(A ∧ C) ∁→ B

We can build a counterexample to it. Again, suppose p is “The NYT finds out
about Trump-Putin relationships before the 2016 US presidential elections”,
but al-so assume that q is now “Trump does not win the 2016 US
presidential election”.

Suppose further that r is “The NYT keeps Trump-Putin relationships secret”.

Again, in s 0 (the real world) p, q, and r are all false – the NYT did not
discover the relationships in question before the election and it did not keep



them secret; besides, Trump won the 2016 presidential election. To construct
a counterexample to the inference scheme introduced above, we must start
from a model in which p ∁→

q is true, but ( p ∧ r) ∁→ q is not true. We need four counterfactual
scenarios: two in which p is true and r is false (in one q is true, in the other it
is false), and two in which the conjunction p ∧ r is true (in one r is true, in
the other it is false). We define the four scenarios as follows:

• in s 1 it is true that: p, ¬ r, ¬ q;

• in s 2 it is true that: p, ¬ r, q;

• in s 3 it is true that: p ∧ r, q;

• in s 4 it is true that: p ∧ r, ¬ q.

Those scenarios in which p is true but r is not (i.e. s 1 and s 2) are more
similar to s 0

than the two scenarios in which p and r are both true (i.e. s 3 and s 4). After
all, a situation in which an important newspaper gets a scoop and divulges it
seems more similar to how things go in reality, compared to a scenario in
which the same newspaper gets a scoop but does not exploit it in any way.
Finally, s 2 seems more similar to s 0 than s 1 – at least if we consider how
the electorate tends to react to certain kinds of news items. Because of this
arrangement among the four scenarios, we must conclude that p ∁→ q is
true.

Let us now consider ( p ∧ r) ∁→ q. If we restrict our attention to the
scenarios in which the antecedent is true ( s 3 and s 4), the scenario in which
Trump wins the election (i.e. s 4) looks more similar to the real world s 0
than the scenario in which Trump does not win (i.e. s 3): since the news
about his relations with Putin have not been spread, the opinions of the
electorate are in s 4 exactly as they are in the real world s 0. Because of this,
( p ∧ r) ∁→ q is false. This is sufficient to produce a counterexample to the
inference scheme we are discussing.
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Counterfactuals do not support contraposition. Another scheme valid in the
case of indicative conditionals but invalid in the case of counterfactuals is
contraposition.

In this scheme, the antecedent and the consequent of a material conditional
are in-verted and negated. We might easily check that this scheme is valid on
the basis of the modus tollens and the rule of introduction of the conditional:
A → B

¬B → ¬A

We can also check the validity of the scheme using the truth table of material
conditionals.13 Here is an example. From sentence (11) above, it follows:
(15) If a triangle does not have at least two congruent angles, then it is not
isosceles.

This kind of inference is not valid for counterfactual conditionals. Again, let
us take an example and discuss what we would intuitively say about the
conditionals involved. Then, we will show that the semantics of
counterfactuals conforms to our intuitions in this regard. Suppose that Ann
wants to follow Claude wherever he goes, because she has a crush on him.
Claude has been invited to a party, and he likes parties very much. Ann
heard about it and decides to go to the party, thinking that Claude will go
there. However, Claude feels more at ease when he does not see Ann and
therefore, he has decided not to go to the party. Given this situation, we
would accept the following counterfactual as true:

(16) If Claude had gone to the party, Ann would have gone.

But we would reject the following as false:

(17) If Ann hadn’t gone to the party, Claude wouldn’t have gone.



Let us now construct a model showing the invalidity of the following
inference scheme:

A ∁→ B

¬B ∁→ ¬A

Suppose p is “Claude goes to the party” and q “Ann goes to the party”. In
the real world ( s 0), p is false and q is true. We now need three
counterfactual scenarios. In 13. Suppose that B is true. In this case, A → B is
true because the consequent is true. Further, since

¬B is false, ¬B → ¬A is true because it has a false antecedent. Suppose now
that A is false. In this case, A → B is true because it has a false antecedent.
Further, since ¬A is true, ¬B → ¬A is true because it has a true consequent.
Since the cases in which B is true and those in which A is false exhaust the
cases in which A → B is true, this reasoning suffices to prove the validity of
the above inference scheme.
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the first two p is true (in one of them q is true, in the other q is false); in the
third both p and q are false:

• in s 1 it is true that: p, q;

• in s 2 it is true that: ¬ q, p;

• in s 3 it is true that: ¬ q, ¬ p.

Now, s 1 and s 2 are scenarios in which Claude goes to the party. Scenario s
1, in which Ann also goes to the party, is more similar to the real world than
s 2, in which Ann does not go to the party (in fact, in the real world Ann
goes to the party). This is enough to conclude that p ∁→ q is true. Now,
consider the two scenarios in which Ann does not go to the party: s 2 and s
3. In the first one, Claude goes to the party, in the second one he does not go.



Given what we have said about Claude’s preferences, it is reasonable to
assume that scenario s 2 is more similar to the real world than s 3.

Hence, ¬ q ∁→ ¬ p is false. This is enough to show that the inference
scheme we are discussing is invalid.

Counterfactual conditionals do not support transitivity. The following
inference scheme:

A → B

B → C

A → C

is valid for the material conditional. We can thus say that the material
connective has the property of transitivity. Here is an example. From the
following two conditionals:

(18) If a triangle is isosceles, then it has at least two congruent angles; (19) If
two angles are congruent, then they have the same width, the following
conditional clearly follows:

(20) If a triangle is isosceles, then it has at least two angles with the same
width.

Counterfactual conditionals, however, are not transitive. Let us take Claude,
Ann, and Frances. Claude and Ann had an affair, but now Claude is in love
with Frances. Ann wants to try to win Claude back, but she does not want to
run the risk of meeting Frances. Now consider these counterfactuals:

(21) If Frances had gone to the party, Claude would have gone too; (22) If
Claude had gone to the party, Ann would have gone too.

We are led to believe that both counterfactuals are true. The first one because
Claude wants to have the opportunity to meet Frances. The second one
because

7



Conditional reasoning, II: The counterfactual conditional

171

Ann wants to have the opportunity to win back Claude. But we would say
that the following conditional:

(23) If Frances had gone to the party, Ann would have gone too is false. As
we have said, Ann does not want to meet Frances. This example shows that
counterfactual reasoning cannot be transitive.

Let us construct a counterexample for the following inference scheme: A
∁→ B

B ∁→ C

A ∁→ C

This counterexample will be a little more complex than the previous ones.
Suppose p is “Frances goes to the party”, q is “Claude goes to the party”, r is
“Ann goes to the party”. In s 0, the real world, p, q, r are all false. We have
three sentences ( p, q, r), each of which can be either true or false. There are
therefore 23 = 8 combinations of truth-values. One of these combinations
coincides with the real world s 0, where ¬ p,

¬ q, ¬ r are true. The other seven are satisfied by the following scenarios:

• in s 1 it is true that: p, q, ¬ r;

• in s 2 it is true that: p, q, r;

• in s 3 it is true that: p, ¬ q, ¬ r;

• in s 4 it is true that: p, ¬ q, r;

• in s 5 it is true that: ¬ p, q, r;

• in s 6 it is true that: ¬ p, ¬ q, r;



• in s 7 it is true that: ¬ p, q, ¬ r.

Suppose, in addition, that Frances does not like going to parties, and that
Frances is indifferent both to Claude’s feelings and to Ann’s dislike for her.
Let us seek an ordering of this situation that makes both p ∁→ q and q ∁→ r
true. Let us consider the four scenarios in which Frances goes to the party (
p). They are s 1- s 4. We postulate that the closest to the real world s 0 is the
one in which Claude goes to the party but Ann does not – Ann’s priority, we
suppose, is not to meet Frances, which is more important to her than the
opportunity to meet Claude. Hence, s 1 is more similar to s 0 than s 2, s 3, s
4. This makes p ∁→ q and p ∁→ ¬ r true. Now let us take the four scenarios
in which Claude goes to the party ( q) – i.e. s 1, s 2, s 5, s 7. We must
complete the arrangement so that (i) q ∁→ r is true, (ii) the ordering remains
consistent with the truth of p ∁→ q. Among the scenarios where q is true, s
5 is more similar to s 0 than s 7. What about the other ones? Well, s 7 is
more similar to s 0 than both s 1 and s 2: in s 7 Frances does not go to the
party, and this is more in agreement with the fact that she does not like
parties. Since this is independent of what Ann and Claude do (Frances is
indifferent to both), we can reasonably assume s 5 is more similar to s 0 than
any scenario where “Frances goes to the party” ( p) is true, including

172

Part II Deductive arguments

both s 1 and s 2. The fact that s 5 is more similar to s 0 than the other
scenarios where q is true guarantees the truth of q ∁→ r. Finally, we have
seen that s 1 is more similar to s 0 than all other scenarios where p is true. In
s 1, however, r is false. Consequently, there is no scenario where (i) p is true,
(ii) r is true, and (iii) which is more similar to s 0 than the scenarios where p
is true but r is false. Indeed, s 2 and s 4 are the only ones satisfying (i) and
(ii), and they are both less similar to s 0 than s 1, which satisfies (i) but not
(ii). We have then built a model in which p ∁→ q and q ∁→ r are true, and
yet p ∁→ r is false. This is sufficient to show that transitivity is not a
property of counterfactuals.

Notice that counterexamples to an inference scheme do not prove that in all
models where the premises are true, the conclusion is false. They simply



show that there is at least one model in which the premises are true and the
conclusion false.

This, in any case, is sufficient to show that there is no guarantee of passing
from true premises to a true conclusion using it; this guarantee is however
expected from deductive reasoning.

7.4 Counterfactuals and causality

In § 7.2 we mentioned the fact that we often consider counterfactual
alternatives when we must evaluate the presence (or absence) of causal links.
Here we will briefly discuss the relationships between counterfactual and
causal reasonings. Imagine that you want to establish whether there is a
causal relationship between two events E1 and E2, that is, whether “E1
causes E2” or “E2 causes E1” is true. To solve this problem, we often ask:
“If E1 had not happened, would E2 have happened?” If the answer to this
question is yes, we are inclined to conclude that E1 is not the cause of E2. If
the answer is negative, we would be inclined to conclude that E1 is the cause
of E2. We ask a similar question if we want to establish whether E2 causes
E1. This shows that we often use counterfactual reasoning to ascertain causal
connections.

Before considering this topic in more detail, it is worth making some
clarifications. First, a counterfactual involves sentences; in the example
above, in particular, counterfactuals involve sentences that refer to events
(E1 and E2). However, causal relationships do not involve sentences; rather
they involve events or facts.

This leads to significant differences. We say, “If a stone hit a window, then it
would break”, but not “The stone hits the window causes the window to
break”. Instead, we say “The impact of a stone causes a window to break”.
Using a more technical turn of phrase (somewhat different from our
everyday language), we could say “The event that the stone hits the window
causes the event that the window breaks”. We have created two nominal
constructions (“The event that the stone hits the window” and “The event
that the window breaks”) starting from two sentences (“The stone hits the
window” and “The windows breaks”). This type of construction allows us to
discuss the relationships between a possible causal link between events,
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and the counterfactual links between the sentences that refer to the events in
question. Here we will use the schematic letters E1, E2, E3, ... for sentences
expressing events, and the symbols !E1!, !E2!, !E3!, ... for the nominal
constructions obtained from E1, E2, E3, … So, if E1 is the sentence “The
stone hits the window”, !E1! will be the nominal construction “The event
that the stone hits the window”. !E1!, unlike E1, can legitimately be the
predicate term in causal links. Second, we will use X as a variable for
sentences. In other words, X can take sentences as values. For example, in
“If X, then Julius will not pass the exam”, values for X could be “Julius does
not study”, or even “the Government falls”, or “cold nuclear fusion is very
difficult to obtain”. All these can be values of X because they are sentences.
Obviously, not all of them make “If X, then Giulio will not pass the exam”
true. We must select those values that make this sentence true. Given X, we
use !X! to denote the nominal construction obtained from X. The value of X
determines the value of !X!.

7.4.1 The counterfactual test

We have said that there is a relationship between causal and counterfactual
links.

But what exactly does this relationship consist of? It is not easy to tell. Here
we will discuss an apparently intuitive view, which however does not turn
out to be completely correct. This position identifies counterfactuals and
causal links between events. The counterfactual Test (CT) expresses this
view: (CT) !E1! causes !E2! if and only if ¬E1 ∁→ ¬E2

For convenience, we can say that !E2! counterfactually depends on !E1! if
and only if it is true that: ¬E1 ∁→ ¬E2. (CT) therefore says that !E1! causes
!E2! if and only if

!E2! counterfactually depends on !E1!. Note that the truth of



¬E1 ∁→ ¬E2

is independent of the truth of

¬E2 ∁→ ¬E1

since the first can be true and the second false. For example, “If Claude
hadn’t gone to the party, Ann wouldn’t have gone” may be true, but “If Ann
hadn’t gone to the party, Claude wouldn’t have gone” may be false. So,
according to (CT), !E1! can cause !E2! without !E2! causing !E1!. This
guarantees (CT) to be compatible with the fact that causal relationships are
not symmetrical. This is important for the adequacy of (CT). In the next
section, we will see, however, that this is not enough, and that (CT) is not a
completely adequate principle.

174

Part II Deductive arguments

7.4.2 Inadequacy of the counterfactual test

(CT) is conceptually inadequate, i.e. it does not correctly describe the
relationship between counterfactuality and causality. A simple example
shows us that counterfactual dependence is not a necessary condition for
causality, that is, we can have causal links without counterfactual
dependence, in contrast to what (CT) states. The fact that counterfactual
dependence is not necessary for causation means that there can be a causal
relationship between A and B even without there being a counterfactual
dependence between A and B. Consider the following example:

Bill and Suzy. Bill and Suzy both want to throw a stone at a glass bottle.

Suzy throws first or harder. Her stone comes first. When Bill’s stone reaches
where the bottle was, only glass shards are there. However, Bill’s stone had
enough strength to break a bottle.

In this example, Suzy’s throw is clearly the cause of the breaking of the
bottle, but there is no counterfactual dependence between the two events. As
the story goes, the following counterfactual is false:



If Suzy hadn’t thrown the stone, the bottle would not have broken.

This is because if Suzy had not thrown her stone, Bill’s stone would have hit
the bottle and broken it. We are therefore in a situation where !E1! (Suzy’s
throw), !E2!

(the breaking of the bottle) and !E3! (Bill’s throw) are such that

!E1! causes !E2!

but the following counterfactual is false:

If E1 had not happened, E2 would not have happened.

In other words, it is false that:

E is counterfactually dependent on E

2

1.

Counterfactual dependence is therefore not necessary for causality. However,
in the simplest and most common cases, (CT) works because there are
usually no potential competing causes, as in the example of Bill and Suzy.
Where these kinds of situations arise, however, (CT) does not prove to be a
good principle. Furthermore, we must not take it for granted that these kinds
of situations are of little importance from a practical point of view.
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7.5 Conclusion

In this chapter, we have discussed counterfactual conditionals and the forms
of deductive reasoning associated with them. We have explained what



counterfactuals are, and what kind of cognitive capacity we employ to grasp
their meaning. We have also reviewed some experimental results on
reasoning with counterfactuals, specifying the importance of the latter in our
daily activities and the importance of these descriptive results for our
normative approach. In addition, we have dealt with the logic of
counterfactuals, returning to a normative point of view, and focusing on their
differences from indicative conditionals. Moreover, we have discussed their
truth conditions and their semantics. We have closed this chapter by
discussing the relationship between counterfactual and causal reasoning.

Part III

Non-deductive arguments

8 · Reasoning with explanatory hypotheses From this chapter on we will
analyze some kinds of non-deductive reasoning. As we said before, in
Chapter 2, an argument is non-deductive when the truth of the premises does
not guarantee the truth of the conclusion but only its probability or
plausibility. In this chapter, we will analyze the forms of non-deductive
reasoning used to explain or identify the causes of an event or fact. That this
event has occurred is stated in the premises of the reasoning, and its
conclusion consists in the explanation or cause of that event. The kinds of
reasoning that we will analyze below seek to establish, among the various
possible explanations for or causes of an event, which of them is the most
probable. We will start with a case in the history of medicine (§ 8.2); we will
then discuss some basic aspects of abductive reasoning and eventually focus
on the inference to the best explanation, a form of reasoning that seeks to
identify the best explanation for a fact or event out of those available (§ 8.3).
Finally, we will look at some specific applications of inference to the best
explanation by discussing Mil ’s methods for causal reasoning (§ 8.4).
Indeed, these methods provide procedures for determining which is the best
of a set of hypotheses regarding what causes what.

8.1 Introduction

Both in our daily experience and in scientific research we often need to
explain facts whose causes or reasons are not known. For example, I may
wonder why my house keys are not in the trinket tray where I usually leave



them, and virologists and epidemiologists may want to understand why a
given disease seems to have a higher mortality rate in certain geographic
areas than others. Some economists may wonder why a sub-prime crisis
broke out between 2006 and 2008. And so on.

To explain these facts, we must develop explanatory hypotheses, that is, the
possible explanations for a fact or event. For example, I can assume that I
left the keys in my jeans for once; or that in different geographical areas the
statistical survey of deaths from a disease is carried out in different ways,
with consequences on the determination of the mortality rate of the disease;
or that investors had not ascertained the solvency of the loans before taking a
gamble on securities that incorporated subprime mortgages.

There are many logical models that show us how an explanation should be

“represented”. Typically, an explanation aims to identify explanatory links
between
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a sentence we call explanandum, which expresses what we have to explain,
and one or more sentences called explanans, which instead express what
would explain the explanandum. Among the many available, there is also a
deductive model of explanation, according to which an explanation is a
particular type of argument in which the explanandum necessarily follows
from the explanans; that is, for the deductive model of explanation, the latter
is a particular type of deductive argument.

However, in formulating hypotheses, this path usually does not interest us:
we already know that the explanandum is true, and what we are looking for
is an explanans that gives us reasons, even non-conclusive ones, for the
explanans. That is, we proceed from the explanandum to the explanans,
assuming the former as a premise (or as one of the premises) and the latter as
a conclusion. This makes our reasoning, in fact, non-deductive. A reasoning
that seeks to identify an explanans of a certain fact or event is called
abductive. Starting from our explanandum we can go back to several



possible explanations which provide reasons for inferring the truth of the
explanandum. The next step will consist in establishing which of the various
possible explanations is the best one. But to understand all this, let us start
with an example.

8.2 A medical case

Starting out from a true story in medicine, let us try to reconstruct the two
fundamental steps in explanatory reasoning: the formulation of hypotheses,
and the search for the hypothesis that best explains the explanandum.
Between 1846 and 1847 a Hungarian doctor, Ignác Semmelweis, conducted
an investigation to discover the origin of puerperal fever, a serious infection
of the uterus that can occur after childbirth and can have fatal effects. At the
time of Semmelweis’ investigations, the existence of contamination by
pathogens such as bacteria was not yet known; this is what actually causes
the disease. There were various hypotheses regarding the causes of puerperal
fever at the time. Here are some of them: Hypotheses

H1: Puerperal fever is caused by “epidemic influences” that periodically
occur in entire districts of a country or city.

H2: Puerperal fever is contracted in overcrowded places.

H3: The contraction of puerperal fever depends on the diet.

H4: Puerperal fever depends on the “lochia”, that is from secretions that
come out of the vagina for a period of about 6 weeks after delivery, which
are not expelled and have putrefied as a result of stagnation, which rise up in
the tissues and blood, causing pain, fever and finally the death of the woman.

H5: During the nine months of pregnancy, the veins could absorb poisons
produced by accumulated fecal matter. The cause of the accumula-
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tion was attributed to the uterus which, when enlarged, exerts pres-sure on
the intestine, causing a stasis.

Semmelweis was struck by the fact that in the Vienna General Hospital,
where he worked, puerperal fever affected women admitted to the First
Maternity Ward (FMW) far more widely than women admitted to the Second
Maternity Ward (SMW). The following was the case:

Problem

In the Vienna General Hospital, many more women in FMW contract
puerperal fever than in the adjacent SMW. Why? What explains the
difference in the mortality rates of the two wards?

Semmelweis tried to analyze the conditions of the two wards and obtained
the following:

Initial evidence

E1: There is a significant difference between the mortality rates in the First
Maternity Ward and the Second Maternity Ward.

E2: The crowding rate of the two wards is the same.

E3: The diet in the two wards is the same.

This evidence disproves hypotheses H1-H5. More precisely, the fact that the
two wards were adjacent denies H1: if the disease were caused by epidemic
influences that periodically affect cities or entire regions, it should have
affected both wards equally, or in any case in very similar proportions. H1,
therefore, does not explain the difference in mortality rates. E2 also denies
H2, while E3 denies H3, for reasons similar to those we have just seen. The
same is true for H4 and H5: if the fever depended on the “lochia” or on the
matter accumulated in the veins, it should have affected both wards
indifferently. Therefore, these hypotheses, too, were unable to explain the
fact investigated by Semmelweis, namely the difference in the mortality
rates. They failed to explain it because, given the initial evidence E1-E3,
they instead led to the opposite conclusion, namely a uniformity in mortality
rates, which in fact did not occur.



The evidence E1-E3 collected by Semmelweis was therefore useful to
disprove, or at least to make less plausible, some explanatory hypotheses. It
is also clear that E1-E3

did not follow from those hypotheses, in the sense that E1-E3 were not
deducible from them. The hospital managers then formulated a new
hypothesis that could explain the onset of puerperal fever, a hypothesis not
disproved or weakened by E1-E3: H6: Fever is caused by medical students,
who receive their obstetrical training in the FMW but not in the SMW. Due
to inexperience, students are probably rougher when they examine patients,
and this can lead to injuries and the contraction of puerperal fever. The
midwives who work in SMW, on the other hand, use better procedures and
do not expose themselves to the same risk of injuring patients.
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However, in the course of his investigation, Semmelweis gathered further
evidence that allowed him to judge H6 implausible:

E4: Medical students and midwives use exactly the same methods to
examine patients in both wards.

E5: A hospital doctor, once injured with a scalpel he was using in the
autopsy room, developed the same symptoms seen in puerperal fever
victims.

Now, E4 disproves H6. E5 instead suggests the formulation of a new
hypothesis, exactly the one formulated by Semmelweis to explain the origin
of puerperal fever and all the evidence collected by him:

H7: Puerperal fever is produced by “infectious materials” (today we would
say “bacteria”) that are introduced into the wounds produced by childbirth.
Medical students working in the First Ward transport these infectious
materials from the autopsy room to the First Maternity Ward. The midwives
of the Second Ward do not access the autopsy room and therefore are not
vehicles of the infection.



To test this hypothesis, Semmelweis required medical students to wash their
hands thoroughly with a solution of lime chloride before visiting women in
labor.1 Following this, he was able to find that:

E6: After the students were forced to wash their hands with a solution of
lime chloride, the mortality rate in the FMW dropped to converge with that
of the SMW.

E6 confirmed H7 because it provided new evidence that only H7 could
explain, and which instead remained unexplained if the other hypotheses
were assumed.

Furthermore, in addition to E6, H7 is compatible with the remaining
available evidence (i.e. with E1-E5), while none of the other hypotheses
proposed is. Semmelweis was the first to understand the dynamics through
which puerperal fever arises and was a great precursor to the discovery of
the role that microorganisms play in infections. His investigation was the
first to emphasize these dynamics, and to suggest disinfection as a
preventive sanitary means. Ironically, Semmelweis’ research was discredited
by the medicine of the time and he was fired from the Vienna hospital,
despite the positive results achieved, for having given orders without having
the authority. His view was confirmed only twenty years later with Pasteur’s
demonstration of bacterial contamination.

1. If it seems absurd to you that those who worked in hospitals did not wash
their hands thoroughly, consider that at the time there was still no idea of the
need for disinfection in certain environments.
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8.3 Abductive procedures

The procedure followed by Semmelweis involved continuously skipping
between the evidence and the hypotheses. The evidence led to the
formulation of hypotheses that could explain it. This procedure, which goes



from evidence to hypotheses, is called, as we said, abduction. On the other
hand, to test a hypothesis and to compare it with others, the reverse
procedure is carried out, that is, from the hypotheses to their consequences.
In particular, the fact that a hypothesis has certain consequences allows us to
make predictions based on that hypothesis. Such predictions can be
disproved or confirmed by the facts. For example, Semmelweis’s hypothesis
predicted that the mortality rates in the two wards would become the same if
the students washed their hands. The various hypotheses and their
consequences must therefore be compared with evidence and facts to
establish how good a hypothesis is. The case of Semmelweis, as presented,
is rather simple because the hypothesis formulated by the Hungarian doctor
was evidently better than all the others, as it explained all the evidence and
correctly predicted new data. But things are usually not that simple.2 In
many cases, some hypotheses explain some evidence better and other
hypotheses other evidence. The hypotheses must therefore be compared with
each other and weighed by establishing which one is best on the basis of a
plurality of criteria. This procedure is fallible because new evidence can
always change things and a hypothesis that seems the best may not turn out
to be so. It is therefore a form of reasoning that is carried out starting from
the evidence which is contextually available. This is a crux of inference to
the best explanation: we are never guaranteed that it will be conclusive. New
evidence could be introduced later, and drastically challenge what had
hitherto proven to be the best explanation. Let us now discuss some aspects
of abduction that are important for what we say in this chapter. After that, we
will move on to discussing the process of inference to the best explanation.

8.3.1 Abduction

An inference is abductive if (and only if) it is not deductively valid and its
conclusions provide an explanation of the evidence that figures in the
premises. One of our requirements is that the conclusion of such an
argument be a plausible explanation. Typically, we use abductive reasoning
when we face phenomena or events for which we have no known
explanation.

2. Semmelweis’s case itself has been simplified here and things were
actually more complex, so much so that it took twenty years for his
hypothesis to be accepted by the scientific community of the time. In



particular, Semmelweis believed that the origin of infected materials was
exclusively cadaverous, while in fact this is not the case.
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Example (Lost Smartphone). While you are leaving a university classroom
with a colleague, he realizes that he does not have his smartphone with him.
You saw him with his smartphone inside the classroom during the lesson just
concluded. Then you tell him: “You left your smartphone in the classroom”.

This is an extremely simple example of abductive reasoning. Let us briefly
reconstruct it. You used the evidence expressed by “My colleague lost his
smartphone”, and “My colleague had his smartphone in the classroom we
just left” as the basis for a reasoning process aimed at finding out why your
colleague no longer had it, and that evidence led you to conclude the
hypothesis expressed by “My colleague left his smartphone in the classroom
we just left”. In addition to explaining why he could not find it on his way
out, the hypothesis agrees with the evidence available

– and in particular, with the fact that he had his smartphone while he was in
the classroom.

Abductive reasoning operates “from evidence to hypothesis”. It starts from
some data (evidence) using them as premises, and proceeds to propose an
explanatory hypothesis as its own conclusion. Abductive reasoning aims to
conclude an explanatory hypothesis that is plausible given the evidence we
have on the phenomenon we wish to explain.

If we look at things from a deductive point of view, abductive reasoning is
incorrect, because it commits the fallacy of affirming the consequent – see
Chapter 6 on this. Take the smartphone example. It corresponds to this
reasoning pattern:

(E1) My colleague cannot find his smartphone.

(E2) If my colleague has left his smartphone in the classroom, then he
cannot find it.



(H1) My colleague left his smartphone in the classroom.

Note that we cannot validly deduce the last sentence from the first two. To
realize this, consider that there are explanatory hypotheses which are
compatible with the first two sentences but different from (H1). For
example, knowing that my colleague is very distracted (E3) and has a bag
full of things (E4), I could conjecture that he put his smartphone in his bag
without even noticing, but now, even by rum-maging there, he still cannot
find it (H2). It is easy to see that (E3) and (E4) are compatible with (E1) and
(E2), but if added to them lead us to conclude (H2) rather than (H1).

How then should we deal with abductive inference? Simply, as a form of
reasoning that allows us to formulate a hypothesis in response to a set of
starting evidentiary items. If we try to use it as a tool for inferring
conclusions in a deductively valid or conclusive way, then we will make the
logical mistake of treating abductive reasoning as if it were deductive.
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Note that abductive reasoning is, like induction, ampliative, fallible, and
non-monotonic. 3 Let us consider it using the smartphone example. As
regards the character of being ampliative, the information provided by (H1)
is not implicit or already contained in that provided by (E1) and (E2) taken
together, and in the same way, the information provided by (H2) is not
contained in that provided by (E1)-(E2) or in that provided by (E1)-(E4).

As to fallibility, (H1) may be the most plausible hypothesis given (E1) and
(E2), but however good the abductive reasoning in question is, we may find
that (E1)-

(E2) are true and (H1) is false – for example, (H2) could be true instead of
(H1).

Finally, abductive reasoning is non-monotonic: (E1) and (E2) lead us to
conclude (H1), but if we add (E3) and (E4), we are no longer in a position to



conclude (H1) as we did earlier.

The smartphone example shows that the kind of abductive reasoning
presented above is useful for the formulation of a hypothesis, a key step in
any attempt to explain a phenomenon. However, abduction is not useful as a
way of testing the available hypothesis. In fact, facing a phenomenon to
explain, there is usually not just one possible explanatory hypothesis, but
two or more rival hypotheses to choose from; in our example, they are (H1),
namely the hypothesis that the smartphone was left in the classroom, and
(H2), the hypothesis that the smartphone is in the bag. Abductive reasonings
such as those we have exemplified do not help us to say which hypothesis is
more solid. To do this, we must add further steps to the reasoning that leads
us to formulate a hypothesis. It is the process of inference to the best
explanation (IBE).

8.3.2 Inference to the best explanation

The smartphone example exemplifies the stage of hypothesis formulation,
the one where reasoning goes “from evidence to hypothesis”. But when
hypotheses have to be evaluated and if possible tested, which includes going
“from hypothesis to evidence”, we need other procedures.

The testing of hypotheses is actually the central aspect in the non-deductive
reasoning procedures via which we come to select a hypothesis that explains
a given phenomenon. Note that, in the hypothesis testing phase, we also
resort to deductive reasoning. Take for example the case in which we add
new evidence to the initial one, precisely to test a given hypothesis, and this
new evidence contradicts the hypothesis. This is a case of falsification.
Ideally, what happens in this case is that the hypothesis implies something
that is negated by the new evidence.4 From this, 3. See Chapter 2 on these
three concepts, § 2.3.3 in particular.

4. In fact, this process can also involve the initial evidence. Be that as it may,
what is implied by a hypothesis must be different from the evidence that
suggested the hypothesis, in order to avoid the process being circular.
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we conclude the negation of the hypothesis. This type of inference is what is
called modus tollens (again, see Chapter 6), and it is precisely the kind of
deductive reasoning we follow when we falsify a hypothesis. When, on the
other hand, the test does not lead to a falsification or to a conclusive
verification of it, the hypothesis is confirmed or disconfirmed – that is, it
proves to have more or less solidity, plausibility, probability, etc., without the
observers being in a position to conclude beyond all possibility of revision
that it is true or that it is false. In this case, the inferences involved in moving
“from hypothesis to evidence” take the form of complex evaluations that
seek to determine the “best explanation” of the available evidence, without
this being able to impose itself with absolute certainty. IBE is the type of
procedure consisting in this .

When can we qualify a given explanation as best (assuming there is a best
one)?

The criteria that guide a comparative evaluation between hypotheses are, in
part, general (epistemic criteria such as plausibility, coherence,
completeness, simplicity) and, in part, linked to the context of the
explanation (if there are particular requirements or standards in the relevant
context).

In the following we mention some general criteria for judging a hypothesis
as more or less good and some criteria for comparing hypotheses with one
another. As for the general criteria, these are some of the most widely
employed: 1. Internal consistency. This criterion concerns the ways in which
the various parts of the hypothesis are connected to one another. Clearly if a
hypothesis contains contradictions, it will not be a good one. But also when
a hypothesis provides different explanations for phenomena that are clearly
interconnected, we cannot judge that hypothesis as good. For example, in the
nineteenth century very different explanations were circulating for
magnetism, on the one hand, and electricity, on the other, but when, towards
the end of the century, physi-cist James Clerk Maxwell discovered that the
two phenomena are interrelated, these explanations lost their credibility.



2. External consistency. An explanatory hypothesis is all the better the more
consistent it is with other confirmed facts and hypotheses, as well as with
our background knowledge. Suppose, for example, that last night I was
woken up by the strong wind and that this morning I found some overturned
plants on the terrace. Suppose we formulate three hypotheses: a) aliens
landed on my terrace and knocked my plants over just for fun; b) thieves
climbed onto my bal-cony with the intention of breaking in but then did not
do so, and when they climbed onto the terrace they bumped into the plants;
c) the wind knocked the plants down. Why do we tend to consider c) the best
explanation of the three?

One of the main reasons for rejecting a) is that it is inconsistent with
everything we know and believe is established. As far as we know, aliens do
not land on people’s balconies and in all likelihood have never landed on
Earth (at least for now). Hence a) is not consistent with all the rest of what
we know. Even if to
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a lesser extent, consistency with all the rest of our knowledge constitutes at
the same time one of the reasons for rejecting b) and considering c) the best
explanation. Indeed, there are no signs of break-ins in my house, no one has
reported thieves, no one has heard any suspicious noise; c) is therefore the
hypothesis that best accords with all the rest of our knowledge. This criterion
obviously does not imply that it is not possible to put forward new
hypotheses that are not consistent with what we already believe. If that were
the case, knowledge would never advance. External consistency is only one
of the criteria available to us. However, a new hypothesis that is not
consistent with what we believe must have many merits and must be well
confirmed in order to be accepted.

3. Explanatory power. A hypothesis is better the greater the number of facts
it explains. Those that explain a few facts are not good hypotheses. Those
that explain a single fact, called ad hoc hypotheses, are generally bad ones.



Let us go back to the previous example and suppose that not only do I see
the plants on my terrace knocked down but that I also see that some of the
plants on the balconies of the building opposite to mine have fallen too, that
the trees on the street have lost many leaves and branches, that one of these
was rooted out. The strong wind hypothesis not only explains the state of the
plants on my terrace, but also the many other facts I observe. Conversely, the
thieves hypothesis on-ly explains the state of the plants on my terrace, but
not everything else. This is why the wind hypothesis is better. In fact, the
comparison between the explanatory power of two theories is often not a
simple matter because it is not merely a quantitative question. In fact, not all
the facts that a hypothesis explains have the same importance. It is also
necessary to evaluate how the hypothesis behaves towards new evidence that
could emerge. We could then divide this test into three different sub-tests:

(A) Quantity test: if H1 explains n items of evidence and H2 explains m
items where m is greater than n, then H2 > H1 (where “>” expresses a
preference relation) .

(B) Quality test: if H1 explains less important items and H2 explains more
important ones, then H2 > H1.

(C) Prediction test: if H1 does not successfully predict any new evidentiary
item while H2 does, then H2 > H1.

More analytically, the Prediction test can be specified as follows: (C.1) No
prediction < confirmed prediction.

(C.2) Falsified prediction < confirmed prediction.

(C.3) No prediction > falsified prediction?

Point (C.3) is uncertain because it is not clear, out of context, whether the
condition “no prediction” should be preferred over the condition “falsified
prediction”.

On the one hand, the “falsified prediction” condition usually means that the
hy-
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pothesis has been falsified. In this sense, “no prediction” is a better condition
for the hypothesis. On the other hand, the fact that a prediction has been
made and falsified shows that the investigation has advanced. In this sense,
the “falsified prediction” condition is better.

The medical investigation at § 8.2 offers us a quite easy case, since H7 beats
the other six hypotheses in all tests. This fortunate situation does not
necessarily occur in every comparison of hypotheses, however. In this
regard, we must be aware that it is difficult to establish “second order tests”
– that is, tests that tell us which of the different criteria is more important.
For example, if a hypothesis is not consistent with our previous assumptions,
but is internally consistent and has great explanatory power, how should it be
treated? What if a hypothesis does better in quantitative test (A) but a rival
scores better in quality test (B)? It is difficult to say in general and out of
context which test carries more weight in the comparative assessment of
hypotheses.

8.4 An example of reasoning with explanatory hypotheses:

reasoning from effects to causes

In this section we present a specific type of IBE, which is involved in causal
reasoning, and more precisely in the reasoning that goes “from effects to
causes”. In many cases, when the explanation for an event, fact or
phenomenon is sought, the causes of that fact are sought. Hence, causal
explanations are an important type of explanation. But not all explanations
are causal. For example, modern physics has explained the electric current
by interpreting it as a flow of electrons and yet it does not seem correct to
say that a flow of electrons is the cause of the electric current.

Rather, from a certain point of view, the electric current and the flow of
electrons are the same thing. The contemporary physical theory of electron
flow thus provides a non-causal explanation of electric current. While not all
explanations are causal, there is no doubt that causal explanations are an
important type of explanation, perhaps the most important. A further reason
to focus on it is that reasoning from effects to causes is an important daily



activity, for example in specific contexts like legal cases. For instance, in a
trial a judge may need to establish what caused the victim’s death, or
determined damage to property. In matters of public interest, we may need to
determine what caused a crisis in the subprime investment market, and so
on.

Let us start with an example:

Example of toxoplasmosis. In mid-March 1968, five Cornell University
medical students fell ill and visited the University’s Student Health Service.
They had flu-like symptoms, such as headache, fever, and body aches. After
a blood test, the doctors found that the students had toxoplasmosis. In their
daily routine, all five students attended different class-
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es, lived in different places, barely knew each other, and ate in different
places. However, it turned out that all five students had eaten rare burgers at
the dormitory snack bar on the night of March 5. In addition, they had only
consumed sandwiches, soft drinks and coffee that night. Apparently, the only
significant fact was that everyone ate rare burgers in the same place and on
the same night. The doctors dealing with the case concluded that the five
patients had contracted toxoplasmosis that night, and in the same way: by
eating hamburgers that had not been well cooked. In other words, the
ingestion of poorly cooked meat had caused the transmission of
toxoplasmosis in the five cases considered.

The doctors in the example are engaged in causal reasoning. More precisely,
they are reasoning from the effects (transmission of toxoplasmosis) to the
causes (ingestion of badly cooked burgers). Moreover, the doctors’
conclusion is a causal statement (ingestion of undercooked meat caused the
transmission), which is a statement of the form “X causes Y”. Further, all
their premises are factual statements, that is, statements that record a series
of relevant facts.



This is typical of our reasoning from effects to causes: we start with the data
on facts, and draw a conclusion that connects two or more of these facts in a
causal way. In the example described above, the doctors start from data that
include “Students ingested undercooked meat” and “Students have
toxoplasmosis” and conclude that the former caused the latter. In doing so,
they implicitly followed a general method of finding causes known as the
“method of agreement” which we will return to shortly.

It is clear that the example of toxoplasmosis offers us a case of IBE. Doctors
had a number of hypotheses at their disposal, at least ideally. For instance,
that the five students had passed toxoplasmosis on to each other (H1); or that
they had contracted it in common environments frequented in their daily
routine (H2); or that they had contracted it from eating undercooked meat
from the same batch (H3).

H1 and H2 do not agree with the fact that the five students did not hang out
with each other (E1) and that they did not share any of the spaces of their
routine (E2), including the places where they usually ate. E2 also seems to
disprove H3, but note that the five students ate in the same place on the night
of March 5, 1968 (E3) and all of them ate meat (E4), and nothing else that
can carry toxoplasmosis. E3 and E4

agree with H3, and therefore suggest that this is the best of the possible
hypotheses. In other words, H3 explains the toxoplasmosis transmission and
is the only one that agrees with the evidence. As a result, it is the best
explanation of the case.

Logical research into reasoning from effects to causes has systematized five
rules that are, under certain circumstances, solid and reliable. These rules are
known as the “method of agreement”, the “method of difference”, the “joint
method of agreement and difference”, the “method of residue”, and the
“method of con-comitant variations”. We owe these to the British
philosopher John Stuart Mill (1806-1873), who dealt with topics ranging
from logic and philosophy of language
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to economics and political philosophy. These five methods are conclusive in
eliminating hypotheses, and can be illuminating in offering positive, albeit
tentative, conclusions regarding what causes what.

Mill’s methods start from (i) an effect Y whose cause must be identified, and
(ii) a number of relevant factors A, B, C, D, ... which could be the cause of
Y. Thus, each method proposes a specific test to select one (or at least some)
of A, B, C, D, ...

as the cause of Y. In what follows, we will introduce the first three methods
of Mill, in which the connection with the more general procedure of IBE is
clearer. In doing so, we will show precisely how methods are forms of IBE.

Before moving on to Mill’s methods, let us briefly discuss three
characteristics that are crucial to understanding what these methods allow or
do not allow us to do: 1. Mill’s methods do not help us discover new facts.

2. Mill’s methods offer no conclusive evidence on causal connections.

3. Mill’s methods test our assumptions on what caused what.

No new facts discovered. Mill’s methods start with known facts (the relevant
factors) and link them to the effect to be explained by providing some form
of control of that link. No new facts are discovered through the five methods
(think of the example of toxoplasmosis). The methods may lead us to look
for new facts so that we get more relevant information about what causes
what, but they do not allow us to discover these new facts.

No conclusive evidence. Mill’s methods – like any form of non-deductive
reasoning – cannot provide conclusive proof that a certain fact X caused a
certain fact Y, but only a tentative explanation, which can be abandoned if
new evidence is added.

Take the example of toxoplasmosis. If doctors were later informed that all
students had been drinking unpasteurized milk, doctors would be prompted
to retract the conclusion that meat was the cause of transmission. This is
enough to see that reasoning from effects to causes is non-monotonic, like all
evidence-based reasoning.



Likewise, it helps us understand that it is fallible. Let us imagine that the
transmission was caused by ingestion of milk, but that the students did not
remember drinking it and therefore did not tell the doctors. As a result, we
would find ourselves in a situation in which a decisive piece of evidence
would be unknown. Under these conditions, the causal hypothesis of
undercooked meat would be false, but nevertheless the reasoning that leads
to it would still be good, as the evidence available to doctors, which does not
include the ingestion of milk, provides reasons for it.

A way to check the hypotheses. Ideally, with Mill’s methods we select some
previous factors because we assume that they are candidates for the causal
role with respect to a certain effect Y. For example, in the example of
toxoplasmosis, the factors concerning the environments attended, the
contacts between the students and food in-
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gestion are the previous factors. The tests defined by each of Mill’s methods
select some of these factors. Hypotheses that resist the check made by the
relevant test are considered the cause (or causes) of Y.

8.4.1 The method of agreement

The method of agreement is applied to the toxoplasmosis example in § 8.4,
and functions as a test for the necessary conditions of effect Y. X is a
necessary condition of Y if Y does not occur in the absence of X. The
method of agreement can be formulated as follows:

If in all cases C , ..., C where an effect Y occurs, there is a single preceding 1

n

factor X that is shared by all those cases, then X is the cause of Y.



A “preceding factor” is something that happened before the effect occurred
in cases C1, ..., Cn. Of course, we want to choose preceding factors that are
relevant, so as to avoid introducing misleading elements in our reasoning.
The following example illustrates how the method of agreement works:

Four friends go out for dinner together, but when they get home they all start
to feel sick and suffer from stomach pain.

The relevant factors in this case are what the four friends ate or drank for
dinner.

On the contrary, the clothes they wore are not a relevant factor. Table 8.1
summarizes what each of them ate and notes who got sick:

Table 8.1 The method of agreement

A (Chicken)

B (Pasta)

C (Red wine)

D (Beer)

Y (Sickness)

Case 1

YES

YES

YES

YES

YES

Case 2



YES

NO

NO

YES

YES

Case 3

YES

YES

NO

NO

YES

Case 4

YES

NO

YES

NO

YES

Chicken is the only thing all four friends ate or drank that night. Applying
the method of agreement, we conclude that chicken is the cause of the
stomach pain.

Using the method of agreement, all steps of the IBE are at work. In
particular, the information on the dishes that have been eaten allows us to



formulate four different causal hypotheses (“It was the chicken that caused
the stomach pain”, “It was the pasta that caused the stomach pain”, etc.). The
hypotheses are compared with the evidence (“Everyone was sick”,
“Everyone ate chicken”, “Not everyone ate pasta”, and so on). For each
hypothesis, we note when the relevant factor correlates
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with stomach pain, and when it does not. The four hypotheses are then
compared with one another regarding their correlation with stomach pain.
What relevant factor is present in all cases of stomach pain? Ingestion of
chicken. What is required for the causal explanation? That it explains all the
evidence. Which hypothesis does that? The one that it was the chicken that
caused the stomachache. It is concluded that the best hypothesis is this: “It
was the chicken that caused the stomachache”.

8.4.2 The method of difference

The method of difference is a complex test that calls into question the notion
of sufficient condition. X is a sufficient condition of Y if the occurrence of X
is sufficient to determine the occurrence of Y. The method can be
summarized as follows: Given the cases C , ..., C , if an effect Y occurs in all
cases except C

1

n

i, and

all cases share all factors except Ci, then the factor that only Ci does not
share is the cause by Y.

The method can be seen as the following list of instructions: (1) consider
both the cases in which effect Y occurs and those in which it does not; (2)
eliminate all the factors which are present even when Y does not occur and
which are therefore not sufficient conditions for the occurrence of Y; (3) if



there is a factor that we cannot discard because it is not present when Y is
not present, that factor constitutes a sufficient condition of Y and therefore
can be considered its cause. Let us adapt the example above, in order to have
a concrete situation where this method can be put to work.

Four friends go out for dinner together, but when they get home, they all
begin to feel sick and suffer from stomach pain, except one of them.

The cases and preceding factors of the new example are these (Table 8.2):
Table 8.2 The method of difference

A (Chicken)

B (Pasta)

C (Red wine)

D (Beer)

Y (Sickness)

Case 1

YES

YES

YES

YES

YES

Case 2

YES

YES

YES



YES

YES

Case 3

YES

YES

YES

YES

YES

Case 4

YES

YES

NO

YES

NO

In this case, the fourth friend is the only one who does not get sick and the
only difference between him and the others is that he did not have red wine
(C). Chicken, pasta and beer are present even when the disease is not
present, and therefore do not constitute a sufficient condition for the sickness
effect. This leaves red wine
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alone as a candidate to be the sufficient condition of the effect as, when it is
lacking, the effect is also lacking. Hence, the method of difference makes us
conclude that red wine is the cause of the sickness.

The difference method is also an example of IBE. Once again, the
information on the food and beverages that have been ingested allows us to
formulate four different causal hypotheses. The hypotheses are compared
with the evidence (“All those who got sick ate chicken and pasta, and drank
red wine and beer”, “All those who didn’t get sick did not drink red wine”).
This leads us to select the hypothesis that the best candidate for the cause of
the sickness is red wine.

8.4.3 The joint method of agreement and difference

The joint method (of agreement and difference) does nothing but apply
agreement and difference at the same time, thus guaranteeing a more
rigorous screening and identifying the necessary and sufficient conditions
for the occurrence of given effects. The method is as follows:

Given the cases C1, ..., Cn, if there is a factor X present in all cases in which
Y is present (while other factors are sometimes absent) and X is absent in all
cases in which Y is absent (while others factors are present), then X is the
cause of Y.

Another variation of the dinner example will help us understand how the
joint method works. Consider the following Table 8.3:

Table 8.3 The joint method

A (Chicken)

B (Pasta)

C (Red wine)

D (Beer)

Y (Sickness)



Case 1

YES

YES

YES

YES

YES

Case 2

YES

YES

NO

YES

YES

Case 3

YES

YES

YES

NO

YES

Case 4

YES



NO

NO

YES

NO

The joint method suggests that pasta (B) is the cause of stomach pain. In
fact, all the friends who got sick ate pasta, and otherwise, none of them ate
or drank the same thing. At the same time, the only friend who did not get
sick did not eat pasta. In short: pasta alone is not excluded either from the
agreement method, if we limit it to the cases in which the effect has
occurred, or from the difference method, considering all the available cases.
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8.4.4 A more complex case

The three previous examples are very simple, since in each of them only one
of the hypotheses passes the test. But what if more than one hypothesis
passes the test? Let us consider this modified version of the dinner example
(Table 8.4): Table 8.4 Complex case

A

B

C

D

E

Y

(Chicken)



(Pasta)

(Red wine)

(Beer)

(Oysters)

(Sickness)

Case 1

YES

YES

YES

YES

YES

YES

Case 2

YES

NO

NO

YES

YES

YES

Case 3



YES

YES

NO

NO

YES

YES

Case 4

YES

NO

YES

NO

YES

YES

With the information now available, it would be wrong to conclude that
chicken caused the disease: all sick friends had also taken oysters, and we
are not able to choose between chicken and oysters. In this case, all we can
conclude is that the combination of chicken and oysters caused the disease,
or that either chicken or oysters caused it, but we do not have enough data to
say which of the two hypotheses is correct. This example can also help us
understand some other features of Mill’s methods.

First, suppose we were initially only informed of the first four factors and
that it was only later that we learned that our friends had eaten oysters. We
would first conclude that chicken was the cause of the disease, and we would
later drop this conclusion. This shows that conclusions about causal



connections can be dropped and replaced if new information is available (
non-monotonicity and fallibility).

Second, the example helps to understand that, in the absence of complete
information (which is the usual condition), our causal conclusions are only
provisional.

Finally, all we can conclude from the information available in the new
example is that oysters, or chicken, or their combination, caused the disease.
We may want to know which of the three options is the correct one. To do
this, we need to get more information. In this case, the natural thing to do is
to get information about other clients who suffered from stomach pain that
night. If at least one of them ate only chicken (or only oysters), we would be
justified in concluding that the chicken (or oysters) caused the disease.5 If
all of them ate both chicken and oysters, we will have to settle for the
weaker conclusion that the combination of the two caused the stomachache
(the additional information we find may not be decisive, sometimes). Of
course, the increase in information can also lead us to eliminate some of the
candidates we had taken for granted. For example, if any customer has
suffered 5. Actually, to conclude this way, we also need to know that none of
the other clients ate only oysters (or only chicken).
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from stomach pain without having eaten chicken or oysters, we should
conclude that neither chicken nor oysters caused the sickness.

8.4.5 An assessment of Mill’s methods

We conclude by pointing out some limitations of the reasoning procedures
from effects to causes systematized by Mill.

Selection of relevant preceding factors. The first step in applying Mill’s
methods is the selection of the relevant preceding factors, and this is by no
means an easy matter, unless the case in question is very simple. Take this



example: Drunk alien. An alien lands on Earth. He does not know what
alcohol is, but he observes that humans are intoxicated by many different
drinks. He wants to understand what causes the intoxication, and he drinks
for five evenings. He notes carefully what he drinks in the five evenings:
whisky and soda, brandy and soda, rum and soda, gin and soda, bourbon and
so-da. He concludes that it is the soda that causes his intoxication.

The alien is following the agreement method and does it correctly, but comes
to a wrong conclusion: soda does not cause drunkenness, of course. This
happens because the alien does not know that there is a relevant factor
(alcohol) that is shared by all the drinks he has drunk, just like soda. Had he
known, he would have come to a different conclusion. More generally, the
alien does not know what kinds of things may be relevant to his inquiry.

In general, when we are well supported by a good background knowledge of
relevant factors (as in the example of toxoplasmosis), Mill’s methods are
quite robust. Poor background knowledge, on the other hand, makes Mill’s
methods less effective. This somewhat limits their application to a precise
set of cases: those in which we have a clear idea of the possible causes and
just want to check which of them was actually at work.

Indeterministic causality. Mill’s methods work quite effectively for those
cases where causality is deterministic. These are cases where the effect
occurs with certainty if the cause occurs. The dinner examples presented
above fall into this category. However, many cases of causation are
indeterministic and probabilistic.

Throwing a stone at a window can cause it to break, but this does not always
happen. A heart attack can result in death, but again this does not happen all
the times.

Driving recklessly increases the likelihood of causing accidents but there is
no certainty that this will occur. In all these cases, the occurrence of the
cause increases the likelihood of the effect, but does not determine the
occurrence of the effect.

Mill’s methods can give wrong results when dealing with probabilistic
causes.



Take the joint method, for example, where the cause is supposed to be a
condition that occurs if (and only if) the effect is present. This excludes
causes which do not
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determine their effects but which make them “only” highly probable. For
example, suppose that in the example of the dinner in § 8.4.3 the fourth
friend also ate pasta, but did not feel sick. The joint method would rule out
pasta as a cause of sickness, but perhaps pasta considerably increased the
probability of being sick, and the fourth friend escaped stomach pain just
because he may have had great resistance to the element that caused the
intoxication in the other friends.

This is a considerable limitation, as a good number of interesting causal
connections are probabilistic. A paradigmatic example: Researchers argue
that smoking is one of the possible causes of cancer, as there are a number of
tested connections between smokers and cancer, and these connections
include the fact that smoking dramatically increases the chances of
contracting cancer. However, not all people who smoke (even heavily) get
cancer. Smoking is therefore only a probabilistic and nondeterministic cause
of cancer.

8.5 Conclusion

Let us briefly recap the contents of this chapter. We introduced the notion of
reasoning with explanatory hypotheses, and hinted at the presence of many
different models for the notion of explanation. In particular we have
distinguished between deductive models of explanation and non-deductive
models, and we have concen-trated on the latter. We discussed an actual case
of reasoning with explanatory hypotheses, analyzing the explanation of the
causes of puerperal fever given by the Hungarian doctor Semmelweis. The
example allowed us to see what the functions of evidence are in suggesting
and testing hypotheses in practical terms, and how a given evidentiary item
can falsify or confirm a hypothesis. We then moved on to articulate a
framework of notions and tools that would help us understand the general



aspects and dynamics of reasoning with explanatory hypotheses. In
particular, we discussed abductive reasoning and inference to the best
explanation, defining their various steps and then introducing the general
criteria for evaluating the hypotheses not only in relation to the evidence but
also with regard to their rival fellows. We discussed the criteria of internal
consistency, external consistency and explanatory power. The latter has
made evident the need for tests against which to compare rival hypotheses.
We have seen that there is a plurality of such tests, and we have mentioned
the crucial fact that, when faced with this plurality, it is not easy to define
second-order tests, i.e. tests that tell us which of the various tests should be
considered more important than the others. Finally, we discussed three of
Mill’s five methods as specific cases of inference to the best explanation.
More precisely, we have seen how such methods help us compare rival
causal hypotheses –

where these are hypotheses about what causes a given effect. We closed the
chapter by discussing the limitations of Mill’s methods, which emerge in
relation to nondeterministic causality and in the presence of a causal
investigation that does not have an adequate background knowledge
supporting it.

9 · Statistical reasoning

In this chapter we will deal with statistical generalizations. We will
distinguish two types: purely statistical generalizations (§ 9.2) and
generalizations concerning the future (§ 9.3). We will also consider an
application of statistics to particular cases through an inference scheme
called “statistical syllogism” (§ 9.4). In addressing these issues, we will
introduce some basic notions that are relevant in statistical reasoning, for
example, sample, target property, measured property, accuracy and margin
of error, and we will see how these concepts play an important role in
assessing the strength of a statistical generalization or a statistical syllogism.
We will then discuss properties such as the significance and accuracy of the
measured property against the target property, the size suitability and
representativeness of the sample, the possibility that a question is biased,
and that hidden variables mislead us in our considerations. We will also
briefly discuss the significance of the margin of error in our statistical
generalizations. We will relate generalizations about the future to scientific



laws and see why these generalizations are weaker than those called “purely
statistical”. In connection with statistical syllogisms, we will finally see the
importance of choosing the right reference classes.

9.1 Introduction

A generalization is an argument that (i) starts out from the fact that all or a
percentage n of individuals in a sample have a property P, and (ii) concludes
that all or n%

of the individuals in the population from which the sample is taken have
property P. We use generalizations very often in everyday life and they are
fundamental in order to interact advantageously with our environment.
When we were very young children, we observed to our own expense that
we hurt ourselves when we fell on hard ground. We concluded that every
time (or at least the vast majority of times) we fall on hard ground, we get
hurt. We have therefore generalized from the observation of some cases –
those in which we injured ourselves by falling – to all cases in which we fall
on hard ground. Consequently, in principle, we try to avoid falling when we
are on hard ground. Generalizations are therefore fundamental as they help
us survive in an environment that can cause us harm and negative effects.
Statistics is a science that helps us make our generalizations more rigorous
and precise.

A well-known aphorism by Mark Twain states: “All generalizations are
false”.

This statement cannot be true, of course: it is itself a generalization, and
therefore
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if it were true, it would also be false. Twain’s aphorism, however, highlights
the fact that statistics are a type of inductive reasoning, and as we have
already said in Chapter 2, in inductive reasoning the conclusion does not
logically follow from the premises.



Even if the premises are true, the conclusion may turn out to be false.

We can consider two types of statistical generalizations:

1. Purely statistical generalizations. These are generalizations that depart
from a sample and from the observation that a certain percentage of the
sample has property P. They conclude that the same percentage of the entire
population of which that sample is a subset has that property.

2. Generalizations concerning the future. These are generalizations in which
the sample includes only cases that are already given (what we will call
“past cases”). However, the population of which the sample is a subset also
includes cases that have not yet been given (what we will call “future
cases”). In this case, the reasoning is not purely statistical but is based on the
additional premise that the population and its distribution of properties
(including the property P we are interested in) are uniform over time. As we
will see, this premise is often not trivial.

Let us now consider these two types of generalizations in detail.

9.2 Reasoning with purely statistical generalizations

Let us start with an example. Imagine that an opinion poll is performed to
determine which candidate for a certain political office is the most popular
with public opinion. Researchers interview 1,000 people and ask them
whether they like candidate x, candidate y, candidate z, and so on for all
candidates. Suppose 371 subjects report that they like candidate x and that
this number is greater than that given for all other candidates. The
researchers conclude that candidate x is the most popular with the public.

The basis of inductive reasoning – in our example, the 1,000 respondents –
is called the sample, and it is a subset of the population which we want to
know about.

In this example, the population is the totality of those who have the right to
vote in the general elections. Since the sample represents only a subset of the
population, the conclusion that candidate x is the most popular does not
logically follow from the premises. It is a projection from the sample result.
It is clear why this term is used: the conclusion projects the distribution of



properties from the sample over the entire population. The property under
investigation – in the example, being the most liked candidate – is called the
target property. Note that we often do not directly investigate the target
property. In our example we do not directly investigate the property of
“being the most popular candidate”; instead we investigate the property of
“being the candidate who is said to be most popular”. In other words,
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we are not really looking into what preferences interviewees have, but what
preferences interviewees say they have. The reason is clear: in this case we
do not have access to the target property (the preferences of the
respondents), but we do have access to a property that is somehow related
(what the respondents report about their preferences). The property that we
check to get an idea of the distribution of the target property is called the
measured property. Obviously, the measured property must have a
meaningful connection with the target property. This is not a trivial point,
even in cases where we take such a connection for granted. We will return to
this point shortly. We say that the measured property is more or less accurate
to indicate how good an indicator of the target property the measured
property is. Since generalizations are inductive reasoning, they always have
a margin of error, even if it is often not reported. The margin of error tells us
what “divergence from statistical generalization” we can expect in a given
case. For example, suppose the margin of error of the statistical
generalization in our example is 2%. The generalization concludes that 37%
of voters prefer candidate x. Let us now assume, for simplicity, that all
eligible voters vote. If the margin of error is 2%, we consider the statistical
generalization still “satisfactory” if the candidate receives 35% or 39% of
the preferences, but not if she receives 34% or 40% of the preferences.

The scheme of inference of purely statistical generalizations is the
following: n% of the sample has the measured property Q.

n% of the entire population has the target property P.



Statistical generalizations are not procedures of deductive reasoning, but this
does not mean that they are arbitrary. They are justified under a
mathematical theorem according to which, given a set S and assuming that a
percentage x of the members of S have property P, then most subsets of S
with sufficiently large cardinality have a similar percentage of members who
possess property P. This theorem underlies the reliability of statistical
generalizations. However, such generalizations, like all inductive reasonings,
can be strong or weak. Below we will look at some ways in which
arguments containing statistical generalizations can turn out to be bad
arguments.

9.2.1 Lack of relationship between the target and measured property A
statistical generalization will be bad, of course, if the proper relationships
between the measured and the target property are missing. Taking an
extreme example: if I concluded that 37% of voters prefer candidate x on the
basis that 37% of the sample prefer one car model, my statistical
generalization would have no value.

What people say they prefer about cars is not an indicator of what they
prefer about political candidates. The two properties lack relevant
relationships.

There are less extreme cases where there is a significant relationship
between
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the two properties, but nevertheless the measured property is not accurate –
or at least, it is less accurate than we would expect. For example, the target
property of the previous case is the approval rating of candidates, while the
measured property is the answers given by interviewees. There is obviously
a significant connection between the two, but it has been demonstrated that,
often, interviewees do not give honest answers to interviewers: for example,
they say they do not like an embarrass-ing candidate but then end up voting
for that very candidate in the privacy of the voting booth. Or they try to
present themselves in a better light, even though they know the questionnaire



is anonymous. The relationship between target property and measured
property must therefore be carefully evaluated so that the generalization is
not undermined. Since accuracy is a property that varies on a continuous
scale, the same also happens with statistical generalizations: the more
accurate the measured property is with respect to the target property, the
stronger the generalization will be, excluding other problems that we will
look at shortly. Conversely, the less accurate the measured property is, the
weaker the generalization will be.

9.2.2 Cardinality of the sample

The XKCD cartoon (Figure 9.1) shows that from an obviously inadequate
sample (today, her wedding day), an obviously inadequate conclusion can be
drawn (by the end of the month she will be married a lot of times). In
general, when we are evaluating an argument containing statistics, the size
of the sample matters. In particular, it is mandatory to evaluate the
relationship between the cardinality of the sample and that of the population
under examination. As we have seen, the mathematical theorem on which
statistical generalizations are grounded states that, to be representative of S,
a subset of S’ must have a sufficiently large cardinality. Too small a sample
is likely not to be significant because it may have a distribution of properties
very different from that of the entire S.

Consequently, a statistical generalization based on a sample of inadequate
size will be bad. Therefore, the following reasoning

100% of a sample consisting of a single day has the property that a given girl
marries on that day.

100% of the days have the property that that girl marries on such days.

is a bad statistical generalization. In this case we speak of unwarranted
generalization (cf. § 4.2.2).

The cardinality of the sample affects the margin of error – which indicates
how much the sample result may diverge from the population result.
Inferring from a sample of twenty Italians that Italians (do not) know the



name of the first President of the Italian Republic is generally less correct
than inferring the same con-
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Figure 9.1 Cardinality too small

Source: https://xkcd.com/605/.

clusion from a sample of 2,000 people. Generally, the larger the sample, the
smaller the margin of error of our result. This is how we reason when we
choose a restau-rant through a social network: the higher the number of
reviews, the more we trust their average.

One might think that the larger the population, the larger the sample size
should be. However, that is not exactly the case. The relationship between



the size of the sample needed to have good quality generalizations and the
size of the population is not constant. When the population is very large
(more than 100,000 individuals, for example) it is no longer necessary to
increase the size of the sample as the population increases. For example, for
a population of 10 million individuals it is sufficient to have a sample of
about 1,000 individuals to obtain results with a margin of error of 3%. This
is roughly the same sample size we need for a population 100 times smaller.

9.2.3 Biased samples

Sample size is not the only property that affects the strength of
generalizations. Another crucial property is the representativeness of the
sample with respect to the entire population. Inferring that all Italian adults
know the name of their first President from a sample of 2,500 scholars in
contemporary history would not be correct, even though the sample is
sufficiently large. This is because we are relying on a subset of the
population in which there is an extremely high distribution of the prop-
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erty of “knowing who the first President of the Italian Republic was”–
indeed, one much higher than the average distribution in all Italian adults. In
fact, it is reasonable to expect that the distribution of the property in the
sample would be different from the mean distribution in the population. The
sample we have chosen, in short, is not representative but is biased , and the
statistical generalization is therefore bad. More specifically, the following
generalization is bad: 100% of the sample of contemporary historians know
who the first President of the Italian Republic was.

100% of Italian adults know who the first President of the Italian Republic
was.

Choosing a representative, unbiased sample is not easy, and choosing at
random does not always work: not even randomizing is easy, although this
may sound odd. Let us examine an example from real life. In 1936 the
magazine Literary Digest sent out 10 million questionnaires asking which



candidate the recipient would vote for in the next American presidential
election: Franklin Roosevelt or Alf Landon. It received 2.5 million returns
and 57.1% of the responses indicated Landon as the favorite candidate. In
the light of such a clear majority (far beyond the margin of error) and of the
large size of the sample, the magazine confident-ly predicted that Landon
would win by a landslide majority. When the election results came in,
Roosevelt had won by an even larger majority in the opposite direction: 62
percent for Roosevelt to a mere 38 percent for Landon. As a result of this
misprediction and of its subsequent bad reputation, the Literary Digest went
bankrupt two years later.

As later studies showed, unexpectedly, the mistake made by the Literary
Digest was precisely in the representativeness of the sample. The recipients
of the questionnaires were chosen at random from the telephone directory.
The fact that they were chosen at random seemed to ensure that the sample
was not biased. At the time, however, there were still few Americans who
had telephones, and these were generally owned by city dwellers and by
wealthy classes. In this group of people, a large percentage sympathized
with Republican ideas. They massively indicated Landon as their preference.
That sample was, in short, biased, because the intersection between the set of
people who owned a phone and the set of people who voted Republican was
large enough to give an above average distribution of preferences for
Landon. Those who were poor or who were employed in agricul-tural jobs
outside the cities – people who generally did not have telephones –
constituted a larger group who, worn down by the Great Depression,
massively voted for Roosevelt.
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9.2.4 Question biases

A statistical argument can be biased in other ways. For instance, in opinion
polls the way in which questions are asked is very important. The National
Rifle Association (NRA), to demonstrate that Americans do not wish to limit



the possession of weapons, might ask whether the interviewed persons
would like to preserve the constitutional right to keep and bear firearms or
to leave helpless citizens at the mercy of criminals. Clearly, even if the
sample is not biased, the way in which the question is asked is.

Such a question is biased for at least two reasons. In the first place, it
foreshad-ows the danger of a violation of fundamental social rules, thus
triggering the same mechanism of risk aversion as that discussed in the
Asian disease case in Chapter 1.

In these cases, we would tend to choose the option contrary to the one that
exposes us to risk – namely protecting the constitution regardless of any
other consideration. Second, the question does not investigate our opinion on
the restriction of the right to sell and buy weapons but asks whether we are
willing to expose ourselves to violent crimes. However, the generalization
from (say) “90% of respondents do not want to expose themselves and
others to violent crime” to “90% of Americans want to keep firearms
regulation as it is” is undoubtedly a bad generalization. It is obvious that the
inference:

n% of respondents do not want to expose themselves and others to violent
crimes.

n% of Americans want to keep firearms regulation as it is.

is a bad statistical generalization.

Note that this example also raises an obvious issue of relevance: the survey
measures the properties “willingness to defend the constitution” and
“willingness to expose oneself and others to violent crimes”. It is quite clear
that there is no significant connection between these properties and the target
declared property, namely Americans’ opinion regarding the restriction on
the sale of firearms.

Again, the questions may be biased in less obvious ways. For example,
suppose a door-to-door survey is conducted to find out how many people
believe in God and go to church. If the survey were conducted by a priest in
religious clothing, we would expect this to affect the result: likely, more



people would respond in the affirmative than would do so if the survey were
conducted by laymen. Therefore, it is often important that respondents do
not know the persons conducting the test and whether they are associated
with a group, company, political party, etc.
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9.2.5 Hidden variables

Consider this scenario. John’s grandmother has been in poor health for a
while, before being notified that she has to go to hospital for surgery. John
has to choose between Hospital A and Hospital B. He is told that in Hospital
A, 900 patients out of 1,000 survived surgery, and in Hospital B 800 out of
1,000 did. John is initially inclined to choose Hospital A. Before deciding,
however, John stops and considers one crucial property of his grandmother:
she is in poor health. He then asks about the health status of patients that had
undergone that surgery in each of hospitals A and B. In hospital A, 100
patients undergoing that surgery were in poor health.

Of those, 30 survived. In hospital B, 400 patients undergoing that surgery
were in poor health. 52% of them survived. Once this is taken into account,
Hospital A is no longer the obvious choice. In fact, since John’s grandmother
is in poor health, Hospital B turns out to be better.

The problem here is not that John’s initial generalization was bad, but that
John was in danger of misusing it. If we do not identify the truly relevant
sample – in our case, the set of patients with serious health conditions who
undergo the operation

– we risk making bad decisions, since they are based on a generalization
different from the one we should be considering. This is not a trivial
question because there are cases in which we may not have clear ideas about
which sample is really relevant.

This problem is known as the hidden variable problem, for obvious reasons.
In our example, the variable of health conditions was lurking behind the
initial result.



This example shows how statistical results can change if the same data are
grouped in different ways. It is sometimes said that statisticians can come up
with any conclusion whatsoever when given a bunch of data. This is not
literally true, but it re-minds us to be on the lookout for lurking variables,
when reading arguments containing statistics.

In short, there are several factors we should consider when evaluating a
statistical generalization. The stronger the connection between the measured
property and the target property a generalization is based on, the larger and
less biased the sample used and the better the evaluation of the existence of
possible hidden variables, the stronger the argument is. Conversely, each of
these factors can significantly weaken our reasoning.

9.2.6 Some considerations on the margin of error

Another element we must consider in evaluating a statistical generalization
is the margin of error. A high margin of error makes the inference stronger,
but the conclusion less informative. Let us examine this, sticking to the
example of the popularity of political candidates. Candidate x received 37%
of preferences from respondents. We concluded that 37% of the voters prefer
x to other candidates. We also
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added that statistics have a margin of error. If the election result diverges
from the generalization “within” the margin of error, we are led to accept the
generalization anyway. Otherwise, we do not accept it and we even find it
misleading. Now suppose that the generalization in question tolerates a
margin of error of 10%. It follows that the class of electoral results that make
it unacceptable is relatively small.

In fact, all results for which x is between 27% and 47% (a large slice of
possible results) make the generalization satisfactory. The inference is more
robust as it is undermined by a relatively small number of possible scenarios.
However, the conclusion is not very informative, precisely because it is



compatible with a relatively high number of possible scenarios – in short, it
excludes fewer possibilities.

Conversely, a low margin of error makes the inference weaker but the
conclusion more informative. Suppose we leave everything as it is in the
example just proposed, but that the expected margin of error is 2%. In this
case, the class of electoral results that make the generalization unacceptable
is very large. In fact, only the values for x between 35% and 39% (a small
slice of possible results) make the generalization satisfactory. The inference
is more fragile as it is undermined by a relatively large number of possible
scenarios. However, the conclusion is more informative, precisely because it
is compatible with a relatively small number of possible scenarios – in short,
it excludes many possibilities.

9.2.7 Statistical generalizations and daily life

Even if we often do not realize it, in our daily lives we often make statistical
generalizations and often make the same mistakes as those considered in the
previous sections. For example, we have met two dozen French people in
our lifetime and because we found them nice, we conclude that all French
people are nice, not realizing that the sample is too small and probably
biased too (we have probably only met French of a certain type). From the
fact that our friends have a certain opinion on a certain issue, we conclude
that Italians, or Europeans, or people of a certain sex, generally have that
opinion on that matter, not realizing how small the sample of our friends is
and how biased it is. We make the same mistakes in interactions with people.
For example, when deciding on a person’s character, we often rely on the
very few interactions we have had, not realizing that that person’s behavior
in those interactions constitutes too small a sample for evaluating the
character of a person.

9.3 Generalizations concerning the future

As we said at the beginning of this chapter, generalizations about the future
start out from a given sample of cases, in which property P has a certain
distribution, and draw conclusions with regard to a population that is not yet
entirely given.
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These kinds of statistical generalizations are less strong than purely
statistical generalizations. In fact, as said, for a generalization to be strong,
the sample must be unbiased. But in the case of generalizations concerning
future events or facts, a sample that includes only past cases could be biased
and therefore it cannot be said a priori whether it is representative. To
understand this concept, take the example of a football team, Ambrosiana
FC, which, in the middle of the championship, had played 19 and won 10
matches. Can we generalize and say that at the end of the championship
Ambrosiana FC will have won just over half of the matches played? Such a
generalization assumes that, in the second part of the championship,
Ambrosiana FC

will meet teams at the same level as they did in the first part of the
championship; that its players will maintain the same physical condition they
have kept until now, etc. In other words, a generalization of this type
presupposes a uniformity between past and future and very often, as in this
example, this is not a trivial presupposition. If there is no uniformity
between past and future, our sample, including only past cases, will be
biased. And since nothing can guarantee such uniformity, generalizations
about the future are systematically weaker than purely statistical
generalizations. In any case, generalizations about the future are also
“strong” or “weak”

to varying degrees, and this depends on several factors, such as the number
of future “variables” to be taken into account and our ability to ascertain the
occurrence of conditions that determine certain future outcomes. For
example, the inference Ambrosiana FC has so far won 10 matches out of 19.

Ambrosiana FC will win 20 matches out of 38 over the entire championship.

is weak, because the performances of Ambrosiana FC are determined by a
number of variables that we may not be able to establish and that, perhaps,
cannot be established. Think of the muscular and athletic conditions of the
players of the team and of other teams, the occurrence of injuries, whether or



not other teams will continue to be involved in other competitions, and so
on.

By contrast,

So far, the Sun has risen every day.

The Sun will rise tomorrow.

is a much stronger inference, because the variables that today determine the
position that the Sun will have tomorrow are well known thanks to our
astronomical theories. We also have considerable confidence in the fact that
the factors determining the rising of the Sun tomorrow remain uniform over
time, that is, that the physical laws of the motion of the planets are constant
and do not change from day to day.

This example also allows us to see that sometimes some generalizations
about the future are indirectly based on other generalizations about the
future. For exam-
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ple, thanks to our observations we know that the planets of the solar system
move in a certain way, in accordance with the Copernican theory
subsequently revised by Kepler and Galileo. On the basis of this, we have
concluded that they will move in the same way in the future, and we are thus
able to foresee and explain their movements. However, this in itself does not
weaken the “dependent” generalizations, such as that about the rising of the
Sun, but shows that, often, there is a chain of generalizations that depend on
one another. Therefore, even though moving from one generalization on to
another can be deductive, one of the premises of this reasoning is obtained
inductively. Even the uniformities we feel most confident about cannot be
guaranteed deductively. They are hypotheses which, in principle, could be
proved wrong in the future.



Scientific laws are generalizations of this kind. They are grounded on the
fact that all the samples of a given population have exhibited a certain
behavior until now and generalize on future cases: for example, from the fact
that in the past we observed that water freezes at 0° at sea level, we conclude
that every sample of water freezes at 0° at sea level. We can call this kind of
generalizations universal: from the observation that a certain property is
possessed by 100% of the samples, we draw the conclusion that that
property is possessed by all members of the population.

Some scholars have argued that universal generalizations concerning future
cases, and scientific laws in particular, are a weak form of inductive
reasoning because the sample necessarily has a small cardinality compared
to the population and because they presuppose the uniformity of nature,
which is a hypothesis that cannot be definitely demonstrated.

Be that as it may, economic laws are also statistical generalizations of this
kind: they are based on the observation of economic systems and on
generalization from past to future cases. The more uniform the behavior of
economic systems and agents is over time, the stronger these generalizations
become. For example, we can start out with the fact that in the past we
observed that a rise in the interest rate produced a reduction in inflation, but
also a decline in investment and we can suppose that in the future a rise in
the interest rate will produce similar effects. Many decisions taken by
economic agents depend on such generalizations.

A particular example of generalization about the future is the following: we
observed that all the samples of a certain population have the property P; so,
we expect the next member of that population to have property P. This kind
of inference is called simple induction or simple predictive inference. It is
also very common in our daily lives: for instance, from the fact that every
time I ate food x I had digestive problems, I conclude that if I eat the
particular instance of x I have on my plate, I will have digestive problems.
From the fact that Ann has always responded kindly to my requests, I
conclude that she will respond kindly to my next request.

To appreciate the difference between pure statistical generalizations and
generalizations about the future, consider the following example:
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All the ravens we have observed so far are black.

All ravens that were born and that will be born were and will be black.

This is a generalization regarding the future, because the population onto
which I am projecting the property of “being black” (all past, present, and
future ravens) does not yet fully exist – only a subset does: past and present
ravens. By contrast, the following is a purely statistical generalization:

All the ravens we have observed so far are black.

All the ravens which have existed in the past and which exist today are
black.

Here both the sample (the ravens observed so far) and the population (the
ravens that have existed in the past and exist today) are fully given. Our
scientific generalizations, on the other hand, aim to be generalizations
concerning the future, in the light of their predictive functions.

9.4 Statistical syllogism

Statistical generalizations go from samples to populations. But we also use
statistics to conclude that a particular individual has a property P – in other
words, we apply statistics. We call this kind of reasoning “statistical
syllogism”. Let us look at an example.

Suppose we have made a statistical generalization based on a sample. For
example, we have concluded that 95% of graduates can read fairly complex
written texts fluently. Suppose that Ann is a graduate. We conclude that Ann
is able to read fairly complex written texts fluently. The inference scheme is:

n% of population S has property P.

Individual a belongs to population S.



a has property P.

This is a statistical syllogism. The argument starts out from a statistical
generalization and applies it to a particular case. Note that statistical
syllogisms are different from simple predictive inferences, although in both
types of reasonings something is concluded about a single individual. Simple
predictive inference is a type of inference about the future: based on a past
sample in which a property is universally present, I conclude that the next
member of the population will have that property. Statistical syllogism, on
the other hand, is not a generalization about the future: the population we are
generalizing about (in our case, graduates) is fully given (we wanted to
generalize about present graduates) and the particular individual about which
something is concluded is part of this population.
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Let us look at some aspects of the reasoning exemplified above. Implicitly,
we have “applied” the statistical value (95%) to a particular case, concluding
that there is a 95% probability that Ann can read fairly complex written texts
fluently. Then, we have omitted the quantitative specification, because it is
very high, and we have simply concluded that Ann is able to read fairly
complex written texts fluently. There is no guarantee, of course, that Ann
does not fall within the remaining 5%, that is, that she is not able to read
fairly complex written texts fluently.1 Second, the form of the first sentence,
per se, does not tells us that the first premise is the conclusion of a (purely)
statistical generalization. It could be a truth revealed by God or, more
generally, something that has not been concluded based on a statistical
survey. That it is the conclusion of a statistical generalization will emerge
from a request for justification: “On what grounds do you say that 95% of
graduates can read fairly complex written texts?”. This question may receive
the answer: “It is the conclusion of a statistic”. In concrete contexts, a
sentence such as “95% of graduates can read fairly complex written texts” is
usually asserted because it is the conclusion of a statistical generalization,
and therefore the problem we have just outlined is unlikely to emerge.



However, it is better to be aware of the fact that the logical form of the
sentence in question does not reveal that it is the conclusion of a statistical
generalization. “95% of graduates can read fairly complex written texts” is
either true or false, just like any sentence that does not contain percentages.
How we know it – by a statistical generalization or by a revelation from a
hypothetical om-niscient source – is another matter.

The closer to 100% or 0% the percentage of the statistical generalization is,
the stronger a statistical syllogism is. For example, the argument in the
previous paragraphs would be stronger if 99% – and not 95% – of graduates
were able to read fairly complex written texts fluently. Notice that if the
percentage were 100% or 0% and if the margin of error were zero, then the
reasoning would become deductive: if 100% of graduates are able to
understand a fairly complex written text, then Ann, being a graduate, will be
able to understand such a text. In this case, if the premises are true, so is the
conclusion. However, although deductively valid, this argument is not
necessarily sound because the truth of the conclusion depends on the truth of
the premises and one of the premises is a statistical generalization that might
be false. The sample on the basis of which we concluded that 100% of
graduates are able to understand a fairly complex written text might have
been too small or biased, or the survey might have been poorly conducted
and the submitted texts not complex enough. In this case, the chance that the
conclusion is true is equal to that of the statistical generalization. By
contrast, the chance that the conclusion of 1. Note that the argument that
starts out from the premises: “95% of graduates are able to read fairly
complex written texts” and “Ann is a graduate”, concluding that there is a
95% probability that Ann is able to read fairly complex written texts is a
deductive reasoning. It applies something that is true of all individuals in the
population (graduates) to a particular case (Ann).
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a statistical syllogism starting from a percentage of less than 100% is true is
lower than that percentage.

9.4.1 Statistical syllogisms and reference classes



One of the potential problems connected with statistical syllogisms concerns
the reference class to which the object under examination is ascribed. The
reference class is the subset of the population that we consider relevant for
our statistical reasoning and for its application to particular cases. Returning
to the example of the surgical operation discussed in § 9.2.5, John ascribed
his elderly sick relative to the reference class of “patients in serious health
conditions who had had surgery”, and this gave results different from those
he would have obtained considering the class of “patients who had had
surgery”.

An example will clarify how crucial the choice of the reference class is in
statistical syllogisms. Suppose a statistical survey shows that only 3% of
American environmentalists voted for Trump in the 2020 election. Susan is
an environmentalist.

We can conclude that Susan did not vote for Trump using a statistical
syllogism.

Our reasoning can be summarized as follows:

97% of American environmentalists did not vote for Donald Trump.

Susan is an American environmentalist.

Susan did not vote for Trump.

Let us also assume, though, that Susan is a relative of Trump’s, and that a
further statistical survey shows that 95% of Trump’s relatives voted for him.
Applying the same inference scheme, we can conclude that Susan voted for
Trump: 95% of Trump’s relatives voted for Donald Trump.

Susan is a relative of Trump.

Susan voted for Trump.

The conclusions of these two arguments contradict each other. The point,
however, is that we have no reason to question the truth of the premises.
However, we do not want to run into a contradiction – Susan cannot have
voted and not voted for Trump at the same time.



The key for solving this problem lies in the reference class. In particular, if
an object can be ascribed to several reference classes that are relevant for the
statistical reasoning (in our example, the classes of environmentalists and of
Trump’s relatives), then the intersection among all these classes must be
considered in statistical syllogism. In our case, we need to take into
consideration the set of Trump’s relatives who are environmentalists and
ascertain what percentage voted for Trump.

9
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Suppose you find out that 53% of Trump’s relatives who are
environmentalists voted for him in the presidential election.2 How does this
affect our reasoning in the case in question? We could reason like this:

53% of Trump’s relatives who are environmentalists voted for him.

Susan is both a relative of Trump and an environmentalist.

Susan did not vote for Trump.

This reasoning is however bad because the conclusion is not supported by
the statistical basis. After all, the majority of Trump’s relatives who are
environmentalists voted for him. On what grounds can we conclude that
Susan behaved otherwise?

The inference is clearly irrational. Let us take instead: 53% of Trump’s
relatives who are environmentalists voted for him.

Susan is both a relative of Trump and an environmentalist.

Susan voted for Trump.

This inference does not present the same problem: the majority of Trump’s
relatives who are environmentalists voted for him, and we use this fact to
conclude the same thing with regard to Susan. The point, however, is that



53% is a low percentage – it leaves, so to speak, 47 out of 100 possible cases
in which Susan does not vote for Trump. It is therefore not a sufficiently
solid support for the conclusion, and consequently this statistical syllogism
is very weak, to the point that we would hardly make use of it.

This example shows that when we want to use a statistical syllogism, it is
necessary to consider all the relevant reference classes and to ascribe the
object under examination to the intersection of these classes. An obvious
question is which classes are relevant. Clearly in a US political election,
being an environmentalist, being a relative of the candidate, being for or
against the free sale of arms, being for or against the death penalty, etc. are
relevant properties. By contrast, wearing a certain shoe size or being a
basketball fan are (usually) not. However, there may be many uncertainties
about the relevance of a certain property to a statistical syllogism. For
example, is gender relevant? Sometimes it might be, sometimes not. We
must therefore have a certain pre-understanding of what is relevant to our
topic, that is, we must re-ly on some basic assumptions. Moreover, this is a
common characteristic of inductive reasonings, which we have already
encountered: usually these reasonings are part of a framework of background
assumptions, without which they would be impossible.

2. Note that this needs to be ascertained through a further investigation and
cannot be inferred from the fact that 3% of environmentalists voted for
Trump and 95% of Trump’s relatives voted for him. For example, we do not
know how many of Trump’s relatives are environmentalists. It might well be
that the intersection between the two classes is empty.
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9.5 Conclusion

Let us recapitulate. We have defined statistical generalizations and we have
seen that we can distinguish two types: purely statistical generalizations, in
which not only the sample but the entire population is fully given, and
generalizations concerning the future, in which part of the population is not
yet given. We have introduced some basic notions such as sample,



population, target property, measured property, accuracy, and margin of
error. We have discussed purely statistical generalizations and some of the
properties that contribute to their strength or weakness: significance and
accuracy of the measured property against the target property, size adequacy
and representativeness of the sample. We have also considered other
elements that contribute to the strength of a statistical generalization:
unbiased questions and the lack of hidden variables. We have discussed the
importance of the margin of error value. We have also dealt with
generalizations concerning the future, explaining why they are
systematically weaker than purely statistical generalizations, and mentioned
their relation to scientific laws. We have closed the chapter by discussing an
inference scheme that applies statistical generalizations: the statistical syl
ogism. We have explained why the choice of the reference class is crucial in
this type of inference.

10 · Probability and probability biases In this chapter we will deal with
probability and probabilistic reasoning. First, we will clarify the notion of
probability and give some examples of probabilistic statements and
problems (§ 10.1). Then, we will discuss three interpretations of probability:
the classical interpretation, the frequentist interpretation, and the subjective
interpretation (§ 10.2). After that, we will consider the basics of probability
theory (§ 10.3), with particular attention to Bayes’ theorem and conditional
probabilities, and we will exemplify some problems in probabilistic
reasoning to which we tend to provide wrong answers (§ 10.4). Finally, we
will discuss the related notions of risk and fundamental uncertainty (§ 10.5).

10.1 Introduction

Take the following problem:

A cab is involved in an accident at night. There are two taxi companies in
the city, one with green cabs and the other with blue cabs. 85% of cabs in the
city are green and 15% are blue. An eyewitness claims that the cab involved
in the accident was blue. The court is already acquainted with the witness
and their reliability in the same kind of cases, and they know that that the
witness has correctly identified each of the two colors in question 80% of the
time, while failing 20% of the time.



What is the probability that the cab involved in the accident is blue rather
than green, conditional on the fact that the witness, in all good faith,
reported that the cab was blue?

This problem involves the notion of the probability of an event, and in order
to answer it, we must be able to reason with probabilities. To be more
precise, the problem in question requires reasoning with the notion of
conditional probability. What we are wondering, in fact, is not the sheer
probability that the cab is (say) blue, but the probability that the cab is blue
given the fact that the witness (genuinely) believes that the cab is blue. The
events expressed by “The cab is blue” and “Conditional on being identified
as blue, the cab is blue” are two different events, and, as we will see, they
can have different probabilities. This requires the ability to apply probability
theory, or at least its most elementary tools. Probability theory is a
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branch of Mathematics, and is considered by many to be the correct
normative theory for our reasoning about chance 1 and uncertainty. We will
discuss the problem again in § 10.4.

As we shall see, reasoning about probabilities is far from trivial:
probabilistic reasoning is perhaps the one in which we most systematically
tend to deviate from the normative prescriptions – here, those provided by
probability theory. At the same time, probabilistic reasoning is of crucial
importance, if only because the notion of probability is ubiquitous in our
daily considerations, besides being called into question in courtrooms and
legal systems, in the valuation of financial risk, in Economics in general, and
in Medicine – the latter point being even more evident in a gloomy sort of
way, due to the worldwide Covid-19 pandemic that started in 2020.

Take for instance the quantitative conclusion of a recent study:2

Individuals under the age of 60 who have contracted SARS-CoV-2 infection
have a 69% chance of not developing clinical symptoms.



Or consider what the Financial Times reported in a 2016 article, namely that:
Pimco, the bond fund giant, says there is a 40% chance that Britain will vote
to leave the EU in the next referendum. A result that could have a

“long-lasting” market impact.

Also in this case we see the evaluation of an event (exit of the UK from the
EU) in terms of its probability, and the aim of this evaluation is to predict
future market scenarios. As we will see near the end of this chapter, the
notion of probability is presupposed by a central notion in financial theories
and – more in general – theories in Economics, namely: the notion of risk.

In this chapter, we will look at the basic tools for reasoning about
probabilities, with a particular focus on reasoning with conditional
probabilities. Let us call the whole pack probabilistic reasoning. The
problem and the statements that we have exemplified above are probabilistic
problems and statements, as they involve the notion of probability. But what
is probability?

In a very general way (but also a very satisfactory one, in our opinion), we
can say that probability is a numerical description of how plausible (or
likely) the occurrence of a given event is. In this sense, probability is one of
the main tools we have in order to measure chance. However, we can also
use probability to measure our uncertainty about the occurrence of an event.
In principle, there is an important con-1. Here, by the term “chance” we will
refer to all those situations in which it is not determined whether a given
event occurs (or will occur) or does not (or will not) occur.

2. Piero Poletti, et al., Probability of symptoms and critical disease after
SARS-CoV-2 infection.

arXiv. Preprint published online on 22/6/2020.
https://arxiv.org/abs/2006.08471
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ceptual difference between the two. Chance is an objective feature of the
world –

some events are not determined: they are just more or less likely to occur.
The term

“uncertainty”, on the other hand, usually refers to our epistemic state: we do
not know whether an event does or will occur, but we are more or less
confident that it will. However, we will see (§ 10.4) that the term
“uncertainty” is also used in another sense in the literature on probability,
that is: to denote those aspects of the world that are not determined and
regarding which it is not possible to rationally make a probabilistic
evaluation. In order not to create confusion, we will use the expression
“fundamental uncertainty” when speaking of uncertainty in this sense, when
it cannot be measured probabilistically.

Coming back to the difference between measuring chance and measuring
uncertainty, it should be noted that those who want to apply probability to
(subjective) uncertainty are the proponents of what is termed the subjective
interpretation of probability, and they argue that our attributions of
probability ideally express the strength of our confidence that an event will
occur (see § 10.2.3). This is not the only possible interpretation of
probability. In this chapter, we will al-so briefly introduce two other
interpretations. Let us use this preview to make one point clear. The
interpretations in question provide three different ways of conceiving
probability – if you like, they give us an “intuitive” reading of the notion of
probability. All three interpretations, however, agree in saying that, from a
mathematical point of view, probability behaves exactly as indicated by the
theory of probability – a branch of Mathematics. In other words, none of the
interpretations of probability come up with a formal theory of probability as
its product: they all accept the mathematical theory of probability as an
explication of how probability works.

Before approaching these three interpretations in detail, one brief remark is
worth making. We usually speak of probability as something that applies to
events and measures the likelihood of their occurrence. In this volume we
will stick to this usage. In the literature on probability, especially the
literature that supports the subjective interpretation, probability is also said



to otherwise apply to propositions and to measure the likelihood of their
being true. This is a totally legitimate use, but we will not adopt it in the
following pages.

10.2 Three interpretations of probability

The notion of probability has at least three different conceptual
interpretations: that is, there are at least three ways of “reading” this notion
and, therefore, probabilistic statements. Let us take a brief look at them.
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10.2.1 The classical interpretation

According to the classical interpretation, the probability P( E) of an event E
is the ratio between the number of cases favorable to E, i.e. in which E
occurs, and the number of possible cases, under the fundamental assumption
that all possible cases are equally possible. What does this mean? Take a
regular, fair die with six faces.

What is the probability that 1 will come up on the next roll of the die? There
are six possible outcomes, and there is no reason to assume that any of them
is “more likely” than another. There is, moreover, only one outcome every
throw: when we roll the die, we just get one result. It is these three points
that justify 3 our prompt (and correct) answer that the probability of getting 1
on the next throw is 1/6. The classical view only extends the points
underlying this example, generalizing them to an overall interpretation of
probability. In general, according to this approach, if the possible events are
n and the favorable events are nE, the probability of the event E occurring
will be: P( E) = nE/ n.

Even when we say that if we flip a coin there is a probability of 1/2 that
heads will come out, or that there is the probability of 18/37 that red will
come out on roulette, or 1/43,949,268 that a certain winning line will come
up at the lotto game, we are assuming that the space of possibilities is
equally distributed among the total number of cases.



A problem with the classical interpretation is that, at least at first sight, it is
not a smooth guide to the interpretation of those probabilistic situations –
indeed frequent and relevant – in which we cannot assume that the space of
possibilities is equally distributed among the totality of cases. In fact,
suppose our die is loaded. If this is the case, we cannot know a priori what
the probability is that the outcome will be, say, 2. Similarly, we cannot know
a priori what is the probability, in a given population, of developing lung
cancer if one smokes a pack of cigarettes a day for 20 years, and we cannot
know a priori the probability of being hospitalized in intensive care after
contracting Covid-19, at the age of 40. In cases like these, we do not have a
space of possibility equally distributed among all possible cases. If that were
the case, then we would conclude that, in the last two examples considered,
the probability of the events in question is 50%. Indeed, for each individual
in the population, there are just two possible events: developing or not
developing lung cancer (in the first example) and being hospitalized in
intensive care or not (in the second example). But it is clearly not the case
that the probability of the events in question is 50%.

3. The assumption that the die is fair is crucial to the example. If it were
loaded, we could not assume that the six possible events are all equally
probable, because a loaded die obviously biases the result toward one of the
six possible outcomes.
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10.2.2 The frequentist interpretation

When we are faced with cases like the two previous ones, we cannot reason
under the assumption that the probability space is equally distributed.
However, we can ask ourselves – and then observe – how often a certain
event occurs. For example, we can calculate the number of people who got
lung cancer after smoking a pack of cigarettes a day for 20 years as
compared with the total number of people who smoke that number of
cigarettes per day, or compute the number of 40-year-olds who ended up in
intensive care after having contracted Covid-19, as compared with all the
people who have had the disease in that age range. We can do the same thing



with any kind of definable probabilistic event,4 including those to which the
classical theory of probability is applicable. For example, given a fair die,
we can roll it many times. We are also aware that the more rolls we have, the
more smokers we analyze, the more people with Covid-19 we consider, the
closer our result will be to the probability of the actual event. The frequentist
interpretation tells us that this dynamic is implicitly applicable to any kind of
assignment of probabilistic values.

In particular, this interpretation defines the probability P of an event E as the
limit of its (relative) frequency of happening, that is, of occurrences of the
event when the number of tests approaches infinity.

P ( E) = lim

n

( nE

__

→∞

n )

Thus, in the frequentist tradition, the probability of an event is the relative
frequency of the set of results of a probabilistic test associated with the event
(for example, the roll of a die), evaluated on an ideally infinite number of
repetitions of the test.

The idea is that the more cases we have, the better our approximation will
be. If the number of cases available approaches infinity, we arrive at a
correct estimate of the probability.

A problem with this interpretation is that it is not applicable if we cannot
repeat a test several times. As mentioned, the more times we repeat this, the
better our estimate of the probability. This is not always possible, however.
Certain events are unique and in situations like these the frequentist
approach cannot be used to assign probability to an event. For example,
suppose we want to estimate the probability that Spain will win the 2022



football world championship. We cannot apply the frequentist approach
because we cannot have the next world cup played a very large number of
times: the 2022 football world championship is a unique event.

On the other hand, we cannot use the classical approach because we are not
facing an equally distributed space of possibility. It does not seem reasonable
to attribute equal probability to Spain’s victory and Lithuania’s victory, for
instance. When 4. By a “definable probabilistic event” we mean any event to
which we wish to and can assign a probabilistic value.
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faced with such cases, we end up asking again: what does attributing a
probabilistic value to an event mean?

10.2.3 The subjective interpretation

The subjective interpretation of probability provides an answer to this
question. According to this view, probability measures the degrees of
confidence or partial beliefs that rational agents have on the occurrence or
non-occurrence of an event. Let us first explain what we mean by “degrees
of confidence”. Given any event E, we have greater or lesser confidence in
its occurrence.5 For instance, we can have more or less

“confidence” in the event expressed by the statement “Spain will win the
football world championship in 2022”. We speak of “degrees of confidence”
precisely to refer to the fact that our confidence is “gradable” and it can
therefore be stronger or weaker, along a scale. In a somewhat unpolished
way, albeit more apposite than it may seem at first glance, we could say that
degrees of confidence measure how much we believe in an event, that is, the
strength of our beliefs. According to the subjective interpretation, the
degrees of confidence of a rational agent assign quantitative values to our
confidence in an event according to the rules of probability theory – we will
look at its basics in § 10.3. According to this interpretation, degrees of
confidence are therefore attributions of probability values. Or rather, the
interpretation conveys the idea that we are rational epistemic agents only if



we assign our degrees of confidence towards events by applying the rules of
probability theory. Since the attribution of degrees of confidence is more
relevant in situations in which it is not certain what happens or will happen,
we can say that, for the subjective interpretation, probability is our rational
tool for measuring uncertainty.

Let us come back to the above example. If we say that Spain has a 15%
chance of winning the next world cup while Lithuania’s is only 0.05%, this
reflects our degree of confidence in the realization of these events and
indicates that our confidence as regards Spain’s winning the cup is far
stronger than our confidence regarding Lithuania’s winning the cup.
Generally, sports betting winnings are computed on this basis. The same
concept underlies the probabilities assigned to weather forecasts or forecasts
on economic trends or the performance of a company next year, on which,
for instance, the performance of the stock exchange, or of a stock, depends.
According to the subjective interpretation, in other words, probability is
precisely this: each of our probabilistic attributions is actually the
quantitative expression of how much rational confidence we have in the
occurrence of an event.

To say that probability is subjective, because confidence in events obviously
is such, is not the same as saying that it is arbitrarily assigned. Our degree
of confi-5. Of course, this is relevant only when we do not know whether the
event will occur or not.
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dence in the occurrence of an event very often has rational grounds: I have a
greater degree of confidence in Spain’s victory than Lithuania’s victory
because I know that Spain has very strong players, and because I know that
Lithuania will not be able to line up players of that level. Under these
conditions, I am rationally justified in assigning a greater degree of
confidence to Spain’s victory than to Lithuania’s. It is because the satellite
photos show a strong typhoon that is reaching the ar-ea where I live that I
am rationally justified in having a great degree of confidence in the fact that
it will rain tomorrow. It is because I know that the pandemic has forced



companies to adopt smartworking in a massive way that I am rationally
justified in having a great degree of confidence that certain tech stocks will
grow in the equity markets. The subjective interpretation does not encounter
difficulties even in the face of the paradigmatic cases that motivate the
classical view: where we can apply the assumption that the probability space
is equally distributed, the subjective interpretation tells us that rational
agents will have the same degree of confidence regarding each of the events
defined in the probability space. For instance, under the subjective
interpretation, when facing the roll of a fair die, agents are rational only if
they have equal confidence in every possible outcome, and in particular if
they attribute 1/6 to each of them.

Nevertheless, the subjective interpretation of probability is “really”
subjective, in the sense that probability assignments vary from agent to agent
and from time to time, depending on the information available to agents. For
instance, if a meteorol-ogist acquires more detailed satellite images, better
and more defined isobaric maps at different altitudes, and better maps of the
winds, his confidence in a certain forecast regarding the weather in three
days will likely change, and consequently the probability assigned to a
certain forecast will also change. On the other hand, me-teorologists who
have more information and maps available than other meteorolo-gists will
give a certain forecast a different probability from that given by their
colleagues who have less.

That being said, an important problem that the subjective interpretation has
to tackle is the “assignment of prior probabilities”.6 It is not always clear on
what ground we assign a given value rather than another to the degree of
confidence we have in a given event. Let us see what this means. In the
previous example we attributed the value of 15% to our degree of confidence
in Spain’s victory, and 0.05%

to the degree of confidence in Lithuania’s victory, and we explained why
that difference may be rational, at least in principle. But on what grounds is
the probabilistic value we attribute to Spain’s victory 15% and not 10%?
And on what grounds is this value, in the case of Lithuania, 0.05% instead of
0.1%? In this case too (and for 6. As for the difference between prior
probability and posterior probability, we refer the reader to



§ 10.3.4. Here, suffice it to say that the prior probability of an event is the
unconditional probability of the event, that is, a probability that does not
depend on the occurrence or non-occurrence of another event.

220

Part III Non-deductive arguments

the very same reasons as above) we could be rationally justified in
attributing these values to the two events. Why one pair of values rather than
the other? It is hard to answer, because there is no objective aspect of the
world that justifies one over the other. In short, it seems that, although the
“subjective” view of probability does not collapse into a fully arbitrary view
of probability, there is, to some extent, a somewhat arbitrary component in
the attribution of degrees of confidence in an event.

In any case, it is very important to understand “where” this arbitrariness lies,
that is (at least in some cases) in the choice of given quantitative values.
There is no arbitrariness, however, when it comes to what the epistemic
agent “ought to do”

with these values: they must conform to the rules of probability theory.
Ideally, once the values for the basic events are set, an agent operates on
them in accordance with those rules. This is because the subjective
interpretation focuses on the internal coherence of our degrees of confidence
rather than on their assignment based on objective aspects of the world. This
explains why the subjective interpretation is a

“coherentist” conception of probability.

10.3 Basic aspects of probability theory

Let us now turn to some basic aspects of probability theory. As we have
already said at § 10.1, the way probabilities are to be computed is
independent from the different possible interpretations of probability. In
short, we have at least three conceptual interpretations of probability, but
only one (mathematical) theory of probability.



Here we will see how to compute the probabilities, or rather, given the
probabilities assigned to the elements of a set of events (whatever the
procedure used to assign them), we will see how we should derive the
probability of certain combinations of the events of the set. Here,
“combination” is to be understood in a very broad sense.

For instance, the fact that two events occur together, or that either of them
occurs, or that one occurs as long as the other has occurred, are all
combinations of events in the terminology that we are using here.

Probability theory is one of the most recent branches of Mathematics.
Indeed, before the seventeenth century, no treatment of the notion of
“probability”

in mathematical terms had ever been attempted, and the notions of
“probable” or

“likely” were vague and did not allow for any rigorous reasoning about
chance or, even less, for measuring chance. In the 17th century, the
foundations were laid for a mathematical treatment of this notion due, to a
good extent, to the fundamental contributions of Blaise Pascal, Pierre de
Fermat and Christiaan Huygens. Indeed, it is usually said that the history of
probability theory really begins in that century. It is important to notice two
things here. First, before the 17th century we did not really have a way to
think about “chance” events, those events whose occurrence is not
determined. Second, probability theory has provided a rigorous definition for
a concept that was vague before the theory was built, and it has thus

10 Probability and probability biases

221

somewhat redefined the notion of probability. Most importantly, probability
must satisfy the rules that the corresponding mathematical theory has
defined for it. If we are reasoning with “probability”, but not in accordance
with those rules, then we are not really reasoning with probability, because
those rules define probability – what we are doing is, rather, using some
concept that has some kind of family resemblance to probability. It is also



worth noting that human beings are, on average, “fragile” probabilistic
reasoners, more fragile than they are in other areas of reasoning. That is, we
tend to be mistaken and are easily misled when we think about the
probability of events. Perhaps this is due to the very fact that the theory of
probability has only recently provided precise rules for our reasoning as
regards chance. In short: apparently, we tend to think about chance in terms
that are either prior to the theory of probability, or not entirely consistent
with its notions.

We shall begin by introducing some basic terms. In order to assign
probabilities, we must first define the space of events, which we will call
probabilistic space 7

in the rest of this chapter. This is the space of events that is defined by the
probabilistic problem we are considering. Intuitively, it consists of the set of
all possible results of a probabilistic test. We denote it with the symbol Ω.
For instance, the flip of a coin determines an event space that includes two
basic events (“heads”

and “tails”), and all the events that can be defined from them using a series
of operations that we will look at shortly. Probability theory defines events
as sets of possible outcomes of a probabilistic test. Ideally, we can start with
the basic or “smallest” test results. In the case of a coin toss, these are
“heads” and “tails”. In the case of a roll of a die, the smallest results are the
six possible outcomes, namely: “1 comes out”, “2 comes out”, …, “6 comes
out”. Moreover, we can define other events starting with these “smallest”
ones, and do things with these “derived” events – for instance, we can bet on
them. In addition to the six events illustrated in the case of the roll of a die,
we can also consider the event “1 or 2 comes out”, which in probability
theory consists in the union of two of the basic events, or the event “2 does
not come out” (definable, in this case, as the union event of “1 comes out”,
“3 comes out”, “4 comes out 4 “, .. ), which in probability theory is
considered as the complement event of “2 comes out”. In general, we can use
all the set-theoretical operations to build events out of other events.
Furthermore, each application of set-theoretical operations to events gives
rise to other events. Again, in the case of a single die roll, for instance, we
can consider (say) the impossible event “2 comes out and 2 does not come
out”.



Let us now introduce some notation that is useful for reasoning with
probability, and comment on it.

a. Ω will denote the space of events – or “total event”;

b. Ζ will denote the so-called “empty event” – or “impossible event”; 7.
Another name for the probabilistic space is “sample space”.
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c. P( E) will denote the probability of event E; d. ¬ E will denote the event
that is the complement of E. In other words, ¬ E

means that E does not occur (complement event);

e. E ∩ E' means that both event E and event E' occur (intersection of events);
f. E ∪ E' means that at least one of the events – E and E' – occurs i.e. that
either E or E' occurs (union of events).

g. E' | E indicates that E' occurs given that E has occurred.

If an event has probability 1, then it is necessary for it to occur (or, in the
subjective interpretation, it is certain that it does); if it has probability 0, then
it is impossible for it to occur (or, in the subjective interpretation, it is certain
that it does not occur). For example, the event “tomorrow it rains or it does
not rain” has probability 1, while the event “tomorrow it rains and it does not
rain (at the same time in the same area)” has probability 0, because it is a
contradictory or impossible event. Events with probability between 0 and 1
are called contingent. Notice that P(Ω) = 1 is valid in probability theory, and
it is in fact assumed as an axiom of the theory. The axiom can be read as
follows: “it is necessary (or certain) that something happens”.

From this axiom and from the rule for negation that we will see in § 10.3.3,
it immediately follows that P(Ζ) = 0 – notice that the fact that Ζ = Ω – Ω
plays a role in this.



We can then go on and compute the probability of some combination of
events given the probabilities of single events. In what follows, the concepts
of ( a pair of)

independent events and ( a pair of) dependent events will play a crucial role.
An informal definition of these two concepts goes as follows: E and E' are
two independent events if and only if the probability of one occurring is not
affected by the probability of the other occurring. Otherwise, they are two
dependent events.

Examples of independent events are “heads on the first coin” and “heads on
the second coin” when tossing two different coins. The probability that the
first coin comes up heads is not affected by the probability that the second
coin comes up heads (or tails). Instead, here are two pairs of dependent
events: “tomorrow there will be a flood” and “tomorrow it will rain heavily”;
and “drawing a king on the first draw” and “drawing a king on the second
draw” from a full and regular deck of French-suited cards. The drawing of
the first card, whether it is a king or not, will affect the probability that a
king will come out on the second draw, and the fact that it rains abundantly
tomorrow influences the fact that tomorrow there will be a flood.

In the case of two independent events E and E', the fact that the probability
of one does not affect that of the other is formally expressed through the fact
that P( E| E' ) = P( E). More precisely, in the case of two independent events
we have P( E| E' ) = P( E) = P( E|¬ E' ). Indeed, if E' has no influence on E,
then the probability of E remains the same whether E' occurs or not. By
contrast, if E and E' are dependent events, we have P( E| E' ) ≠ P( E).
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10.3.1 Rules for intersection

The probability that both E and E' occur (or the probability of the
intersection of E

and E' ) is given by the following formula:



P ( E ∩ E ′ )

P( E ∩ E' ) = P( E) × P( E' | E) that is, P ( E ′ | E) =

________ with P( E) ≠ 0

P ( E )

The probability that both events occur is given by the probability that the
first occurs times the probability that the second occurs given the first. Since
in the case of independent events we have P( E| E' ) = P( E), this allows us to
give a simplified definition for the specific case in which E and E' are
independent: P( E ∩ E' ) = P( E) × P( E' )

In general, if E 1... E k are independent events, then: P( E 1 ∩ E 2 ∩ E 3, …,
E k) = P( E 1) × P( E 2) × P( E 3) × … × P( E k) For instance, the probability
of getting two heads by tossing two fair coins is:8

P( T 1 ∩ T 2) = P( T 1) × P( T 2) = 1/2 × 1/2 = 1/4

This is immediately evident given the assumption of equiprobability of the
four possible results, which are H 1 ∩ H 2, H 1 ∩ T 2, T 1 ∩ H 2, T 1 ∩ T 2.

By contrast, if the events involved are dependent events, we must use the
general version of the formula. For instance, assume that K 1 and K 2 denote
the event of getting a king on the first draw then another king on the second
from a 52-card deck when the first card is not placed back in the deck after
being taken out of it.

P( K ) = 4/52

[there are 4 kings in a deck]

1

P ( K | K ) = 3/51

[51 cards are left, and 3 kings]



2

1

P( K ∩ K ) = (4/52) × (3/51) = 12/2652 = 0,004

1

2

The following is a very similar example. Suppose that there are 18 balls in a
box, 5

of which are red, 6 are blue and 7 are yellow. What is the probability of
taking two red balls in a row, without placing the first ball we took out back
in the box?

P( R 1 ∩ R 2) = (5/18) × (4/17) = 20/306 = 10/153

What is the probability that the first ball we take out is blue and the second is
yellow? It is the following:

P( B ∩ Y) = (6/18) × (7/17) = 42/306 = 7/51

8. In these examples, we let H and denote the two events of type “heads”,
and and the 1

H 2

T 1

T 2

two events of type “tails” with the indexing referring to the corresponding
toss.
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10.3.2 Rules for union

The probability that either E or E' occurs (that is, the probability of the union
of E

and E' ) is determined by the following formula:

P( E ∪ E' ) = P( E) + P( E' ) – P( E ∩ E' ) That is, the probability that either
E or E' occurs is given by the sum of the probabilities of the two events
minus that of their intersection. We will comment on the formula below, and
we will show its adequacy. For now, let us see a special case of it, which
presupposes the notion of “mutually exclusive events”. Two events E and E'

are mutually exclusive if and only if they cannot occur together, that is if E ∩
E' = Ζ.

Since P( E ∩ E' ) = 0 if E ∩ E' = Ζ, clearly, if two events E and E' are
mutually exclusive, then P( E ∩ E' ) = 0. In this special case, the general
formula can be exemplified as follows:

P( E ∪ E' ) = P( E) + P( E' )

For instance, the probability of drawing a king ( K) or an ace ( A) of any suit
whatever from a 52-card deck on just one extraction is:

P( K ∪ A)= (4/52) + (4/52) = 8/52 = 0.15

Indeed, since we have 4 kings and 4 aces in the deck, the probability of
getting a king is 4/52 and that probability is the same as the probability of
getting an ace.

These are two mutually exclusive events, since we get either a king or an ace
(or none of them) with a single extraction, but we cannot get both a king and
an ace by it.Similarly, if in a box you have 18 balls of which 5 are red, 6 are
blue and 7 are yellow, then the probability of getting a blue ball or a yellow
ball is: P( B ∪ Y) = (6/18) + (7/18) = 13/18



If two or more events exhaust the probability space, then their union has
value 1.

For instance, what is the probability that we get either heads or tails by
tossing one coin?

P( H ∪ T)= 1/2 + 1/2 = 1

Therefore, it is necessary that we get either heads or tails.

Let us now examine the case in which E and E' are not mutually exclusive –

that is, they can occur together. In this case the notation is E ∩ E' ≠ Ζ. In
order to compute the probability that either of two non-mutually exclusive
events E and E'

occurs, we must use the general formula that we have introduced above:
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P( E ∪ E' ) = P( E) + P( E' ) – P( E ∩ E' ) Now we will see why this general
formula is adequate. In order to prove its correctness, consider that:

P( E ∪ E' ) = P( E' ) + P( E ∩ ¬ E' ) [recall that E ∪ E' = E' ∪ ( E ∩ ¬ E' )]

Also:

P( E) = P( E ∩ E' ) + P( E ∩ ¬ E' ) [recall that E = ( E ∩ E' ) ∪ ( E ∩ ¬ E' )]

Subtracting member to member we then get:

P( E ∪ E' ) – P( E) = P( E' ) + P( E ∩ ¬ E' ) – [P( E ∩ E' ) + P( E ∩ ¬ E' )]

Notice now that P( E ∩ E' ) = P( E' ∩ E); by simplifying the formula we get
the formula that we wished to prove. The formula we have introduced
above: P( E ∪ E' ) = P( E) + P( E' ) – P( E ∩ E' ) is actually valid for every



kind of independent event, both for mutually and non-mutually exclusive
events. When E and E' are mutually exclusive, then P( E ∩ E' ) = 0, since it
is impossible that the two events occur together and then, as we have seen,
we can simplify the formula.

Let us give some examples of the probability of the union of two non-
mutually exclusive events. The probability of getting one “heads” if we toss
two coins at the same time is:

P( H

) = 1/2 + 1/2 – (1/2 × 1/2) = 1 – 1/4 = 3/4

1 ∪ H 2

The probability of getting at least one number 6 when we roll a pair of dice
is: P( S

) = 1/6 + 1/6 – (1/6 × 1/6) = 2/6 – 1/36 = 11/36 ≈ 0.30

1 ∪ S 2

10.3.3 Rule for complement event

The rule for a complement event determines the probability that an event
does not occur on the grounds of the probability that the same event occurs.
This would be: P(¬ E) = 1 – P( E)

The formula is easily proven. Indeed, it is necessary that an event either
occurs or does not occur. Hence:

P( E ∪ ¬ E ) = 1

But E and ¬ E are by definition mutual y exclusive. Hence, P( E ∪ ¬ E ) =
P( E) + P(¬ E), from which we get:
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P( E) + P(¬ E) = 1

from this, the rule for complement event follows.

Let us try to apply the rule by computing the probability of getting one heads
by tossing a pair of fair coins again. This event occurs when it is not the case
that the outcome of the toss is tails for both coins. But we know that the
probability of that outcome is 1/4. Therefore, the probability of getting at
least one heads is 1 – 1/4, that is 3/4.

There is one further reason why the rule for the complement event is
important. We have seen what formula determines the probability of at least
one of two independent events occurring. How do we determine this very
probability, when the two events are dependent? For instance, how do we
determine the probability of getting at least one black ball from a box
containing two black balls and three white ones by having two extractions
(without putting the first ball back into the box)? Take the following method:
we compute the probability of not getting any black ball at all first. This
equates with the probability of extracting two white balls:

P( W ∩ W ) = P( W ) × P( W | W ) = 3/5 × 2/4 = 6/20

1

2

1

2

1

Then, we apply the rule for the complement event:

P( B

) = 1 – P(¬( B



)) = 1 – P( W ∩ W ) = 1 – 6/20 = 14/20 = 7/10

1 ∪ B 2

1 ∪ B 2

1

2

Notice that P(¬( B 1 ∪ B 2)) denotes the probability that no black ball
comes out from either the first or the second extraction, which equates with
P( W 1 ∩ W 2), that is, the probability of the two balls that we get both being
white.

10.3.4 Bayes’ theorem

Bayes’ theorem is a fundamental theorem of probability theory, as it gives us
the recipe to update a probabilistic value once new information has been
acquired. In this sense, it helps us grasp a “dynamic” aspect of probabilities
– more precisely, it helps us understand how, exactly, probabilities change
when certain events that are defined in the probabilistic space occur. Here we
use the phrases “new information” and “occurrence of an event”
interchangeably, due to an idealization –

taken from probability theory – which presumes us to be “perfect” observers
of all events. From this idealization, it follows that an event defined in a
probabilistic space occurs if and only if we know that it occurs. Thanks to
Bayes’ theorem, which we owe to Thomas Bayes (1702-1761), we have a
mathematical formula that provides us with a precise way of “correcting” a
probabilistic value in the light of new information. More specifically, if there
is a preliminary ( prior) estimate of the probability of an event, and if
additional information is then ac-
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quired, Bayes’ theorem helps us determine the posterior probability of the
occurrence of that event. Just to get an idea: what we call prior probability is
the attribution of probabilistic value to the events of a space “before” any
event occurs. It is, for example, the probability we assign to the “2 does not
come out” event before the roll of a fair die. In this case, the probability of
the event is 5/6. A posterior probability , on the other hand, is the attribution
of probabilistic value to events “after” one of them has occurred. After 2
turns out to be the outcome of the roll of the die in question, the probability
of the event “2 does not come out”

(with respect to the throw just given) “becomes” 0. Obviously, it “would
become”

1 if any number other than 2 came out. Similarly, the 4/52 probability of
getting a king from a regular, freshly opened deck of French-suited cards is a
prior probability, while the 3/51 probability of getting a king from a deck of
French-suited cards from which one king has already been removed is a
posterior probability.

Notice that the posterior probability of an event E is always relative to an
event E' which we assume has occurred. We will speak just of “posterior
probability” of an event E, without further qualification, when we have
already introduced the event that we assume occurred, and the context will
thus make it clear to which event the posterior probability of E is related.
Given what we have just said, maybe you have already guessed that
posterior probability is conceivable in terms of conditional probability.9
Therefore, it is not surprising that Bayes’ theorem can be read more
generally as a formula which captures the relationships between different
conditional probabilities, as we will see shortly.

Like all the tools of probability theory we deal with in this section, Bayes’
theorem is valid in the context of all the interpretations of probability – the
subjective interpretation, as well as the frequentist one and the classical one.
The theorem evaluates the updated or posterior probability of two mutually
exclusive but jointly exhaustive events. Two events are jointly exhaustive
when they exhaust the space of possibilities: either one occurs or the other
does, but they cannot occur together. For instance, E and ¬ E are mutually
exclusive and jointly exhaustive events. The theorem can be extended to a



number n of mutually exclusive but jointly exhaustive events, but here we
confine ourselves to just two events for simplicity. The theorem is
particularly useful for updating the probability of a certain event when we
get more information about that event.

Suppose that E and E' are two mutually exclusive but jointly exhaustive
events, and that E″ is a third event, which constitutes the new information
that has occurred. Then, the theorem has this form:

9. Actually, the prior probability of an event E is also relative to another
event, that is, to the “total event” which, as we have seen, can be read as
“something occurs”. Of course, this being given, also prior probability can
be represented in terms of conditional probability. Specifically, P( E) =

P( E|Ω). The formula is secured by the fact that P(Ω) = 1.
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P ( E) × P ( E″ | E )

P( E| E″) =

_______________________________

[P ( E) × P ( E″ | E ) ] + [P ( E' ) × P ( E″ | E' ) ]

We can think of P( E) as the prior probability of E and of P( E| E″) as the
conditional probability of E given E″. Since this is the event that we
assumed to occur, we can take P (E| E") to be the posterior probability of E.
Notice that, since E and E' are mutually exclusive but jointly exhaustive, E'
= ¬ E, namely the occurrence of E' is equivalent to the non-occurrence of E.
Hence, the above statement of the theorem is equivalent to the following
formula:

P ( E) × P ( E″ | E )

P( E| E″) =



__________________________________

[P ( E) × P ( E″ | E ) ] + [P (¬ E) × P ( E″ | ¬ E ) ]

Now let us see how the theorem can be proved. Remember the general
formula for calculating the probability of the intersection between two
events: P( E ∩ E″) = P( E) × P( E″| E) Applying this very formula by
reversing the order in the intersection, we get: P( E″ ∩ E) = P( E″) × P( E|
E″) Since E ∩ E″ = E″ ∩ E, these two formulas are equivalent, so: P( E″) ×
P( E| E″) = P( E) × P( E″| E) By dividing both sides of the equivalence by P(
E″) we obtain: P ( E) × P ( E″ | E )

P( E| E″) =

____________________

P( E″)

We already know from the proof of the rule for union in § 10.3.2 that: P( E″
) = P( E″ ∩ E) + P( E″ ∩ ¬ E) That is, the probability that an event occurs is
given by the sum of the probability that that event occurs together with
another event with the probability that the event occurs without the other
event occurring. Hence:

P ( E) × P ( E″ | E )

P( E| E″) =

___________________

P ( E ″ ∩ E) + P ( E ″ ∩ ¬ E) We also know from the general rule for the
probability of the intersection of two events that:

P( E″ ∩ E) = P( E) × P( E″| E) P( E″ ∩ ¬ E) = P(¬ E) × P( E″| ¬ E)
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Substituting in the denominator of the fraction, we get

P ( E) × P ( E″ | E )

P( E| E″) =

______________________________

[P ( E) × P ( E″ | E ) ] + [P (¬ E) × P ( E″ | ¬ E ) ]

and form this, we conclude:

P ( E) × P ( E″ | E )

P( E| E″) =

_____________________________

[P ( E) × P ( E″ | E ) ] + [P ( E' ) × P ( E″ | E' ) ]

that is, the formula stated by the theorem. Notice that the theorem also gives
us the ratios between the conditional probability of E given E″, on the one
hand, and the probability of E, of E″ given E, of E' , and of E″ given E' on
the other. The importance of Bayes’ theorem lies in the fact that, given two
mutually exclusive and jointly exhaustive events E and E' , it gives us a way
to compute the conditional probability of E given any third event E″,
providing that we have the value of the prior probability of E and that of the
conditional probability of E″ given E. As for event E' , we can always take ¬
E in its place: since E and E' are mutually exclusive and jointly exhaustive,
obviously, E' = ¬ E. Applying this to situations in which it is assumed that
E″ has occurred, Bayes’ theorem provides us with a procedure for
determining the posterior probability of E, provided – again – that we know
the value of the prior probability of E and that of the conditional probability
of E″ given E. Under this reading, the theorem also reveals to us that the
posterior probability of an event E is completely pre-encoded into the
conditional probability of E, given an event E″ that then happens to occur.
The change of probability values following the contraction of the
probabilistic space occurs along lines already codified before the events
occur.



Bayes’ theorem has such a wide range of applications that it is impossible to
list them all. A classic and fairly immediate application is updating the
probability that a subject has a certain disease after having tested positive on
a medical examination. For example, suppose a disease affects 2% of people.
This implies that any person has a 2% chance of having the disease. Suppose
a person undergoes a medical examination aimed at diagnosing the disease.
We also assume that the test has an 80% reliability. Obviously, that increases
the probability that that person has the disease. But how much does that
increase such a probability, exactly? We can use Bayes’ theorem to establish
this. E denotes the fact that the subject has the disease, E' denotes a positive
outcome of the test. P( E) is the probability that the subject has the disease
prior to the test (0.02). P( E| E' ) is the probability that the subject has the
disease given a positive outcome of the test. P( E' | E) denotes the likelihood
that the test gives a positive outcome provided that the subject has the
disease (0.8 because the test is 80% reliable).

P( E' |¬ E) indicates the likelihood of being positive to the test despite not
having the disease (which is 0.2). Hence:
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0.02 × 0.8

0.016

0.016

P( E| E' ) =

______________________ =

____________ =

_____

(0.02 × 0.8) + ( 0.98 × 0.2 )



0.016 + 0.196

0.212 ≈ 0.075

Therefore, a patient that is positive on the test has about a 7.5% chance of
having the disease. It is certainly higher than the initial 2%, but perhaps less
than one would expect. Obviously a more reliable test would imply a greater
increase in the probability of having the disease.

It is worth mentioning some “historical” cases in which Bayes’ theorem has
been applied, and these are all from outside Medicine. For example, it was
used in the search for Air France flight 447 from Rio de Janeiro to Paris,
which disappeared in June 2009. The initial two-year searches were
unsuccessful but, six days after applying Bayes’ theorem, the airplane was
found 4,000 meters deep in the At-lantic Ocean. Various types of data were
used in the application of the theorem, including the exact path followed,
wind speed, ocean currents, etc. Each of these pieces of evidence changed
the probability of finding the plane in a certain area, allowing searchers to
identify the area where the plane had most likely crashed. Bayes’

theorem was also used to locate U-boats during World War II and in the
search for an H-bomb following an accident involving a B-52 in Spain.
Obviously, use of the theorem is not always successful, as is to be expected
in inductive reasoning. For example, it was unsuccessful when it was
employed in the search for Malaysia Air-lines Flight 370 from Kuala
Lumpur to Beijing, which disappeared in March 2014, somewhere in the
southern Indian Ocean.

Bayes’ theorem is also involved in many applications of probabilistic
reasoning to everyday life, as we will see below.

10.4 Two probabilistic reasoning problems, and some fallacies In this
section we will show some probabilistic reasoning problems, which help us
understand, among other things, how easily we are misled when it comes to
reasoning with probabilities. Kahneman and Tversky, who we have already
mentioned in Chapters 1 and 6, have studied the fallacies we tend to make in
probabilistic reasoning in great detail.



Here we report one of the many fallacies of probabilistic reasoning they
studied. The fallacy is known as the “conjunction fallacy” or “Linda
problem”. It shows the tendency to make mistakes in thinking about the
probability of the intersection of two events. The first name of the fallacy is
due to the analogies between conjunction (sentential connective) and
intersection (set-theoretical operation). The fallacy is interesting precisely
because it violates a very elementary rule which is very easy to understand,
and this in turn shows just how fragile we are as probabilistic reasoners.
Kahneman and Tversky presented the following story to some students:
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Linda is a thirty-year-old single woman. She is outspoken and very bright,
and she graduated in philosophy. As a student, she was much involved in the
public issues of discrimination and social justice. She also took part in anti-
nuclear rallies.

After presenting the story, Kahneman and Tversky asked the students:
Which of the following two options is more probable?

1. Linda is a bank employee.

2. Linda is a bank employee and she is involved in the feminist movement.

Most students took 2 to be the right answer, although probabilistic reasoning
does not justify this answer – by contrast, it justifies only 1. Indeed, no
matter how strongly we feel that Linda must be involved in the feminist
movement, given the description, the probability of the intersection of two
events (and 2 just offers that) will always be lower than (or equal to) that of
the individual events involved, as is clearly proved by the rule for
intersection (§ 10.3.1). Therefore, when answering the question, most of the
students choose the wrong one, and they violate one of the most elementary
rules of probabilistic reasoning. Why? Because de facto we tend to reason
according to criteria of “sample representativeness”. Linda’s description
makes her extremely representative, at least in our imagination, of the profile
of a person who is involved in the feminist movement, and we therefore tend



to think that of the two options, the correct one is the one that actually
incorporates the consequences of this assumption of representativeness. In
our case, this is option 2, not option 1. However, this does not mean that the
answer to the question is correct, as the question is about probabilities and,
by choosing 2, we violate a basic rule of probability theory.

Despite this, the experiment does not necessarily show that we are
“hopeless-ly fragile” when we reason with probabilities. Indeed, it may be
that we implicitly read option 1 as (1a) “Linda is a bank employee and she is
not involved in the feminist movement”, adding the second conjunct precisely
because we think this fits the context, as the other option gives us “Linda is a
bank employee and is involved in the feminist movement”. This does not
mean that the answer given by the majority of the students is justifiable,
because the answers are in any case 1 and 2, not 1a and 2. This
consideration, moreover, does not contradict the hypothesis of Kahneman
and Tversky according to which this wrong answer is due to the influence of
considerations on Linda’s representativeness. However, it tells us that,
implicitly, students may have reacted by thinking which of 1a and 2 was
more probable. If so, ideally they would not have attributed a greater
probability to an intersection of events than the probability attributed to one
of the individual events.

Let us now look at the two probabilistic reasoning problems involving
conditional probabilities.
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10.4.1 The cab problem

Let us return to the problem at the beginning of this chapter:

A cab is involved in an accident at night. There are two taxi companies in
the city, one with green cabs and one with blue cabs. 85% of cabs in the city
are green and 15% are blue. An eyewitness claims that the cab involved in
the accident was blue. The court has already experienced the witness’s
reliability under the same circumstances as those of the incident, and it



knows that that the witness identified each of the two colors correctly 80%
of the time, while failing 20% of the time.

What is the probability that the cab involved in the accident is blue rather
than green, conditional on the fact that the witness, in good faith, reported
that the cab was blue?

One natural thought, when facing this problem, is that “the witness is likely
right”

(after all, he – or she – is right 80% of the time!), and we can reasonably
interpret this statement as “the probability that the cab has the color the
witness claims it has” is greater than 0.5 (or 50%, which obviously is the
same). We set the following events:

• B = the cab is blue;

• Y = the cab is yellow;

• CB = the witness (faithfully) asserts that the cab is blue;

• CY = the witness (faithfully) asserts that the cab is yellow.

The problem requires establishing a conditional probability, and we have all
the necessary conceptual tools to solve it by means of Bayes’ theorem.
Indeed, the theorem helps us update the probability that the cab was blue
given that the witness says so, that is P( B| CB). We can apply it because we
have a value for P( B), i.e. 0.15, a value for P( Y), i.e. 0.85, a value for P(
CB| B), i.e. 0.8, and a value for P( CB| Y), i.e. 0.2: P ( B) × P ( CB | B)

0.15 × 0.8

P ( B | CB) =

__________________________ =

______________________ ≈ 0.41



P ( B) × P ( CB | B) + P ( Y) × P ( CB | Y) (0.15 × 0.8) + ( 0.85 × 0.2 ) The
fact that we tend to overestimate the probability that the cab is of the color
recognized by the witness may be due to one or more elements that are
“delicate” to us. First, we actually tend not to distinguish between the
probability of E given E' , and the probability of E' given E. Or rather, we
tend to switch them when we are asked to assume which one is relevant in
our reasoning, as will be evident in what is called the “prosecutor’s fallacy”.
Second, the formula of Bayes’ theorem is cognitively complex enough for us
to induce us to go with an intuitive (but systematically error-prone) estimate
of the conditional probability that is of interest for us, instead of applying the
proper probabilistic computation.
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10.4.2 The prosecutor’s fallacy

A further example of how hard it can turn out to be for us real cognitive
agents to apply Bayes’ theorem is provided by the “prosecutor’s fallacy”.
The name stems from the fact that this erroneous reasoning can show up in
court, where it leads to overestimate the probability that an accused is
guilty.10 For example, suppose a crime has been committed in a city where
5 million people live. Jones is charged with the crime, a DNA sample of
Jones is taken and it is verified that it matches a biological trace found at the
crime scene. The DNA test only fails in one in 10,000

cases. Thus, the prosecutor claims that there is only a 1/10,000 chance that
Jones is innocent. Since this is a very small probability, the prosecutor
argues that we have sufficient evidence that Jones is the culprit.

This reasoning sounds convincing, but it is wrong. Let us see why. First, we
will give the case a rigorous formulation. We suppose that:

• G = Jones is guilty;

• E = the DNA test gave a specific result (namely: the one which we have
mentioned above).



In the traditional exemplification of the fallacy, corresponding to the
procedural scenario described above, the prosecutor bases his indictment on
P( E| G), that is, on the probability that the accused turns out to be positive
on the DNA test, given that the accused is guilty. P( E| G), as we said, is
9999/10000 = 0.9999. A probability close to 100%, then! The prosecutor
concludes that Jones is ( almost certainly) guilty.

Now let us see why this conclusion is unjustified. What we actually want to
know is the probability that Jones is guilty given the test result. However,
what the prosecutor does is to look for the likelihood that the test will give a
certain result given that Jones is guilty. But this is not what we want to
know, obviously, if on-ly because the fallacy committed by the prosecutor
starts out from the assumption that Jones is actually guilty, and
“conditionalizes” on it, that is, the prosecutor computes the value of P( E|
G). But we do not know whether Jones is guilty or not. Instead, we want to
know what the probability is that Jones is guilty given an event that we know
(that is, the response given by the DNA test and what it says about the
biological sample). In other words, the prosecutor should have reasoned out
of 10. The fallacy has actually been used in court. One famous case in which
this happened is the Sally Clark case. Sally Clark was a British woman. In
1998 she was charged with the murder of her two babies (8 and 11 weeks old
at time of death). The woman claimed that they had both died by sudden
infant death syndrome (SIDS), but the prosecutor claimed that there was a
probability of 1/73,000,000 that two deaths by SIDS occurred in the same
family. Sally Clark was convicted but, after a few years, the Royal Statistical
Society showed that this was due to a mistaken assessment of probability. In
light of this, Sally Clark was freed in 2003. However, what happended got
her a serious psychological damage and an addiction to alcohol that led her
to death in 2007.
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P( G| E), which is the probability that Jones is guilty given the result of the
DNA test. If we do so, we come to a completely different conclusion.
Indeed, P( G| E) can be computed using Bayes’ theorem. With 5 million
people living in the city, the chance that Jones is guilty before the DNA test



is 1 in 5 million. After the test, this probability clearly increases. But how
much does it increase? P( G), before the test result, is 0.0000002. P( E| G) =
0.9999, while P( E| ¬ G) – the probability that, despite not being guilty,
Jones is positive on the DNA test – is equal to 1/10000 =

0.0001. Applying Bayes’ theorem:

P ( G) × P ( E | G)

P ( G| E) =

____________________________ ≈ 0.1996

[ P ( G) × P ( E | G) ] + P (¬ G) × P ( E | ¬ G ) Despite the positive test, there
is only about a 20% chance that the accused is guilty.

This is certainly a great enough probability to proceed with further
investigation by the police about Jones, but it is certainly not great enough to
convict him. This tells us that the evidence we need in court cannot be
limited only to the DNA examination, but must always be accompanied by
other clues. For example, if the accused knew the victim, this increases his
chances of guilt. If he was on bad terms with the victim, the probability
increases further. And so on.

There are two important things that we can learn from the “prosecutor’s
fallacy”.

The first is that, as we have already mentioned, in our reasoning, we tend to
“switch”

the events on which we have to “conditionalize” (in our case, the response of
the DNA test) and events that we have to “conditionalize” (in our case,
Jones’s guilt).11 This highlights once again our great fragility in
probabilistic reasoning. Second, the example helps us understand the
importance of correct probabilistic reasoning. Failure to reason correctly can
lead to someone being sent to jail without justification.

10.5 Risk and fundamental uncertainty



Here, we will briefly discuss the notions of risk and fundamental
uncertainty.

10.5.1 Risk

The notion of risk is crucial in economics and finance. Although it is defined
in many different ways, most of these definitions implicitly connect the
evaluation of 11. The probability P( E| G) is called the likelihood of E given
G, and it denotes the probability that the test will give a positive outcome
given that Jones is guilty. As we have said already, however, this is not what
we are after. By contrast, P( G| E), which is the posterior probability of G, is
the probability of Jones being guilty, given a positive outcome for the test.
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risk to the evaluation of probability. For instance, in 1992 the London Royal
Society defined risk as the probability “that a particular adverse event occurs
during a stated period of time, or results from a particular challenge”. In
short, risk presupposes two dimensions: that of utility (how much, or how
little, we benefit from a given situation) and that of probability. The Royal
Society referred to probability “in the sense of statistical theory”,
emphasizing that it satisfies “all formal laws for combining probabilities”. In
the Stanford Encyclopedia of Philosophy’s 2018

“Risk” entry, Sven Ove Hansson lists other definitions of this notion that
have been given in the literature.12 We can summarize them briefly as
follows: a. Risk = an undesirable event that may or may not occur.

b. Risk = the cause of an undesirable event that may or may not occur.

c. Risk = the probability of an undesirable event that may or may not occur.

d. Risk = the expected statistical value (the product of probability and some
measure of its severity) of an undesirable event that may or may not occur.

e. Risk = the fact that a decision is made in conditions of known probability
( known unknowns).



Roughly all definitions of risk presuppose the statistical application of
probabilities, and therefore presuppose an “objective” view of the latter.
Precisely for this reason it is important to distinguish between the evaluation
of risk and the perception of risk. The first is based on statistical
considerations, while the second is based on our degree of confidence
(which is subjective) toward the given event (whether harmful or beneficial).

10.5.2 Fundamental uncertainty

We saw at § 10.1 that probability can be conceived as a measure of our
uncertainty about events, and that under this view, the term “uncertainty”
designates something subjective – the fact that we are not sure whether a
given thing occurs or not. We have also seen (again at § 10.1) that the
literature on the applications of probability also gives an “objective” sense to
the term “uncertainty”. In this sense, the occurrence of an event is uncertain
if (i) it is not determined by predictable, known, or currently occurring
factors, and (ii) it is not possible to make it the object of probabilistic
evaluation, meaning that we have no rational justification for any attribution
of a probabilistic value. Here, we will focus briefly on this sense of the term.
In order to avoid confusion, we will refer to this sense of the term as to
“fundamental uncertainty”. This “objective” notion of uncertainty 12. Sven
Ove Hansson, “Risk”, The Stanford Encyclopedia of Philosophy, in Edward
N. Zalta (ed.), https://plato.stanford.edu/entries/risk/.

236

Part III Non-deductive arguments

is neatly exemplified by John Maynard Keynes, who referred to it as
“uncertainty” tout court, and not as “fundamental uncertainty”, as we do: By
“uncertain” knowledge, let me explain, I do not mean merely to distinguish
what is known for certain from what is only probable. The game of roulette
is not subject, in this sense, to uncertainty; nor is the prospect of a Victory
bond being drawn. Or, again, the expectation of life is only slightly
uncertain. Even the weather is only moderately uncertain. The sense in
which I am using the term is that in which the prospect of a European war is
uncertain, or the price of copper and the rate of interest twenty years hence,
or the obsolescence of a new inven-tion, or the position of private wealth-



owners in the social system in 1970. About these matters there is no
scientific basis on which to form any calculable probability whatever. We
simply do not know.13

The outbreak of a European war or the interest rate in twenty years’ time
depend on too many factors and the system is too complex for us to make
sound estimates of their probability. Other terms to denote this “objective”
type of uncertainty are

“genuine uncertainty” and “profound uncertainty”. We can therefore
distinguish three types of situations:

a. Known Knowns (i.e. certainty). We know perfectly well the occurrence of
events and their consequences. In these cases, we are totally certain that a
given event has occurred, occurs or will occur.

b. Known Unknowns (i.e. probability applies). We have solid and defined
grounds for evaluating the probability of a given event. For example, if I bet
$100 on red in roulette, I am able to determine my odds of winning an
additional $100

(48.64%) or, instead, losing my stake (51.36%). If tomorrow’s weather
forecast says it will be good and this forecast is 90% reliable, then I can
determine the likelihood of my trip tomorrow being marred by bad weather
(10%). In these situations, we know that we do not know that something will
occur (or that it will not occur), but we also know how to measure the
probability of this random event (or uncertain event, if we are thinking in
subjective terms). Here, what we do not know (what is unknown) is that the
event will (or will not) occur. What we do know (what is known) is its
probability or the degree of confidence we have in it.

c. Unknown Unknowns (i.e. fundamental uncertainty). We have no reliable
estimate of the probabilities of an event because our knowledge is too
limited, and the system is too complex. For example, we do not know how to
attribute a probability to the fact that we will have good weather in a certain
area in 30



days or to the fact that the profits that a company will make in 20 years will
be 13. John M. Keynes, The General Theory and After: Defence and
Development, Macmillan, London 1973 (“The Collected Writings of John
Maynard Keynes”, vol. XIV), pp. 113-114.
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greater than the current profits. Both the occurrence of the given event and
its probability are unknown because it is impossible to define for the event a
probabilistic value such that the assignment has a rational justification.

In some respects, the initial stages of the Covid-19 pandemic were
characterized by a condition of fundamental uncertainty. The available data
on the contagiousness of the virus and on the mortality rate were not
sufficient to make rational decisions and only time will tell whether we
overreacted or not. In this regard, Gerd Gigerenzer observed:

No one knows where or how fast a new virus will spread. We cannot
calculate the risks with confidence, and we will know only in hindsight
whether we overreacted or underreacted. Given this uncertainty, how we
respond to a viral outbreak is as crucial as the nature of the pathogen.14

These considerations confirm what we noticed at the beginning of this
section, namely the close connection between probability and risk. Let us
return to the definition of risk proposed by the Royal Society. According to
this definition, risk is the probability “that a particular adverse event occurs
during a stated period of time, or results from a particular challenge”. Here,
the Royal Society takes risk to involve “probability in the sense of statistical
theory”, which satisfies “all formal laws for combining probabilities”. It is
interesting to notice that this definition crosses paths with the three
“categories” of situations just listed. According to this definition, in fact, we
can speak of risk only in Known Unknowns situations, that is, in situations in
which we can give a probability to the occurrence of an adverse event. Other
definitions of risk envisage different intersections. For example, if we define
risk as an undesirable event that may or may not occur, then we can speak of



risks in such situations as well. There is a great variety of perspectives on
this issue.

10.6 Conclusion

Let us recapitulate. We can intuitively characterize probability as a
numerical description of how likely a given event is to occur. The notion of
probability satisfies the rules established by probability theory, which is a
branch of Mathematics.

We have seen some of them, focusing in particular on Bayes’ theorem,
which helps us determine the posterior probability of an event, that is, the
probability that one event will occur given that another has already occurred
in the initial probabilistic space. This presupposes the notion of conditional
probability, that is the prob-14. Gerd Gigerenzer, Why What Does Not Kill
Us Makes Us Panic, Project Syndicate, May 12, 2020.
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ability that something occurs conditionally on something else occurring.
Before discussing this basic theoretical point, we discussed three
interpretations of the notion of probability: the classical interpretation, the
frequentist interpretation, and the subjective interpretation. We also
discussed their limits. Subsequently, we went through some problems in
probabilistic reasoning, in particular problems to which we tend to give
wrong answers. This has helped us understand our “fragility” as probabilistic
reasoners – that is, the fact that in some situations, we prove prone to error in
reasoning with probability. We have closed the chapter by discussing the
notions of risk and fundamental uncertainty, which are both connected to the
notion of probability.

11 · Reasoning by analogy

We close this volume with a further type of non-deductive reasoning:
reasoning by analogy. We briefly illustrate its structure and discuss various
purposes and applications of this reasoning; more precisely, we distinguish



its cognitive and normative purposes; the latter are exemplified in legal and
moral reasoning.

11.1 Introduction

Reasoning by analogy starts by identifying a relevant similarity between two
or more entities and draws conclusions about one of the entities. One of the
possible purposes of analogical reasoning is to broaden our knowledge, and
in this case the entity about which a conclusion is drawn will be the lesser
known of the two. In more technical words, reasoning by analogy projects a
certain relational structure from one familiar domain ( source) onto another
similar domain ( target), drawing conclusions about the latter.

Arguments by analogy are very common in everyday life. Since I liked the
last two films of Christopher Nolan or the last two novels of Michel
Houellebecq, I can reason by analogy and think that I will also like that
director’s next film or that writer’s next novel; therefore, based on that, I can
decide to go see the film or buy the novel. Since I like the haircut of a friend
of mine and she goes to “Lidia, the magic touch” to have her hair cut, I can
decide to go to the same hairdresser, thinking that the cut will be good for
me too. Since I was satisfied with my latest mobile from the XYZ
Microelectronics brand, I can decide to buy a mobile from the same brand,
thinking that this will also satisfy me.

Like abduction and induction, analogy is a non-deductive and ampliative
inference. It is therefore fallible but it can generate new knowledge, or rather
it generates new knowledge when it is a good analogy. In this short chapter
we will try to understand the structure of reasoning by analogy and some of
its applications. In §

11.2 we will discuss the structure of arguments by analogy and the
conditions under which they are considered (if their premises are true) good
or not. We will then briefly look at three types of applications or purposes of
reasoning by analogy. In §

11.3 we will consider arguments by analogy that have a cognitive purpose, in
§ 11.4



we will provide some applications of analogy to legal reasoning, and in §
11.5 some of its applications to moral reasoning.

240

Part III Non-deductive arguments

11.2 Structure of arguments by analogy and evaluation criteria The
basic scheme of a reasoning by analogy is the following:

Entity a has properties P, Q, R and Z.

Entity b has properties P, Q, R.

Entity b has property Z.

For this reasoning to be appropriate, P, Q and R must be relevant properties,
that is, properties connected in some way to Z. However, that things are
really as the conclusion of a reasoning by analogy says is not sure; it is
rather a hypothesis made by those who reason by analogy and this makes
this kind of reasoning fallible.

In symbols, the scheme just presented can be rendered like this: P( a), Q( a),
R( a) and Z( a) P( b), Q( b), R( b) Z( b)

In this scheme, a is called the source of the reasoning, whereas b is the
target. There is clearly a connection between this type of reasoning and the
generalizations we talked about in Chapter 9. In generalizations we start out
from the observation that a relevant portion of the members of a class have a
certain property Z and we conclude that all members of that class have this
property. Then, when faced with a member of that class that we have never
met before, we can deduce that it has property Z. The first step of this
reasoning (from some members to all members) is inductive, the second step
(applying the generalization to a particular member) is deductive. For
example, from the fact that the two mobile phones I owned from XYZ
Microelectronics brand had satisfactory features and performance, I can
induce that all the mobile phones of this brand have satisfactory features and
performance and that, therefore, the next mobile of that brand that I buy will
also have the same characteristics. Reasoning by analogy has similarities



with this type of reasoning, but it goes directly from the fact that one or more
individuals possess a certain property to the conclusion that another
individual that resembles the former also has that same property, without
going through the generalization to all individuals belonging to a certain
class. The fact that the second individual resembles the first is indeed
reduced to the fact that they share some properties that are somehow relevant
to the conclusion that the second individual has property Z (see the argument
scheme above).

There are various criteria by which we can evaluate reasoning by analogy: 1.
Relevance of similarities. As we said, properties P, Q, R must be relevant for
Z. If they are not, the argument by analogy becomes very weak. Suppose my
friend Luisa was born on May 5 and she is very nice. I meet another woman
who was also born on May 5 and I conclude that she must also be very nice.
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Since the day a person is born seems irrelevant to the property of being nice,
this reasoning is extremely weak.

2. Number of similarities. The higher the number of similarities between a
and b, and thus the properties they share, the greater the probability that they
share property Z. Suppose I want to buy a high-performance computer and
suppose Paul’s computer is the sort I want. Suppose that, on the web, there is
an offer on a computer that has many features that Paul’s computer has
(processor, model and amount of memory, type of SSD, etc.). Clearly the
greater the number of ( relevant) features that the two computers have in
common, the greater the likelihood that that computer is also high
performance.

3. Nature and number of disanalogies. If the nature and number of
similarities increase the strength of an argument by analogy, the nature and
number of features that a and b do not share can weaken an argument by
analogy. Suppose the last two Nolan’s films I enjoyed were science fiction,
but his next film will be historical. This difference undermines the
conclusion that I will like Nolan’s next film as well.



4. Number of source individuals. Suppose I not only enjoyed Nolan’s last
two films, but his last eight films. This reinforces the conclusion that I will
also like his next film. Therefore, the higher the number of source
individuals is, the stronger the conclusion.

5. Specificity of the conclusion. Consider the computer example again (point
2

above). If my conclusion is that my computer will have exactly the same
performance as Paul’s computer, then the argument is more easily falsifiable.
A small deviation between the performance of the purchased computer and
that of Paul’s device is enough to falsify the conclusion. However, if we say
that it is foreseeable that the purchased computer will have more or less the
same performance as Paul’s, the argument becomes stronger. So we can say
that the more specific the conclusion is, the weaker the argument.

We will now turn to the different purposes that analogical reasoning can
have.

11.3 Reasoning by analogy with cognitive purposes

In many cases we use reasoning by analogy in order to know, or rather
predict, the properties of an object that we do not know in some respects.
Reasoning by analogy does this by projecting onto such an object a
characteristic that belongs to objects that are similar to it. In turn, such
objects are similar to it because they share with the “unknown” object some
properties that the latter has. Suppose I have seen Inception and Tenet by
Nolan, and have not seen Interstel ar (let us also assume, for convenience
sake, that Tenet is a science fiction movie). In assessing whether there is a
good chance that I will enjoy Interstel ar, I reason as follows:
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I enjoyed Inception and Tenet, they are by Christopher Nolan, and they are
science fiction movies.

Interstellar is by Christopher Nolan, and is a science fiction movie.



I will enjoy Interstellar.

It is clear that this reasoning falls within the scheme seen above at § 11.2,
and is therefore a reasoning by analogy. It is also clear that it is a type of
reasoning that we apply frequently. Finally, it is clear what its purpose is: to
predict a property (or lack thereof) of an object that I do not know in some
respects. This is done by “projecting” onto it the properties of similar objects
that I know, according to the scheme that shapes reasoning by analogy. The
purpose of this reasoning is therefore cognitive.

11.4 Analogy in legal reasoning

Analogy plays an extremely important role in legal reasoning. In its
normative sense, analogy has the purpose of extending, to a case not
expressly regulated, the rules expressly provided for one or more cases with
which the first has in common one or more relevant properties (by virtue of
which the cases have a relevant similarity). In this context the target is not a
less known object, but an unregulated type of case. Similarly, the source is
not a more known object, but a legally regulated case that bears a relevant
similarity to the unregulated one. We will have a more concrete idea of what
we mean by “legally regulated case” and “legally unregulated case” shortly
when we discuss the American case Adams v. New Jersey Steamboat Co.
(1896).

Reasoning by analogy in the legal field is especially relevant in English-
speaking countries and, in general, in common law systems, i.e. those legal
systems that are traditionally based on judicial precedents and build the rules
of the legal system on them (the systems of civil law, whose great model is
Roman law, in principle organize the norms into general codes so that the
decisions of the judges do not create them, but apply them).1 In a case law
system, it is important for lawyers to establish the best possible analogy
between a previous case, on which a judgment has already been made, and
the case under consideration. Why is that? Because on the basis of the
analogy the judge can “classify” the case in hand, and extend the type of
decision made in similar cases in the past to it. In other words, if the analogy
be-1. However, it should be borne in mind that, in the last few decades, by
virtue of the globaliza-tion process, the differences between legal systems



(of common and civil law) have decreased; their distinction remains rather a
matter of models.
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tween the two cases is sufficient, the judge will be disposed to make the
same decision that was made in the previous case. In any event, even in legal
systems governed by legislative codes, reasoning by analogy ends up being
used frequently since the laws are general and there are cases not regulated
by such laws, or there are borderline cases that could be regulated one way
or another. Furthermore, the general laws as well as the constitutional
provisions are usually in need of interpretation.

Their application to particular cases goes through interpretation. For
example, the First Amendment to the United States Constitution guarantees
freedom of speech and religious worship. Suppose a religious organization
distributes leaflets to passersby. Since many passersby throw the leaflet on
the ground after looking at it, we assume that the police, to avoid an
excessive accumulation of garbage on the streets, order the organization to
distribute the leaflets only in the vicinity of garbage cans. Suppose the
organization objects that the police ordinance violates the First Amendment.
In this case, it may not appear clear whether the case falls under First
Amendment violations or those instances where the application of the First
Amendment may be restricted by “significant government interests”.

Arguments by normative analogy (or “for normative purposes”) can be
judged according to the criteria we saw in the previous section. The first
criterion concerns the relevance of similarities. It is evident that relevance
has an impact on legal arguments. For example, suppose an argument
compares two events in which a building burned down and in which there
have been victims. The comparison has no basis if in the first case the
discussion concerns the compensation for damages owed by an insurance
company and in the second case the charge of arson against a person held
responsible for the fire. The number of similarities mentioned in the second
criterion also has weight in legal arguments: the more similarities the two



cases have, the more justified the conclusion that the two cases should be
treated in the same way.

Instead, and we are at the third criterion, the disanalogies between the two
cases can weaken an argument. For example, if one case is based on a scam
by a financial agent and another on a scam by a real estate agent, the
differences between the two cases may be considered such that the two cases
should be dealt with in the same way. As for the fourth criterion, the more
similar cases have been treated in a certain way, the stronger the argument
by analogy becomes. In other words, if a line of cases decided in a certain
way is very numerous, the reasons for not following it must be very strong.
Finally, as regards the fifth criterion, namely that of the specificity of the
conclusion, imagine that, in a case of medical malpractice, a patient has been
compensated with half a million dollars. An argument that another patient
who was a victim of the same kind of medical malpractice should be
compensated with a figure close to half a million is stronger than an
argument that concludes that the patient must be compensated with exactly
the same amount.

Legal reasoning by analogy is often elusive and it is difficult to find
arguments that are not debatable. Analogies are often the result of creative
hypotheses by lawyers and judges. Furthermore, one case may be similar to
another in some respects
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and to a different case in other respects, and it is not always easy to identify
which aspects are relevant or most relevant.

The American case Adams v. New Jersey Steamboat Co. (1896) offers an
interesting example of this latter difficulty. It turned on a compensation
claim from the passenger of a steamboat to the company providing the
service, for a theft suffered by the passenger from the cabin of the boat
assigned to him. The legal question was this: Can the theft on the steamboat
be compensated without proving the fault of the service provider? There was
no express regulation for the case. Was there, however, a rule applicable to



the case by analogy? In fact, there were two, the regulation on hotel theft and
the one on train theft, with the problem that the first was declared
compensable without proof of fault and the second was not. So for a theft on
a steamboat the question was posed in these terms: Is the relevant similarity
the one with the hotel theft or the one with the train theft? Like a train, a
steamboat is a means of transportation. Similarly to the hotel room, the cabin
of a steamboat is a reserved space to which only the person providing the
service (in addition of course to the customer) has access. If the relevant
similarity was to the train, theft would not be compensated, but if it was to
the hotel it would be compensated. Which analogical inference to draw?

The Court held that the relevant similarity was that between the boat and the
hotel. The reasoning of the Court is not quite clear on this point, but it seems
that the reason to award compensation for the hotel theft without proving the
fault of the hotel owner was the protection of the trust placed by the
customer in the service provider, with the consequence of making steamboat
theft compensable in the same manner since the latter takes place in a
reserved space in which customers can leave their assets trusting that no
third party will have access to them. The reasoning could be schematically
reconstructed as follows:

Hotel theft ( a) must be compensated ( Q).

Hotel theft ( a) and steamboat theft ( b) take place in reserved places to
which only the service provider has access ( P).

Steamboat theft ( b) must be compensated ( Q).

What inferential structure is involved in this scheme? P is a property deemed
relevant that is common to the case of hotel theft and steamboat theft; it
allows us to conclude that all cases involving such property must be ruled in
the same way (in the absence of relevant exceptions or differences); then we
must deduce the consequences for the specific case. Another property shared
by a and b, that of occurring on a means of transportation, was considered
irrelevant by the judges, or less relevant than P. But it is clear that a judicial
decision like this can be debated.



Legal discussions often focus on the question of whether two cases are
sufficiently similar to be ruled in the same way. Try thinking about examples
like the following: if the Ku Klux Klan cannot be prevented from expressing
their views,
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can a neo-Nazi party be prevented from expressing their own? And what
about a fundamentalist organization? What is the relevant property to
consider when deciding whether to extend or not the right to freedom of
expression? Are there any relevant differences?

11.5 Analogy in moral reasoning

Reasoning by analogy is also used in the moral sphere. As in legal
reasoning, the purpose of this argument is to look for relevant similarities
between a case in which we have fairly firm moral intuitions and a case in
which our intuitions are less solid. If the similarities are relevant and
sufficient in number, we can conclude that we must apply the same moral
norms to the case where our intuitions are less firm as we do to the case
where our intuitions are clearer.

For example, suppose we ask ourselves whether a mother who takes
excessive amounts of alcohol and drugs during pregnancy is morally (and
possibly even legally) condemnable. It could be argued that those substances
cause harm to the fetus and thus harm the unborn child throughout his or her
future life. Since causing physical harm to another person is morally (and
also legally) condemnable, the mother who takes drugs during pregnancy
should be equally condemned.

However, one could reply that the fetus is not comparable to a person. For
example, a person has the right to life, while, at least where abortion is legal,
the mother can decide to terminate her pregnancy and, if the fetus has no
right to existence, it has no rights in general. Therefore, the mother does not
infringe any rights of the fetus if she takes such substances, because the fetus
has no rights. However, it could be argued that a mother who decides to



carry a pregnancy to term contracts duties, if not with the fetus, at least with
the future unborn child, and that the infringement of the rights of such a
future individual constitutes a moral fault on the part of the mother.

However, one could respond to this argument that it makes sense to contract
duties only towards already existing subjects. One could, for example, refer
to contracts: it makes sense to enter into a contract with an existing legal
entity, but one cannot enter into a contract with a legal entity that does not
exist (even if perhaps it will exist in the future). This could be countered by
saying that this analogy does not hold because when the child is born he or
she will have alcohol and drugs in his or her body and, as with any human
beings who have alcohol and drugs in their body, we can ask ourselves
where they come from and who is responsible for them. And it is clear in our
scenario that these substances come from the mother, who is therefore
behaving similarly to a drug dealer. One could try to counter that this
analogy does not hold because it can only affect children who are born with
traces of drugs and alcohol in their bodies but not children who are not born
without such traces because the mother stopped taking those substances a
few weeks before giving birth.
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Part III Non-deductive arguments

The discussion could obviously continue. However, we will stop here and
note only that the arguments used in these replies and rejoinders are
arguments by analogy. In fact, the arguments according to which a woman
who takes substances during pregnancy is condemnable seek to establish
analogies between the fetus and the human person, between the fetus and a
legal entity with which a contract is established, and between the woman and
a drug dealer. Since we are ready to morally condemn and those who cause
physical harm to another person, those who do not respect a contract they
have stipulated, and those who distribute drugs among the youngest, we
should also be ready to condemn the woman who takes drugs during
pregnancy, that is, we should be ready to extend the same moral judgment to
this mother. The replies to these arguments, on the other hand, state that
these analogies are not strong enough or rather that there are significant
disanalogies between a person and a fetus, between a legal person and the



unborn child, or between the mother and a drug dealer; these disanalogies
would not allow us to treat the case of the woman and the fetus in the same
way as the other cases in which we have solid moral intuitions. Hence, it is
concluded that we should not extend the same moral judgment to women as
we do in other cases. As in legal reasoning by analogy, also in moral
reasoning by analogy the relevance of analogies and their number as well as
the relevance of disanalogies and their number have a weight. The case of
the woman who takes drugs while pregnant, like the case of the steamboat
theft, shows that it is sometimes particularly difficult to say whether certain
similarities are sufficient and sufficiently relevant.

If the similarities between the cases about which we have strong moral
convic-tions and those about which we do not yet have them were clear and
obvious, then we would not need to perform Critical Thinking and produce
arguments by analogy. Similarly, if the analogies between a judicial
precedent and the case under consideration were clear and obvious, lawyers
and jurists would not have to produce arguments by analogy. It is the
difficult cases that call for a greater critical discussion.

Not only that, they also stimulate our creativity because finding analogies
between different cases, as we have seen in the examples above, involves a
creative effort on the part of the agents who argue to identify the best
reasons for dealing with the cases to be decided. From this point of view, in
such cases, Critical Thinking becomes a moral duty as well as a practical
necessity.

11.6 Conclusion

Let us recapitulate. We have discussed reasonings by analogy, dwelling on
their structure and the criteria on the basis of which we consider such
reasonings good (if they have true premises) or not. We then discussed three
different purposes or applications of reasoning by analogy, and in particular
reasoning by analogy which has a cognitive purpose, and some applications
of analogy to legal and moral reasoning.
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