

Anatoly Volkhover

Become an Awesome
Software
Architect

Book 1

Foundation

2019

Copyright © 2019 Anatoly Volkhover
All Rights Reserved. No part of this book may be reproduced or used in

any manner without written permission of the copyright owner, except for
the use of quotations in a book review.

ISBN: 978-1-69727-106-5 (paperback)

In loving memories of Nika, who kept our cave warm and our minds sane
for so many years.

Contents

Title Page
Preface
Contact
Acknowledgments
Introduction
How To Read This Book
What Is Software Architecture?
Chapter 1: The Architect’s Hit List
Chapter 2: Programming Languages
Chapter 3: Datastore
Chapter 4: Data Model
Chapter 5: Layering
Chapter 6: Code Composition
Chapter 7: Latency
Chapter 8: Error Recovery
Chapter 9: Logging
Chapter 10: Real-Time Processing and Event Streaming
Chapter 11: CDN
Chapter 12: User Interfaces
Chapter 13: Microservices
Chapter 14: API
Chapter 15: Batch
Chapter 16: Multi-Tenancy
Chapter 17: Unblock Coding and Testing
Chapter 18: Runtime Infrastructure
Chapter 19: Runtime Frameworks
Chapter 20: Brainstorming
Where Do We Go From Here?
Appendix I: Dependency Inversion Explained
Appendix II: Recommended Reading Materials

Preface

My name is Anatoly. I am a serial entrepreneur and software architect
from Silicon Valley, with a background in mathematics, physics and
computer science. I am one very lucky dude. I studied at the best math &
physics school in the former Soviet Union, which has given me a solid
foundation for further technological and scientific advancement. I moved to
California in early 1990s and immediately dived into an endless stream of
projects of varying complexity, across many generations of computer
hardware and software stacks.

I started coding when I was 12, initially working on IBM System/360
mainframes, then moved to DEC PDP and VAX systems in 1980s, then to
early PCs running MS DOS and then Windows in early 1990, to Tandem
NonStop in late 1990s, web apps in early 2000s, and mobile apps and AWS
cloud nowadays. I was crazy enough to never shy away from a challenge. I
designed and built distributed object-oriented databases, programming
languages, virtual machines, business process automation, banking systems,
e-commerce solutions, airline booking engines, social web sites, mobile
apps, marketing platforms, games, biometric algorithms, and God knows
what else. Just as I said, one lucky dude!

Throughout all this time, I remained hands-on with all my projects and
continuously looked for ways to make myself and my teams more efficient
in building and maintaining software solutions. The meant a lot of trial and
error, lots of coding, thinking, and refactoring. At certain point, I became so
efficient that I could build a full-fledged custom enterprise solution all by
myself, or with a very small crew.

That’s when my wife Elena told me that keeping all this knowledge to
myself is criminal. This is how the idea of this book came about.

San Francisco, California
October 2019

Contact

I love making new friends. Feel free to connect with me. I welcome any
kind of feedback and enjoy meeting like-minded engineers and
entrepreneurs. Below are the links to my web site and to my LinkedIn page.
Use whichever one is more convenient for you.

My web site:
https://anatoly.com

My LinkedIn page:
https://linkedin.com/in/anatolyvolkhover

https://anatoly.com/
https://linkedin.com/in/anatolyvolkhover

Acknowledgments

I am forever grateful to Victor Eydus, Wesley Tanaka, Max Kuperman,
Ken Hilton, Andris Birkmanis, Arthur Shir and Stanislav Tsvetkov for their
insightful feedback on the early draft of the manuscript. The comments I
received not only helped making this book more accurate and more
digestible, but also created a long list of topics for me to cover in the future
publications. Thank you!

A very special thank you to my amazing wife Elena, who is the reason
behind me getting into writing in the first place. It was Elena’s idea for me
to share what I learned over the years, paving way for this book and for a
few more to come.

A warm hug to my Dad, who got me hooked on computer programming
back in my childhood and created many code tinkering opportunities for me
to master the craft early. Thank you, Dad!

Many thanks to all amazing engineers whom I worked with throughout
my career, those who provided me with so many mind-boggling puzzles to
solve, those who taught me by example, and of course those who invested
years of their lives into implementing my designs.

I am also grateful to the engineering team at Minted, for trusting me and
my methods, and for providing a continuous stream of inspiration.

– Anatoly Volkhover

Introduction

In early 2019, a young first-time entrepreneur (let’s call him Joe) called
me for advice. He had an awesome idea for his new startup. Joe raised some
seed capital from his friends and family six months earlier and used most of
it on development of the technology that would power his new business. As
Joe was rolling the service out into the market, he realized that several
changes must be applied to his technology for the business to succeed –
hardly a surprise, since most products go through a lot of fine-tuning before
they are ready for their prime. Joe wasn’t surprised at the need to make
changes either. He got surprised by his team though. His engineers
estimated the cost of the proposed changes to be extremely high, close to
the original investment made into building the entire system. Joe was
devastated. He had very little cash left, and it was all earmarked for PR and
marketing. Joe called me, crying for help. He hoped that I might be able to
find a “smart” way to fix his system on a shoestring budget.

Long story short, there wasn’t a smart way. I couldn’t help Joe, and not
for the lack of trying. His team was correct in their assessment. The new
requirements invalidated the principles on which his software was built
upon. Essentially, Joe had to rebuild his entire technology from scratch.
Needless to say, no investor would give him the $$ to fix his technology
without having a solid proof of sales. Joe asked around, looking for either
the capital or a technical solution, came out empty handed and, a few
months later, folded his business.

This was not the first time when I was asked to save the day and
couldn’t. I met many entrepreneurs facing the very same challenge. I
worked for a number of companies carrying an excessively large and
expensive engineering workforce to maintain and extend their existing
systems. I saw low engineering velocity slowing a business's ability to
innovate to a crawl. My own very first startup caused countless sleepless
nights and resulted in devastating personal financial losses, as well as years
spent in an attempt to fix the early mistakes.

Anyone with experience in software engineering will readily explain
this problem is hardly a new one. They may point you at the stats showing

70% of the software projects fail. They may also tell you of numerous
books containing well-explained remedies, from reusable software design
patterns to coding style guides. Yet, despite all the advice that’s out there,
the projects still fail in scores, and we are still surrounded by poorly
constructed software – the software that companies cannot improve,
because every time they try, everything falls apart. And as complexity of the
software grows, the problem gets worse.

What differentiates the failed projects from the successful ones? All
successful projects had better architecture – and better architecture comes
from better software architects.

Great architects aren’t born. They are a product of decades of building
real-life solutions and relentless learning. They become really good at their
trade closer to the retirement age. But most startups are fostered by young
entrepreneurs who dare to try but lack the experience. They also lack the $$
to hire a silver-haired architect to join their team from day one. Left to their
own faculties, the entrepreneurs and their engineering teams quickly get on
the path of learning from their own mistakes. Eventually they discover this
is the most expensive way of learning. Over time they get better, and some
become the true masters of the craft – but way too late to make a difference
for their early-day projects.

This book is meant to break the vicious circle. It isn’t a textbook, at
least not in the traditional sense. It is a business-centric practical guide to
software architecture, intended for software engineers, technology
executives, students of computer science, and tech-savvy entrepreneurs who
want to de-risk their entrepreneurial endeavors or to fast-track their careers
in software engineering. I have personally battle-tested every single recipe
from this book. The recipes are highly practical, reflect 30 years of my
experience in the field, and are current for building mid- to large-scale
systems in 2019.

Enjoy, and Godspeed!

How To Read This Book

The book is intended to be consumed sequentially, from the very
beginning to the very end. The sequence is important, since the recipes in
the book are somewhat interdependent. When new terminology is
introduced, I explain it at the first encounter only.

I wanted the book to be concise, so I had to curb my enthusiasm of
going down each rabbit hole and explaining everything. I assume that the
reader knows how to write code and understands the mainstream software
engineering jargon. If you encounter a term which you haven’t heard of, or
are only vaguely familiar with, I encourage you to look it up and discover
its true meaning, before continuing.

You should let your preconceptions go while reading this book. Forget
what you learned in school, and how you do your work today. Try to be as
open-minded as you can. Some of the concepts and recommendations may
appear foreign or far-fetched to you – and I suggest you pay very close
attention to those; that’s where you get most of the value. I did not write
this book to make you comfortable. I wrote it specifically to confront the
inefficient way the software is created today, and to show you the awesome
alternatives, proven effective by many years and many projects.
Code examples in the book are all in TypeScript, unless specified otherwise.
I picked TypeScript for several reasons: (a) it is an extension of universally
understood JavaScript, (b) it has most of the features of the more
established enterprise-grade programming languages while remaining
readable and concise, (c) because I like it a lot, and had great success using
it in projects of varying scale and complexity. If you are not familiar with
TypeScript, you should be able to understand the examples nevertheless –
but of course I do encourage you to check out the documentation posted on
https://www.typescriptlang.org which is an excellent source for learning the
language. Code snippets are abbreviated to make them more readable. I do
not expect you to compile or run them; simply read and make sure you
understand them. Code snippets are easy to spot; they look like this: <code>

console.log(`Hello, World!`);

</code>
When a program’s output is included, it looks like this:

https://www.typescriptlang.org/

<output>
Hello, World!

</output>
I did my best to pack as much advice on every page of the book as

possible, to the point where almost every sentence is there for a reason.
Please take your time. Take it slowly, one chapter at a time. Spend the time
to fully understand the diagrams and the code samples; they are key to full
comprehension of the concepts outlined in the book.

Some chapters ended up covering more ground than you may find
comfortable to consume at once. In those, I strategically placed breakpoints.
They look like this:

<breakpoint/>
Contrary to the common meaning (an instruction to pause the program

for debugging purposes), breakpoints in this book mean something entirely
different: they are suggesting you to take a break and get some rest.

I incorporated a few other hints into the body of the book. The most
critical pieces of advice look like this:

<important>
Weather forecast for tonight: dark. (George Carlin)

</important>
At the end of each chapter, you will find a brief summary, and a link to

discuss the chapter’s material online. Summaries are easy to spot; they look
like this:

<tldr>
If you can't beat them, arrange to have them beaten. (George Carlin)

https://anatoly.com/welcome
</tldr>

Ready to start turning pages?

https://anatoly.com/welcome

What Is Software Architecture?

Some people have no idea what they’re doing, and a lot of them are
really good at it.

– George Carlin

If someone asks you this question – “What is software architecture?” –
how would you answer? Why can’t you just sit down and start writing code
to implement your idea? Or can you? Why would anyone invest the time,
money, and effort into creating a bunch of diagrams and documents?

Just for curiosity’s sake, I asked the engineers on my team.
“Hey guys,” I said after we wrapped up one of the meetings. “If I ask

you to define the term software architecture for me, how would you do
this?”

One of the engineers (let’s call him Tom), said quickly:
“Architecture is a process of creating a structure for a software

project”. Tom looked around the room as if he just earned a free lunch.
“Well…” I said, “Why do you need to create a structure for your

project?”
That got him thinking.

“I guess to create a plan, break down the project into tasks…” Tom
was no longer certain about that free lunch.

“To review the plan and ensure it is solid,” another engineer suggested.
“To ensure flexibility of the solution,” another suggestion came up.

I pressed on:
“Why do you need a plan? What are the tasks for? Why review the

plan? Why is flexibility important?”
It took another 15 minutes of digging until we got somewhere:

“To improve velocity of development”
“To reduce costs”
“To make software maintainable”

What do you think? What is software architecture, and what is its
purpose?

<important>
Software architecture is a series of decisions intended to reduce the cost of

building and changing your software.
</important>

Think about it. When you are building a software solution, it is usually
intended to address a business need. The more time you spend building it,
the higher engineering costs you will incur. The longer your time-to-market,
the higher the business risks and the costs of lost opportunities will be.
Once your solution is built and deployed, your business will likely face the
need to extend or change the software further, to optimize your sales
funnels, to expand the addressable market segment, to continue innovating,
and to adjust for ever-changing market and legal conditions. Such changes
go far beyond the original plan for the system and are almost impossible to
predict. You will be facing the challenge of changing your system in ways
you never anticipated. But despite the unknowns, there are certain
principles of software construction which help reduce the cost of the
planned software development, as well as minimize the negative impact of
the future changes. Such principles, once applied to a particular application,
are usually referred to as software architecture.

The most impactful principles are outlined in this book. Optimally, the
investment into creation of software architecture is made upfront, before a
single line of code is written, and before the development team is hired.
Your architecture will define your hiring needs. Then, expect a relatively
small investment into maintaining the architecture throughout the life of
your system.

Almost every software engineer knows that having an architecture is
important. Not everyone understands the reasons for having it. Remember
the reason we need an architecture in the first place: reducing the cost of
building and changing your software over time. This alone will help you
make good intuitive decisions in many cases.

Now that we established the reason for creating an architecture, the next
question is – how do we approach it? Which decisions we must make to
cover everything of importance?

It’s time to take the first step into your awesomeness: The Architect’s Hit
List.

<tldr>
The main purpose of software architecture is to reduce the cost of building

and changing the software.

https://anatoly.com/software-architecture
</tldr>

https://anatoly.com/software-architecture

Chapter 1: The Architect’s Hit List

Scratch any cynic and you will find a disappointed idealist.
– George Carlin

Back in 2004, I worked as a consultant for a large tour operator. The
company had an ambitious plan for replacing their legacy system with a
completely new solution, using the latest and greatest in software
architecture and hardware.

Travel products tend to grow very complex, due to the large variety of
options, insanely non-standard vendor contracts, the high number of
packaging variants, and pricing that changes daily to maximize the revenue
based on availability, demand, seasonality, and multitude of other factors.

The company spent 10 months gathering the requirements for their new
system, which was supposed to sell any travel product under the sun, never
mind the complexity. Once the requirements were gathered, they submitted
them to the architecture team for recommendations and estimates. The
process took another 3 months, after which the approach was committed to
paper, and time and cost estimates were submitted for approval. The
projected cost was in 8 digits, and the time was estimated at 2 years, for a
team of 30 experienced engineers.

I was not directly involved with the project and left to pursue my
entrepreneurial endeavors soon after it started. I’ve heard on the grapevine
that the company spent eight (8!) years and 6x of the initial $$ estimate.
Eight years is an eternity in the technology world. Everything conceived 8
years back is considered terribly outdated, even if fully functional. A
ludicrous amount of cash and 240 years of human lives were sacrificed on
the project’s altar, only to produce a system that was outdated upon arrival.

Throughout my career, I saw similar failures (or extremely expensive
successes), on various scales, way too often to call them accidental. There is
a flaw in the process, which plagues the majority of technology projects
nowadays.

To explain it better, let's take a short detour and look outside of the all-
familiar software engineering domain. Let’s consider what automakers are
doing.

Think of what it takes to build a car. The car should meet the drivability
requirements, such as maximum speed, fuel consumption, handling,
acceleration, safety, etc. But this is only a tip of the iceberg, as the
engineering work for cars goes much further. First, the car should be
maintainable by third parties, such as independent mechanics and
dealerships. Second, it should be easy to swap replacement parts by
independent body shops. Third, the car should be quick and inexpensive to
assemble, which is achieved through proper architecture of the assembly
line. Fourth, the assembly line must ensure consistent quality, largely
achieved by the processes and equipment which eliminate or limit human
errors and make the errors easily detectable before the car leaves the
factory. Fifth, the assembly lines are designed to quickly switch from one
car model to another, allowing the automaker to quickly respond to the
market’s demand.

No surprises there, right? Then why aren't we thinking the same way
about software? For some reason, many of us think that collecting the
functional requirements for a software product or service and building a
system around those requirements is all it takes. But then – drawing a
parallel with an automaker – we build a car that is drivable, but the kind of
car that is tedious and expensive to produce, impossible to fix, and which
next-generation model would have to be redesigned from scratch. Then we
suffer for years, seeing how our ability to innovate and adapt slows down to
a crawl. Teams and managers change, and finally someone proposes a
radical fix – a “rewrite”. A few more years, and the new management
makes a daring decision to put an end to the pain and suffering and
approves the “rewrite” budget. The engineers get all excited at the
opportunity to fix everything that went wrong, and they take off on the
crusade of re-architecting everything… only to make the same mistakes all
over again. They create a new, expanded functional spec, and they leave the
non-functional requirements out. The vicious circle continuous… unless the
business dies and puts an end to everyone’s misery.

This cycle is so commonplace that I met scores of young developers
who never saw anything but this wasteful and reckless way of building
technology, which makes it the new norm.

This is exactly what happened to the tour operator I worked for. They
invested into collecting the functional requirements but did nothing to
create an efficient and reliable process for implementing those

requirements. They did not invest into architecting the assembly line; they
simply put engineers on it and told them to start coding. The engineers did
the best they could, under the circumstances, and you already know how it
ended.

I hope I convinced you that architecting against the functional spec for
the final sellable product or service isn't nearly enough. It doesn’t address
the main purpose of the software architecture in the first place. It does quite
the opposite – instead of reducing the cost of future changes, an architecture
that is based purely on the functional spec (or the lack of thereof) frequently
necessitates future changes.

What exactly shall we consider, beyond the functional spec, when
creating a software architecture? What are the right questions to ask
ourselves when creating a blueprint for a new system?

Here is my personal hit list I compiled over the years. Your list might be
larger. Reflect on it and expand as needed.

Programming languages, their features, readability, and
interoperation
Code reuse across platforms (server vs web vs mobile)
Early error detection (compile-time vs runtime error detection,
breadth of validation)
Availability and cost of hiring the right talent; learning curve for
new hires
Readability and refactorability of code
Approach to code composition, embracing the change
Datastore and general approach to data modeling
Application-specific data model, and the blast radius from
changing it
Performance and latency in all tiers and platforms
Scalability and redundancy
Spiky traffic patterns, autoscaling, capacity planning
Error recovery
Logging, telemetry, and other instrumentation
Reducing complexity
User interfaces and their maintainability
External APIs
User identity and security

Hardware and human costs of the infrastructure and its
maintenance
Enabling multiple concurrent development workstreams
Enabling testability
Fast-tracking development by adopting third-party frameworks

By considering every item on this list early, we have a chance to make
fundamentally correct choices for our future architecture. Ideally, you
should have an answer to every item on that list before a single line of code
is written.

The rest of the book will walk you through making the pivotal decisions
and selection of the design patterns necessary to address the hit list. The
recipes I provide will not always match 1:1 to the items on the list, simply
because some solutions address multiple items, and some provide only
partial answers. As a whole, however, you will have a collection of recipes
which answers every concern from the hit list and will invariably make you
a better software architect.

<tldr>
Add your own considerations to the hit list from this chapter. Then make

sure that the entire hit list is addressed by your architecture.

https://anatoly.com/the-architects-hit-list
</tldr>

https://anatoly.com/the-architects-hit-list

Chapter 2: Programming Languages

‘Meow’ means ‘woof’ in cat.
– George Carlin

I don’t want us to get in the fight over your favorite programming language.
You have the right to have your favorite dog, your favorite niece, your favorite golf
clubs, and your favorite pizza place. You also have the right to have your favorite
programming language – as long as this is strictly personal. However, the moment
you start talking business, there is no room for favorites. In business, you have to
be 100% logical in your choices of tooling. And the first choice you must make for
any new project is the choice of a programming language. It will affect everything.
Because of that, please put your feelings aside, and let me walk you through the
cold and heartless selection process.

The diversity of the languages is tremendous. Just for fun, here are a few
examples of a Hello World program, written in some of the popular languages.

Unix Shell
<code>

#!/bin/bash
STR="Hello World!"
echo $STR

</code>
C
<code>

#include <stdio.h>
int main(void) {
printf("hello, world\n");
}

</code>
C++
<code>

#include <iostream>
int main() {
std::cout << "Hello, world!\n";
return 0;
}

</code>
C#
<code>

using System;
class HelloWorld {
static void Main(string[] args) {
Console.WriteLine("Hello, world!");
}
}

</code>
Java
<code>

class HelloWorld {
public static void main(String[] args) {

System.out.println("Hello World!");
}
}

</code>
JavaScript
<code>

console.log("Hello World!");

</code>
Objective-C
<code>

main() {
puts("Hello World!");
return 0;
}

</code>
Python
<code>

print("Hello World")

</code>
PHP
<code>

<?php echo "Hello, World";

</code>
Ruby
<code>

puts 'Hello World!'

</code>
Go
<code>

package main
import "fmt"
func main() {
fmt.Println("Hello, World")
}

</code>
Even through these primitive examples, you can get a good sense of how

readable and how verbose the code might be. But of course, the influence of the
programming language goes much deeper. Here are the characteristics of languages
I find of utter importance: strong static typing, explicitly defined data structures,
interfaces, isomorphism, third party libraries, ease of refactoring, functional vs
object-oriented, ease and cost of hiring, learning curve for new hires, general
readability. Let’s have a look at each one.

Strong static typing. Programming languages are generally divided by strong
vs weak typing, and by static vis dynamic type checking. Strong typing essentially
means that the language imposes strict restrictions on intermixing values of
different data types.

Consider this example in JavaScript:
<code>

// balance is of type string
let balance = “10”;
// interestRate is of type number
let interestRate = 0.05;

…
let newBalance = balance + balance * interestRate;
// prints 100.5 (as string value)
console.log(newBalance);

</code>
The resulting value of 100.5 for newBalance is unexpected. The same code, when

rewritten in TypeScript, produces an error in the line calculating newBalance:
<code>

// balance is of type string
let balance = “10”;

// interestRate is of type number
let interestRate = 0.05;
…
// the following line causes an error
let newBalance = balance + balance * interestRate;
console.log(newBalance);

</code>
TypeScript also gives you an ability to specify the intended types of each

variable, like this:
<code>

// the following line causes an error
let balance : number = “10”;

// interestRate is of type number
let interestRate : number = 0.05;
…
let newBalance : number = balance + balance * interestRate;
console.log(newBalance);

</code>
When the type of a variable is explicitly specified, then the error is caught

early, pinpointing at the root cause. In our example, it’s the attempt to assign a
string value to a numeric variable.

Intermixing values of different data types is among the top causes of software
bugs, and strong typing helps to catch them early, and to pinpoint the root cause.

The other important distinction between languages is static vs dynamic type
checking. Languages with the static type checking detect errors at compile time,
without running the code. Languages with dynamic type checking detect errors at
runtime, when the execution reaches the statement which exhibits the problem.
Consider this example in Python:

<code>
price : float = 10.00 # the price is a floating-point number

if blue_moon: # occurs rarely
price = "abc" # the price is now a string
the tax calculation line may result in runtime error:
can't multiply sequence by non-int of type 'float'
tax : float = price * 0.08
print(tax)

</code>
Here, the price is a floating-point numeric value, but once in a blue moon

(when blue_moon is True) it is set to a string value, making the tax calculation crash.
Since the blue moon is rare, the crash is highly unlikely to be caught during testing.
This is a ticking bomb in your code. It eventually will blow up, at a much later time
in production. BTW, if you rewrite this code in JavaScript, the result will be even
worse, because the code will not crash, but will produce a NaN (not-a-number)
value, making the problem even harder to catch.

Consider the same code, now in TypeScript, which has static type checking.

<code>
let price : number = 10.00; // the price is of type number

if(blue_moon) { // occurs rarely, not encountered in testing
price = `abc`; // compile time error
}
let tax = price * 0.08;
console.log(tax);

</code>
Here, the error is detected at compile time. No testing necessary, no time

wasted, no risk to the production system.
<important>

To produce reliable code, you need a language featuring both strong typing and
static type checking. Apologies to all JavaScript and Python lovers.

</important>
Support for explicitly defined data structures. This refers to the language’s

ability to define a data structure and validate compliance of the objects you create
against that declaration at compile time. This usually takes shape of interfaces or
classes. Validations against declared object structure allow you to catch errors at
compile time before you even run the code. This accelerates development and
creates more stable software. Since testing of a large system never has 100%
coverage, the more can be checked at compile time the better.

Consider this example in JavaScript:
<code>

const printAddress = (
user
) => {
console.log(`Dear ${user.firstName} ${user.lastName}!`);
};

// Dear John Smith!
printAddress({ firstName: `John`, lastName: `Smith` });

// Dear John undefined
printAddress({ firstName: `John`, typo: `Smith` });

</code>
Here, the member of the data structure representing a user is accidentally

mistyped (entered typo instead of lastName) and the error is relatively hard to catch; it
requires very attentive testing.

Now let’s look at how this problem is fixed in TypeScript:
<code>

const printAddress = (
user : { firstName : string, lastName : string }
) => {
console.log(`Dear ${user.firstName} ${user.lastName}!`);
};

// Dear John Smith!
printAddress({ firstName: `John`, lastName: `Smith` });

// compile time error
printAddress({ firstName: `John`, typo: `Smith` });

</code>
Here, the structure of the user argument is explicitly declared, and the typo is

caught at compile time.
Better, when using an Integrated Development Environment (IDE), it will

automatically highlight the error in your source code as you type. Modern IDEs

take it further by performing static code analysis and suggesting valid data
members as you type your code in.

<important>
Explicitly defined data structures in statically typed languages increase both

development velocity and reliability of software. Velocity can be further improved
by using a modern IDE.

</important>
Support for interfaces. This refers to the language support for the interface

feature, which is a way to create an abstraction, or contract, for a data structure or
a class. Interfaces are important because they enable the so-called Dependency
Injection design pattern and support a broader Dependency Inversion Principle. We
will look at this closer when discussing Code Composition guidelines (Chapter 6).
For now, it suffices to say that interfaces allow you to work with a software
component by referring to its “contract”, while knowing nothing about the
component’s internal implementation.

Here is an example:
<code>

interface Logger {
log(value : string) : void;
};

const foo = (logger : Logger) : void => {
logger.log(`entered function foo`);
};

</code>
Here, the implementation of function foo() writes to the log having no

knowledge of how the logger is implemented. We can now implement the logger in
several different ways, with no changes in foo(). For instance:

<code>
const myLogger : Logger = {

log(value : string) : void {
console.log(`*** ${ value }`);
}
};

foo(myLogger);

</code>
Now you have the flexibility of supplying different loggers to foo(). For instance,

one logger may automatically print the date and time of every logged event, and
another may send all logging data to a server of your choice for storage and
processing. The foo() function remains unchanged as long as the contract for the
logger implementation (the Logger interface) stays the same.

What if your language does not support interfaces? An inferior solution is to
use abstract classes to define contracts. This will work in languages which supports
abstract classes and inheritance, but have no interfaces, like Python.

<important>
Support for interfaces is cornerstone to many principles of software architecture

and code composition.
</important>

Isomorphism. This refers to the language’s ability to run across multiple
platforms that underpin your solution. In the most common scenario, that's the
ability of the language to run on the client platform (browser and/or mobile
devices) and on the server. I distinguish three levels of language’s isomorphic
qualities.

Native isomorphism means the language works on all target platforms natively.
For instance, JavaScript works both in the browser and on the server as is. It also
means that all the third-party libraries are available for that language across all
platforms [1].

Transpiled isomorphism means the language is not supported across all
platforms natively but can be transpiled (cross-compiled) into another language
which is natively isomorphic. An example of such language is TypeScript; it
transpiles into JavaScript, which can be executed by a browser on the client side,
by Node.js on the server side, and can be used for mobile apps if they are
developed with React Native or Apache Cordova. Transpiled isomorphism, just
like native isomorphism, allows you to use the same third-party libraries across all
platforms.

Generated isomorphism means the language is not supported across all
platforms natively, but there exists a tool that generates platform-specific code in
another language, independently for each platform. A good example is Kotlin,
which can run natively on a server in a Java Virtual Machine or on Android
devices, but also can generate a JavaScript equivalent to run in a browser. This is
the weakest kind of isomorphism because it makes your code portable but it would
not port third party libraries that you may need, unless they are written in the same
language and are supplied with the source code. For instance, Kotlin can be
compiled into JavaScript, but third-party libraries would have to be supplied with
the source code in Kotlin to be portable. If you use JDK or any other library
distributed as a binary, it will not be transpiled into JavaScript, for the lack of the
source code. This makes generated isomorphism somewhat limited in real life
applications.

Generally speaking, both Native and Transpiled levels of isomorphism are
sufficient for most projects. The most popular native option is JavaScript, because
it is the only language that natively runs in any browser, on the server in Node.js,
and is usable for mobile development with Cordova and React Native. However,
due to its other drawbacks, such as the lack of support for strong static typing and
interfaces, I prefer TypeScript, which is compatible with everything JavaScript plus
adds the missing strong static typing, interfaces, and a number of other awesome
features.

<important>
Native and Transpiled Isomorphic languages are extremely useful in cross-platform
development, by allowing you to share your code and third-party libraries across

platforms.
</important>

Availability of third-party libraries. The widely used languages enjoy broad
third-party support. For instance, there is probably an NPM module for everything
under the sun, putting JavaScript and TypeScript amongst the most supported
languages. More “esoteric” languages may force you into writing additional code
to compensate for the lack of pre-existing solutions. The languages which currently
enjoy the broadest third-party support are JavaScript/TypeScript, Java, and Python.

<important>
You don’t have to write everything by yourself. Your choice of language will affect

your ability to use third-party libraries.
</important>

Ease of refactoring. Refactoring means restructuring of existing code without
changing its external behavior. Refactoring helps improve readability and reduce
complexity and is the main instrument of migration to new or updated data models.
Typical refactoring operations include renaming data types, variables and
members, moving members from one class to another, adding or removing
parameters to functions, converting methods to top-level functions, converting
static members to global variables or constants, converting inner classes to top-
level classes, moving declarations and implementations between modules, and
numerous others.

Without solid refactoring tools, changes to the architecture often become cost
prohibitive. Refactoring tools are usually stronger with compiled languages with
strong static type checking, since they allow for reliable static code analysis. Java
has excellent refactoring support, especially when using popular IDEs like Eclipse
or IntelliJ IDEA. On the other side of the spectrum, I wasn’t able to find adequate
refactoring tools for Python or PHP.

<important>
Make sure your language creates a good foundation for future refactoring. A good

IDE for your language with strong support for refactoring can make a huge
difference.

</important>
Functional vs Object-Oriented. For a long time, object-oriented way of

writing code was the holy grail of software engineering. But recently, more
architects realize that, while some of the object-oriented principles are golden,

some others cause more harm than good – and started rediscovering and leaning
more and more towards functional programming (FP) [2]. Let’s briefly look at the
two paradigms [3].

Object-Oriented Programming (OOP) paradigm works with objects, which are
usually stateful. OOP claims that bringing together the data and its associated
behaviors in a single location (an object) makes it easier to understand the code.
OOP promotes encapsulation, which is essentially an approach which treats any
object (i.e., data plus behavior) as a “black box”. And OOP introduces inheritance,
which helps write less code when implementing objects with significant
similarities, and interfaces, which are clearly defined contracts for the objects to
comply with. Interfaces provide foundation for Dependency Injection pattern,
which we already listed earlier as a must-have.

Functional Programming (FP) says that the data and behaviors are distinctively
different things and should be kept separate for clarity. In contrast with OOP’s
approach to encapsulation, FP treats behaviors as “black box”, while treating data
as “white box”. FP advocates stateless implementation of behaviors, which are
expressed as “pure” functions – i.e., functions that cause no side effects. Pure
functions are not supposed to change their parameters or their environment, and the
only effect of running a pure function is the returned result. Clearly, you can’t have
all the code written as pure functions, or otherwise that code will have no effect
whatsoever, and you have to violate this paradigm at some point.

Which approach is better? There is no single definitive answer; it really
depends on what we are modeling. Generally speaking, OOP works better when we
are modeling real-life objects which behaviors are mostly defined on the data
stored in those objects and require little interaction with the rest of the
environment. For instance, a space probe flying through the void with no
interaction with other objects in space can be cleanly modeled as an object with
behaviors (methods) which manipulate its engines for maneuvering in space. But
try modeling a pool ball that bounces off other balls and off the rails, and you will
quickly find that behaviors no longer naturally apply to a single object, and OOP
falls short of its promise.

The other downfall of OOP paradigm is ironically rooted in one of its most
advertised features – inheritance. Modeling of an application domain as a
hierarchy of classes is only successful in the long term when the domain is well
understood and is stable. In the real world, however, the initially designed model is
merely a crude approximation of the reality, and it is refined over time, as the
business learns from the market and evolves. In the process, the initially apparent
similarities of objects that went into the original inheritance model frequently
disappear, replaced by a new, better understanding and a better model. Changing an
inheritance-based model usually requires major refactoring effort and carry high
costs and significant business risks. This problem in practice is compounded by

frequent attempts to achieve polymorphic behavior and code reuse through
inheritance instead of composition [4].

FP paradigm, on the other hand, is frequently misunderstood and is rarely
enforced by programming languages. Most of the languages that support FP do not
enforce “purity” of functions and require a lot of discipline to reap the true benefits
promised by FP. The only purely functional programming language I know is
Haskell – have you ever heard of it? If not, you are not alone; it is far from being
mainstream.

Most of the programming languages nowadays strive to support both
paradigms, but usually fall short on delivering both equally well. For instance, Java
(originally an OOP language) was retrofitted with lambda functions [5] which
promise the use of functions similar to that of JavaScript or TypeScript, but still,
lambda functions are not true first-class citizens in Java; their use is somewhat
limited and verbose. Java also received an upgrade in the form of Stream API,
which provides a very “functional” way of handling sequences of objects. On the
other hand, JavaScript (originally non-OOP language) now has the syntactical
sugar to define classes, but despite the apparent similarities, the underlying
prototypal inheritance behaves very differently from the classical OOP inheritance.

When choosing the language for your project, you must consider the desired
paradigm, as well as your ability to enforce such paradigm through your
architecture and frameworks. If you are not prescriptive about the coding style,
then every member of your team will act out of their past experience, which is
likely to create undesirable inconsistencies in code composition and style.

I personally find it helpful to use the best of both worlds. I believe that the use
of interfaces, and interface inheritance typical to OOP languages, is fundamental to
decoupling. I also find that class inheritance frequently does more harm than good
in business applications. Traditional functional programming syntax in the likes of
Lisp, Haskell or Clojure are unreadable to an untrained eye. Having said that, I
love the concept of “pure” functions to create predictable and highly readable code.

<important>
Invest the time into understanding both OOP and FP. Take the best of both worlds.

Pick languages that support the features you are looking for.
</important>

Ease and cost of hiring. At the time of this writing, Python engineers are the
easiest to find and are less expensive than Java engineers. While these trends shift,
consider your financial ability to staff your team before making a language
decision [6].

<important>
For large projects, consider job market while deciding on the programming

language.
</important>

Learning curve. Not all your new hires will necessarily be experts in the
language of your choice. You may hire people for their domain expertise as a
primary requirement. How long will it take an “uninitiated” developer to become
productive? For instance, Python has proven itself as one of the easiest languages
to learn, while Forth and Prolog are extremely hard to wrap one’s head around.

<important>
Make sure you can quickly train junior engineers to code in the language of your

choice.
</important>

Readability. This is a fairly vague and subjective characteristic, which is
referring to how easy it is to discern the business logic by looking at the code. It is
hard to quantify, especially with the interference from variations of coding styles -
but I think we can all agree that reading code in assembly language or Forth is
harder than Java. Generally speaking, readability is directly related to (a) how
closely the language is modeled after the human language (i.e., how closely the
programming language follows the flow of an informal spec written in, say,
English), and (b) how much semantic value is assigned to non-verbal constructs
(punctuation, special characters, indentation, etc.) Historically, one of the most
readable languages of all times was COBOL (if you look up a few code samples,
then you will immediately see why – but it was way too verbose to the tastes of a
contemporary developer).

<important>
Make sure the language of your choice is easily readable. Give a piece of code to a
developer who “speaks” the language but unfamiliar with the purpose of the code

and see if they can quickly grasp what that code does.
</important>

I listed some of the most popular languages for business application
development in the table below, alongside with how they score against the various
criteria we discussed earlier [7].

Java Kotlin JavaScript TypeScript Python
Explicit data

structures Yes Yes No Yes No

Strong static
typing Yes Yes No Yes No [8]

Interfaces Yes Yes No Yes No

Java Kotlin JavaScript TypeScript Python

Isomorphism

No
(server and
Android native)

Generated
for browser
with GWT
framework

Generated
(server and
Android native,
browser
generated)

Native
(server and
browser native,
Android+iOS
native with React
Native, or hybrid
with Cordova)

Transpiled
(server and
browser native,
Android+iOS
native with React
Native or hybrid
with Cordova)

No
(server native)

OOP vs FP OOP first OOP first FP first FP first +
interfaces OOP first

Third party
libraries Many Few Many Many Many

Refactoring Strong Strong Weak Medium Weak

Hiring Expensive Expensive,
hard to find

Inexpensive,
easy to find

Inexpensive,
easy to find

Inexpensive,
easy to find

Learning
curve Medium Steep Flat Flat Flat

Readability Great Medium Medium Medium Poor

Edit the table if you disagree with my assessments. Expand it with the
languages you consider for your project. Then decide which languages you should
be using going forward.

To help you with decision making for your next project, consider several
archetypal use cases from the table below. All use cases listed assume the
following:

a need to have server-side implementation;
a need to have web-based user interface;
a need to build mobile apps for iOS and Android platforms.

Use Case Language Choices

Strictly optimize for cost and time.

TypeScript server-side.
TypeScript with React/Redux shared

code between web client and Cordova
hybrid mobile apps for iOS and Android.

Maximize reliability of server-side code, then
optimize for cost & time.

Java server-side; consider Kotlin or
Scala as more expensive options.

Protobufs IDL
TypeScript with React/Redux shared

code between web client and Cordova
hybrid mobile apps for iOS and Android.

Use Case Language Choices

Provide smooth native user experience in
mobile apps, then optimize for cost & time.

TypeScript server-side.
TypeScript with React/Redux for web

client.
TypeScript with React Native or

Flutter/Dart shared code between native
mobile apps for iOS and Android.

Maximize reliability of server-side code,
provide smooth native user experience in mobile
apps, then optimize for cost & time.

Java server-side; consider Kotlin or
Scala as more expensive options.

Protobufs IDL
TypeScript with React/Redux for web

client.
TypeScript with React Native or

Flutter/Dart shared code between native
mobile apps for iOS and Android.

<tldr>
The choice of programming language isn’t obvious and shall not be taken lightly.

Consider strong static typing, support of interfaces, isomorphism, OOP vs FP
capabilities, readability, third-party support, and the cost of hiring.

https://anatoly.com/programming-languages
</tldr>

https://anatoly.com/programming-languages

Chapter 3: Datastore

Not only do I not know what’s going on, I wouldn’t know what to do
about it if I did.

– George Carlin

One day, I gave my team a puzzle to solve.
“Let’s have some fun,” I said. “Imagine that you mentally divide your

system into three large components: User Interface, Business Logic, and
Datastore. Now think of which component depend on which.”

Tom, always pedantic with definitions, asked:
“Could you please define dependency?”

That made me think for a moment. Then I said:
“Let’s say that component A depends on component B if the changes

made to component B may trigger a need to change component A. Such
dependencies are frequently expressed in the code as import statements, i.e.,
component A depends on component B if it imports one or several interfaces
or classes or functions from component B.”

“That’s easy,” Tom said. “The User Interface depends on the Business
Logic, and the Business Logic depends on the Datastore.” He picked a
marker and drew a diagram on the whiteboard:

I agreed with the User Interface dependency but wasn’t buying the rest.
“Why do you think the Business Logic must depend on the Datastore?”

I asked.
“Simple,” Tom said happily. “The Datastore must be the most stable

component in the system, thus the Business Logic must depend on it.”
“Why must the Datastore be the most stable component?” I kept

digging.
The response was instantaneous, from the entire team, as if they

rehearsed for hours in anticipation of this very moment: “Because the

Datastore is the hardest to change. When you change your database
structure, you break all the code that accesses the data, potentially the entire
system,” they chanted. “The Datastore must be protected from change at all
costs, and therefore the Business Logic must depend on it, and work with
whatever data model is offered by the Datastore.”

OMG. They fell straight into the trap.
“Well,” I said, “which component is the most important part of your

system?”
“Business Logic, I suppose…” Tom was the first to see the trap door

closing.
“Correct,” I said. “The entire reason the system exists is its Business

Logic. The goal of building the system is not the specifics of the user
interface, and not the Datastore structure either. The system does something
that generates revenue or something else of importance, and that something
is coded in your Business Logic. The Business Logic is king, and everything
else is there to serve it. Because of that, both User Interface and Datastore
must depend on the Business Logic, and not the other way around.”

I corrected the dependency diagram:

“But then… how are we going to deal with the fact that the Datastore is
hard to change, and that changing it breaks everything?” Tom was not letting
me off the hook either.

“Well, we have to architect the Datastore the right way.”
Let’s take a closer look at what options we have. The first thing that

comes to mind is to use a noSQL database, instead of a traditional RDBMS.
In general, schema-less databases indeed help make changes to the Datastore
less daunting, and many architects opt for that solution. This is more of a
band-aid than a real solution, and we are going to pass on noSQL as a sole
remedy, in favor of a proper architecture of the Datastore.

First, let’s deal with the nature of dependencies. As mentioned earlier,
they are usually expressed as import statements in your code. Consider this
example.

Datastore code:

<code>
// module datastore.ts
export interface UserProfile {

userId : string;
firstName : string;
lastName : string;
age : number;
};

export const readUserProfile = (userId : string) : UserProfile => {
… // read user from the database
};

</code>
Business Logic code:
<code>

// module business-logic.ts
import { readUserProfile, UserProfile } from './datastore';
const printUser = (userId : string) : void => {

let user : UserProfile = readUserProfile(userId);
console.log(`user: ${ user.userId } ${ user.firstName }`);
};

</code>
The above example represents the incorrect dependency: the business

logic imports a data structure and a method defined by the Datastore. To fix
this, we will use the technique called Dependency Inversion [9]. We will be
discussing this technique more than once in this book. For now, let’s learn by
example. Let’s consider this alternative implementation.

Business Logic code, module business-logic-defs:
<code>

// module business-logic-defs.ts
export interface UserProfile {

userId : string;
firstName : string;
lastName : string;
age : number;
};

export interface UserDataAccess {
readUserProfile(userId : string) : UserProfile;
};

</code>
Business Logic code, module business-logic-impl:
<code>

// module business-logic-impl.ts
import { UserDataAccess, UserProfile } from './business-logic-defs';
const printUser = (da : UserDataAccess, userId : string) : void => {

let user : UserProfile = da.readUserProfile(userId);
console.log(`user: ${ user.userId } ${ user.firstName }`);
};

</code>
Datastore code:
<code>

// module datastore.ts
import { UserDataAccess, UserProfile } from './business-logic-defs';
export class UserDataAccessImpl implements UserDataAccess {

readUserProfile(userId: string) : UserProfile {
… // read user from the database
}
};

</code>

What has just happened? We inverted the dependency. Now, the
Datastore imports the definitions from Business Logic. From now on,
Business Logic dictates what it wants from the Datastore, and the Datastore
must obey. And now, whenever Business Logic changes or expands, the
Datastore must adjust accordingly – and not the other way around.

<important>
Both User Interface and Datastore must depend on the Business Logic.

</important>
The above line of reasoning leaves out the potential complexity of

changing the Datastore. We will tackle that next. For that, we will look into one
of the most pivotal architectural decisions – the organization of your data
persistence. There are several popular approaches which we will consider:
CRUD, CQRS, and Event Store.

<breakpoint/>
CRUD stands for Create, Read, Update, Delete. This is a mainstream

approach, intended to continuously maintain the current state of the
application in the Datastore. CRUD comes from the days of scarce
computing resources, limited disk space, and slow databases. Let’s use a
simplistic shopping cart implementation as an example. It is frequently
modeled in CRUD paradigm as a set of records, each record representing an
item placed in the shopping cart. Adding an item to the cart is implemented
by creating a new record. Removing an item from the cart is implemented by
deleting a record. Updating quantity is implemented as updating a record for
the respective cart item. The beauty of CRUD is that it provides you with the
latest state of the application with minimal effort. For instance, to display the
contents of the shopping cart from our example, you simply read all the
records for the cart, and it will give you the latest state, ready to be displayed
to an end user.

CRUD paradigm is usually mapped into a programming language as a
set of Create, Read, Update, and Delete operations, each acting on a
predefined data structure that represents a database record. And that’s where
an inherent design flaw is hiding. Let’s go back to our shopping cart
example. Assuming a typical relational database implementation, you end up
having two tables, Cart and CartItem, as depicted here:

What you may quickly notice is that we must update the Cart record every
time we manipulate CartItem, to maintain the correct value of totalPrice. This is
inefficient. A much better solution is to exclude totalPrice from the Cart
altogether and recompute it every time when the Cart is retrieved, by iterating
over CartItem records. Another observation is that the price for CartItem could
be also calculated automatically, and cartItemId could be auto generated.
Finally, we might want to limit the update of a cart item to only updating the
quantity field. But such changes break the traditional CRUD paradigm which
performs all four operations (Create, Read, Update, and Delete) using the
same data structure.

CQRS stands for Command Query Responsibility Segregation, and it is
specifically designed to solve this problem. In contrast with CRUD, CQRS
has two data models instead of one. The first model, known as Query Model,
is responsible for retrieval of data (Read action from CRUD). The second
model, known as Command Model, manipulates the data by processing
commands. Commands could be the already familiar Create, Update, and
Delete operations from CRUD, but CQRS allows you to define as many
commands as you like, of any kind.

Here is how the data model for our shopping cart example could be
constructed using CQRS:

Notice how the totalPrice and the price are now available from the Query
Model only; they are now intended to be automatically calculated. Also,
notice how different commands in the Command Model accept only the data
relevant to each individual command; this certainly adds clarity to the
interface.

The two models describe the interfaces you use to represent your data
and the operations on it; they do not dictate how the data is actually stored in
the database. One of the practical implementations of CQRS stores all the
commands which come through the Command Model directly in the
database; such implementation is called Event Store, Command Store, or
sometimes Immutable Store. The current state of the application is not
recorded, only events (aka commands) are recorded. In our example with the
shopping cart, we can record all the operations performed by the user on the
cart. Every time a user adds an item to the cart, removes an item, or changes
quantity, the respective event is recorded. Query Model continues to
represent the current state of the application, but now, instead of reading the
state directly from the database, it reconstructs the state by “replaying” the
recorded sequence of events.

Since events are only added to the database but are never physically
updated or deleted, the database is used in append-only mode – hence the
name Immutable Store. Append-only databases usually scale better, have
less locking and transaction isolation challenges, and open up a wide variety
of storage options beyond traditional relational engines.

For certain types of businesses, immutability comes naturally. For
instance, banking data with credits and debits posted to an account is
essentially a history of credit/debit events. Almost all accounting data
models are built on the immutability principle: once something is recorded

into the datastore, it never changes. If a credit or debit was recorded in error,
you must record an adjustment as a separate event. This makes accounting
software incredibly reliable, and the entire history of transactions is always
available for inspection.

The Event Store pattern is depicted in this diagram:

Note that when Query Model computes the application state from the
history of events, it doesn’t have to consider the entire history of all events
since the dawn of time. That would be incredibly impractical. It only needs
to consider the events which affect the requested portion of the application
state. For instance, when Business Logic requests the content of a shopping
cart, the Query Model only needs the events pertaining to one specific
shopping cart, for one particular user, since the last order was placed by that
user. This significantly reduces the amount of data for the Query Model to
receive and process. At the same time, it imposes a requirement on the Event
Store to support the necessary event queries efficiently.

What’s interesting about this approach is that Query Model may use the
same stored events to construct a variety of application states, following
different models. Think of it as an ability to create different “views” into the
application’s state. Why is it important? First, having different ways of
looking at the data is useful for different types of work. For instance, the
data model servicing users online may differ from the model used for
business intelligence and from the model used for accounting. Second, it
helps making your datastore more pliable. Remember the dependency
diagram from the earlier in this chapter? Let me refresh your memory:

At the time, we concluded that the Datastore must be able to
accommodate a change in Business Logic with ease but haven’t discussed
how. Event Store is our silver bullet. It allows us to modify the model
without restructuring the stored data. We can use the same stored events to
construct whatever model we want. This gives us far more flexibility in
responding to changes in Business Logic than a traditional persistent
application state.

But we must also consider performance. By making the Query Model
rebuild the application state every time, we create much higher load on the
database. Also, there are use cases when new events come in often and in
large numbers. This may require the Event Store to process too many events
at once, resulting in poor online performance. For example, imagine if your
bank must look into every transaction since you opened the account 10 years
ago, just to display the account balance?

The solution to this is to maintain an application state snapshot.
Consider the following diagram:

Here, we introduce a new component – the Asynchronous Snapshot
Builder – which is executed periodically. Its purpose is to create the good old
persistent state and to save it in the Snapshot Store. Essentially, the
Asynchronous Snapshot Builder executes the same code as the Query Model
does, to compute the latest application state. The Snapshot Store persists the
state in a way which is convenient for the Query Model to retrieve. The
Query Model then reads the latest snapshot, updates it further with events

which arrived after the snapshot was built, and then serves up the final
current state to the Business Logic.

This addresses the problem of the Query Model processing too many
events. Now, it only has to process the events which arrived after the
snapshot was created. Note that there is no strict requirement for the
snapshot to contain the data. For instance, in our example with the bank
account, we may decide to save only the account balance in the snapshot.
However, if you go through the trouble of creating a full application state
and storing it in a relational database, then your architecture becomes
immediately compatible with myriad of third-party tools for reporting,
analytics, ETL (extract-transform-load) tools, etc.

Keep in mind that your Snapshot Store can be rebuilt at any time, if your
data model changes. You may also decide to maintain multiple Snapshot
Stores with different data models, to be used for different purposes, or for
backward compatibility with the components which you want to protect
from changes.

<tldr>
Datastore implementation must depend on the Business Logic, and not the
other way around. Ditch CRUD in favor of CQRS. Consider Event Store

pattern for its flexibility.

https://anatoly.com/datastore
</tldr>

https://anatoly.com/datastore

Chapter 4: Data Model

I think people should be allowed to do anything they want. We
haven’t tried that for a while. Maybe this time it’ll work

– George Carlin

Now that you selected a general approach to persisting your data, the
next step is to adopt an approach and a process for data modeling. When I
say data modeling, I am referring to designing a representation of your
application’s state for coding, or a Data Model. In traditional architectures,
the data model is a collection of classes or functions that encapsulate
retrieval and manipulation of data. The process of modeling is, respectively,
the thought process you use to determine which classes and functions your
data model should have.

For many architects, the process of data modeling is driven by intuition.
However, there are well-formulated methodologies for approaching it more
formally. For business applications, I recommend Domain-Driven Design
(DDD).

DDD is an approach to software architecture based on modeling of a real
business through software abstractions. In this book, I am restricting DDD
specifically to the purpose of data modeling [10].

Domain is a sphere of knowledge, influence, or activity in which your
system operates. For example, GPS navigation apps operate in the
navigation domain, and personal finance apps operate in the finance domain.
Each domain has its own specialized terminology, and there are usually
subject matter experts who understand the domain and its terminology well.
You will need those subject matter experts to apply DDD (unless you are the
subject matter expert yourself).

DDD approach to building a data model is to interview the subject matter
experts and understand their terminology. To convey the terminology to
engineers, subject matter experts are asked to create a document called
domain dictionary (aka glossary). Then, the application requirements are
defined in the language which you and the experts mutually agree upon,
based on the previously defined domain dictionary. Such language is called
ubiquitous language, and it will be used collectively by you, your team, and

the subject matter experts to communicate while building the architecture,
implementing and operating the system.

Once the ubiquitous language is established, the next step is to create a
functional specification for your future system. The specification document
must use the ubiquitous language to be universally understood by all parties.
The document naturally contains verbs and nouns. Don’t take this concept
literally. Verbs refer to anything that identifies with an action or a process.
Nouns refer to anything that identifies with an object or a subject.

Nouns describe the elements of data which the application operates on.
DDD classifies data as referenceable objects, or entities, and non-
referenceable objects, or values. Here are some examples of entities: user,
order, shipment, support ticket, stock keeping unit (SKU). They are
referenceable because they carry an identity which allows us to reference
them: userId for a user, orderNumber for an order, trackingNumber for a shipment,
etc. The examples of values are phone number, email address, street
address, first name, age. Values do not exist on their own, and cannot be
referenced; they can be only included into entities. Values could be simple
(such as first name or age) or could be composite (i.e., containing multiple
attributes, for instance street address containing street, city, zip code, and
country). In contrast with entities, values have no distinct identity, they serve
as attributes of an entity. For example, entity User may be composed of these
values: userId, firstName, lastName, emailAddress, phoneNumber, and shippingAddress.

Entities can be grouped into aggregates. For instance, order is an entity,
but it can also be an aggregate, which includes two entities: order and order
item. Aggregates simplify the model by accessing the entire aggregate (i.e.,
all entities included in the aggregate) in a single operation by using the
identity of its root entity. In our example, we can access the entire order with
all its items by specifying an order number, i.e., the identity of an order,
which is the root entity of the order aggregate.

This diagram illustrates those concepts:

In the code, entities and aggregates are usually represented as interfaces
or classes. For instance:

<code>
interface Order {

orderNumber : number;
totalPrice : number;
}

interface OrderItem {
orderNumber : number;
orderItemId : number;
productId : string;
quantity : number;
price : number;
}

interface OrderAggregate {
order : Order;
orderItems : OrderItem[];
}

</code>
Verbs from the specification document describe services. From the

coding perspective, services are interfaces containing methods, each method
is a verb. Each service represents a meaningful piece of business logic
described in the spec.

For instance:
<code>

interface BankingServices {
openAccount(…);
deposit(…);
withdraw(…);
transfer(…);
};

</code>
More often than not, your domain can be divided into several more or

less independent sub-domains, aka bounded contexts. For instance, e-
commerce domain can be divided into these bounded contexts: marketing,
search, shopping, finance, fulfillment. For each of the bounded contexts, you
can develop its own ubiquitous language and a respective data model, thus

reducing the complexity of dealing with the entire domain into smaller sub-
domains. On the highest domain level, the ubiquitous language will only
describe integration matters.

<important>
The main idea behind DDD is to create a model in the software that closely
follows the specification written in the ubiquitous language. The objects and
services shall be clearly named after the business concepts, which makes the
code easy to understand. As you discover new business requirements, your
ubiquitous language grows, and the software model evolves alongside with

it.
</important>

<breakpoint/>
Let’s consider an example – a simplistic cash-based single-currency

banking system that manages accounts, and allows for deposits, withdrawals,
and transfers between accounts, as well as balance inquiries. While
interviewing an expert, we came up with the following ubiquitous language:
<code>

Account = list of ledger entries
Account Number = a unique identifier of an account
Credit = an operation of adding funds to an account
Debit = an operation of deducting funds from an account
Ledger Entry = a record of a debit or credit in an account
Ledger = a historical list of Ledger Entries for an account
Deposit = an operation of customer adding cash to their account
Withdrawal = an operation of customer removing cash from their account
Transfer = an operation of moving funds from one account to another
Amount = a monetary amount in USD currency, with decimal precision of 2

</code>
The specification for this system may look like this:
<code>

Create Account with Amount =
new Account -> accountNumber
Credit of Amount to Account

Deposit of Amount to Account =
Credit of Amount to Account

Withdrawal of Amount from Account =
Debit of Amount from Account

Transfer of Amount from Account1 to Account2 =
Debit of Amount from Account1,
Credit of Amount to Account2

Balance of Account =
(sum of all Credits to Account) – (sum of all Debits from Account)

</code>
Let’s build a data model for the above specification. We will be using

CQRS, but for simplicity will not be using event store (not yet). Instead, we
will use a traditional relational database storing the latest application state.

First, the diagram depicting values, entities, and aggregates:

Here, we have the following entities: AccountEntity, LedgerEntry, and
TransactionEntity. Each account may contain multiple ledger entries,
representing the changes made to an account (debits and credits). For
simplicity of data retrieval, we are combining AccountEntity and LedgerEntry into
one AccountAggregate, so that the account information and all its ledger entries
are retrieved in a single operation [11]. Transactions represent the operations
performed by the end users. Transactions may affect one or several accounts,
depending on the transaction type. In this example, we support three types of
transactions: TRANSFER, DEPOSIT, and WITHDRAWAL. Transfer transactions
move funds from one account to another; deposit transactions deposit cash
into an account, and withdrawal transactions take cash out of an account.

Next, let’s translate this model into the code. At this point, we are not
going to actually implement the data model but will only create contracts.

<code>
interface LedgerEntry {

accountNumber : number;
dateTime : Date;
amount : number; // positive for credit, negative for debit
transactionId : number; // refers to a transaction which produced the entry
};

interface AccountEntity {
accountNumber : number;
creationDateTime : Date;

balance : number;
};

interface AccountAggregate {
account : AccountEntity;
ledgerEntries : LedgerEntry[];
};

enum TransactionType {
DEPOSIT, WITHDRAWAL, TRANSFER
};

interface TransactionArgs {
};

interface DepositTransactionArgs extends TransactionArgs {
toAccountNumber : number;
};

interface WithdrawalTransactionArgs extends TransactionArgs {
fromAccountNumber : number;
};

interface TransferTransactionArgs extends TransactionArgs {
fromAccountNumber : number;
toAccountNumber : number;
};

interface TransactionEntity<T extends TransactionArgs> {
transactionId : number;
type : TransactionType;
transactionArgs : T;
};

interface DepositTransactionEntity extends TransactionEntity<DepositTransactionArgs> {
type : TransactionType.DEPOSIT;
};

interface WithdrawalTransactionEntity extends TransactionEntity<WithdrawalTransactionArgs> {
type : TransactionType.WITHDRAWAL;
};

interface TransferTransactionEntity extends TransactionEntity<TransferTransactionArgs> {
type : TransactionType.TRANSFER;
};

interface CommandModel {
createAccount() : { accountNumber : number };
recordTransaction<T extends TransactionArgs >(
transactionType : TransactionType,
transactionArgs : T
) : { transactionId : number };
recordLedgerEntry(
accountId : number,
amount : number,
transactionId : number
) : void;
};

interface QueryModel {
getAccount (accountNumber : number) : AccountAggregate;
getTransaction(transactionId : string) : TransactionEntity<any>;
};

</code>
It’s easiest to untangle this code from the bottom up. Following CQRS

guidelines, we ended up having two data models, CommandModel for modifying
data, and QueryModel for retrieving data. CommandModel supports three
operations: createAccount(), recordTransaction(), and recordLedgerEntry(). QueryModel
supports getAccount() and getTransaction(). To support three types of transactions,
we created interfaces for each type, all derived from the shared base
interface TransactionEntity. We support three types of transactions:
DepositTransaction, WithdrawalTransaction, and TransferTransaction. Notice the use of
generics in TransactionEntity<T extends TransactionArgs>. If this syntax is unfamiliar
or unclear, look up generics and how they work [12].

Everything we coded so far was based on the nouns from the
specification representing the data. Now, let’s move to the verbs. Our
business logic is expressed in the form of four services: openAccount, deposit,

withdraw, and transfer (all verbs). Let’s start by defining the contract for our
services:

<code>
interface Domain {

commandModel : CommandModel;
queryModel : QueryModel;
};

interface BankingServices {
openAccount(

domain : Domain
) : { newAccount : AccountAggregate };

deposit(
domain : Domain,
toAccountNumber : number,
amount : number
) : { toAccount : AccountAggregate };

withdraw(
domain : Domain,
fromAccountNumber : number,
amount : number
) : { fromAccount: AccountAggregate };

transfer(
domain : Domain,
fromAccountNumber : number,
toAccountNumber : number,
amount : number
) : { fromAccount : AccountAggregate, toAccount : AccountAggregate }

};

</code>
Here, we defined the BankingServices interface, which requires four verbs to

be implemented. Since BankingServices is a part of the application (business
logic), it needs to access the data models and potentially other services from
the domain layer. To avoid intermingling between the layers [13], we
packaged the entire domain functionality into a single Domain interface, which
is passed to every service call within BankingSerices as an argument.

Now that we defined the contract for banking services, we can proceed
with the implementation:

<code>
const myBankingServices : BankingServices = {

openAccount(
domain : Domain
) : { newAccount : AccountAggregate } {
let { accountNumber } = domain.commandModel.createAccount();
return {
newAccount : domain.queryModel.getAccount(accountNumber)
};
},

deposit(
domain : Domain,
toAccountNumber: number,
amount : number
) : { toAccount : AccountAggregate } {
let { transactionId } =
domain.commandModel.recordTransaction<DepositTransactionArgs>(
TransactionType.DEPOSIT,
{ toAccountNumber : toAccountNumber }
);
domain.commandModel.recordLedgerEntry(
toAccountNumber,
amount,
transactionId
);
return {
toAccount : domain.queryModel.getAccount(toAccountNumber)
};
},

withdraw(
domain : Domain,
fromAccountNumber: number,
amount : number

) : { fromAccount : AccountAggregate } {
let { transactionId } =
domain.commandModel.recordTransaction<WithdrawalTransactionArgs>(
TransactionType.WITHDRAWAL,
{ fromAccountNumber : fromAccountNumber }
);
domain.commandModel.recordLedgerEntry(
fromAccountNumber,
-amount,
transactionId
);
return {
fromAccount : domain.queryModel.getAccount(fromAccountNumber)
};
},

transfer(
domain : Domain,
fromAccountNumber : number,
toAccountNumber : number,
amount : number
) : { fromAccount : AccountAggregate, toAccount : AccountAggregate } {
let { transactionId } =
domain.commandModel.recordTransaction<TransferTransactionArgs>(
TransactionType.TRANSFER,
{
fromAccountNumber : fromAccountNumber,
toAccountNumber : toAccountNumber
},
);
domain.commandModel.recordLedgerEntry(
fromAccountNumber,
(-amount),
transactionId
);
domain.commandModel.recordLedgerEntry(
toAccountNumber,
amount,
transactionId
);
return {
fromAccount : domain.queryModel.getAccount(fromAccountNumber),
toAccount : domain.queryModel.getAccount(toAccountNumber)
};
}

};

</code>
Here, our implementation contains pure business logic, and nothing else.

We are making use of the data models to access and manipulate the data, and
each business function is concise enough to understand what it does at the
first glance.

You may need to have your services interact with the outside world, for
instance, to send mail, charge credit cards, ship purchased goods, etc. Those
services should become a part of your domain and shall be represented by
additional members of the Domain interface.

A good sanity check for a well-built model is to verify that your business
logic operates purely within the terms defined by your ubiquitous language,
and only manipulates the application’s state and the outside world through
the functionality exposed by the data model and by the consumed services. If
any of your objects or services have no counterpart in the ubiquitous
language, then you are likely mixing business concerns with technical ones,
or your ubiquitous language is incomplete. Either way, this is a red flag. At
this level, your code should be a direct mapping of the specification and

must operate purely in business terms. This maximizes readability and
maintainability of the code.

Finally, you may ask how the above approach changes if we incorporate
an event store into our architecture. That changes everything, right? Wrong.
If all is done right, there should be no changes to the contract of the data
model at all, and the business logic should remain intact. The internal
implementation of the data models will have to change, of course, but not
the contracts. The contracts between the data models and the business logic
remain unchanged. QueryModel retains its interface, although internally it
retrieves the data from the latest persistent state snapshot and combines it
with the more recent events. CommandModel is used to create the persistent
state snapshot [14]. Finally, the business logic could be called not only by
user actions, but also by the models to re-create the current application state
by “replaying” the events.

<tldr>
Domain-Driven Design helps you create a data model that closely follows
the business concepts, and therefore is easy to evolve alongside with the

business requirements. Use CQRS to keep your interfaces clean.

https://anatoly.com/data-model
</tldr>

https://anatoly.com/data-model

Chapter 5: Layering

One can never know for sure what a deserted area looks like.
– George Carlin

When software is developed without a layering strategy, developers are
exposed to a complex and hard-to-grasp mixture of technologies. To reduce
complexity, the software stack is usually broken down into several loosely
coupled layers. Consider this diagram:

Here, we are limiting each software layer’s respective responsibilities,
which enables us to build an abstraction model for each layer. For the
infrastructure layer, the abstraction model is usually provided to us in a form
of a programming language, and myriad of libraries that provide access to
cloud configuration, operating system, network, database, frameworks, third
party libraries, etc. This layer exposes its functionality to the domain layer
immediately above, which implements the data models, and exposes them to
the application layer. The application layer focuses on the business logic and
user interfaces. The domain can expose its functionality to the application in
two popular ways: either as a set of interfaces or in a form of a Domain-

Specific Language (DSL). When interfaces are used, then application is
usually developed using the same general-purpose programming language
(GPL) as the other layers. The DSL approach makes you create your own
language, specific to your application domain, and then the entire application
is built using that language. Notably, DSL does not have to be imperative
[15], it can be purely declarative [16].

We are dealing with DLSs at all times, without necessarily realizing it.
CSS is a declarative DSL for styling web content. HTML is a DSL for
expressing a layout of a web page. XML is a DSL for organizing data. SQL
is a DSL for manipulating data in a relational database. RegEx is a DSL for
character pattern matching. Latex is a DSL for processing text. BPEL is a
DSL for describing business processes. ACTULUS is a DSL for computing
market values and cash flows.

A DSL need not take a shape and form of a text. It can be expressed as a
table/spreadsheet, or as a user interface, or as a physical device. For instance,
the front panel of a modern microwave oven “speaks” the language
frequently used in the kitchen – such as cook, defrost, reheat, and may
accept the weight in lbs. Internally, it converts this input into hardware-
specific parameters such as power level and time. So instead of forcing the
chef to compute the power and time parameters for thawing a steak, it
accepts input in the ubiquitous language understood by any chef. This type
of a DSL is the holy grail of domain-driven design: it allows the application
to be written in the ubiquitous language itself, i.e. using the language of the
business domain itself. Think of it as erasing the difference between the
specification and the implementation. For instance, a cooking application
can be written completely in the language of cooking recipes. A well
implemented DSL allows subject matter experts create applications all by
themselves, without involving engineers. Needless to say, the engineers are
needed to create the DSL first. More often than not, however, DSLs are
intended to be used by engineers – but save tons of time in the process.

DSL is the ultimate solution to enforce a clean segregation of layers in
your application. Naturally, when the application layer is coded in a DSL,
and the domain layer is coded in a GPL, then the two will remain separated
forever because of the differences in syntax and tooling.

In the interest of time and simplicity, architects frequently choose
replacing a DSL with a set of objects and functions, which can be called
from a “normal” general-purpose language. This saves time on development

of a DSL and makes it easier to expand the domain services available to the
application layer by simply adding more objects and functions. The DSL’s
replacement then is a library of those objects and functions. There is nothing
terribly wrong with this idea, but it creates no natural barrier for developers
to inadvertently cross layer boundaries. Over time, we start finding
application code in the domain layer, and domain code in application layer –
and once we do, it is already too late, and require significant refactoring
effort to fix. Unfortunately, such refactoring will yield no immediate ROI for
the business and could be challenging to budget. So – we need to find a way
to keep all layers isolated, even if there is no DSL, and prevent intermingling
of their respective functionality. This could be done either through a process,
or through technology.

The process approach usually involves publishing strict rules and
enforcing them through code reviews. In my experience, this approach
carries cost-prohibitive overhead, unless there is a single developer on the
project – you. The technology approach is in creating a restrictive
framework, which confines developers to only specific set of interfaces they
can interact with. Consider the earlier example of the hypothetical banking
system, in which domain services are made available to the application layer
through the Domain interface:

<code>
interface Domain {

commandModel : CommandModel;
queryModel : QueryModel;
};

</code>
The application can access the domain level functionality through the

Domain interface only, which is passed as a parameter to any invocation of the
application-level code, like this:

<code>
interface BankingServices {

openAccount(
domain : Domain
) : { newAccount : AccountAggregate };

deposit(
domain : Domain
toAccountNumber : number,
amount : number
) : { toAccount : AccountAggregate };

withdraw(
domain : Domain
fromAccountNumber : number,
amount : number
) : { fromAccount: AccountAggregate };

transfer(
domain : Domain
fromAccountNumber : number,
toAccountNumber : number,
amount : number
) : { fromAccount : AccountAggregate, toAccount : AccountAggregate }

};

</code>

Here, every single one of BankingServices only gets to access the Domain. The
implementers of BankingServices are now provided with all the tools they need
through the domain argument, and we can prohibit them from using any
services beyond those available through the Domain interface. If a need to
create a new dependency arises, developers should ask the architect (you) to
add new dependencies to the Domain interface. This process will keep you in
control of runaway dependencies and will keep your layers cleanly
segregated.

<breakpoint/>
Another question that frequently comes up while discussing purity of the

application layers is how to handle so-called cross-cutting concerns. The
term refers to a need to have a higher layer perform the work which belongs
to a lower layer.

Let’s consider a snippet from our hypothetical banking system from the
earlier:

<code>
interface Domain {

commandModel : CommandModel;
queryModel : QueryModel;
};

interface BankingServices {
deposit(

domain : Domain,
toAccountNumber : number,
amount : number
) : { toAccount : AccountAggregate };

…
};
const myBankingServices : BankingServices = {

deposit(
domain : Domain,
toAccountNumber: number,
amount : number
) : { toAccount : AccountAggregate } {
let { transactionId } =
domain.commandModel.recordTransaction<DepositTransactionArgs>(
TransactionType.DEPOSIT,
{ toAccountNumber : toAccountNumber }
);
domain.commandModel.recordLedgerEntry(
toAccountNumber,
amount,
transactionId
);
return {
toAccount : domain.queryModel.getAccount(toAccountNumber)
};
},

…
}

</code>
Now, let’s imagine that we want to log every call to any of the Banking

Services, and also to begin a new database transaction at the beginning of
each service, commit it at the end, and roll it back if the service crashes.

Let’s have a look at what happens to the code in the deposit() method if we do
this.

First, our business logic will have to access the mechanisms controlling
transactions and logging. Usually, those are implemented as a part of the
Infrastructure layer, which is not available to our business logic yet. To
address this, we must come up with a way to create a limited access to the
Infrastructure, to be consumed by our business logic. Here is how we can do
this cleanly: <code>

interface Logger {
write(msg: string, err? : Error): void;
}

interface TransactionManager {
beginTransaction() : void;
commitTransaction() : void;
rollbackTransaction() : void;
}

interface Infrastructure {
transactions : TransactionManager;
logger : Logger;
}

interface Domain {
commandModel : CommandModel;
queryModel : QueryModel;
infrastructure : Infrastructure;
};

</code>
Now we have a clean controlled way to access a subset of

infrastructure’s features from our business logic.
Next, let’s add transactions and logging to the deposit() method.
<code>

deposit(
domain : Domain,
toAccountNumber: number,
amount : number
) : { toAccount : AccountAggregate } {
domain.infrastructure.logger.write(`making deposit - begin`);
domain.infrastructure.transactions.beginTransaction();
try {
let { transactionId } =
domain.commandModel.recordTransaction<DepositTransactionArgs>(
TransactionType.DEPOSIT,
{ toAccountNumber : toAccountNumber }
);
domain.commandModel.recordLedgerEntry(
toAccountNumber,
amount,
transactionId
);
let result : { toAccount : AccountAggregate } = {
toAccount : domain.queryModel.getAccount(toAccountNumber)
};
domain.infrastructure.transactions.commitTransaction();
return result;
}
catch(err) {
domain.infrastructure. logger.write(`making deposit - failed`, err);
domain.infrastructure.transactions.rollbackTransaction();
return null;
}
finally {
domain.infrastructure.logger.write(`making deposit - end`);
}
}

</code>
We just did what many software developers would have done without

thinking twice: we simply added logging and transaction handling directly to

the deposit() method. By doing this, we significantly increased the size of the
code. The code is now also much harder to read because the business logic is
now interspersed with logging and transaction code which belongs to a
lower layer! Worse, we now have a confusion between banking
“transactions” and database “transactions”; they represent terminology of
different domains which are now intertwined in our code.

Now imagine what happens once we start adding security, telemetry, and
other cross-cutting concerns that just don’t belong. The boilerplate code we
add to our business logic over time reduces the signal-to-noise ratio,
meaning it becomes increasingly hard to read and understand the business
logic, as the increasingly larger portion of the business logic has literally
nothing to do with the business.

Luckily, there is a better way. We can create a universal “proxy”
implementation for a service, suitable for any service call, and use it for all
service calls in our code. The implementation would differ from one
language to another, but it is possible to implement this pattern in practically
any modern programming language. Here is one of the most simplistic ways
of doing it in TypeScript. First, we standardize on the signature of any
service method: <code>

interface Services {
[method: string]: Function;
};

interface MethodArgs {
}

interface MethodResult {
}

type ServiceMethod<A extends MethodArgs, R extends MethodResult> =
(domain: Domain, args: A) => R;

</code>
With this, our BankingServices interface may look as follows:
<code>

interface OpenAccountArgs extends MethodArgs {
};

interface OpenAccountResult extends MethodResult {
newAccount: AccountAggregate;
};

interface DepositArgs extends MethodArgs {
toAccountNumber: number;
amount: number;
};

interface DepositResult extends MethodResult {
toAccount: AccountAggregate;
};

interface WithdrawalArgs extends MethodArgs {
fromAccountNumber: number;
amount: number;
};

interface WithdrawalResult extends MethodResult {
fromAccount: AccountAggregate;
};

interface TransferArgs extends MethodArgs {
fromAccountNumber: number;
toAccountNumber: number;
amount: number;
};

interface TransferResult extends MethodResult {
toAccount: AccountAggregate;

fromAccount: AccountAggregate;
};

interface BankingServices extends Services {
openAccount: ServiceMethod<OpenAccountArgs, OpenAccountResult>;
deposit: ServiceMethod<DepositArgs, DepositResult>;
withdraw: ServiceMethod<WithdrawalArgs, WithdrawalResult>;
transfer: ServiceMethod<TransactionArgs, TransferResult>;
};

</code>
Now, because all services now share the same method signature, we can

create a universal proxy augmentSerices() which can wrap any services interface
(not necessarily just BankingServices). Here is how:

<code>
const augmentServices = <T extends Services>(services: T): T => {

let augmentedServices: Services = {};
for(let methodName in services) {
augmentedServices[methodName] =
(domain: Domain, args: MethodArgs): MethodResult => {
domain.infrastructure.logger.write(`entering ${methodName}`);
domain.infrastructure.transactions.beginTransaction();
try {
let result = services[methodName](domain, args);
domain.infrastructure.transactions.commitTransaction();
return result;
}
catch(err) {
domain.infrastructure.logger.write(`failed in ${methodName}`, err);
domain.infrastructure.transactions.rollbackTransaction();
return null;
}
finally {
domain.infrastructure.logger.write(`exiting ${methodName}`);
}
};
}
return augmentedServices as T;
};

</code>
Here, augmentServices() accepts any interface that extends Services, and

automatically handles transactions and logging for it.
Finally, we create our implementation of BankingServices and wrap it with

augmentServices to add the cross-cutting concerns to it:
<code>

const myBankingServices = augmentServices<BankingServices>({
openAccount(

domain: Domain,
args: OpenAccountArgs
): OpenAccountResult {
let {accountNumber} = domain.commandModel.createAccount();
return {
newAccount: domain.queryModel.getAccount(accountNumber)
};
},

deposit(
domain: Domain,
args: DepositArgs
): DepositResult {
let {transactionId} =
domain.commandModel.recordTransaction<DepositTransactionArgs>(
TransactionType.DEPOSIT,
{toAccountNumber: args.toAccountNumber}
);
domain.commandModel.recordLedgerEntry(
args.toAccountNumber,
args.amount,
transactionId
);
return {
toAccount: domain.queryModel.getAccount(args.toAccountNumber)
};
},

withdraw(
domain: Domain,

args: WithdrawalArgs
): WithdrawalResult {
let {transactionId} =
domain.commandModel.recordTransaction<WithdrawalTransactionArgs>(
TransactionType.WITHDRAWAL,
{fromAccountNumber: args.fromAccountNumber}
);
domain.commandModel.recordLedgerEntry(
args.fromAccountNumber,
(-args.amount),
transactionId
);
return {
fromAccount: domain.queryModel.getAccount(args.fromAccountNumber)
};
},

transfer(
domain: Domain,
args: TransferArgs
): TransferResult {
let {transactionId} =
domain.commandModel.recordTransaction<TransferTransactionArgs>(
TransactionType.TRANSFER,
{
fromAccountNumber: args.fromAccountNumber,
toAccountNumber: args.toAccountNumber
},
);
domain.commandModel.recordLedgerEntry(
args.fromAccountNumber,
(-args.amount),
transactionId
);
domain.commandModel.recordLedgerEntry(
args.toAccountNumber,
args.amount,
transactionId
);
return {
fromAccount: domain.queryModel.getAccount(args.fromAccountNumber),
toAccount: domain.queryModel.getAccount(args.toAccountNumber)
};
}

});

</code>
As you can see, the business logic in the implementation of BankingServices

is back to “normal”, free of any logging or transaction handling.
Implementation of additional cross-cutting concerns (security, telemetry,
etc.) could be easily added to augmentServices() to make it more useful, and to
keep the business logic clean. Keep in mind that augmentServices() is a part of
the infrastructure layer, and must be imported by the business logic. You can
make it even cleaner, import augmentServices() into the domain layer, and then
expose it to the business logic as a part of the Domain interface. This way,
your domain will have full control over which of the infrastructure’s services
are available to the business logic, and your Application layer will never
import anything from the Infrastructure layer directly – which is how it
should be in the ideal world.

<tldr>
Break your system into layers and keep them separate. Consider creating a

domain-specific language (DSL) for the application layer, as a way to
promote simplicity and separation. If using general-purpose language (GPL)

for building the application layer, create a restrictive framework and a

process to keep the application layer from intermingling with the layers
below.

Do not allow cross-cutting concerns to penetrate your business logic. Use
the proxy pattern to keep cross-cutting concerns where they belong.

https://anatoly.com/layering
</tldr>

https://anatoly.com/layering

Chapter 6: Code Composition

I’m not concerned about all hell breaking loose, but that a PART of
hell will break loose… it’ll be much harder to detect.

– George Carlin

As architect, you must create coding guidelines for other developers and
for yourself to follow. Not only you must know how to properly compose
the code, but you must be able to mentor the team. In this chapter, we will
cover the five famous principles of code composition known as SOLID.
Those principles apply at different levels – from splitting your code into
modules, to creating class hierarchies, to breaking your code into
microservices and designing APIs.

SOLID is not a full-encompassing set of principles. There are more,
many more. These are arguably the most widely known. However, if you
are hungry for more (as you should be), then consider the recommended
reading materials listed in Appendix II.

The SOLID principles are:

The Single Responsibility Principle (SRP)
The Open-Closed Principle (OCP)
The Liskov Substitution Principle (LSP)
The Interface Segregation Principle (ISP)
The Dependency Inversion Principle (DIP)

I have to warn you – those are principles, not patterns. They don’t not
tell you how to create a good architecture. But they warn you if you are
veering off course, into uncharted shark-infested waters of spaghetti
designs. On my part, I will do my best to illustrate the principles, and to
equip you with the most common solutions as we go.

The Single Responsibility Principle (SRP). Originally this principle
was formulated as “A module should have one, and only one, reason to
change”. The “module” can be loosely interpreted as a “component” – a
class, a function, an interface, a source file, etc. – depending on which units
of code composition you are working on. This principle is frequently

interpreted as a component should serve one, and only one purpose. While
this is a good principle on its own, this is not what the Single Responsibility
Principle is about. To reach clarity, I suggest rephrasing the original SRP
language as follows: a component should have one, and only one source of
change. Here, the “source of change” is typically a person or a team
responsible for business specifications – in other words, those who ask for
changes.

The logic behind this is fairly straightforward. Imagine that you are
building an e-commerce system, and your checkout process is represented
by a single function that handles payment, notifies the customer, and fulfils
the order: <code>

const checkout = (
cc : CardInformation,
totalAmount : number,
shippingAddress : StreetAddress,
emailAddress : string,
phoneNumber : string,
productId : string,
quantity : number
) : void => {
chargeCard(cc, totalAmount);
sendConfirmationEmail(emailAddress);
sendConfirmationSMS(phoneNumber);
let parcel = packParcel(productId, quantity);
let trackingNumber = printShippingLabel(parcel, shippingAddress);
orderPickup(trackingNumber);
};

</code>
The requirements for payment handling are driven by your accounting

team, the requirements for customer notifications come from the marketing
team, and packing and shipping are owned by the fulfillment team. As time
goes by, each of the three teams evolve their own set of requirements,
tearing your single checkout() function apart.

With that in mind, you are much better off by breaking the checkout()
function into three independent ones, for example:

<code>
const pay = (// satisfies accounting requirements

cc : CardInformation,
totalAmount : number
) : void => {
chargeCard(cc, totalAmount);
};

const notify = (// satisfies marketing requirements
emailAddress : string,
phoneNumber : string
) : void => {
sendConfirmationEmail(emailAddress);
sendConfirmationSMS(phoneNumber);
};

const fulfill = (// satisfies fulfillment requirements
productId : string,
quantity : number,
shippingAddress : StreetAddress
) : void => {
let parcel = packParcel(productId, quantity);
let trackingNumber = printShippingLabel(parcel, shippingAddress);
orderPickup(trackingNumber);
};

const checkout = (
cc : CardInformation,

totalAmount : number,
shippingAddress : StreetAddress,
emailAddress : string,
phoneNumber : string,
productId : string,
quantity : number
) : void => {
// work for accounting
pay(cc, totalAmount);
// work for marketing
notify(emailAddress, phoneNumber);
// work for fulfillment
fulfill(productId, quantity, shippingAddress);
};

</code>
Now, you can place functions pay(), notify() and fulfill() into separate

modules, and have them maintained independently. This allows you to
implement the ever-changing and expanding requirements coming from the
three product teams in their own respective places.

Naturally, in an early-stage startup, you may have the same person
defining all of the above aspects – and you must use your imagination and
experience to anticipate the growth of the company through your
architecture.

Violation of the Single Responsibility Principle leads to complex and
unreliable merges of changes. When the code is checked in, you should
rarely go through diffing the source code. If you are diffing the code on
merges on regular basis, then your architecture violates the Single
Responsibility Principle. But complex and risky code merges is only a
beginning. Eventually, violating the SRP principle leads to a situation when
shared code can no longer be shared. For instance, let’s look at the
checkout functionality. Let’s say you have a function getOrderTotal() which
returns the total amount for the order. Then it turns out that for accounting
purposes, you must return the amount before tax, but the end user must see
the amount with tax included. Changing the function is not an option,
because it is shared, and fixing it for one context will break it for another.
This is because this function violates the Single Responsibility Principle.
We should have had three functions from the very beginning:
getOrderTotalBeforeTax(), getOrderTax(), and getOrderTotalToDisplay(). The first two
functions are responsible for retrieving the factual information that is
universally useful, and the third function is used specifically for displaying
the information to an end user.

<important>
The Single Responsibility Principle helps you redirect the streams of future

changes from different sources into their own modules, one module per
source. This helps to avoid conflicts on code merges and keeps shared code

shareable despite the potentially breaking changes.
</important>

<breakpoint/>
The Open-Closed Principle (OCP) says: “A software artifact [17]

should be open for extension but closed for modification”. To make things
simpler, I’d like to re-phrase it as “Extending the behavior of a software
artifact should not require modification of the original code of that
artifact.” This principle pushes us toward anticipating the future and
constructing our software in an extensible way. The principle by itself does
not tell us how. If adding new functionality causes significant changes in
the existing software, then we know we didn’t do a good job following the
Open-Closed Principle.

Let’s consider an example. We have an interface that defines any
rectangular shape as follows:

<code>
class Rectangle {

width : number;
height : number;
}

</code>
Now, we are asked to build a calculator that computes the total area of

multiple rectangles:
<code>

const computeTotalArea = (shapes : Rectangle[]) : number => {
let area : number = 0;
for(let shape of shapes) {
area += (shape.width * shape.height);
}
return area;
};

</code>
Looks ok? Let’s say we accept the above solution. A few months later,

we are asked to add handling of circles into the mix.
Without much thinking, we could do it this way:
<code>

enum ShapeType {
RECTANGLE, CIRCLE
}

abstract class Shape {
type : ShapeType;
}

class Rectangle extends Shape {
type : ShapeType.RECTANGLE;
width : number;
height : number;
}

class Circle extends Shape {
type : ShapeType.CIRCLE;

radius : number;
}

const computeTotalArea = (shapes : Shape[]) : number => {
let area : number = 0;
for(let shape of shapes) {
switch(shape.type) {
case ShapeType.RECTANGLE: {
let rect = shape as Rectangle;
area += (rect.width * rect.height);
break;
}
case ShapeType.CIRCLE: {
let circ = shape as Circle;
area += (circ.radius * circ.radius * Math.PI);
break;
}
default:
throw new Error(`Unsupported shape.type=${shape.type}`);
}
}
return area;
};

</code>
This will work – but – we are getting on the slippery path where each

additional shape type will force us to change the implementation of
computeTotalArea(). This violates the Open-Closed Principle, which demands
that alteration of behavior is achieved through extending the code, without
changing it.

Here is an example of how this can be fixed:
<code>

abstract class Shape {
abstract computeArea() : number;
}

class Rectangle extend Shape {
width : number;
height : number;
computeArea() : number {
return (this.width * this.height);
}
}

class Circle extends Shape {
radius : number;
computeArea() : number {
return (this.radius * this.radius * Math.PI);
}
}

const computeTotalArea = (shapes : Shape[]) : number => {
let area : number = 0;
for(let shape of shapes) {
area += shape.computeArea();
}
return area;
};

</code>
Now, you can add any number of shapes without modifying

computeTotalArea(). Place each shape implementation in its own module (file) to
further insulate the logic of computeTotalArea() from the implementations of
shape-specific classes.

Remember that this is just an example, and not a universal solution to
fix violations of the Open-Closed Principle. You may have to get creative
when facing this problem.

I am frequently asked how one can anticipate the need for a change, to
create the correct design in the first place. Generally, it comes with

experience. But still, no one is able to anticipate all possible changes
coming your way, and preparing for hypothetical changes which may never
come is likely to make your code more complex than it should be. It’s not
worth the trouble. However, once you see that a change forces you to
violate OCP, you must immediately refactor your code to fix the problem.
Left unattended, the problem gets bigger over time, becoming much harder
to fix as the code base grows.

<important>
The Open-Closed Principle helps detect a need for refactoring early, while
it is still relatively inexpensive. Your programing language and tooling must

support efficient refactoring for this process to be less painful.
</important>

<breakpoint/>
The Liskov Substitution Principle (LSP). When I read the original

description of the principle by Barbara Liskov, I went through it several
times, and I still had no idea what to do with it… not until I read the
explanation. See for yourself: “If for each object O1 of type S there is an
object O2 of type T such that for all programs P defined in terms of T, the
behavior of P is unchanged when O1 is substituted for O2 then S is a
subtype of T”. What do you think of it?

This principle is about the proper use of inheritance in OOP. Those of
you using functional programming, or those who avoid using inheritance in
OOP, are “automatically” in the clear. For those of you who use inheritance,
please read on.

If you find the language of LSP complex or confusing, then you are not
alone. Let me rephrase it for you: “The behavior of any piece of code that
uses the base class should not change if the base class is substituted with a
derived class”, or “a reference to the base class should be replaceable with
a derived class without affecting the behavior”. Essentially, it is a
readability test for your class hierarchy.

Let’s consider this example, which implements calculation of an area
for rectangular or square geometric shapes: <code>

class Rectangle {
width: number;
height: number;
constructor() {
this.width = 0;

this.height = 0;
}
setWidth(width : number) : void {
this.width = width;
}
setHeight(height : number) : void {
this.height = height;
}
getArea() : number {
return this.width * this.height;
}
}

class Square extends Rectangle {
constructor() {
super();
this.width = this.height = 0;
}
// override to make it a square
setWidth(width : number) : void {
this.width = this.height = width;
}
// override to make it a square
setHeight(height : number) : void {
this.width = this.height = height;
}
}

</code>
In this example, we have a class Rectangle that has width and height

properties to specify the dimensions, and class Square that inherits from
Rectangle and modifies the setter methods to maintain the square aspect ratio.

Now, let’s consider this piece of code:
<code>

let rc : Rectangle
// test A

rc = new Rectangle();
rc.setWidth(5);
rc.setHeight(10);
console.log(rc.getArea()); // prints 50

// test B
rc = new Square();
rc.setWidth(5);
rc.setHeight(10);
console.log(rc.getArea()); // prints 100

</code>
In both tests A and B, we use the same variable rc of type Rectangle, but in

test B its behavior is unexpected for a rectangle.
Why is it important, you may wonder? You may further argue that you

can see the actual classes instantiated in the tests A and B respectively, and
they give you a clear hint at how to predict the behavior of the code.
Consider the slightly modified version of the same code: <code>

const test = (rc : Rectangle) : void => {
rc.setWidth(5);
rc.setHeight(10);
console.log(rc.getArea()); // prints what???
};

// test A
test(new Rectangle());

// test B
test(new Square());

</code>
Now, the behavior of function test() is totally unpredictable. It is

impossible to guess what results it will produce, without analyzing each
invocation of the function, of which there could be hundreds or thousands.

Now let’s revisit the simplified language of the Liskov principle: “a
reference to the base class should be replaceable with a derived class
without affecting the behavior”. In our example, substituting the base class
Rectangle with a derived class Square changes the behavior of function
test(), making the function’s behavior unpredictable. Our class hierarchy
violates the LSP principle, and therefore our hierarchy is incorrect [18].

If you are wondering how to fix this, consider the following:
<code>

abstract class Shape {
abstract getArea() : number;
}

class Rectangle extends Shape {
width: number;
height: number;
constructor() {
super();
this.width = 0;
this.height = 0;
}
setWidth(width : number) : void {
this.width = width;
}
setHeight(height : number) : void {
this.height = height;
}
// override
getArea() : number {
return this.width * this.height;
}
}

class Square extends Shape {
side: number;
constructor() {
super();
this.side = 0;
}
setSide(side : number) : void {
this.side = side;
}
// override
getArea() : number {
return this.side * this.side;
}
}

</code>
Notice this structure prevents us from whiting the code like this:
<code>

const test = (sh : Shape) : void => {
sh.setWidth(5); // compile time error
sh.setHeight(10); // compile time error
console.log(sh.getArea());
};

// test A
test(new Rectangle());

// test B
test(new Square());

</code>
Now we can only use the sh argument to apply the methods common to

all kinds of shape, such as getArea() but not setWidth() and setHeight() which are
specific to rectangle only, while square supports setSide() instead.

Another logical improvement in this particular case is to move the
initialization parameters into constructors, which are specific to each

individual class, like this: <code>
abstract class Shape {

abstract getArea() : number;
}

class Rectangle extends Shape {
width: number;
height: number;
constructor(width : number, height : number) {
super()
this.width = width;
this.height = height;
}
// override
getArea() : number {
return this.width * this.height;
}
}

class Square extends Shape {
side: number;
constructor(side : number) {
super()
this.side = side;
}
// override
getArea() : number {
return this.side * this.side;
}
}

</code>
Now our test code looks like this:
<code>

const test = (sh : Shape) : void => {
console.log(sh.getArea());
};

// test A
test(new Rectangle(5,10));

// test B
test(new Square(10));

</code>
Does it look perfect now? Maybe, but I’d like to take it just a little bit

further. In our example and in many other cases, it may become apparent
that the inheritance of classes is completely necessary. For instance, our
example can be rewritten using interfaces and without any class inheritance:
<code>

interface Shape {
getArea() : number;
}

class Rectangle implements Shape {
width: number;
height: number;
constructor(width : number, height : number) {
this.width = width;
this.height = height;
}
// implements Shape
getArea() : number {
return this.width * this.height;
}
}

class Square implements Shape {
side: number;
constructor(side : number) {
this.side = side;
}
// implements Shape
getArea() : number {
return this.side * this.side;
}
}

</code>

Looks trivial? Great, start using it right away.
<important>

The Liskov Substitution Principle guards against creating the code that will
be hard to understand by simply reading it. Eliminating class inheritance
ensures 100% compliance with Liskov Principle. You should have a very

good justification for using inheritance in the first place.
</important>

<breakpoint/>
The Interface Segregation Principle (ISP) states that no client should

be forced to depend on methods it does not use. Sounds obvious? Let’s take
a closer look.

Consider an e-commerce system that sells products. Each product can
be purchased, and each product can be shipped to a customer. There is a
variety of products that the system sells, so we make them all compliant
with the same contract. The first knee-jerk reaction is to define it like this:
<code>

interface Product {
purchase() : void;
ship() : void;
}

const checkout = (p : Product) : boolean => {
p.purchase();
return true;
};

const delivery = (p : Product) : boolean => {
p.ship();
return true;
};

</code>
Notice anything wrong with this implementation? It clearly violates the

Interface Segregation Principle. The code executing at the checkout time
depends on implementing the entire product. As such, it depends on the
ship() method which is not called at checkout time but must be included
because the Product interface demands so. Similar problem with the delivery
code, which depends on the purchase() method without calling it. Those
dependencies require you to rebuild and redeploy your delivery services
when checkout code changes, and vice versa. This leads to monolithic
implementation which must be built and deployed all at once. This may not
be a problem in a small project, but in a larger system it will invariably lead
to slow rebuilds, lengthy deploys, and excessive hardware requirements. It
will also hamper your ability to deliver stable software releases more often.

A solution is in breaking your interfaces into smaller ones, driven not by
the object that implements the interface, but by the code that consumes the
interface. Our first step is to define the interfaces like this: <code>

interface Checkout {
purchase() : void;
}

interface Delivery {
ship() : void;
}

const checkout = (c : Checkout) : boolean => {
c.purchase();
return true;
};

const deliver = (d : Delivery) : boolean => {
d.ship();
return true;
};

</code>
Now, how shall we define the product contract? Again, the knee-jerk

reaction could be to do something like this: <code>
class Product implements Checkout, Delivery {

constructor() { … }
purchase() : void { … }
ship() : void { … }
}

</code>
But with this implementation, the entire Product class will be always

required whenever we use Checkout or Delivery interfaces independently, still
violating the Interface Segregation Principle. The correct solution may push
us further away from the traditional OOP, into the land of functional
programming – because we just realized that typical OOP coupling of data
with all the behaviors is not always a good idea.

If we do things right, we may end up with something like this:
<code>

class ProductData {
…
}

class ProductCheckoutService implements Checkout {
data : ProductData;
constructor(data : ProductData) { this.data = data; }
purchase() : void { … }
}

class ProductDeliveryService implements Delivery {
data : ProductData;
constructor(data : ProductData) { this.data = data; }
ship() : void { … }
}

</code>
Now we have the code of checkout and fulfillment services in separate

classes, which can be placed each in their own source file, and
compiled/deployed/loaded independently.

<important>
The Interface Segregation Principle guards again creation of monolithic

applications with intertwined module dependencies. Monolithic

applications are harder and slower to build, and sluggish to start.
</important>

<breakpoint/>
The Dependency Inversion Principle (DIP) states that your higher-

level implementation should never depend on a lower-level implementation,
but rather on an abstraction of that lower-level implementation.

We briefly touched on Dependency Inversion while discussing
interfaces and layering earlier, but now we will generalize it for a more
widespread use. In general, when one source code module imports another,
it should only import interfaces, and never concrete implementations. This
comes naturally to some older programming languages like C/C++ in which
“header files” are used for declaration purposes only, and normally contain
no concrete code. In more contemporary languages, you are not forced into
this paradigm, but you can elect to split your code into multiple source files
as you see fit.

Let’s take the logger implementation from the programming language
example, from the earlier in the book, and arrange it correctly across several
source files to avoid violating the Dependency Inversion Principle.

Module logger-defs contains contract definitions for logging:
<code>

// module logger-defs.ts
export interface Logger {

log(value : string) : void;
};

</code>
Module logger-impl contains implementation of a logger, and it depends

only on contract definitions for logging:
<code>

// module logger-impl.ts
import { Logger } from './logger-defs';
export const myLogger : Logger = {

log(value : string) : void {
console.log(`*** ${ value }`);
}
};

</code>
Module foo contains the application logic, and it depends only on

contract definitions for logging – and not on the specific logging
implementation:

<code>
// module foo.ts
import { Logger } from './logger-defs';

export const foo = (logger : Logger) : void => {
logger.log(`entered function foo`);
};

</code>
Why bother with such complexity? Imagine that your function foo() can

be used both in the browser and on the server side. The two environments
are likely to have different loggers. With Dependency Inversion, foo()
receives an abstraction of a logger in a form of its interface, passed as a
parameter. Foo() is unaware of any concrete implementation of the logger
and therefore does not have to be changed, regardless of where it is be
running.

In real life, we’ll have many interfaces to pass as arguments, besides the
logger – ideally, all underlying services should be implemented in a similar
way. This may lead to significant bloat of the parameter list. It can be
avoided by collecting all dependencies in a single Environment interface:

<code>
// module environment-defs.ts
import { Logger } from './logger-defs';
export interface Environment {

logger : Logger;
// other dependencies go here
}

</code>
Now, let’s create module bar which replaces foo from the previous

example:
<code>

// module bar.ts
import {Environment} from './environment-defs';
export const bar = (env : Environment) : void => {

env.logger.log(`entered function bar`);
};

</code>
All environmental dependencies are now available to foo() via the single

environment argument.
You may notice that we already used this approach, without explaining

it, when discussing segregation of layers. There, we had Domain and
Infrastructure interfaces as abstract representations of Domain and
Infrastructure layers, respectively, to the higher-level Application layer.

The method of passing an abstraction (an interface, or an API endpoint)
as a parameter to either a function or to a class via its constructor is
commonly known as Dependency Injection (DI) pattern. This is not the
only method of becoming compliant with Dependency Inversion Principle,
but it is by far the most widespread.

As you may realize, the concrete implementation of your interfaces
would have to be placed somewhere. You may further decouple your code

from specifying concrete implementations of your interfaces by
instantiating your classes dynamically based on a configuration stored in a
file. This way, you can launch your application and make it use different
implementations of your interfaces depending on the deployment
environment. For instance, you may have different implementations of a
Logger in development vs test vs production environments, simply by
supplying different configuration files. Such approach is known as
Inversion of Control (IoC). The name reflects the fact that your code no
longer fully controls the behavior of your application, and that control is
being delegated to an external configuration file, or to a framework [19].

So now we know how to inject a dependency by passing an interface as
a parameter. But what if your code must create an arbitrary number of
objects? For instance, consider building a painting functionality which
draws various shapes on the screen. The type of the shape to draw is
determined by time. You don’t want to have a dependency on concrete
implementations of the specific shapes, but there has to be a new statement
somewhere instantiating concrete shapes. How would you code it?

For this, we combine Dependency Injection with another very popular
technique called the Factory Pattern. The idea behind is simple: move
creation of concrete objects to a separate class (the Factory), and then
decouple from the factory using Dependency Injection. Here is what it
looks like.

First, let’s define all interfaces in module shapes-defs:
<code>

// module shapes-defs.ts
export interface Canvas {

…
}

export interface Shape {
draw(canvas : Canvas, x : number, y : number) : void;
}

export interface ShapeFactory {
createShape(time : Date) : Shape;
}

</code>
This defines the contracts for Shape and for ShapeFactory. Shape can draw

itself, and ShapeFactory can create new shapes based on time.
Next, we write our code which draws the shapes over time, in module

draw:
<code>

// module draw.ts
import { Canvas, Shape, ShapeFactory } from './shapes-def';
const draw = (shapeFactory : ShapeFactory, canvas : Canvas) : void => {

const drawSingleShape = () => {
let shape = shapeFactory.createShape(new Date());
shape.draw(canvas, Math.random() * 100, Math.random() * 100);
};

for(let i = 0; i < 100; i++) {
setTimeout(drawSingleShape, i * 1000);
}
};

</code>
Now, our code is completely independent from the concrete

implementations of both Shape and ShapeFactory. The latter decides which
shape to create, based on the time value passed to it, and each shape has its
own way of drawing itself.

<important>
The Dependency Inversion Principle pushes you toward creating

abstractions (usually interfaces) for all your software components. This
makes it easy to substitute implementations of those components without

changing the rest of your code base. The most common patterns for
abstracting components are Dependency Injection and Factory. Your code

may delegate creation of concrete implementation instances for your
abstractions to a configuration file by applying the Inversion of Control

pattern.
</important>

To wrap up the discussion on SOLID principles, there is one more piece
of advice. You cannot catch all SOLID violations at design time; many will
surface during the coding cycle. You will have to keep your team on high
alert, detect SOLID violations early, and refactor the code mercilessly,
every time a violation is detected. Don’t just label those cases as “technical
debt” to be handled later, because the more code is written against an
improperly composed structure, the harder it is to refactor. Your technical
debt increases with each line of code written thereafter, unless you nip the
problem in the bud right away.

<tldr>
Apply SOLID principles to test if your architecture is compliant. Mentor
your team to fully understand SOLID; those principles apply to almost

everything in the software development. Refactor the code at the earliest
signs of violation of any of the SOLID principles.

https://anatoly.com/code-composition
</tldr>

https://anatoly.com/code-composition

Chapter 7: Latency

May the forces of evil become confused on the way to your house.
– George Carlin

In 2014, I was putting together a loyalty program for a major water
brand. Each pack of bottled water had an insert with a unique link, and the
customers could open the link on their phone, register, and earn points.
Later, the accumulated points could be exchanged for various rewards.

The scale of the system was massive – about 3.5 billion bottles of water
went through the program just in the first 3 months. The traffic was very
spiky, and most users were new to the system, with no data cached on their
mobile phones yet. Our telemetry showed that 100% of the users who had to
wait for over 7 seconds were abandoning the program, and 50% of those
who had to wait for over 5 seconds were also bailing out. Protecting their
reputation, the brand set the latency threshold for us at 3 seconds. That was
tough, considering how graphics-heavy our web app was, how spiky the
traffic turned out to be, and generally low performance of wireless networks
in some parts of the country. After trimming everything down, we just barely
squeezed our average response time below the required 3 seconds, right
before the launch date, and went live with the system.

All was going well for a couple of months. Then a few smart dudes
found a way to game the system by claiming the same reward URL
concurrently from multiple devices. It was easy to fix, took us a few hours,
and we pushed the update out. All went well until the typical grocery store
shopping spike around 5 pm. Turned out that our fix created a database
contention, which pushed our first page load time well into the 3-6 second
territory. The problem could not be easily solvable with additional hardware,
and we had to roll the fix back, and lived with the bug for another week,
while working on a far more involving alternative solution.

That’s the thing about latency – you don’t know when and how it will hit
you. It creeps up at the most unfortunate time, from seemingly benign
software updates.

While latency should be included into your normal regression testing
cycle to catch the problems early, before they hit your production system,

there are also a few safeguards which you can build into your architecture
early on – and that’s what we will be focusing on in this chapter.

While many factors contribute to latency, I will coarsely classify them by
the three main categories: Client Latency, Network Latency, and Server
Latency.

Client Latency can be defined as a delay caused by the execution of
client-side code (usually JavaScript code in the browser, or native code in
mobile apps). Client latency can be reduced by:

Using light-weight reactive frameworks like React/Redux,
instead of the heavier frameworks of the past.

Minifying your JavaScript code.
Embracing asynchronicity, i.e., using the time spent on waiting

for completion of network requests to perform useful computations
in the background.

Building a single-page app, to eliminate frequent page reloads.
Each page load leads to re-initialization of the entire JavaScript
codebase, which is time-consuming. Conversely, single-page app
loads all the assets once, and rely on AJAX calls to the server to
operate. In single-page apps, rendering of HTML typically occurs
within the browser, instead of having the HTML rendered by the
server and then delivered to the client.

Perform CPU-intensive operations on the server side,
especially for the applications targeting mobile devices.

Network Latency can be defined as a delay caused by transmissions of
data between the server and the client. Such delays can be caused by (a)
large number of transmissions between the client and the server while
loading the first page, or in response to end user’s actions, (b) slow
handshake at the beginning of each network transmission, especially over
encrypted connections, (c) slow connection speed, (d) by needing to transfer
large amounts of data, and (e) by HTTP redirects. Generally, the more
connections you have, and the more data you transfer over those
connections, the higher the total network latency. Network latency can be
reduced by these measures:

Bundle scripts in as few files as possible, frequently achieved
by using Webpack or similar script packaging utilities (browser

only). Minify all the scripts.
Bundle style sheets in as few files as possible.
For responsive designs, and for mobile apps designed for

multiple device form factors, resize images dynamically to be just
of the right size. Use a coarse size grid to improve caching; for
instance, always round both width and height of an image up to the
next number divisible by 10 and clip the edges to the desired size
using CSS. Consider third-party services for image resizing such
as ImgIX or Cloudinary.

Service all static resources via a Content Delivery Network
(CDN) [20].

Minimize the number of calls to your API endpoints. Consider
designing the API to allow an arbitrary number of functions to be
called in a single network roundtrip [21].

Consider the possibility of making the API endpoints available
geographically as close to the end user as possible. For instance,
with Amazon Cloud, you can provision servers in multiple
geographic regions, or have Amazon Lambda functions running in
multiple geographic regions, or use of Amazon Lambda @Edge to
get even closer to the end user.

Leverage local storage to persist infrequently changing pieces
of data.

Server Latency is defined as the delay caused by the processing on the
server side. It includes computational latency, database latency,
synchronization latency, and several other contributors. There are methods
for reducing latency in those various categories, but there is one overarching
principle which will help you keep the total server latency in check. It is
based on a very simple idea: not all the work of processing a user’s request
must be performed white the user is waiting. When a request arrives from a
user, it suffices to do just enough work to respond to the user (synchronous
processing), and the rest of the work can be queued up and performed later
(asynchronous processing). For instance, when a user places an order, it may
suffice to generate a confirmation number, queue the order for future
processing, and return the confirmation number to the user. The system can
have an independent queue processor which picks up the pending orders
from the queue and handles them.

Generally, any user request can have two aspects, synchronous and
asynchronous, as depicted here:

The Persistent Queue on the diagram can be implemented by using an
off-the-shelf queueing or streaming implementation. For instance, in
Amazon Cloud, you can build everything in a serverless manner: use SQS
(queueing) or Kinesis (streaming) as a Persistent Queue, and implement
asynchronous processing using AWS Lambda. As a vendor-neutral
implementation, you can use Kafka to implement your persistent queues.

This diagram illustrates how this pattern functions in time:

To make this pattern easily usable by the developers on your team, create
a framework which only requires developers to write two snippets of code –
one for synchronous processing, and one for asynchronous. The framework
is responsible for invocation of those two snippets. For instance: <code>

interface Request {
… // request received from the browser
};

interface Response {
… // response to be sent to the browser
};

interface Context {
… // execution context to pass from sync to async processing
};

interface Endpoint<Rq extends Request,Rs extends Response,C extends Context> {
doSync(request : Rq) : { response : Rs, context : C };
doAsync(request : Rq, context : C) : void;
};

</code>
Your framework takes any concrete implementation of Endpoint, calls

doSync() when a request from the UI is received by the endpoint, sends the
response back, then enqueues the request and the context for asynchronous
processing, and finally executes doAsync(). Developers must create their own
versions of Request, Response, and Context, and implement the Endpoint interface.
This way, you can completely shield your team from the complexity of
handling asynchronicity and from the specifics of the underlying
frameworks and services, allowing them to focus on the business logic.

Finally, don’t forget about monitoring your system’s latency on a
continuous basis. There are several off-the-shelf services that can help, the
most popular ones being New Relic and AppDynamics. If you are going

serverless, you may need to do more manual work and manage your own
telemetry feed.

<tldr>
Break your server-side processing into synchronous and asynchronous
aspects. Make it easy for developers to code the asynchronous part by

creating a framework. Optimize images and compress script and style assets.
Use CDN for delivery of static assets. Collect telemetry to continuously

monitor latency in your system.

https://anatoly.com/latency
</tldr>

https://anatoly.com/latency

Chapter 8: Error Recovery

If you try to fail, and succeed, which have you done?
– George Carlin

In this chapter, we will look closely at errors caused by the environment.
Such errors are unavoidable, as they are not caused by “bugs” in the code
which can be fixed. For instance, a lost network connection on your mobile
device may cause your app to fail when attempting to contact the server. The
most common remedy against such errors are retries: your code may either
automatically retry the call to server, or it may prompt the user to confirm
the retry attempt. In either case, there is a potential pitfall in such approach:
you never know if your previous request never reached the server, or made it
through and was processed but failed to transmit the result back. If you retry,
you may process the same request more than once. Sometimes, it’s ok. For
instance, retrying a search for a product seems reasonably harmless.
However, retrying a call to place an order may result in multiple identical
order being placed. Speaking the tech lingo, your server-side implementation
must be idempotent to make retries safe. Idempotent means that your code
can be executed multiple times with the same arguments, without changing
the result or creating additional effects on the system or the environment,
beyond the initial execution with those arguments.

In practice, application code is rarely idempotent. Even a seemingly
harmless search function, when applied multiple times, may skew analytical
data, affect keyword usage stats, and create all sorts of unexpected damage.

Here is a design pattern which can make any server-side endpoint
idempotent. First, we introduce Request Journal storage with records of the
following structure: <code>

interface RequestStorageRecord {
requestId : string; // unique primary key
receivedTimestamp : number;
responseBody : any | null;
}

</code>
Then we put together the following process:

Here, we introduce Request Journal storage which records every inbound
request. Requests are uniquely identified by requestId, which is generated by
the client before sending an API call to the server. Once the request is
received by the server but before it is processed, a new Request Journal
record is created, with requestId from the received request alongside with the
current time in receivedTimestamp, and responseBody is set to null. Once the request
is fully processed, the journal record is updated with the responseBody
containing the response, and then the response is sent back to the client. If
the client times out or receives a network error, it retries the call with the
same requestId as in the original request. The server-side code first queries
Request Journal for the record with the received requestId. This leads to one of
the three possible scenarios:

(a) No record with requested requestId is found in Request Journal. It
means that the previous attempt did not make it through to the server, and it
should be processed as described above, for the first time.

(b) The previous attempt to process the request has been already
completed, i.e., responseBody!=null. In this case, we shall retrieve the recorded
value of responseBody and return it back to the client without processing.

(c) The previous attempt to process the request is still in progress, i.e.,
responseBody==null. In this case, we wait until it is finished by periodically re-
reading the Journal Record and checking responseBody. Once we encounter
responseBody!=null, we respond with it back to the client. We must have a built-
in timeout for this, to avoid getting caught in an endless loop in case the

processing crashes. The timeout is counted starting from the receivedTimestamp
time, and should significantly exceed the anticipated processing time by the
server, i.e.:

serverWaitTimeout = anticipatedServerProcessingTime * 10
Note this algorithm works properly only if the client performs retries

sequentially, and only if the time interval between the calls made by the
client exceeds the eventual consistency [22] promise of Request Journal
database. It performs optimally if the time interval between the calls also
significantly exceeds the anticipated processing time by the server. If written
out as a formula:

timeBetweenRetries > max(
eventualReadConsistencyGuarantee,
anticipatedServerProcessingTime * 10

)
In real life, the algorithm can benefit from several additional

refinements:

If server-side processing crashes, it should still update the
Request Journal with non-empty responseBody. Otherwise, a retry
attempt will detect responseBody==null, assume that the request is
still in progress (while it actually crashed), and wait until the
timeout expires.

The Request Journal can grow indefinitely, and quite fast. It is
best to keep it clean of the old data. Some datastores like
DynamoDB support Time to Live (TTL) setting for its records,
which automatically deletes records from the store after a certain
time threshold. The TTL value must significantly exceed the total
time the client retries the call before reporting a permanent failure
(in other words, while the client keeps sending the same requestId
in its retry attempts.)

The size of the Response can be quite large. Keep it in mind
when choosing a storage solution for Request Journal. An
alternative is to store responses in a cloud storage (like Amazon
Simple Storage Service, aka S3), and record only a reference to the
file in the cloud in the Request Journal. You can use this
alternative approach for those requests that exceed the limits of the
storage used for Request Journal. Keep in mind that cloud file
operations are quite slow. Also, you need to plan for additional

cleanup work, since the TTL-based cleanup of Request Journal
records does not extend to the cloud storage.

Create a telemetry feed to monitor retries. Frequent retry
attempts are often caused by incorrectly set timeout values.
Monitoring retries will help you fine-tune your timeout and retry
settings.

Retry algorithm on the client side can be improved by
implementing exponential back-off. This means the time between
retries should automatically increase with every attempt, up until a
certain threshold is reached. This is to avoid overloading the
system when an error persists for a duration of time.

Retry algorithm can benefit from applying a circuit breaker
pattern, i.e., by blocking access to the service entirely for a period
of time, in case of consistent retry failures. For instance, once 10
attempts to access the service failed, stop all attempts to contact
the service for the next 5 minutes – or display a Retry button for
the customer to push manually.

Note that error handling described in this chapter works equally well
with the errors caused by software bugs. Bugs are as unavoidable in large
projects as environmental errors, and reliable error handling helps dealing
with them just the same.

<tldr>
Embrace errors. Make your endpoints idempotent. Then use retries to

recover.

https://anatoly.com/error-recovery
</tldr>

https://anatoly.com/error-recovery

Chapter 9: Logging

We’ve added years to life, not life to years.
– George Carlin

Logging is one of the most useful tools for troubleshooting the system.
Unfortunately, more often than not, it is added as an afterthought, which
limits its usefulness. Logging strategy must be mapped out as a part of your
architecture, because it affects the way it is engaged from the code.

Logs must be accessible from a single access point, for convenience. It
is impractical, and sometimes impossible, to manually collect logs from
production servers. A single access point could be implemented in many
different ways. Some solutions store logs locally on each server and then
ship log files asynchronously to a centralized location. This is a traditional
approach, and it offers no support for serverless architectures, and rarely
integrates client-side logging. Other solutions ship log entries immediately
to a centralized location or upload to them to the cloud, where the logs are
usually processed to make them searchable, for indexing purposes, and to
collect statistics.

Logs must support querying by context parameters which are specific to
your application domain. For instance, in an e-commerce system, we may
want to query all log records that pertain to a certain user, or to a certain
order, or to a certain time interval (or a combination of those). The hard part
is getting the necessary context information embedded into every log entry
since the code may not have access to the all context parameters when it
writes new log entries. Worse, third-party components will never be able to
add your domain-specific context to the log. For instance, you may be using
an awesome library that charges credit cards, and the library may have good
logging, but it will never be able to inject your application-specific user
identity into the log, because it is completely unaware of it. The best
solution for this is to maintain the necessary context in memory variables
and create a log interceptor/writer which adds your context information to
every log record created. Here is a crude illustration of how this might work
for Node.js or in a browser [23]:

<code>

// implement log context
interface ILogContext {
userId : string;
}
let globalLogContext : ILogContext = { userId : null };
const setLogContext = (newLogContext : ILogContext) : void => {
globalLogContext = newLogContext;
};

// override default logging mechanism in Node.js or Browser
const defaultLogger = console.log;
console.log = (...args: any[]) : void => {
defaultLogger.apply(
console,
[...[`[userId=${globalLogContext.userId}]`], ...args]
);
};

…
// in the application code

…
setLogContext({ userId: `12345` });
…
// there is no need to specify logging context in every write
console.log(`Hello`);
…
console.log(`World`);
…
setLogContext({ userId : null });

</code>
This code snippet will produce log output like this:
<output>

[userId=12345] Hello
[userId=12345] World

</output>
The context value in the square brackets can be reliably parsed, and

every message written to the log of your application now carries the context
of its execution, event if written by a third-party library. Now you can filter
log records and retrieve only those that pertain to the specific user under
investigation. Context may contain multiple values, allowing you to filter
your logs by order numbers, products, and whatever else is useful. The code
responsible for managing context can allow for various context parameters
to be supplied at different times.

In multithreaded programs, a typical place to store log context is thread
local storage, instead of a global variable. Every thread shall inherit the log
context of the parent thread, and then maintain its own copy for the entire
lifetime of the thread.

While logs are traditionally stored in files, it doesn’t have to be that
way. Logs entries could be sent to a streaming engine (e.g. Kafka or
Kinesis), and then processed in a variety of way for further consumption.
This enables you to collate log entries by context parameters, collect
analytics, and send near-real time notifications when errors are detected.

To have the full picture for troubleshooting, it is invaluable to have
client-side logs collected as well. More often than not, client-side logs
remain locked in the browser or end up stored as log files on mobile

devices, inaccessible for troubleshooting purposes. Yet, having the ability to
“see” what happens on the client side significantly reduces the time and
effort it takes to nail down production problems, especially those
originating from the user interface.

There are two approaches to collecting client-side logs. One is to collect
the logs in memory or in the browser’s local storage, or in log files on
mobile devices, and then ship the logs to the server with certain periodicity.
This approach is taken by many third-party telemetry and logging SDKs for
mobile apps. The drawback is usually that those logs end up in the cloud of
the SDK’s provider, and are not organically merged with server-side logs to
clearly reflect the actual flow of events.

The other approach is to collect logs the same way but include the
accumulated logging data with every request the client sends to the server
in the course of the normal client/server chatter, and also independently if
the client encounters an error, or if the client was not contacting the server
for more than, say, 10 minutes, and has fresh logging data. This approach is
very efficient, but requires that you have to build the log delivery
mechanism directly into your client-server APIs.

Another feature which will save you lots of time during development is
shipping server-side logs to the client alongside with the server’s response.
With this, developers can see both the client- and server-side logging in the
browser or in the mobile device console. This feature can be turned off in
production system but enabled in development and test. To make this work,
add the respective functionality to your client-server APIs and wrap your
API calls with a tiny framework which automatically prints server-side
logging data once received by the client. Be careful not to re-send this data
back to the server again, if you are shipping client-side logs to the server. If
you are storing all responses to guarantee idempotence of error retries, then
you may consider excluding logs from the stored responses to reduce
storage requirements.

We will cover shipping of logs in further detail when we discuss APIs in
Chapter 14.

The next extremely valuable feature of logging is detecting crashes
(exceptions) and alerting someone when a crash occurs. It is usually
wasteful to have someone scan through the logs manually, but you may
want to be notified of a failure the very moment the system misbehaves.
Sometimes, exceptions may be inadvertently “hidden” by the application

logic, but a good coding style will have them printed every time an
exception is thrown or caught. The system can send an email when this
happens, or notify you with a Slack message, or sound an alarm via
specialized alerting system like Pager Duty.

Finally, let’s look at the common practice of assigning various logging
levels (DEBUG, INFO, WARNING, ERROR or similar) to the logged
content, to save on storage space once the system is stable. The tricky part
is that the log is only as useful as the information stored in it. If you switch
the detailed logging off in production by setting your logging level to
ERROR, then it will contain no trace of the events which led to the error,
because such information is usually tagged with either DEBUG or INFO
level. My recommendation is to always log everything that comes from
your code and use logging levels only to control the logging behavior of
third-party libraries, as they get unnecessarily chatty from time to time. But
whenever your team invests the time into adding a logging statement to the
application, treasure it. One way of implementing this is to use a proprietary
logging function everywhere throughout your code, which accepts no
logging level as a parameter to individual logging calls. Your logging
function then supplies the desired logging level internally. This way, you
retain a fine-grained control over logging in third-party libraries, and
always keep your own log entries.

<tldr>
Make logs accessible from a single point. Collect logs from both client and

server. Support filtering of log entries by application-specific context
parameters. Alert someone to crashes. Embrace chatty log levels. Shipping
of client-side logs to the server helps troubleshooting. Shipping of server-

side logs to the client at dev time speeds up development.

https://anatoly.com/logging
</tldr>

https://anatoly.com/logging

Chapter 10: Real-Time Processing and
Event Streaming

Those who dance are considered insane by those who cannot hear
the music.

– George Carlin

Hard real-time (or more frequently near-real-time) solutions usually react
to a stream of data that comes from sources other than human user input.
Good examples of hard real-time systems are fly-by-wire systems in aircraft,
autopilot solutions for self-driving vehicles, or network multimedia systems.
Examples of near-real-time systems are ride-sharing applications (the likes
of Uber and Lift), air traffic control systems, GPS navigation apps, various
telemetry and real-time analytics solutions, or integration data feeds between
applications.

The difference between hard- and near-real-time systems is primarily in
the response time guarantee provided by the system for processing of
incoming events. Hard real-time solutions require more than just a nicely
done software architecture to function – they must have dedicated, fast and
reliable communication channels, specialized dedicated hardware, etc. In
this chapter, I will focus primarily on near-real-time architectures and will
call them simply “real-time” going forward. Hard real-time systems may
demand more from your architecture, going beyond the scope of this book.

One of the signature characteristics of a real-time system is the presence
of one or several data streams that must be consumed (processed). For
example, a GPS navigation app takes a continuous stream of car’s
coordinates, velocity and direction, to calculate its position on the map and
its movement vector, and then to determine the optimal route to the
destination. A more sophisticated navigation app may also accept another
input stream with live road conditions and accident reports. A ride-sharing
app adds a stream of ride requests, and a stream of events reflecting
passengers starting and ending their rides.

If we attempt to process those streams of data synchronously, just like
we process web requests, then we must have the server capacity sufficient
for processing the highest spike in event traffic ever encountered. This might

be sometimes possible with serverless architectures but is definitely cost-
prohibitive for server-based infrastructures. You end up running way too
many servers, most of them idling between the traffic spikes (i.e., most of
the time). Auto-scaling solutions which automatically add servers to your
installation are usually too slow to react to unpredictable traffic spikes; they
scale reliably in response to variations in the sustained load, but not
momentarily. A warm-up time of a server is too high for the system to retain
its real-time characteristics. An attempt to immediately handle all events has
other significant risks: you may easily exceed the number of network
connections allowed, or you may quickly deplete the pool of database
connections.

To address these problems, a number of streaming frameworks have
sprouted in recent years. In this book, we will consider the two most
representative ones: Apache Kafka and Amazon Kinesis.

Let’s start with the diagram below, depicting how a streaming framework
fits into the architecture of a hypothetical navigation app.

Here, the navigation app produces events containing vehicle’s geo
coordinates, as well as other data pertinent to its location (direction,
velocity). In streaming architecture lingo, each app is a Producer of
streaming data. Producers send individual updates (aka events) to a stream
(aka topic). More than one stream could be created to organize the data by
its type. In our example, all instances of the GPS navigation app send their
data to the Stream S1 (vehicle data), while other producers (emergency
services, traffic RDS, city feed) send their data to Stream S2 (obstacles
data). To scale, each stream can be sharded (partitioned) into multiple
shards (partitions). For simplicity, you can think of each shard as an
independent server, and of a stream as a cluster of such servers. The more
shards you have, the higher is the combined concurrent throughput of the
stream. You can linearly scale the performance of your stream by increasing
the number of shards. The data events received from producers are
automatically distributed across shards and are persistently stored in the
shards for subsequent processing.

The data events are then picked up by consumers. Think of consumers as
processes or processing workers (threads) which subscribe to a particular
stream; the stream feeds data to consumers, usually one event at a time, in
near-FIFO order [24]. The more consumers you run, the more data events can
be processed concurrently. The whole architecture scales linearly across
consumers, just keep adding processing capacity. Some streaming
frameworks allow consumers to receive more than one event at a time,
which helps to avoid network congestion between the stream and the
consumers.

In our example, there are two types of consumers – consumers of vehicle
data (geo position, direction, velocity), and consumers of obstacles (traffic,
accidents, and roadwork). Consumers of obstacles process the received data
and populate a database of obstacles: which roads are closed, which are
affected by heavy traffic or accidents, etc. This data is then used by the
consumers of vehicle data to plot the best route. The routes are then stored in
the database. The navigation app may periodically check for updates and
receive the latest route available. Some systems may replace the periodic
check by push message notifications.

Interestingly enough, different types of consumers can subscribe to the
same event stream, for their own purposes. For instance, we may want to
record a history of vehicle movements, to help find stolen vehicles. To

implement this, our example can be extended by adding consumers to the
Stream S1 (vehicle data) to record the history or just the latest location. This
opens up a larger opportunity to use event stream as a generic
publish/subscribe mechanism. The system can publish various application
events to a stream, and any number of subscribers can consume the events.
For instance, publish an order placed event, and have (a) your fulfillment
system process the order, (b) your marketing system send a confirmation
email, and (c) the shipping system prepare the tracking label, all triggered
concurrently. While it may be tempting to have a single stream serving as a
unified messaging bus for the entire system, a better design is to dedicate
independent streams for each event type. This way, your consumers receive
only the event types they are subscribed to, giving you more fine-grained
visibility of the workloads and more control over scaling.

Once you jump on the bandwagon of event streaming designs, you will
find them quite useful, above and beyond the real-time applications. Some of
the previously described design patterns, like logging solutions and
processing of asynchronous portions of user-initiated transactions – are all
good candidates to be implemented using event streaming.

Being a complex pattern, event streaming comes with its own quirks and
complexities. Let’s have a look at the most profound ones.

First, you must consider what happens if a consumer’s code crashes.
Typically, you have an option of writing it in two ways: you can make the
streaming framework retry processing of an event, or you can allow the
event to be lost. The former is preferred for business-critical data, the latter
is commonplace for telemetry and IoT events which are continuously
streamed and are harmless to lose. For instance, readouts of a temperature
sensor usually can be lost without causing much harm, since the next readout
is expected to follow shortly. Some streaming frameworks like Kinesis
always retry but limit the number of retries. As we discussed in the earlier
chapters, retries are safe if the consumer’s code is idempotent. To make that
work, you can use the design pattern described in Error Recovery (Chapter
8).

Second, you may inadvertently under-provision the number of
consumers. With this, the events are ingested by the stream faster than they
are consumed by consumers. This causes events pile up inside the stream,
leading to increased latency. This is unacceptable for hard real-time systems
but is generally ok for short time intervals in near-real-time

implementations. If the increase in events is caused by a spike in traffic, then
eventually the ingestion rate will go down, and the consumers will
eventually catch up. You must have adequate means of monitoring your
streams, telling you when its time to scale up – or having an autoscaling
solution in place.

Some systems set a hard limit on how long an event can be persisted in a
stream. For instance, Kinesis limits it to 48 hours. On the other hand, Kafka
has no such hard limit, although you are still limited by the disk space
available. Some architectures take advantage of this and use Kafka as the
persistent Event Store, described in Datastore (Chapter 3).

Kinesis has its own very useful proprietary feature – it is fully integrated
with Lambda Functions. With this integration, you need not manage or scale
your consumers. The diagram below depicts how this works.

Essentially, every shard of the stream feeds a sequence of events to a
single instance of your Lambda Function, acting as a consumer. If you have
10 shards, then you will have 10 Lambda instances to process the data. The
beauty of this approach is that you need not scale your consumers
independently of scaling the streams. Simply allocate enough shards to
handle your maximum sustained load, and you are done. Another obvious
benefit of this architecture is that it is entirely serverless, fully managed by
Amazon Cloud.

We were talking a lot about scaling here, and streaming architectures
scale linearly or near-linearly, assuming your consumers introduce no
significant bottlenecks. However, to scale properly and on time, you must
have sufficient telemetry built in, as well as an early warning system to alert
you when your infrastructure requires additional capacity. Your architecture
must have it all planned out. If you miss those critical pieces, your
production operations could be compromised by insufficient capacity, or as
another extreme you may burn too much cash on unnecessarily
overprovisioned system.

<tldr>
There is almost always a place for event streaming as a part of your overall

architecture, even if you are not building a real-time system. Streaming
frameworks scale well through partitioning. Make stream processing logic

idempotent to allow safe retries. Create means for monitoring and scaling of
both streams and consumers.

https://anatoly.com/event-streaming
</tldr>

https://anatoly.com/event-streaming

Chapter 11: CDN

Have you ever noticed that anybody driving slower than you is an
idiot, and anyone going faster than you is a maniac?

– George Carlin

CDN stands for Content Delivery Network. It is a geographically
distributed network of servers, used primarily for caching of static web
assets. The most commonly cached web assets include images, video files,
static HTML files, scripts, CSS files, and fonts.

Consider this diagram:

Here, the origin server is the server (or a farm of servers) running your
application. CDN servers are distributed geographically, strategically placed

in locations close to highly populated areas (large cities). Such locations are
called edges of the CDN, and CDN servers located at edges are called edge
servers. When you connect your origin server to a CDN, you are given a
unique dynamic CDN host name. This host name is used in the client-side
code for retrieving assets from your application. When a client connects to
such dynamic CDN host name, the CDN’s DNS server maps it into the IP
address of the closest (in geographical sense) edge to the client. The edge
server checks if it has the requested asset in its persistent cache. If it does,
the asset is served back to the client directly from the edge location, without
contacting the origin server. If the asset is not found in the edge’s cache, then
the request is forwarded to the origin server, which serves up the asset.
When the response travels back, the asset may be cached by the edge server
of the CDN, if you permit so. The later requests for the same asset from any
client near the same edge are be served from the cache.

Good CDN networks have a large number of edge locations. For
instance, AWS CloudFront has 176 edge locations worldwide, in 69 cities
across 30 countries. In the real world, edge locations sometimes differ by
their purpose: network edges vs cache edges. Network edge is a location
where the CDN injects its traffic into the local Internet, whilst cache edge is
a location where the actual persistent caching takes place.

Some CDNs like Fastly support two-tier caching approach, by
introducing additional shield cache between edges and your system. This
approach further reduces the number of requests that reach your system: as
long as your system has served a static asset once, it will not have to do it
again, until the cache expires. This helps to deploy large-scale solutions
from a cold start when the traffic floodgates open and all the caches are still
empty. This problem is frequently encountered when new software builds
are deployed.

Shield caching is depicted in this diagram:

Caching is controlled by caching headers defined by HTTP protocol.
Specifics of how they are configured are outside of this book’s scope, but
they are easy to find (google headers cache-control, expires, and pragma).

Another thing you need to know about all CDNs is that it is extremely
expensive, inconvenient, and time-consuming to invalidate the cached data
within CDN – and worse, it is impossible to remotely invalidate the cached
data within the browser. Once a static asset is cached, it is not advisable to
change it, and then attempt resetting the cache. It is much more productive to
create a new asset (with a different name or retrieved with different URL
parameters) and use it instead of the old one. There are two strategies I can
recommend.

The first strategy applies to static assets like images and fonts. Those
assets are typically files, hosted either on your servers or in a cloud storage
location (such as AWS Simple Storage Service, aka S3). If you need to
replace such asset, upload a new one, with a new name, and use that new
name in your web pages and scripts. Then no cache reset will be required.

The second strategy applies to script bundles, CSS files, and other assets
that change with every system build. For those, I recommend using a cache
buster URL parameter. Imagine that your script bundle is included into your
web page like this:

<code>
<script src=”https://assets.mycompany.com/myScriptBundle.js?cb=1234” />

</code>
Here, the 1234 is either a build number, or a timestamp representing the

build time, or just a random id generated at the beginning of your build
process. The choice of the parameter name cb is arbitrary, you can call it build
or anything else you like. Now, your bundle’s file name remains the same,
but CDN uses the entire URL as a cache key, and that key change when the
cache buster value changes [25]. This way, your script bundle is cached until
you rebuild the system next time. With the next build, the cache buster value
will change, ensuring your pages receive a new version of the script bundle.

A slight variation of this technique is used when there is a need to
support both the old and the new version of your script bundles, CSS, etc.
This is useful when you deploy often, and you want the end user sessions
which started with one version of the software to continue using it, without
switching to the new release on the next page load. To support this, you can
embed the cache buster into the name of your script bundle at build time, an
allow for multiple versions of script bundles to co-exist. Here is how the
script inclusion into your web page could look like: <code>

<script src=”https://assets.mycompany.com/myScriptBundle-1234.js” />

</code>
Some CDNs are more than just a distributed cache. For instance,

CloudFront offers Lambda @Edge services, which allows you to run
serverless code at edge locations, close to the end users. Another example is
Fastly, which adds its own suit of features for manipulating both static and
dynamic traffic. For certain specialized applications, such additional
functionality might be essential, but the mainstream use of those features is
to compensate for architectural deficiencies. If you get your architecture
right, then you need none of those “fancy” features and services.

<tldr>
Always use CDN for delivery of static resources. Never reset the cache. Use

cache busters to push changes through the CDN without a reset.

https://anatoly.com/cdn
</tldr>

https://anatoly.com/cdn

Chapter 12: User Interfaces

Just ‘cause you got the monkey off your back doesn’t mean that the
circus has left town.

– George Carlin

A few years back, I was building a service for wannabe celebrities. Each
customer was getting their very own mobile app, for both iOS and Android,
which allowed the fans to closely follow the lives of their favorite star in the
form of video and photo posts. The app was also monetizable through
advertising and in-app purchases of live video streams.

I focused my own efforts on the technology which generates mobile apps
with a push of the button, and on the apps themselves. But I also needed to
have a CMS – a content management system – for each celebrity to upload
and manage their videos, photos, and stories. I had no capacity to do
everything by myself, and I hired an offshore team of proven developers to
build a web-based version of the CMS. We discussed all the specs and the
integration points, and I gave the team the freedom to choose their tools.
They picked Angular as the UI framework. The entire team was intimately
familiar with Angular, and it was indeed the most popular UI framework at
the time. On the server side of the CMS, the team chose Java and Spring,
again very popular choices.

We launched the first version of the service rather quickly and had mild
success with it. My business partner and I went to speak with the celebrities
who were using the service and we identified several additional features to
make our solution easier to market and monetize. The new features required
several relatively minor enhancements to the CMS. My team rolled up the
sleeves and went to work. They were supposed to deliver the changes in a
month. Three months later, they were “almost there”, and asked for another
month. Another two months went by, and the team sent me a preview
version that was terribly unstable and missing several important pieces of
functionality. The updated CMS was incredibly unreliable, video uploads
getting stuck from time to time, images disappearing without trace, and API
calls from the mobile apps timing out half the time. It was a disaster.

I investigated. Turned out that the architecture involving Angular and
Spring which my team put together was a terrible choice. Adding a field to a
form or a button to the screen meant changing the code in 7 different places.
Some of it was necessitated by Angular itself, and some by us using different
programming languages on the client and server side, denying us any sharing
of the interface definitions across platforms. If any of the changes were
improperly made, there was no warning or error. The update either did not
work at all, or it appeared functional, but then led to a data loss invisible to
the user until they reengage with the system a few days later. I hated
Angular, Spring, the whole world – but above all I despised myself for not
working out the detailed architecture with the team.

My company had to bear the weight of serious setbacks and financial
losses. We never rebuilt the CMS, and continued operating the earlier, more
stable version of it. This line of business never took off, and we eventually
switched to other opportunities.

<important>
User interfaces are by far the most frequent cause of excessive development

and maintenance costs. Because of that, they require lots of undivided
attention from the software architect.

</important>
Let’s dive in.
The first question to ask yourself is the types of user interfaces you may

need, now or in the future: web (browser-based), mobile (native apps for
iOS, Android, etc.), desktop (native apps for Windows, OS X, Linux, etc.),
texting (SMS, RMS, Facebook Messenger, Telegram, etc.), or voice (a good
example is automated banking services provided via phone).

Web UI implementations require no installation, work everywhere, can
be launched from a link embedded anywhere, and therefore represent the
lowest-friction path for connecting with your customers. Web UI usually
requires a live network connection, although there are ways how you can
make it work offline (which I wouldn’t recommend due to complexity and
limited applicability).

Mobile apps have an edge of being installed on the customer’s phone
with full support for push messages and local reminders, having access to
the mobile services and hardware, and being able to store data locally. Many
of those features slowly become available in the browsers, stripping the
benefits of the native apps over web UI, but at the time of this writing, there

is still a huge gap. For instance, iOS 12 still does not support browser-based
push messaging, and none of the browsers support local reminders.

Desktop apps these days become less and less popular. You may need
one if you consume lots of resources, if you require the support of
specialized hardware, if you must work with low-level features of the
operating system, or if you interact directly with non-standard peripheral
devices.

Texting apps including various chat bots, SMS texting, and instant
messengers are on the rise. They are essentially a modern take on a very old
computer interaction paradigm (a text terminal).

Voice Response Units (VRUs) represent a way to communicate via a
voice line, making use of voice output and combined key and voice input
from the end user.

For typical business solutions, you will need web-based UI and a mobile
app. I will forego describing the options available for desktop, texting, and
voice for the sake of simplicity.

Myriad options are available for building web-based UIs. Things become
trickier when mobile apps are thrown into the mix. The two most popular
platforms, iOS and Android, use entirely different programming languages,
libraries, and tools. Building the apps independently for iOS and Android,
plus separately a web UI, is wasteful and will require a lot of maintenance in
the future. Here are the shortcuts that exist today: Hybrid Mobile Apps:
Code everything as a single-page web app. Use Apache Cordova [26] to run
your web code on iOS and Android [27]. Use plugins available for Cordova
to extend your web functionality into accessing native features of the phone
which are not available in a browser. If no plugin is available for your
purposes, develop your own one, by writing small snippets of native code for
iOS and Android separately, but otherwise enjoy the common code base in
JavaScript, HTML, and CSS. Use TypeScript to keep everything strongly
typed. Use a reliable web development framework to build your UI; I
recommend React/Redux. Mobile apps which are constructed this way are
called Hybrid Apps, as opposed to truly native ones. Hybrid apps are
sometimes criticized for poor performance, although I built many hybrid
apps which performed amazingly well. The key is not to abuse the mobile
processor, keep everything clean and simple, and adopt the typical look &
feel of a native app – which differs from the looks of a mobile web site.

React Native: Use React Native to build a native mobile app. It lets you
to code across iOS and Android, and you have access to native plugins
similar to those available in Cordova, or you can write your own. You can
share your data types and some utility code across mobile and web but React
Native is not the same as React Web, and therefore you end up having
different UI implementations for the web and for the mobile apps. You can
use TypeScript to keep everything strongly typed.

Flutter: Use Flutter for the mobile app development. Flutter produces
native code for both iOS and Android, and it also supports native plugins –
very similar to Cordova and React Native. Flutter’s programming language
is Dart, and your code base for the mobile apps will share nothing with your
web UI. The interesting thing about Flutter is that it is backed by Google,
and there are implementations underway to make Flutter work on the web
and on the desktop. Those implementations have not reached maturity at the
time of this writing, and I cannot recommend them as a proven path – but if
you are reading this in 2020 or later, then there is a good chance that you
could use Flutter for UI development across all platforms, web and mobile
and desktop.

<important>
For most business solutions, Hybrid Mobile Apps is the most economical

path. It allows you to reuse the code for the web and for the mobile
platforms. For the remainder of this chapter, I will assume that you are

moving forward with this option.
</important>

The next important thing to choose is the UI framework. In order to be
compatible with mobile development, you should be building a single-page
web app. This means the web page is loaded only once from the web server
or from the mobile phone’s local storage, and it is never refreshed or
reloaded after that. All the UI changes play out within that single page.

The decision to build a single-page app helps narrowing down further
choices of the UI frameworks. The good old jQuery is just too heavy for the
job, and so is Angular and many others. The most lightweight and
performing framework today, with broad range of third-party components
available, is React/Redux. It gets a bit more complex and somewhat limiting
where it comes to animations, especially transitional animations, but overall
this provides you the fastest way forward. React is also great for code reuse,

and Redux keeps your application state from sprouting through your entire
codebase uncontrollably.

Getting a single-page app to interact with your servers in the most
optimal way could be challenging when the code base is shared across web
and mobile platforms. The sequence diagram below shows the right way of
doing it.

Here, the server receives an HTTP GET request from the browser,
alongside with the cookies that carry user’s identity from past interactions.
The server returns a web page, usually built from a small template, by
including the data necessary to render the first page into the web page itself.
The server also returns a cookie which identifies the session and the end
user, so that the next time the same user comes in, the server can customize
the experience for that particular user. The web page, once received by the
browser, immediately displays a splash screen, and loads scripts and other
assets from a cloud storage or from your server, via CDN. Once all assets are
loaded, the splash screen is replaced by a fully rendered first page. When a
user interacts with the page, the collected input and actions are sent to the
server via an AJAX call, alongside with the user identity, and the data
received back is used to render the next page.

The described interaction pattern between the client and the server
allows you to reuse the server-side code, and most of the client code, to work
with a Cordova-based mobile app, as depicted in the next diagram.

The main difference here is that assets are no longer retrieved online;
instead they are installed with the application as an asset bundle. The web
page itself is also a part of the asset bundle and is not retrieved from the
server. The server simply responds to AJAX calls, reusing the same code
that handles requests from the web app.

Another difference is in handling user identity. In web apps, the identity
of the end user is most frequently stored in a cookie. Browser sends the
cookie to the server alongside with the HTTP GET request for the web page,
and the server may return a new or updated cookie alongside with its
response. Cookies are automatically saved by the browser between requests
and are retained for the duration of time you specify. In case of a mobile app,
the page is stored locally, and the user identity must be passed to the server
as a part of the AJAX call. To make the call reusable, pass user identity in
the AJAX calls in both web and mobile versions, and process cookies
server-side only on the initial page load in the web app.

The differences between the web and mobile UI code are also minor and
can be contained in few methods of single pluggable interface.

<breakpoint/>
Now, let’s talk about the composition of the UI code. Wherever you

look, the world is full of advice, which comes down to the Model-View-
Controller (MVC) pattern, or one of its variations. It seems to be common
wisdom that MVC is the answer to everything. MVC is also the pattern

which my team used to build the CMS which I mentioned earlier – and
failed. Let’s have a look at it, on the high level, to make sure we are on the
same page.

MVC suggests that your user interface code should comprise three
components:

Model: the data, or domain services that let you access the data
(such domain services were referred to as Business Logic earlier in
this book).

View: the mechanism to display the data to the end user, and to
accept input from the user.

Controller: the algorithm which, on one hand, uses the input
received from the user to manipulate the Model and, on another
hand, provides data to the View.

This diagram illustrates how MVC is constructed:

The main idea of MVC is a separation of concerns. It keeps all three
components – the model, the view, and the controller – separate from each
other. Here is how it does it.

The golden rule of MVC is: The Model represents the data and does
nothing else. The model does not depend on the view or on the controller.

This is an awesome guideline, totally in line with what we discussed earlier
in the book (UI depends on Business Logic, not the other way around).

Where it comes to View, things get trickier. In theory, View should be
independent of both Model and Controller and can be reusable. However,
this rule is frequently violated by popular UI frameworks, and by developers
who use those frameworks. It is also fairly common to merge the View and
the Controller, which makes the View non-reusable. Long story short, a
“clean” MVC implementation is a rare sight nowadays.

Besides the frequent misuse, MVC has several shortcomings of its own:

MVC promises decoupling of components, while, in fact,
Controller is tightly coupled with both View and Model (it
depends on both).
Controller in MVC violates the Single Responsibility Principle
(remember the “S” in SOLID?) because it has two sources of
change: Model (business logic) and View (user interface) and
different people/teams behind them (product vs UI/UX).
MVC causes Controller code grow uncontrollably (pun intended).
This is known as Massive View Controller problem.
MVC does not promote reusability.
MVC significantly reduces the testability of the code.

Because of these shortcomings, we’ve seen lately a proliferation of
MVC-derived patterns that somewhat improve the original, such as MVP,
MVVM, MVI, and numerous others. Confusing, isn’t it?

<important>
Forget the MVC-derived acronyms. There is a better way [28].

</important>
Imagine that you are asked to engineer a process for interacting with an

end user via snail mail. You came up with a set of forms, which are mailed
to the end user, one at a time. When the user receives a form, they fill it out,
and send it back. When you receive the filled-out form back from the user,
you first check the form for errors. If there are errors in the form, you
highlight the errors, and re-send the same form to the user again, asking
them to make corrections. If the form is error-free, then you record its
content somewhere, and decide which should be the next form to send. Some

forms could be rudimentary and require no user input – such as a thank you
letter, a promise to get back to them in 30 days, etc.

What if we map this very logical physical process to the technology
world? Let’s give it a shot.

First, we must implement the digital representation of a form –
let’s call them form views. Form views are implemented in the
client. Since we are building a single-page app (web or mobile),
we must implement all the form views within that single-page app.
Our web page will have to contain all the code necessary to
display every form view we intend to display in our app. Forms
views could be reusable. For instance, we can have one universal
form for collecting multiple choice answers from the user, and we
can use this form in a variety of contexts.

Then, we have our business logic. The business logic is
implemented in the server; it interacts with the data model
internally, as we discussed in the earlier chapters. The data model
is not directly consumable by the UI.

Now we must come up with a way to exchange the data
between the business logic and form views. For that, we create
form adapters. Each form adapter has two functions: (1) to prefill
and customize the forms before they are displayed to the end user,
and (2) when the user takes action, to read the form data, validate
it, and either reject the form with an error or call the business logic
to process. Note that while forms views are reusable, form
adapters are not – they are custom-written for each interaction with
the user. Form adapters serve as bindings between reusable form
views and the business logic of your application.

Finally, we need a single router to decide which form adapter
(and therefore which form) should be used at any given time. The
router must communicate with the business logic to support its
decisions. For instance, during a new user registration process, the
router may sequentially ask the user to enter their name, email, and
password.

The topology of this solution is depicted in the diagram below.

To illustrate how this pattern functions, consider this diagram:

This model works very well with React – simply use React/Redux to
build your Form Views as React components. Each Form View, in turn, can
be assembled from third-party or proprietary lower-level components.

This design pattern does not rely on React in any way; you can use a UI
framework of your choice, as long as you limit its use to building Form
Views.

Finally, let’s consider dependencies between modules, as depicted below:

As you can see, we have solved or reduced most of the problems
exhibited by MVC, while retaining all the benefits it promised and more:

All components are properly decoupled; both the Form View
(View in MVC) and the Business Logic (Model in MVC) remain
decoupled from everything else.

The Business Logic remains the core dependency of other
components (the Model in MVC depends on nothing).

Views are standardized and made reusable, while retaining the
possibility of creating custom ones if necessary.

The monolithic Controller from MVC is broken down into
multiple Custom Form Adapters and a single Router, preventing
the Massive View Controller problem.

Navigation decisions are now contained in the Router and are
cleanly segregated from data input and display.

The Router still violates the Single Responsibility Principle,
just like the Controller in MVC, but the Router is a much smaller
component, keeping the blast radius from such violation relatively
small.

The Custom Form Adapter’s dependency on the interface of
Form View is not expected to be a source of significant change,
due to the fixed nature of the Form View’s contract. While

technically it could be viewed as violating the Single
Responsibility Principle, in practice its primary reason to change is
the Business Logic. Additionally, since each of the Custom Form
Adapters depend on a single Form View’s interface only, the blast
radius from a change in an interface is small.

<breakpoint/>
Now, let’s discuss how to control the look & feel of your UI. The first

knee-jerk reaction is to continue on the traditional path of shared CSS. It’s
easy – you change your CSS, and everything changes automatically, right?
Wrong.

Generally speaking, shared CSS is a terrible idea for large software
systems. Here is why:

CSS only works in HTML-based implementations. It works
with Cordova which shares the code with the web, but it doesn’t
work with Flutter or with any of the native mobile components. If
you plan to build true native apps, you need an alternative
mechanism. With Cordova, you may also find that some
components are implemented natively via native plugins and do
not respond to CSS changes.

The CSS which is written for a component, and the HTML
generated by the same component are tightly coupled but their
coupling is not validated in any reliable way. When a component’s
implementation changes, your CSS markup may cease to function,
without notice.

In rich interfaces, each UI component should be skinnable. For
instance, a button component must be of different colors
depending on which background it is placed on. To achieve this in
CSS, the most commonplace approach is to use CSS selectors
which reference HTML structure (selectors like X child of Y
parent). Such selectors tend to break every time the nesting of UI
components change, or the components themselves change.
Finally, CSS selectors are tied to the underlying HTML
implementation, breaking the encapsulation of design decisions

made by component designers. Upgrade to a new version of a
third-party component can have devastating effects on your UI.

There are cases when you may want to share certain styling
properties across components, but individually control others. For
instance, form’s background, font of form labels, and default text
color are usually controlled uniformly across all components on
the form, while other styles remain component specific. It is
incredibly hard to get all components consistently designed to
depend on the same CSS properties to enable sharing.

A better way is to make your UI components directly skinnable. Think of
your components accepting a parameter (a property in React) that represents
a skin, i.e., a collection of parameters, usually in JSON format, which
completely controls your component’s look and feel. Skinning of HTML
components could be done via inline CSS styling, eliminating the need for a
separate style sheet. Skinning of native mobile components is usually done
by setting native properties of those components. Flutter has its own styling
mechanisms represented by several library classes – which can easily
integrate with your proprietary skin.

You can also break skinning data into two sections – Individual Skin vs
Ambient Skin. Individual Skin is responsible for properties specific to each
individual component, while Ambient Skin contains shared styling for a
larger area of the screen, such as a form, or a row in a list or a table.

Since skins are just data, they can be computed. You can devise an
algorithm to compute some of the skin values. This is useful if you want to
adjust font sizes based on the size of the screen or to support accessibility
settings.

A word of warning: do not confuse skin and layout. Skin should contain
no information which controls positioning of UI components. Layouts
should always be implemented in the logic of the UI components, or they
can rely on proven HTML layouts, or layout libraries in native apps. Skin
may affect the layout, for instance by altering a font size, but it should not be
used to control the layout.

Finally, a note on responsive designs. Responsive designs are great, but
they are insufficient in many cases. Entire end-user workflows may require a
different approach for desktop vs mobile. For instance, you may display a
long registration form at once to a desktop user, but prompt the user the enter
one field at a time on mobile platform. In some cases, you may want to

support tablets as a separate category as well. The differentiators between
devices is not only the screen size, but also touch vs pointer capability, and
on-screen keyboard vs physical keypad. Touch interfaces invalidate some of
the traditional way of displaying information such as tooltips and alternating
colors on pointer flyovers. On-screen keyboards require you to reserve
enough space on the screen for the keyboard to open, since it may overlay a
large portion of the screen. This is why many mobile apps show forms one
fields at a time. Keyboards also generally prevent you from creating designs
with action buttons placed at the bottom of the screen, while it is very typical
for desktop-optimized UI.

Optimizing user experience through altering user workflows beyond just
the screen layout does not come for free. In the UI architecture pattern
described here, you have two options. One, you can build create different
routers for different device types (mobile, desktop, perhaps tablet). Two, you
can create smarter form views, which have built-in device optimizations, but
appear to the rest of the system as a single view. For instance, the router tells
the UI to display the registration form view, but the view itself is smart
enough to create a step-by-step experience on a mobile device, but a single-
step long form on desktop.

<tldr>
User Interface must be properly architected, and under no circumstances

can be left to sprout organically without governance. You can maximize code
reuse across web and mobile apps by using Apache Cordova. There is a
better UI code composition pattern than MVC. Consider programmable
skinning instead of shared CSS. Mobile vs desktop differences go beyond

screen sizes, and may require different user flows.

https://anatoly.com/user-interfaces
</tldr>

https://anatoly.com/user-interfaces

Chapter 13: Microservices

Death is caused by swallowing small amounts of saliva over a long
period of time.

– George Carlin

You have definitely heard of microservices, or maybe had a chance of
working on a microservices-based architectures. Essentially, microservices
are based on the old idea of service-oriented architecture (SOA) taken to the
extreme. The idea is to replace software modules with API endpoints. So
instead of importing a module and using its functionality directly, you are
calling an API, usually via HTTP protocol. The promises of microservices
are:

Use containerization to easily deploy services (which is the
benefit of containerization, not of microservices themselves).

Services can be coded in different languages, they are
technology and infrastructure agnostic (which is absolutely true;
this is almost the only reliable way to mix different programming
languages in a single server-side environment [29]).

Each service can be scaled independently (true, with a caveat:
scaling a “flat” microservices infrastructure is easy; scaling daisy-
chained microservices could be extremely challenging).

Services can be developed independently from one another
(true, although this can be achieved without the complexity of
microservices: independent development of components can be
facilitated through a basic discipline in applying SOLID
principles).

On top of somewhat arguable benefits, microservices bring their own
spectrum of problems:

API calls over the network are slow and may lead to network
congestion.

Managing dependencies could be hard; there is no compile-time
detection of incompatibilities.
Much harder to test and monitor than traditional architectures.
Nearly impossible to carry transactions across API calls [30].
Insufficient scaling of one service leads to scalability problems
and frequently to a failure of other services which depend on it.
This is known as backpressure.

There is a lot of confusion in the field around microservices, leading to
many misguided decisions. Specifically, infrastructure is confused with
code segregation. Code segregation does not have to be affecting the
infrastructure. There are other – simpler – ways to achieve it, including
those covered in this book. In the past, it made sense to run service code
close to the physical location of the data, which used to be the same server
– hence microservices as a way to build infrastructure. This design pattern
is rarely applicable nowadays, since most databases are now hosted
separately from the application code. BTW, you can view the database as a
microservice of its own, which your code depends on.

In my opinion, microservices (or just API services) fit well for the
following purposes:

Servicing the client tier (i.e. implementation of the API servicing
the UI implementation)
Exposing APIs to third parties
Representing third-party services
Representing services built in a technology stack incompatible
with the core stack used by your system
Representing legacy systems and components

I wouldn’t, however, venture into artificially breaking up an otherwise
well-designed architecture into microservices – unless you know exactly
what you are doing and why.

<important>
Microservices are infrastructure and deployment strategy, not an

architecture pattern. They are great for building APIs and integrations.
</important>

If, however, you end up with microservices, you must at least ensure
that you detect API incompatibilities at compile time. If you are using the
same language across the board, and the language supports interfaces, then
you should simply separate the interface definitions from service
implementation and import those definitions by services and consumers
alike.

If you are dealing with services and consumers written in different
languages, then you need a single source of truth for your API data
structures. The most typical approach is to use an Interface Definition
Language (IDL). There are not so many good IDLs out there. One of the
popular ones is Protocol Buffers (aka Protobufs). You can define your APIs
using Protobufs, and then generate interfaces and bindings for almost any
popular language. Another approach is to use one of the strongly typed
languages which supports reflection [31] (like Java or C#) to define your
API, and then use reflection mechanisms of the language to generate
compatible data structures for other languages. This effectively turns your
Java or C# code into an IDL.

<tldr>
Microservices could be dangerous, and their benefits are arguable. If you
are inexperienced with microservices, stay away. If you do microservices

across multiple programming languages, use IDL to keep all APIs in sync.

https://anatoly.com/microservices
</tldr>

https://anatoly.com/microservices

Chapter 14: API

Careful, if you think too much, they’ll take you away.
– George Carlin

Every time I think of APIs (Application Programming Interfaces), I
mentally go back to 2009-2010 when I was working on my social media
marketing platform. A fair amount of functionality of the platform was tied
to Facebook, and it made extensive use of Facebook API to do its magic.
From my experience, I always thought of vendor APIs as something sacred
(in this context well-designed, well-tested, backward compatible, and
reliable). Facebook shattered that shiny mental construct which I carried in
my head for many years. Their API changed frequently, with little advance
warning. The changes were breaking and weren’t backward compatible. I
was pulling my hair out with each update, and we had to rewrite a lot of
code to keep my high-profile clients happy. At the time, I was working with
Mountain Dew, Gatorade, FOX, and Millennium Entertainment, amongst
others – and having a system downtime was simply not an option.

Over time, Facebook became better in planning their API upgrades, but
the changes were still breaking. Worse, significant chunks of functionality
were removed with almost every new version published. In all fairness, this
was a logical reflection of the company’s growth, as they were discovering
their true place under the sun, the value of the data they have, and
monetization methods they wanted to keep exclusively to themselves. The
technical execution, however, could have been much smoother.

This experience taught me to pay serious attention to stability and
backward compatibility of the APIs, at least those exposed for third-party
consumption.

<important>
Every API is a contract. In that, it is similar to an interface in your

programming language, with one important distinction: changes to an API
may break not only technical contracts but legal contracts as well. Changes
of an API must always be coordinated with the consuming party, or – better

– you shall be backward-compatible in your changes.
</important>

For this book, I define the term API as a contract exposed by one
software component for the purposes of consumption by another software
component. In a general sense, it can be anything – a software library, a
documentation for making network calls to a server, or almost anything else.
Here, we will focus squarely on the APIs exposed as HTTP endpoints on the
network.

You have probably heard about REST, which stands for Representational
State Transfer. REST leverages HTTP protocol by treating services as
resources with CRUD operations (Create, Read, Update, Delete) available
on them, expressed as HTTP PUT, GET, POST and DELETE methods
respectively. For instance, you can build an API which creates new users by
sending a POST method, updates by sending a PUT, reads by using GET,
and deletes with DELETE. As you may recall from previous chapters, a
CRUD data model is not always the best approach, which makes REST
frequently a poor choice as well. The benefit of REST is that, by closely
following HTTP guidelines, it is compatible with CDN caching. You can
leverage this aspect of REST for idempotent data retrieval and search
functions, implemented using HTTP GET method, if there is need. Other
than that, you get very little benefit from building your API around the
REST pattern.

I recommend a different approach to API construction, which is not
REST-compliant. In exchange, it allows you to overcome many
shortcomings of the traditional REST approach. If you ever need CDN
caching for your API responses, then you can create another flavor of your
API, a subset, which includes only GET methods, and which is fully
compliant with REST [32].

In this chapter, we will look at how to construct a good service API. We
are not going to concern ourselves with the transport layer and
marshalling/unmarshalling of the data. Instead, we will focus on API data
structures. In the interest of simplicity, we assume that the data is transferred
in JSON format using HTTP POST.

While constructing a good API, we must consider:

Unified approach to all API calls
Error handling
Stability and backward compatibility
Ability to submit multiple calls in a single request

Ability to ship client-side logs to the server alongside with any
request
Ability to ship server-side logs to the client alongside with any
response
Ability to programmatically analyze error responses
Ability to create new API versions instead of making breaking
changes
Security

Let’s start with error handling. If you want your client code to have
visibility into the cause of server-side errors, forget about using HTTP codes
as responses. Those codes shall be reserved for infrastructure failures. From
the infrastructure point of view, any attempt to withdraw an amount that
exceeds the account balance is not an error – it’s a success and should return
HTTP 200 OK. Application-specific errors must be handled through the data
returned in the API response.

Now, let’s build a sample API which performs Read and Update
operations on a user profile. First, we create a module api-defs which defines
all API data structures. There is a reason we want to place all API definitions
in a separate module: the API data structures should have no dependencies,
period. Your API definitions module must have no imports. You should
never ever the use data structures from any layer of your system or from any
third party library for API definitions. Doing so puts the API contract at risk
of unexpected changes when those dependencies change, breaking the
contract with third parties who consume your API.

In our example, the module containing all API definitions may look like
this:

<code>
// module api-defs.ts
interface LogData {

entries: string[];
}

export enum QueryType {
READ_PROFILE, UPDATE_PROFILE
};

interface Query {
qt : QueryType;
};

export interface ReadProfileQuery extends Query {
qt : QueryType.READ_PROFILE;
profileId : string;
};

export interface UpdateProfileQuery extends Query {
qt : QueryType.UPDATE_PROFILE;
profileId : string; // id of the profile to update
userName? : string; // new name, omit to retain previous value
userAge? : number; // new age, omit to retain previous value
};

export enum ResultType {
PROFILE
};

export enum ProfileQueryOutcome {
SUCCESS, NOT_FOUND
};

interface Result {
rt : ResultType;
};

export interface Profile {
userName : string | null;
userAge : number | null;
};

export interface ProfileResult extends Result {
rt : ResultType.PROFILE;
outcome : ProfileQueryOutcome;
profile : Profile | null; // null allowed on failure
};

export interface Request {
requestId : string; // unique ID (usually UID), pass the same value on retry
logData : LogData | null; // ships client-side log to the server
queries : {
[queryId : string] : ReadProfileQuery | UpdateProfileQuery;
};
};

export interface Response {
requestId : string; // echos the ID passed in the request, for validation
logData : LogData | null; // ships server-side log to the client
results : {
[queryId : string] : ProfileResult;
}
};

</code>
This module contains all the data structures for the API and is intended

to be imported by both client-side and server-side code, to keep them in
sync. If the client-side code is written in a different language, then the
matching data structures would have to be defined again in that language, or
both definitions could be generated from a single source in an IDL (for
example, in Protobufs).

The data structures which are transmitted between the client and the
server are Request and Response, respectively.

Each Request may trigger the execution of several business functions at
once. For that purpose, we created the Query interface, which is an abstraction
for any business function. Multiple queries can be submitted by the client in
the same instance of the Request object. To make it easy for the client to match
the returned results to each submitted query, we identify queries by queryId,
which the client can set arbitrarily, and the server must echo back with each
query result.

In our example, we implement two business functions – reading and
updating a user profile – which are represented by ReadProfileQuery and
UpdateProfileQuery, respectively. The UpdateProfileQuery does not require all profile
fields to be present; it only updates those set by the client. To determine
which query is received on the server side, we use the enumerated value
QueryType, included with each query.

Now, let’s illustrate the use of this API on the client side. In the interest
of simplicity, we send a request with a single read query, to retrieve the user
profile with profileId==12345. We will be using a library that implements

httpCall() function to submit a request to the server, and to receive the
response. Here is the code:

<code>
import { ProfileQueryOutcome, ProfileResult,

QueryType, ReadProfileQuery,
Request, Response, ResultType } from './api-defs';
import { httpCall } from './http';
import { getLogStrings, printLogStrings } from './logger';
import { getUid } from './uid';

let rq : Request = {
requestId : getUid(),
logData : { entries : getLogStrings() },
queries : {
'read' : <ReadProfileQuery>{
qt : QueryType.READ_PROFILE,
profileId : `12345`
}
}
};

let rs : Response =
httpCall(`api.mycompany.com/profile`, rq) as Response;

if(rs.logData) {
printLogStrings(rs.logData.entries);
}

let result = rs.results['read'];
switch(result.rt) {

case ResultType.PROFILE:
let readProfileResult = result as ProfileResult;
switch(readProfileResult.outcome) {
case ProfileQueryOutcome.SUCCESS: {
console.log(`name: ${ readProfileResult.profile.userName }`);
console.log(`age: ${ readProfileResult.profile.userAge }`);
break;
}
case ProfileQueryOutcome.NOT_FOUND: {
console.log(`user profile not found`);
break;
}
}
break;
default:
throw new Error(`unexpected result type ${ result.rt }`);
}

</code>
Notice the use of ResultType. The way we constructed the API, the same

function could return different data types in response. In our case, the
returned data type is always the same (ResultType.PROFILE) and we could
eliminate the outer switch statement. I however decided to keep it as a sanity
check, and to demonstrate where varying result types should be handled.

Also notice that the server-side log is shipped to the client, and is printed
immediately after receiving the response from the server. As it was
explained earlier, this gives us a chance to troubleshoot server-side problems
at development time without digging through server-side logs.

Finally, let’s consider the server-side code:
<code>

import { ProfileQueryOutcome, ProfileResult,
QueryType, ReadProfileQuery,
Request, Response, ResultType,
UpdateProfileQuery } from './api-defs';
import { getLogStrings, printLogStrings } from './logger';
import { readUser, updateUser, User } from './user-model-defs';

export const handleRequest = (rq : Request) : Response => {
// skipping handling of rq.requestId in the interest of simplicity
if(rq.logData) {
printLogStrings(rq.logData.entries);
}
let rs : Response = {

requestId : rq.requestId,
logData : null,
results : {}
};
for(let queryId in rq.queries) {
let query = rq.queries[queryId];
let user : User = null;
switch(query.qt) {
case QueryType.READ_PROFILE: {
let readProfileQuery = query as ReadProfileQuery;
user = readUser(readProfileQuery.profileId);
break;
}
case QueryType.UPDATE_PROFILE: {
let updateProfileQuery = query as UpdateProfileQuery;
user = readUser(updateProfileQuery.profileId);
if(updateProfileQuery.userName != undefined) {
user.name = updateProfileQuery.userName;
}
if(updateProfileQuery.userAge != undefined) {
user.age = updateProfileQuery.userAge;
}
updateUser(user);
break;
}
}
let result : ProfileResult;
if(user) {
result = {
outcome : ProfileQueryOutcome.SUCCESS,
rt : ResultType.PROFILE,
profile : {
userName : user.name,
userAge : user.age
}
};
}
else {
result = {
outcome : ProfileQueryOutcome.NOT_FOUND,
rt : null,
profile : null
};
}
rs.results[queryId] = result;
}
rs.logData = { entries : getLogStrings() };
return rs;
};

</code>
Here, we implemented a server-side request handler handleRequest(). It

prints the client-side log, and then processes all received queries in a loop.
Different types of queries are processed independently by query type, using
the switch statement. The request handler returns a response containing the
results of all queries, each identifiable by the queryId originally received from
the client. Server response includes a copy of server-side log.

This example only illustrates the approach. It lacks some important
pieces, such as server-side code that will make the service idempotent in
case of retries, and client-side code to retry the call in a case of an error.
Client-side code also lacks network error handling. You may also consider
executing multiple queries concurrently (asynchronously) in the server-side
logic, as long as the queries have no mutual interdependencies. This can
significantly reduce server-side latency of your API calls with multiple
queries.

I am leaving it up to you to think through those additional pieces.

<breakpoint/>
If you plan to expose your API to third parties, then you must consider

backward compatibility of the future versions. The easiest way to ensure
backward compatibility is to create new API request & response interfaces
for each new version and support all versions simultaneously on the server
side. This way, you can handle the traffic carrying any version of the API
ever existed. You can then officially deprecate older versions, give your API
consumers plenty of time to migrate to the new API, and eventually make
the old versions respond with an error and stop supporting them.

If your API is expected to be consumed massively, it makes sense to
provide third-party developers with additional tooling. The most useful tool
you can give them is a language-specific binding (or several, for multiple
languages), in a form of a pre-packaged library. Such libraries are frequently
called SDKs (Software Development Kits). For instance, you can publish
your SDKs for Java, JavaScript/TypeScript, Python, C/C++, and whatever
other languages you expect to be useful to your customers. Every time you
create a new version of your API, you release a new version of the SDK for
each of the supported languages. Ideally, your SDK should be backward-
compatible the same way as your API is. The SDK shall not be required to
work with your API; you must always allow third-party developers to
connect with your API directly, thus eliminating the need for you to support
all possible programming languages under the sun.

Another important consideration when building an API is security.
Security concerns include encryption, authentication, authorization, and rate
limiting.

Encryption makes sure the API messages cannot be deciphered if
intercepted by a third party, as a part of a man-in-the-middle attack. This
makes the API safe to use over the public Internet. The most common API
encryption solution today is TLS (aka SSL) protocol, which encrypts all
communications between a client and a server. You can tell if TLS is used by
looking at the HTTP URL of an API endpoint. If the client can only connect
using https: protocol (i.e., the URL begins with https://...) then the connection is
encrypted with TLS. If the client can connect to the API using http: protocol,
then it is not secure. Note that the secure part of your API message is the
body, but not the URL itself – thus one should never include any sensitive
information such as passwords or security tokens directly into the URLs.

Authentication safeguards your API against use by unauthenticated
clients, protecting the API from abuse by the parties who has no right to
access it. The most simplistic form of authentication is the Basic
Authentication in HTTP. Basic Authentication passes HTTP Authorization
header which consists of the word Basic followed by a space and a base64-
encoded string which contains user name, colon, and password (i.e.,
username:password). For instance:

< output >
Authorization: Basic aND1lcwsdarFDSERsdf89a==

</output>
Basic Authentication is commonplace, but it has a significant flaw: the

username and password have to be stored by the client, and you have no say
over how they do it. I’ve seen a lot of code with hard-coded username and
password values, which was posted in a publicly accessible Github
repository – making the API wide open for malicious exploits.

As a commonplace alternative to Basic Authentication which many APIs
rely on is API Keys. API Keys are randomly generated values, which are
passed from the client to the server as a part of an encrypted request. The
API keys are then processed on the application level, which gives you a
chance to use them not only for authentication but also for authorization
purposes (as explained below). While this approach is widely accepted, it
suffers from the same risk of the client mishandling them.

A more secure approach available for server-to-server communications is
client certificates. This is an extension of the TLS protocol. You may have
noticed that when you connect to a secure site from your browser using
secure URLs, the browser usually displays a padlock icon indicating the
connection is secure. Clicking on the icon allows you to view the server
certificate, which ensures you are indeed connected with the desired server,
and not with a malicious impersonator. A similar mechanism exists for the
server to validate the legitimacy of the client, by the client exposing its client
certificate. Your server then validates the client-side certificate as a part of
the TLS handshake, and a connection cannot be established if the certificate
is invalid or missing. This approach is secure but could be hard to execute in
certain infrastructures, especially in serverless ones.

An even tighter security can be achieved by IP Address Whitelisting,
although it becomes less and less popular with the proliferation of dynamic
server provisioning in the cloud. This approach configures a list of allowed
client IP addresses, or ranges of IP addresses, in the firewall, or on the

server. Then the inbound connections are only allowed from the whitelisted
IP addresses. This approach has seen a lot of popularity in the past, but has
become much harder to implement recently, since it requires the clients to
fall into a stable well-known range of IP addresses. It is hard to impose such
requirement onto third parties which consume your API.

For the APIs called from the client tier (such as browser or mobile apps),
the most popular way to authenticate is by using token-based credentials.
Here is the diagram illustrating this process:

Here is how it works. First, the user gets authenticated by either logging
in using their username and password, or via a password-less system where
the user receives a code via an SMS message or in an email, which they
must re-enter into the login screen. In response to a successful login, the
client is given a token, usually a character string produced by the server.
Tokens are usually generated by encrypting a data structure containing the
user identity, their access rights, and the access expiration time. The client
then passes the token to all subsequent API calls. When the server receives
the token, it decrypts it. If decryption fails, then the token is invalid, the
server responds with authentication error, and the client forces the user to re-
login. If decryption succeeds, then the server checks the expiration time of

the token and refuses to service the request if the token has expired; the
client receives an error and forces the user to re-login. Otherwise, the server
handles the request. When finished, the server generates a new encrypted
token with the new expiration time and returns it back to the client as a part
of the response. The client then uses the new token for the next API call. The
client can store the token in a cookie or in the local storage, to keep the user
logged in even if they close their browser window and re-open it later. With
this approach, the user retains access to the API as long as they are actively
using the system, with no limitation. If, however, the user is inactive for an
period of time which exceeds the token’s expiration, then the server refuses
to service the request, and the client forces the user to re-login.

Finally, on the topic of authentication: there are also OAuth1 and OAuth2
protocols. They aren’t two versions of the same, but two distinctively
different protocols, OAuth1 is more secure but is also more complex to
implement than OAuth2. These protocols are primarily intended for
platforms, where access rights are granted by the system which the end user
already has access to, to another system which acts on the user’s behalf. You
may have encountered OAuth2 more than once already, by giving access to
your Google Drive to third party applications. OAuth protocols issue an
access token similar to an API Key, but since the token is issued dynamically
at runtime, the risk of it ending up hard-coded and exposed through source
code is low. Implementing an OAuth protocol is far more involving than a
simple API Key, but you absolutely should consider it if you are building a
platform with extensive API use by third parties.

Authorization provides more granular control over which services and
data are available to a specific API client (or user). Authorization is usually
implemented in the business logic. Each client (or user) is assigned a list of
business functions or data entities which they have access to. Such lists are
also known as access control lists or ACLs. When dealing with human end
users, ACLs are frequently assigned indirectly, through the use of user roles.
The idea behind user roles is to identify typical access rights for various
roles the users have in the system (basic users, administrators, accounting,
superusers, etc.), specify ACLs once for each role, and assign roles to the
individual users. This simplifies maintenance. Imagine that you added
several new features to your system. When ACLs are managed individually
for each user, you will have to adjust those ACLs for each user to give them

access. Alternatively, you only need to adjust ACLs for a few roles, even if
there are thousands or millions of users with that role.

In many cases, you may want to hide inaccessible features and data from
the end users in the UI. Regardless, you shall process all security
considerations on the server side. ACLs should never be exposed to the
client-side code. Instead, your business logic on the server shall provide
clear instructions for showing/hiding specific UI elements. The protected
data shall never reach the client. Client-side code is relatively open for
hacking, and your architecture should not be exposed to a security breach in
case client-side validations are overridden by a hacker.

Rate limiting is a way of capping the number of API calls which a client
can make in a given period of time. Sometimes it is done to support multiple
pricing tiers, but more frequently to protect the API from abuse and from
denial of service attacks (DOS). Rate limiting is best controlled outside of
the application layer, through firewall hardware or using cloud safeguards.
You can implement different strategies for rate limiting, from connection
rejections to automatic throttling.

To wrap up the API topic, a brief note on GraphQL. For those
unfamiliar, GraphQL was originally developed by Facebook in 2012, and
then open-sourced in 2015. It creates a way to build an API as a structured
data query, while the server-side implementation (typically in Node.js) does
the leg work of interpreting those queries. GraphQL is frequently used for
aggregation of legacy and third-party APIs, and it creates a seemingly easy
path to host multiple API functions on a single HTTP endpoint. So – what
about GraphQL? Frankly, I am not a fan. GraphQL inverts the dependency
chain, making the development of a server-side business logic driven by the
needs of a client. This contradicts many core architecture principles
described in this book. If you buy into those principles, then there should be
no place for GraphQL in your blueprints. Besides, GraphQL is hard to scale,
it doesn’t have a strong type binding to your programming language (i.e., the
errors will not be caught at compile time) and it is incompatible with CDN
caching mechanisms. The flexibility of getting a subset of data can be easily
modeled using the straightforward API approach which I described earlier in
this chapter, without breaking any of the core architecture principles. The
approach suggested in this book also works on a single endpoint, just like
GraphQL does.

<tldr>
REST is rarely required in the real world. Follow the pattern of API

construction explained by example in this chapter. Consider providing your
API’s customers an SDK. Keep your API secure. Try to resist GraphQL’s

charms.

https://anatoly.com/api
</tldr>

https://anatoly.com/api

Chapter 15: Batch

If someone with multiple personalities threatens to kill himself, is it
considered a hostage situation?

– George Carlin

Have you heard the term batch processing? If not, you might have heard
of cron jobs or daemon processes, which are not exactly the same thing, but
close.

<important>
Batch processing is a pattern of processing transactions in a group (a

“batch”). No user interaction takes place once batch processing is
underway. This differentiates batch processing from online transaction

processing, which handles transactions one at a time, and allows for user
input for each individual transaction.

</important>
In the early 1990s, I was a software developer on the team tasked with

building a banking system. Traditionally in banking, lots of data processing
is done in batch. Batch usually runs at night and processes massive amounts
of transactions. Easy, right? Well, in our case, batch processing was a
ticking bomb, we just didn’t know it at the time.

The client’s requirement was to fit all batch processing into a 4-hour
batch window, from midnight to 4 am Pacific; they wanted everything
finished by 7 am Eastern Time, one hour before the opening time on the
East Coast. We did better. We could complete all the batch processing for
2x the projected number of transactions within 3 hours.

All went well; we launched the system, and it worked amazingly well
for the first 6 months. Then our customer merged with another bank, three
times larger in operation, and the merged entity decided to run our beautiful
new shiny banking system across all branches of the merged business. This
would quadruple our licensing fees – awesome news! But it also pushed our
batch processing into the 12-hour territory, totally unacceptable. And no, we
could not run multiple batch jobs in parallel; they were meant to execute
sequentially, and we were already pushing the database engine to its limits.

Even if we could run several processes in parallel, it wouldn’t shorten the
time.

We clearly made an early design decision that wasn’t scalable. We could
not anticipate the need to scale this far – and no one could – but we allowed
a critical scalability flow into our architecture, something we shouldn’t have
done, ever.

In the end, we partially solved the problem through software
optimizations, and partially through expensive hardware upgrades. But the
best part was – I learned my lesson.

<important>
Treat batch processing with respect, and avoid the batch design pattern

entirely whenever possible, to keep the system infinitely scalable. If batch
processing cannot be avoided, make it scale.

</important>
Let’s revisit the reasons architects choose having batch processing in the

first place:

Because they are paying homage to the old tradition, or are forced
to comply with pre-existing architecture decisions;
As an attempt to speed up online transactions, by deferring non-
essential portions of the work to a batch that runs at a later time;
To decrease database contention at peak times, by deferring the
work to night hours;
To run periodic processing, such as producing hourly reports, or
computing daily balances;
To run processing at a specific time or date, such as producing a
report each Sunday night.
To move data to a data warehouse or to run other ETL (Extract,
Transform and Load) workloads
To perform statistical analysis
To integrate with third party systems without an online API
To re-index searchable data

By incorporating a batch job into the blueprint, we are potentially
introducing a number of risks:

Batch doesn’t finish on time (runs too long, misses the allocated
batch window);
Batch doesn’t run as planned (fails to start or crashes), having a
debilitating effect on the next day’s operations, which rely on the
results of a nightly batch run;
Multiple instances of a batch process are accidentally launched
and run concurrently, while the batch code is not designed for
concurrent execution;
Batch crashes and is unsafe to re-start (will process a portion of
the data twice);
Batch accidentally runs the second time (will process all of the
data twice);
Batch runs in parallel with online transactions, and competes for
resources (with the database being the most frequent point of
contention);
Periodic batch runs too long and doesn’t finish before the
beginning of the next scheduled run. Depending on the
mechanism for launching batch jobs, a new instance of the batch
may end up running concurrently with the previous one, or the
new instance may not get launched at all.

Most of those risks can be mitigated through proper architecture and
performance testing. However, I recommend to always look at the
possibility of eliminating batch processing entirely. To that extent, the only
valid reasons to have batch processing are:

Periodic processing, i.e., the work that has to be performed every
N minutes (or hours, or days).
Scheduled processing, i.e., the work that has to be performed at a
particular date & time, one-time or recurring [33].
To integrate with third-party systems without an online API [34].

I intentionally excluded the use cases related to the database contention.
In such cases, you must eliminate the root cause of the ailment – such as
non-scalable database design – as opposed to prescribing bed rest and a pair
of crutches. If your architecture needs an open-heart surgery, then the
sooner you do it, the better.

All other use cases can be implemented using the patterns described in
this book, through asynchronous processing (see Latency in Chapter 7) and
through event streaming (see Real-Time Processing and Event Streaming in
Chapter 10).

When architecting a batch, try to follow the guidelines below, to avoid
nasty surprises in the future.

Batch processes must be restartable. When processing transactions,
mark those already processed. This way, you can skip the marked
transactions if the batch is restarted, to avoid processing the same
transaction more than once. If the batch follows a certain consistent order of
processing, then you may use the water level pattern instead of marking
individual transactions. For instance, if all transactions are sequentially
numbered, you can record the latest number processed, and start from the
next number on the subsequent run. This is a more efficient
implementation, but it is harder to work with if multiple batch streams run
concurrently, while marking individual transactions works well with
concurrent batch execution. There are myriad of ways how these two
algorithms can be applied to achieve an optimal implementation in each
particular case.

Offload most of the work onto asynchronous processing. Identify
transactions that require processing in the batch process, and then submit
each transaction individually for processing by using event streaming. This
allows to scale the processing of transactions and run them in parallel if the
semantics of the batch permits out-of-order execution. The most typical
batch process has a database query at the beginning, and then each result of
the query can be submitted to a streaming engine and then processed by
subscribed stream consumers. Partitioning of the stream and a higher
number of consumers can be used to scale the processing part of the batch
(but not the query).

Distribute the work between parallel processes. The goal here is to
allow the batch scale through parallelism. Even if we offloaded the work
through event streaming, we still have the query that needs to run fully at
the beginning of the batch run. Sometimes, you can find a way to modify
the query to allow different process instances pick different segments of
data. The segmentation could be based on date, time, or a completely
artificial characteristic. For instance, you can run three instances of a batch
process concurrently, reporting on customers, having the first instance

reporting all customers with (customerNumber % 3) == 0, the second instance
with (customerNumber % 3) == 1, and third with (customerNumber % 3) == 2. Make
sure parallelism is actually reducing the processing time; you may discover
that you are creating a database contention resulting in completely opposite
net effect from the one you seek.

The date or the time of the day when you run the batch should
carry no semantic value. Let’s consider this example. You must to produce
a report on daily sales. The report must include all the sales transactions
which took place on the previous day, until midnight. The batch which
creates the report should not be required to run at midnight. It should be
allowed to run at any time after midnight, and it must query all sales
transactions from the database with the appropriate date and time filter. A
good implementation of a sales report should accept the date or a range of
dates as a parameter, allowing you to run it at any time in the future, and
consistently produce the same result for the same parameter value.

Embrace failure. Just accept the inevitable: your batch will fail at some
point. Make sure that crashes are (a) reported, (b) the batch continues if a
single transaction failed, and (c) if an unusually large number of
transactions fail then stop the batch and sound an alarm.

Observe the execution time. Monitor the time it takes for your batch
process to run; compare the measured duration with the allocated batch time
window. Sound an alarm if your batch takes longer than half of the
allocated time – as a rule of thumb, you should be ready to process at least
2x of the projected volume. Ideally, you should have a scaling plan to
reduce the time.

Create a telemetry feed. While your batch runs, you may not see if it is
actually performing the work or just sits there deadlocked or waiting.
Instrument your code with a telemetry feed, to enable monitoring. Create a
dashboard showing current state of affairs. The most typical types of batch
telemetry are:

proof of running: a signal sent when the batch starts;
proof of finishing: a signal sent when the batch finishes;
batch failure alert: a signal sent when the batch crashes;
transaction failure alert: a signal sent when an individual
transaction fails;

heartbeat: a signal sent every time the batch picks up a new
transaction to process.

<tldr>
Avoid batch processing whenever you can. Offload as much work as
possible through event streaming. Consider the possibility of scaling

through a concurrent execution of multiple batch instances. Invest in error
recovery. Closely monitor batch execution time. Create telemetry feeds.

https://anatoly.com/batch
</tldr>

https://anatoly.com/batch

Chapter 16: Multi-Tenancy

If it's true that our species is alone in the universe, then I'd have to
say the universe aimed rather low and settled for very little.

– George Carlin

In 2016, I was working on a marketing platform for wineries, breweries,
and distilleries. The platform was capturing customer information as they
visit a winery, and we were also placing a call to action on each bottle to
trigger consumer engagement in retail stores. Each spirits brand had their
own “universe”, which was segregated from the others: they had their own
database of customers, their own admin panel, analytics, and customer
branding displayed to their customers.

The traditional thinking is that you can always run multiple instances of
the system, using either different servers or different cloud accounts with
different databases. Such an approach is called physical segregation, and it is
very common in the software world. For instance, many companies run
multiple environments for development, test, and production – usually using
physical segregation. In some ways, physical segregation is the ultimate
solution, because it not only allows you to create a “walled garden” for each
environment but also can run different versions of the software in each. This
is leveraged by many companies in their dev/test/prod deployment
workflows.

However, many SaaS (Software as a Service) offerings require a very
lightweight segregation between the customers, since running physically
segregated environments for each customer is cost prohibitive and
operationally challenging. For SaaS, software architects usually employ
logical segregation, i.e., the type of architecture which allows for multiple
customers, or tenants, to share the entire infrastructure and code base, while
being logically independent from the others. With proper architecture, the
customers are unable to tell if their account is powered by a dedicated
instance of the system, or if they are sharing resources with the others. Such
architecture is called multi-tenant. Each customer in such architecture is a
tenant.

It is important not to confuse the tenants and the end users. In the SaaS
world, tenants are usually businesses which purchased a service
subscription, while users are individuals who work in those businesses, or
end customers of those businesses. For instance, your company may
purchase a CRM subscription – let’s say a cloud-based SalesForce solution –
then SalesForce treats your company as a tenant in their cloud, while you
and other employees of your company are the users with the access to the
solution. The users of the same tenant are not segregated, they are accessing
the shared database of CRM contacts and tickets, but no one from your
company can access the data from another tenant of SalesForce cloud.

When building a multi-tenant system, the most common approach is to
add the identity of the tenant to the primary key in every database table,
creating a logical segregation from the get-go. This generally works, but you
may need to do more when it comes to consumption of external services and
other interactions with the outside world. Imagine you built a CRM, and one
of your tenants sends spam emails, which can get your domain blacklisted,
negatively affecting all your customers. Or imagine you integrate with an
SMS provider, and one of the tenants sends millions of messages, clogging
your SMS delivery queue across all customers? Do you need to segregate
logging? These are just a few of the questions you must be asking yourself
while building a real-world multi-tenant solution.

But what if you have no need to be multi-tenant? The need for multi-
tenancy in SaaS solutions is obvious, but what if you are an e-commerce
company, and you are architecting your system to power your own business,
no more, no less? The answer is – you don’t know what the future might
bring. On many occasions, I saw e-commerce companies create a new brand
name to address another segment of the market. The difference between the
existing brand and the new one is mainly in branding and go to market
strategy, and they don’t share the customer database. When this happens, the
companies with single-tenant architecture are forced into deploying multiple
instances of the system, which is usually costly not only because of the need
for additional hardware, but because now the operations team has two
systems to monitor and maintain. There are also other reasons to have multi-
tenancy – for testing new product rollouts and for the demos, to mention just
a few.

Back to my marketing platform for wine and spirits. I was approached in
2018 with a request from a large and very desirable prospect to create a

clone of my system for their purposes. The prospect wanted to re-sell the
services offered by my platform in a different market, under their own name.
My implementation of the multi-tenancy model was designed for
segregation of the customers but shared all the internal tooling such as
customer service and billing, as well as connections to third party vendors.
This prevented me from bringing the new prospect up on the infrastructure
which was already in place. I could only offer them a standalone instance of
the system. But the cost of operating a new instance made the deal
economically unviable, and the it fell through. This happened because my
architecture only considered customer-facing multi-tenancy but wasn’t
multi-tenant on the back-end. The most straightforward solution to such
problem is to allow grouping of customers, each group having its own ops
tools and dashboards. In the most flexible implementation, the groups may
overlap. It is also important to make such groupings configurable, in
anticipation of future changes.

The diagram below illustrates the potential complexity of data
segregation in multi-tenant systems:

Here, we have three tenants A, B, and C with a definitive need to have
their data segregated. However, tenants A and B are serviced by the same
accounting company E, and that company must have access to the data of A
and B. Further, tenants B and C are owned by the same holding company,
and the owners must have access to the data of B and C. You are the operator
of the entire system (F) and must have access to everything.

The data segregation between A, B, and C is usually built into the data
model. However, I wouldn’t recommend doing the same for D and E. One
day, tenant B may get sold to another owner, and the relationships built into
the persistent data could be hard to update. This can be fixed by having
access control lists (ACLs) to map access for D and E to the tenants. We
covered ACLs briefly when discussing authorization aspects of APIs
(Chapter 14).

It is important to implement your own access (F) through ACLs as well.
This way, you will not repeat my mistake of giving internal dashboards
unlimited access to everything.

A word of warning: ACLs may come with significant performance
penalties where it comes to retrieving long sorted collections of data. For
instance, retrieving a list of all customers from the database visible to the
holding company D requires retrieval of all customer records for B and C,
and then sorting of the entire list. With the large number of customers, this
can take a long time, and may consume a lot of resources. One of the
solutions is to create indexing of data based on both the desired sort order
and the ACLs and rebuild those indexes when ACLs change. It is easier to
build indexing when ACLs are attached to user roles and not specific users –
this way, you end up maintaining indexes per role, and not per user,
significantly reducing the amount of indexing work.

<tldr>
Consider making your architecture multi-tenant, even if you see no

immediate application for it. Multi-tenancy goes beyond customer-facing
features, all the way to third party vendors and the internal operations.

https://anatoly.com/multi-tenancy
</tldr>

https://anatoly.com/multi-tenancy

Chapter 17: Unblock Coding and Testing

Some national parks have long waiting lists for camping
reservations. When you have to wait a year to sleep next to a tree,
something is wrong.

– George Carlin

A few years back, I’ve taken on a job of managing a cross-functional
engineering team, responsible for retrofitting the existing e-commerce and
manufacturing solution with new products and services. The engineers on
the team knew their trade well, have been with the company for a while,
and I wasn’t expecting any big surprises. The very first month on the job
has proven me wrong when one of the ongoing projects came to a
screeching halt. There was no warning shot. Simply, one day, at the daily
standup meeting, one engineer (let’s call him Steve) simply announced: “I
am blocked!”

“What do you mean, Steve?” I asked incredulously.
“My work is dependent on the component which is not coded yet. The

component is a responsibility of another team. I already talked to them, and
they promised to have it ready it in two days. Until then, I can work on
something else.”

I didn’t like this. Two days could easily turn into a week, and by the
time Steve gets back to his task, he would have no recollection of what he
was working on, and the overall project timeline will shift.

“Is there a way you could mock the missing implementation and
continue?” I asked.

Now it was Steve’s turn to look at me weirdly.
“How do you mean mock?”
“Well, emulate, create a dummy implementation of the interface which

does nothing for real but can be called from your code – so that you can
finish coding, build it, and test to the extent possible?”

I drew a blank stare in return. Another engineer was blocked the next
day. And two more the day after. Something was very wrong… and I was
having the worst case of déjà vu I’ve ever had.

The thing is – I saw this before, in early 1990s, when I was on the team
developing financial software in COBOL. The language lacked the modern
syntactical sugar, didn’t support interfaces or OOP, and SOLID principles
were yet to be formulated. We were on the clock to deliver the software in a
very tight timeframe. We created a highly optimized waterfall development
plan which meticulously tracked every component dependency, to make
sure that we could build the system from the ground up without waiting on
unfinished components. Our project manager was spending all her time
rearranging the waterfall execution plan on daily basis, and still, some tasks
would take longer than expected, blocking a few developers every now and
then. This was a true nightmare from the past, the one I put behind 25 years
earlier… and I was facing it again, in the brave new world of agile project
execution! Only this time, there was no project manager tracking
dependencies – the team was running agile weekly sprints without
prioritization or dependency tracking of the tasks.

As it turned out, the team was used to assemble fully functional
software, without ever resorting to abstractions. The engineers expected all
code dependencies to be fully functional before they start coding a new
component. To illustrate this, consider a snippet from a hypothetical e-
commerce system which places an order for a single product: <code>

import { collectPayment } from './accounting';
import { submitShipment } from './delivery';
import { placeOrder } from './ecomm';
import { User } from './user';

export const checkout = (customer : User) : void => {
…
let orderNumber = placeOrder(customer);
let totalAmount = collectPayment(customer);
let trackingNumber = submitShipment(customer);
…
};

</code>
Now, your task is to add an email notification, sent to the customer once

the order is placed. You could do it like this: <code>
import { collectPayment } from './accounting';

import { submitShipment } from './delivery';
import { placeOrder } from './ecomm';
import { User } from './user';
import { sendEmail } from './notifications';

export const checkout = (customer : User) : void => {
…
let orderNumber = placeOrder(customer);
let totalAmount = collectPayment(customer);
let trackingNumber = submitShipment(customer);
let emailSubject = `Your order is on its way!`;
let emailBody = `Congratulations, ${ customer.name }!\n`
+ `Your order #{orderNumber} has shipped.\n`
+ `You can track it via USPS\n`
+ `Your tracking number is ${ trackingNumber }`;
sendEmail(customer.emailAddress, emailSubject, emailBody);
…
};

</code>

And this is a correct approach… but there is one little problem: the
notifications library is a responsibility of another team, and it is not ready yet.
They promise it to be ready in 2 days… or 3… Meanwhile, you can’t use
sendEmail() function; it doesn’t exist – and you are blocked! Or are you?

How about spending a few minutes and creating a simple emulator for
the sendEmail() function? Let’s have a look:

<code>
import { collectPayment } from './accounting';

import { submitShipment } from './delivery';
import { placeOrder } from './ecomm';
import { User } from './user';

//TODO: uncomment the line below when the ‘notifications’ package is ready
//import { sendEmail } from './notifications';

//TODO: delete the function below when the ‘notifications’ package is ready
const sendEmail = (
emailAddress : string,
emailSubject : string,
emailBody: string
) : void => {
console.log(
`emulated sendEmail() to ${ emailAddress }:\n`
+ `${ emailSubject }\n${ emailBody }`
);
};

export const checkout = (customer : User) : void => {
…
let orderNumber = placeOrder(customer);
let totalAmount = collectPayment(customer);
let trackingNumber = submitShipment(customer);
let emailSubject = `Your order is on its way!`;
let emailBody = `Congratulations, ${ customer.name }!\n`
+ `Your order #{orderNumber} has shipped.\n`
+ `You can track it via USPS\n`
+ `Your tracking number is ${ trackingNumber }`;
sendEmail(customer.emailAddress, emailSubject, emailBody);
…
};

</code>
Now we can write and test the code, and the only thing left is to address

the TODO items in the code, once the notifications library is ready.
If this feels way too trivial, I agree wholeheartedly. In real life, however,

the number of interdependencies between modules is much larger, and
developers cannot emulate all their dependencies all by themselves.
Besides, there could be other modules that require sendEmail() functionality,
and we don’t want all the developers spend their time reinventing the wheel
over and over again. Instead, I recommend embracing emulation of
components as an approach to software architecture.

Let’s consider the same example. When we create the architecture for
the notifications module, we first create an interface that embodies the contract
of that module. For instance, consider the following notifications-defs:

<code>
// module notifications-defs.ts
export interface Notifications {

sendEmail(
emailAddress : string,
emailSubject : string,
emailBody : string
) : void;
}

</code>
We also create an emulator implementation in notifications-emu:
<code>

// module notifications-emu.ts
import { Notifications } from './notifications-defs';
export class NotificationsEmulator implements Notifications {

sendEmail(
emailAddress : string,
emailSubject : string,
emailBody : string
) : void {
console.log(
`emulated sendEmail() to ${ emailAddress }:\n`
+ `${ emailSubject }\n${ emailBody }`
);
}
};

</code>
At this point, the architect’s work is done, and developers take over.

Let’s assume that development of notification module is not due for another
week. However, we don’t have to wait, and can code checkout right away, like
this:

<code>
// module checkout.ts
import { collectPayment } from './accounting';

import { submitShipment } from './delivery';
import { placeOrder } from './ecomm';
import { User } from './user';
import { Notifications } from './notifications-defs';

export const checkout = (notifications : Notifications, customer : User) : void => {
…
let orderNumber = placeOrder(customer);
let totalAmount = collectPayment(customer);
let trackingNumber = submitShipment(customer);
let emailSubject = `Your order is on its way!`;
let emailBody = `Congratulations, ${ customer.name }!\n`
+ `Your order #{orderNumber} has shipped.\n`
+ `You can track it via USPS\n`
+ `Your tracking number is ${ trackingNumber }`;
notifications.sendEmail(customer.emailAddress, emailSubject, emailBody);
…
};

</code>
As you can see, checkout.ts no longer depends on having sendEmail()

implemented for real, and can be filly coded. No one gets blocked!
But how do we test it? Let’s create a rudimentary [35] test for checkout():
<code>

import { Notifications } from './notifications-defs';
import { NotificationsEmulator } from './notifications-emu';
import { User } from './user';
import { checkout } from './checkout';

const notifications : Notifications = new NotificationsEmulator();
const customer : User = {

name : `Anatoly`,
emailAddress : `contact@anatoly.com`
};

checkout(notifications, customer);

</code>
Now, we can both write the checkout code, and also test it! If we

wanted to, we could add more test cases, and we use an off-the-shelf testing
framework to run them and check results. With this, we unblocked not only

the development team but also the QA team to create unit tests. With the
use of emulators, you can structure your project to have the tests created
before developers start coding the real implementation. This is known as
test-first approach to software development. With this, developers can
verify their work immediately, by running the tests created in advance. If
you develop test-first, then the quality of the code your team produces goes
sky-high.

One of my book’s reviewers, while reading this, said: “But this is just
standard dependency injection. You’ve already covered this earlier in the
book!” Yes, the mechanism in use is indeed the dependency injection. And
we could take it a step further and use inversion of control pattern to
configure the instantiation of implementation classes (emulators vs real) via
a configuration file. But that’s not the point. The point is this: as an
architect, create emulators for each component alongside with their
interfaces. Alternatively, have your team code all emulators before the
“real” development starts. Having emulators enables almost infinite
parallelism for development process, i.e., you will be able to create any
number of workstreams for your project, without dependencies, and without
anyone getting blocked. It also allows you to practice test-first development
and paves way for a smooth execution of your agile sprints. Conversely, not
doing this will likely plunge your team into the dark ages of waterfall
planning, poorly tested software, and missed deadlines.

In the ideal world, you should be able to assemble the entire system
from emulators first. Then, you build a plan for replacing those emulators
with real code. Some pieces of functionality can remain emulated until later
phases, potentially months after the first version of the system goes into
production. For instance, you may decide to release an MVP (minimal
viable product) version of your software which doesn’t send notifications
emails when an order is placed. However, you can have an emulator in
place, “reserving” the spot for sending emails, which you will implement
once you have the resources to do so. Meanwhile, the system will remain
fully functional. When the time comes, your developers will simply swap
the implementation of the emulator with the real thing, which is best done
through a configuration file, by using inversion of control. This will also
allow you to turn features on and off at will, differently in test and
production environments, running the same version of the software.

Not all emulators can be implemented with a simplistic dependency
injection. You must be able to emulate APIs, datastore, UI components, and
more. The APIs can be emulated via direct calls, datastore by storing
everything in memory, UI components could be all gray rectangles
submitting hard-coded data instead of real input, etc.

<tldr>
Create emulators alongside with interfaces. Embrace the test-first approach

to development. See the light.

https://anatoly.com/unblock
</tldr>

https://anatoly.com/unblock

Chapter 18: Runtime Infrastructure

Electricity is really just organized lightning.
– George Carlin

The question of runtime infrastructure is frequently overlooked when
architecting a solution – and more often than not, the finalized architecture
inherently limits your choices. When speaking of the infrastructure, I
loosely refer to servers, networks, software components, and cloud services
required to run your system.

Many engineers buy into the promise of “just doing microservices” or
“just doing containers” or “just planning to provision servers”, and move on
with development, leaving the business to later discover all the hidden but
significant costs associated with running, deploying, and supporting the
system, beyond the “pure” engineering costs. Will your infrastructure
require a human to manage? Will you need a fully staffed DevOps/SRE
team to support your operations? How much will it cost to run the system at
full scale? Can you save $$ while you are running the proof of concept for
the first 6 months before you get funded? How costly will it be to handle
the occasional traffic spikes? How well will your system protect the
customer’s data? How can you best support the future development and
testing efforts?

Most of these questions are answered by selecting your hosting model.
Several options exist:

Use your own dedicated hardware
Provision dedicated hardware from a cloud provider
Provision virtual hardware from a cloud provider
Install a container solution on dedicated or virtual hardware
Rely on fully managed container orchestration solution
Go serverless

Let’s have a look at each option individually [36].
Use your own dedicated hardware. This is the most involving option

– and this is what every company was doing in the past, before the cloud

providers. This means building your own server farm, ensuring redundancy
and security, servicing hardware when necessary, etc. Very involving and
very costly, both to build and to operate. Why would you do it nowadays? If
your business requires specialized server hardware, peripherals or
connections, which are unavailable from cloud providers, then this is for
you. Other use cases include applications which must comply with
government-imposed security regulations, systems which must be
physically disconnected from the Internet, or applications which exchange
excessive amounts of data with existing on-premises servers. For the vast
majority of business applications, however, this option is too expensive and
inefficient to be even considered.

Provision dedicated hardware from a cloud provider. The only times
when you may need truly dedicated hardware is when running real-time
workflows, or continuously performing heavy computations. In those cases,
context switching performed by virtualization software negatively affects
performance, and you may want to have the hardware allocated 100% to
your workflows. This is also rare in the business application world, but
more common in big data analytics and in real-time applications (GPS
navigation, robotics, air traffic control, live video processing.)

Provision virtual hardware from a cloud provider. This is one of the
most popular options today (although not necessarily the most optimal one).
This option is great because many cloud providers allow you to
dynamically scale the number of your virtual servers as your sustained load
changes. For instance, you can configure a dynamic load balancer to
automatically increase or decrease the capacity (number of virtual servers)
based on the average number of requests received per hour. This will save
you money, in contrast with provisioning for the maximum capacity
required and paying for the low-load intervals as much as you do for the
high-load ones.

With both dedicated and virtual hardware, most cloud providers allow
you to pre-create images of your server hard drives and then launch new
server instances using those images by either making an API call or by
specifying auto-scaling rules. A good example of such service is Amazon
Elastic Compute Cloud, aka EC2. EC2 allows you to create server images
and provides you with a web-based console to manage your instances
manually, and with an API to do so programmatically. You can also use

Elastic Load Balancer service (ELB) to automatically scale a pool of
servers up and down, depending on the specified set of rules.

Install a container solution on dedicated or virtual hardware. An
alternative to deploying your app to virtual servers is using Docker
containers. Docker is a set of tools for packaging your application or its
independent components, for later deployment to a container framework,
such as Docker Swarm or Kubernetes. Using Docker streamlines
deployment and management of application components, by creating an
abstraction for manipulating components [37]. Components packaged using
Docker usually expose HTTP-based APIs, serve web pages over HTTP, or
implement batch workloads. Depending on the container framework, using
Docker may sometimes limit your load balancing abilities, when compared
to the advanced balancing solutions available directly from a cloud
provider. The challenge in workload balancing with Docker is that it
introduces two levels of load balancing. The first level of balancing works
with Docker container instances, within the capacity limits of the
provisioned hardware. The second level of balancing works with the
hardware itself. The most commonly used solution is to maintain a single
Docker instance per virtual server instance, and balance servers using the
dynamic load balancing available from the cloud provider. This works,
although not optimally.

Rely on a fully managed container orchestration solution. Some
challenges of managing and load-balancing both hardware and Docker
instances are alleviated by fully managed services provided by some of the
cloud providers. One example is Amazon’s Elastic Kubernetes Service
(EKS) which is fully compatible with standalone Kubernetes deployments,
but is tightly integrated with Amazon Cloud infrastructure and allows you
to take advantage of several built-in load balancing and scaling algorithms.

Up until now, the options we considered were imposing only minor
limitations on your technology stack, because we were dealing with servers,
dedicated or virtual, and we remained in full control of what gets installed
on those servers [38]. This changes as we move to the serverless option
described below, which offers you to trade some of the freedom for
simplicity and cost.

Go serverless. This one is my personal favorite. A good example of
serverless cloud services combines two services available from Amazon
Cloud: Lambda and API Gateway. Lambda allows you to deploy pure code,

without thinking of the infrastructure at all, in a highly scalable manner.
The cloud automatically manages the hardware necessary for deployment of
your Lambda code, and automatically scales your deployment by running as
many Lambda instances as the number of concurrent requests coming in.
API Gateway, in turn, publishes your API and web endpoints, and routes
the incoming requests to your Lambda code. What you are getting, in the
end, is a near-limitless compute capacity which runs your code
concurrently, scaling automatically. Since creation of Lambda instances is
lightweight, it is significantly faster than a virtual server or a docker
instance warmup. For that reason, Lambdas scale extremely fast, usually
fast enough to quickly respond to traffic spikes. With servers or Docker
instances, you are forced to maintain certain “warm” capacity to take on the
spikes, which means you pay for the hardware while it is not being fully
utilized between the spikes. With Lambda, you pay for the execution time
you consume, which makes it more economical in many cases.

Consider an extreme example. You are building a startup, which has to
reliably process e-commerce transactions. You expect 100 purchases per
day for the first 6 months. Each purchase takes 1 second of compute time,
so 100 purchases x 30 days x 6 months takes 18,000 seconds, or 5 hours
total of compute time. If you go with traditional server architecture, then
you pay for 2 servers (for redundancy) x 24 hours x 30 days x 6 months =
8,640 hours. That’s 1,728 times more compute time than you actually need!

Now imagine another exaggerated example: you are running a TV ad,
offering a deep limited-time discount. Once the ad is displayed, all the
interested viewers flock to your web site, approximately at the same time.
Your site offers them a customized all-inclusive quote based on the options
selected and the zip code entered. Let’s say your ad runs 10 times a day, for
30 days, and generates around 1,000,000 quotes from each run. With
Lambda, your monthly cost of calculating quotes is the cost of handling
300,000,000 requests. Assuming you run the most expensive Lambda
configuration (maximum memory and maximum performance), and
assuming 1 second of compute time spent per request, this will cost you
approximately $0.00005 [39] per request, or $15,000 monthly. If you use
servers instead, you must have enough capacity in place to manage the
traffic spike when the ad runs. For simplicity, let’s say each server can
process 4 quotes concurrently. This means you must provision 1,000,000 / 4
= 250,000 servers – a totally absurd number. A virtual server with

equivalent to the quoted Lambda capacity costs upwards of $200 monthly,
bringing the monthly total to $50,000,000. Give it some time to sink in:
$15,000 using Lambda and $50,000,000 using servers. Of course, this
example is an intentional exaggeration, but it nicely illustrates the point: if
you have spiky traffic, then serverless architecture is likely to be far more
cost effective than traditional server allocations [40].

Serverless implementations have their inherent limitations. For instance,
AWS Lambda limits you to the maximum size of request/response of 6mb,
available memory of 3GB, max execution time of 15 min, max code size of
250MB, max disk space of 512MB, and max concurrency of 3,000
Lambdas running in parallel (in the U.S. data centers) [41].

These limitations usually prevent you from running batch workloads
using AWS Lambda, unless your batch jobs can finish their work or
enqueue all the tasks for asynchronous execution in under 15 minutes.
Amazon Cloud has another service called AWS Batch which helps to work
around this particular limitation.

You also must consider the future traffic volume and patterns. If you
expect a shift from spiky traffic to significant sustained loads over time,
then you must do the math and ensure that the cost of a serverless
deployment remains competitive to a server- or container-based approach.
You may also consider a hybrid solution or eventual migration from
serverless to server-based – but in either case, this type of analysis and
planning must go into the foundation of your architecture.

The maximum benefit of serverless infrastructure is achieved if your
entire system is architected around fully managed services. Under fully
managed I mean services which are managed by a third party, thus requiring
little to no attention on your part. For instance, AWS Lambda is a fully
managed hosting service, where you need not worry about the actual
servers; a fully managed database like DynamoDB doesn’t require you to
monitor and optimize disk space, memory, partitioning, replication, etc. At
the end of the day, most companies are not in the business of building and
managing technology infrastructure – they provide services to the end
consumers – yet many spend significant $$ on managing their own servers,
databases, streaming engines, and container frameworks. The cost drivers
here are not only the infrastructure itself but the cost of the team that plans,
builds, and then supports it.

Amazon did a great job providing a range of fully managed services,
and I had a great success building system on top of 100% fully managed
AWS infrastructure.

<tldr>
The choice of your hosting model, or the ability to move between select

models, is one of the most pivotal architectural decisions where it comes to
scalability and operating costs. The costs are not limited to the hardware
and services but also include the labor to deploy and maintain the system.

The simplicity of delivering code to your infrastructure also affects stability
of your software releases and your readiness for Continuous Integration

and Continuous Delivery (CI/CD).

https://anatoly.com/runtime-infrastructure
</tldr>

https://anatoly.com/runtime-infrastructure

Chapter 19: Runtime Frameworks

Never underestimate the power of stupid people in large groups.
– George Carlin

The purpose of runtime frameworks (let’s call them simply frameworks)
is to speed up the software development process. The frameworks are
usually produced by third parties, frequently open source, although you can
develop some of your own. Most of the frameworks are general purpose
and can be used for a wide variety of application domains (or so they
claim). Some frameworks pack significant amount of complex code and
algorithms, and some create standards extension by third party developers –
both of which can save you tons of time and money.

For instance, here are some of the popular frameworks for business
application development in Java:

Hibernate: enables object-relational mapping (ORM) for your
data model
Spring: enterprise app development
Vaadin: web app development
Google Web Toolkit (GWT): web development in Java
Java Server Faces (JSF): building UI from reusable components
Spark: unified analytics for big data
Flink: stateful computations over data streams
Beam: massively parallel processing of data streams
Angular: building single-page web UI
React: building highly interactive web UI

Most language-specific frameworks are distributed as code libraries,
which are then bundled with your application. Such frameworks are usually
tightly integrated with your programming language for maximum
performance (Hibernate, Spring, Vaadin, GTW, JSF).

Language-neutral frameworks are usually installed separately server-
side, and work with your application through a set of APIs, usually HTTP-
based (Beam).

Frameworks are double-edged swords. Selecting the right ones for the
job will save you the time and money. Conversely, poor choices may lead to
significant losses in productivity and operational risks.

The relationship you form with a framework and the team behind it is
asymmetric. You make a serious long-term commitment to the framework,
while the framework’s creators usually make no commitment to you
whatsoever. If the framework shows its flaws late in the game, you are
likely to incur considerable time and cost overruns replacing or fixing it.
Keep in mind that the authors of the framework created it to solve their own
problems, not yours. Unless you know with certainty that the framework is
built to address the needs of the application domain which substantially
overlaps with yours, the risk of adopting a framework is incredibly high.

Regardless of which frameworks you choose, delay your decision until
everything else in your architecture is fully fleshed out. Frameworks should
be the last choice you make. Never allow a framework to define your
architecture. Figure out your entire architecture first, and only then decide
on how to implement it faster by incorporating an existing framework.

Also, for each of the frameworks which you are eyeballing, think twice
if you actually need it. Many frameworks do just a little tiny bit of
additional automation but will forever confine you in its sometimes-limiting
paradigm. Make sure the framework gives you significant long-term value
without putting you into a straitjacket.

Whatever the choices of frameworks you make, treat them as
replaceable. To achieve that, do not allow any framework dependencies to
penetrate your code base. This can be achieved by abstracting the
frameworks using interfaces, and making your code depend on those
interfaces. Concrete implementations call frameworks directly and are
supplied to your code using Dependency Injection pattern, or – better – by
specifying concrete implementations in a configuration file using Inversion
of Control pattern. This way, your codebase remains framework-neutral,
and you avoid a potential vendor lock-in.

This approach is more actionable for server-side frameworks, and less
realistic for client-side. UI frameworks usually force you into their
component and event propagation model, thus creating the scaffolding for
you to put your code into. Such frameworks are extremely hard to replace
without rewriting the entire view implementation.

<tldr>
Don’t make your architecture choices dependent on a framework.

Frameworks must significantly simplify and accelerate coding. Do not
allow frameworks to penetrate your code base.

https://anatoly.com/runtime-frameworks
</tldr>

https://anatoly.com/runtime-frameworks

Chapter 20: Brainstorming

Life gets really simple once you cut out all the bullshit they teach
you in school.

– George Carlin

In 2009, I went on building a social marketing platform. It was intended
to become a groundbreaking solution, both technologically and functionally.
The social media space was evolving fast, and I had to move even faster to
keep up with the market. I hired a good engineering team, all seasoned
developers.

When brainstorming the architecture, the team quickly dismissed the
options they knew to be overly complex and expensive and narrowed the
decision making down to one very reasonable proposal. It wasn’t a jewel,
but we all knew it will work for our purposes.

It worked quite well indeed, up until the moment a few years later, when
we moved towards serverless cloud architecture. Then we discovered that
the transition would cost us an arm and a leg, mainly due to the shortcuts in
the architecture we’d taken.

Even more discouraging was the realization we saved very little by
dismissing the more complex options early on. By excluding them from the
overall analysis process, we did not see the benefits we could have ripped in
other parts of the system. A quick calculation has shown that, had we kept
all the options on the table, we would have saved the time and money in the
long term – and our later transition to serverless would have been a breeze.

This is when I realized that eliminating any of the ideas that come up
early on is a systemic mistake and should be avoided, no matter how obvious
or appealing such elimination might seem. Naturally, it turned out that I was
not the first to identify this problem; there exists a business process which
addresses the issue perfectly. The process was originally invented at the most
unlikely of all places – the Walt Disney Studios—and is called The Disney
Method. Here is how it works.

Imagine three rooms, occupied by three teams.
The first room is occupied by the Dreamers. The Dreamers generate

ideas, with no limitations or judgment, no matter how bold or absurd those

ideas might seem. Nothing is censored. Nothing is too absurd or silly. All
things are possible for a Dreamer. At Walt Disney Studios, the Dreamers
create ideas for new motion pictures. The work of the Dreamers is recorded
and once a dream (a movie) is fully conceived, it is then passed to the
second room.

The second room is occupied by the Realists. The Realists consider each
dream and create an execution plan for it. They think of the technologies that
might be required, an execution plan, resources, budget, schedule, etc. The
Realists create their execution plan without constraining themselves with
cost or complexity of the execution. They may propose multiple plans for
executing the same dream. The plans proposed by Realists are also recorded,
and then passed on to the third room.

The third room is occupied by the Critics. The Critics review all the
implementation plans created by the Realists and try to punch holes in them
by playing devil’s advocates. Their main concerns are time, budget,
resources, risks, legality, public opinion, customer satisfaction, reusability,
etc. It is important to note that the Critics are instructed to criticize the
execution plan created by the Realists, but not the original Dream. The
Dream is untouchable. However, a connection should be made between the
elements of the original idea, the respective parts of the implementation
plan, and the criticism. This creates the necessary feedback for the Dreamers
to iterate on their ideas going forward.

If the Critics fail to generate significant criticism for an implementation
plan, then the plan is ready to be executed. At Walt Disney Studios, this
means they move forward shooting the motion picture.

If, however, the Critics provided a significant amount of criticism for the
plan, then the whole recorded Dream+Plan+Criticism package is sent back
to the first room with the Dreamers. The Dreamers review the feedback, and
either (a) ditch the original idea entirely, or (b) modify the original idea, and
send it through another iteration with the Realists and the Critics.

The process repeats itself until the idea is ready for implementation, or
until it is tabled until another time. At Disney, some movie ideas had to wait
until the inception of the computer graphics.

The diagram below illustrates the Disney Method:

But of course, we are not here to shoot a movie; we are software
architects. Let consider the adaptation of the Disney Method to the process
of developing software architecture. For us, the dream represents the full
unconstrained business specification for the product or service; the execution

plan is the software architecture, and the criticism combines all business and
technical flaws of the architecture, including its complexity, cost, risks, and
time to market.

We can depict the process as follows:

Let’s look at it more closely. First, product management (or the
entrepreneur who takes on that role) are asked to come up with the ideal
product they can think of, without constraining themselves by any concerns

related to cost or time or personnel or anything else. All they focus on is
what the product should be, if they can have it all. That ideal product is
expressed in a form of a written specification; it’s the “dream”. It is then
passed to the team of architects (or a single architect/developer in a smaller
configuration). The architects map out the architecture for implementing the
spec, without constraining themselves with time, cost, or available resources.
They cut no corners, and come up with the best architecture possible, and
document it – and it becomes the “plan”. Then, everyone (product managers,
architects, developers, and everyone else who can meaningfully contribute)
familiarize themselves with the architecture and begin criticizing it from
various angles – cost, time, etc. The proposed product is never criticized,
only the architecture. In the process, the architects help connecting the dots
between the most heavily criticized architectural decisions and the elements
of the product specification which led to those decisions in the first place. If
no meaningful critique has been generated, then the product is ready to be
built. If there is critique, then all the gathered information is passed back to
the product management, and they can decide if they want to shelf their idea
entirely, or if they want to drop or alter some of the features which are
responsible for the most criticized parts of the architecture. If they decide to
revise the specification, then the altered product spec is re-submitted, and the
process repeats itself.

You are not required to physically have the three rooms, as long as your
process has the three steps of the method clearly separated. You aren’t
required to have different individuals performing the roles of Dreamers,
Critics and Realists either. You can wear those three hats all by yourself, or
you can distribute the roles within your team – as long as you never wear
two hats at once, and give yourself enough time to clearly switch the context
and fully slip into the new role before participating in the process [42]. The
key is to fully associate yourself with one role at a time and to strictly follow
the guidelines. No early or partial criticism, no shortcuts, no attempts to
avoid complexity. Aim for a perfect architecture for a perfect product, and
you shall have it!

<tldr>
Use the Disney Method to fully flesh out both the “dream” and the plan that
brings it to life. Never criticize the dream, only criticize the plan. Criticism

shall be based on the holistic view of the entire plan and shall not be
intermixed with the creative steps.

https://anatoly.com/brainstorming
</tldr>

https://anatoly.com/brainstorming

Where Do We Go From Here?

Standing ovations have become far too commonplace. What we
need are ovations where the audience members all punch and kick one
another.

– George Carlin

I hope you enjoyed reading this book as much as I enjoyed writing it. If
you made the effort to understand the principles, then you should be ready
to take your software architecture work to the entirely new level. But, per
Confucius, knowledge without practice is useless; practice without
knowledge is dangerous. You just acquired the new knowledge. Put it to use
right away, while it is still fresh in your head. If you have a project at work
which needs architecture, great. Otherwise, start tinkering in your own free
time. Or do both. Once you solidify your understanding in the form of
actual blueprints and code, you will possess the real-life experience,
propelling your career to the next level and de-risking your entrepreneurial
endeavors.

Now, what about the promise of becoming an awesome software
architect? You should feel some awesomeness already: getting through this
book wasn’t an easy feat. But our journey isn’t over yet. On the contrary,
it’s just the beginning… I have more topics to share, enough for one or two
books to come. I’ve already started working on Book 2. Here is the list of
topics I am planning to cover, not necessarily in this order:

Embracing immutability. Pure functions. Defensive
programming.
Lazy execution. Declarative vs imperative programming.
Localization. Multi-lingual implementations. Multiple currencies
and other localization considerations.
Date and Time. Servicing customers across time zones. DST.
Date and time intervals. Calendar calculations. Proper persistence
of time vs calendar values.
Reliable scheduling without batch processing. Customer journeys.
Exception and error handling.

Worldwide service delivery. Multi-region deployments. CDN
edge deployments.
Audit trails. “Explain mode” for complex calculations and
decision making.
Push Messaging. Browser-based and mobile push. Real-time
customer interactions: chatting, sharing, liking.
Asset and content management. Content delivery.
Embracing video. On-demand video. Video streaming. Interactive
video.
Source control. Massively parallel development. Release
management. Deployment strategies. Continuous Integration and
Continuous Deployment and Delivery (CI/CD).
Testable architectures. Testing and troubleshooting pipelines.
Separate environments for development, test, staging and
production. Data management across environments.
Turning new features on and off. Killswitch vs IoC. Functional
dependencies.
UX and UI best practices. Reusable UI Components.
Accommodating all display sizes.
Landing pages and funnels. User workflows that sell. Product-
specific user workflows. Fluid UI.
A/B testing. Conversion funnels. Behavioral analytics.
Capacity planning. Load/Stress testing.
Data security. Privacy considerations. Handling of personally
identifiable information (PII). GDPR compliance.
Development of Domain-Specific Languages (DSLs).
Product setup. Multi-dimensional products and services.
Customizable products. Testability of complex products.
Business Workflows. Building flexible workflows. Combining
human and machine tasks in the same workflows. State machines.
Common Business Intelligence (BI) data models and
implementation patterns.
Modernization of legacy systems. Retrofitting vs integrating vs
rewriting. Gradual transitioning.
Serverless architecture patterns in AWS. Building applications
quickly using fully managed components (DynamoDB, SQS,

Kinesis, Lambda, CloudWatch, S3, API Gateway, Certificate
Manager, Route 53, IAM).
Immediate vs Eventual consistency. Non-transactional distributed
systems.
Roadmap planning. Project management. Agile, waterfall, and
combined planning and tracking. Estimates. MVPs. Risk
management.
Team building. Leadership. Technical mentorship. Useful
elements of NLP. On-premises vs remote teams. Outsourcing.

<tldr>
Which topics I should be getting your way first? Which additional topics

would you like me to cover? I’d like to hear from you!

https://anatoly.com/feedback-architect-1
</tldr>

Last but not least: I would love to hear your honest opinion about this
book. Please rate and review it on Amazon; this will help other readers like
you. I thank you in advance for your feedback.

All the Best!

https://anatoly.com/feedback-architect-1

– Anatoly Volkhover

Appendix I: Dependency Inversion
Explained

There are nights when the wolves are silent and only the moon
howls.

– George Carlin

Speaking with many software engineers, including very experienced
ones, I realized that the purpose of Dependency Inversion is poorly or
incorrectly understood. Many think of it as a “trick with interfaces” which
somehow magically works. Let’s demystify it.

Consider a highly hypothetical example. Imagine you quit your
engineering career and opened a pizza shop. Your main customer is a fast-
growing high-tech startup down the street, which keeps you busy. The
startup pays for the food, and they even streamlined their ordering by
creating a Google Form for their employees. All an engineer has to do when
they get hungry is fill in their name, select the desired toppings and push the
Send button. This automatically emails the doc to you, and you make and
deliver the pizza to the company’s front desk. Easy.

Through the first year of your shop’s existence, the startup expanded so
much you were getting too many email orders to handle them manually.
You dusted off your engineering skills, and wrote a little Python program,
which parsed the incoming emails and entered the orders automatically into
your point of sale system. This was possible because all emails shared the
same consistent format, based on the same Google Form.

Another year passes, your business is thriving, and you go on a well-
deserved vacation to Bora Bora. That’s when an unimaginable happens. In
an attempt to make the Google Form prettier, someone at the startup
changes its format. The template now looks awesome, but the new format
breaks your little Python automation. Your business immediately stalls, and
you are too far away to fix it. Ouch!

Turns out that your business has a hidden dependency [43] on the form
owned by your customer.

Sounds logical… but could you do better?

The answer is yes. You could provide your own form to the startup for
ordering pizza. Heck, you could probably do better, and give them an online
form. Either way, by publishing your own form, you could have inverted
the dependency – making the startup employees dependent on your form,
and not the other way around. All that was required from you is to clearly
declare the contract for engaging your services.

In the nutshell, this is what dependency inversion is all about. It breaks
the natural order in which the consumer of the data (the pizza shop)
depends on the supplier of the data (the customer). It turns the tables,
making the supplier dependent on the consumer.

We encounter Dependency Inversion every day, in our day to day life.
Almost every time you are filling out a form to order a service, you are
dealing with an inverted dependency. Service providers don’t want to be
dependent on you, and they invert the dependency by forcing you into
compliance with their contracts (forms).

In software engineering, this is implemented through interfaces. An
interface published by a service provider is an equivalent of the form
handed out to a customer.

Appendix II: Recommended Reading
Materials

The reason I talk to myself is because I’m the only one whose
answers I accept.

– George Carlin

Here are the books on the software architecture that will help you dig
deeper into some of the topics brought up in this book:

Clean Architecture, by Robert C. Martin
Clean Code: A Handbook of Agile Software Craftsmanship, by
Robert C. Martin
Domain-Driven Design: Tackling Complexity in the Heart of
Software, by Eric Evans
CQRS (Command Query Responsibility Segregation), by Ajay
Kumar
Exploring CQRS and Event Sourcing (Microsoft patterns &
practices), by Julian Dominguez, Grigori Melnik, Fernando
Simonazzi, Mani Subramanian and Dominic Betts
Design Patterns: Elements of Reusable Object-Oriented Software,
by Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides
Object-Oriented Programming — The Trillion Dollar Disaster, by
Ilya Suzdalnitski (published on Medium)

[1] With the obvious exception of platform-specific functionality.
[2] FP is a fairly old concept that predates OOP, but its practical applications were limited due to

the cryptic syntax of the early functional languages (think LISP).
[3] I will not attempt to fully explain OOP and FP here. We are merely going to look into those

few traits that make a difference for reaching fundamental architectural decisions.
[4] In other words, there is a confusion between is-a (inheritance) vs has-a (composition)

relationships between classes. The inheritance pattern is used instead of composition because most
OOP languages do not have the syntactical sugar to make composition as convenient as inheritance.

[5] Not to be confused with AWS Lambda
[6] This piece of advice caused quite a bit of rebuke from my reviewers. A seasoned engineering

manager noted that, over the past 10 years, he came to the conclusion that Python lowers the barrier
of entry to software development, and as a side effect of that it lowers the level of software
engineering prowess of an average Python programmer to be well below the industry average.

[7] If you disagree with my assessments, feel free to fill out this table on your own, and come to
your own conclusions. What’s important in the language selection is to be driven by pure logic and
business interests, and not by personal attachments formed by the past experiences.

[8] Starting from Python 3.6 there is a way to include data type names into variable declarations,
but the language still has a long way to go to match the validation level of TypeScript or Java.

[9] If you are unfamiliar with the concept of Dependency Inversion, refer to Appendix I before
you continue.

[10] I am not in favor of applying DDD beyond data modeling, although DDD claims to have
much broader applicability. I am also dismissing some of the DDD concepts (for instance,
repositories) which are generally incompatible with other methodologies advocated in this book
(such as CQRS).

[11] Don’t build it this way in real life, unless you expect very low number of transactions
during the lifetime of an account.

[12] Generics are fairly common in modern programming languages, such as TypeScript, Java,
C#, and C++ (the latter has templates, which provide similar functionality). Generics are syntactical
sugar intended to facilitate strong static typing, but you can do without them if your language of
choice doesn’t support them. For TypeScript, you can read about generics here:
https://www.typescriptlang.org/docs/handbook/generics.html

[13] We will discuss this in finer detail in the next chapter.
[14] The term “command model” may seem ambiguous, because now we have two command

models: one that records the incoming events, and one that builds the persistent state snapshot. The
command model from our example is the latter.

[15] Imperative languages allow you to define a sequence of steps to be taken (an algorithm) for
achieving the end result. A good example of an imperative languages are Java.

[16] Declarative languages allow you to specify the end result without having to specify an
algorithm. A good example of a declarative language is SQL.

[17] The software artifact could be a class, a module, a function, etc.
[18] To be clear, our class hierarchy is perfectly valid syntactically, but is invalid from the

practical point of view guarded by the Liskov principle.
[19] There are many frameworks that implement IoC. A good example from Java world is

Spring. I am not a big fan of such frameworks, because they tend to intertwine with your code,
growing through it like a tumor, eventually becoming irreplaceable. Writing your own code to read a
configuration file and to dynamically instantiate your classes is trivial.

[20] We will cover CDNs in further details in Chapter 11
[21] We will cover this method of API construction in Chapter 14
[22] Immediate read consistency means records written by one process are immediately

available in their latest state to another process. Eventual read consistency means the records written
by one process eventually become available to another process to read in their latest state, but no later
than after a certain time interval passes by. Such time interval is called read consistency guarantee.

Regardless of database engine, immediate consistency is a theoretical construct for any database
accessed over a network, because no update query sent to the database reaches it immediately. Some
of the database engines themselves also distinguish between immediate and eventual read
consistency. For instance, DynamoDB has two types of reads – immediately consistent vs eventually
consistent – and the former is pricier than the latter.

[23] Similar mechanisms are available for practically all programming languages, supported
either on the language level, or via popular libraries. For instance, log4j is one of the most popular
logging frameworks in Java world.

[24] FIFO ordering is only possible with a single shard. Multiple shards could be processed with
varying speed, making strict FIFO impossible.

[25] In some CDNs like CloudFront, you have an option to control if the query parameters are
included into or excluded from the cache key.

[26] Another distribution of the same software is known as PhoneGap.
[27] Technically speaking, Cordova platform can support web and desktop targets, as well as

several other mobile operating systems. However, most popular plugins are developed just for iOS
and Android, which makes it a challenge to use Cordova beyond iOS and Android apps in practice.

[28] Maybe someone already came up with an acronym for the pattern described further in this
chapter. If you know one, please drop me a line.

[29] There exist experimental alternatives, like GraalVM, which allows you to execute and
interoperate multiple languages within the same virtual machine.

[30] Transactions are typically tracked by database engines on per-connection basis, and each
microservice typically requires its own connection. It is possible to create a database proxy service
which handles transactions across microservices, but this approach comes with significant
performance, scalability, and reliability risks.

[31] Reflection means inspection of classes, interfaces, fields and methods at runtime without
knowing the names of those classes, interfaces, fields, methods at compile time.

[32] APIs which are fully compliant with REST are frequently called RESTful.
[33] Scheduled processing can be potentially implemented as Periodic, by running frequently

and checking the time. However, it represents a different use case, and is worth an independent
consideration.

[34] This usually, but not always, falls into the scheduled processing category.
[35] A real-life test is a bit more complex, it must have a way of checking the results of the test

execution.
[36] In complex cases, you may end up combining several hosting solutions in one system.
[37] Lots of effort has been going lately into standardization of containerization solutions. For

more information, check out Open Container Initiative (OCI) at opencontainers.org
[38] One notable exception is Docker, which limits your choice of the OS, and this in turn

affects the rest of the software stack, unless it is completely OS-agnostic.
[39] This pricing listed here and below is as of September 2019; check the latest on AWS web

site.
[40] In real life, you spike load will spread over a short period of time, say 5 minutes, making

the realistic numbers about 300 times lower. This brings your server count down to around 800, and
your monthly cost to $160,000. Still, it’s an order of magnitude difference in hardware costs alone.

[41] Those limits are subject to change; check the latest AWS documentation for the most
current.

[42] If you are having hard time switching roles in the Disney Method, then you may want to
check out the Disassociation techniques in Neuro-Linguistic Programming (NLP).

[43] When saying dependency, I mean the following: A depends on B if changes made to B may
require A to change. In our example, a change to the ordering form by the startup (B) forces us (A) to
rewrite our Python automation.

	Title Page
	Preface
	Contact
	Acknowledgments
	Introduction
	How To Read This Book
	What Is Software Architecture?
	Chapter 1: The Architect’s Hit List
	Chapter 2: Programming Languages
	Chapter 3: Datastore
	Chapter 4: Data Model
	Chapter 5: Layering
	Chapter 6: Code Composition
	Chapter 7: Latency
	Chapter 8: Error Recovery
	Chapter 9: Logging
	Chapter 10: Real-Time Processing and Event Streaming
	Chapter 11: CDN
	Chapter 12: User Interfaces
	Chapter 13: Microservices
	Chapter 14: API
	Chapter 15: Batch
	Chapter 16: Multi-Tenancy
	Chapter 17: Unblock Coding and Testing
	Chapter 18: Runtime Infrastructure
	Chapter 19: Runtime Frameworks
	Chapter 20: Brainstorming
	Where Do We Go From Here?
	Appendix I: Dependency Inversion Explained
	Appendix II: Recommended Reading Materials

